Exam 2 Solutions

Note that there are several variations of some problems, indicated by choices in parentheses.

Problem 1: Two light bulbs have resistances of 100Ω and 300Ω. They are connected in parallel across a 120 V line. What is the total power dissipated by the two bulbs (or the 100Ω or 300Ω bulbs)?

This problem was similar to Exercise 26-C done in class.

$$
\begin{equation*}
P=I \mathrm{E}=\mathrm{E}^{2} R^{-1}=\mathrm{E}^{2}\left(R_{1}^{-1}+R_{2}^{-1}\right)=(120)^{2}\left(\frac{1}{100}+\frac{1}{300}\right) W=192 \mathrm{~W} ; \tag{1.1}
\end{equation*}
$$

or 144 W and 48 W individually.

Problem 2: In the circuit shown in the figure both batteries have insignificant internal resistance and the idealized ammeter reads $I_{1}=4.0 \mathrm{~A}$ in the direction shown. Find the E.M.F. of the battery (a negative answer

indicates that the E.M.F. polarity is opposite to what is shown).

This problem was similar to Exercise 26-D done in class.
$75.0 V=\varepsilon_{1}=R_{1} I_{1}+R_{2}\left(I_{1}-I_{2}\right) ; \quad-\varepsilon=R_{3} I_{2}+R_{2}\left(I_{2}-I_{1}\right) ; I_{1}=4.0 A ; \quad R_{1}=12.0 \Omega ; \quad R_{2}=48.0 \Omega ; R_{3}=15.0 \Omega ;$

We note that the first equation in (1.2) implies $I_{2}=\frac{1}{R_{2}}\left(\left(R_{1}+R_{2}\right) I_{1}-\varepsilon_{1}\right)$, which can be immediately put into the $2^{\text {nd }}$ equation to yield ε, as,

$$
\begin{equation*}
\varepsilon=R_{2} I_{1}-\left(R_{2}+R_{3}\right) I_{2}=R_{2} I_{1}-\frac{R_{2}+R_{3}}{R_{2}}\left(\left(R_{1}+R_{2}\right) I_{1}-\varepsilon_{1}\right)=-24.5625 \mathrm{~V} \tag{1.3}
\end{equation*}
$$

Problem 3: A capacitor with an initial potential difference of $V(0)=150 \mathrm{~V}$ is discharged through a resistor when a switch between them is closed at $t=0$. At $t=10.0$, the potential difference across the capacitor is $V_{1}=1.5 \mathrm{~V}$. What is the potential difference across the capacitor at $t=20 \mathrm{~s}$?

This is based on homework problem 27.64

PHY2049 Fall 2015 - Acosta, Woodard
Recalling that $q(t)=C V(t)=q_{0}+q_{1} e^{-t / \tau}$ in which the discharging-conditions $q(0)=C \mathcal{E}=C V(0)$ and $q(\infty)=0$ give $q_{0}=0$ and $q_{1}=C V(0)$, we have $V(t)=V(0) e^{-t / \tau}$. The third condition $V(10.0 s)=1.5 \mathrm{~V}=(150 \mathrm{~V}) e^{-(10.0 s) / \tau}$ determines τ to be $\tau=10.0 \mathrm{~s} /\left(-\ln \frac{1.5}{150}\right)=2.1715 s$, which determines the voltage at all times, and so we calculate directly $V(20.0 s)=(150 \mathrm{~V}) e^{-(20.0 s) /(2.1715 s)}=0.015 \mathrm{~V}$.

Problem 4: In the figure $\varepsilon=14 V, R_{1}=R_{3}=1.00 \Omega$, and $R_{2}=2 \Omega$. What is the potential difference $V_{A}-V_{B}$?

This is based on a Ch. 27 homework problem (27.35), and Exercise 26-F done in class

Let the current through the EMF be i , that through R_{1} be i_{1}, and the current through R_{2} be i_{2}.

Junction rules:
$i=i_{1}+i_{2}$
$i_{1}=i_{2}+i_{3} \Rightarrow i_{3}=i_{1}-i_{2}$

Left loop rule, substituting $\mathrm{R}_{1}=1 \Omega$ and $\mathrm{R}_{2}=2 \Omega$:
$14-i_{1}-2 i_{2}=0$
$i_{1}=14-2 i_{2}$

Zig-zag loop rule:
$14-i_{1}-i_{3}-i_{1}=0$
$14-2 i_{1}-\left(i_{1}-i_{2}\right)=0$
$14-3 i_{1}+i_{2}=0$
$14-3\left(14-2 i_{2}\right)+i_{2}=0$
$-28+7 i_{2}=0 \Rightarrow i_{2}=4 \mathrm{~A}$
$\Rightarrow i_{1}=14-2 i_{2}=6 \mathrm{~A}$
$\Rightarrow i=i_{1}+i_{2}=10 \mathrm{~A}$

Now $V_{A}-V_{B}=i_{1} R_{1}=(6 A)(1 \Omega)=6 V$

PHY2049 Fall 2015 - Acosta, Woodard
Problem 5: A proton travels through uniform magnetic and electric fields. The magnetic field is $\stackrel{1}{B}=-2.50 \hat{i} \mathrm{mT}$. At one instant the velocity of the proton is $\stackrel{r}{v}=2000 \hat{j} \mathrm{~m} / \mathrm{s}$. At that instant what is the net force acting on the proton if the electric field is $4.00 \hat{k} \mathrm{~V} / \mathrm{m}$?

This is problem 28.10, which was assigned in homework

$$
\begin{align*}
\vec{F} & =q(\vec{E}+\vec{v} \times \vec{B})=q(E \hat{k}+v \hat{j} \times B(-\hat{i}))=q(E+v B) \hat{k} \tag{1.5}\\
& =\left(1.602 \times 10^{-19}\right)\left(4.00+(2000)\left(2.50 \times 10^{-3}\right)\right) \hat{k} N=1.442 \times 10^{-18} N \hat{k}
\end{align*}
$$

Problem 6: In the figure a charged particle moves into a region of uniform magnetic field $\stackrel{1}{B}$, goes through half a circle, and then exits that region. The particle is either a proton or an electron (you must decide which). It spends 130 ns in the region. What is the magnitude of $\stackrel{\perp}{B}$?

This is problem 28.26, which was assigned in homework

We immediately notice that the particle velocity $\stackrel{\mathrm{r}}{v}=v(-\hat{j})$ is deflected in the $-\hat{i}$ direction by the magnetic field $\stackrel{1}{B}=B \hat{k}$ pointing out of the page. Looking at the vector-value of the forces,

$$
\vec{F}_{B}=F_{B}(-\hat{i})=q \vec{v} \times \vec{B}=q(v(-\hat{j})) \times(B \hat{k})=q v B(-\hat{i}) \rightarrow q v B>0 \rightarrow q>0 \rightarrow\left\{\begin{array}{l}
q=+e=1.602 \times 10^{-19} C \tag{1.7}\\
m=m_{p}=1.672 \times 10^{-27} \mathrm{~kg}
\end{array}\right.
$$

While in the circular region, the charged particle has constant speed $v=|v|$, and maintains this velocity. This is because the magnetic force $\stackrel{1}{F}_{B}$ (due to magnetic field $\stackrel{1}{B}=B \hat{k}$ and velocity $\stackrel{\mathrm{r}}{v}=v \cdot d \stackrel{1}{\boldsymbol{\theta}}=R \omega \cdot d \stackrel{1}{\boldsymbol{\theta}}$) is perpendicular to the displacement, and thus does no work. Letting the half-circle have radius R, and letting the particle have charge q, we have,

$$
\begin{equation*}
d K=d W=\vec{F}_{B} \bullet d \vec{s}=(q \vec{v} \times \vec{B}) \bullet R d \vec{\theta}=q v B R(\hat{r} \bullet d \vec{\theta})=q v B R(0)=0 \rightarrow d K=d W=0 \rightarrow K_{i}=K_{f}=K_{a} ; \tag{1.8}
\end{equation*}
$$

Hence, no kinetic energy is added or subtracted to the particle of mass m. the velocity $\stackrel{1}{v}$ is of constant magnitude. In the circular trajectory, Newton's $2^{\text {nd }}$ Law then is,

$$
\begin{equation*}
\sum F=m_{p} a=m_{p} \frac{-v^{2}}{R}=-\vec{F}_{B} \rightarrow m_{p} \frac{-v^{2}}{R}=-q \vec{v} \times \vec{B} \rightarrow\left|m_{p} \frac{-v^{2}}{R}\right|=|-q \vec{v} \times \vec{B}| \rightarrow m_{p} \frac{v^{2}}{R}=q v B \stackrel{\overbrace{\sin 9} 90^{\circ}=1}{\sin \theta_{i \vec{\rightharpoonup}}} \leftrightarrow B=\frac{m_{p} v}{R q} ; \tag{1.9}
\end{equation*}
$$

In (1.9), the velocity is given by $v=\frac{2 \pi R}{T}=\frac{\pi R}{(1 / 2) T}$, so,

PHY2049 Fall 2015 - Acosta, Woodard

$$
v=\frac{2 \pi R}{T}=\frac{\pi R}{\frac{1}{2} T} \rightarrow B=\frac{m_{p}\left(\frac{\pi R}{(1 / 2) T}\right)}{R(+e)}=\frac{m_{p} \pi}{e \frac{1}{2} T}=\frac{\left(1.672 \times 10^{-27} \mathrm{~kg}\right) \pi}{\left(1.602 \times 10^{-19} \mathrm{C}\right)\left(130 \times 10^{-9} \mathrm{~s}\right)}=0.252 \frac{\mathrm{~kg}}{\mathrm{C} \cdot \mathrm{~s}}=0.252 \frac{\mathrm{~N}}{\frac{\mathrm{~m}}{\mathrm{~s}} \cdot \mathrm{C}}=0.252 \mathrm{~T} ;
$$

In the last steps of (1.10), we illustrate the units ${ }^{1}$ of magnetic field.

Problem 7: In a certain cyclotron a proton moves in a circle of radius 0.5 m . The magnitude of the magnetic field is 1.2 T. What is the kinetic energy of the proton in million electron-volts (MeV)?

This is problem 28-38, which was assigned in homework.

$$
\begin{equation*}
K=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\omega_{C} R\right)^{2}=\frac{1}{2} m\left(\frac{e B}{m} R\right)^{2}=\frac{1}{2}\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(\frac{\left(1.602 \times 10^{-19} C\right)(1.2 T)}{1.67 \times 10^{-27} \mathrm{~kg}} 0.5 \mathrm{~m}\right)^{2} \frac{1}{1.602 \times 10^{-13} \frac{\mathrm{~J}}{\mathrm{Mev}}}=17.267 \mathrm{MeV} ;(\tag{1.11}
\end{equation*}
$$

Problem 8: The figure shows a wood cylinder of mass $m=0.250 \mathrm{~kg}$ and length $L=0.100 \mathrm{~m}$, with $N=10$ turns of wire wrapped around it longitudinally, so that the plane of the wire contains the long central axis of the cylinder. The cylinder is released on a plane inclined at an angle θ to the horizontal, with the plane of the coil parallel to the incline plane. If there is a vertical uniform magnetic field of magnitude $0.500 T$, what is the least current i through the coil that keeps the cylinder from rolling down the plane?

This is problem 28-51, which was assigned in homework.

Let the wood-cylinder be of mass m, and have moment of inertia ${ }^{2} I$. Newton's $2^{\text {nd }}$ Law for translational equilibrium between the force of static ${ }^{3}$ friction f and magnetic force F_{B} and rotational equilibrium between the torque of static friction $R f$ and magnetic torque τ_{B} is,

$$
\begin{equation*}
m a=m \cdot 0=0=\sum F=f-m g \sin \theta ; \quad I \alpha=0=\sum \tau=\sum_{i=1}^{4} R_{i} F_{i} \sin \theta_{i}-f R=\sum_{i=1}^{4} R_{i} F_{i} \sin 90^{\circ}-f R=\sum_{i=1}^{4} R_{i} F_{i}-R f ; \tag{1.13}
\end{equation*}
$$

[^0]PHY2049 Fall 2015 - Acosta, Woodard
The problem is to find $F_{1}, F_{2}, F_{3}, F_{4}$: the magnetic forces upon the four sections of the square-loop shown in the Figure. The magnitude of the force upon a wire of length l making angle θ with a magnetic field $\stackrel{1}{B}$ carrying current $I=d q / d t$ is given by $F=I l\left|\frac{1}{B}\right| \sin \theta$. There are N such wires producing identical and superimposing forces. Thus, let the wood-cylinder be of radius R. Sections 1 and 3 are of length $2 R$, while Sections 2 and 4 are of length L. Then,

$$
\begin{align*}
& R_{1} F_{1}=R i_{1} l_{1} B \sin \theta_{1} N=R(+i)(2 R) B \sin \left(90^{\circ}-\theta\right) N=+2 i R^{2} B \cos \theta N \\
& R_{3} F_{3}=R i_{3} l_{3} B \sin \theta_{3} N=R(+i)(2 R) B \sin \left(270^{\circ}-\theta\right) N=-2 i R^{2} B \cos \theta N=-R_{1} F_{1} ; \tag{1.14}\\
& R_{2} F_{2}=R i_{2} l_{2} B \sin \theta_{2} N=(+R)(+i L B \sin \theta) N=R i L B \sin \theta N \\
& R_{4} F_{4}=R i_{4} l_{4} B \sin \theta_{4} N=(-R)(-i L B \sin \theta) N=R i L B \sin \theta N
\end{align*}
$$

Combining (1.13) and the explicit forces (1.14), and noting the simplification $R_{1} F_{1}=-R_{3} F_{3}$, we have,

$$
\overbrace{R f=R m g \sin \theta}^{f=m g \sin \theta}=\sum_{i=1}^{4} R_{i} F_{i}=R_{1} F_{1}+R_{2} F_{2}+R_{3} F_{3}+R_{4} F_{4}=R i L B \sin \theta N+R i L B \sin \theta N+0=2 R i L B \sin \theta N ;
$$

Solving (1.15) for i, we have,

$$
\begin{equation*}
R m g \sin \theta=2 R i L B \sin \theta N \stackrel{\text { solve for } i}{\longleftrightarrow} i=\frac{m g}{2 L B N}=\frac{(0.250 \mathrm{~kg})\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{2(0.100 \mathrm{~m})\left(0.500 \frac{N}{(m / s) C}\right)(10.0)}=2.453 \frac{\mathrm{C}}{\mathrm{~s}} \text {; } \tag{1.16}
\end{equation*}
$$

Afterword: We note that the net torque τ_{B} due to the four branches of the loop has the property,

$$
\begin{equation*}
\tau_{B}=\sum_{i=1}^{4} R_{i} F_{i}=2 R i L B N \sin \theta=|B| \overbrace{2 R L \cdot a \cdot i \cdot N \mid}^{2 R L=a=\text { are }=A / N} \sin \theta=|B \| a \cdot i \cdot N| \sin \theta=|B||A \cdot i| \sin \theta \equiv|B||\vec{\mu}| \sin \theta=|\vec{B} \times \vec{\mu}| ; \tag{1.17}
\end{equation*}
$$

We introduced the magnetic dipole moment vector, $\vec{\mu}=i \vec{A}=i N \vec{a}=i N a \hat{n}$, where $\hat{n}=\hat{k} \cos \theta+\hat{j} \sin \theta$ is the plane-normal defining the vector-area $\stackrel{1}{A}=N \stackrel{r}{r}=N a \hat{n}=N 2 L R \hat{n}$. Recall, also, that we encountered vector area in our study of the flux that naturally occurred in Gauss's law.

Problem 9: The figure shows, in cross section, two long straight wires held against a plastic cylinder of radius $R=20 \mathrm{~cm}$. Wire 1 carries current $i_{1}=60 \mathrm{~mA}$ out of the page and is fixed in place at the left side of the cylinder. Wire 2 carries current $i_{2}=40 \mathrm{~mA}$ out of the page and can be moved around the cylinder. At what (positive) angle θ_{2} should wire 2 be positioned such that, at the origin, the net magnetic field due to the two currents has magnitude $B=80 n T$?

This is problem 29-34, which was worked in class on Oct. 14

The two magnetic fields decompose as $\stackrel{1}{B}_{1}=B_{1} \hat{j}$ and $\stackrel{1}{B}_{2}=B_{2}\left(\sin \theta_{2} \hat{i}-\cos \theta_{2} \hat{j}\right)$, so the resultant of this, using Ampère's law to say $B_{1}=\frac{\mu_{0} i_{1}}{2 \pi R}$ and $B_{2}=\frac{\mu_{0} i_{2}}{2 \pi R}$ (in which we clearly have $i_{1}=\frac{3}{2} i_{2}$), is,

$$
\begin{align*}
B & =\sqrt{\left(B_{2} \sin \theta_{2}\right)^{2}+\left(B_{1}-B_{2} \cos \theta_{2}\right)^{2}}=\frac{\mu_{0} i_{2}}{2 \pi R} \sqrt{\sin ^{2} \theta_{2}+\left(\frac{3}{2}-\cos \theta_{2}\right)^{2}}=\frac{\mu_{0} i_{2}}{2 \pi R} \sqrt{\sin ^{2} \theta_{2}+\left(\frac{3}{2}\right)^{2}+\cos ^{2} \theta_{2}-2 \frac{3}{2} \cos \theta_{2}} \tag{1.19}\\
& =\frac{\mu_{0} i_{2}}{2 \pi R} \sqrt{1+\frac{9}{4}-3 \cos \theta_{2}} \leftrightarrow \theta_{2}=\cos ^{-1} \frac{1}{3}\left(\frac{13}{4}-\left(\frac{2 \pi R B}{\mu_{0} \dot{o}_{2}}\right)^{2}\right)=\cos ^{-1} \frac{1}{3}\left(\frac{13}{4}-\left(\frac{0.2\left(80 \times 10^{-2} T\right)}{2\left(40 \times 10^{-3} A\right)}\right)^{2}\right)=104.4775^{\circ} ;
\end{align*}
$$

Problem 10: In the figure a long straight wire carries a current $i_{1}=30.0 \mathrm{~A}$ and a rectangular loop carries current $_{2}=20.0 \mathrm{~A}$. Take the dimensions to be $a=1.00 \mathrm{~cm}, b=8.00 \mathrm{~cm}$, and $L=30.0 \mathrm{~cm}$. In unit vector notation, what is the force on the loop due to i_{1} ?

This is problem 29-41, which was assigned in homework.

The horizontal wires: Consider two typical wires, a and b, a distance d apart, and carrying respective currents i_{a} and i_{b}. A differential element of force $d \stackrel{1}{F_{b a}}$ acts upon wire- b and is due to wire- a,

By the Lorentz force law, the differential element of force $d \stackrel{1}{F}_{b a}$ per unit length $d x$ is due to magnetic field ${ }^{4}$ $\stackrel{1}{B_{b}}=\frac{\mu_{0} i_{a}}{2 \pi d}(-\hat{j})$, so we calculate the force per unit length $\stackrel{\mathrm{I}}{f_{b a}} \equiv \frac{\stackrel{\mathrm{r}}{\mathrm{f}}{ }_{b a}}{d x}$ as,

$$
\begin{equation*}
\vec{f}_{b a}=\frac{d \vec{F}_{b a}}{d z}=\frac{d q_{b} \cdot \vec{v}_{b} \times \vec{B}_{a}}{d z}=\frac{d q_{b} \cdot \frac{d \vec{z}}{d t} \times\left(\frac{\mu_{0} i_{a}}{2 \pi d}(-\hat{j})\right)}{d z}=\frac{\frac{d q_{b}}{d t} \cdot(\hat{k} \cdot d z) \times\left(\frac{\mu_{0} i_{a}}{2 \pi d}(-\hat{j})\right)}{d z}=i_{b} \frac{\mu_{0} i_{a}}{2 \pi d} \hat{k} \times(-\hat{j})=\frac{\mu_{0} i_{a} i_{b}}{2 \pi d} \hat{i} ; \tag{1.22}
\end{equation*}
$$

Evidently, the force between wires a and b is in the $+\hat{i}$ direction, and thus is attractive. Using this result (1.22) upon the two horizontal wires in the Figure (numbered 1 and 3 (note the different coordinates!)),

$$
\begin{equation*}
\vec{F}_{1}=\int d \vec{F}_{1}=\int_{0}^{L} \frac{d \vec{F}_{1}}{d x} d x=\int_{0}^{L}\left(\frac{\mu_{0} i_{1} i_{2}}{2 \pi a} \hat{j}\right) d x=\frac{\mu_{0} i_{1} i_{2} L}{2 \pi a} \hat{j} ; \quad \vec{F}_{3}=\int_{0}^{L} \frac{d \vec{F}_{3}}{d x} d x=\int_{0}^{L}\left(\frac{\mu_{0} i_{1} i_{2}}{2 \pi(a+b)}(-\hat{j})\right) d x=-\frac{\mu_{0} i_{1} i_{2} L}{2 \pi(a+b)} \hat{j} ; \tag{1.23}
\end{equation*}
$$

The vertical wires: The total forces upon wires 2 and 4 due to wire 0 (of infinite length) are,

$$
\begin{equation*}
\vec{F}_{2}=\int d \vec{F}_{2}=\int_{a}^{a+b} \frac{d \vec{F}_{2}}{d y} d y=\int_{a}^{a+b} \frac{d q_{2} \cdot \vec{v}_{2} \times \vec{B}_{0}}{d y} d y ; \quad \vec{F}_{4}=\int_{a}^{a+b} \frac{d \vec{F}_{2}}{d y} d y=\int_{a+b}^{a} \frac{d q_{4} \cdot \vec{v}_{4} \times \vec{B}_{0}}{d y} d y \tag{1.24}
\end{equation*}
$$

The integrands in (1.24) (i.e., the forces per unit y-length) are,

$$
\begin{equation*}
\frac{d \vec{F}_{2}}{d y}=\frac{d q_{2} \cdot \vec{v}_{2} \times \vec{B}_{0}}{d y}=\frac{i_{2} \cdot(-\hat{j} \cdot d y) \times \frac{\mu_{0} i_{1}}{2 \pi y}(-\hat{k})}{d y}=\frac{\mu_{0} i_{1} i_{2}}{2 \pi y} \hat{i} ; \quad \frac{d \vec{F}_{4}}{d y}=\frac{d q_{4} \cdot \vec{v}_{4} \times \vec{B}_{0}}{d y}=\frac{i_{2} \cdot(+\hat{j} \cdot d y) \times \frac{\mu_{0} i_{1}}{2 \pi y}(-\hat{k})}{d y}=\frac{-\mu_{0} i_{1} i_{2}}{2 \pi y} \hat{i} ; \tag{1.25}
\end{equation*}
$$

Combining (1.24) and (1.25), we have,

$$
\begin{equation*}
\stackrel{\mathrm{r}}{F_{2}}=\int_{a}^{a+b} \frac{\mu_{0} i_{1} i_{2}}{2 \pi y} \hat{i} \cdot d y=\frac{\mu_{0} i_{1} i_{2}}{2 \pi} \hat{i} \int_{a}^{a+b} \frac{d y}{y}=\frac{\mu_{0} i_{1} i_{2}}{2 \pi} \hat{i} \ln \frac{a+b}{a} ; \quad \stackrel{\mathrm{r}}{F_{4}}=\int_{a}^{a+b} \frac{-\mu_{0} i_{1} i_{2}}{2 \pi y} \hat{i} \cdot d y=\frac{-\mu_{0} i_{1} i_{2}}{2 \pi} \hat{i} \int_{a}^{a+b} \frac{d y}{y}=\frac{-\mu_{0} i_{1} i_{2}}{2 \pi} \hat{i} \ln \frac{a+b}{a} ; \tag{1.26}
\end{equation*}
$$

Looking at (1.26), we see $\stackrel{\perp}{F_{2}}=-\stackrel{1}{F_{4}}$, so the superposition of these two forces make no contribution. Hence,

$$
\begin{align*}
\vec{F} & =\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\vec{F}_{4}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}-\vec{F}_{2}=\vec{F}_{1}+\vec{F}_{3}=\frac{\mu_{0} i_{1} i_{2} L}{2 \pi a} \hat{j}-\frac{\mu_{0} i_{1} i_{2} L}{2 \pi(a+b)} \hat{j}=\frac{\mu_{0} i_{1} i_{2} L}{2 \pi} \hat{j}\left(\frac{1}{a}-\frac{1}{a+b}\right) \tag{1.27}\\
& =\frac{\left(4 \pi \times 10^{-7} \frac{\mathrm{~T} \cdot \mathrm{~m}}{A}\right)(30.0 A)(20.0 A)(30.0 \mathrm{~cm})}{2 \pi} \hat{j}\left(\frac{1}{1.00 \mathrm{~cm}}-\frac{1}{1.00 \mathrm{~cm}+8.00 \mathrm{~cm}}\right)=0.0032 \mathrm{~N} \cdot \hat{j} ;
\end{align*}
$$

Problem 11: The current density $\stackrel{1}{J}$ inside a long, solid, cylindrical wire of radius $a=3.1 \times 10^{-3} \mathrm{~m}$ is in the direction of the central axis, and its magnitude varies linearly with radial distance r from the axis according to $\stackrel{\stackrel{1}{J}}{=} \stackrel{1}{J}(r)=J_{0}(r / a) \hat{k}$, where $J_{0}=310 \frac{A}{m^{2}}$. What is the magnitude of the magnetic field atr $/ a=1 / 2$? You may need the Jacobian term $r d r d \theta$ for integration in polar coordinates.
This is problem 29-47, which was assigned in homework.

[^1]The current enclosed by an Ampèrian-loop of radius $0 \leq b \leq a$ is,

$$
\begin{equation*}
i_{\text {encl }}=i_{\text {encl }}(b)=\int d i_{\text {encl }}=\int_{\text {wire x.s. }} \frac{d i}{d A} d A=\int_{0}^{b} \int_{0}^{2 \pi} J_{0}(r / a) \cdot d r \cdot r \cdot d \phi=\frac{2 \pi J_{0}}{a} \int_{0}^{b} r^{2} d r=\frac{2 \pi J_{0}}{a} \frac{1}{3}\left(b^{3}-0^{3}\right)=\frac{2 \pi J_{0} b^{3}}{3 a} ;(1 \tag{1.28}
\end{equation*}
$$

The magnetic field at a distance b from the center of the wire, then, is given from the enclosed current (1.28) via the law of Ampère,

$$
\begin{equation*}
\oint \vec{B} \bullet d \vec{s}=\mu_{0} i_{\text {encl }}(b) \rightarrow \vec{B} \bullet \oint d \vec{s}=\mu_{0} \frac{2 \pi J_{0} b^{3}}{3 a} \rightarrow B \hat{\phi} \bullet 2 \pi b \cdot \hat{\phi}=\mu_{0} \frac{2 \pi J_{0} b^{3}}{3 a} \stackrel{\substack{\text { solve } \\ \text { for } \mathrm{B}}}{\substack{ \\\longrightarrow}} \mu_{0} \frac{J_{0} b^{2}}{3 a} ; \tag{1.29}
\end{equation*}
$$

From (1.29) follows,

$$
\begin{equation*}
B_{b}=B\left(\frac{1}{2} a\right)=\frac{\mu_{0} J_{0} \cdot\left(\frac{1}{2} a\right)^{2}}{3 a}=\frac{1}{12} \mu_{0} a J_{0}=\frac{1}{12}\left(4 \pi \times 10^{-7} \frac{T \cdot m}{A}\right)\left(3.1 \times 10^{-3} \mathrm{~m}\right)\left(310 \frac{A}{m^{2}}\right)=1.0064 \times 10^{-7} T ; \tag{1.30}
\end{equation*}
$$

Problem 12: A solenoid that is $L=95 \mathrm{~cm}$ long has a radius $R=2.0 \mathrm{~cm}$ and a winding of $N=1200$ turns; it carries a current of $i=3.6 \mathrm{~A}$. What is the magnitude of the magnetic field inside the solenoid?

This is problem 29-50, which was assigned in homework.
The magnetic field ${ }_{B}^{1}$ at the center of a solenoid made of a wire carrying current i with $n=N / L$ turns per meter is of magnitude $B=\mu_{0} n i$. Therefore, $B=\mu_{0}(N / L) i=4 \pi \times 10^{-7} \frac{\mathrm{~T} \cdot \mathrm{~m}}{A} \frac{1200}{0.95 \mathrm{~cm}}(3.6 A)=5.7144 \mathrm{mT}$.

Problem 13: A wire loop of lengths $L=40 \mathrm{~cm}$ and $W=25 \mathrm{~cm}$ lies in a magnetic field $\stackrel{1}{B}=\left(0.08 \frac{T}{m \cdot s}\right) y t \cdot \hat{k}$. What are the magnitude and direction of the induced E.M.F.?

This is problem 30-12, which was worked in class on Oct. 19
$\varepsilon=-\frac{d}{d t} \int_{0}^{W} d y \int_{0}^{L} b_{0} y t \cdot d x=-b_{0}\left(\frac{1}{2} W^{2}-\frac{1}{2} 0^{2}\right)(L-0)=-\frac{1}{2} b_{0} W^{2} L=-1.00 m V ;$ clockwise;

Problem 14: The figure shows a rod of length $L=10 \mathrm{~cm}$ that is forced to move at constant speed $v=5 \mathrm{~m} / \mathrm{s}$ along the horizontal rails. The rod, rails and connecting strip at the right form a conducting loop. The rod has a resistance $R=0.4 \Omega$; the rest of the loop has negligible resistance. A current $i=100 \mathrm{~A}$ through the long straight wire at a distance $a=10 \mathrm{~mm}$ from the loop sets up a nonuniform magnetic field through the loop. At what rate $($ in $\mu W)$ is thermal energy generated in the rod?

This is problem 30-33, which was worked in class on Oct. 21

The magnetic field $\stackrel{1}{B}$ due to the long straight wire at a distance $y \in[a, L+a]$ is $\stackrel{1}{B}=\frac{\mu_{0} i}{2 \pi y} \hat{k}$, and the differential vector area through which it fluxes is $d A(y)=d y\left(v t+x_{0}\right) \hat{k}$, and so the E.M.F. generated is $\varepsilon=-\frac{d}{d t} \int^{1} B \bullet d A$, yielding the power $P=I \varepsilon=\varepsilon^{2} / R$. Putting all this together,

$$
\begin{align*}
& P=\frac{1}{R}\left(-\frac{d}{d t} \int_{a}^{L+a}\left(v t+x_{0}\right) \frac{\mu_{0} i}{2 \pi y} d y\right)^{2}=\frac{1}{R}\left(\frac{\mu_{0} i v}{2 \pi}\right)^{2}\left(\int_{a}^{L+a} \frac{d y}{y}\right)^{2}=\frac{1}{R}\left(\frac{\mu_{0} i v}{2 \pi}\right)^{2}\left(\ln \frac{L+a}{a}\right)^{2} \tag{1.32}\\
& =\frac{1}{0.4 \Omega}\left(\left(\frac{4 \pi}{2 \pi} \times 10^{-7} \frac{T \cdot m}{A}\right)(100 A)\left(5 \frac{m}{s}\right)\right)^{2}\left(\ln \frac{0.11}{0.01}\right)^{2}=0.14375 \mu W
\end{align*}
$$

Problem 15: The current $i=i(t)$ through a $L=4.6 H$ inductor varies with time t as shown in the graph, where the vertical axis scale is set by $i_{s}=8.0 \mathrm{~A}$ and the horizontal axis scale is set by $t_{s}=6.0 \times 10^{-3} \mathrm{~s}$. The inductor has a resistance of $R=12 \Omega$. What is the magnitude of the induced E.M.F. during the time interval

This is problem 30-46, which was assigned in homework.

Recall the definition of inductance: L is the E.M.F.-magnitude ε per unit rate-of-change of current $\frac{d i}{d t}$, or Φ_{B} per unit i, and specialize it to the case of $\frac{d i}{d t}=\frac{\Delta i}{\Delta t}$,

$$
\begin{equation*}
L \equiv \frac{\varepsilon}{\frac{d}{d t} i} \equiv \frac{\Phi_{B}}{i} ; \quad \frac{d i}{d t}=\frac{\Delta i}{\Delta t} ; \tag{1.33}
\end{equation*}
$$

Within the time-interval $2 \times 10^{-3} s<t \leq 5 \times 10^{-3} s$, we have,

$$
\begin{equation*}
\left(\frac{\Delta i}{\Delta t}\right)=\frac{(5.0-7.0) A}{(5.0-2.0) \times 10^{-3} s} \rightarrow \mathcal{E}=L\left(\frac{\Delta i}{\Delta t}\right)=(4.6 H) \frac{(5.0-7.0) \mathrm{A}}{(5.0-2.0) \times 10^{-3} s}=3.1 \times 10^{3} \mathrm{~V} \tag{1.34}
\end{equation*}
$$

PHY2049 Fall 2015 - Acosta, Woodard
Problem 16: The switch in the figure is closed on a at time $t=0$. What fraction of the total voltage drop \mathcal{E} occurs across the inductor at time $t=2 L / R$?

This is problem 30-52, which was worked in class on Oct. 23

Recall that an LR-circuit has a current $i(t)=i_{0}+i_{1} e^{-t / \tau}$, where $\tau=L / R$. The conditions $i(0)=0$ and $i(\infty)=\varepsilon / R$ respectively yield $i_{0}=-i_{1}$ and $i_{0}=\varepsilon / R$, yielding $i(t)=(\varepsilon / R)\left(1-e^{-t / \tau}\right)$, meaning that at a time of $t=2 L / R=2 \tau$ the inductor's voltage in units of ε is,

$$
\begin{equation*}
\frac{v_{L}}{\varepsilon}=\frac{1}{\varepsilon} L \frac{d i}{d t}=\frac{L}{\varepsilon} \frac{\varepsilon}{R} \frac{d}{d t}\left(1-e^{-t / \tau}\right)=\frac{L}{R}\left(0-\frac{-1}{\tau} e^{-2 \tau / \tau}\right)=\frac{L}{R} \frac{1}{\tau} e^{-2}=\frac{L}{R} \frac{1}{L / R} e^{-2}=e^{-2}=0.1353 ; \tag{1.36}
\end{equation*}
$$

Problem 17:

An LC circuit has a capacitance of $20 \mu F$ and an inductance of 10 mH . At time $t=0$ the charge on the capacitor is $27 \mu \mathrm{C}$ and the current is 80 mA . What is the maximum possible charge in $\mu \mathrm{C}$ (or what is the maximum possible current)?

$$
\begin{equation*}
U_{C}=\int_{0}^{q} V(Q) \cdot d Q=\int_{0}^{q} \frac{Q}{C} \cdot d Q=\frac{q^{2}}{2 C} ; \quad U_{L}=\int P \cdot d t=\int \varepsilon I \cdot d t=\int L \frac{d I}{d t} I \cdot d t=\int_{0}^{i}(L I \cdot d I)=\frac{1}{2} L i^{2} \tag{1.37}
\end{equation*}
$$

Thus, the total energy in the circuit, by energy-conservation, is $U=U_{C}+U_{L}=\frac{1}{2 C} q^{2}+\frac{1}{2} L i^{2}$, yielding a maximum charge on the capacitor of $\max U_{C}=U=\frac{1}{2 C} q_{\max }^{2} \leftrightarrow q_{\max }=\sqrt{2 C U}$, which, explicitly, is,

$$
\begin{aligned}
q_{\max } & =\sqrt{2 C U}=\sqrt{2 C\left(\frac{1}{2 C} q^{2}+\frac{1}{2} L i^{2}\right)}=\sqrt{\sqrt{q^{2}+L C i^{2}}}=\sqrt{(27 \mu C)^{2}+(10 m H)(20 \mu F)(80 m A)^{2}}=44.822 \mu C ; \\
i_{\max } & =\sqrt{2 U / L}=100 m A
\end{aligned}
$$

Problem 18: A sinusoidally varying source of E.M.F. with an amplitude of 10 V and a cyclic frequency of 5 GHz is applied across a $100 \mu \mathrm{H}$ inductor. What is the current amplitude through the inductor?

This is based on a HITT clicker question given in class Oct. 30

$$
\begin{equation*}
I_{\max }=\frac{V_{\max }}{X_{L}}=\frac{V_{\max }}{\omega_{d} L}=\frac{V_{\max }}{2 \pi f_{d} L}=\frac{10 \mathrm{~V}}{2 \pi(5 G H z)(100 \mu \mathrm{H})}=\frac{1}{2 \pi(5)(10)} \times 10^{-3}=3.18 \times 10^{-6} \mathrm{~A} ; \tag{1.39}
\end{equation*}
$$

Problem 19: A 218Ω resistor, a $L=0.775 H$ inductor, and a $6.50 \mu F$ capacitor are connected in series across a sinusoidally varying source of E.M.F. that has voltage amplitude 31.0 V and a cyclic frequency of 37.5 Hz . What is the magnitude of the phase difference between the current in the resistor and the E.M.F.?

This is similar to Example 31-E done in class.

$$
|\phi|=\left|\tan ^{-1} \frac{X_{L}-X_{C}}{R}\right|=\| \tan ^{-1} \frac{\omega_{d} L-\left(\omega_{d} C\right)^{-1}}{R}\left|=\left|\tan ^{-1} \frac{\left(235 \frac{\mathrm{rad}}{\mathrm{~s}}\right)(0.775 \mathrm{H})-\left(\left(235 \frac{\mathrm{rad}}{\mathrm{~s}}\right)(6.50 \mu F)\right)^{-1}}{218 \Omega}\right|=\left|-65.234^{\circ}\right| ;\right.
$$

Problem 20: A transformer connected to a $V_{p}^{R M S}=120 \mathrm{~V}$ AC line is to supply $V_{s}^{R M S}=12,000 \mathrm{~V}$ for a neon sign. To reduce shock hazard, a fuse is to be inserted in the primary circuit; the fuse is to blow when the R.M.S. current in the secondary circuit exceeds $i_{s}^{R M S}=3.0 \mathrm{~mA}$. What current rating should the fuse in the primary circuit have?

The power delivered into the primary is the same as that on the secondary (or less for realistic transformers)

$$
\begin{equation*}
i_{p}^{R M S}=\frac{N_{s}}{N_{p}} i_{s}^{R M S}=\frac{V_{s}^{R M S}}{V_{p}^{R M S}} i_{s}^{R M S}=\frac{1.2 \times 10^{4} \mathrm{~V}}{120 \mathrm{~V}}(3.0 \mathrm{~mA})=300 \mathrm{~mA} ; \tag{1.40}
\end{equation*}
$$

[^0]: ${ }^{1}$ A tesla is a unit of force per unit velocity per unit charge; essentially the units of electric field divided by velocity.
 ${ }^{2}$ The radius of the wooden cylinder is R, but the wooden-material may be inhomogeneous, so assume $I \neq \frac{1}{2} m R^{2}$.
 ${ }^{3}$ CAUTION: The force of static friction is a reaction force, and its magnitude is unknown. The maximum value the force of friction could take on, if we knew the static-friction-coefficient μ_{S}, is $\max f=\mu_{S} N$, where N is a reaction force which has a known contribution $m g \cos \theta$ from gravity, but an unknown contribution from the net magnetic force.

[^1]: ${ }^{4}$ Proof: from Ampère's law: $\int \stackrel{1}{B}_{B_{\text {wire }}} \bullet d{ }^{\mathbf{1}}=\mu_{0} i_{\text {encl }} \rightarrow \stackrel{1}{B}_{\text {wire }} \bullet \hat{r}_{\perp} \int d s=\mu_{0} i_{\text {encl }} \rightarrow B_{\text {wire }}^{\perp} 2 \pi d=\mu_{0} i_{\text {encl }} \rightarrow \stackrel{1}{B_{\text {wire }}}=\frac{\mu_{0} i_{\text {end }}}{2 \pi d} \hat{r}_{\perp}$. In this problem, $i_{\text {encl }}=i_{a}$ and (by the right hand rule) $\hat{r}_{\perp}=-\hat{j}$.

