

 1 of 14 www.reqexperts.com

Everything you wanted to know about interfaces, but
were afraid to ask

Louis S. Wheatcraft
Requirements Experts

Phone: (281) 486-9481 Mobile: (832) 971-3550
E-mail: louw@reqexpertsw.com

Internet: http://www.reqexperts.com

Copyright © 2010 by Requirements Experts.
Abstract. Some of the biggest problems in developing a system are at an interface. Some of the
most critical requirements for every system that we build are interface requirements. Interface
requirements cannot be written in a vacuum, both sides must participate. Yet how to write
interface requirements is barely covered in the literature – and what is in the literature is not
consistent. This paper will address some things you can do to get better interface requirements.
Topics covered include: Understand what constitutes an interface, how to identify interfaces, how
to define and document interface definitions, what constitutes a good interface requirement, and
where and how to document interface requirements.

Why are Interfaces Important?
Systems are part of other systems, are made up of subsystems, and interact with other systems at
the same level of the architecture, no matter what level your system of interest (SOI) is at. This
applies to simple as well as complex systems, hardware systems, software systems, and hybrid
hardware/software systems. These interactions between your system and others are interfaces.

Identifying interfaces helps you to define your system’s boundaries. Indentifying interfaces also
helps you understand the dependencies your system has with other systems and dependencies
other systems have with your system. Failing to identify an interface can have unpleasant
repercussions on your project and is a common reason for products that fail to meet stakeholder
expectations. Missing or incorrectly defined interfaces are often a major cause of cost overruns
and product failures.

Indentifying interfaces helps you ensure compatibility between your system and other systems you
need to interact with. Many projects neglect to identify and control their interfaces until testing.
The first encounter with the results of this oversight often occurs when people find out that they
cannot connect test equipment to their system to perform the tests. Worse yet, think of the
problems when you turn your system over to operations and a missing interface is discovered such
that your system can not function or another system depending on your system can’t function. By
identifying and managing your external interfaces early, you are identifying key drivers for your
product that must be addressed in your system requirements.

Identifying interfaces also helps to expose potential problem areas and risks to your project. There
are often existing systems that you have to interface with that are established and cannot change –
this might be a problem for you – it might not, but you need to know. There may be systems that
you have to interface with that don’t currently exist that are being developed in parallel with your

 2 of 14 www.reqexperts.com

system. How can you develop requirements for your system when you don’t know what your
interfaces are or the characteristics of those interfaces? You need to know any issues associated
with your interfaces early so that you can insure compatibility with existing systems or work with
the other developing system to jointly define the interfaces so you are compatible.

Serious problems can and do arise at interfaces due to the inherent risks associated with a system’s
interfaces. Because the interfaces represent systems outside your control, your system is
vulnerable at your interfaces. If an interface is not well understood, not defined, or is subject to
change, your system will be impacted. There is also the treat of someone outside your system
impacting your system’s performance – either intentionally or unintentionally. There is an old
saying “If you want to sabotage someone’s system, do it at an interface.”

Because of the importance of identifying, defining, developing interface requirements, and
managing these activities, interfaces need to be a prime concern of the project System Engineer,
lead Software Engineer, Business Analysis, or anyone else involved in developing requirements.

Given the importance of interfaces, you would think that there is a standard process to indentify
and define interfaces, to develop interface requirements, and manage these activities.
Unfortunately there is not. Given the different cultures within industries and within organizations,
each manages these activities differently. This results in a lot of confusion on where to document
this information and even what to call these documents.

Regardless of the names we give various documents that contain information concerning
interfaces, there are some guiding principles and best practices you can follow. These best
practices are based on lessons learned as a result of being exposed to a variety of approaches to
managing interface requirements and having seen what approaches work best and what
approaches that tend to lead to problems.

What Is An Interface?
“An interface is a boundary where, or across which, two or more parts interact.” Another definition
is: “An interface is that design feature of a piece of equipment that affects or is affected by a design
feature of another system.” This interaction is shown in Figure 1.

Figure 1: Definition of an Interface

9

What is an Interface?

A common functional or physical boundary where
two systems interact.

Sys 1 Sys 2

Interface
Boundary

Mechanical attach point
Voltage

Data
Command

Media

 3 of 14 www.reqexperts.com

The key words here are “interact” and “affects or is affected by another system”. From a
requirements standpoint, any time the wording of a requirement indicates or implies one of these
conditions, there is an interface involved. If there is an interface involved, then the requirement
dealing with this interface is classified as an interface requirement.

It is also important to understand what an interface is not. Figure 2 shows examples of what an
interface is not.

Figure 2: Examples of what an interface is NOT.

Unfortunately, we frequently see statements like these. The first requirement assumes the
interface is a system and has functionality – this is not true. The second is a requirement on the
designers and also assumes the interfaces are things. The requirement should be on accessibility of
connectors, bolts, etc. The third and fourth again assumes the interface is a thing. These are
requirements on each of the systems and apply to any hardware or software of the system involved
in interfacing with another system. The bottom line: There should be no requirements that say “
The interface shall …..”

Process to Write Interface Requirements
Writing interface requirements is a three-step process:

Step 1: Identify the interfaces

Step 2: Define the interfaces

Step 3: Write the Interface requirements.

Step 1: Identify the Interfaces
This first step involves an analysis of the of your System of Interest (SOI) and the context in which
it relates (interacts) with the parent system it is part of (external interfaces) and an analysis of the
parts that make up your SOI and how they relate (interact) with each other (internal interfaces.)

The tools that are often used as part of this analysis are Operation Concepts, System Block
Diagrams, N-Squared (N2) diagrams, Allocation Analysis, External Interface Block Diagrams
(Context Diagrams), and Interface Block Diagrams. The intent is to define your system’s
interfaces top down. Start with the Parent System Block Diagram, then develop an N2 diagram to

11

Examples of misunderstanding what
an interface is and is not

• The digital data interface shall maintain full
operational capability after two failures.

• The interfaces between the spacecraft and
payload shall be designed to ……………….

• The interfaces between the spacecraft and
payload shall have standard labels, controls,
and displays.

• The electrical interface between the
spacecraft and payload shall have a
reliability of .99999.

 4 of 14 www.reqexperts.com

refine your knowledge of the interfaces between all elements that make up your parent system
including the interfaces of your system. Then using this knowledge along with the knowledge
from your system’s Operational Concepts, develop an External Block Diagram for your system
showing all external interfaces of your SOI with all other systems for all lifecycles. Then for each
system you interface with, you do an individual Interface Block Diagram, showing all the
interfaces between your SOI and that system. Once you have defined the architecture for your
SOI, this approach is repeated at the next level to address your system’s internal interfaces.

Operational Concepts: Your system will have different interfaces at different times in its life cycle.
All must be considered to make sure that nothing is overlooked. An effective way to identify
interfaces is to develop Operational Concepts from different stakeholder viewpoints addressing
each lifecycle stage. The stakeholders associated with each of the systems your System’s
interfaces with will have unique knowledge you need when identifying and defining interfaces and
their associated interface requirements.

System Block Diagrams: System Block Diagrams (SBDs) show all architectural elements of the
parent system (of which your system is a part) and their interfaces. SBDs are usually fairly high
level (mechanical, power, commands, data, human, etc.) that show both internal and external
interfaces of the parent system. The directionality of the interaction between systems can be
shown with arrows. The SBDs give a “big picture” view, showing both internal and external
interfaces of your parent system and your SOI’s place within this architecture.

N2 Diagrams: N2 diagrams allow you to systematically compare each architectural element with
every other architectural element that makes up your parent system. You can start with an N x N
matrix, where N represents the number of subsystems of your parent system, to identify your
relationship with the elements of your parent system’s architecture (external interfaces) and then
develop an N2 diagram of your SOI to show the internal interfaces between your subsystems or
components that are part of your SOI’s architecture. The N2 Diagram is used to identify general
classes of interfaces (mechanical, power, commands, data, human, etc.) and is very helpful to help
make sure all interfaces have been identified and not missed. (An example N2 Diagram can be
found in the latest version of NASA’s System Engineering Handbook, SP-2007-6105 Rev 1,
Figure 4.3-4 on page 54.)

Allocation Analysis: When a requirement at one level is allocated to two or more elements of a
system’s architecture at the next lower level, there may be an interface between those elements. In
order for each element to do its job, it may require an interaction between those elements. If there
is an interaction, there is an interface. Allocation analysis is an important tool to use in identifying
interfaces.

External Interface Block Diagrams (EIBD)(Context Diagrams): An EIBD shows your System and
its external interfaces to other architectural elements at the same level and external interfacing
systems for all lifecycle stages of the your SOI. You want to show more than just the interfaces of
your system for nominal operations, but include interfaces for all of your SOI’s lifecyles, including
development, testing, verification, transportation, handling, servicing, and maintenance. All of
which should have been addressed in your Operational Concept and in your N2 Diagram. Section
3.1 of your System Requirements Document (SRD) should include your system’s EIBD so that
readers of the requirements understand the boundaries of your system and understand where there
are interfaces with other systems. Your SRD will contain individual interface requirements for
each of these interfaces.

 5 of 14 www.reqexperts.com

Interface Block Diagrams: Interface Block Diagrams are developed, one for each of the systems
shown in the EIBD. Your SOI is shown on one side of the diagram and the other system on the
other side. In between, you show all the interfaces (interactions) between your SOI and the other
system. Start with high level information (mechanical, power, commands, data, human, etc.) and
then further refine each of these (instead of just power, 28 VDC; instead of just data, include the
general types of data. Each of these interfaces will then be “defined” using textual statements,
diagrams, tables, drawings, graphs, and figures. These definitions are what is documented in your
interface definition documentation. There will be one Interface Block Diagram for each of the
systems your SOI interfaces with as shown in the EIBD.

The System and External Interface Block Diagrams should be included in your Operational
Concepts Document and SRD to show the reader the “big picture”. The N2 Diagrams, External
Interface Block Diagrams and Interface Block Diagrams should be included in your interface
definition documentation.

Step 2: Define the interfaces
Once an interface has been identified, it needs to be defined. To define an interface you need to
define the characteristics of each system at the interface, the media involved in the interaction, and
the characteristics of the thing crossing the interface. The media could be electrical through a wire,
physical contact, fluid or gas flow though plumbing, an RF signal through the air or space, fiber
optics, data via a common communication buss or the internet. The characteristics of the system at
the interface could be an electrical, electronic, or fluid/gas connector or a mechanical interface
where the two systems are bolted together.

What your system looks like at the interface may be documented in a drawing showing the
mechanical interface, bolt hole patterns and sizes, thickness of the metal, characteristics of the
mating surfaces, etc. If an electrical, data, or command interface, the connectors involved with the
connection: type of connector, pin assignments, isolation, grounding, etc. If a fluid or gas
connection, the allowable leak rate, if any, needs to be defined both during mating and while mated
together

The thing that is involved in the interaction could be electrical, in which case you define the
characteristics of the electricity involved: voltages, currents, noise, impedance, ripple, rise and fall
times, etc. Included would be any requirements concerning protection from shorts and current
spikes. It could be commands, data, gases, hydraulic fluid. In the case of commands and data you
would have to define what commands, what data, and their format and identifiers. If gases or
fluids, you would identify what quality and quality these must be along with pressure, temperature,
and flow rate. Often this is identified as a standard the gases or fluids must meet.

The media would be wires, RF, fiber optics, plumbing, etc. Wire sizes, types of wire, pipes,
pressure ratings, burst pressure requirements, leak rates, etc. In some cases a standard defines the
connection, the media, and transport protocol, for example, Ethernet or USB.

The point is that all this detail information must be defined and documented somewhere – no
matter what you call the document. For developing systems, not all this information will be known
until the design is complete. In the beginning all you may know is what the thing is that is involved
in the interaction and its basic characteristics. The details of what your system looks like at the
interface and the media involved may not be known until the design is complete. Thus you start

 6 of 14 www.reqexperts.com

with place holders – To Be Determined/To Be Resolved (TBDs/TBRs) - for tables, drawings,
graphs, etc. When the information is known, you fill in the TBDs/TBRs. Before the systems can
actually be built, there can be no TBDs/TBRs in the definition document, whatever you call it.

The general format of the definition statements is:

• [Thing being defined] is[are] [whatever the definition is]. or

• [Thing being defined] is as shown in [Drawing xxxxxx] or [Figure yyyyyy]. Or

• [Thing being defined] has the characteristics shown/defined in [Table or Graph zzzzzzzz.]

• [Thing being defined] is defined in [Table].

Notice the terms “shall” and “will” are not used because you are just stating an agreed to fact.

Examples include:

• The DC voltage [supplied by System 1] has the characteristics shown in table xyz or figure
123.

• The mechanical attach point [between System 1 and System 2] is shown in drawing xyz..

• The fluid [supplied by System 1] has the characteristics defined in table xyz (pressure,
quality, flow rate, temperature, etc.)

• The leak rate at the connection [between System 1 and System 2] is less than xxx.

• The commands [sent by System 1] are defined in table 123.

• The data stream [accepted from System 2] has the characteristics defined in ………..

These are statements of fact that need to be written down and agree to.

Defining Interfaces for Existing Systems
Existing systems will have their interfaces defined in the form of tables, figures, and drawings.
Outputs of the design process. In the example above, if System 1 exists, the owner of the system
will have documented these interfaces in a configuration controlled document so others, System 2,
can be designed to interface with System 1 per that definition. In this case, System 1 does not
know of System 2’s existence. System 1 has no requirements to interface with System 2. From
System 1’s viewpoint, if any other system wants to interface with it, that other system has to do it
per System 1’s rules [interface definition]. System 2 will write interface requirements in its SRD
that point to the System 1 document where the interface is defined. (Details on writing interface
requirements are discussed later.)

In my experience, the place System 1’s interfaces are defined are frequently documented is in an
Interface Control Document (ICD). The ICD is developed, owned, and controlled by System 1,
the existing System. I have seen others use an Interface Design Document (IDD) in place of an
ICD. Others may include this information in a Technical Data Package (TDP). I have found that
there is no real standard for how to do this. What you call the document where you document the
interface definitions doesn’t matter. What matters is that the interface definitions are written down
and agreed to.

Whether you call this document an ICD, IDD, TDP, or something else, this document documents
the interface definition for the existing system, reflecting its “as built” configuration. This

 7 of 14 www.reqexperts.com

document is owned and controlled by the existing system. This document defines what developing
systems must do in order to interface to this existing system. Any developing system that wants to
interface with the existing system must comply with the interfaces as defined in the this document.
The developing system will include requirements in their SRD that refer to the this document for
the interface definitions. This document does not contain “shall” statements because the ICD or
similar document is defining the as-built system interfaces – statements of fact.

Defining Interfaces For Two Systems Being Developed Concurrently
For the case where both systems are being developed concurrently (neither system currently
exists), things get more complicated. The interface definition between the two systems will evolve
over time as the design matures. In the beginning, you are working in the problem space, and your
focus is on “what” not “how”. Concerning the interaction between the two systems, what
information do you need to define and can define so that the design team can design the interface?
What do they need to know to do the design? What do you know that you can tell them (“what”
not “how”)? What guidance do you need to communicate to them? What are the constraints?

Once the design is complete, then, like the case of an existing system, the interfaces will be defined
in figures, tables, and drawings. Predesign, these definitions need to be documented and
controlled somewhere. For systems that are being developed concurrently, the organizations
responsible for these systems must mutually agree on the definition of the interface and document
these definitions. From a control standpoint, the common parent to both systems controls the
document.

Where Should Interface Definitions be Documented?
Predesign, the [System 1] to [System 2] interfaces definitions define the functional definitions for
all aspects of the [System 1] to [System 2) interfaces. These details flow from the Interface Block
Diagram for System 1 and System 2. This includes definitions related to mechanical attachments,
loads and structure; power characteristics, environments; gases and fluids; communications, data
and information; guidance and navigation; and human factors necessary to design the systems for
successful integrated operations. These definitions include the functional interface definitions and
the associated rationale. This definition document does not contain “shall” statements because it
contains only interface definitions – statements of fact – not requirements. The functional and
performance related interface requirements in each systems SRD will point to these definitions.

Interface definition documents have a variety of names. Some organizations put the predesign
definition information in an ICD part 1, and the post design details in ICD part 2. Others put the
predesign information in an Interface Requirements Document (IRD), an Interface Definition
Document (IDD), an Interface Agreement Document (IAD), Interface Definition Agreement
(IDA), or a Data Dictionary. (Using IDD when it has two different names can be confusing. Also,
the name IRD is problematic in that it has the word “requirement” in the name so people feel that
the document has to have requirements (shall statements). If this happens, then you have to
address allocation and verification of these requirements. This can be a problem. See the
comments later about where to document interface requirements.) I recommend that the document
you use to define interfaces, contains only definitions with no shall statements. The interface
requirements that point (or linked) to the definitions should be documented in your SRD along
with all the other system requirements.

 8 of 14 www.reqexperts.com

The knowledge needed to completely define these interfaces will evolve with the system designs
of each side of the interface. As you move down the levels of the system architecture, you will be
able to add more detail to the definition in your interface definition document. Each developing
system’s SRD requirements dealing with an interface defined in the definition document will refer
to the applicable definition in the pre-design interface definition document. Requirements
contained in lower level requirement documents will point to more detailed (specific) definitions
that apply to that element. Interfaces must be identified and defined for each level of the
architecture.

The pre-design definitions do not define the detailed design implementation of these definitions
(e.g. electrical connector part number, location, pin assignments; etc). Like the case of an existing
system, post design definitions, these design implementation details will be located in the [System
1 to System 2] post-design ICD, IDD, TDP or other similar type of document. It doesn’t matter
what you call this document, as long as it exists and contains the definitions.

Neither the predesign nor post-design interface definition documents contain “shall” statements
because they contain only interface definitions – statements of fact – not requirements.

Post-design interface definition documents establish, define and control the detail interface design
and implementation between two interfacing systems. This document contains the detailed
interface design drawings, definitions, characteristics, and constraints of the interfacing items.
The End-Item Specifications (EIS) for your system contain post-design requirements that are
passed on to manufacturing. The post-design interface definition documents are included in this
package, which some organizations refer to as a Technical Data Package (TDP).

Do I always need a separate document for interface definitions?
You don’t always need to document interface definitions in a separate document. The defining
factor is organizational involvement and control. If each system being developed is managed by
different organizations (vendors), developing a separate document for interface definitions is a
good idea, as it serves as an agreement (contract) between the two organizations on how the
interfaces are defined. In this case, each of the children systems interface requirements will point
to the definition document for the interface definition as shown in Figure 3.

 9 of 14 www.reqexperts.com

Figure 3: When the interface is defined in an IRD

However, if your SOI is an element of a higher level system, the other system is also an element of
the same higher level system, AND the development is being done within the higher level system’s
organization, the definitions can be contained in the parent system’s SRD. In this case, the
children systems, interface requirements in their SRDs will point to the parent document for the
interface definition as shown in Figures 4.

Figure 4: When the interface is defined in the parent system’s SRD

Step 3: Write the interface requirements.
When the interfaces have been identified and defined, you are now ready to write interface
requirements. (Following this order is an ideal case. I have seen many cases where the interface

70

Using an IRD - What goes Where

The S/C shall
supply 28 VDC
as described in

IRD XYZ table 3-4

Spacecraft Specification
S/C organization
writes and signs

The P/L shall use
28 VDC

as described in
IRD XYZ table 3-4.

Payload Specification

P/L organization
writes and signsThe 28 VDC

power will
have the characteristics

shown in table 3-4.

Spacecraft to Payload IRD

S/C and P/L organizations
jointly write and sign

Refers to

Refers to

78

Using Higher Level Specifications –
What Goes Where

When the groups responsible for developing
parts of the overall system are part of the
same organization, the interface can be

defined in the parent system’s SRDThe System shall use 28 VDC
power with

the characteristics
shown in table 3-4.

System A SRD ABC

The S/C shall
supply 28 VDC
as described in

SRD ABC table 3-4

Spacecraft Specification

S/C organization
writes and signs

The P/L shall use
28 VDC

as described in
SRD ABC table 3-4.

Payload Specification

P/L organization
writes and signs

Refers to

Refers to

 10 of 14 www.reqexperts.com

requirements are written before the interfaces are defined. In this case, the interface requirements
point to a TBD document that contains the interface definition.)

An interface requirement is a system requirement that involves an interaction with another system.
The format of the interface requirement is such that it includes a reference (pointer) to the specific
location in the definition document that defines the interface. Interface requirements are written in
pairs as shown below and in Figure 5 on the next page. All interface requirements have the same
general form:

“[System 1] shall [interact] with [System 2] [as defined in or having the characteristics shown
in] [the document that defines the interface].”

“[System 2] shall [interact] with [System 1] [as defined in or having the characteristics shown
in] [the document that defines the interface].”

In this example, we are verifying that the System 1 was designed to interact with System 2 per the
definition in the document that defines the interface and that System 2 was designed to interact
with System 1 per the same interface definition.

The word interface is not included in an interface requirement. A requirement that says “[System
1] shall interface with [System 2] as defined in [document that defines the interface]” is
ambiguous. There could be multiple interactions between System 1 and System 2. There needs to
be a separate interface requirement for each of the interactions. Doing this helps when you allocate
the interface requirement to the next level of the architecture. It also addresses a basic
characteristic of good requirements: keeping the requirement as a single thought. This will help
when it comes to verification.

55

Document the Interface Requirements
Between Two Systems

Sys 1 Sys 2

Sys 2 shall
execute the xyz
command defined
in IRD #1234 Table
2-2 within 4 ms of
receipt.

The xyz
command has
the
characteristics
described in
Table 2-2.

Sys 1 shall
transmit the xyz
command defined
in IRD #1234
Table 2-2 within 5
ms of crew input.

Sys 2 SpecificationIRD #1234Sys 1 Specification

IRD - Interface Requirement Doc
Figure 5: Pairs of Interface requirements pointing to an IRD

for a common interface definition.
Concerning verification, the interface requirement in your SRD has a “shall” and therefore is what
is verified – not the definition statement in the document that contains the definition. What needs
to happen is for each side of the interface to verify that its design was per the agreed to definitions

 11 of 14 www.reqexperts.com

in the common definition document and then the parent requirement verification will verify the
functionality and performance across the interface. I was told of an example where two
mechanical systems that had to be bolted together were being concurrently developed by separate
contractors. Rather than having a common interface definition document and drawing each
system was built to, each organization had there own, separate drawing. At the parent system
PDR, it was discovered that the number of bolt holes in the two drawings were different!!!

Where Should You Document Interface Requirements?
We advocate that the interface requirements are documented in each System’s SRD along with all
the other system requirements. Each of the interfacing systems will develop their half of the
interface pair, with each pointing to the common interface definition, wherever that is
documented. From a Requirement Management Tool standpoint, each of these requirements will
have a link to each other showing a dependency as well as each having a link to the common
definition. They will also both have a link to a common parent.

Some organizations put the actual interface requirements in the document that contains the
interface definitions, usually what they call an IRD, rather than in their SRD with the other system
requirements. We do not agree with this approach.

There are many reasons we advocate the interface requirements be included in your system’s SRD.

1) It is best to keep all the system’s requirements in the same document. Some of a system’s
functions are internal to the system. However, many of a system’s functional,
performance, and operational requirements involve the interaction of your system with
another system. Why separate those dealing with interfaces from your other requirements
in a separate document?

2) If your system interfaces with multiple other systems, using the IRD approach results in
your system requirements being spread across your SRD and multiple IRDs. Why not keep
all your system’s requirements in one document?

3) Like all the other system requirements, your interface requirements have to be allocated to
the next level of your architecture. Having the system requirements in multiple documents
can complicate this.

4) If your system is interfacing with an existing system, that existing system’s interface
definitions are contain in its ICD or IDD. In this case it is logical for your interface
requirements to be documented in your system’s SRD. Why treat interfaces with systems
being developed concurrently with your system any differently? Include those interface
requirements in your SRD just like you would do for an existing system interface.

5) Verification. The interface requirements will be verified just like all the other system
requirements. If your interface requirements are contained in an IRD, then you will also
have to have the associated verification requirements in that IRD. If there are multiple
IRDs, your verification requirements will be spread out across multiple documents. It is
better to keep all your verification requirements in one document, your SRD and have a
single Requirements Verification Matrix.

6) Configuration Management. As stated earlier, when defining interfaces, your knowledge
grows as the design matures and lower levels of your architecture are defined. Because of

 12 of 14 www.reqexperts.com

this, you start with a lot of TBDs and TBRs and then fill these in. The maturity of the
interfaces matures over time requiring frequent updates to the definitions as your
knowledge grows. Having your interface definitions in a separate document with your
SRD interface requirements pointing to that document, means that the only document that
has to be changed when an interface definition matures or changes is the definition
document and not your SRD.

One problem I have seen with IRDs that contain requirements is that the pair is written, but the
interface is never defined. System 1 shall supply “W” to System 2. System 2 shall receive “W”
from System 1. “W” is never defined!! I have also seen cases where only one half of the interface
requirement pair is in the IRD, with the assumption that the one system will coordinate with the
other system to make sure the other system “supports” the interaction. These approaches are
clearly problematic and can be avoided following the approach outlined above.

Another issue I have come across concerning the use of IRDs to include interface requirements. I
have had clients who made the statement “My SRD contains no interface requirements, we put all
our interface requirements in the IRD.” But when I reviewed their SRD, I found many
requirements that talked about an interaction with another system – interface requirements!! I call
requirements that involve an interaction with another system, but do not point to where the
interface is defined “phantom” interface requirements.”

Basics to Defining Interfaces and Documenting
Interface Requirements
The basics to defining interfaces and documenting interface requirements are as follows:

1. Define scope and requirements for your SOI. As part of this effort, you will be identifying
all your interfaces.

2. When an interface has been identified, you then need to analyze the maturity of the interface
and where the interface is defined. If all the systems are in development, document the
interface definitions in an ICD, IRD, TDP, IDD, IAD, IDA, or similar type document.
What you call the document that defines the interfaces doesn’t matter. Different product
domains, different customers and different Programs use the words differently. Define
them at the outset on your project , and be consistent in that usage for the life of the project.

3. Write the requirements dealing with the interface in your SRD referring to the document
and section within the document where the interface is defined. You allocate and verify
your SRD interface requirement, just like you allocate and verify any other SRD
requirement. The requirements for your system (including interface requirements) are
documented in our SRD.

a. Some of the requirements for your system involve characteristics that are internal to
your system and some may involve characteristics of your system interacting with
another system external to yours. When an external system is involved, you have an
interface. When there is an interface involved, the requirement is an interface
requirement.

 13 of 14 www.reqexperts.com

b. Some of the parent system requirements may have been allocated to both your system
and another system. When this is the case, you may have an interface with that other
system.

Interface Design Guidelines
Because of the importance of interfaces to your product, there are some basic design guidelines
you should follow. These guidelines represent best practices when it comes to designing
interfaces. These guidelines need to be considered when both defining interfaces and writing
interface requirements.

1. Minimize the number of interfaces: The fewer the number of interfaces, the less risk.

2. Simplify all interfaces: use the KISS principle. The more complex the interface, the more
that can go wrong.

3. Consider commonality, compatibility, and interchangeability requirements. Does your
system have to interface with a lot of other systems either under development or existing?
Then you need to use standards rather than design a unique interface

4. Assess interface risks. Assess how volatile the interface is: Design to address change
Think about safety: Design to protect your system against any thing “bad” that could cross
the interface and damage your product. Consider security, do you need to protect an
outside action from an adverse effect on your system? Another consideration is the
number of different organizations involved in your interfaces. The greater the number of
organizations, the higher the risk.

5. Do you need to protect your data? Do you need to control access to your data? Be sure to
ask the question, “What is the worst thing that other elements could do to you across the
interface?” DEFEND AGAINST IT

Closing Thoughts
• Identify all interfaces – early! Because of their importance, you need to identify all

interfaces early in your project to insure compatibility with other systems, define your
system’s boundaries, and to manage project risk associated with interfaces

• Assign responsibility. Again, because of their importance to your project, you need to
assign personnel responsibility for each interface.

• Obtain copies of all interface documentation. Understand the differences between
interfaces with existing systems and with systems being developed concurrently with your
system. All of these interfaces need to be defined and you need to include interface
requirements for each interaction between your system and the other systems.

– If the interface definitions are not documented, document them!

– If new interface, negotiate interface definition, and document those definitions in a
common, configuration controlled document.

– Make all interface documentation available to all in your organization as well as to the
other systems you are interfacing with.

 14 of 14 www.reqexperts.com

• Involve interface stakeholders in your project. They are the ones with the knowledge and
they are the ones you need to work with to make sure the interface is defined.

• Include interface requirements in your system’s requirement document.

– Provide traceability between pairs, to parents, and to the common definitions.

– Track/monitor interface change. A change to an interface definition can impact both
sides of the interface as well as the parent requirement.

• Follow the interface design guidelines in the previous section.

• Plan ahead for interface verification and compliance testing. Verification can be very
expensive. In order to do verification for an interface, you will often need special
equipment to measure the things crossing the interface. Also, the system at the other side
of the interface may not be available for your verification or you may not want to connect
your system to the other system until both sides of the interface have been tested. To do
this you may need simulators or emulators (software and/or hardware). This special test
equipment and simulators have to be budgeted for, developed, and verified to a schedule
that supports your SOIs verification schedule.

References
CAI 2009, Requirements Development and Management, Seminar Workbook, October 2009,

Compliance Automation, Inc.

CAI2010, Writing Interface Requirements, Seminar Workbook, June 2010, Requirements Experts

Grady, J. O., System Requirements Analysis, Academic Press, 2006

Hooks, I. F. & Farry, K. A. 2001, Customer-Centered Products: creating successful products
through smart requirements management; AMACOM Books, NY, NY, 2001.

INCOSE 2007, Systems Engineering Handbook - a guide for system life cycle processes and
activities, Version 3.1, INCOSE-TP-2003-002-03.1 , August 2007, ed, Cecilia Haskins.

NASA, Training Manual for Elements of Interface Definition and Control, NASA Reference
Publication 1370, January 1997, ed, Vincent R. Lalli, Robert E. Kastner, and Henry N. Hartt

NASA, System Engineering Handbook, SP-2007-6105 Revision 1, December 2007.

BIOGRAPHY
Lou Wheatcraft has over 40 years experience in the aerospace industry, including 22 years in the
United States Air Force. Over the last five years, Lou has worked for Compliance Automation
(DBA Requirements Experts), where he conducts seminars on before requirements activities,
writing good requirements, and managing requirements for NASA, DoD, and industry. Lou has a
BS degree in Electrical Engineering, an MA degree in Computer Information Systems, an MS
degree in Environmental Management, and has completed the course work for an MS degree in
Studies of the Future, Lou is a member of INCOSE, co-chair of the INCOSE Requirements
Working Group, a member of PMI, the Software Engineering Institute, the World Futures Society,
and the National Honor Society of Pi Alpha Alpha.

