Evolution of Database Systems

Krzysztof Dembczyński

Intelligent Decision Support Systems Laboratory (IDSS)
Poznań University of Technology, Poland

Bachelor studies, seventh semester Academic year 2018/19 (winter semester)

Review of the Previous Lecture

- Mining of massive datasets,
- Operational and analytical database systems,
- Data mining: discovering models for data,
- Different aspects of data mining:
 - ▶ ideas,
 - ▶ data.
 - ► computational power,
 - ▶ human computation,
 - statistics,
 - ► algorithms.
- Many amazing implementations of data mining.

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 Summary

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 Summary

Data is the new oil (?)

• A database is a collection of information that exists over a long period of time.

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),
 - Give users the ability of query the data and modify the data,

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),
 - Give users the ability of query the data and modify the data,
 - Support the storage of very large amounts of data, allowing efficient access to data for queries and database modifications,

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),
 - ► Give users the ability of query the data and modify the data,
 - Support the storage of very large amounts of data, allowing efficient access to data for queries and database modifications,
 - ► Enable durability, the recovery of the database in the face of failures,

- A database is a collection of information that exists over a long period of time.
- A database management system (DBMS) is specialized software responsible for managing the database.
- The DBMS is expected to:
 - Allow users to create new databases and specify their schemas (logical structure of data),
 - ► Give users the ability of query the data and modify the data,
 - Support the storage of very large amounts of data, allowing efficient access to data for queries and database modifications,
 - ► Enable durability, the recovery of the database in the face of failures,
 - ► Control access to data from many users at once in isolation and ensure the actions on data to be performed completely.

Data models

- Data model is an abstract model that defines how data is represented and accessed.
 - ► Logical data model from a user's point of view
 - ► Physical data model from a computer's point of view.
- Data model defines:
 - ▶ Data objects and types, relationships between data objects, and constraints imposed on them.
 - ► Operations for defining, searching and updating data.

• File management system

- File management system
- Database management system

- File management system
- Database management system
 - ► Early database management systems (e.g. hierarchical or network data models)

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - ► Relational database systems

- File management system
- Database management system
 - ► Early database management systems (e.g. hierarchical or network data models)
 - ► Relational database systems
 - ► Post-relational database systems

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - ► Relational database systems
 - ► Post-relational database systems
 - Object-based database systems

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - ► Relational database systems
 - ► Post-relational database systems
 - Object-based database systems
 - ► Multi-dimensional database systems

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - ► Relational database systems
 - ► Post-relational database systems
 - ► Object-based database systems
 - Multi-dimensional database systems
- NoSQL and BigData

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - ► Relational database systems
 - ► Post-relational database systems
 - ► Object-based database systems
 - ► Multi-dimensional database systems
- NoSQL and BigData
- NewSQL

- File management system
- Database management system
 - Early database management systems (e.g. hierarchical or network data models)
 - ► Relational database systems
 - ► Post-relational database systems
 - ► Object-based database systems
 - ► Multi-dimensional database systems
- NoSQL and BigData
- NewSQL
- The choice of the approach strongly depends on a given application!

 Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - ► Flexible schema (less restricted than typical RDBMS, but may not support join operations)

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - ► Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - ► Quicker/cheaper to set up

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - ► Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up
 - Massive scalability (scale-out instead of scale-up)

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - ► Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up
 - Massive scalability (scale-out instead of scale-up)
 - ▶ Relaxed consistency → higher performance and availability, but fewer guarantees (like ACID)

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up
 - Massive scalability (scale-out instead of scale-up)
 - ▶ Relaxed consistency → higher performance and availability, but fewer guarantees (like ACID)
 - ► Not all operations supported (e.g., join operation)

- Not every data management/analysis problem is best solved exclusively using a traditional relational DBMS
- No means rather "Not only" and SQL states for "traditional relational DBMS".
- NoSQL systems are alternative to traditional relational DBMS
 - ► Flexible schema (less restricted than typical RDBMS, but may not support join operations)
 - Quicker/cheaper to set up
 - Massive scalability (scale-out instead of scale-up)
 - ▶ Relaxed consistency → higher performance and availability, but fewer guarantees (like ACID)
 - ► Not all operations supported (e.g., join operation)
 - ► No declarative query language (requires more programming, but new paradigms like MapReduce appear)

NoSQL

• Different types of models:

NoSQL

- Different types of models:
 - ► MapReduce frameworks,

- Different types of models:
 - ► MapReduce frameworks,
 - ► key-values stores,

- Different types of models:
 - ► MapReduce frameworks,
 - ► key-values stores,
 - ► column stores and BigTable implementations,

- Different types of models:
 - ► MapReduce frameworks,
 - ► key-values stores,
 - ► column stores and BigTable implementations,
 - ► document-oriented databases,

- Different types of models:
 - ► MapReduce frameworks,
 - ► key-values stores,
 - column stores and BigTable implementations,
 - ► document-oriented databases,
 - graph database systems.

- Different types of models:
 - ► MapReduce frameworks,
 - ► key-values stores,
 - column stores and BigTable implementations,
 - ► document-oriented databases,
 - graph database systems.
- Design for different purposes.

BigData – a lot of Vs¹

- Volume: the quantity of generated and stored data.
- Variety: the type and nature of the data.
- Velocity: the speed at which the data is generated and processed.
- Variability: inconsistency of the data.
- **Veracity**: the quality of captured data.

https://en.wikipedia.org/wiki/Big_data

• Operational systems:

- Operational systems:
 - ► Support day-to-day operations of an organization,

- Operational systems:
 - ► Support day-to-day operations of an organization,
 - ► Also referred to as **on-line transaction processing** (OLTP).

- Operational systems:
 - ► Support day-to-day operations of an organization,
 - ► Also referred to as **on-line transaction processing** (OLTP).
 - ► Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.

- Operational systems:
 - ► Support day-to-day operations of an organization,
 - ► Also referred to as **on-line transaction processing** (OLTP).
 - ► Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:

- Operational systems:
 - ► Support day-to-day operations of an organization,
 - ► Also referred to as **on-line transaction processing** (OLTP).
 - ► Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:
 - support knowledge workers (e.g., manager, executive, analyst) in decision making,

- Operational systems:
 - ► Support day-to-day operations of an organization,
 - ▶ Also referred to as **on-line transaction processing** (OLTP).
 - ► Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:
 - support knowledge workers (e.g., manager, executive, analyst) in decision making,
 - ► Also referred to as on-line analytical processing (OLAP).

- Operational systems:
 - ► Support day-to-day operations of an organization,
 - ▶ Also referred to as **on-line transaction processing** (OLTP).
 - ► Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:
 - support knowledge workers (e.g., manager, executive, analyst) in decision making,
 - Also referred to as on-line analytical processing (OLAP).
 - ► Main tasks: effective processing of multidimensional queries concerning huge volumes of data.

- Operational systems:
 - ► Support day-to-day operations of an organization,
 - ► Also referred to as **on-line transaction processing** (OLTP).
 - ► Main tasks: processing of a huge number of concurrent transactions, and insuring data integrity.
- Analytical systems:
 - support knowledge workers (e.g., manager, executive, analyst) in decision making,
 - Also referred to as on-line analytical processing (OLAP).
 - ► Main tasks: effective processing of multidimensional queries concerning huge volumes of data.
 - ► Database systems of a write-once-read-many-times type.

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 Summary

- Data warehouses,
- Business intelligence,
- Computational and analytical tools,
- Scientific databases,
- Analytics engines for large-scale data processing.

• The old and still good definition of the data warehouse:

- The old and still good definition of the data warehouse:
 - ▶ Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.

- The old and still good definition of the data warehouse:
 - ▶ Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.
 - Subject oriented: oriented to the major subject areas of the corporation that have been defined in the data model.

- The old and still good definition of the data warehouse:
 - ▶ Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.
 - Subject oriented: oriented to the major subject areas of the corporation that have been defined in the data model.
 - Integrated: there is no consistency in encoding, naming conventions, etc., among different data sources that are heterogeneous data sources (when data is moved to the warehouse, it is converted).

- The old and still good definition of the data warehouse:
 - Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.
 - Subject oriented: oriented to the major subject areas of the corporation that have been defined in the data model.
 - Integrated: there is no consistency in encoding, naming conventions, etc., among different data sources that are heterogeneous data sources (when data is moved to the warehouse, it is converted).
 - Non-volatile: warehouse data is loaded and accessed; update of data does not occur in the data warehouse environment.

- The old and still good definition of the data warehouse:
 - ▶ Data warehouse is defined as a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process.
 - Subject oriented: oriented to the major subject areas of the corporation that have been defined in the data model.
 - Integrated: there is no consistency in encoding, naming conventions, etc., among different data sources that are heterogeneous data sources (when data is moved to the warehouse, it is converted).
 - Non-volatile: warehouse data is loaded and accessed; update of data does not occur in the data warehouse environment.
 - **Time-variant**: the time horizon for the data warehouse is significantly longer than that of operational systems.

Life-cycle of analytical database systems

- Logical design of the database
- Design and implementation of ETL process
- Deployment of the system (loading of data)
- Optimization of the system
- Refreshing of the data

Logical design of the database

- University authorities decided to analyze teaching performance by using the data collected in databases owned by the university containing information about students, instructors, lectures, faculties, etc.
- They would like to get answers for the following queries:

Logical design of the database

- University authorities decided to analyze teaching performance by using the data collected in databases owned by the university containing information about students, instructors, lectures, faculties, etc.
- They would like to get answers for the following queries:
 - ▶ What is the average score of students over academic years?
 - ▶ What is the number of students over academic years?
 - ▶ What is the average score by faculties, instructors, etc.?
 - ▶ What is the distribution of students over faculties, semesters, etc.?
 - ▶ ...

Example

An exemplary query could be the following:

```
SELECT Instructor, Academic_year, AVG(Grade)
FROM Data_Warehouse
GROUP BY Instructor, Academic_year
```

• And the result:

$Academic_year$	Name	AVG(Grade)
2013/14	Stefanowski	4.2
2014/15	Stefanowski	4.5
2013/14	Słowiński	4.1
2014/15	Słowiński	4.3
2014/15	Dembczyński	4.6

Motivation

• The result is also commonly given as a pivot table:

AVG(Grade)	Academic_year	
Name	2013/2014	2014/2015
Stefanowski	4.2	4.5
Słowiński	4.1	4.3
Dembczyński	4.7	4.6

Conceptual schemes of data warehouses

- Three main goals for logical design:
 - ► Simplicity:
 - Users should understand the design,
 - Data model should match users' conceptual model,
 - Queries should be easy and intuitive to write.
 - ► Expressiveness:
 - Include enough information to answer all important queries,
 - Include all relevant data (without irrelevant data).
 - ► Performance:
 - An efficient physical design should be possible to apply.

Three basic conceptual schemes

- Star schema,
- Snowflake schema,
- Fact constellations.

• A single table in the middle connected to a number of dimension tables.

• Measures, e.g. grades, price, quantity.

- Measures, e.g. grades, price, quantity.
 - ▶ Measures should be aggregative.

- Measures, e.g. grades, price, quantity.
 - ▶ Measures should be aggregative.
 - ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.

- Measures, e.g. grades, price, quantity.
 - ► Measures should be aggregative.
 - ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.
- Fact table

- Measures, e.g. grades, price, quantity.
 - ► Measures should be aggregative.
 - ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.
- Fact table
 - ▶ Relates the dimensions to the measures.

- Measures, e.g. grades, price, quantity.
 - ▶ Measures should be aggregative.
 - ► Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.
- Fact table
 - ▶ Relates the dimensions to the measures.
- Dimension tables

- Measures, e.g. grades, price, quantity.
 - ► Measures should be aggregative.
 - Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.
- Fact table
 - ▶ Relates the dimensions to the measures.
- Dimension tables
 - ► Represent information about dimensions (student, academic year, etc.).

- Measures, e.g. grades, price, quantity.
 - ► Measures should be aggregative.
 - Measures depend on a set of dimensions, e.g. student grade depends on student, course, instructor, faculty, academic year, etc.
- Fact table
 - ▶ Relates the dimensions to the measures.
- Dimension tables
 - ► Represent information about dimensions (student, academic year, etc.).
 - Each dimension has a set of descriptive attributes.

• Each fact table contains measurements about a process of interest.

- Each fact table contains measurements about a process of interest.
- Each fact row contains foreign keys to dimension tables and numerical measure columns.

- Each fact table contains measurements about a process of interest.
- Each fact row contains foreign keys to dimension tables and numerical measure columns.
- Any new fact is added to the fact table.

- Each fact table contains measurements about a process of interest.
- Each fact row contains foreign keys to dimension tables and numerical measure columns.
- Any new fact is added to the fact table.
- The aggregated fact columns are the matter of the analysis.

• Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.
- Generally do not have too many rows (in comparison to the fact table).

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.
- Generally do not have too many rows (in comparison to the fact table).
- Content is relatively static.

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.
- Generally do not have too many rows (in comparison to the fact table).
- Content is relatively static.
- The attributes of dimension tables are used for filtering and grouping.

- Each dimension table corresponds to a real-world object or concept, e.g. customer, product, region, employee, store, etc..
- Dimension tables contain many descriptive columns.
- Generally do not have too many rows (in comparison to the fact table).
- Content is relatively static.
- The attributes of dimension tables are used for filtering and grouping.
- Dimension tables describe facts stored in the fact table.

• Fact table:

- Fact table:
 - ▶ narrow,

- Fact table:
 - ▶ narrow,
 - ▶ big (many rows),

- Fact table:
 - narrow,
 - ▶ big (many rows),
 - ▶ numeric (rows are described by numerical measures),

- Fact table:
 - ► narrow,
 - ▶ big (many rows),
 - ▶ numeric (rows are described by numerical measures),
 - dynamic (growing over time).

- Fact table:
 - ▶ narrow,
 - ▶ big (many rows),
 - ▶ numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table

- Fact table:
 - ▶ narrow,
 - ▶ big (many rows),
 - ▶ numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table
 - ▶ wide,

- Fact table:
 - ▶ narrow,
 - ▶ big (many rows),
 - numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table
 - ▶ wide,
 - ▶ small (few rows),

- Fact table:
 - narrow,
 - ▶ big (many rows),
 - ▶ numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table
 - ▶ wide,
 - ▶ small (few rows),
 - descriptive (rows are described by descriptive attributes),

- Fact table:
 - narrow,
 - ▶ big (many rows),
 - numeric (rows are described by numerical measures),
 - dynamic (growing over time).
- Dimension table
 - ▶ wide,
 - ▶ small (few rows),
 - descriptive (rows are described by descriptive attributes),
 - ► static.

Denormalization

 Denormalization is the process of attempting to optimize the performance of a database by adding redundant data or by grouping data.

Denormalization

- Denormalization is the process of attempting to optimize the performance of a database by adding redundant data or by grouping data.
- Denormalization helps cover up the inefficiencies inherent in relational database software.

Denormalization

- Denormalization is the process of attempting to optimize the performance of a database by adding redundant data or by grouping data.
- Denormalization helps cover up the inefficiencies inherent in relational database software.
- Normalize until it hurts, denormalize until it works :)

Multidimensional data model

• Retail sales data:

Location:Vancouver						
Time	Items	Items				
(quarters)	TV Computer Phone Security					
Q1	605 825 14 400					
Q2	680 952 31 512					
Q3	812	1023	30	501		
Q4	927 1038 38 580					

Multidimensional data model

• Similar information for other cities:

Location:Vancouver						
Time		Items				
(quarters)	TV Computer Phone Security					
Q1	605 825 14 400					
Q2	680 952 31 512					
Q3	812	1023	30	501		
Q4	927 1038 38 580					

Location:Chicago					
Time	Items	Items			
(quarters)	TV	Computer	Phone	Security	
Q1	854	882	89	623	
Q2	943	890	64	698	
Q3	1023	924	59	789	
Q4	1129	992	63	870	

Location:Toronto						
Time	Items					
(quarters)	TV	Computer	Phone	Security		
Q1		968	38	872		
Q2	1130	1024	41	952		
Q3	1034	1048	45	1002		
Q4	1142	1091	52	984		

Location:New York						
Time		Items				
(quarters)	TV Computer Phone Security					
Q1	818	746	43	591		
Q2	894 769 52 682					
Q3	940	795	58	728		
Q4	978	864	59	784		

Multidimensional cube

• More dimensions possible.

Different levels of aggregation

• Sales(time, product, *)

Time	Items			
(quarters)	TV	Computer	Phone	Security
Q1	3364	3421	184	2486
Q2	3647	3635	188	2817
Q3	3809	3790	186	3020
Q4	4176	3985	212	3218

• Sales(time, *, *); Sales(*, *, *)

Operators in multidimensional data model

- Roll up summarize data along a dimension hierarchy.
- Drill down go from higher level summary to lower level summary or detailed data.
- Slice and dice corresponds to selection and projection.
- Pivot reorient cube.
- Raking, Time functions, etc.

Exploring the cube

Time	lter	Items			
(quarters)	TV	Computer	Phone	Security	
Q1	3364	3421	184	2486	_
Q2	3647	3635	188	2817	\Leftrightarrow
Q3	3809		186	3020	
Q4	4176	3985	212	3218	

Time		Items					
		TV	Computer	Phone	Security		
Q1		3364	3421	184	2486		
Q2	Q2		3635	188	2817		
Q3	Q3		3790	186	3020		
	October	1172	960	105	1045		
Q4	November	1005	1340	45	987		
	December	1999	1685	62	1186		

ETL

- ETL = Extraction. Transformation, and Load
 - ► Extraction of data from source systems,
 - Transformation and integration of data into a useful format for analysis,
 - ► Load of data into the warehouse and build of additional structures.
- Refreshment of data warehouse is closely related to ETL process.
- The ETL process is described by metadata stored in data warehouse.
- Architecture of data warehousing:

Data sources \Rightarrow Data staging area \Rightarrow Data warehouse

ETL

• Data need to extracted from different external data: sources:

- Data need to extracted from different external data: sources:
 - ► operational databases (relational, hierarchical, network, itp.),

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),
 - various log files,

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),
 - various log files,
 - web services,

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),
 - various log files,
 - web services,
 - ▶ and other documents (.txt, .doc, XML, WWW).

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),
 - various log files,
 - ▶ web services,
 - ▶ and other documents (.txt, .doc, XML, WWW).
- Access to data sources can be difficult:

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),
 - various log files,
 - ▶ web services,
 - and other documents (.txt, .doc, XML, WWW).
- Access to data sources can be difficult:
 - Data sources are often operational systems, providing the lowest level of data.

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),
 - various log files,
 - web services,
 - and other documents (.txt, .doc, XML, WWW).
- Access to data sources can be difficult:
 - Data sources are often operational systems, providing the lowest level of data.
 - Data sources are designed for operational use, not for decision support, and the data reflect this fact.

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),
 - various log files,
 - web services,
 - ▶ and other documents (.txt, .doc, XML, WWW).
- Access to data sources can be difficult:
 - Data sources are often operational systems, providing the lowest level of data.
 - Data sources are designed for operational use, not for decision support, and the data reflect this fact.
 - Multiple data sources are often from different systems, run on a wide range of hardware and much of the software is built in-house or highly customized.

- Data need to extracted from different external data: sources:
 - ▶ operational databases (relational, hierarchical, network, itp.),
 - ► files of standard applications (Excel, COBOL applications),
 - additional databases (direct marketing databases) and data services (stock data),
 - various log files,
 - ▶ web services,
 - ▶ and other documents (.txt, .doc, XML, WWW).
- Access to data sources can be difficult:
 - Data sources are often operational systems, providing the lowest level of data.
 - ► Data sources are designed for operational use, not for decision support, and the data reflect this fact.
 - Multiple data sources are often from different systems, run on a wide range of hardware and much of the software is built in-house or highly customized.
 - ▶ Data sources can be designed using different logical structures.

• Identification of concepts and objects does not have to be easy.

- Identification of concepts and objects does not have to be easy.
- Example: Extract information about sales from the source system.

- Identification of concepts and objects does not have to be easy.
- Example: Extract information about sales from the source system.
 - ▶ What is meant by the term sale? A sale has occurred when

- Identification of concepts and objects does not have to be easy.
- Example: Extract information about sales from the source system.
 - ▶ What is meant by the term sale? A sale has occurred when
 - 1 the order has been received by a customer,

- Identification of concepts and objects does not have to be easy.
- Example: Extract information about sales from the source system.
 - ▶ What is meant by the term **sale**? A sale has occurred when
 - 1 the order has been received by a customer,
 - 2 the order is sent to the customer,

- Identification of concepts and objects does not have to be easy.
- Example: Extract information about sales from the source system.
 - ▶ What is meant by the term sale? A sale has occurred when
 - 1 the order has been received by a customer,
 - 2 the order is sent to the customer,
 - 3 the invoice has been raised against the order.

- Identification of concepts and objects does not have to be easy.
- Example: Extract information about sales from the source system.
 - ▶ What is meant by the term sale? A sale has occurred when
 - 1 the order has been received by a customer,
 - 2 the order is sent to the customer,
 - 3 the invoice has been raised against the order.
 - ▶ It is a common problem that there is no table SALES in the operational databases; some other tables can exist like ORDER with an attribute ORDER_STATUS.

• Different logical models of operational sources,

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),
- Different data domains (gender: M, F, male, female, 1, 0),

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),
- Different data domains (gender: M, F, male, female, 1, 0),
- Different date formats (dd-mm-yyyy or mm-dd-yyyy),

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),
- Different data domains (gender: M, F, male, female, 1, 0),
- Different date formats (dd-mm-yyyy or mm-dd-yyyy),
- Different field lengths (address stored by using 20 or 50 chars),

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),
- Different data domains (gender: M, F, male, female, 1, 0),
- Different date formats (dd-mm-yyyy or mm-dd-yyyy),
- Different field lengths (address stored by using 20 or 50 chars),
- Different naming conventions: homonyms and synonyms,

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),
- Different data domains (gender: M, F, male, female, 1, 0),
- Different date formats (dd-mm-yyyy or mm-dd-yyyy),
- Different field lengths (address stored by using 20 or 50 chars),
- Different naming conventions: homonyms and synonyms,
- Missing values and dirty data,

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),
- Different data domains (gender: M, F, male, female, 1, 0),
- Different date formats (dd-mm-yyyy or mm-dd-yyyy),
- Different field lengths (address stored by using 20 or 50 chars),
- Different naming conventions: homonyms and synonyms,
- Missing values and dirty data,
- Inconsistent information concerning the same object,

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),
- Different data domains (gender: M, F, male, female, 1, 0),
- Different date formats (dd-mm-yyyy or mm-dd-yyyy),
- Different field lengths (address stored by using 20 or 50 chars),
- Different naming conventions: homonyms and synonyms,
- Missing values and dirty data,
- Inconsistent information concerning the same object,
- Information concerning the same object, but indicated by different keys,

- Different logical models of operational sources,
- Different data types (account number stored as String or Numeric),
- Different data domains (gender: M, F, male, female, 1, 0),
- Different date formats (dd-mm-yyyy or mm-dd-yyyy),
- Different field lengths (address stored by using 20 or 50 chars),
- Different naming conventions: homonyms and synonyms,
- Missing values and dirty data,
- Inconsistent information concerning the same object,
- Information concerning the same object, but indicated by different keys,
- ...

• After extracting, cleaning and transforming, data must be loaded into the warehouse.

- After extracting, cleaning and transforming, data must be loaded into the warehouse.
- Loading the warehouse includes some other processing tasks: checking integrity constraints, sorting, summarizing, creating indexes, etc.

- After extracting, cleaning and transforming, data must be loaded into the warehouse.
- Loading the warehouse includes some other processing tasks: checking integrity constraints, sorting, summarizing, creating indexes, etc.
- Batch (bulk) load utilities are used for loading.

- After extracting, cleaning and transforming, data must be loaded into the warehouse.
- Loading the warehouse includes some other processing tasks: checking integrity constraints, sorting, summarizing, creating indexes, etc.
- Batch (bulk) load utilities are used for loading.
- A load utility must allow the administrator to monitor status, to cancel, suspend, and resume a load, and to restart after failure with no loss of data integrity.

Data warehouse refreshment

• Refreshing a warehouse means propagating updates on source data to the data stored in the warehouse.

Data warehouse refreshment

- Refreshing a warehouse means propagating updates on source data to the data stored in the warehouse.
- Follows the same structure as ETL process.

Data warehouse refreshment

- Refreshing a warehouse means propagating updates on source data to the data stored in the warehouse.
- Follows the same structure as ETL process.
- Several constraints: accessibility of data sources, size of data, size of data warehouse, frequency of data refreshing, degradation of performance of operational systems.

- Refreshing a warehouse means propagating updates on source data to the data stored in the warehouse.
- Follows the same structure as ETL process.
- Several constraints: accessibility of data sources, size of data, size of data warehouse, frequency of data refreshing, degradation of performance of operational systems.
- Types of refreshments:

- Refreshing a warehouse means propagating updates on source data to the data stored in the warehouse.
- Follows the same structure as ETL process.
- Several constraints: accessibility of data sources, size of data, size of data warehouse, frequency of data refreshing, degradation of performance of operational systems.
- Types of refreshments:
 - Periodical refreshment (daily or weekly).

- Refreshing a warehouse means propagating updates on source data to the data stored in the warehouse.
- Follows the same structure as ETL process.
- Several constraints: accessibility of data sources, size of data, size of data warehouse, frequency of data refreshing, degradation of performance of operational systems.
- Types of refreshments:
 - ► Periodical refreshment (daily or weekly).
 - ► Immediate refreshment.

- Refreshing a warehouse means propagating updates on source data to the data stored in the warehouse.
- Follows the same structure as ETL process.
- Several constraints: accessibility of data sources, size of data, size of data warehouse, frequency of data refreshing, degradation of performance of operational systems.
- Types of refreshments:
 - ► Periodical refreshment (daily or weekly).
 - Immediate refreshment.
 - ▶ Determined by usage, types of data source, etc.

• Detect changes in external data sources:

- Detect changes in external data sources:
 - ► Different monitoring techniques: external and intrusive techniques.

- Detect changes in external data sources:
 - ▶ Different monitoring techniques: external and intrusive techniques.
 - ► Snapshot vs. timestamped sources

- Detect changes in external data sources:
 - ▶ Different monitoring techniques: external and intrusive techniques.
 - ► Snapshot vs. timestamped sources
 - ► Queryable, logged, and replicated sources

- Detect changes in external data sources:
 - ▶ Different monitoring techniques: external and intrusive techniques.
 - ► Snapshot vs. timestamped sources
 - ► Queryable, logged, and replicated sources
 - Callback and internal action sources

- Detect changes in external data sources:
 - ▶ Different monitoring techniques: external and intrusive techniques.
 - ► Snapshot vs. timestamped sources
 - ► Queryable, logged, and replicated sources
 - ► Callback and internal action sources
- Extract the changes and integrate into the warehouse.

- Detect changes in external data sources:
 - ▶ Different monitoring techniques: external and intrusive techniques.
 - ► Snapshot vs. timestamped sources
 - ► Queryable, logged, and replicated sources
 - Callback and internal action sources
- Extract the changes and integrate into the warehouse.
- Update indexes, subaggregates and any other additional data structures.

Optimization of analytical systems

• Why analytical systems are so costly?

Optimization of analytical systems

- Why analytical systems are so costly?
 - ► An almost unconstrained number of possible queries.

Optimization of analytical systems

- Why analytical systems are so costly?
 - ► An almost unconstrained number of possible queries.
 - ► Amount of data.

Lattice of cuboids

 Different degrees of summarizations are presented as a lattice of cuboids.

Example for dimensions: time, product, location, supplier

Using this structure, one can easily show roll up and drill down operations.

 For an n-dimensional data cube, the total number of cuboids that can be generated is:

$$T = \prod_{i=1}^{n} (L_i + 1) ,$$

where L_i is the number of levels associated with dimension i (excluding the virtual top level "all" since generalizing to "all" is equivalent to the removal of a dimension).

• For example, if the cube has 10 dimensions and each dimension has 4 levels, the total number of cuboids that can be generated will be:

$$T = 5^{10} = 9,8 \times 10^6$$
.

• Example: Consider a simple database with two dimensions:

- **Example**: Consider a simple database with two dimensions:
 - ► Columns in Date dimension: day, month, year
 - ► Columns in Localization dimension: street, city, country.
 - ► Without any information about hierarchies, the number of all possible group-bys is

- Example: Consider a simple database with two dimensions:
 - ► Columns in Date dimension: day, month, year
 - ► Columns in Localization dimension: street, city, country.
 - ▶ Without any information about hierarchies, the number of all possible group-bys is 2⁶:

- **Example**: Consider a simple database with two dimensions:
 - ► Columns in Date dimension: day, month, year
 - ► Columns in Localization dimension: street, city, country.
 - ► Without any information about hierarchies, the number of all possible group-bys is 2⁶:

Ø		Ø
day		street
month		city
year		country
day, month	\bowtie	street, city
day, year		street, country
month, year		city, country
day, month, year		street, city, country

• Example: Consider the same relations but with defined hierarchies:

- Example: Consider the same relations but with defined hierarchies:
 - ▶ $day \rightarrow month \rightarrow year$
 - $\blacktriangleright \texttt{ street} \to \texttt{city} \to \texttt{country}$

- Example: Consider the same relations but with defined hierarchies:
 - ightharpoonup day ightharpoonup month ightharpoonup year
 - ▶ street \rightarrow city \rightarrow country
 - ► Many combinations of columns can be excluded, e.g., group by day, year, street, country.
 - ► The number of group-bys is then

- Example: Consider the same relations but with defined hierarchies:
 - ightharpoonup day ightharpoonup month ightharpoonup year
 - ▶ street \rightarrow city \rightarrow country
 - Many combinations of columns can be excluded, e.g., group by day, year, street, country.
 - ▶ The number of group-bys is then 4^2 :

- Example: Consider the same relations but with defined hierarchies:
 - ▶ day \rightarrow month \rightarrow year
 - ▶ street \rightarrow city \rightarrow country
 - Many combinations of columns can be excluded, e.g., group by day, year, street, country.
 - ▶ The number of group-bys is then 4^2 :

Outline

1 Evolution of database systems

2 Analytical Database Systems

3 Summary

Summary

- Significant difference between operational and analytical systems.
- Different data models dedicated to particular applications.
- NoSQL = "Not only traditional relational DBMS."
- OLAP vs. OLTP.
- Multidimensional data model.
- Star schema.
- ETL process.
- OLAP systems

Bibliography

• H. Garcia-Molina, J. D. Ullman, and J. Widom. *Database Systems: The Complete Book. Second Edition*.

Pearson Prentice Hall, 2009

• R. Kimball and M. Ross. The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.

John Wiley & Sons, 2013

 Nathan Marz and James Warren. Big Data: Principles and best practices of scalable real-time data systems.

Manning Publications Co., 2015

Manning Publications Co., 2015