

Abstract—Conventionally, automatic music composition is
done by evolving music sequences whose fitness is evaluated by
a human listener. This interactive approach has led to
interesting results but is very time consuming. Here we propose
a system that is capable of automatically generating music using
an evolutionary algorithm (EA), replacing the human
evaluation process with a trainable music evaluation algorithm.
This algorithm can be trained on existing music samples, such
as Mozart compositions for example. This kind of system could
provide a fast and cheap music composition tool. The current
evaluation system is implemented with an N-gram language
model. This paper discusses the system in two parts. Firstly, it
describes the performance of the proposed music evaluation
algorithm. Secondly, it discusses the impacts of different
sequence-oriented genetic operators in the evolutionary
algorithm. Part one of the experimental results show that the
N-Gram model is able to distinguish the composer of piano
compositions by Mozart, Beethoven and Chopin with up to
81.9% accuracy. Part two of the results show that some of the
sequence-oriented operators increased the fitness of the
generated melodies, but some operators did not. The impacts of
these operators are discussed in the experimental results
section. Significantly, the results also show that better
classification accuracy does not necessarily lead to better
evolved music, suggesting that perceptual relevance is also an
important factor.

I. INTRODUCTION

LGORITHMIC music composition is an important
topic in music technology. It could be described as a set

of well-defined rules of music composition. The idea of
algorithmic composition is not new. Researchers Hiller and
Isaacson [8] were possibly the first to study this field
scientifically. They based their research on Markov Chains.
Since then many researchers have attempted to address
different problems of algorithmic composition. The later
developments of algorithmic composition can be divided into
stochastic and deterministic. Mozart’s dice game [2] is an
example that used a stochastic technique. This game uses a
dice roll as a random generator to select prewritten bar music
and these were combined to form full length music
compositions. All prewritten bars were composed such that
every bar harmonises with every other one, hence, the
resulting music satisfies certain musical requirements.
Deterministic systems often pre-define all the rules, with the
output then depending only on the particular inputs used to
drive the generator (as opposed to some stochastic element).
The Fibonacci sequence [4] and L-systems [16] are examples

of a deterministic technique.
The main objectives of this research are to investigate the

capability of N-grams to act as the music fitness function in
an evolutionary algorithm, and to investigate the
effectiveness of different sequence-oriented variation
operators for this task.

II. BACKGROUND KNOWLEDGE AND LITERATURE REVIEW

A. N-grams

In the field of Natural Language Processing, N-grams are

a widely used statistical language modelling technique, a
type of Markov Model (MM). This technique is based on the
assumption that the next symbol in a string is largely
dependent on a small number of immediately preceding
symbols in the string. N is a model parameter which
represents the total number of preceding symbols plus the
current symbol. N could be any number >= 1. E.g. N=1 is
called a Uni-gram which looks zero (N-1) symbols into the
past. N=2 is called a Bi-gram which looks only one symbol
into the past. N=3 is called Tri-gram which looks two
symbols into the past. Despite (alternatively, because of)
their simple nature, N-grams work well in practice, providing
sufficiently large samples of training data are available. N-
grams have been mostly used in text prediction, text retrieval
and pattern recognition [9]. Recently, researcher Doraisamy
[5] used N-gram for music indexing in a large music
database which contains polyphonic music in MIDI format.
Statistical methods tend to be more robust in learning from
data samples than purely symbolic techniques. Generally
working with N-grams, user chooses N preceding symbols
that the next symbol is assumed to depend on. Equation (1)
is the equation for a Bi-gram model (N=2); this generalises
in straightforward ways to different values of N.

nw : Individual symbol nw , where n is it order.

1−nw : Previous symbol to nw .

nwwww ...,,, 321 Or nw1 : Representing the complete

string (sequence) of symbols.

)(1
nwP : The probability of complete string.

)(1
nwP = ∏

=
−

n

k
kk wwPwP

2
11)|()((1)

Evolving Musical Sequences with
N-Gram Based Trainable Fitness Functions

ManYat Lo, Simon M. Lucas, University of Essex, UK

A

One important detail of applying N-grams in practice is
the estimation of the probability of events that did not occur
in the training data. Naïve estimation techniques based
solely on a frequency count would give these zero
probability, meaning that any test sequence that contained
such an event would also be given zero probability. To
prevent this, we use the simple ‘add one’ discounting
method, where all events are given an initial occurrence
count of 1. Refer to [11] for more N-gram details.

B. Maximum Likelihood Sequences

An interesting feature of Markov models is that it is

possible to compute the maximum likelihood sequences
(MLS). That is, having chosen the length of the sequence, a
dynamic programming algorithm can be used to find the
sequence of symbols that is most likely, given the model.
Hence, when using a trained N-gram model as a fitness
function in an evolutionary algorithm, we can efficiently
compute the fittest possible sequence of a given length. This
allows us to compare how close the EA gets to this optimum.
As we shall see, the best sounding sequences tend to have a
mid range fitness somewhere between the low fitness of
purely random sequences and the high fitness of the MLS,
which tends to be very repetitive.

C. Algorithmic Composition

The idea of Algorithmic Composition with Artificial

Intelligence (AI) techniques is relevant to Music Information
Retrieval (MIR) systems [17], [20], and involves
classification or pattern-learning tasks. An MIR system
searches and compares the musical similarity between the
query and the target pieces in a large music database (usually
a collection of Music Instrument Digital Interface (MIDI)
files). The major challenge in music classification
applications is the automatic classification of musical styles
and ranking the similarity between musical pieces. There are
two main difficulties encountered. Firstly, melody extraction:
how should the music be represented as input to the system.
The main issues to consider here are how to deal with
polyphony and note duration. Secondly, MIDI files contain
multiple tracks which may represent multiple instruments in
the same composition. In this paper we define “melody” to
mean a sequence of notes. Some multiple-track music
consists of more than one instrument playing simultaneously
or with percussion, but only some of the notes are recognised
by the listener. It is necessary that only the recognisable
notes from the polyphonic music are selected for melodic
evaluation.

The major challenge of algorithm composition is defining
an evaluation function (i.e. the fitness function). Four
categories of fitness function are listed below.

1. Interactive fitness function: Traditional GA/GP

fitness function is algorithmic, but this interactive approach
uses human to evaluate each chromosome. Biles [1]
developed an interactive jazz jamming system. The system
generated melodies by chord and scale mappings techniques,
and used a GA with musically meaningful genetic operators
to evolve solo melodies through the interactive fitness
function. Unehara & Onisawa [21] implemented a similar
system which generated 16-bar melodies. The generation of
initial population and genetic operators were based on music
theory. Two main drawbacks of the interactive fitness
function approach are subjectivity and inefficiency. Due to
subjectivity, an individual user biases his / her decision
corresponding to previous listening or changes his mind over
time because of his emotional state (this can also be seen as
an advantage depending on one’s perspective). Regarding
inefficiency, users must listen to all the potential music
(solutions) in order to evaluate the whole population, which
severely limits the number of fitness evaluations that can be
made. On the plus side, this approach helps musically
unskilled users compose their own music and reflects the
user’s musical taste.

2. Human-trained fitness function: Johanson [10]

developed an interactive GP system with automatic fitness
raters. This system generated short musical sequences which
were then evaluated by a set of fitness raters. Their
automatic fitness raters were based on neural networks with
shared weights trained with the back propagation algorithm.
A user rates a list of melodies while the raters use the result
to learn to rate a melody in a similar way to the user. Tokui
[19] developed a drum pattern generative system called
“Conga”. Conga was implemented with both GA and GP
techniques. GA individuals represent short pieces of drum
patterns, and GP individuals represent the arrangement of
these short patterns. Both populations were evolved
interactively through the user’s evaluation. In a later version
of his system, he used neural network to model the human
musical subjective behaviour and then applied it into the
GA’s fitness function. Even though this approach increases
the evaluation process speed, the subjectivity still remains a
black-box. Another problem identified by Todd & Werner
[18] is that if the musical search space has steep surfaces
(thus, if changing one note can make a melody go from good
to bad), a neural network may fail to model this adequately.

3. Knowledge-based fitness function: This approach
embeds domain-specific knowledge into the fitness function.
McIntyre [13], Bach in a box: The evolution of four–parts
baroque harmony used genetic algorithm; Grachten [7]
developed a Jazz Improvisation Generator (JIG), which
generated jazz melodies by combining musical constraints
with the probability distribution of notes. Three major
constraints were used: tonality, the improvisation must be
tonal to the key of the music; continuity, the melodic contour
of the improvisation must be smooth, not convoluted;

structure, interrelated groups of notes are identified and used.
Finally, that system is evaluated by the same three
constraints. Papadopoulos & Wiggins [14] developed a jazz
melody generative system with a GA. Eight different
musical characteristics were embedded into the fitness
function to evaluate each chromosome. Three musically
meaningful genetic operators and two standard crossover
genetic operators were implemented. Phon-Amnuaisuk and
other researchers [15] developed a four-part homophonic
system which was based on rich knowledge. Domain-
specific knowledge was encoded in the GA’s chromosome
representation, reproduction operators and fitness function.
All generated harmonisation melodies were marked by a
music lecturer, according to the criteria which he used for 1st
year undergraduate students’ harmony test. Most of the
output earned a mark around 30%. This low mark was due to
the lack of coherent large-scale musical progression. But
they claimed their system was felt to be better than student
harmonisers at getting the basic rules right. Knowledge-
based approaches offer efficiency, with sound structure and
knowledge built into the system which means more
structured musical output, but the trade-off is less novelty.
Also the system is largely dependent on the domain-specific
knowledge, which must be explicitly implemented correctly
and clearly in the system. However, such knowledge might
be subjective to the designer. This is a major drawback for
knowledge-based systems.

4. Fitness functions learned from data: This approach

employs probabilistic methods to capture musical patterns or
a set of rules in a score. Composers usually define a set of
musical grammars to compose music pieces. N-gram models
and Hidden Markov Models (HMM) are the most popular
techniques for evaluating music pieces. Typically these
models evaluate the likelihood of a musical sequence given
the trained model. Downie & Nelson [6] developed and
evaluated a music information retrieval system which
implemented the N-gram indexing technique. The system
dealt with musical queries by the user, whereby the
parameters entered by the user are traced and compared for
the exact or similar music in a large folk music database.
Each folk song is converted into an interval-only
representation of monophonic melody. The interval-only
representation ignored individual note duration. Doraisamy
[5] used N-grams for the development of a polyphonic music
retrieval system for large music collections. The main
objective of the Doraisamy investigation was to use the N-
gram approach for searching fully polyphonic music data.
McCormack [12] implemented a music composition system
based on the L-Systems [16] approach. Pitch, note duration
and timbre are encoded to the grammar symbols. The system
generated a sequence of notes by a set of probabilistic re-
writing rules. But all the re-writing rules were pre-defined
by the user. Chai & Vercoe [3] developed an automatic
music classification system that classifies folk music to its

respective country of origin. The system was based on an
HMM. The aim was to investigate the significant statistical
differences among folk music from different countries and to
compare the classification performances using different
melody representations.

III. IMPLEMENTATION

Our Automatic music composition (AMC) system uses an
evolutionary algorithm to evolve melodies which are
represented as sequences of integers for evolution, and then
converted to standard MIDI format for playback. Typically,
250 notes is set as default length of each melody. The
system consists of two parts, the N-gram style classifier and
the EA-based music evolution system. The user gives a list
of music samples to train the N-gram which becomes a
fitness function embed in the EA. The trained N-grams have
discriminative power to assess melodies, and give fitness
value to each melody. Then the EA generates a pool of
random melodies and evolves them.

The extracted and evolved melodies are monophonic, not
polyphonic. It is much more difficult to extract musical
information from polyphonic music. It involves multiple
pitches such as chords playing simultaneously, though in
practice the onset of each note can be delayed. Also,
percussion is not compatible with the representation of a
tonal instrument.

In our system, music melodies are represented as
sequences of integers. We used two different encoding
methods. 1) Each integer value represents a single absolute
pitch, except for 128, which represent the rest note. The
integer value of pitch follows the standard MIDI format. 2)
Each integer value represents an interval between notes
(interval can be + or -). In musical term +1 interval is equal
to raise one semi-tone. Rest note is not a pitch, so we used a
special symbol +128 to represent it. We set the pitch
different from rest note to next pitch is = next note pitch –
previous pitch note. All notes are of the same duration, but
the rest note can be used create notes of different perceived
duration. Figure 3a is an example of music shown in integer
string format with both encoding methods.

(1.Absolute pitch) Integer String = [60, 62, 64, 65, 67, 69, 71, 72, 128,

72, 71, 69, 67, 65, 64, 62, 60].
(2. Pitch different) Integer String = [+2, +2 , +1, +2, +2, +2, +1, +128,

+0, -1, -2, -2, -2, -1, -2, -2].
Figure 3a – C Major Scale

Listing 3a shows the details of these operators. Hence, we

constructed four experiments. Ten operators were defined as
below:

Listing 3a - Sequence Oriented Variation Operators.

0) Random single note modification: randomly select a
location in a sequence and randomly change the note
value.

1) Random segment note modification: similar to
operator 0), but modifies each note value in the
selected segment.

2) Random segment copy and paste: randomly selects
two segments, copies the first segment and replaces it
into second segment.

3) Random segment reversion: randomly selects a
segment, sort into reverses note ordering.

4) Random segment transpose: randomly selects a
segment, and then randomly transposes each note
value, the transpose range from -5 to +5.

5) Random segment swap: randomly selects two
segments, and then swaps them.

6) Random segment ascending: randomly selects a
segment, sort into ascends note ordering.

7) Random segment descending: randomly selects a
segment, sort into descends note ordering.

8) Random segment copy from training samples:
randomly selects a segment from training sample and
then copies and replaces it into a segment from the
sequence which is selected randomly.

9) Observed distribution single note modification:
randomly select a location of sequence and modifies
the note by sampling from observed note distribution
in the training data.

Note: a segment ranges from 2 – 10 notes, based on our

intuition of what would be reasonable.

IV. A. EXPERIMENTS, RESULTS AND ANALYSIS

Four experiments were constructed: 1. N-gram classifier

discrimination experiment. 2. Maximum Likelihood
Sequence (MLS) experiment. 3. Music specific genetic
variation operators experiment. 4) Pitch different Bi-gram
model experiment. Note that experiment 1, 2, and 3 used
absolute pitch N-grams models. Experiments 1 and 2
provide insight into the properties of the N-Gram models
used, while experiments 3 and 4 test the ability of an EA to
optimise sequences with respect to the N-Gram fitness
functions, and also investigate how musical the evolved
sequences sound. For the EA we used a random mutation
hill-climber (RMHC), with the wide selection of variation
shown in Listing 3a. We also experimented with population-
based EAs, but these did not significantly outperform the
RMHC.

A. Experiment 1: Composer Classification

This is an experiment that analyses the N-gram model’s
discriminative power by a standard pattern classification
evaluation technique – leave one out cross validation. The
motivation behind this experiment was the idea that a
classifier with the discriminative power to classify the
compositions of three composers of the same genre might
also be good at as a fitness function for music evolution.
The N-gram classifier consists of three individual N-grams,
and each one is assigned a particular composer, Mozart,
Beethoven and Chopin. For personal music style
classification tasks, the composers are assumed to have equal
prior probabilities, and each test melody is assigned to
composer whose N-gram model gave rated the sequence as
having the highest likelihood.

In the experiment, 282 classical music samples were used
for training the N-grams. There are 110 Mozart, 72
Beethoven and 100 Chopin (Approximately 470,000 notes).
Table 4a is the experiment results summary of a Bi-gram
composer style classifier which applied the add-one
smoothing technique. In short the add-one smoothing is a
method to smooth out the Bi-gram probability matrix. It
avoids the large impact of unseen data, and performs well
over sparse data, as the total of training songs is 282 only.
For more details refer to [11]. The result shows that the
average correct rate = 231/282 = 81.9%. In addition we
calculated the confidence intervals (assuming that each
classification event can be treated as the flip of a biased
coin). Hence, we can say the actual average correct rate lies
within the interval of 77.8% - 85.3% with 90% confidence.
The Uni-gram results are shown in table 4b. It achieved an
average correct rate = 218/282 = 77.3%, the confidence
interval is 72.9% -81.1%.

Table 4a

Confusion Matrix: Bi-gram with add-one smoothing
 Predicted

 Mozart Beethoven Chopin
Mozart 93 16 1
Beethoven 10 60 2

Actual

Chopin 0 22 78

Table 4b
Confusion Matrix: Uni-gram with add-one smoothing

 Predicted
 Mozart Beethoven Chopin
Mozart 92 17 1
Beethoven 17 50 5

Actual

Chopin 1 23 76

We were surprised to see that the Uni-gram performed
nearly as well as the Bi-gram. When the methods fail, they
fail in different ways. Bi-grams fail because they over-fit the
data, while Uni-grams fails because they under-fit it.

B. Experiment 2: Maximum Likelihood Sequence

The maximum likelihood sequence (MLS) was computed

for two reasons: because it gives a value for the best possible
fitness given the trained model, and in order to listen to this
sequence. The Viterbi dynamic programming algorithm was
used to generate the MLS [11]. A simple random mutation
hill climber (RMHC) was used to evolve a single melody
with Mozart Bi-gram fitness function. The RMHC was run
for 600,000 generations (iterations), length of chromosome
was 250 and for each mutation, operator 0 was used
(randomly select and modify a single note in the sequence).
Using this method it fails to get close to the MLS. Then we
compared MLS fitness and the evolved melody fitness. The
experiment result is shown in Figure 4a.

Random sequence evolved by Random Single Note Modification

-700

-600

-500

-400

-300

-200

-100

0
0 5000 10000 15000 20000 25000 30000 35000

Generation (1x 10)

Fi
tn

es
s

(lo
g)

Random sequence

MLS

Figure 4a: The maximum likelihood sequence fitness =
Log -177.26, melody = 77 79 81 79 81 79 81 79……

(Repeat)…77 76 74 128. The initial random melody fitness
= Log -576.19, after 600000 generations it reduced to Log -
225.98. Note: the fitness after 350000 remained the same.

The pattern of maximum likelihood sequence is based on

two repetitive notes. This happens with the Bi-gram model
because there must be one or more transitions with the
highest fitness value (e.g. [81][79]= log -0.5918), therefore a
sequence containing these two state transitions with
repeating order would be the most probable sequence that
the system could generate. The reason that the last four notes
in the MLS was not repeated because the fitness of sequence
(77 76 74 128 77) = Log -3.1286 is lower than the fitness of
sequence (79 81 79 81 79) = Log -2.8683.But when both
sequences had the last note removed the fitness of sequence
(77 76 74 128) = Log -1.8814 is higher than the fitness of
sequence (79 81 79 81) =Log -2.2764, therefore the (77 76

74 128) would be the optimal last four notes. The Maximum
Likelihood Sequence technique finds the circular state chain
that has the highest fitness over other circular state chains.
Then it just keeps repeating that highest fitness state chain to
construct a maximum likelihood sequence.

In figure 4a, the sequence started to converge after
generation 100000. The optimal sequence fitness is lower
than MLS, it was trapped in a local optimum. Its fitness
differ from MLS fitness Log -48.72 (Log-225.98 – Log -
177.26), about 27.4% of MLS fitness. The reason that the
optimal sequence did not converge to the MLS is the
evolutionary system is heavily dependant on the genetic
operator, and with operator-0 the search space contains many
local optima. As an example, if the MLS is (79 81 79 81)
and the initial sequence is (80 64 20 50) in the first
generation, the operator might modify the sequence to (80 64
79 50), which is closer to the MLS in hamming distance, but
has a lower fitness than the initial sequence.

When listening to the evolved sequence, it sounds more
interesting than the MLS. A reasonable variety of notes
produces interesting sound. But too much variety of notes
sounds random and irritating, or even boring. The sound of
MLS is boring, as it keeps repeating two notes only.

C. Experiment 3: Sequence-oriented variation operators

Performance of the evolutionary system is heavily

dependant on its genetic operators. These operators are
responsible for modifying each chromosome at each
generation. For a musical evolutionary system, it is important
to evaluate each musically meaningful operator. The aim of
this experiment was to analyse the performance of each
operator given the Bi-gram and Uni-gram fitness functions.

Figure 4b: Performance of various operators given the Bi-

gram fitness function.

Experiment 3 has the same setup as experiment 2, except

that 100000 generations were used because of the harder

fitness function. Figure 4b and 4c show the experiment al
results. The summary of results is shown in table 4c and the
performance ranking summary is shown in table 4d.

Note: Nine operators are individually run.

Figure 4c. Performance of various operators given the

Uni-gram fitness function.

Table 4c
O.N = Operator number. O.S.F = Optimal sequence fitness.

Note: the MLS with Bi-gram is Log -177.26 (same to experiment 2),
the MLS with Uni-gram is Log -182.18. The initial sequence fitness
with Bi-gram is Log -590.57. The initial sequence fitness with Uni-
gram is Log -965.75.

O.N O.S.F in Bi-gram O.S.F in Uni-gram
0 Log -243.12 Log -187.51
1 Log -322.91 Log -322.99
2 Log -302.03 Log -182.18
3 Log -498.08 Log -965.75
4 Log -493.75 Log -404.89
5 Log -209.22 Log -182.18
6 Log -486.76 Log -965.75
7 Log -493.93 Log -965.70
8 Log -183.40 Log -199.56

Table 4d

Ranking Bi-gram Uni-gram
1 Operator 8 Operator 5
2 Operator 5 Operator 2
3 Operator 0 Operator 0
4 Operator 2 Operator 8
5 Operator 1 Operator 1
6 Operator 6 Operator 4
7 Operator 4 Operator 3
8 Operator 7 Operator 6
9 Operator 3 Operator 7

The actual sequence of MLS with Uni-gram is: sequence =

128 128 128… (Repeat)….128. Integer value 128 represents
a Rest note in the system. The frequency of rest note in the
samples is the highest. The following analysis describes the

convergent power of each operator when applied to the Bi-
gram and Uni-gram fitness functions.

Operator 0 – This operator performs well on both Bi-gram
and Uni-gram. The Uni-gram model is well suited to this
operator, as the evolved sequence is close to the MLS. The
fitness of the optimal sequence is Log -187.51, very close to
the MLS fitness Log -182.18. This is because Uni-gram
model takes individual state into account only, no relation
between previous or next state. Using this operator on Uni-
gram model is will converge to the MLS given enough
generations. The Uni-gram fitness landscape is convex and
similar to the well studied one-max problem. Using this
operator with the Bi-gram fitness function gives much poorer
performance, and the fitness landscape has many local
optima.

Operator 1 – This operator modifies a group of notes, the
convergent power is lower than the operator 0 which
modifies a single note value at each generation. That is
because each time when the operator randomly modifies a
group of notes, it is very hard to pick up the higher fitness
notes or notes transition. If the fitness of the modified
sequence is less than the fitness of unmodified sequence,
then the modification is discarded, the sequence remain
unchanged

Operator 2 – The convergent power of this operator is
very high when applied on Uni-gram, low when applied on
Bi-gram. This is because for Bi-gram, the note ordering is
very sensitive. Hence, it is very hard to randomly copy a
group of notes that has a higher fitness value when these
notes fit into the target location of the sequence. However,
Uni-gram does not have this problem, as note ordering does
not affect the fitness of sequence on Uni-gram.

Operator 3 – This operator is the worst performing on Bi-
gram experiments because this operator does not change any
single value of note. It reverses the note ordering, does not
modifies the note ordering in a different way, it slows down
the evolving sequence to converge to the MSL. This operator
is even worst when it performs on Uni-gram model, as it
takes no effect of the sequence fitness. That is because the
only way to change the sequence fitness on Uni-gram is to
modify the note value. Note ordering is no affect on Uni-
gram model.

Operator 4 – The transpose operator did not perform well
on both models, this is little surprise that because this
operator modifies each note value in the segment. The reason
of this is because the sequence allows overwriting only when
the new modified sequence has a higher fitness; if it is lower,
the sequence remains same. For example the operator only
allows +5 and -5 transpose, if a chosen segment never get the
higher fitness within +5 and -5 transpose, thus this segment
would never change the note value at all generation.

Operator 5 – The swap operator swaps two segments
locations, in additional to that it does overwrite the segment.
For example if the locations of the first segment and second

segment are the same, then the first segment is overwritten
on top of the second segment. This operator rearranges the
note ordering on Bi-gram model displaying high convergent
power. For Uni-gram model, this operator copies the existing
high fitness note and overwrites the lower fitness note, thus
the convergent power is high too.

Operator 6 and 7 – These sorting operators did not
perform well but acceptable on Bi-gram. They sort the
sequence in one way note ordering only. When a song
contains ascending or descending note ordering in the
instrument solo section and then it sounds interesting. But
these operators do not affect anything on the Uni-gram
model, since these operators do not change the value of any
note in the sequence.

Operator 8 – This operator performs well on both models
that are because this operator copied a segment from the
training samples. Therefore any segment that is copied is
seen by the classifier beforehand and fitness of each copied
segment is guaranteed to have high fitness.

After analysing both experiment 3(a) and 3(b), we can
draw some conclusions: 1) The convergent power of an
operator is heavily dependant on the different models (Bi-
gram or Uni-gram). 2) The operator that randomly changes
the note value would cause the convergence to slow down,
but it adds more variety to the note value. 3) The operator
that copies the high fitness of note value or ordering would
cause the convergence to quicken but results in less variety
of notes.

D. Experiment 4 – Interval Statistics

The pitch difference Bi-gram model experiment consisted
of two parts. Part 1 comprised the classification tests,
conducted in the same way as experiment 1 but using a pitch
difference Bi-gram model. It achieved an average correct
rate = 199/282 = 70.57%, the 90% confidence interval is
65.91% - 74.83%. Part 2, this experiment used the pitch
difference Mozart Bi-gram to generated ten melodies, and
evolved them by observed distribution of single note
modification genetic operator (operator 9). Those ten
generated melodies had fitness values are in range from Log
-290 to Log -250. After the evolution process, the evolved
melodies fitness values are in range from Log -170 to Log -
150. The summary is shown in table 4e.

Table 4e

Melody Fitness before evolution Fitness after evolution
Melody 1 -285.41 -166.79
Melody 2 -282.93 -158.09
Melody 3 -281.81 -162.21
Melody 4 -277.16 -163.05
Melody 5 -284.65 -157.93
Melody 6 -254.74 -155.20
Melody 7 -271.24 -161.43
Melody 8 -279.08 -157.54
Melody 9 -273.99 -160.00
Melody 10 -273.77 -165.90

The average correct classification rate of the pitch
difference Bi-gram model is lower than the absolute pitch
Bi-gram model. But there are two advantages when using
this model. 1. It can be used to discriminate melodies which
are in different musical key/scale. 2. This model is general
enough to generate a variety of notes with high fitness value.
This is because it does not capture specific notes but instead
the interval between them. For example, suppose there are
two melodies (C-major and D-major scales) containing
notes: C D E F G A B and D E F# G A B C# D. Their fitness
values are completely different under absolute pitch N-gram
model, but are exactly same under pitch difference N-gram
model. All the major scales are constructed by the same
interval arrangement (+2,+2,+1,+2,+2,+2,+1). Figure 4d
shows some generated and evolved melody segments.

Segment 1: Evolved by GA with absolute pitch Bi-gram model (operator 8),
Bar 1-3.

Segment 2: (Melody 5) Generated by pitch difference Bi-gram model Bar
1-3.

Segment 3: (Melody 5 after evolution) Evolved by GA with pitch difference
Bi-gram model (Operator 9), Bar 1-3.

Figure 4d

Segment 1 is the melody evolved using the absolute pitch

Bi-gram model. We described the reason for this repetitive
sequence earlier. Most of the notes are repeated without
much variety. Segment 2 contains a variety of notes and
exhibits more (perhaps excessive) variation in pitch. In
segment 3, the sequence of notes is constant and smooth, no
high interval skipping. The sequence of melody 5 after
evolution contained variety of notes as much as melody 5
before evolution, but the notes arrangement is constant, as up
and down stairway. Note that the overall melody fitness
value is higher after the evolution process. In general, the
pitch difference model generates melodies with a variety of
notes and keeps high fitness values. In this case the actual
melody which evolves using the pitch difference model is
more interesting than the melody evolved using the absolute
pitch model.

V. CONCLUSION AND FURTHER DIRECTION

Our work provides a fundamental investigation of using
N-grams as trainable music evaluators (fitness functions) in
an evolutionary algorithm. Experiment 1 and Experiment 2
(part 1) have demonstrated that N-gram classifiers were able
to correctly identify the composer around 80% of the time.

Our most optimistic hope was that this would enable the
evolution of new pleasant sounding melodies, similar to
those composed by some of the great composers. An
interesting result here is that while both random note
sequences are uninteresting, and the maximum likelihood
sequence (MLS) is also uninteresting, evolutionary
algorithms can be used to explore the space between those
extremes and find melodies that are reasonably interesting to
listen to.

For experiment 3 we analysed each musical operator in
detail, showing their performance on both Bi-gram and Uni-
gram models. There was no single operator that could evolve
a sequence that reaches the MLS in both models. Most of the
evolved sequences are in the range of fitness value Log -200
to Log -500. As mentioned before, given the N-gram model,
the creation of interesting melodies relies on the inability of
the algorithms to converge to the optimum.

In experiment 4 results show that using the pitch
difference Bi-gram model for melody generation and
evolution subjectively outperforms the absolute pitch
representation, even though they are no better at
classification. We suggest the reason for this is that using
interval (successive note pitch difference) statistics is closer
to a perceptual model than using absolute pitch statistics.
This is intuitively obvious, since melodies played in a
different key sound essentially the same, and have identical
likelihoods in the pitch difference model, but completely
different ones in the absolute pitch model.

We propose that an interesting way forward from here is
to continue using pitch difference N-grams to capture the
statistics of a musical style, but then evolve parameters for a
musical generation system that incorporates some general
musical knowledge. In this way, it may be possible to get
closer to the goal of evolving interesting music based largely
on a trainable fitness function. It would also be interesting to
experiment with longer range or variable length N-grams.

Finally, we are conducting some listening tests in order to
get some idea of how the evolved music sounds to human
listeners (see
http://www45.brinkster.com/amcsystem/SongRating.asp) and
we encourage readers to visit the site and rate the sequences.

REFERENCES
[1] J. A. Biles, “GenJam: A genetic algorithm for generating jazz solos,”

In Proceedings of the 1994 International Computer Music Conference,
1994.

[2] J. A. Biles, “Composing with sequences:…but is it art?,” Information
Technology Department, Rochester Institute of Technology.

[3] W. Chai, & B. Vercoe, “Folk music classification using hidden
markov models,” In Proceeding International Conference on Artificial
Intelligence, 2001.

[4] E. D. Dobson, Understanding Fibonacci Numbers. Traders Press,
1984.

[5] S. Doraisamy, “Polyphonic music retrieval: The n-gram approach,”
PhD thesis, 2004.

[6] S. Downie, and M. Nelson, “Evaluation of a simple and effective
music information retrieval method,” Proceedings of the 23rd Annual

International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2000.

[7] M. Grachten, “JIG: Jazz improvisation generator,” In Proceedings of
the MOSART Workshop on Current Research Directions in Computer
Music, 2001.

[8] L. Hiller & L. Isaacson, Experimental Music. New York: McGraw
Hill, 1959.

[9] F. Jelinek and R.L. Mercer, “Interpolated estimation of markov source
parameters from sparse data,” Proceedings of the Workshop on
Pattern Recognition in Practice, pp. 381-97, North Holland,
Amsterdam, 1980.

[10] B. Johanson and R. Poli, “GP-Music: An interactive genetic
programming system for music generation with automated fitness
raters,” Genetic Programming: Proceedings of the Third Annual
Conference, 1998

[11] D. Jurafskyl and J. H. Martin, Speech and Language Processing, An
Introduction to Natural Language Processing, Computational
Linguistics and Speech Recognition. International Edition. Prentice
Hall, 2000.

[12] J. McCormack, “Grammar based music composition,” In Complex
Systems 96: From Local Interactions to Global Phenomena, R Stocker
et. Al., eds, ISO Press, Amsterdam, 1996.

[13] R. A. McIntyre, “Bach in a Box: The evolution of four part baroque
harmony using the genetic algorithm,” International Conference on
Evolutionary Computation, 1994, pp. 852-857.

[14] G. Papadopoulos and G. Wiggins, “A genetic algorithm for the
generation of jazz melodies,” Proceedings of STeP 98, Jyväskylä,
Finland, 1998.

[15] S. Phon-Amnuaisuk, A. Tuson and G. Wiggins, “Evolving musical
harmonisation,” International Conference on Artificial Neural
Networks and Genetic Algorithms, Slovenia, 1999.

[16] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of
Plants. New York: Springer, 1990.

[17] P. Salosaari & K. Jarvelin, “MUSIR – A retrieval model for music,”
University of Tampere, Department of Information Studies, Research
Note RN-1998-1, 1998.

[18] P. M. Todd and G. M. Werner, “Frankensteinian approaches to
evolutionary music composition,” In N. Griffith and P.M. Todd
(Eds.). MIT Press, 1998.

[19] N. Tokui and H. Iba, “Music composition with interactive
evolutionary computation,” 3rd International Conference on
Generative Art, Milan, 2000.

[20] A. Uitdenbogerd and J. Zobel, “Melodic matching techniques for
large music databases,” Proceedings of the seventh ACM
international conference on Multimedia (part 1), 1999, pp.57-p66.

[21] M. Unehara and T. Onisawa, “Construction of music composition
system with interactive genetic algorithm,” Proceedings of 6th Asian
Design International Conference, Tsukuba, Japan, 2003.

