
EVERYTHING YOU WANT TO KNOW ABOUT 
CORRELATION BUT WERE AFRAID TO ASK

F R E D  K U O
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MOTIVATION

• Correlation as a source of confusion

• Some of the confusion may arise from the literary use of the word to 
convey dependence as most people use “correlation” and “dependence” 
interchangeably

• The word “correlation” is ubiquitous in cost/schedule risk analysis and yet 
there are a lot of misconception about it.

• A better understanding of the meaning and derivation of correlation 
coefficient, and what it truly measures is beneficial for cost/schedule 
analysts.

• Many times “true” correlation is not obtainable, as will be demonstrated in 
this presentation, what should the risk analyst do?

• Is there any other measures of dependence other than correlation?
• Concordance and Discordance

• Co-monotonicity and Counter-monotonicity

• Conditional Correlation  etc.
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POPULARITY AND SHORTCOMINGS OF 
CORRELATION

• Why Correlation Is Popular?

• Correlation is a natural measure of dependence for a Multivariate 

Normal Distribution (MVN) and the so-called elliptical family of 

distributions

• It is easy to calculate analytically; we only need to calculate 

covariance and variance to get correlation

• Correlation and covariance are easy to manipulate under linear 

operations

• Correlation Shortcomings

• Variances of R.V. X and Y must be finite or “correlation” can not 

be defined

• Independence of 2 R.V. implies they are not correlated, but zero 

correlation does not in general imply independence

• Linear correlation is not invariant under non-linear transformation
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WHAT IS CORRELATION?

• We generally refer to “Pearson’s” product-moment coefficient

• There are other, but less used, definitions for “correlation” such as 
• Rank correlation

• Kendall’s Tau

• It is a measure of only linear dependence, only a sliver of information regarding 

dependence between two random variables.

• It is a very crude measure of dependence.

• It does not necessarily indicate causality:
• Correlation coefficient of 1 does not imply causality, only “ perfect” dependence

• “perfect” dependence means the ability to express one variable as a deterministic function of the other.

• Correlation coefficient of 0 does not preclude dependence

• Can you guess the correlation coefficient of the following functions, where x is a 

random variable?
• Y = 3 * x

• Y=  10 * x

• Y = 3 * x – 1

• Y = x^2

• Y = abs(x)

• Y = Sin(x)
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SOME EXAMPLES OF PITFALLS
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The famous anscombe example

( same correlation coefficient)
High correlation at the right tail

corr=.3 overall, but corr=.9 at 2 sigma



RANGE OF APPLICABILITY

• Accuracy of correlation is dependent on the variance of the data.

• There is a general degradation of correlation coefficient when the volatility of 

the data increases, i.e., correlation approaches 0 when volatility approaches 

infinity.

• For example, lognormal distribution can be founded to be bounded by: 

𝜌𝑚𝑖𝑛 =
𝑒−𝜎−1

(𝑒−1)(𝑒𝜎
2
−1)

; 𝜌𝑚𝑎𝑥 =
𝑒𝜎−1

(𝑒−1)(𝑒𝜎
2
−1)
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DEFINITION OF CORRELATION
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• Sample correlation calculation

• Cov(x,y) is the covariance 𝜎𝑥𝑦

• Relationship between correlation and covariance is therefore:

• 𝜎𝑥𝑦 = 𝜌𝑥𝑦𝜎𝑥𝜎𝑦

• There are Excel functions that calculates all these:
• COVARINCE.P, CORREL.P, STDEV.P



WHAT IS FISHER Z-TRANSFORMATION
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• Since “correlation” is a statistical 

entity, the accuracy of the 

estimate depends on the number 

of data points.

• However, Pearson’s correlation is 

not normally distributed so it is hard 

to calculate standard error.

• Fisher Z transformation is a 

technique:

1 1+𝜌 1
• 𝑧 = ln ; 𝜎𝑧 =2 1−𝜌 𝑁−3

• Which is Normally Distributed with 

standard error 𝜎𝑧 , which can be 

used to construct confidence 

intervals for 𝜌.

Sampling Distribution of Pearson’s 𝜌
𝜌= .6, N= 12



CONFIDENCE INTERVAL FOR PEARSON’S
CORRELATION
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• The Fisher Z-Transformation 
calculates the bounds; for 95% 
confidence interval:

𝜌𝐿 =
𝑒2𝑧𝐿−1

𝑒2𝑧𝐿+1
 ; 𝑧𝐿 = 𝑧 −

1.96

 𝑁−3
; 

 

𝜌𝐻 =
𝑒2𝑧𝐻−1

𝑒2𝑧𝐻+1
 ; 𝑧𝐻 = 𝑧 +

1.96

 𝑁−3
; 

 

𝑧 =  
1

2
ln(

1+𝜌 

1−𝜌 
)  

• Most space system/subsystems 
have far fewer data points than 
necessary for accurate 
depiction.



LIMITS ON ACCURACY EXAMPLE
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• Would like to check out with my 
own example

• Use Excel function to generate 2 
random uniforms

• Use inverse function to generate 
2 N(0,1), random normal (𝑥1, 𝑥2)

• Create 2 correlated random 
normal by using the 

•
𝑦1
𝑦2

=
1 0

𝜌 1 − 𝜌2
𝑥1
𝑥2

, 𝜌 = 0.5

• Use CORREL function to generate 
correlation coefficients between 
(𝑦1, 𝑦2), as a function of number 
of samples

• At less than 20 samples, the 
deviation is substantial



CORRELATION AND LINEAR 
REGRESSION
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• A linear regression model is an estimation tool and it has the following 

generalized form:

• 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖
• Where

• 𝛽0 is the intercept

• 𝛽1 is the slope of the regression line

• 𝜖𝑖 are assumed to be N(0, 𝜎2), and 𝜎2 = VAR(Y)

• It can be shown that

•  𝛽1 = COR(Y,X)
𝑆𝐷(𝑌)

𝑆𝐷(𝑋)
=𝜌𝑦𝑥

𝜎𝑌

𝜎𝑋
;       𝛽0 = 𝜇𝑌 −  𝛽1 𝜇𝑋

• And that

• 𝑅2 = 𝜌𝑥,𝑦
2

• R is actually the correlation coefficient between Y and X 



LINEAR REGRESSION EXAMPLE
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• A scatter plot of the equation

• 𝑌 = 1 + 3 ∗ 𝑥 + 𝜖

• Where

• 𝛽0 is 1

• 𝛽1 is 3

• 𝜖𝑖 are assumed to be N(0, 𝜎2), and 

𝜎2 = VAR(Y)=.5

• Calculations:

• 𝜌𝑦𝑥= .9854; 𝜎𝑌 = 2.928; 𝜎𝑥 = .966

• 𝜇𝑋 = -.00015; 𝜇𝑦 = 1.028

• 𝛽 
𝜎

1 = 𝜌 𝑌
𝑦𝑥 = 2.9868
𝜎𝑋

• 𝛽 = 𝜇 − 𝛽 0 𝑌 1 𝜇𝑋= 1.028



CORRELATION MATRIX
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• When more than 2 random variables are modeled, a correlation 
coefficient matrix is necessary to represent the inter-relationship. 

• A correlation matrix must be consistent, or defined as positive semi 
definite.

• A test of positive semi definite is that all Eigenvalues are greater than 
or equal to 0.

• A portfolio of standard deviation can be written in matrix form as:

• σ is a row vector of individual standard deviation and C is the 
correlation coefficient matrix.

• It is obvious that 𝜎𝑝 can not be negative, therefore, the requirement 
that C must be positive semi-definite



CORRELATION MATRIX CONT’D

• The matrix C must be positive definite if we require 𝜎𝑝 > 0, which will 
be the case for all real-life cases.

• Correlation matrix calculated from raw data is guaranteed to be 
consistent.

• However, most correlation in practice are either arbitrarily 
assigned or a subjective guess.

• The importance of a consistent matrix is 2-fold:

• In calculating a correct portfolio standard deviation, and

• A necessary condition in generating correlated random variables 
for Monte Carlo Simulations

• Most simulation tools will give you warning when the consistency 
criterion is not met.

• There are tools to repair inconsistent correlation matrix
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CORRELATION MATRIX EXAMPLE

Page 16

• When correlation matrix is 

calculated from sample data, it 

is guaranteed to be consistent, 

in practice however, most are 

subjectively assigned, for 

example:

• Original matrix 𝐶1 is consistent

• Wished to change 𝐶1 to a more 
desired correlation of 𝐶2.

• Now 𝐶2, however, is inconsistent.

• By adjusting some minor 

changes to 𝐶1, 𝐶3is consistent.

• Note how small the differences 

between 𝐶1and 𝐶3

𝐶1 =
1 0.9 0.7
0.9 1 0.4
0.7 0.4 1

𝐶2 =
1 0.9 0.7
0.9 1 0.3
0.7 0.3 1

𝐶3 =
1 0.894 0.696
0.894 1 0.301
0.696 0.301 1



EFFECT OF CORRELATION IN COST RISK
ANALYSIS
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• The effect of correlation on cost estimates and cost risk analysis can

best be described from a portfolio perspective.

• A cost estimate for an system can be thought of as a portfolio of sub

element costs, each with its own mean cost and standard deviation.

• 𝜇 =  𝑛𝑝 𝑖=1𝜇𝑖 , , note that 𝜎𝑝 ≤  
𝑛
𝑖=1𝜎𝑖

• This property states that the portfolio standard deviation is always less

than the sum of its constituent’s standard deviation when the

correlation between these elements are less than 1.

• Since the steepness of the cost S-curve, and therefore the

confidence level, is determined by the standard deviation, the

impact of correlation will ultimately be reflected in the confidence

level as well.



CORRELATION AND COST ESTIMATE-
AN EXAMPLE
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• From the previous equations, 
correlation does not change the 
expected costs or point estimates.

• Correlation only changes the portfolio 
standard deviation, which relates to 
the steepness of the S-Curve, and 
therefore, the confidence level.

• Higher correlation among the sub-
elements tend to increase the portfolio 
standard deviation, and therefore a 
wide spread of slope.

• Counter intuitive:

• Higher correlation increases point 
estimate confidence level.

• It also increases budget required 
for the 70% confidence level.

• So, in general, if the point estimate 
is below the expected value, 
correlation improves confidence 
level.

• If the point estimate is above 
expected value, then correlation 
decrease confidence level.



EFFECT OF CORRELATION IN 
SCHEDULE RISK ANALYSIS
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• Correlation effect on schedule
risks analysis is more interesting
and counter intuitive.

• It has different effect,
depending on whether we are
modelling rolled-up,  parallel or
serial tasks.

• The effect of correlation on
serial tasks is similar to that of
cost. Higher correlation
coefficient tends to tilt the S-
Curve.

• The variance of rolled-up tasks
is dependent on the variances
of the subtasks.

• When we used the same
variance for the rolled-up tasks
and the subtasks, we are
implicitly assuming 100%
correlation of the subtasks.

Rolled-up Task

Task A
Task B

Task C

Correlation 0 0.2 0.4 0.6 0.8 1

Subtasks SD 20.0% 20.0% 20.0% 20.0% 20.0% 20.0%

Rolled-up Task SD 11.5% 13.7% 15.5% 17.1% 18.7% 20.0%



EFFECT OF CORRELATION IN 
PARALLEL TASKS

• Example:

• 4 tasks of equal duration of 

300 days and SD of 60 days 

with Correlation of 0%, 50% 

and 100%.

• This results in progressive 

reduction in mean duration 

(shift left) but increase in 

variance.

• This is because by increasing 

correlation it means that 

random samples are more 

synchronized so that all tasks 

will converge to the 

dominant one.
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WHERE DO WE GO FROM HERE?

• In this presentation, we have identified some dilemmas regarding the use of 

correlation in risk analysis.

• The main point is that “ we don’t really know” what the true correlation 

coefficients are in most of our analysis.

• Not enough data points

• Correlation may not be true representation of dependence

• However, to quote Dr. Carl Sagan “absence of evidence is not evidence of 

absence”. The fact that we don’t know what coefficients are does not mean 

there is no correlation.

• Therefore, by understanding the impact of correlation on cost/schedule 

analysis, one can either take conservative or optimistic assumptions, 

dependent upon the circumstances.

• However, there can be other legitimate strategy as well, based on decision 

and game theory.
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WHAT IS A MINIMAX STRATEGY

• Minimax is a decision rule used in 
decision theory, game theory 
and statistics for minimizing the 
possible loss for a worst case 
scenario. I like to call it 
“Minimum regret” or “Minimum 
error”.

• The idea is very simple: If I used a 
certain correlation coefficient, 
and the true correlation is 
different. What correlation 
should I use to minimize this 
error?

• This is an example for the 
Constellation Program that 
showed 0.4 is the minimum error. 
This number is now almost the 
“de facto” correlation 
coefficient for cost estimate.

• However, I would suggest to go 
through the calculation process 
independently and verify for 
yourself.
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what is the percent error if my 

correlation assumption is wrong?



SIMILARLY FOR SCHEDULE

- Assessed schedule correlation using Minimum Error Method

50% correlation produced results with the least error-
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SUMMARY AND CONCLUSION

• Correlation is an input parameter to most cost/schedule and risk analysis.

• The properties of “correlation”, its ranges of applicability as well as its 

implication on cost/schedule analysis were discussed in this presentation.

• Due to the scarcity of data, correlation coefficient is an unknown quantity in 

most cost/schedule applications.

• This paper also suggested some strategies in dealing with unknown correlation 

coefficient.

• Analyst should understand and document the rationale for choosing a 

particular correlation value, and quantify its impact on the analysis results 

through sensitivity analysis.
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