

EVERYTHING YOU WANT TO KNOW ABOUT CORRELATION BUT WERE AFRAID TO ASK

FRED KUO

MOTIVATION

- Correlation as a source of confusion
 - Some of the confusion may arise from the literary use of the word to convey dependence as most people use "correlation" and "dependence" interchangeably
 - The word "correlation" is ubiquitous in cost/schedule risk analysis and yet there are a lot of misconception about it.
- A better understanding of the meaning and derivation of correlation coefficient, and what it truly measures is beneficial for cost/schedule analysts.
- Many times "true" correlation is not obtainable, as will be demonstrated in this presentation, what should the risk analyst do?
- Is there any other measures of dependence other than correlation?
 - Concordance and Discordance
 - Co-monotonicity and Counter-monotonicity
 - Conditional Correlation etc.

NASA

CONTENTS

- What is Correlation?
 - Correlation and dependence
 - Some examples
- Defining and Estimating Correlation
 - How many data points for an accurate calculation?
 - The use and misuse of correlation
 - Some example
- Correlation and Cost Estimate
 - How does correlation affect cost estimates?
 - Portfolio effect?
- Correlation and Schedule Risk
 - How correlation affect schedule risks?
- How Shall We Go From Here?
 - Some ideas for risk analysis

POPULARITY AND SHORTCOMINGS OF CORRELATION

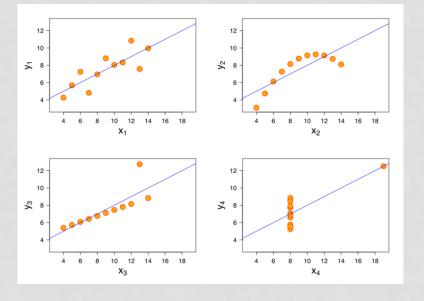
- Why Correlation Is Popular?
 - Correlation is a natural measure of dependence for a Multivariate Normal Distribution (MVN) and the so-called elliptical family of distributions
 - It is easy to calculate analytically; we only need to calculate covariance and variance to get correlation
 - Correlation and covariance are easy to manipulate under linear operations
- Correlation Shortcomings
 - Variances of R.V. X and Y must be finite or "correlation" can not be defined
 - Independence of 2 R.V. implies they are not correlated, but zero correlation does not in general imply independence
 - Linear correlation is not invariant under non-linear transformation

WHAT IS CORRELATION?

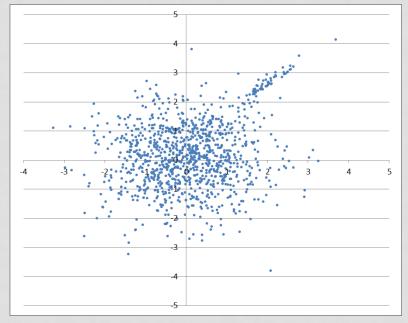
- We generally refer to "Pearson's" product-moment coefficient
- There are other, but less used, definitions for "correlation" such as
 - Rank correlation
 - Kendall's Tau
- It is a measure of only linear dependence, only a sliver of information regarding dependence between two random variables.
- It is a very crude measure of dependence.
- It does not necessarily indicate causality:
 - Correlation coefficient of 1 does not imply causality, only "perfect" dependence
 - "perfect" dependence means the ability to express one variable as a deterministic function of the other.
 - Correlation coefficient of 0 does not preclude dependence
- Can you guess the correlation coefficient of the following functions, where x is a random variable?
 - Y = 3 * x
 - Y= 10 * x
 - Y = 3 * x 1
 - Y = x∧2
 - Y = abs(x)
 - Y = Sin(x)

SOME EXAMPLES OF PITFALLS

The famous anscombe example (same correlation coefficient)



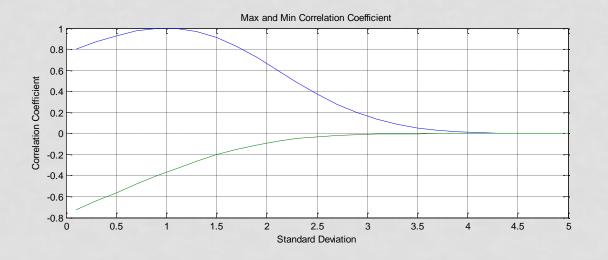
High correlation at the right tail corr=.3 overall, but corr=.9 at 2 sigma



RANGE OF APPLICABILITY

- Accuracy of correlation is dependent on the variance of the data.
- There is a general degradation of correlation coefficient when the volatility of the data increases, i.e., correlation approaches 0 when volatility approaches infinity.
- For example, lognormal distribution can be founded to be bounded by:

$$\rho_{min} = \frac{e^{-\sigma} - 1}{\sqrt{(e-1)(e^{\sigma^2} - 1)}}; \ \rho_{max} = \frac{e^{\sigma} - 1}{\sqrt{(e-1)(e^{\sigma^2} - 1)}}$$



DEFINITION OF CORRELATION

Sample correlation calculation

$$\hat{\rho}_{x,y} = \frac{\operatorname{cov}(x,y)}{\hat{\sigma}_x \hat{\sigma}_y} = \frac{\frac{1}{N} \sum_{i=1}^N (x_i - \mu_x)(y_i - \mu_y)}{\hat{\sigma}_x \hat{\sigma}_y}$$
$$\hat{\sigma}_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \mu_x)^2$$
$$\hat{\sigma}_y^2 = \frac{1}{N-1} \sum_{i=1}^N (y_i - \mu_y)^2$$

- Cov(x,y) is the covariance σ_{xy}
- Relationship between correlation and covariance is therefore:
- $\sigma_{xy} = \rho_{xy}\sigma_x\sigma_y$
- There are Excel functions that calculates all these:
 - COVARINCE.P, CORREL.P, STDEV.P

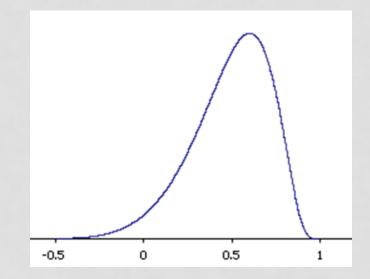
WHAT IS FISHER Z-TRANSFORMATION

- Since "correlation" is a statistical entity, the accuracy of the estimate depends on the number of data points.
- However, Pearson's correlation is not normally distributed so it is hard to calculate standard error.
- Fisher Z transformation is a technique:

•
$$z = \frac{1}{2} \ln \left[\frac{1+\rho}{1-\rho} \right]; \sigma_z = \frac{1}{\sqrt{N-3}}$$

• Which is Normally Distributed with standard error σ_z , which can be used to construct confidence intervals for ρ .

Sampling Distribution of Pearson's ρ ρ = .6, N= 12



CONFIDENCE INTERVAL FOR PEARSON'S CORRELATION

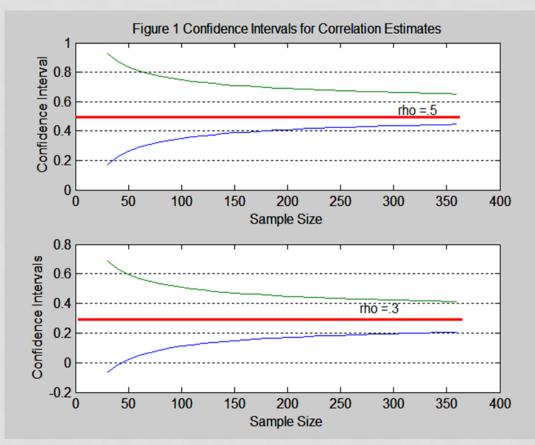
• The Fisher Z-Transformation calculates the bounds; for 95% confidence interval:

$$\rho_L = \frac{e^{2z_L - 1}}{e^{2z_L + 1}}; z_L = \hat{z} - \frac{1.96}{\sqrt{N - 3}};$$

$$\rho_H = \frac{e^{2z_H - 1}}{e^{2z_H + 1}}; z_H = \hat{z} + \frac{1.96}{\sqrt{N - 3}};$$

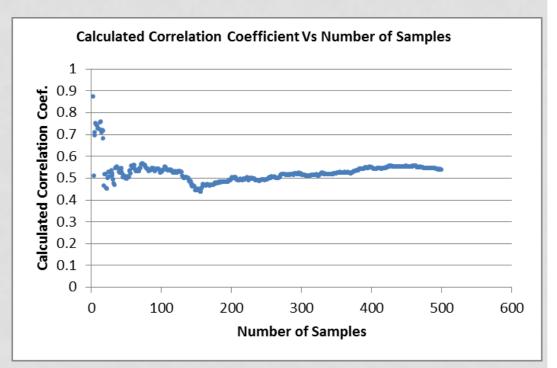
$$\hat{z} = \frac{1}{2} \ln \frac{(\hat{z}^{1 + \hat{\rho}})}{(\hat{z} - \hat{\rho})}$$

 Most space system/subsystems have far fewer data points than necessary for accurate depiction.



LIMITS ON ACCURACY EXAMPLE

- Would like to check out with my own example
- Use Excel function to generate 2 random uniforms
- Use inverse function to generate 2 N(0,1), random normal (x₁, x₂)
- Create 2 correlated random normal by using the
- $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \rho & \sqrt{1-\rho^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \rho = 0.5$
- Use CORREL function to generate correlation coefficients between (y_1, y_2) , as a function of number of samples
- At less than 20 samples, the deviation is substantial



CORRELATION AND LINEAR REGRESSION

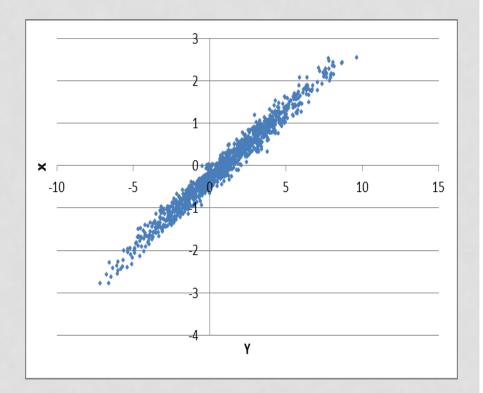
- A linear regression model is an estimation tool and it has the following generalized form:
- $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$
- Where
- β_0 is the intercept
- β_1 is the slope of the regression line
- ϵ_i are assumed to be N(0, σ^2), and σ^2 = VAR(Y)
- It can be shown that

•
$$\widehat{\beta_1} = \text{COR}(Y, X) \frac{SD(Y)}{SD(X)} = \rho_{yx} \frac{\sigma_Y}{\sigma_X}; \quad \widehat{\beta_0} = \mu_Y - \widehat{\beta_1} \mu_X$$

- And that
- $R^2 = \rho_{x,y}^2$
- R is actually the correlation coefficient between Y and X

LINEAR REGRESSION EXAMPLE

- A scatter plot of the equation
- $Y = 1 + 3 * x + \epsilon$
- Where
- β_0 is 1
- β_1 is 3
- ϵ_i are assumed to be N(0, σ^2), and $\sigma^2 = VAR(Y)=.5$
- Calculations:
- ρ_{yx} = .9854; σ_Y = 2.928; σ_x = .966
- $\mu_X = -.00015; \ \mu_y = 1.028$
- $\widehat{\beta_1} = \rho_{yx} \frac{\sigma_Y}{\sigma_X} = 2.9868$
- $\widehat{\beta_0} = \mu_Y \widehat{\beta_1} \mu_X = 1.028$



CORRELATION MATRIX

- When more than 2 random variables are modeled, a correlation coefficient matrix is necessary to represent the inter-relationship.
- A correlation matrix must be consistent, or defined as positive semi definite.
 - A test of positive semi definite is that all Eigenvalues are greater than or equal to 0.
- A portfolio of standard deviation can be written in matrix form as:

$$\sigma_p = \sqrt{\sigma C \sigma'}$$
$$\sigma = [\sigma_1, \sigma_2, \dots, \sigma_n]$$

- \bullet σ is a row vector of individual standard deviation and C is the correlation coefficient matrix.
- It is obvious that σ_p can not be negative, therefore, the requirement that C must be positive semi-definite

CORRELATION MATRIX CONT'D

- The matrix C must be positive definite if we require $\sigma_p > 0$, which will be the case for all real-life cases.
 - Correlation matrix calculated from raw data is guaranteed to be consistent.
 - However, most correlation in practice are either arbitrarily assigned or a subjective guess.
- The importance of a consistent matrix is 2-fold:
 - In calculating a correct portfolio standard deviation, and
 - A necessary condition in generating correlated random variables for Monte Carlo Simulations
 - Most simulation tools will give you warning when the consistency criterion is not met.
 - There are tools to repair inconsistent correlation matrix

CORRELATION MATRIX EXAMPLE

- When correlation matrix is calculated from sample data, it is guaranteed to be consistent, in practice however, most are subjectively assigned, for example:
 - Original matrix C_1 is consistent
 - Wished to change C_1 to a more desired correlation of C_2 .
 - Now C_2 , however, is inconsistent.
- By adjusting some minor changes to C_1 , C_3 is consistent.
- Note how small the differences between C_1 and C_3

$$C_1 = \begin{bmatrix} 1 & 0.9 & 0.7 \\ 0.9 & 1 & 0.4 \\ 0.7 & 0.4 & 1 \end{bmatrix}$$

$$C_2 = \begin{bmatrix} 1 & 0.9 & 0.7 \\ 0.9 & 1 & 0.3 \\ 0.7 & 0.3 & 1 \end{bmatrix}$$

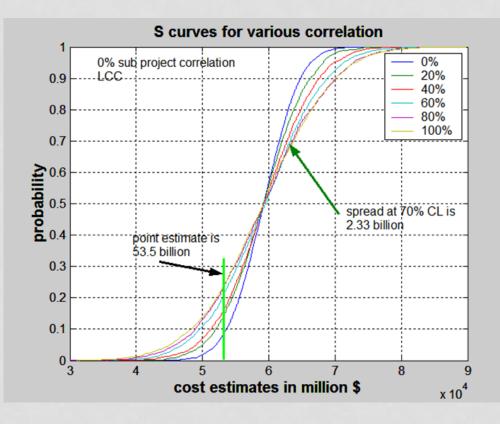
 $C_3 = \begin{bmatrix} 1 & 0.894 & 0.696 \\ 0.894 & 1 & 0.301 \\ 0.696 & 0.301 & 1 \end{bmatrix}$

EFFECT OF CORRELATION IN COST RISK ANALYSIS

- The effect of correlation on cost estimates and cost risk analysis can best be described from a portfolio perspective.
- A cost estimate for an system can be thought of as a portfolio of sub element costs, each with its own mean cost and standard deviation.
- $\mu_p = \sum_{i=1}^n \mu_i$, $\sigma_p = \sqrt{\sigma C \sigma'}$, note that $\sigma_p \leq \sum_{i=1}^n \sigma_i$
- This property states that the portfolio standard deviation is always less than the sum of its constituent's standard deviation when the correlation between these elements are less than 1.
- Since the steepness of the cost S-curve, and therefore the confidence level, is determined by the standard deviation, the impact of correlation will ultimately be reflected in the confidence level as well.

CORRELATION AND COST ESTIMATE-AN EXAMPLE

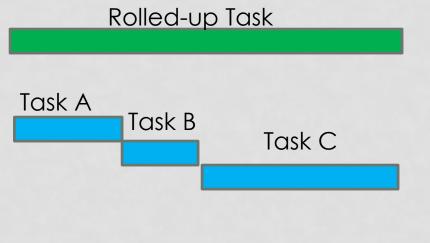
- From the previous equations, correlation does not change the expected costs or point estimates.
- Correlation only changes the portfolio standard deviation, which relates to the steepness of the S-Curve, and therefore, the confidence level.
- Higher correlation among the subelements tend to increase the portfolio standard deviation, and therefore a wide spread of slope.
- Counter intuitive:
 - Higher correlation increases point estimate confidence level.
 - It also increases budget required for the 70% confidence level.
 - So, in general, if the point estimate is below the expected value, correlation improves confidence level.
 - If the point estimate is above expected value, then correlation decrease confidence level.



EFFECT OF CORRELATION IN SCHEDULE RISK ANALYSIS

- Correlation effect on schedule risks analysis is more interesting and counter intuitive.
- It has different effect, depending on whether we are modelling rolled-up, parallel or serial tasks.
- The effect of correlation on serial tasks is similar to that of cost. Higher correlation coefficient tends to tilt the S-Curve.
- The variance of rolled-up tasks is dependent on the variances of the subtasks.
- When we used the same variance for the rolled-up tasks and the subtasks, we are implicitly assuming 100% correlation of the subtasks.

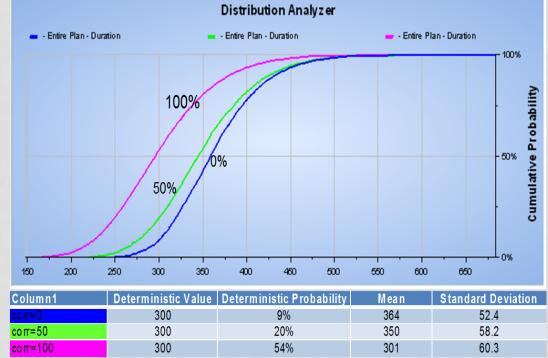
Correlation	0	0.2	0.4	0.6	0.8	1
			is raid		3-3-3-5	
Subtasks SD	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%
Rolled-up Task SD	11.5%	13.7%	15.5%	17.1%	18.7%	20.0%



EFFECT OF CORRELATION IN PARALLEL TASKS

• Example:

- 4 tasks of equal duration of 300 days and SD of 60 days with Correlation of 0%, 50% and 100%.
- This results in progressive reduction in mean duration (shift left) but increase in variance.
- This is because by increasing correlation it means that random samples are more synchronized so that all tasks will converge to the dominant one.



WHERE DO WE GO FROM HERE?

- In this presentation, we have identified some dilemmas regarding the use of correlation in risk analysis.
- The main point is that "we don't really know" what the true correlation coefficients are in most of our analysis.
 - Not enough data points
 - Correlation may not be true representation of dependence
- However, to quote Dr. Carl Sagan "absence of evidence is not evidence of absence". The fact that we don't know what coefficients are does not mean there is no correlation.
- Therefore, by understanding the impact of correlation on cost/schedule analysis, one can either take conservative or optimistic assumptions, dependent upon the circumstances.
- However, there can be other legitimate strategy as well, based on decision and game theory.

WHAT IS A MINIMAX STRATEGY

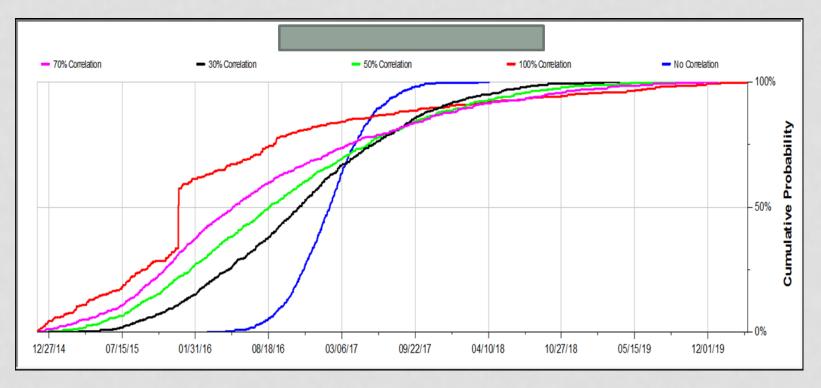
- Minimax is a decision rule used in decision theory, game theory and statistics for *minimizing* the possible loss for a worst case scenario. I like to call it "Minimum regret" or "Minimum error".
- The idea is very simple: If I used a certain correlation coefficient, and the true correlation is different. What correlation should I use to minimize this error?
- This is an example for the Constellation Program that showed 0.4 is the minimum error. This number is now almost the "de facto" correlation coefficient for cost estimate.
- However, I would suggest to go through the calculation process independently and verify for yourself.

what is the percent error if my correlation assumption is wrong?

r			True Correlation Coefficients							
1		_	0.00	0.20	0.40	0.60	0.80	1.00		
	_	0.00		1.76%	3.15%	4.33%	5.36%	6.28%		
	b lion	0.20			1.42%	2.61%	3.66%	4.60%		
	me	0.40				1.21%	2.28%	3.23%		
	ssu	0.60					1.08%	2.04%		
	ĕŭ	0.80						0.97%		

SIMILARLY FOR SCHEDULE

- Assessed schedule correlation using Minimum Error Method
- 50% correlation produced results with the least error



SUMMARY AND CONCLUSION

- Correlation is an input parameter to most cost/schedule and risk analysis.
- The properties of "correlation", its ranges of applicability as well as its implication on cost/schedule analysis were discussed in this presentation.
- Due to the scarcity of data, correlation coefficient is an unknown quantity in most cost/schedule applications.
- This paper also suggested some strategies in dealing with unknown correlation coefficient.
- Analyst should understand and document the rationale for choosing a particular correlation value, and quantify its impact on the analysis results through sensitivity analysis.