
Evolving Patch-based Terrains for use in Video Games

William L. Raffe
william.raffe@rmit.edu.au

Fabio Zambetta
fabio.zambetta@rmit.edu.au

Xiaodong Li
xiaodong.li@rmit.edu.au

School of Computer Science and Information Technology
RMIT University

Melbourne, Australia

ABSTRACT
Procedurally generating content for video games is gaining
interest as an approach to mitigate rising development costs
and meet users’ expectations for a broader range of expe-
riences. This paper explores the use of evolutionary algo-
rithms to aid in the content generation process, especially
the creation of three-dimensional terrain. We outline a pro-
totype for the generation of in-game terrain by compiling
smaller height-map patches that have been extracted from
sample maps. Evolutionary algorithms are applied to this
generation process by using crossover and mutation to evolve
the layout of the patches. This paper demonstrates the ben-
efits of an interactive two-level parent selection mechanism
as well as how to seamlessly stitch patches of terrain to-
gether. This unique patch-based terrain model enhances
control over the evolution process, allowing for terrain to be
refined more intuitively to meet the user’s expectations.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism

General Terms
Algorithms

Keywords
Terrain generation, evolutionary algorithms, video games

1. INTRODUCTION
The expanding video game consumer market is driving

game developers to design an abundance of creative in-game
content to entice and engage players. The time and finan-
cial costs associated with the production of this content are
large, typically requiring teams of highly skilled artists and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

programmers [3]. With this in mind, there is increasing re-
search by both academics and industry leaders [2] to reduce
the costs associated with the production of content while
still providing the consumers the high quality and varied
experiences players have come to expect.

Evolutionary algorithms have recently been proposed as a
means of increasing control over the procedural generation
of video game content. Togelius et al. [19] provide a review
of existing contributions to this field, including the use of
evolution to generate game rules [18], AI controllers [14],
and projectile physics [8]. Many of these techniques use
evolutionary algorithms in combination with player profiling
to customize content to a player’s preferences and playing
style. In this paper we focus on the use of evolutionary
algorithms in the generation of 3D terrains that can be used
as levels in a game. Terrain plays a pivotal role in the user’s
experience of the game; setting the scene and mood in story
based game-play and providing strategic and competitive
game-play in multiplayer games. Research in this field is
emerging with seminal techniques being proposed for the
generation of levels in racing games [16] and two dimensional
platforming games [11].

In this paper, we use evolutionary algorithms during the
generation of 3D terrains. Existing research in this area
has produced systems that use evolutionary algorithms to
vary the height of control points on the height-map [10], al-
ter mathematical functions that define the height of each
vertex on the height-map [6], to search for the optimal val-
ues of parameters that define general terrain properties [20],
and to place terrain features and game resources on a map
[17]. Our novel approach divides sample terrains into equal
sized square patches and recombines patches from one or
more of these samples to produce a new terrain. Evolu-
tion can be applied to a patching technique by carrying out
crossover and mutation on patch arrangement. One of the
primary benefits of using a patching approach is the added
control over exploration versus exploitation of the search
space. This control is enhanced by the use of an interactive
two-level selection scheme involving Parent Selection and
Gene Selection, which allows every patch of each parent to
be separately marked for crossover and mutation. Patch-
based terrains also present their own set of challenges, such
as the seamless sewing of patches to reduce artefacts and to
increase the believability of the terrain.

This paper is organized as follows. In Section 2 we pro-
vide a background on existing research into the use of evo-
lutionary algorithm on terrain generation. In Section 3.1 we
describe our patch-based algorithm for generating terrain,

363

Figure 1: Flat height-map and height-map after
fractal terrain generation.

including the important methods and parameters involved.
In Section 3.2 we show how evolutionary operators, such as
crossover and mutation, can be applied to our terrain gener-
ation approach. Section 4 describes the initial experiments
we have carried out on our prototype, including justification
for specific implementation details, observations on param-
eter settings, and a demonstration of how the system can
be used to generate terrain for games. Finally, Section 5
provides closing remarks and the possible directions of our
future work.

2. RELATED WORK

2.1 Procedural Terrain Generation
The most common method for rendering terrain is a height-

map [13]. A height-map is usually represented as a three-
dimensional array detailing the x,y and z coordinates of
vertices. The vertices are evenly spaced across two of the
coordinate planes and the third coordinate’s value specifies
the height of each vertex. The vertices are joined to their
neighbours to form triangles and from this a solid surface
can be rendered. Examples of height-maps in use are shown
in Figure 1.

Procedural terrain generation is the process of program-
matically creating terrain for virtual worlds. In the case
of height-maps, this involves a system to assign the height
value of each vertex. Fractal subdivision was one of the
earliest procedural terrain generation techniques [5] and it
remains one of the most popular [13] due to its ability to
efficiently replicate natural terrain patterns. An example of
a fractal terrain is shown in Figure 1. Another popular tech-
nique is to use an erosion simulation algorithm [9] to refine
an existing terrain, such as one generated fractal subdivi-
sion. While erosion simulation is usually computationally
expensive, it can also add an increased sense of realism to
the terrain. However, the drawback of both fractal subdivi-

sion and erosion simulation is that they are highly stochastic
and thus there is very limited control over the type of terrain
that is generated.

While there are many other approaches to terrain gener-
ation [13], we use a patch-based mechanism in this paper.
Zhou et al. [21] demonstrate a successful use of a patch-
based terrain generation system. Their algorithm allows for
a user to provide a basic sketch of feature layout and for
terrain to be generated matching it. This is accomplished
by first discovering features, such as mountains and valleys,
on a sample height-map and extracting them in the form of
patches. These patches are then arranged to match the flow
of the users sketch. Section 3.1 explains patch-based terrain
more clearly, describes how our system utilizes patches and
how our approach differs from that of Zhou et al. [21].

2.2 Evolutionary Algorithms on Terrain Gen-
eration

Evolutionary algorithms can be employed to add more
control to the terrain generation process and can produce
terrains that meet the user’s preferences of feature arrange-
ment, such as the position and orientation of mountains and
valleys. The first notable contribution to this field is by
Ong et al. [10]. Their algorithm proposed a two phase pro-
cess with both phases using evolution to manipulate user
provided examples. The first stage was to generate the sil-
houette of the terrain by mutating a basic user sketch of the
terrain’s borders into a more complex and rough outline.
The second phase involves using a geospatial imagery sam-
ple height-map as the initial seed and mutating the height
of control points and their surrounding area. The authors
propose using fitness functions that compare the resulting
candidate to that of the seed height-map, making sure it
has a similar design but with unique placement of features.
The advantage to the algorithm created by Ong et al. [10] is
that, in both stages of generation, the terrain can be seeded,
thus introducing the user’s preference at the start of evolu-
tionary process. However, the disadvantage is that the user
may not able to provide a geospatial imagery system (GIS)
sample of the type of terrain they want to generate.

A significant contribution to the field of using evolution-
ary algorithms on terrain generation is made by Frade et al.
with their genTP algorithm [6, 7]. The basis of their algo-
rithm is to use noise functions in combination with mathe-
matical operator strings to calculate the height value of each
vertex on the height-map. Genetic programming adds, re-
moves, or substitutes operators in the function that defines
the height values. Initially, Frade et al. used interactive
evolution [6] to demonstrate the algorithms explorative ca-
pabilities and the aesthetically appealing terrain that could
be produced. They have since investigated automated fit-
ness functions that favour smoother terrains that are well
connected [7], which would allow the created terrain to be
more appropriate for use in video games. However, so far
this has caused the resulting terrains to be excessively flat,
indicating the complexities in trying to control this approach
programmatically.

Walsh and Grade [20] have used Genetic Algorithms to
modify parameter values that describe the terrain, includ-
ing feature height, feature roughness, water level, and at-
mospheric properties such as sun angle and cloud coverage.
For the first implementation of their algorithm, Walsh and
Grade use an interactive evolution mechanism to optimise

364

Algorithm 1 Roof-Tiling

1: set vert pos to zero
2: while(vert pos+patch length)<heightmap length do
3: set hori pos to 0
4: while(hori pos+patch width)< heightmap width do
5: select a new patch from database
6: place new patch at (hori pos-overlap size, vert pos)
7: stitch new patch with any existing patch to the left
8: hori pos=hori pos+patch width
9: end while
10: shift row to (0, vert pos-overlap size)
11: stitch new row with any existing row above it
12: vertical position = vertical position + patch length
13: end while

these parameters. It should be noted that this algorithm
does not create a new terrain, rather it alters the appearance
of an existing one. A sample terrain must be supplied to the
algorithm and the feature arrangement and orientation of
this terrain is not changed, rather the features just increase
or decrease in size and rigidity. However, this approach of
optimising terrain parameters could be combined with a pa-
rameter based procedural terrain generation method, such
as those by Doran and Parberry [1], which will give a signifi-
cant increase in control of the type of terrain that is created.

Recently, Togelius et al. [17] have used multi-objective fit-
ness functions to generate terrain that is appropriate for use
in real-time strategy (RTS) games. Unlike the approaches
mentioned earlier that only address terrain generation, this
algorithm focuses more on creating playable game levels.
This includes the placement of player bases, collectable re-
sources, and terrain obstacles on the map. Thus, terrain
generation becomes a process of object placement rather
than direct height-map manipulation. Togelius et al. also
put more emphasis on automating the generation process
through the use of multi-objective fitness functions that strive
to provide fair and fun game-play for all players. The dis-
advantage to this change of focus, however, is that the ter-
rain that is generated lacks detail and variety, providing fair
game-play at the cost of aesthetically pleasing terrain.

3. APPROACH

3.1 Patch-based Terrain Generation
Our algorithm uses a patch-based system to generate the

terrain for all evolutionary candidates. In this system, smaller
height-map samples, all of equal size, are stitched together
to form a larger height-map. One benefit of patching is that
it does not require the height of each vertex to be recal-
culated every time a new terrain is generated, rather just
copying height values from the smaller patches to the larger
terrain. Also, patching provides more control by allowing
good local features to be kept and for undesirable features
to be swapped out, whether a feature is contained in one
patch or the result of combining multiple patches.

An example of a patching system for 3D terrain generation
is shown by Zhou et al. [21]. Our approach differs in a
few fundamental ways though. Firstly, Zhou et al. extract
patches that have noticeable features on them, requiring a
feature detection algorithm. Our system extracts patches

Figure 2: Two patches first joined with no over-
lapping and then with overlapping and cubic spline
interpolation.

from a sample height-map in a nested looping manner. The
algorithm starts in the top left corner of the sample height-
map, extracts a patch, moves to a full patch size to the right,
and then extracts another patch. This is repeated for a full
row of patches, then shifts down one patch size and repeats
the process on a second row. As this is a fast process, we
can do this for multiple sample terrains at the beginning of
program execution. In our experiments we used eight sample
terrains of 512x512 vertices, however the number of patches
that are extracted is dependent on the size of each patch. It
should be mentioned that for the experiments in this paper,
the sample height-maps were generated through procedural
fractal methods along with handcrafted terrains that contain
elevations that had little thought put into them. Both of
these types of sample terrain were used to give the system
a variety of different features and average height values in
the patches. Future experimentation will examine the affect
that different patch sets will have on the resulting terrain
generated by our system.

Zhou et al. also take care in how patches are placed,
requiring searching for the best fit patch for each position
and manipulating it to better match the user’s feature sketch
and neighbouring patches. Our algorithm places patches
down in a grid like fashion more attune to texture synthesis
algorithms [4]. Our approach to patch arrangement and
seamless patch stitching is covered in detail in Section 3.1.1.
Finally, while Zhou et al. use a feature sketch to control
patch layout, control in our system is provided through the
use of evolutionary algorithms, allowing for more interactive
adjustments to the terrain.

3.1.1 Roof-Tiling
An important aspect of a patching technique is how the

patches will be stitched together. If an inappropriate method
is used then the borders between patches will be evident.
Zhou et al. [21] use an algorithm they call Poison Seam
Removal, which is a variation on the popular Poison Image

365

Figure 3: Example crossover operation. White par-
ent is the base parent with a crossover rate of 0.2.

Editing [12] technique used in blending images or transpos-
ing features of one image onto another. The authors of the
Poison Image Editing algorithm, Pérez et al. [12], state that
their algorithm works best if the intensities of the pixel are
within similar ranges for both images. In the case of height-
maps, this means that the area around the seam must have
similar height values. This does not perform well in our sys-
tem because two patches with very different height ranges,
such as a mountain ridge and a valley, can be placed next to
each other due to the stochastic selection of patches during
mutation operations.

In order to stitch patches of varying heights together with
minimal seams, we employ a Roof-Tiling overlapping algo-
rithm, so called due to its likeness to laying tiles on the roof
of a house. This process is outlined in Algorithm 1. It in-
volves stitching rows of patches together and then stitching
each entire row onto the one above it. All patches overlap
all of their neighbours in order to aid in seam removal. The
size of the overlap region and the overlapping technique used
will determine the quality of the final terrain. We used an
interpolation technique to calculate the height values of the
vertices in the overlap region. That is, if we have a left patch
and a right patch that are being stitched together, then the
height values closer to the left side in the overlap region will
be largely influenced by height values of the left patch and
not much by the patch on the right side. This applies vice
versa and height values in the centre of the overlap region
should be influenced relatively equally by both patches. In
our system we use a cubic spline interpolation function to
smooth out the transition in the overlap region, which is
discussed further in Section 4.3. Figure 2 shows two patches
of terrain first separately, then joined with no overlapping,
and then stitched together using our method of overlapping
and cubic spline interpolation.

3.2 Evolving Patch Placement
In our genetic representation, each patch is a gene and

the chromosome is structured as a fixed size grid. That is
to say, if each candidate terrain is constructed of sixteen
patches, then the candidate’s chromosome is a four-by-four
grid of genes. This means that evolutionary operators, such
as crossover and mutation, only need to deal with substi-
tuting patches, the number of patches (or genes) cannot
be increased or decreased. The initial population can ei-
ther be seeded by the user provided sample terrains, from
which patches are extracted, or it can be randomly gener-
ated. Unlike many of the previous contributions in this field,
our system does not alter the topology of individual patches.
The evolutionary algorithm changes the spatial placement of
patches rather than manipulating height values of individual
vertices.

Our system uses a uniform crossover technique [15], whereby
patches from each of the two parents have respective prob-
abilities of appearing in a child. One of the parents is ran-

Figure 4: The Gene Selection interface.

Figure 5: The ridge in the bottom right is undesir-
able. Removing this patch through Parent Selection
alone can take many generations of waiting for a
suitable mutation.

domly chosen to be the base parent, meaning that its entire
chromosome is copied to the offspring. Each patch slot is
then randomly given a crossover probability. If that prob-
ability is greater than a crossover rate parameter, which is
provided at the start of the run, then the patch from the
base parent is kept, otherwise it is switched for the patch in
the same position from the other parent. Figure 3 shows an
example of crossover with a white parent and a grey parent.

Mutation is carried out in a similar way to crossover.
Each gene position is randomly given a mutation probability
value; if this value is greater than the mutation rate parame-
ter then the current patch is kept, otherwise it is substituted
with a randomly chosen patch. Mutation occurs on a child
after the crossover operation has completed. If only one
parent is selected, mutation is carried out on that parent to
generate all of the offspring.

For parent selection we use a hierarchical interactive evo-
lution mechanism. The user is presented with fully ren-
dered images of all of the candidate terrains and they are
allowed to choose up to two parents, we refer to this simply
as the Parent Selection stage. Subsequent to this, if the user
wishes, they can also undertake Gene Selection, which allows
them to specify which genes, or patches in this case, will be
subject to crossover and mutation. The reason we chose to
implement this type of hierarchical selection mechanism is
discussed in Section 4.2.

Using a patch based terrain generation algorithm has mul-
tiple benefits over the other evolutionary terrain generation

366

Generation 1 Generation 4

Generation 6 Result from generation 9

Figure 6: One run over ten generations using the hierarchical selection system.

methods [6, 10, 17, 20]. The use of patches along with
the two-level parent selection mechanism offers a far greater
level of interaction between the user and the evolutionary
process, giving the user more control of feature arrangement.
As for the use of the resultant terrain in video games, un-
like Ong et al. [10] and Walsh and Grade [20] our system
does not require one single existing height-map that exhibits
similar feature layout to the user’s desired terrain. Instead
we allow the users to supply multiple sample terrains and
to also change their desired goal throughout the evolution-
ary process. The terrains produced in early works of Frade
et al. [6] contain many artefacts and steep transitions be-
tween features which prevents the terrain from being useful
in video games. Their later work, involving accessibility fit-
ness functions [7], ensures connectivity in the terrain but at
the cost of producing terrain that is overly flat. Results in
Section 4 show our algorithm can produce terrain that both
contains rich features as well as connectivity, making it ideal
for use in video games. We agree with Togelius et al. [17]
that object placement is an important part of video game
level creation but it should not come at a cost of terrain
detail. Finally, the tool we have developed here is designed
to be used as an aid for both experienced and inexperienced
content developers, helping them explore the search space
of possible terrains.

4. PRELIMINARY RESULTS

4.1 Parameter Settings
The prototype system that we created works through in-

teractive evolution. As user fatigue is an issue, we seek pa-

rameter settings that allow the user to efficiently explore the
search space and develop an idea of the type of terrain they
want to create. Once the user has a rough idea of what they
want, we need the system to converge quickly to produce a
terrain that is acceptable to the user.

For all of our experiments we used a fixed height-map size
of 512x512. This is the number of vertices per candidate
terrain and, if the height-map was represented as a two di-
mensional image, this would be the number of pixels. Of
more importance is the size of each patch. The patch size
is determined by how many patches make up the terrain, or
how many genes there are in the genetic representation. We
found ideal values for interactive evolution to be either six-
teen patches (4x4) or twenty five patches (5x5). Any fewer
and there will not be enough variety in the candidates. Any
more and candidate terrains become jagged due to an in-
creased chance of two adjacent patches having a large differ-
ence in their average height values. Also, with more patches
evolution will be harder to control because mutation will
substitute an increased number of patches per offspring.

In all of the following experiments we used a population
size of 8, allowed a maximum of 2 parents to be selected
per generation, used a crossover rate of 0.5 to ensure both
parents influenced the offspring equally, and used a muta-
tion rate of 0.1. We found that a mutation rate above 0.2
lead to difficulty in controlling evolution because too many
patches would change per offspring. Section 4.2 addresses
the negative affects of mutation in our system while Sec-
tion 4.3 explains why cubic spline interpolation was used to
smooth out patch transitions.

367

Figure 7: Results of seperate runs with a similar user goal as Figure 6.

Linear Cubic Spline

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Distance through overlap

In
flu

en
ce

 o
f s

ed
on

d
pa

tc
h

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Distance throush overlap

In
flu

en
ce

 o
f s

ed
on

d
pa

tc
h

Figure 8: Linear interpolation and cubic spline in-
terpolation at 50% overlap.

4.2 Two-Level Interactive Evolution
Our interactive evolutionary algorithm uses a hierarchical

approach with two layers of selection. The first layer is a
typical Parent Selection mechanism similar to those used in
evolutionary art. Here, the user chooses which candidates
are visually appealing to them and those chosen become the
parents of the next generation. The second, more unique,
layer is the Gene Selection process. During this stage the
user is able to select which patches, or genes, they would
like to exempt from the crossover and mutation operations.
Figure 4 shows the interface used to allow the user to visually
select which patches of a single parent are desirable and
which are not. If no patches are selected then it is assumed
that all patches are subject to crossover and mutation.

The Gene Selection mechanism was introduced after we
perceived a flaw in our early experiments that only utilized
the Parent Selection system. Figure 5 shows a terrain with
an undesirable patch. In this scenario the user wants a
mountain ridge on one side of the terrain and flat plains
on the other side. Thus, the ridge on the bottom right in
this figure is preventing the terrain from matching the user’s
desires. With a mutation rate of only 0.1 or 0.2 there is only
a small chance that this one patch would change and when
it does another patch may change too, leading to a new
undesirable patch. This meant that it often took dozens of
generations to substitute a single undesirable patch, increas-
ing both user fatigue and frustration.

The Gene Selection mechanism aids in preventing the
above situation from occurring. In this scenario, the user

Figure 9: Cubic spline interpolation used with over-
lap sizes of 20% and 80%.

would indicate only one patch to be subject to mutation. An
inverse mutation rate is used to ensure that this one patch
is highly likely to change in all offspring. If all patches are
subject to mutation then the base rate specified in the mu-
tation rate parameter is used. As the number of patches
affected by mutation decreases, the mutation rate increases
towards 1.0.

The hierarchical selection system allows for users to utilise
exploration and exploitation when they need them. Figure
6 shows one run of our prototype where the user desired a
terrain with a canyon running between two ridges, a terrain
that may be difficult to create with other terrain generation
techniques. Screen shots are shown for generation one, four,
and six, as well as a resulting terrain from the ninth gener-
ation. Up until the fifth generation, only Parent Selection
was used, allowing the user to quickly get candidate terrains
that exhibited some minor resemblance to the desired ter-
rain. This can be seen in the fourth generation in Figure 6
as all of the candidate terrains have similar features. After
this, Gene Selection was used to refine the terrain, swapping
out only a handful of undesirable patches in each generation.
Figure 7 shows how our algorithm can generate multiple ter-
rains with similar feature layouts but with different details.
Each of the terrains shown in Figure 7 was generated from
a separate run of our prototype, all with the same user goal
that was used in Figure 6.

4.3 Smooth Patch Stitching
In all of the examples shown in this paper, cubic spline

interpolation was used to smooth out the overlap region be-
tween patches. That is, a cubic spline curve was used to
determine the influence of both patches on each height value
in the overlap region. In our initial implementation we used
a simplistic linear interpolation algorithm. Figure 8 shows
the same terrain, constructed by four patches (2x2) and with
an overlap size of 50%. The beginning and end of the over-
lap region between patches can be seen in the linearly in-

368

(a) (b)

(c) (d)

Figure 10: (a) is a map from the game Halo, by Bungie, 2001. (b), (c) and (d) were all generated by our
algorithm.

terpolated terrain. The cubic spline interpolation method,
however, gradually enters and exits the overlap region.

The overlap size value mentioned earlier indicates how
much of each patch should be used when overlapping with
another patch. When patches are being extracted from sam-
ple terrains, this extra amount is also extracted to the right
and bottom of the patch, thus enlarging the overall patch
size. This helps features to be maintained throughout the
overlapping procedure and maintains the number of patches
that are used to construct a terrain. However, because
patches overlap with their neighbours in all directions in
the Roof-Tiling algorithm, some feature detail is still lost
when overlapping with patches to the left and above.

For linear interpolation to produce terrain that does not
show the boundaries of the overlap region, an overlap size
of 90% is needed, restricting variety in steepness in patch
transitions. In contrast, cubic spline interpolation can be
used at many overlap sizes to produce different terrain de-
tail. Figure 9 shows the same 2x2 terrain using cubic spline
interpolation at 20% and 80% overlap respectively. With
an overlap size of 20% there are sharp transitions between
patches while with an overlap size of 80% the raised area in
the top right of the terrain is almost completely smoothed
over. Both of these values may be desirable for different
terrain effects, such as using small overlap sizes to represent
cliff faces and large overlap sizes to create rolling hills.

4.4 Video Game Map Generation
Figure 10 shows how our system can be used to gener-

ate approximations and variations of terrain used in a video

game. Image (a) in this figure is the original map from the
game Halo1, developed in 2001 by Bungie. The user did
not desire to create a replication of this terrain but instead
used it as inspiration for new terrain. Images (b), (c) and
(d) were all created in our prototype system and rendered
in the Unity 3 game engine2. It should be noted that our
renderings lack detailed texturing and also do not have any
vegetation, structures, or other virtual objects. Image (b) is
the closest approximation to the original game map. Image
(c) shows how the playable area can be changed slightly,
which would cause players to adapt their strategies. Im-
age (d) shows more drastic changes to the borders of the
playable area, which would change game-play and require
players to re-explore the map.

To achieve the terrains in Figure 10, we use multiple runs
with the output from one run (the ideal terrain of that run)
being used as a sample terrain and seed for the next run.
This allowed us to change parameters such as patch size
and overlap size between runs to achieve different terrain
effects. The first and second runs used large patch sizes to
generate a rough outline of the cliffs around the playable
area. The third run used smaller patch sizes with steep
transitions between patches to create the hard edges of the
cliff face and protruding peaks. Finally, in all successive
runs, the playable area was manipulated with small patch
sizes to allow for more control but with a large overlap size
to ensure smooth inclines and playable surfaces.

1http://halo.xbox.com/en-us
2http://unity3d.com/

369

5. CONCLUSION AND FUTURE WORK
In this paper we have introduced a novel algorithm for ap-

plying evolutionary algorithms to the generation of virtual
terrain. A unique patch-based terrain generation system
was used to allow for more control of the evolutionary pro-
cess over existing evolutionary terrain algorithms [6, 10, 20].
The use of both Parent Selection and Gene Selection during
interactive evolution gives the user control over how many
patches are affected by crossover and mutation. This allows
for quick browsing early in a run and greater control dur-
ing the refinement stage. We also provided algorithms for
stitching height-map patches to produce seamless, artefact
free, 3D terrains. We believe that the terrain generated by
our system is appropriate for use in video games due to the
rich feature arrangement and the high connectivity that is
possible.

Future work will involve investigating the automation of
the evolutionary process. Gene Selection may play a pivotal
role when interactive evolution is replaced with automated
fitness functions, allowing each patch to have its own fit-
ness relative to a single candidate. This will lead to more
natural feature layouts and reduce the size of the overlap
region. This may also be achieved by adding constraints on
patch placement, requiring that a logical and natural terrain
be generated before consideration for breeding. We hope to
utilise our algorithm to customize content for players based
on their patterns of play. Thus, once our algorithm is re-
fined, we will pursue implementing it into a complete game,
which will allow us to experiment with the algorithms ef-
fectiveness in generating video game terrain efficiently and
reliably and to examine players’ enjoyment of the generated
terrain.

6. REFERENCES
[1] J. Doran and I. Parberry. Controlled procedural

terrain generation using software agents.
Computational Intelligence and AI in Games, IEEE
Transactions on, 2(2):111–119, 2010.

[2] A. Doull. Death of the Level Designer: Procedural
Content Generation in Games. ASCII Dreams, 2008,
Online:
http://roguelikedeveloper.blogspot.com/2008/01/death-
of-level-designer-proce

[3] R. Edwards. The economics of game publishing. IGN
Entertainment Inc., 2006, Online:
http://au.games.ign.com/articles/708/708972p1.html ,
Accessed: 13 December 2010.

[4] A. Efros and W. Freeman. Image quilting for texture
synthesis and transfer. In Proceedings of SIGGRAPH
2001, pages 341–346. Citeseer, 2001.

[5] A. Fournier, D. Fussell, and L. Carpenter. Computer
rendering of stochastic models. Communications of the
ACM, 25(6):371–384, 1982.

[6] M. Frade, F. F. de Vega, and C. Cotta. Breeding
terrains with genetic terrain programming: the
evolution of terrain generators. International Journal
of Computer Games Technology, 2009.

[7] M. Frade, F. F. de Vega, and C. Cotta. Evolution of
artificial terrains for video games based on
accessibility. Proceedings of the European Conference
on Applications of Evolutionary Computation,
6024:90–99, 2010.

[8] E. Hastings, R. Guha, and K. Stanley. Evolving
content in the galactic arms race video game. In IEEE
Symposium on Computational Intelligence and Games
(CIG), pages 241–248. IEEE, 2009.

[9] F. Musgrave, C. Kolb, and R. Mace. The synthesis
and rendering of eroded fractal terrains. In Proceedings
of the 16th annual conference on Computer graphics
and interactive techniques, pages 41–50. ACM, 1989.

[10] T. Ong, R. Saunders, J. Keyser, and J. Leggett.
Terrain generation using genetic algorithms. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1463–1470. ACM,
2005.

[11] C. Pedersen, J. Togelius, and G. Yannakakis.
Modeling player experience in super mario bros. In
IEEE Symposium on Computational Intelligence and
Games(CIG), pages 132–139. IEEE, 2009.

[12] P. Pérez, M. Gangnet, and A. Blake. Poisson image
editing. ACM Transactions on Graphics,
22(3):313–318, 2003.

[13] R. Smelik, K. de Kraker, S. Groenewegen, T. Tutenel,
and R. Bidarra. A Survey of procedural methods for
terrain modelling. In Proceedings of the CASA
Workshop on 3D Advanced Media In Gaming And
Simulation (3AMIGAS), 2009.

[14] K. Stanley, B. Bryant, I. Karpov, and R. Miikkulainen.
Real-time evolution of neural networks in the NERO
video game. In Proceedings of the National Conference
on Artificial Intelligence, volume 21, page 1671, 2006.

[15] G. Sywerda. Uniform crossover in genetic algorithms.
In Proceedings of the third international conference on
Genetic algorithms, pages 2–9. Morgan Kaufmann
Publishers Inc., 1989.

[16] J. Togelius, R. De Nardi, and S. Lucas. Towards
automatic personalised content creation for racing
games. In IEEE Symposium on Computational
Intelligence and Games (CIG), pages 252–259. IEEE,
2007.

[17] J. Togelius, M. Preuss, and G. Yannakakis. Towards
multiobjective procedural map generation. In
Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, pages 1–8. ACM, 2010.

[18] J. Togelius and J. Schmidhuber. An experiment in
automatic game design. In IEEE Symposium on
Computational Intelligence and Games (CIG), pages
111–118. IEEE, 2008.

[19] J. Togelius, G. Yannakakis, K. Stanley, and
C. Browne. Search-based procedural content
generation. Applications of Evolutionary Computation,
pages 141–150, 2010.

[20] P. Walsh and P. Gade. Terrain generation using an
Interactive Genetic Algorithm. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages
1–7. IEEE, 2010.

[21] H. Zhou, J. Sun, G. Turk, and J. Rehg. Terrain
synthesis from digital elevation models. IEEE
Transactions on Visualization and Computer
Graphics, pages 834–848, 2007.

370

