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The dynamics of the expansion of the Universe and evolution of scalar perturbations are discussed
for the quintessential scalar fields Q with the classical Lagrangian L = 1

2
Q;iQ

;i
− U(Q) satisfying

the additional condition w = const or c2
a = 0. Both quintessential fields are studied for the same

cosmological model. It is shown that the accelerated expansion of the Universe is caused by the
effect of the rolling down of the field to the minimum. At the early epoch the contribution to
dynamics of the quintessence with w = const is negligible (like that of the cosmological constant)
while the quintessence with c2

a = 0 mimics dust matter. In the future a scalar field with c2
a = 0 will

mimic the cosmological constant.
The systems of evolution equations for gauge-invariant perturbations of metric, matter and

quintessence have been analysed analytically for the early stage of the Universe life and numerically
up to the present epoch. It is shown that amplitudes of the adiabatic matter density perturbations
grow similarly in both models (likewise in the ΛCDM-model), but time dependences of different

amplitudes of quintessence perturbations are varied: gauge-invariant variables D
(Q)
g and D

(Q)
s de-

cay from the initial constant value after the particle horizon entry while D(Q) and V (Q) grow at
an early stage before the horizon entry and decay after that in the quintessence-dominated epoch
when the gravitational potential starts to decay so that at the current epoch they are approximately
two orders lower than the matter ones on supercluster scales. Therefore, on the subhorizon scales
quintessential scalar fields are smoothed out while the matter clusters.

It is also shown that both quintessential scalar fields suppress the growth of matter density
perturbations and the amplitude of gravitational potential. In these QCDM-models — unlike ΛCDM
ones — such a suppression is scale dependent and more visible for the quintessence with c2

a = 0.
Key words: cosmology: theory — dark energy — scalar field — dynamics of expansion of the

Universe — evolution of scalar perturbations.

PACS number(s): 95.36.+x, 98.80.−k

I. INTRODUCTION

Cosmological observations of the last decade suggest
that the main part of the energy density of the Uni-
verse — more than 70% — belongs to the unknown
essence, called “dark energy”. Its cosmological mission
is to provide the accelerated expansion of the Universe,
revealed from exploration of SN Ia’s in distant gala-
xies and temperature fluctuation power spectrum of cos-
mic microwave background. The cosmological ΛCDM-
model, based on the Einstein equations with the cos-
mological constant (see [1, 24, 43] and references there-
in), describes very well almost the whole set of the ob-
servational data on the dynamics of expansion of the
Universe and formation of its large-scale structure. But
physical interpretation of the cosmological constant is
rather problematic [7, 8, 34, 35, 37, 42]. Therefore alter-
native approaches — new physical fields (classical scalar
field — quintessence, tachyon field, k-essence, phantom
field, quintom field), Chaplygin gas, gravity and gen-
eral relativity modifications, multidimensional gravity,
branes and others — are being thoroughly studied (see
reviews [6, 8, 11, 19, 33, 35, 37] as well as special issue of
Gen. Relativ. Gravit., 2008, v. 40). Up till now none of
them has a crucial preferability from observational or
theoretical point of view. Therefore each of them must

be comprehensively studied. Here we restrict ourselves
to quintessential scalar fields with classical Lagrangian
L = Q;iQ

;i/2−U(Q) in the dark energy — matter dom-
inated Universe.

The quintessence model can be defined by setting the
appropriate potential U(Q) or equation of state (EoS)
parameter wQ ≡ pQ/c2ρQ. There is a dozen or more
physically-motivated shapes of the potential U(Q): ex-
ponential, double exponential, exponential with inverse
power, power-law, etc. The dynamics of such scalar fields
has been discussed (see review [11]). The EoS param-
eter of dark energy completely defines the background
dynamics as well as the evolution of cosmological per-
turbations [21, 22, 28]. Since observational data on SN
Ia magnitude — redshift relation and cosmic microwave
anisotropy give relatively narrow ranges of dark energy
density and EoS parameter values, it looks quite attrac-
tive to establish the potential U(Q) using these data and
analyse the background dynamics and perturbative prop-
erties of such a scalar field which have not been studied
sufficiently.

In our previous papers we constructed the potentials
of scalar fields with classical and tachyonic Lagrangian
leading to the constant EoS parameter wQ = const [40]
and analysed the background dynamics and perturba-
tive properties of such scalar fields [41]. It was shown
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that cosmological model with cold dark matter and such
types of the scalar field (the QCDM-model) agrees slight-
ly better with the now accessible observable data than
the ΛCDM-model. But difference of quantitative merits
of appropriateness is not large enough to pick out one of
them at the confidence level of 1σ. Since the degeneracies
between model parameters of dark energy and cosmolog-
ical parameters [16,20,26,28,47] exist for the background
dynamics, the complete analysis of linear density pertur-
bations in both dark matter and dark energy components
is important for the improvement of dark energy observa-
tional tests. Among a large number of free quintessence
parameters and unknown initial values of quintessence
perturbation modes there are few models for which the
evolution of perturbations has been studied. The gener-
al conclusion is that magnitudes of dark energy density
perturbations on scales smaller than horizon are essen-
tially lower than the corresponding magnitudes of matter
density ones. But the nature of their evolution depends
strongly on the scalar field model (its potential, time
variation of the EoS parameter, sound speed, etc.), ini-
tial conditions, scale of perturbations and gauge (see for
example [3, 4, 12–14,17, 25, 29, 44]).

In this respect special attention should be paid to the
EoS parameter of dark energy wQ, which can be constant
or varying in time. The temporal variation of the dark
energy EoS parameter is often presented by linear fitting
formula with two [10] or three [24] parameters to be esti-
mated. Other functional dependences of wQ on the scale
factor or redshift can be found in [11, 27, 38]. Here we
study the parametrization of the equation of state, which
needs only one additional quantity with clear physical
meaning — the adiabatic speed of sound c2

a ≡ ṗQ/c2ρ̇Q

(the analysis of generalized dark sector components can
be found in earlier works [21, 22]). In general, c2

a is the
unknown function of time. However, taking into account
simplicity we restrict ourselves to c2

a = const, so it is
regarded only as the second physical parameter defining
the equation of state of dark energy (the first one being
the present value of wQ).

In this paper we undertake a comparative analysis
of the evolution of gauge-invariant variables of scalar
perturbations in a model with non-relativistic matter
(pM � c2ρM ) and scalar field which we define by classi-
cal Lagrangian with potential constructed for two cases
(wQ = const and c2

a = 0) in the concordance cosmolog-
ical models. These cases have been chosen because they
allow us to obtain analytical solutions which seems to
look very attractive in the world of numerical compu-
tations. We assume the adiabatic initial conditions for
matter and dark energy scalar perturbations.

II. BACKGROUND COSMOLOGICAL AND
SCALAR FIELD MODELS

We consider the homogeneous and isotropic flat Uni-
verse with the metric of 4-space

ds2 = gijdxidxj = c2dt2 − a2(t)δαβdxαdxβ

= a2(η)(dη2 − δαβdxαdxβ),

where the factor a(t) is the scale factor, normalized
to 1 at the current epoch t0, η being conformal time
(cdt = a(η)dη). Henceforth we also put c = 1, so the
time variable t ≡ x0 has the dimension of length. Here
and below the Latin indices i, j, . . . run from 0 to 3,
the Greek ones — over the spatial part of the metric:
ν, µ, . . . = 1, 2, 3.

If the Universe is filled with non-relativistic matter
(cold dark matter and baryons) and quintessence which
interact only gravitationally (minimal coupling), the dy-
namics of its expansion is completely described by the
Einstein equations

Rij −
1

2
gijR = 8πG

(

T
(M)
ij + T

(Q)
ij

)

, (2.1)

where Rij is the Ricci tensor and T
(M)
ij , T

(Q)
ij are energy-

momentum tensors of Matter (M) and Quintessence (Q).
If these components interact only gravitationally then
each of them satisfy the differential energy-momentum
conservation law separately:

T
i (M,Q)
j ;i = 0 (2.2)

(here and below “;” denotes the covariant derivative with
respect to the coordinate with the given index in space
with the metric gij). For the perfect fluid with density
ρ(M,Q) and pressure p(M,Q), related by the equation of
state p(M,Q) = w(M,Q)ρ(M,Q) it gives

ρ̇(M,Q) = −3
ȧ

a
ρ(M,Q)(1 + w(M,Q)) (2.3)

(here and below a dot over the variable denotes the
derivative with respect to the conformal time: “ ˙ ”≡
d/dη). The matter is considered to be non-relativistic,

so wM = 0 and ρM = ρ
(0)
M a−3 (here and below “0” de-

notes the present values).
We assume the quintessence to be a scalar field Q(x, η)

with classical Lagrangian

L =
1

2
Q;iQ

;i − U(Q), (2.4)

where U(Q) is the field potential. We suppose also the
background scalar field to be homogeneous (Q(x, η) =
Q(η)), so its energy density and pressure depend only on
time:

ρQ(η) =
1

2a2
Q̇2 + U(Q), pQ(η) =

1

2a2
Q̇2 − U(Q). (2.5)

Then the conservation law (2.2) gives a scalar field evo-
lution equation (known as the Klein–Gordon equation)

Q̈ + 2aHQ̇ + a2 dU

dQ
= 0,

where H = ȧ/a2 is the Hubble parameter for any mo-
ment of conformal time η.

We specify the model of quintessence using two ther-
modynamical parameters: the EoS parameter wQ ≡
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pQ/ρQ and the adiabatic speed of sound c2
a ≡ ṗQ/ρ̇Q.

In the general case they are connected by the equation

dw/d ln a

3(1 + w)
= w − c2

a

(here and below we omit index Q for wQ). If the time
dependence of w is known then c2

a is defined unambigu-
ously, if c2

a is determined then the initial value w0 must
be defined additionaly, so, the EoS parameter has 2 de-
grees of freedom: a function and a constant. For other
parametrizations see [11,27,38]. Since the constraints for
time dependence of w or c2

a are not established well we
consider two simple cases: w = const and c2

a = const.
In the first case c2

a = w and in the second one 1 +

w(a) = (1 + c2
a)(1 + w0)/

(

1 + w0 − (w0 − c2
a)a3(1+c2

a)
)

.

This equation has obvious asymptotical behaviour: when
a → 0 w → c2

a and when a → ∞ w → −1. So, in the
early epoch the dark energy mimics dust matter (w ≈ 0)
for c2

a = 0 or radiation (w ≈ 1/3) for c2
a = 1/3. In fu-

ture such scalar field will mimic cosmological constant
(w ≈ −1). The time dependences of EoS parameter for
both cases are shown in Fig. 1. The equation (2.3) has
the analytical solutions for two cases:

• w = const: ρQ(a) = ρ
(0)
Q a−3(1+w) and

• c2
a = 0: ρQ(a) = ρ

(0)
Q

[

(1 + w0)a
−3 − w0

]

,

so it is possible to simplify formulae and calculations and
we will analyse only these two cases now.

If the parametrization of EoS parameter is given, it is
possible to apply reverse engineering and construct the
fields Q and potentials U(Q). From (2.5) one simply ob-
tains:

Q(a) − Q0 = ±
∫ a

1

√

ρQ(1 + w)

aH
, U(a) =

ρQ(1 − w)

2
.

If the integral for Q can be expressed via functions that
could be inverted to obtain a(Q − Q0) then U(Q − Q0)
can be easily written in the analytical form.

Fig. 1. Top: the dependence of EoS parameter w on scale
factor a for c2

a = 1/3, 0, −1/3 and w = c2
a = const. Mid-

dle: the dynamics of expansion of the homogeneous Universe
in the model with non-relativistic matter and quintessential
scalar field with c2

a = 0 and w = c2
a = const with best

fitting cosmological parameters from Spergel et al. (2007)
(ΩQ = 0.745, w = −0.915, ΩM = 0.255, h = 0.7): matter and
quintessence densities in units of the critical one. Bottom: the
evolution of acceleration parameter. For comparison we show
also the corresponding dependences for ΛCDM-model with
ΩQ = 0.74, ΩM = 0.26 and h = 0.73 (Spergel et al. (2007),
Apunevych et al. (2007)).

So, from the Einstein and field equations we deduce the time dependences of the Hubble H and acceleration q
parameters as well as the evolution of the scalar field Q and potential U(Q):

H = H0a
−

3
2

√

1 − ΩQ + ΩQa−3w, q =
1

2

1 − ΩQ + (1 + 3w)ΩQa−3w

1 − ΩQ + ΩQa−3w
, (2.6)

Q(a) − Q0 = ± 1

2
√

6πG

√
1 + w

w
ln

(

√

(1 − ΩQ)a3w + ΩQ −
√

ΩQ
√

(1 − ΩQ)a3w + ΩQ +
√

ΩQ

1 +
√

ΩQ

1 −
√

ΩQ

)

, (2.7)

U(Q − Q0) =
3H2

0

8πG
ΩQ

1 − w

2

[

ch

(√
6πG(Q − Q0)

w√
1 + w

)

∓ 1
√

ΩQ

sh

(√
6πG(Q − Q0)

w√
1 + w

)

]2 1+w
w

(2.8)

for w = const and

H = H0a
−

3
2

√

1 + ΩQw0 − ΩQw0a3, q =
1

2

1 + w0ΩQ + 2w0ΩQa3

1 + ΩQw0 − ΩQw0a3
, (2.9)
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Q(a) − Q0 = ± 1

2
√

6πG

√

ΩQ(1 + w0)

1 + ΩQw0
ln

(

√

1 + ΩQw0(1 − a3) −
√

1 + ΩQw0
√

1 + ΩQw0(1 − a3) +
√

1 + ΩQw0

1 +
√

1 + ΩQw0

1 −
√

1 + ΩQw0

)

, (2.10)

U(Q − Q0) =
3H2

0

8πG

ΩQ(1 + w0)

2

[

ch

(

√
6πG(Q − Q0)

√

1 + ΩQw0

ΩQ(1 + w0)

)

∓ 1
√

1 + ΩQw0

sh

(

√
6πG(Q − Q0)

√

1 + ΩQw0

ΩQ(1 + w0)

)]2

− 3H2
0

8πG
ΩQw0 (2.11)

for c2
a = 0.

For both models there are 2 independent solutions for
the field (the growing one corresponds to sign “+” and the
decaying one to sign “−”) and 2 symmetrical with respect
to Q−Q0 potentials exist. However, the physical conse-
quences of both these solutions are the same [40], so from
now we restrict ourselves only to the growing one. The
variance of scalar field potentials was presented in [11].
The potential for w = const can be also found in [36,40],
the potential for c2

a = 0 belongs generally to the fami-
ly of double exponential potentials (with an additional
constant term), but they both differ from the physically-
motivated ones, for which the evolution of scalar linear
perturbations was studied by other authors.

We must note that the asymptotic behaviour at a → 0
of the expansion rate H(a) and acceleration parameter
q(a) in both cases is the same and similar to that in
the ΛCDM-model: H ∝ a−3/2, q → 1/2. In the cur-
rent epoch the parameters of expansion dynamics are
the same (H0 and q0 = (1 + 3wΩQ)/2) for both mod-
els. But their asymptotic behaviour at a → ∞ is differ-
ent: in w = const quintessence H → H0a

−
3
2
(1+w)

√

ΩQ,

q → (1 + 3w)/2, ρQ → 0 and in c2
a = 0 quintessence

H → H0

√

−w0ΩQ, q → −1, ρQ → −w0ρ
(0)
Q . The energy

densities of both fields evolve similarly but have different
asymptotic regimes: in the quintessence with w = const
ρQ/ρM = ΩQa−3w/(1 − ΩQ) always while in the c2

a = 0
quintessence at a → 0 ρQ/ρM → (1 + w0)ΩQ/(1 − ΩQ)
and at a → ∞ ρQ/ρM → −w0ΩQa3/(1 − ΩQ). So, the
scalar field with c2

a = 0 behaves as cold dark matter at
the early epoch and will mimic the cosmological constant
in the far future.

The different asymptotic behaviour of these fields is
caused by their intrinsic properties. In the w = const
quintessence the negative pressure stiffly follows its en-
ergy density and their relation is always constant. In the
c2
a = 0 quintessence the negative pressure is always con-

stant: pQ = 3H2
0w0ΩQ/8πG. So, it is insignificant in the

early epoch when a → 0 and ρQ → ∞ for the model of
the Universe filled only with dust matter and quintessen-
tial dark energy, and important in the late one when
w → −1.

The dynamics of expansion of homogeneous Universe
in the model with non-relativistic matter and quintessen-
tial scalar field with c2

a = 0 and w = c2
a = const is

shown in Fig. 1. For both models we assume best fit-
ting cosmological parameters from [43] (ΩQ = 0.745,
w = w0 = −0.915, ΩM = 0.255, h = 0.7). For com-
parison we show also the corresponding dependences in
ΛCDM-model with ΩΛ = 0.74, ΩM = 0.26 and h = 0.73
[1, 43].

We have constructed the potentials of quintessential
scalar fields with w = const [40] and c2

a = 0 for the
QCDM cosmological model with best fitting parameters
obtained from WMAP and SNIa data [43]. The evolution
of the fields Q(a), potentials U(a) and rolling down of
the fields Q to the minimum which is located at Q → ∞
(a → ∞) are shown in Fig. 2. The discussion of the
influence of parameter determination uncertainties on a
potential of field with w = const can be found in [40].

So, the difference of the homogeneous Universe expan-
sion dynamics in ΛCDM- and such QCDM-models is too
small to discriminate them using the avialable datasets.
That is why in the next sections we will analyse the
linear stage of growth of scalar perturbations of mat-
ter and dark energy. For this we will use gauge-invariant
approach developed by [2, 15, 23].

III. EVOLUTION OF SCALAR
PERTURBATIONS

For the analysis of scalar linear perturbations the
conformal-Newtonian gauge with space-time metric

ds2 = a2(η)[(1 + 2Ψ(x, η))dη2

−(1 + 2Φ(x, η))δαβdxαdxβ ] (3.12)

is convenient. Here Ψ(x, η) and Φ(x, η) are gauge-
invariant perturbations of a metric [2] called Bardeen’s
potentials. If proper anisotropy of the medium equals
zero then Ψ(x, η) = −Φ(x, η). Dust matter and scalar
fields have this property [23]. In the linear perturba-
tion theory the Fourier decomposition is used, so spa-
tial dependences of all variables can be substituded
by the corresponding Fourier amplitudes. For example,
Ψ(x, η) → Ψ(k, η), where k is wave number. Hence-
forth, telling about the metric Ψ(x, η), matter density
δ(M)(x, η) ≡ (ρM (x, η) − ρ̄M (η))/ρ̄M (η), its peculiar ve-
locity V (M)(x, η), scalar field δQ(x, η) ≡ Q(x, η)− Q̄(η),
its energy density perturbations δ(Q)(x, η) ≡ (ρQ(x, η)−
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ρ̄Q(η))/ρ̄Q(η) etc. we mean their Fourier amplitudes

Ψ(k, η), δ(M)(k, η), V (M)(k, η), δQ(k, η), δ(Q)(k, η), etc.
The metric (Ψ(k, η)), matter density and velocity per-
turbations (δ(M)(k, η), V (M)(k, η)) as well as scalar
field perturbations (δQ(k, η), δ(Q)(k, η), V (Q)(k, η)) in
the conformal-Newtonian gauge are gauge-invariant vari-
ables [23]. The energy density and velocity perturbations
of quintessence, δ(Q) and V (Q), are connected with the
perturbation of field variable δQ in the following way:

δ(Q) = (1 + w)

(

˙δQ

Q̇
− Ψ +

a2δQ

Q̇2

dU

dQ

)

,

V (Q) =
kδQ

Q̇
.

Other non-vanishing gauge-invariant perturbations of
the scalar field are isotropic pressure perturbation

π
(Q)
L =

1 + w

w

(

˙δQ

Q̇
− Ψ − a2δQ

Q̇2

dU

dQ

)

(3.13)

and intrinsic entropy

Γ(Q) = π
(Q)
L − c2

a

w
δ(Q). (3.14)

The density perturbation of any component in the
conformal-Newtonian gauge Ds ≡ δ, which is gauge-
invariant variable, is related to other gauge-invariant
variables of density perturbations D and Dg as:

D = Dg + 3(1 + w)

(

Ψ +
ȧ

a

V

k

)

= Ds + 3(1 + w)
ȧ

a

V

k
,

(3.15)

where Ds, D, Dg and V correspond to either M - or
Q-component. Here Dg is the density perturbation in
the rest frame in which the fluctuations of the curvature
scalar of the constant time hypersurface vanish and D
corresponds to the rest frame in which the 4-velocity is
orthogonal to constant time hypersurface [23].

The intrinsic entropy of quintessence Γ(Q) can be pre-
sented via gauge-invariant Q-perturbations as follows:

wΓ(Q) = (1 − c2
a)D(Q). (3.16)

This equation shows that the intrinsic entropy for scalar
perturbations of quintessence with c2

a 6= 1 is non-zero
when proper energy density perturbation D(Q) (mea-
sured in synchronous comoving gauge) of quintessence
is non-vanishing. In the first case (w = const) wΓ(Q) =
(1 − w)D(Q), in the second one (c2

a = 0) wΓ(Q) = D(Q).
In the case of perturbed quintessence dissipative pro-
cesses generate entropic perturbations, so we have the
sound speed c2

s defined by a more general relation: c2
s ≡

δpQ/δρQ. The intrinsic entropy perturbation can be pre-

sented in the form: wΓ(Q) ≡ (c2
s − c2

a)D(Q) [23]. For the
scalar fields with classical Lagrangian c2

s = 1 [18, 45].

Fig. 2. Top: the evolution of fields Q(a) (left), potentials U(a) (right) for quintessence with w = const and c2
a = 0. Bottom:

rolling down of the fields Q to the minimum U(Q) = 0 which is located at Q → ∞ (a → ∞) for cases of w = const (left) and
c2
a = 0 (right).
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A. Evolution equations

Evolution equation for scalar field perturbation
δQ(k, η) can be obtained either from Lagrange–Euler
equation or from energy-momentum conservation law

T i
0;i

(Q)
= 0:

¨δQ + 2aH ˙δQ +

(

k2 + a2 d2U

dQ2

)

δQ

+ 2a2 dU

dQ
Ψ − 4Ψ̇Q̇ = 0. (3.17)

Thus, the evolution of quintessence perturbation depends
on field model (U(Q)), gravitational potential Ψ, expan-
sion rate of the Universe H and the scale of perturbation
k.

The linearised Einstein equations for gauge-invariant
perturbations of metric and energy-momentum tensor
components are

D′

g
(Q)

+
3

a
(1 − w)D(Q)

g +

(

k

a2H
+ 9

(1 − c2
a)H

k

)

(1 + w)V (Q) + 9(1 + w)(1 − c2
a)

Ψ

a
= 0, (3.18)

V ′(Q) − 2

a
V (Q) − 4

kΨ

a2H
− k

a2H

D
(Q)
g

1 + w
= 0, (3.19)

Ψ′ +
Ψ

a
− 4πG

H

(

ρ̄M
V (M)

k
+ ρ̄Q(1 + w)

V (Q)

k

)

= 0. (3.20)

Here and below a prime denotes the derivative with respect to the scale factor a. The conservation equations for

matter density and velocity perturbations δT i
j;i

(M)
= 0 in terms of the gauge-invariant variables D

(M)
g and V (M) are

as follows:

D′

g
(M)

+
kV (M)

a2H
= 0, (3.21)

V ′(M) +
V (M)

a
− kΨ

a2H
= 0. (3.22)

They are connected with the dark energy ones only via Ψ and are the same for both models of quintessence.
So, in each case we have the system of 5 first-order ordinary differential equations for 5 unknown functions Ψ(k, a),

D
(M)
g (k, a), V (M)(k, a), D

(Q)
g (k, a) and V (Q)(k, a). From these systems of equations it is easy to obtain the systems

of 2 second-order ordinary differential equations for 2 unknown functions Ψ(k, a) and δQ(k, a):

Ψ′′ +

(

7

2
− 3

2
wΩQa−3(1+w) H2

0

H2

)

Ψ′

a
+

3

2
(1 − w)ΩQa−3(1+w) H2

0

H2

Ψ

a2

−a−
3
2
(1+w) H0

H

√

6πGΩQ(1 + w)
2aδQ′ + 3(1 − w)δQ

2a2
= 0, (3.23)

δQ′′ +

(

5

2
− 3

2
wΩQa−3(1+w) H

2
0

H2

)

δQ′

a
+

(

k2

a4H2
+

9(1 − w)(2 + w)

4a2
+

9w(1 − w)

4a2
ΩQa−3(1+w) H2

0

H2

)

δQ

−a−
3
2
(1+w) H0

H

√

3

8πG
ΩQ(1 + w)

4aΨ′ + 3(1 − w)Ψ

a2
= 0 (3.24)

for w = const or

Ψ′′ +

(

7

2
− 3

2
w0ΩQ

H2
0

H2

)

Ψ′

a
+

3

2
(1 + w0 − 2w0a

3)ΩQa−3 H2
0

H2

Ψ

a2
− a−

3
2
H0

H

√

6πGΩQ(1 + w0)

×2aδQ′ + 3δQ

2a2
= 0, (3.25)

δQ′′ +

(

5

2
− 3

2
w0ΩQ

H2
0

H2

)

δQ′

a
+

(

k2

a4H2
+

9

2a2
+

9

4a2
w0ΩQ

H2
0

H2

)

δQ − a−
3
2
H0

H

√

3

8πG
ΩQ(1 + w0)

×4aΨ′ + 3Ψ

a2
= 0 (3.26)

for c2
a = 0.

1902-6
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Using their solutions (four fundamental once) for
Ψ(k, a) and Q(k, a) and the constraint equation

−k2Ψ = 4πGa2
(

ρ̄MD(M) + ρ̄QD(Q)
)

, (3.27)

it is possible to find the values of D
(M)
g (k, a), V (M)(k, a),

D
(Q)
g (k, a), V (Q)(k, a) and Γ(Q)(k, a). The equations

(3.21)–(3.22) can be substituted by one second-order
equation

D′′

g
(M)

+ (2 − q)
D′

g
(M)

a
+

k2

a4H2
Ψ = 0. (3.28)

The systems of equations (3.23)–(3.24) and (3.25)–
(3.26) describe the evolution of perturbations of gravi-
tational Ψ and quintessentional δQ fields and their cou-
pling. A few important conclusions can be deduced from
the qualitative analysis of these systems:

• The coupling of Ψ- and δQ-field is modulated
by the value

√

ΩQ(1 + w) for w = const and
√

ΩQ(1 + w0) for c2
a = 0. So, if w = w0 = −1

then both fields evolve independently. Since obser-
vational data prefer current w close to −1 their
coupling is weak.

• Evolution of δQ-field depends on the relation of
scale of perturbation to horizon explicitly while the
dependence of Ψ-field is implicit (through the lat-
ter).

• The system of equations for w-quintessence (3.23)–
(3.24) allows the asymptotic behaviour Ψ → const,
δQ → const when a → ∞ with the relation be-
tween them δQ = Ψ/

√

6πG(1 + w).

• The system of equations for c2
a-quintessence

(3.25)–(3.26) allows the asymptotic behaviour
Ψ → const, δQ → const when a → 0
with the initial relation between them δQ =
√

ΩQ(1 + w0)/6πG(1 + ΩQw0)Ψ.

• From equation (3.28) it follows that D
(M)
g ≈ const

for superhorizon perturbations (k � a2H). If
Ψ = const and q = 1/2 at a → 0 then either

D
(M)
g = const−2ak2Ψ/3H2

0 (1−ΩQ) for w = const

or D
(M)
g = const − 2ak2Ψ/3H2

0(1 + ΩQw0) for
c2
a = 0 and for Ψ < 0 it begins to grow slowly

from the constant value. The decay of Ψ and tran-
sition from deceleration to acceleration slow down
the growth of D

(M)
g .

B. Initial conditions

A stady of the background dynamics presented in the
previous section has shown that both QCDM-models are
matter-dominated in the early Universe (Fig. 1). In the
QCDM-model with w = const the ratio ρM/ρQ → ∞
when a → 0, while in the QCDM-model with c2

a = 0
ρM/ρQ → (1 − ΩQ)/(1 + w0)ΩQ and w → 0 when
a → 0. The adiabatic growing mode of perturbation in
the non-relativistic matter-dominated Universe can be

specified by the condition Ψ = const (Ψ̇ = 0). Adiabatic-

ity condition in two-component model (SM :Q ≡ D
(M)
g −

D
(Q)
g /(1+w) = 0 [14]) gives D

(M)
g = D

(Q)
g /(1+w). These

conditions, constraint equations written for hypersurface
ηinit � η0 (ainit � 1) and the analytic asymptotic solu-
tions (see next subsection) lead to the following adiabatic
initial conditions:

V (Q)
init =

2

3

k

H0

Ψinit
√

1 − ΩQ

√
ainit, (3.29)

D(Q)
g init

= −5(1 + w)Ψinit, (3.30)

V (M)
init =

2

3

k

H0

Ψinit
√

1 − ΩQ

√
ainit, (3.31)

D(M)
g init

= −5Ψinit (3.32)

for w = const and

V (Q)
init =

2

3

k

H0

Ψinit
√

1 + ΩQw0

√
ainit, (3.33)

D(Q)
g init

= −5Ψinit, (3.34)

V (M)
init =

2

3

k

H0

Ψinit
√

1 + ΩQw0

√
ainit, (3.35)

D(M)
g init

= −5Ψinit (3.36)

for c2
a = 0.

Therefore, the growing mode of adiabatic pertur-
bations in two-component (non-relativistic matter and
quintessence) medium is defined by the single value —
initial gravitational potential Ψinit.

Since the non-adiabatic initial perturbations are
strongly constrained by the WMAP data, in this paper
we restrict ourselves only to adiabatic initial conditions.

C. Asymptotic and numerical solutions

In order to analyse the evolution of gauge-invariant
variables of matter and quintessence perturbations we
must solve the system of equations (3.18)–(3.20) togeth-
er with (3.21)–(3.22) numerically for initial conditions
(3.29)–(3.32) or (3.33)–(3.36), respectively. But before
we propose the analysis of these systems of equations in
the early epoch (a � 1), for which the analytical so-
lutions are known. So, the system of equations (3.25)–
(3.26) for a � 1 can be simplified as

Ψ′′ +
7

2

Ψ′

a
+

3

2

ΩQ(1 + w0)

1 + ΩQw0

Ψ

a2
−
√

6πGΩQ(1 + w0)

1 + ΩQw0

×2aδQ′ + 3δQ

2a2
= 0, (3.37)

δQ′′ +
5

2

δQ′

a
+

9

2a2
δQ −

√

3

8πG

ΩQ(1 + w0)

1 + ΩQw0

×4aΨ′ + 3Ψ

a2
= 0. (3.38)

This system of equations has 4 fundamental solutions, so
it is possible to write the general solution in the form:
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Ψ = C1 +
C2

a
5
2

+ C3a
−

3
4

„

1+

r

ΩQw0+8ΩQ−7

1+ΩQw0

«

+ C4a
−

3
4

„

1−

r

ΩQw0+8ΩQ−7

1+ΩQw0

«

,

δQ =
1√
6πG

√

ΩQ(1 + w0)

1 + ΩQw0

[

C1 +
3

2

C2

a
5
2

− 1 + ΩQw0

ΩQ(1 + w0)

√

ΩQw0 + 8ΩQ − 7

1 + ΩQw0
×

(

C3a
−

3
4

„

1+

r

ΩQw0+8ΩQ−7

1+ΩQw0

«

− C4a
−

3
4

„

1−

r

ΩQw0+8ΩQ−7

1+ΩQw0

«)]

.

Fig. 3. The evolution of gauge-invariant amplitudes of perturbations in matter (top) and quintessence (bottom) for two
models of quintessence: w = const (left column) and c2

a = 0 (right column). The corresponding scale of perturbations is
k = 0.00 Mpc−1 and the cosmological parameters are ΩQ = 0.745, w = −0.915, ΩM = 0.255, h = 0.7.

The first two solutions noted by the constants of in-
tegration C1 and C2 are well known growing and decay-
ing modes of adiabatic perturbations in the dust matter-
dominated Universe. The next two solutions, noted by
the constants of integration C3 and C4, are due to possi-
ble entropy initial conditions and intrinsic non-vanishing
entropy of quintessence. Indeed, the condition Γ(Q) = 0
leads to 1 second-order equation which has two dust-like
fundamental solutions:

Ψ = C̃1 + C̃2a
−

5
2 and D(Q)

s = −2

(

C̃1 −
3

2
C̃2a

−
5
2

)

.

For the quintessence with w = const the solutions for Ψ

are the same and D
(Q)
s = −2(1 + w)

(

C̃1 − 3
2 C̃2a

−
5
2

)

.

The quantities D
(M)
g (k, a), V (M)(k, a) and V (Q)(k, a)

can be found using equations (3.15)–(3.22) and (3.27).
The relations between them are presented in the previ-

ous subsection as a set of initial data (3.29)–(3.36).

We have integrated numerically the systems of equa-
tions (3.18)–(3.20) for w = const and for c2

a = 0 to-
gether with (3.21)–(3.22) for adiabatic initial conditions
(3.29)–(3.32) and (3.33)–(3.36) using the publicly avail-
able code DVERK1. We assumed ainit = 10−10 and
integrated up to a = 1. The evolution of perturba-
tions is scale dependent, so we performed calculations for
k = 0.0001, 0.001, 0.01 and 0.1 Mpc−1 for the cosmolog-
ical model with the parameters ΩQ = 0.745, w = −0.915,
ΩM = 0.255, h = 0.7. The evolution of gauge-invariant

variables of matter perturbations D
(M)
g , D

(M)
s , D(M),

V (M) for two scales k = 0.001 and 0.01 Mpc−1 is shown
in top panels of Fig. 3 and Fig. 4. In the bottom panels
the analogical gauge-invariant variables of quintessence

perturbations (D
(Q)
g , D

(Q)
s , D(Q), V (Q), wΓ(Q)) are pre-

sented (for c2
a = 0 the curves wΓ(Q) and D(Q) overlap).

The evolution of gauge-invariant gravitational potential

1It was created by T. E. Hull, W. H. Enright, K. R. Jackson in 1976 and is available at
http://www.cs.toronto.edu/NA/dverk.f.gz
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Ψ is shown in all panels for comparison. All plots are shown for the following range: 0.001 ≤ a ≤ 1.

Fig. 4. The same as in Fig. 3 for scale k = 0.01 Mpc−1.

IV. DISCUSSION

From the top panels of Fig. 3, 4 it follows that the mag-
nitudes of the adiabatic matter density perturbations
grow similarly in both models (and alike in the ΛCDM-
model), but time dependences of magnitudes of the
adiabatic quintessence energy density perturbations are
more varied (bottom panels of the same figures): gauge-

invariant variables D
(Q)
g and D

(Q)
s decay from the initial

constant value after the particle horizon entry while D(Q)

and V (Q) grow at an early stage before the horizon entry
and decay after that — in the quintessence-dominated
epoch when the gravitational potential starts to decay.
The perturbation shown in Fig. 3 enters the particle hori-
zon (η(a) = π/k) at a ≈ 0.03 for w-quintessence and at
a ≈ 0.04 for c2

a-quintessence. The perturbation shown in
Fig. 4 enters the particle horizon at a ≈ 0.0004 and a ≈
0.0005 for w- and c2

a-quintessence, respectively. The par-
ticle horizon in the current epoch (η0) in the cosmologi-
cal model with the parameters ΩQ = 0.745, w = −0.915,
ΩM = 0.255, h = 0.7 and w-quintessence equals ≈ 14970
Mpc. In the model with c2

a-quintessence it is ≈ 13810
Mpc. In the early epoch D(Q) ∝ a for both models of
quintessence. After the particle horizon entry the am-
plitudes start to decay slowly in the matter-dominated
epoch and decay fast in the quintessence-dominated one.
At asymptotic regime for the quintessence model with
c2
a = 0 approximately D(Q) ∝ a−3. In the quintessence

model with w = const the transition epoch is extend-

ed in time. In Fig. 5 we show the dependences of ratios
of quintessence density perturbations to matter density

ones in conformal-Newtonian gauge (D
(Q)
s /D

(M)
s ) on the

scale factor for perturbations with the scales k = 0.0001,
0.001, 0.01 and 0.1 Mpc−1. These curves emphasise the
difference of evolution of perturbations in ordinary mat-
ter and quintessence as well as the similarity of behaviour
of perturbations in two models of quintessence. The mag-
nitudes of quintessence density perturbations in units of
matter density perturbations in both models in the cur-
rent epoch are close although their initial magnitudes dif-
fer by one order. The magnitudes of quintessence density
perturbations with the scale less than particle horizon are
lower than the corresponding magnitudes of matter den-
sity perturbations by factor ≈ (23000k)2 so that for scale

k = 0.01 D
(Q)
s /D

(M)
s ≈ 2× 10−5. Therefore, on subhori-

zon scales the quintessential scalar fields are practically
smoothed out while the matter clusters.

The tests for choice of the type of dark energy are
based on the results of its action on luminous matter
and cosmic microwave background. So, the key question
is how these types of quintessence affect the growth of
matter density perturbations and the time variation of
gravitational potential. From top panels of Fig. 3 and
4 we can see that they are more suppressed for c2

a = 0
than for w = const and for perturbations with small-
er scale. In order to illustrate this effect in Fig. 6 we

present ratios D(M)ainit/D
(M)
init a and Ψ/Ψinit for scales

k = 0.0001, 0.001, 0.01 and 0.1 Mpc−1. We can see that
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scale dependence of suppression of magnitude of mat-
ter density perturbations as well as of gravitational po-
tential is strong for the c2

a = 0 quintessence and weak
for the w = const one. In the ΛCDM-model it is scale-
independent [9]. (In the Einstein — de Sitter model both
ratios equal 1 for all times and scales). These ratios are
substantial for calculations of magnitude of the matter
density power spectrum at different redshifts and the an-
gular power spectrum of CMB temperature fluctuations
in the range of scales of the late integrated Sachs–Wolfe
effect.

Fig. 5. Dependences of ratios D
(Q)
s /D

(M)
s on scale factor

for linear perturbations with scales k = 0.0001, 0.001, 0.01
and 0.1 Mpc−1 (from top to bottom) in the models with
non-relativistic matter and quintessence (w = const — top
panel, c2

a = 0 — bottom).

Fig. 6. Evolution of ratios D(M)ainit/D
(M)
init a and Ψ/Ψinit

for linear perturbations with scales k = 0.0001, 0.001, 0.01
and 0.1 Mpc−1 (from top to bottom) in the models with
non-relativistic matter and quintessence (c2

a = 0 — solid line,
w = const — dashed line).

Evolution of quintessence perturbations depends on
scalar field model (i.e. its Lagrangian and potential),
contents of the Universe, coupling of the quintessence
to other components, initial conditions and scale of per-
turbations [3, 4, 12–14, 29, 44]. Here we have analysed
the evolution of scalar matter and quintessence pertur-
bations for potentials of scalar fields with classical La-
grangian constructed to give either w = const or c2

a = 0.
Therefore, the results obtained here could be compared
with those of other authors only qualitatively. The evo-
lution of EoS parameter in our c2

a = 0-model (Fig. 1)
is similar to that of [14]. Despite a different cosmolog-
ical model and potential of scalar field, the qualitative
behaviour of quintessence perturbations is close to the

obtained here: D
(Q)
g is const when the perturbation is

outside the particle horizon and decays when it enters
the horizon. The growth of magnitude of quintessence
density perturbations long before the horizon entry in
a synchronous gauge was shown in [12] (models with
w = const in Fig. 3). Our results for evolution of gauge-
invariant variable D(Q) (density perturbation in a syn-
chronous gauge) shown in Fig. 3 support this conclusion.
(We do not discuss the oscilations at early stage visible
in Fig. 3 of [12] because of different initial conditions
and background.) The ratios of quintessence (w = const,
c2
s = 1) density perturbations to matter density ones

in a synchronous gauge are shown in Fig. 1 of [4] for
k = 0.01h−1 Mpc−1. Presented here in Fig. 5 analogi-
cal ratios in the conformal-Newtonian gauge are similar.
The conclusion about anti-correlation between pertur-
bations of the matter and quintessence has been made
in [17] and [30] on the basis of a study of their evolution
in the matter rest frame. [4] and [45] noted this effect
too. Recalculation of the frame-dependent variables to
gauge-invariant ones will — in our belief — remove such
a discrepancy.

V. CONCLUSION

The dynamics of expansion of the Universe and
evolution of scalar perturbations are studied for the
quintessential scalar fields Q with the classical La-
grangian L = 1

2Q;iQ
;i − U(Q) satisfying the additional

condition w = const or c2
a = 0. For both quintessential

scalar fields the potential U(Q) and time dependence
of Q are constructed for the same cosmological model
and it is shown that the accelerated expansion of the
Universe is caused by the effect of the rolling down of
the potential to the minimum (Fig. 2). In the QCDM-
model with w = const the ratio ρM/ρQ → ∞ when
a → 0, while in QCDM-model with c2

a = 0 ρM/ρQ →
(1−ΩQ)/(1+w0)ΩQ and w → 0 when a → 0. In the ear-
ly epoch w-quintessence is a dynamically unsubstantial
like cosmological constant while c2

a-quintessence mimics
dust matter (w ≈ 0) at a � 1 and cosmological constant
(w = −1) at a � 1. The dependence of acceleration pa-
rameter on redshift is a bit different for them (Fig. 1)
but close to the ΛCDM-model and indistinquishable ob-
servationally now.
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Asymptotic analysis of the systems of evolutionary
equations for gauge-invariant perturbations has shown
that adiabatic initial conditions for non-relativistic mat-
ter and w- and c2

a-quintessence are allowed. The numer-
ical integration of these systems give time dependences
of gauge-invariant variables for matter and quintessence
scalar perturbations (Fig. 3, 4). The main conclusion de-
duced from them is the following: the magnitudes of the
adiabatic matter density perturbations grow similarly in

the ΛCDM-model, while for quintessence D
(Q)
g , D

(Q)
s are

constant and D(Q), V (Q) grow before the particle horizon
entry but all variables decay after that in such a way that
at the current epoch they are approximately two orders
lower than the corresponding quantities for dust matter
on supercluster scales. Therefore, on subhorizon scales
the quintessential scalar field is smoothed out while the
matter is clustered.

The quintessential scalar fields studied here suppress
the growth of matter density perturbations and the
magnitude of gravitational potential (Fig. 6). In these
QCDM-models — unlike the ΛCDM ones — such a sup-
pression is scale dependent and more visible for c2

a-

quintessence. Such features of quintessence are impor-
tant for calculations of the matter density power spec-
trum at different redshifts and the power spectrum of
CMB temperature fluctuations in the range of scales of
the late integrated Sachs-Wolfe effect. That can be used
for the interpretation of data of current and planned ex-
periments in order to identify the nature of dark energy.
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ЕВОЛЮЦIЯ СКАЛЯРНИХ ЗБУРЕНЬ У КОСМОЛОГIЇ З КВIНТЕСЕНЦIЙНОЮ
ТЕМНОЮ ЕНЕРҐIЄЮ

Б. Новосядлий, О. Сергiєнко
Астрономiчна обсерваторiя Львiвського нацiонального унiверситету iменi Iвана Франка,

вул. Кирила i Мефодiя, 8, 79005, Львiв

Дослiджено динамiку розширення Всесвiту та еволюцiю скалярних збурень у моделях iз квiнтесенцiй-
ними скалярними полями Q (класичний лаґранжiан L = 1

2
Q;iQ

;i
− U(Q)), що задовольняють додаткову

умову сталостi параметра рiвняння стану (w = const), або нульового значення адiабатичної швидкостi зву-
ку (c2

a = 0). Обидва квiнтесенцiйнi поля проаналiзовано в межах одної космологiчної моделi. Показано, що
прискорене розширення Всесвiту зумовлене ефектом “скочування” поля до мiнiмуму потенцiалу. У ранню
епоху вплив квiнтесенцiї з w = const на динамiку розширення Всесвiту нехтiвно малий (подiбно, як у випад-
ку космологiчної сталої), тодi як поле з c2

a = 0 веде себе як пилоподiбна матерiя. У далекому майбутньому
скалярне поле iз c2

a = 0 за своїми проявами буде подiбним на космологiчну сталу.
Отримано аналiтичнi розв’язки системи рiвнянь, що описують еволюцiю калiбрувально-iнварiантних

збурень метрики простору-часу, густини i швидкостi матерiї та квiнтесенцiї, для ранньої стадiї еволюцiї
Всесвiту та числовi для всiєї iсторiї аж до сучасної епохи включно. Показано, що амплiтуди адiабатичних
збурень матерiї зростають однаково в обох моделях (i подiбно до зростання в ΛCDM-моделi), але часовi

залежностi рiзних амплiтуд збурень квiнтесенцiї рiзнi: калiбрувально-iнварiантнi змiннi D
(Q)
g i D

(Q)
s зага-

сають вiд початкової сталої величини пiсля входження збурення в горизонт частинки, тодi як D(Q) i V (Q)

зростають на раннiй стадiї до входження в горизонт i загасають пiсля входження, коли квiнтесенцiя почи-
нає домiнувати за густиною, а ґравiтацiйний потенцiал загасати. У сучасну епоху вони приблизно на два
порядки меншi за вiдповiднi амплiтуди збурень матерiї. Отже, на масштабах, менших за горизонт частинки,
квiнтесенцiйнi скалярнi поля є майже однорiдними, тодi як матерiя кластеризованою.

Показано також, що обидва квiнтесенцiйнi скалярнi поля сповiльнюють зростання збурень густини ма-

терiї та ґравiтацiйного потенцiалу. У цих QCDM-моделях, на вiдмiну вiд ΛCDM-моделей, таке сповiльнення

залежить вiд масштабу i помiтнiше для квiнтесенцiї з c2
a = 0.
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