
 
 

 

  

Abstract—Conventionally, automatic music composition is 
done by evolving music sequences whose fitness is evaluated by 
a human listener. This interactive approach has led to 
interesting results but is very time consuming.  Here we propose 
a system that is capable of automatically generating music using 
an evolutionary algorithm (EA), replacing the human 
evaluation process with a trainable music evaluation algorithm. 
This algorithm can be trained on existing music samples, such 
as Mozart compositions for example.  This kind of system could 
provide a fast and cheap music composition tool. The current 
evaluation system is implemented with an N-gram language 
model.  This paper discusses the system in two parts. Firstly, it 
describes the performance of the proposed music evaluation 
algorithm. Secondly, it discusses the impacts of different 
sequence-oriented genetic operators in the evolutionary 
algorithm.  Part one of the experimental results show that the 
N-Gram model is able to distinguish the composer of piano 
compositions by Mozart, Beethoven and Chopin with up to 
81.9% accuracy.  Part two of the results show that some of the 
sequence-oriented operators increased the fitness of the 
generated melodies, but some operators did not. The impacts of 
these operators are discussed in the experimental results 
section.   Significantly, the results also show that better 
classification accuracy does not necessarily lead to better 
evolved music, suggesting that perceptual relevance is also an 
important factor. 

I. INTRODUCTION 

LGORITHMIC music composition is an important 
topic in music technology. It could be described as a set 

of well-defined rules of music composition.  The idea of 
algorithmic composition is not new.  Researchers Hiller and 
Isaacson [8] were possibly the first to study this field 
scientifically. They based their research on Markov Chains.  
Since then many researchers have attempted to address 
different problems of algorithmic composition. The later 
developments of algorithmic composition can be divided into 
stochastic and deterministic. Mozart’s dice game [2] is an 
example that used a stochastic technique. This game uses a 
dice roll as a random generator to select prewritten bar music 
and these were combined to form full length music 
compositions.  All prewritten bars were composed such that 
every bar harmonises with every other one, hence, the 
resulting music satisfies certain musical requirements.  
Deterministic systems often pre-define all the rules, with the 
output then depending only on the particular inputs used to 
drive the generator (as opposed to some stochastic element). 
The Fibonacci sequence [4] and L-systems [16] are examples 

 
 

of a deterministic technique. 
The main objectives of this research are to investigate the 

capability of N-grams to act as the music fitness function in 
an evolutionary algorithm, and to investigate the 
effectiveness of different sequence-oriented variation 
operators for this task. 

II. BACKGROUND KNOWLEDGE AND LITERATURE REVIEW 

A.  N-grams 
 
In the field of Natural Language Processing, N-grams are 

a widely used statistical language modelling technique, a 
type of Markov Model (MM). This technique is based on the 
assumption that the next symbol in a string is largely 
dependent on a small number of immediately preceding 
symbols in the string.  N is a model parameter which 
represents the total number of preceding symbols plus the 
current symbol.  N could be any number >= 1. E.g. N=1 is 
called a Uni-gram which looks zero (N-1) symbols into the 
past.  N=2 is called a Bi-gram which looks only one symbol 
into the past. N=3 is called Tri-gram which looks two 
symbols into the past. Despite (alternatively, because of) 
their simple nature, N-grams work well in practice, providing 
sufficiently large samples of training data are available.  N-
grams have been mostly used in text prediction, text retrieval 
and pattern recognition [9]. Recently, researcher Doraisamy 
[5] used N-gram for music indexing in a large music 
database which contains polyphonic music in MIDI format. 
Statistical methods tend to be more robust in learning from 
data samples than purely symbolic techniques. Generally 
working with N-grams, user chooses N preceding symbols 
that the next symbol is assumed to depend on.  Equation (1) 
is the equation for a Bi-gram model (N=2); this generalises 
in straightforward ways to different values of N. 
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One important detail of applying N-grams in practice is 
the estimation of the probability of events that did not occur 
in the training data.  Naïve estimation techniques based 
solely on a frequency count would give these zero 
probability, meaning that any test sequence that contained 
such an event would also be given zero probability.  To 
prevent this, we use the simple ‘add one’ discounting 
method, where all events are given an initial occurrence 
count of 1.  Refer to [11] for more N-gram details. 
 

B.  Maximum Likelihood Sequences 
 
An interesting feature of Markov models is that it is 

possible to compute the maximum likelihood sequences 
(MLS).  That is, having chosen the length of the sequence, a 
dynamic programming algorithm can be used to find the 
sequence of symbols that is most likely, given the model.  
Hence, when using a trained N-gram model as a fitness 
function in an evolutionary algorithm, we can efficiently 
compute the fittest possible sequence of a given length.  This 
allows us to compare how close the EA gets to this optimum.  
As we shall see, the best sounding sequences tend to have a 
mid range fitness somewhere between the low fitness of 
purely random sequences and the high fitness of the MLS, 
which tends to be very repetitive. 
 
 

C.  Algorithmic Composition 
 
The idea of Algorithmic Composition with Artificial 

Intelligence (AI) techniques is relevant to Music Information 
Retrieval (MIR) systems [17], [20], and involves 
classification or pattern-learning tasks.  An MIR system 
searches and compares the musical similarity between the 
query and the target pieces in a large music database (usually 
a collection of Music Instrument Digital Interface (MIDI) 
files). The major challenge in music classification 
applications is the automatic classification of musical styles 
and ranking the similarity between musical pieces.  There are 
two main difficulties encountered. Firstly, melody extraction: 
how should the music be represented as input to the system.  
The main issues to consider here are how to deal with 
polyphony and note duration.  Secondly, MIDI files contain 
multiple tracks which may represent multiple instruments in 
the same composition. In this paper we define “melody” to 
mean a sequence of notes. Some multiple-track music 
consists of more than one instrument playing simultaneously 
or with percussion, but only some of the notes are recognised 
by the listener.  It is necessary that only the recognisable 
notes from the polyphonic music are selected for melodic 
evaluation. 

The major challenge of algorithm composition is defining 
an evaluation function (i.e. the fitness function). Four 
categories of fitness function are listed below. 

 
1. Interactive fitness function: Traditional GA/GP 

fitness function is algorithmic, but this interactive approach 
uses human to evaluate each chromosome. Biles [1] 
developed an interactive jazz jamming system. The system 
generated melodies by chord and scale mappings techniques, 
and used a GA with musically meaningful genetic operators 
to evolve solo melodies through the interactive fitness 
function.  Unehara & Onisawa [21] implemented a similar 
system which generated 16-bar melodies.  The generation of 
initial population and genetic operators were based on music 
theory. Two main drawbacks of the interactive fitness 
function approach are subjectivity and inefficiency.  Due to 
subjectivity, an individual user biases his / her decision 
corresponding to previous listening or changes his mind over 
time because of his emotional state (this can also be seen as 
an advantage depending on one’s perspective).  Regarding 
inefficiency, users must listen to all the potential music 
(solutions) in order to evaluate the whole population, which 
severely limits the number of fitness evaluations that can be 
made. On the plus side, this approach helps musically 
unskilled users compose their own music and reflects the 
user’s musical taste. 

 
2. Human-trained fitness function: Johanson [10] 

developed an interactive GP system with automatic fitness 
raters. This system generated short musical sequences which 
were then evaluated by a set of fitness raters.  Their 
automatic fitness raters were based on neural networks with 
shared weights trained with the back propagation algorithm.  
A user rates a list of melodies while the raters use the result 
to learn to rate a melody in a similar way to the user. Tokui 
[19] developed a drum pattern generative system called 
“Conga”. Conga was implemented with both GA and GP 
techniques. GA individuals represent short pieces of drum 
patterns, and GP individuals represent the arrangement of 
these short patterns. Both populations were evolved 
interactively through the user’s evaluation.  In a later version 
of his system, he used neural network to model the human 
musical subjective behaviour and then applied it into the 
GA’s fitness function. Even though this approach increases 
the evaluation process speed, the subjectivity still remains a 
black-box.  Another problem identified by Todd & Werner 
[18] is that if the musical search space has steep surfaces 
(thus, if changing one note can make a melody go from good 
to bad), a neural network may fail to model this adequately. 
  

3. Knowledge-based fitness function: This approach 
embeds domain-specific knowledge into the fitness function. 
McIntyre [13], Bach in a box: The evolution of four–parts 
baroque harmony used genetic algorithm; Grachten [7] 
developed a Jazz Improvisation Generator (JIG), which 
generated jazz melodies by combining musical constraints 
with the probability distribution of notes.  Three major 
constraints were used: tonality, the improvisation must be 
tonal to the key of the music; continuity, the melodic contour 
of the improvisation must be smooth, not convoluted; 



 
 

 

structure, interrelated groups of notes are identified and used. 
Finally, that system is evaluated by the same three 
constraints. Papadopoulos & Wiggins [14] developed a jazz 
melody generative system with a GA.  Eight different 
musical characteristics were embedded into the fitness 
function to evaluate each chromosome.  Three musically 
meaningful genetic operators and two standard crossover 
genetic operators were implemented.  Phon-Amnuaisuk and 
other researchers [15] developed a four-part homophonic 
system which was based on rich knowledge.  Domain-
specific knowledge was encoded in the GA’s chromosome 
representation, reproduction operators and fitness function. 
All generated harmonisation melodies were marked by a 
music lecturer, according to the criteria which he used for 1st 
year undergraduate students’ harmony test.  Most of the 
output earned a mark around 30%. This low mark was due to 
the lack of coherent large-scale musical progression.  But 
they claimed their system was felt to be better than student 
harmonisers at getting the basic rules right. Knowledge-
based approaches offer efficiency, with sound structure and 
knowledge built into the system which means more 
structured musical output, but the trade-off is less novelty.  
Also the system is largely dependent on the domain-specific 
knowledge, which must be explicitly implemented correctly 
and clearly in the system.  However, such knowledge might 
be subjective to the designer.  This is a major drawback for 
knowledge-based systems. 

 
4. Fitness functions learned from data: This approach 

employs probabilistic methods to capture musical patterns or 
a set of rules in a score.  Composers usually define a set of 
musical grammars to compose music pieces.  N-gram models 
and Hidden Markov Models (HMM) are the most popular 
techniques for evaluating music pieces. Typically these 
models evaluate the likelihood of a musical sequence given 
the trained model. Downie & Nelson [6] developed and 
evaluated a music information retrieval system which 
implemented the N-gram indexing technique. The system 
dealt with musical queries by the user, whereby the 
parameters entered by the user are traced and compared for 
the exact or similar music in a large folk music database. 
Each folk song is converted into an interval-only 
representation of monophonic melody. The interval-only 
representation ignored individual note duration.  Doraisamy 
[5] used N-grams for the development of a polyphonic music 
retrieval system for large music collections. The main 
objective of the Doraisamy investigation was to use the N-
gram approach for searching fully polyphonic music data. 
McCormack [12] implemented a music composition system 
based on the L-Systems [16] approach. Pitch, note duration 
and timbre are encoded to the grammar symbols. The system 
generated a sequence of notes by a set of probabilistic re-
writing rules.  But all the re-writing rules were pre-defined 
by the user.  Chai & Vercoe [3] developed an automatic 
music classification system that classifies folk music to its 

respective country of origin.  The system was based on an 
HMM. The aim was to investigate the significant statistical 
differences among folk music from different countries and to 
compare the classification performances using different 
melody representations.  

III. IMPLEMENTATION  

Our Automatic music composition (AMC) system uses an 
evolutionary algorithm to evolve melodies which are 
represented as sequences of integers for evolution, and then 
converted to standard MIDI format for playback. Typically, 
250 notes is set as default length of each melody.  The 
system consists of two parts, the N-gram style classifier and 
the EA-based music evolution system.  The user gives a list 
of music samples to train the N-gram which becomes a 
fitness function embed in the EA.  The trained N-grams have 
discriminative power to assess melodies, and give fitness 
value to each melody.  Then the EA generates a pool of 
random melodies and evolves them. 

The extracted and evolved melodies are monophonic, not 
polyphonic. It is much more difficult to extract musical 
information from polyphonic music. It involves multiple 
pitches such as chords playing simultaneously, though in 
practice the onset of each note can be delayed.  Also, 
percussion is not compatible with the representation of a 
tonal instrument.  

In our system, music melodies are represented as 
sequences of integers. We used two different encoding 
methods. 1) Each integer value represents a single absolute 
pitch, except for 128, which represent the rest note. The 
integer value of pitch follows the standard MIDI format. 2) 
Each integer value represents an interval between notes 
(interval can be + or -). In musical term +1 interval is equal 
to raise one semi-tone. Rest note is not a pitch, so we used a 
special symbol +128 to represent it. We set the pitch 
different from rest note to next pitch is = next note pitch – 
previous pitch note. All notes are of the same duration, but 
the rest note can be used create notes of different perceived 
duration. Figure 3a is an example of music shown in integer 
string format with both encoding methods. 

 
(1.Absolute pitch) Integer String = [60, 62, 64, 65, 67, 69, 71, 72, 128, 

72, 71, 69, 67, 65, 64, 62, 60]. 
(2. Pitch different) Integer String = [+2, +2 , +1, +2, +2, +2, +1, +128, 

+0, -1, -2, -2, -2, -1, -2, -2]. 
Figure 3a – C Major Scale 

 
Listing 3a shows the details of these operators.  Hence, we 

constructed four experiments. Ten operators were defined as 
below: 

 
 
 



 
 

 

Listing 3a - Sequence Oriented Variation Operators. 
 

0) Random single note modification: randomly select a 
location in a sequence and randomly change the note 
value. 

1) Random segment note modification: similar to 
operator 0), but modifies each note value in the 
selected segment. 

2) Random segment copy and paste: randomly selects 
two segments, copies the first segment and replaces it 
into second segment. 

3) Random segment reversion: randomly selects a 
segment, sort into reverses note ordering. 

4) Random segment transpose: randomly selects a 
segment, and then randomly transposes each note 
value, the transpose range from -5 to +5. 

5) Random segment swap: randomly selects two 
segments, and then swaps them. 

6) Random segment ascending: randomly selects a 
segment, sort into ascends note ordering. 

7) Random segment descending: randomly selects a 
segment, sort into descends note ordering. 

8) Random segment copy from training samples:  
randomly selects a segment from training sample and 
then copies and replaces it into a segment from the 
sequence which is selected randomly.  

9) Observed distribution single note modification: 
randomly select a location of sequence and modifies 
the note by sampling from observed note distribution 
in the training data. 

 
Note: a segment ranges from 2 – 10 notes, based on our 

intuition of what would be reasonable. 
 

IV. A.  EXPERIMENTS, RESULTS AND ANALYSIS 

 
Four experiments were constructed: 1. N-gram classifier 

discrimination experiment. 2. Maximum Likelihood 
Sequence (MLS) experiment. 3. Music specific genetic 
variation operators experiment. 4) Pitch different Bi-gram 
model experiment.  Note that experiment 1, 2, and 3 used 
absolute pitch N-grams models.   Experiments 1 and 2 
provide insight into the properties of the N-Gram models 
used, while experiments 3 and 4 test the ability of an EA to 
optimise sequences with respect to the N-Gram fitness 
functions, and also investigate how musical the evolved 
sequences sound.  For the EA we used a random mutation 
hill-climber (RMHC), with the wide selection of variation 
shown in Listing 3a.  We also experimented with population-
based EAs, but these did not significantly outperform the 
RMHC. 
 

A.  Experiment 1: Composer Classification 
 

This is an experiment that analyses the N-gram model’s 
discriminative power by a standard pattern classification 
evaluation technique – leave one out cross validation.  The 
motivation behind this experiment was the idea that a 
classifier with the discriminative power to classify the 
compositions of three composers of the same genre might 
also be good at as a fitness function for music evolution.  
The N-gram classifier consists of three individual N-grams, 
and each one is assigned a particular composer, Mozart, 
Beethoven and Chopin.  For personal music style 
classification tasks, the composers are assumed to have equal 
prior probabilities, and each test melody is assigned to 
composer whose N-gram model gave rated the sequence as 
having the highest likelihood.  

In the experiment, 282 classical music samples were used 
for training the N-grams. There are 110 Mozart, 72 
Beethoven and 100 Chopin (Approximately 470,000 notes). 
Table 4a is the experiment results summary of a Bi-gram 
composer style classifier which applied the add-one 
smoothing technique. In short the add-one smoothing is a 
method to smooth out the Bi-gram probability matrix. It 
avoids the large impact of unseen data, and performs well 
over sparse data, as the total of training songs is 282 only. 
For more details refer to [11]. The result shows that the 
average correct rate = 231/282 = 81.9%. In addition we 
calculated the confidence intervals (assuming that each 
classification event can be treated as the flip of a biased 
coin).  Hence, we can say the actual average correct rate lies 
within the interval of 77.8% - 85.3% with 90% confidence.  
The Uni-gram results are shown in table 4b.  It achieved an 
average correct rate = 218/282 = 77.3%, the confidence 
interval is 72.9% -81.1%. 

 
Table 4a 

Confusion Matrix:   Bi-gram with add-one smoothing 
 Predicted 

 Mozart Beethoven Chopin 
Mozart 93 16 1 
Beethoven 10 60 2 

 
 
Actual 

Chopin 0 22 78 
 

Table 4b 
Confusion Matrix: Uni-gram with add-one smoothing 

 Predicted 
 Mozart Beethoven Chopin 
Mozart 92 17 1 
Beethoven 17 50 5 

 
 
Actual 

Chopin 1 23 76 
 

We were surprised to see that the Uni-gram performed 
nearly as well as the Bi-gram.  When the methods fail, they 
fail in different ways.  Bi-grams fail because they over-fit the 
data, while Uni-grams fails because they under-fit it. 

 
B.  Experiment 2: Maximum Likelihood Sequence 

 
The maximum likelihood sequence (MLS) was computed 



 
 

 

for two reasons: because it gives a value for the best possible 
fitness given the trained model, and in order to listen to this 
sequence.  The Viterbi dynamic programming algorithm was 
used to generate the MLS [11].  A simple random mutation 
hill climber (RMHC) was used to evolve a single melody 
with Mozart Bi-gram fitness function. The RMHC was run 
for 600,000 generations (iterations), length of chromosome 
was 250 and for each mutation, operator 0 was used 
(randomly select and modify a single note in the sequence).  
Using this method it fails to get close to the MLS.  Then we 
compared MLS fitness and the evolved melody fitness. The 
experiment result is shown in Figure 4a. 
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Figure 4a: The maximum likelihood sequence fitness = 
Log -177.26, melody = 77 79 81 79 81 79 81 79…… 

(Repeat)…77 76 74 128. The initial random melody fitness 
= Log -576.19, after 600000 generations it reduced to Log -
225.98. Note: the fitness after 350000 remained the same. 

 
The pattern of maximum likelihood sequence is based on 

two repetitive notes. This happens with the Bi-gram model 
because there must be one or more transitions with the 
highest fitness value (e.g. [81][79]= log -0.5918), therefore a 
sequence containing these two state transitions with 
repeating order would be the most probable sequence that 
the system could generate. The reason that the last four notes 
in the MLS was not repeated because the fitness of sequence 
(77 76 74 128 77) = Log -3.1286 is lower than the fitness of 
sequence (79 81 79 81 79) = Log -2.8683.But when both 
sequences had the last note removed the fitness of sequence 
(77 76 74 128) = Log -1.8814 is higher than the fitness of 
sequence (79 81 79 81) =Log -2.2764, therefore the (77 76 

74 128) would be the optimal last four notes. The Maximum 
Likelihood Sequence technique finds the circular state chain 
that has the highest fitness over other circular state chains. 
Then it just keeps repeating that highest fitness state chain to 
construct a maximum likelihood sequence.  

In figure 4a, the sequence started to converge after 
generation 100000. The optimal sequence fitness is lower 
than MLS, it was trapped in a local optimum.  Its fitness 
differ from MLS fitness Log -48.72 (Log-225.98 – Log -
177.26), about 27.4% of MLS fitness. The reason that the 
optimal sequence did not converge to the MLS is the 
evolutionary system is heavily dependant on the genetic 
operator, and with operator-0 the search space contains many 
local optima.  As an example, if the MLS is (79 81 79 81) 
and the initial sequence is (80 64 20 50) in the first 
generation, the operator might modify the sequence to (80 64 
79 50), which is closer to the MLS in hamming distance, but 
has a lower fitness than the initial sequence. 

When listening to the evolved sequence, it sounds more 
interesting than the MLS. A reasonable variety of notes 
produces interesting sound. But too much variety of notes 
sounds random and irritating, or even boring.  The sound of 
MLS is boring, as it keeps repeating two notes only.  
 

C.  Experiment 3: Sequence-oriented variation operators 
 
Performance of the evolutionary system is heavily 

dependant on its genetic operators. These operators are 
responsible for modifying each chromosome at each 
generation. For a musical evolutionary system, it is important 
to evaluate each musically meaningful operator. The aim of 
this experiment was to analyse the performance of each 
operator given the Bi-gram and Uni-gram fitness functions. 

 

 
Figure 4b: Performance of various operators given the Bi-

gram fitness function. 
 
Experiment 3 has the same setup as experiment 2, except 

that 100000 generations were used because of the harder 



 
 

 

fitness function. Figure 4b and 4c show the experiment al 
results. The summary of results is shown in table 4c and the 
performance ranking summary is shown in table 4d.    

 
Note: Nine operators are individually run. 

 

 
Figure 4c.  Performance of various operators given the 

Uni-gram fitness function. 
 

Table 4c 
O.N = Operator number. O.S.F = Optimal sequence fitness. 

Note: the MLS with Bi-gram is Log -177.26 (same to experiment 2), 
the MLS with Uni-gram is Log -182.18. The initial sequence fitness 
with Bi-gram is Log -590.57. The initial sequence fitness with Uni-
gram is Log -965.75. 

 
O.N O.S.F in Bi-gram O.S.F in Uni-gram 
0 Log -243.12 Log -187.51 
1 Log -322.91 Log -322.99 
2 Log -302.03 Log -182.18 
3 Log -498.08 Log -965.75 
4 Log -493.75 Log -404.89 
5 Log -209.22 Log -182.18 
6 Log -486.76 Log -965.75 
7 Log -493.93 Log -965.70 
8 Log -183.40 Log -199.56 

 
Table 4d 

Ranking Bi-gram Uni-gram 
1 Operator 8  Operator 5 
2 Operator 5  Operator 2 
3 Operator 0  Operator 0 
4 Operator 2 Operator 8 
5 Operator 1 Operator 1 
6 Operator 6 Operator 4 
7 Operator 4 Operator 3 
8 Operator 7 Operator 6 
9 Operator 3 Operator 7 

 
The actual sequence of MLS with Uni-gram is: sequence = 

128 128 128… (Repeat)….128. Integer value 128 represents 
a Rest note in the system. The frequency of rest note in the 
samples is the highest. The following analysis describes the 

convergent power of each operator when applied to the  Bi-
gram and Uni-gram fitness functions. 
 

Operator 0 – This operator performs well on both Bi-gram 
and Uni-gram. The Uni-gram model is well suited to this 
operator, as the evolved sequence is close to the MLS. The 
fitness of the optimal sequence is Log -187.51, very close to 
the MLS fitness Log -182.18. This is because Uni-gram 
model takes individual state into account only, no relation 
between previous or next state. Using this operator on Uni-
gram model is will converge to the MLS given enough 
generations. The Uni-gram fitness landscape is convex and 
similar to the well studied one-max problem. Using this 
operator with the Bi-gram fitness function gives much poorer 
performance, and the fitness landscape has many local 
optima. 

Operator 1 – This operator modifies a group of notes, the 
convergent power is lower than the operator 0 which 
modifies a single note value at each generation. That is 
because each time when the operator randomly modifies a 
group of notes, it is very hard to pick up the higher fitness 
notes or notes transition. If the fitness of the modified 
sequence is less than the fitness of unmodified sequence, 
then the modification is discarded, the sequence remain 
unchanged   

Operator 2 – The convergent power of this operator is 
very high when applied on Uni-gram, low when applied on 
Bi-gram. This is because for Bi-gram, the note ordering is 
very sensitive. Hence, it is very hard to randomly copy a 
group of notes that has a higher fitness value when these 
notes fit into the target location of the sequence. However, 
Uni-gram does not have this problem, as note ordering does 
not affect the fitness of sequence on Uni-gram. 

Operator 3 – This operator is the worst performing on Bi-
gram experiments because this operator does not change any 
single value of note. It reverses the note ordering, does not 
modifies the note ordering in a different way, it slows down 
the evolving sequence to converge to the MSL. This operator 
is even worst when it performs on Uni-gram model, as it 
takes no effect of the sequence fitness. That is because the 
only way to change the sequence fitness on Uni-gram is to 
modify the note value. Note ordering is no affect on Uni-
gram model.   

Operator 4 – The transpose operator did not perform well 
on both models, this is little surprise that because this 
operator modifies each note value in the segment. The reason 
of this is because the sequence allows overwriting only when 
the new modified sequence has a higher fitness; if it is lower, 
the sequence remains same. For example the operator only 
allows +5 and -5 transpose, if a chosen segment never get the 
higher fitness within +5 and -5 transpose, thus this segment 
would never change the note value at all generation.  

Operator 5 – The swap operator swaps two segments 
locations, in additional to that it does overwrite the segment. 
For example if the locations of the first segment and second 



 
 

 

segment are the same, then the first segment is overwritten 
on top of the second segment. This operator rearranges the 
note ordering on Bi-gram model displaying high convergent 
power. For Uni-gram model, this operator copies the existing 
high fitness note and overwrites the lower fitness note, thus 
the convergent power is high too. 

Operator 6 and 7 – These sorting operators did not 
perform well but acceptable on Bi-gram. They sort the 
sequence in one way note ordering only. When a song 
contains ascending or descending note ordering in the 
instrument solo section and then it sounds interesting. But 
these operators do not affect anything on the Uni-gram 
model, since these operators do not change the value of any 
note in the sequence. 

Operator 8 – This operator performs well on both models 
that are because this operator copied a segment from the 
training samples. Therefore any segment that is copied is 
seen by the classifier beforehand and fitness of each copied 
segment is guaranteed to have high fitness.            

After analysing both experiment 3(a) and 3(b), we can 
draw some conclusions: 1) The convergent power of an 
operator is heavily dependant on the different models (Bi-
gram or Uni-gram). 2) The operator that randomly changes 
the note value would cause the convergence to slow down, 
but it adds more variety to the note value. 3) The operator 
that copies the high fitness of note value or ordering would 
cause the convergence to quicken but results in less variety 
of notes. 
 

D.  Experiment 4 – Interval Statistics 
 

The pitch difference Bi-gram model experiment consisted 
of two parts. Part 1 comprised the classification tests, 
conducted in the same way as experiment 1 but using a pitch 
difference Bi-gram model. It achieved an average correct 
rate = 199/282 = 70.57%, the 90% confidence interval is 
65.91% - 74.83%. Part 2, this experiment used the pitch 
difference Mozart Bi-gram to generated ten melodies, and 
evolved them by observed distribution of single note 
modification genetic operator (operator 9). Those ten 
generated melodies had fitness values are in range from Log 
-290 to Log -250. After the evolution process, the evolved 
melodies fitness values are in range from Log -170 to Log -
150. The summary is shown in table 4e. 

 
Table 4e 

Melody Fitness before evolution Fitness after evolution  
Melody 1 -285.41 -166.79 
Melody 2 -282.93 -158.09 
Melody 3 -281.81 -162.21 
Melody 4 -277.16 -163.05 
Melody 5 -284.65 -157.93 
Melody 6 -254.74 -155.20 
Melody 7 -271.24 -161.43 
Melody 8 -279.08 -157.54 
Melody 9 -273.99 -160.00 
Melody 10 -273.77 -165.90 

The average correct classification rate of the pitch 
difference Bi-gram model is lower than the absolute pitch 
Bi-gram model. But there are two advantages when using 
this model. 1. It can be used to discriminate melodies which 
are in different musical key/scale. 2. This model is general 
enough to generate a variety of notes with high fitness value. 
This is because it does not capture specific notes but instead 
the interval between them.  For example, suppose there are 
two melodies (C-major and D-major scales) containing 
notes: C D E F G A B and D E F# G A B C# D. Their fitness 
values are completely different under absolute pitch N-gram 
model, but are exactly same under pitch difference N-gram 
model. All the major scales are constructed by the same 
interval arrangement (+2,+2,+1,+2,+2,+2,+1).  Figure 4d 
shows some generated and evolved melody segments.  

 

 
Segment 1: Evolved by GA with absolute pitch Bi-gram model (operator 8), 
Bar 1-3. 

 
Segment 2: (Melody 5) Generated by pitch difference Bi-gram model Bar 
1-3. 
 

 
Segment 3: (Melody 5 after evolution) Evolved by GA with pitch difference 
Bi-gram model (Operator 9), Bar 1-3. 

Figure 4d 
 
Segment 1 is the melody evolved using the absolute pitch 

Bi-gram model. We described the reason for this repetitive 
sequence earlier. Most of the notes are repeated without 
much variety.  Segment 2 contains a variety of notes and 
exhibits more (perhaps excessive) variation in pitch. In 
segment 3, the sequence of notes is constant and smooth, no 
high interval skipping. The sequence of melody 5 after 
evolution contained variety of notes as much as melody 5 
before evolution, but the notes arrangement is constant, as up 
and down stairway. Note that the overall melody fitness 
value is higher after the evolution process. In general, the 
pitch difference model generates melodies with a variety of 
notes and keeps high fitness values. In this case the actual  
melody which evolves using the pitch difference model is 
more interesting than the melody evolved using the  absolute 
pitch model. 

V. CONCLUSION AND FURTHER DIRECTION 

Our work provides a fundamental investigation of using 
N-grams as trainable music evaluators (fitness functions) in 
an evolutionary algorithm. Experiment 1 and Experiment 2 
(part 1) have demonstrated that N-gram classifiers were able 
to correctly identify the composer around 80% of the time.  



 
 

 

Our most optimistic hope was that this would enable the 
evolution of new pleasant sounding melodies, similar to 
those composed by some of the great composers.  An 
interesting result here is that while both random note 
sequences are uninteresting, and the maximum likelihood 
sequence (MLS) is also uninteresting, evolutionary 
algorithms can be used to explore the space between those 
extremes and find melodies that are reasonably interesting to 
listen to.   

For experiment 3 we analysed each musical operator in 
detail, showing their performance on both Bi-gram and Uni-
gram models. There was no single operator that could evolve 
a sequence that reaches the MLS in both models. Most of the 
evolved sequences are in the range of fitness value Log -200 
to Log -500.  As mentioned before, given the N-gram model, 
the creation of interesting melodies relies on the inability of 
the algorithms to converge to the optimum. 

In experiment 4 results show that using the pitch 
difference Bi-gram model for melody generation and 
evolution subjectively outperforms the absolute pitch 
representation, even though they are no better at 
classification.  We suggest the reason for this is that using 
interval (successive note pitch difference) statistics is closer 
to a perceptual model than using absolute pitch statistics.  
This is intuitively obvious, since melodies played in a 
different key sound essentially the same, and have identical 
likelihoods in the pitch difference model, but completely 
different ones in the absolute pitch model. 

We propose that an interesting way forward from here is 
to continue using pitch difference N-grams to capture the 
statistics of a musical style, but then evolve parameters for a 
musical generation system that incorporates some general 
musical knowledge.  In this way, it may be possible to get 
closer to the goal of evolving interesting music based largely 
on a trainable fitness function.  It would also be interesting to 
experiment with longer range or variable length N-grams. 

Finally, we are conducting some listening tests in order to 
get some idea of how the evolved music sounds to human 
listeners (see 
http://www45.brinkster.com/amcsystem/SongRating.asp) and 
we encourage readers to visit the site and rate the sequences. 
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