
Operating Systems

Andrei Doncescu

Chapter 1: Introduction

Operating System
Definition

• No universally accepted definition
• “ The one program running at all times on the

computer” is the kernel. Everything else is
either a system program (ships with the
operating system) or an application program.

What is an
Operating System?

• A program that acts as an intermediary between
an user of a computer and the computer
hardware:

Manages the computer hardware
• Operating system goals:

– Execute user programs and make solving user
problems easier

– Make the computer system convenient to use
– Use the computer hardware in an efficient manner

Computer System
Organization

• Computer-system operation
– One or more CPUs, device controllers connect through common bus

providing access to shared memory
– Concurrent execution of CPUs and devices competing for memory

cycles

Computer-System
Operation

• I/O devices and the CPU can execute concurrently
• Each device controller is in charge of a particular

device type
• Each device controller has a local buffer
• CPU moves data from/to main memory to/from

local buffers
• I/O is from the device to local buffer of controller
• Device controller informs CPU that it has finished

its operation by causing an interrupt

Computer
System Structure

• Computer system can be divided into four components
– Hardware – provides basic computing resources

• CPU, memory, I/O devices
– Operating system

• Controls and coordinates use of hardware among various applications
and users

– Application programs – define the ways in which the system
resources are used to solve the computing problems of the
users

• Word processors, compilers, web browsers, database systems, video
games

– Users
• People, machines, other computers

Four Components of a
Computer System

Operating System
Definition

• OS is a resource allocator
– Manages all resources
– Decides between conflicting requests for

efficient and fair resource use

• OS is a control program
– Controls execution of programs to prevent

errors and improper use of the computer

Process
Management
Activities

The operating system is responsible for the following
activities:

•Creating and deleting both user and system
processes
•Suspending and resuming processes
•Providing mechanisms for process synchronization
•Providing mechanisms for process communication
•Providing mechanisms for deadlock handling

Chapter 2: History

Background History

• 1969 Unix created at Bell Labs
• 1977 Berkeley Development starts
• 1986 4.3BSD released
• 1990 Net/2 Release distributed

– asserted to be freely distributable
• 1992 AT&T lawsuit
• 1994 4.4BSD-lite released

– clean base - all suspect code deleted

Overview

• What is Unix™ ?
• Brief History
• In the Present Day
• In Conclusion…

What is Unix™ ?

• Unix™ is an open source operating system.
• Unics : UNiplexed Information & Computing Service.
• Unix™ was first written for Space Travel, a computer game by

Ken Thomson. Space Travel is the first Application created. It is
also the first computer game ever created.

Space Travel: A game simulating
travel in space. You navigate by
zooming in/out, to reach earth or the
other planets in your spaceship.

Brief History of
Unix™

• 1969 : AT&T develops Multics (multiplex information &
computing science)
– Multics was an experimental OS
– Ken Thompson used it to play Space Travel, a game he wrote on

the Multics computer system.
– Project was shelved and so did the multics system.
– Ken decides to write re-work multics so he could play Space Travel

on a smaller system left unused in the lab. Dennis made sure of
that by recoding in C.
The PDP-7 system that Unix™
was written on. It even ran
Space Travel.

Brief History of
Unix™

• 1970s: Redeveloped & recoded in C programming by Ken
Thompson & Dennis Ritchie
– AT&T recognized their work and funded them with bigger

systems. In return they created roff, a text processing system.
Final versions is troff, which does text formatting.

– Meanwhile, Dennis teaches C programming & Unix at Berkeley
University.

Brief History of
Unix™

• 1977: Berkeley student Bill Joy releases BSD (Berkeley
Software Distribution)

• 1980: MACH kernel for BSD from CMU
• 1988: NextStep is release with GUI
• 1991: Linus Torvalds releases

Unix-Like Linux

RIP: Dennis Ritchie, the creator of C
programming passed away a week after

Steve Jobs on Oct 12th 2011.
He has given to us very valuable technology

and inspired developers to create.

History of Mach

• Mach’s earliest roots go back to a system called RIG (Rochester
Intelligent Gateway), which began at the University of Rochester in
1975.
– Its main research goal was to demonstrate that operating

systems could be structured in a modular way.

• When one of its designers, Richard Rashid, left the University of
Rochester and moved to Carnegie-Mellon University in 1979, he
wanted to continue developing message-passing operating systems
but on more modern hardware.

• The machine selected was the PERQ. The new operating system for
the PERQ was called Accent. It is an improvement of RIG.

Rochester’s Intelligent
Gateway

• Developed by University of Rochester, NY 1975
• Provided uniform access to a variety of computing

facilities
• Disadvantages:

1. Had limited address space
2. No protection for ports
3. No notification of failure of a process

Accent

• Developed by Richard Rashid, formerly of RIG, at
Carnegie Mellon University

• The operating system improved upon RIG

1. Added an innovation virtual memory
2. Added transparent network messaging
3. Flexible and powerful virtual memory

History of Mach

• By 1984 Accent was being used on 150 PERQs but it was
clearly losing out to UNIX. This observation led Rashid to begin
a third-generation operating systems project called Mach.

• Mach is compatible with UNIX, contains threads,
multiprocessor support, and a virtual memory system.

History of Mach

• Developed at Carnegie Mellon University
• 1987 – Mach release 0 and release 1 included task

and thread support
• 1988 – release 2
• 1989 – Mach 3.0 released with a smaller microkernel

and a complex multiprocess system

Concept of the Mach
Kernel

• The classic Unix kernel cannot support multiple
processors.

• Mach introduced the idea of threads and tasks.
• Mach was one of the first systems to use a

microkernel.
• A microkernel minimizes each OS service performed

in the kernel.

Tasks and Threads

• A task is the basic unit of resource allocation.
– It includes a virtual address space, access to

resources, and may include one or more threads.

• A thread is a sequence of instruction executions.
– All threads within a task share the resources of

that task.

Tasks and Threads
(cont.)

• All communication among threads is done by sending
messages between ports.

• When a task is created, it is assigned several ports by
the kernel

• The kernel manages all communication among ports
by assigning send and receive permissions.

Problems with Mach

• Mach was not commercially successful because of
the overhead in interprocess communication.

• System performance was slower than the traditional
kernel.

• Mach had trouble handling memory when the
physical memory ran low.

Present Day Unix™

• Workstations: Ubuntu, Gnu, Darwin,
Windows, Mac OSx, MINIX, Xsystem,
FreeBSD, Fedora, Open BSD ..

• Servers: HP-UX, AIX (IBM), Solaris (Oracle),
Novell SLES, Red Hat Enterprise Linux

• Network: Cisco, Juniper

Present Day Unix™

• Embedded Devices: Ezlink Card Readers, Aircon
temperature control & more

• Mobile Devices: Compaq’s iPAQ, Nokia, Motorola,
Android tablets & mobile phones, Blackberry Playbook,
iPhone, iPad, iPod, GPS system

• Gaming: Nintendo DSLite, Sony Playstation 3, Xbox 360

In Conclusion…

• Unix™ has become the base for many kinds of computing
systems
– Low cost - no renewals or fees per workstation
– Stability - no downtime due to its multi-processing capabilities & efficient

kernel
– Expandability - various hardware are supported
– Development possibility
– Customization - run company requirements
– Networking capabilities – it is a pioneer

• Unix™ is the preferred choice by companies to run their File and
Network Servers.

Operating Systems

Chapter 3: Concepts

Evolution of Operating
Systems

• Early Systems (1950)
• Batch Operating System (1960)
• Interactive Operating System
• Multi-programmed Batch Systems (1970)
• Time-Sharing and Real-Time Systems (1970)
• Multiprocessor Operating Systems (1980)
• Distributed Operating System
• Networked/Distributed Systems (1980)
• Multiuser Operating System
• Multithreaded Operating System
• Web-based Systems (1990)

Remark

• The first operating system on microcomputer
platform was Control Program for Microcomputers
(CP/M)

• Intel 8080 in 1974 by Gary Kindall

A. Frank - P. Weisberg

• First developed for batch systems in the 60s.
– Go to the computer center and give them your program (stored

on punch cards).
– The computer operator “batched” several jobs together and

loaded them into the computer.
– Come back at 5:00 to get the results of your program.

• Batch systems are non-interactive.

Multiprogrammed Batch Systems

Memory Layout for
Multiprogrammed System

Automatic Job Sequencing
allows control from one batch
to another to be transferred
automatically.

This process continues, until
all of the programs presented
in each batch are finished.

To implement automatic job
sequencing, a program is used

This program is called a
resident
monitor

Resident Monitor

• A resident monitor is a program. It is also known as
job sequencer.

• There is no idle time between exécutions.

• Disadvantages of a batch operating System
– The CPU is often idle
– It is difficult to provide the desired priority to the

different programs

Time-Sharing

• Batch multiprogramming does not support interaction
with users.

• Time-sharing extends Batch Multiprogramming to
handle multiple interactive jobs –
it’s Interactive Multiprogramming.

• Multiple users simultaneously access the system
through commands entered at terminals.

• Processor’s time is shared among multiple users.

Time-sharing Architecture

Why Time-sharing?

• In Time-sharing (multitasking) the CPU switches jobs so
frequently that users can interact with each job while it is
running, creating interactive computing:
– Response time should be < 1 second.
– Each user has at least one program (process) executing in

memory.
– CPU scheduling supports several jobs ready to run at the same

time.
– If processes don’t fit in memory, swapping moves them in and

out to run.
– Virtual memory allows execution of processes not completely in

memory.

Why did Time-Sharing
work?

• Because of slow human reaction time, a typical user
needs 2 seconds of processing time per minute.

• Then many users should be able to share the same
system without noticeable delay in the computer
reaction time.

• The user should get a good response time.
• It fit the economic basis of the mainframe computer

installation.

Time-Sharing Systems (Multitasking)

 Logical extension of multiprogramming termed multitasking.
 Quite often sitting at terminal using a “command line” interface

to interact with computer.
 Types in commands from keyboard.
 A system program called a shell reads command from the

command line and makes OS system calls to carry out
commands.

 OS switches between user’s programs very quickly, generally in
round-robin fashion.

Shared
Computer

User1User 3

User 4

User 2

Time-Sharing Systems (Multitasking)

Special Purpose
Systems RTOS

• Real-time Embedded Systems
– Found in car engines, microwave ovens etc. They have

specific tasks and the systems they run on are usually
primitive and so the O/S provides limited features.
They have little or no GUI.

– Embedded systems almost always run RTOS. This is
used when rigid time requirements have been placed
on the operation of the CPU or flow of data.

– Sensors bring data to the computer which then
analyzes this data. E.gs of real-time system include
medical imaging systems, weapon systems,
automobile engine fuel injection systems.

•

Real-Time Operating
Systems RTOS

• Note that not all Operating Systems are general-
purpose systems.

• Real-Time (RT) systems are dedicated systems that
need to adhere to deadlines , i.e., time constraints.

• Correctness of the computation depends not only on
the logical result but also on the time
at which the results are produced.

Hard Real-Time Systems

• Hard real-time system must meet its deadline.
• Conflicts with time-sharing systems, not supported by

general-purpose OSs.
• Often used as a control device in a dedicated

application:
– Industrial control
– Robotics

• Secondary storage limited or absent, data/program is
stored in short term memory,
or Read-Only Memory (ROM).

Soft Real-Time Systems

• Soft real-time system more jitter than HR-T:
– Deadlines desirable but not mandatory.
– Limited utility in industrial control or robotics.
– Useful in modern applications (multimedia,

video conference, virtual reality) requiring
advanced operating-system features.

Personal/Desktop
Computers (1)

• Personal computers – computer system dedicated to a
single user.

• I/O devices: keyboards, mice, display screens, small
printers.

• User convenience and responsiveness.
• Can adopt technology developed for larger operating

system; often individuals have sole use of computer
and do not need advanced CPU utilization of
protection features.

• May run several different types of operating systems
(Windows, MacOS, UNIX, Linux)

)2 (Personal/Desktop
Systems

• Traditional personal computer blurring over time.
• Office environment:

– PCs connected to a network, terminals attached to
mainframe or minicomputers providing batch and
timesharing.

– Now portals allowing networked and remote
systems access to same resources.

• Home networks:
– Used to be single system, then modems
– Now firewalled, networked.

Two categories of
Computer Systems

• Single Instruction Single Data (SISD) –
– single processor executes a single

instruction sequence to operate on data
stored in a single memory.

– This is a Uniprocessor.
• Multiple Instruction Multiple Data (MIMD) -

– a set of processors simultaneously execute
different instruction sequences on different
data sets.

– This is a Multiprocessor.

Components of a simple
personal computer

Multiprocessor Systems

• System with several CPUs in close communication:
– processors share memory and a clock.
– communication usually takes place through the shared memory.

• Also known as parallel systems, tightly-coupled systems.
• Multiprocessors systems growing in use and importance

– advantages include:
 Increased throughput
 Economy of scale
 Increased reliability – graceful degradation or fault tolerance.

Types of Multiprocessor
Systems

• Asymmetric Multiprocessing
– master processor schedules and allocates specific

work to slave processors.
• Symmetric Multiprocessing (SMP)

– Each processor runs an identical copy of the OS.
– Typically each processor does self-scheduling form

the pool of available processes.
– Most modern operating systems support SMP.

Symmetric Multiprocessing
Architecture

55

Single-core computer

56

Single-core CPU chip

the single core

A Dual-Core Design

58

Multi-core architectures

Replicate multiple processor cores on a single die
(integrated circuits).

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip

59

Interaction with the
Operating System

• OS perceives each core as a separate processor

• OS scheduler maps threads/processes
to different cores

• Most major OS support multi-core today:
Windows, Linux, Mac OS X, …

How a Modern
Computer Works

61

Definitions

• A program is a set of instructions which is prepared
to perform a specific assignment if executed by a
computer.

• A program need not be online; it could be stored on
a flash memory and placed in one’s pocket.

• A program is not an active entity. It is completely
passive.

62

Definitions…

• The operating system creates a process from a
program.

• To do so, it has to perform many activities, like
assigning a name, allocating space, (partially) loading
the corresponding program, etc.

• Roughly speaking, A process is an active program.
• A process is created to run a program by using

computer facilities; like a human who is born to live
his life.

63

Single-Programming

• In a single-programming environment there exist at the most
one process at any given time; thus there is usually one
ongoing activity at a time.

• From many devices within the computer often one device is
active at any given time.

• This means, if a process has asked for a data to be entered by
the user, the system has to wait until this data is entered
before being able to proceed.

• If this data entry takes one second the CPU could have done
millions of instructions if it did not have to wait.

• With single-programming the computer facilities are not used
in an efficient manner.

64

Process States in Single-
Programming

• With single-programming, right after a process is born the system starts
executing its corresponding program’s instruction.

• The instruction execution continues until the process needs to read some
data from an input device or wants to write some results on an output
device.

• There are special purpose processors called Input/Output (I/O) processors
for transferring data from input devices to main memory and from main
memory to output devices.

• It is understandable that such a processor will perform the specific task
better than a general-purpose processor, i.e., CPU.

• While an I/O operation is in progress, the CPU has to wait and do nothing.
After the I/O operation is completed, the CPU will resume the execution of
the instructions.

• This cycle, of going through process states of running and input/output,
may be repeated over and over, until the job is completed or, for some
reason, the process is aborted.

65

Process’s life cycle

The life cycle of processes in single-programming environments

Process
birth Running Input/Output

Process
Termination

Blocked for
I/O

I/O completed

66

Processor wait ratio

be
bw
+

=

• If the average execution time of a program with single-
programming is e and the average I/O time is b, then the
following ratio is the CPU wait fraction (w). It is actually the
fraction of the time the CPU is idle.

• For example, if execution time of programs is 10, of which 9
seconds is spent on I/O, then w = 9/10 = 0.9. This means, on
the average, 90% of the CPU time is wasted.

Multiprogramming

• Basic idea of multiprogramming:
– Keep multiple jobs in memory.
– When one job blocks on I/O (or other events), the operating

system:
• Starts the I/O operation.
• Switches to another job that is ready to execute.
• Now the CPU and I/O device are executing in parallel.

– When the I/O device has completed request, it generates an
interrupt to inform the CPU.

– Virtually all general purpose computers support
multiprogramming.

68

The
Multiprogramming

Concept
• Multiprogramming is a technique that allows more than one

program to be ready for execution (process) and provides the
ability to switch from one process to another, even if the
former is not completed.

• Of course, sometimes in the future we will have to switch
back to the first process and resume (not restart) its
computation.

• This technique works for both single-processor (like our
personal computers) and multiprocessor (such as large main
frame) computers.

• Multiprogramming is mainly accomplished by the operating
system. The hardware provides some specific circuitry that
may be used by the operating system in the course of
facilitating multiprogramming.

69

Multiprogramming
and PCs

• Do we need multiprogramming for PCs? Yes. All PC users like
to run many applications simultaneously. Nobody runs for
example an Internet explorer looking for an information while
staring at the monitor for the results for a long time.

• In this era of computer usage, every general-purpose
operating system must have the following capabilities:
– It must provide an environment to run processes in a

multiprogramming fashion.
– It must act as a service provider for all common services that are

usually needed by computer users, such as copying files, making new
folders, compressing information, sending and receiving messages
from other computers in the network, etc.

– Its user interface must be easy to use and pleasant to work with.

70

Multiprogramming
productivity

• Multiprogramming increases system productivity. If CPU wait
time is represented by w in single-programming
environment, the CPU wait time decreases to approximately
for a system running n processes simultaneously.

– Example: If w = .9 then =0.59 ; meaning that if we have
five processes running simultaneously, the CPU utilization
is increased by (0.41-.10)*100 = 310%.

• By increasing the CPU utilization other device’s
utilization is also increased.

nw

5w

71

Process State
Transition Diagram

• The life cycle of a process in multiprogramming is not
the same as singleprogramming.

• A process may be ready to use the CPU to run its
program while the CPU is running another program.

• The basic states are thus Ready, Running, and
Wait/Blocked. Wait refers to a state in which the
process is waiting for a device or an event and
Blocked is for the case the process is waiting for its
I/O to be completed by an I/O processor.

72

Process’s life cycle

Basic process state transition diagram in multiprogramming

Process birth

Ready
Wait/Blocked

Process
Termination

Running

A process is
picked to run

Needs I/O or
circumstance

Running obstacle is
vanished

Preempted for the
interest of others

73

Requirements of
Multiprogramming

• Process Switching possibility: the system must be
able to safely switch from one process to another.
This is called Context switching.

• Direct Memory Access: I/O processors must be able
to directly access main memory without interference
and conflictions.

• The Interrupt System: I/O processors and monitoring
devices must be able to safely communicate with the
CPU.

74

Multiprocessing

• If you think clearly, you will notice that we should
have used multiprocessing instead of
multiprogramming. This is true. Unfortunately, the
term “multiprogramming” is recognized for this
technique of the operating system and we will stick
to it.

• On the other hand, “multiprocessing” is used for
systems with more than one processor. Processors, in
such a system, can collectively run many tasks
simultaneously.

75

Multitasking

• Simultaneously executing programs are called tasks. Therefore, a
system with the capability of multitasking allows users to
activate more than one task, or application program, at a time.
An Internet browser that searches for some information and A
word-processing software that is activated to perform the word-
processing task are applications.

• The operating system will switch between tasks based on the
tasks current states and their requirements and priorities.

• Multitasking is only possible when multiprogramming is the
fundamental capability of simultaneously executing pieces of
software.

• Most modern operating systems, like UNIX, Linux, and Windows,
support multitasking.

76

Process Deficiencies

• A process is created to run a program to perform a duty.
• What if we need to perform two or more similar duties?
• One approach is to create more than one exact same processes;

each assigned to handle one of the two duties.
• This is a correct solution, but it spawns two major problems:

– As the numbers of duties increase, the number of processes increases
too, and very soon we will either run out of main memory or, in the
case of virtual memory, we may reach an inefficient state of main
memory.

– By increasing the number of processes, the number of objects that
compete for computer resources increases, too. It will led to an
undesirable state in which many processes cannot complete their duty
because they do not get the chance to use the resources needed.

• Thread is introduced to solve these problems

77

Thread

• Thread refers to a path through a program’s instructions
during its execution.

• Multithreading methodology allows more than one thread of
execution for every process.

• Now, if we need to perform two or more similar duties
we can crate one process and from which create more
than one thread; each assigned to handle one of the
duties.

• All threads of a single process share the same:
– address space
– global data
– files for storing and/or reading information
– resources that are assigned to their corresponding process.

78

Multithreading

• A multithreading operating system is one that is capable of
handling processes and threads at the same time and in which
from each process the system is able to generate more than
one thread.

• In such an operating system, there must be facilities for thread
creation, deletion, switching, etc.

• Such an operating system allows users to generate more than
one request to a process at a time. For example, a browser
can be made to search simultaneously for more than one
topic, even though there is only one copy of the “browser
program” in main memory.

• The multiprogramming methodology and technique are
essential in the implementation of multithreading. In this new
environment, a thread becomes the smallest functional object
to which CPU (or a PU) is assigned.

79

Multi-core CPU chip

• The cores fit on a single processor socket
• Also called CMP (Chip Multi-Processor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

80

The cores run in parallel

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

thread 1 thread 2 thread 3 thread 4

81

Within each core, threads
are time-sliced (just like on

a uniprocessor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

several
threads

several
threads

several
threads

several
threads

Multiprogramming vs.
Multiprocessing

A. Frank - P. Weisberg

Clustered Systems
Architecture

Architecture for
Cluster Computing

System

Clustered Systems (1)

• Like multiprocessor systems, but multiple systems
working together.

• Also known as closely-coupled system.
• Clustering allows two or more systems to share

external storage and balance CPU load:
– processors also have their own external memory.
– communication takes place through high-speed

channels.
– Provides high-availability

Clustered Systems (2)

• Usually sharing storage via a Storage-Area Network
(SAN).

• Provides a high-availability service which survives
failures:
– Asymmetric clustering has one machine in hot-standby

mode
– Symmetric clustering has multiple nodes running

applications, monitoring each other.
• Some clusters are used for high-performance

computing (HPC) where applications must be written
to use parallelization.

Types of Distributed Operating
Systems

• Network Operating Systems

• Distributed Operating Systems

Networked Systems

• Distribute resources and the computation among
several physical processors.

• Loosely coupled system:
– each processor has its own local memory.
– processors communicate with one another

through various communications lines.
• Advantages:

– Resources Sharing
– Computation speed up – load sharing
– Reliability

Networked System
Structure

network

disk

disk

processors

disk

disk

processors
disk

disk

processors

disk

disk

processors

…

node 1

node Nnode 3

node 2

Networked Systems

• Requires networking infrastructure.
• Most are Local area networks (LAN) or Wide

area networks (WAN).
• May be either Centralized Sever or

Client/Server or Peer-to-Peer (P2P) systems.

Local Area Network (LAN)

• LAN designed to cover small geographical
area:
– Multiaccess bus, ring, or star network.
– Speed ≈ 10–100 Megabits/second.
– Broadcast is fast and cheap.
– Nodes:

• usually workstations and/or personal
computers.

• a few (usually one or two) mainframes.

Example of Local Area
Network (LAN)

A. Frank - P. Weisberg

Wide-Area Network
(WAN)

• Links geographically separated sites:
– Point-to-point connections over long-haul

lines (often leased from a phone company).
– Speed ≈ 1.544–45 Megabits/second.
– Broadcast usually requires multiple

messages.
– Nodes:

• usually a high percentage of mainframes.

Example of Wide Area
Network (WAN)

Network-attached
Storage (NAS)

Storage-area
Network (SAN)

Generic Client/Server
Environment

Client/Server Computing

• Dumb terminals supplanted by smart PCs.
• Many systems are now servers, responding to

requests generated by clients:
– Compute-server provides an interface

to client to request services (i.e., database).
– File-server provides interface for clients to store

and retrieve files.

General Structure of a
Client/Server System

Distributed Systems

• Distributed system is collection of loosely coupled processors
interconnected by a communications network.

• Processors variously called nodes, computers, machines, hosts.
• Reasons for distributed systems:

– Resource sharing:
• sharing and printing files at remote sites.
• processing information in a distributed database.
• using remote specialized hardware devices.

– Computation speedup – load sharing.
– Reliability – detect and recover from site failure, function

transfer, reintegrate failed site.
– Communication – message passing.

Distributed Systems

Peer-To-Peer (P2P)

• P2P does not distinguish clients and servers.
• Instead all nodes are considered peers.
• May each act as client, server or both.
• Node must join P2P network:

– Registers its service with central lookup service on
network, or

– Broadcasts request for service and responds to
requests for service via discovery protocol.

• Examples include Napster and Gnutella, Voice over IP
(VoIP) such as Skype.

Peer-to-Peer
Computing

Peer-to-Peer
Computing

• Another approach is to have a client first
discover the node that provides the desired
service by broadcasting a request for service
to all other nodes in the network.

• The node (or nodes) providing that service
responds to the peer making the request.

• To support this approach a discover protocol
must be provided that allows peers to
discover services offered by peers. This is
totally distributed approach.

• E.g. Gnutella

Peer-to-Peer
Computing

Peer-To-Peer (P2P) Systems

(NOS) Networked
Operating Systems

• Each computer runs independently from other
computers on the network.

• Provides mainly file sharing.
• Users are aware of multiplicity of machines.
• Access to resources of various machines is done

explicitly by:
– Remote logging into the appropriate remote machine

(telnet, ssh).
– Remote Desktop (Microsoft Windows).
– Transferring data from remote machines to local machines,

via the File Transfer Protocol (FTP) mechanism.

Distributed Operating
Systems (DOS not MS-DOS)

• Gives the impression there is a single operating system
controlling the network.

• Users not aware of multiplicity of machines
– Access to remote resources similar to access to local ones.

• Network is mostly transparent – it’s a powerful virtual machine.
• Data Migration – transfer data by transferring entire file, or

transferring only those portions of the file necessary for the
immediate task.

• Computation Migration – transfer the computation, rather than
the data, across the system.

• Process Migration – execute an entire process, or parts of it, at
different sites.

Web-based Systems

• Web has become ubiquitous.
• PCs most prevalent devices.
• More devices becoming networked to allow

web access.
• New category of devices to manage

Web traffic among similar servers:
Load Balancers.

• Basis for Grids/Cloud Computing.

Web-Based
Computing

• PCs used to be more prevalent devices but
now mobile devices (e.g. smart phones and
tablets) are more prevalent modes of access

• Use of operating systems like Windows 95,
client-side, have evolved into Linux and
Windows XP, which can be clients and
servers

Web-Based
Computing

Grid Computing Systems

• Collection of computer resources, usually owned by
multiple parties and in multiple locations, connected
together such that users can share access to their
combined power:
– Can easily span a wide-area network
– Heterogeneous environment
– Crosses administrative/geographic boundaries
– Supports Virtual Organizations (VOs)

– Examples: EGEE - Enabling Grids for E-SciencE
(Europe), Open Science Grid (USA).

Cloud Computing
Systems (1)

• Collection of computer resources, usually owned by a
single entity, connected together such that users can
lease access to a share of their combined power:
– Location independence: the user can access the

desired service from anywhere in the world, using
any device with any (supported) system.

– Cost-effectiveness: the whole infrastructure is owned
by the provider and requires no capital outlay by the
user.

– Reliability: enhanced by way of multiple redundant
sites, though outages can occur, leaving users unable
to remedy the situation.

Cloud Computing Systems
(2)

– Scalability: user needs can be tailored to available
resources as demand dictates – cost benefit is
obvious.

– Security: low risk of data loss thanks to
centralization, though problems with control over
sensitive data need to be solved.

– Readily consumable: the user usually does not
need to do much deployment or customization,
as the provided services are easy to adopt and
ready-to-use.

• Examples: Amazon EC2 (Elastic Compute Cloud),
Google App Engine, IBM Enterprise Data Center,
MS Windows Azure, SUN Cloud Computing.

Handheld Systems

• Handheld systems are also dedicated:
– Personal Digital Assistants (PDAs).
– Cellular telephones.

• Issues:
– Limited memory
– Slow processors
– Small display screens
– Support for multimedia (images, video).

Mobile Systems

• Handheld smartphones, tablets, etc.
• What is the functional difference between them and

a “traditional” laptop?
• Extra feature – more OS features (GPS, gyroscope).
• Use IEEE 802.11 wireless, or cellular data networks

for connectivity.
• Allows new types of apps like augmented reality.
• Leaders are Apple iOS and Google Android.

Migration of OS Concepts
and Features

Open-Source
Operating Systems

• Operating systems made available in source-
code format rather than just binary closed-
source

• Counter to the copy protection and Digital
Rights Management (DRM) movement

• Started by Free Software Foundation (FSF),
which has “copyleft” GNU Public License (GPL)

• Examples include GNU/Linux, BSD UNIX
(including core of Mac OS X), and Sun Solaris

	Operating Systems
	Chapter 1: Introduction
	Operating System Definition
	What is an Operating System?
	Computer System Organization
	Computer-System Operation
	Computer System Structure
	Four Components of a Computer System
	Operating System Definition
	Process Management Activities
	Chapter 2: History
	Background History
	Overview
	What is Unix™ ?
	Brief History of Unix™
	Brief History of Unix™
	Brief History of Unix™
	History of Mach
	Rochester’s Intelligent Gateway
	Accent
	History of Mach
	History of Mach
	Concept of the Mach Kernel
	Tasks and Threads
	Tasks and Threads (cont.)
	Problems with Mach
	Present Day Unix™
	Present Day Unix™
	In Conclusion…
	Operating Systems
	Evolution of Operating Systems
	Remark
	Slide Number 33
	Memory Layout for Multiprogrammed System
	Resident Monitor
	Time-Sharing
	Time-sharing Architecture
	Why Time-sharing?
	Why did Time-Sharing work?
	Slide Number 40
	Slide Number 41
	Special Purpose Systems RTOS
	Slide Number 43
	Real-Time Operating Systems RTOS
	Hard Real-Time Systems
	Soft Real-Time Systems
	Personal/Desktop Computers (1)
	 (2) Personal/Desktop Systems
	Two categories of Computer Systems
	Components of a simple personal computer
	Multiprocessor Systems
	Types of Multiprocessor Systems
	Symmetric Multiprocessing Architecture
	Single-core computer
	Single-core CPU chip
	A Dual-Core Design
	Multi-core architectures
	Interaction with the�Operating System
	How a Modern Computer Works
	Definitions
	Definitions…
	Single-Programming
	Process States in Single-Programming
	Process’s life cycle
	Processor wait ratio
	Multiprogramming
	The Multiprogramming Concept
	Multiprogramming and PCs
	Multiprogramming productivity
	Process State Transition Diagram
	Process’s life cycle
	Requirements of Multiprogramming
	Multiprocessing
	Multitasking
	Process Deficiencies
	Thread
	Multithreading
	Multi-core CPU chip
	The cores run in parallel
	Within each core, threads are time-sliced (just like on a uniprocessor)
	Multiprogramming vs. Multiprocessing
	Clustered Systems Architecture
	Architecture for Cluster Computing System
	Clustered Systems (1)
	Clustered Systems (2)
	Types of Distributed Operating Systems
	Networked Systems
	Networked System Structure
	Networked Systems
	Local Area Network (LAN)
	Example of Local Area Network (LAN)
	Wide-Area Network (WAN)
	Example of Wide Area Network (WAN)
	Network-attached Storage (NAS)
	Storage-area Network (SAN)
	Generic Client/Server Environment
	Client/Server Computing
	General Structure of a Client/Server System
	Distributed Systems
	Distributed Systems
	Peer-To-Peer (P2P)
	Peer-to-Peer Computing
	Peer-to-Peer Computing
	Peer-to-Peer Computing
	Peer-To-Peer (P2P) Systems
	 (NOS) Networked Operating Systems
	Distributed Operating Systems (DOS not MS-DOS)
	Web-based Systems
	Web-Based Computing
	Web-Based Computing
	Grid Computing Systems
	Cloud Computing Systems (1)
	Cloud Computing Systems (2)
	Handheld Systems
	Mobile Systems
	Migration of OS Concepts and Features
	Open-Source Operating Systems

