

Examiners' Report June 2013

GCSE Physics 5PH1H 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit www.edexcel.com/resultsplus. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk.

June 2013

Publications Code UG036887

All the material in this publication is copyright © Pearson Education Ltd 2013

Introduction

Unit P1 Universal Physics

The unit is divided into six topics and all six topics are tested in the examination.

The examination paper was designed to enable candidates to show what they knew, understood and were able to do. Within the question paper, a variety of question types were included, such as objective questions, short answer questions worth one or two marks each and longer questions worth three or four marks each. The two six mark questions were used to test quality of written communication.

The overall impression of the examiners was that the majority of candidates had been well prepared for this examination.

Centres are aware that the next examination is in June 2014. There will be no changes to the format of the paper in June 2014.

Successful candidates were:

- well grounded in the fundamental knowledge required
- willing to think through the possibilities and apply their knowledge when the question asked for suggestions to explain new situations
- able to tackle calculations methodically and show the stages in their working
- able to construct their explanations in a logical order, using the mark allocations given beside the parts of each question as a guide.

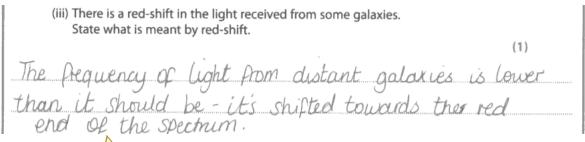
Less successful candidates:

- had gaps in their knowledge
- did not read the questions carefully, and gave answers that were related to the topic being tested, but did not answer the question
- did not understand the meaning of key scientific words and phrases
- found difficulty in applying their knowledge to new situations
- did not show the stages in their working
- did not think through their answers before writing.

This report will provide exemplification of candidates' work, together with tips and/or comments, for a selection of questions. The exemplification will come mainly from questions which required more complex responses from candidates.

Question 1(a)(i)

Only 40% of candidates were able to recall that CMB radiation is an abbreviation for cosmic microwave background radiation.


Question 1(a)(ii)

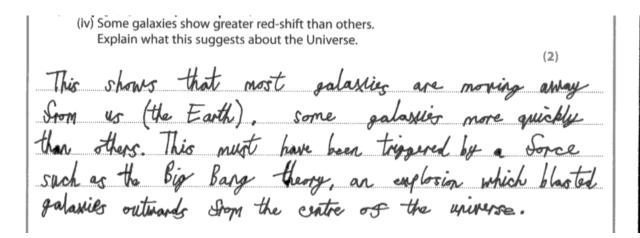
This simple item was generally correctly answered. Predictably, however, there were the minority of incorrect answers that may be expected, such as 'steady state' and 'heliocentric'.

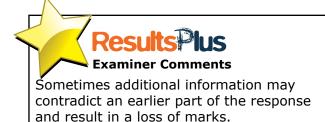
Question 1(a)(iii)

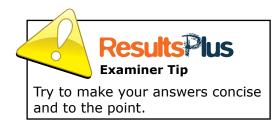
The number of correct responses was disappointing. Many of the incorrect responses did not making sense when read through. A common mistake for example, was to state that it was the galaxies, rather than the light from them, that was shifted to the red end of the spectrum. Less successful candidates made references to galaxies or planets or stars appearing red.

An example of a correct response:

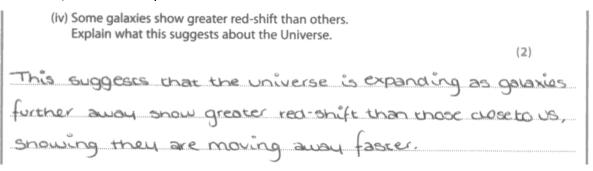
Both parts of the response would have been awarded a mark.

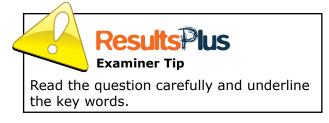

Candidates should be prepared to memorise the basic facts as stated in the specification.


Question 1(a)(iv)


Most candidates gained the mark for the Universe expanding. However, there were answers describing all sorts of other things expanding as well. The second mark was most commonly awarded for some galaxies moving faster with the link to the size of the redshift often not stated. A surprising number of answers talked about the Universe moving away from us and there were quite a few references to stars or planets or galaxies expanding.

A significant number of candidates only gave one answer for a two mark question.


The marker was able to ignore the extra information and award both marks.



This is a clear, concise response.

Question 1(b)(ii)

This question elicited a large number of very vague answers involving seeing further away, different planets, life on other planets etc. The most common award for the first mark was for a named type of electromagnetic radiation. Not many gained the second mark, but those who did usually wrote very comprehensive answers. Less successful candidates wrote about telescopes sending out various types of radiation in order to see different objects.

Very few responses considered that weaker signals could be collected, or mentioned about placing telescopes outside the Earth's atmosphere.

Question 2(a)(i)

Some candidates failed to score on this question because they merely restated the definition of efficiency from the formula page without any reference to the 60% mentioned in the question.

Most candidates scored by saying that 60% of the energy was useful; however, they could have scored 2 marks by relating this to the input energy.

Very few candidates made a reference to kinetic energy as the useful output of the motor.

This response scored both marks.

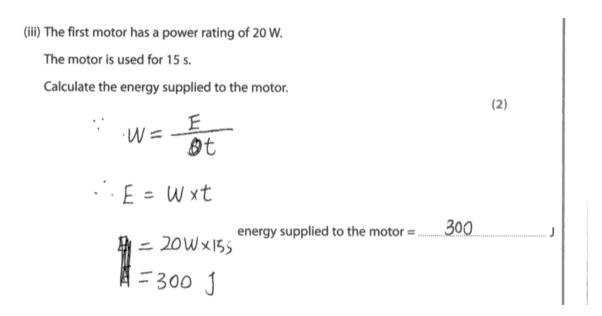
- 2 Some students investigate the efficiency of electric motors.
 - (a) (i) The students find that one electric motor has an efficiency of 60%.

Explain in terms of energy what is meant by an efficiency of 60%.

(2)

entroined 100% means that in the total ammount of energy being supposed, only born of it is being used expectively.

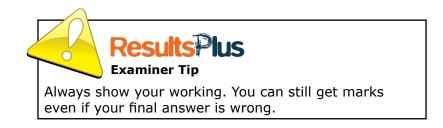
The marker has allowed 'used effectively' as an acceptable description for the useful output energy of the motor.


Read the question carefully to make sure that you have given the right answer. If you have spare time at the end of the examination, use it to check your work.

Question 2(a)(iii)

Most candidates scored well on this item with only 32% failing to gain at least 1 mark and almost 64% gaining both marks.

The most common error was to evaluate 15/20 or 20/15 rather than finding the product of power rating and time.


A well set out response:

This was a good response to the question. The candidate has shown full working.

Had there been an error in the final evaluation, then some of the marks would still have been available. (2 marks)

One of the more common errors:

(iii) The first motor has a power rating of 20 W.

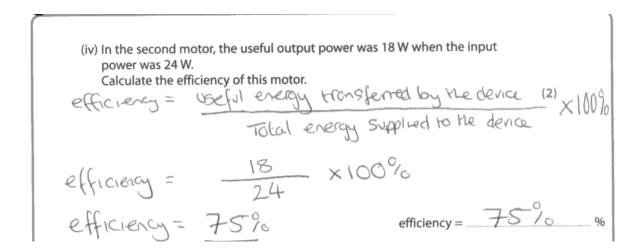
The motor is used for 15 s.

Calculate the energy supplied to the motor.

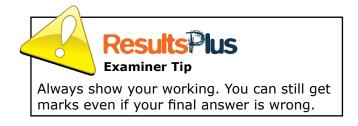
(2)

energy supplied to the motor = 1.3

The candidate has made little attempt to explain what they are doing. (0 marks)

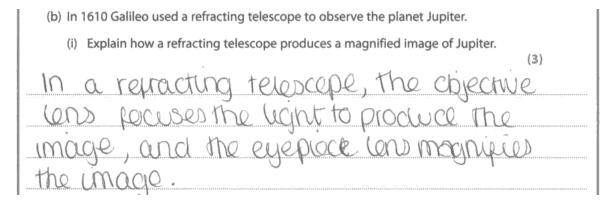


Always start the answer to a calculation by writing down the equation you are going to use from the formula page.


Question 2(a)(iv)

This item was well answered with over 80% of candidates scoring both marks. Only a few candidates evaluated the efficiency as 133%.

One of the many correct responses:



Question 3(b)(i)

This question was answered well by better candidates but less successful candidates struggled to produce sensible responses. A large number of candidates do not appear to recognise the difference between the behaviour of mirrors and lenses or even the difference between mirrors and lenses, whilst some candidates did not know the difference between the image and the light rays involved in forming it. There were many confused statements along the lines of 'the image is refracted' or 'the image hits the lens'.

This candidate has just done enough to score full marks.

This is a fairly basic description but sufficient to score 3 marks.

Use the marks at the side of a question as a guide to the form and content of your answer.

An example of one of the confused responses:

(b) In 1610 Galileo used a refracting telescope to observe the planet Jupiter.

(i) Explain how a refracting telescope produces a magnified image of Jupiter.

(3)

The concave mirror was being magnified as the image gets to the middle. As the image gets to the middle it is magnified bigger and made bigger.

Then more detail is shown for example jupiters

moons two mirrors were used to reflect of eachother and refract fhrough different boundarys

The candidate has made an attempt to answer the question but the response does not convey any understanding. Adding a few scientific terms to a rewording of the question rarely receives any credit.

Be prepared to memorise the basic facts as stated in the specification.

Question 3(b)(ii)

This question was usually answered well with about 55% of candidates scoring full marks. Most candidates were able to relate Galileo's observation of moons orbiting Jupiter to his conclusion that 'not everything orbited the Earth'. Some responses included detailed explanations of the heliocentric model but failed to mention the geocentric model.

Candidates who did not score full marks usually scored either one mark for describing the geocentric model or two marks for recalling that Galileo had observed moons orbiting Jupiter.

A typical 2 mark response:

(ii) In 1610, the geocentric model of the Solar System was commonly accepted.

Explain how Galileo's observations contradicted the geocentric model.

(3)

The geocentric model Add that Mith dimition about ed the Sun, but Galileo's observations proved that the heliocentric model was correct. He proved that Junter was abouted by morns by recording the movement weetly unite laxing through at telescope.

The confusion about the geocentric model does not affect the awarding of two marks for knowing that Galileo observed moons orbiting Jupiter.

Read the question carefully to make sure that you have given the right answer. If you have spare time at the end of the examination, use it to check your work.

A well presented response that was awarded full marks:

Geocentric model was the idea that everything arbited the Earth and it was thought of by Ancient areals. The Geocentric model was proved incornect by Calileo observing Typiter via a telescope as he found four moons abiting.

Jupiter proving that not EVERYTHING orbited the Earth.

This is an example of the type of response that we were hoping for.

This response was awarded 3 marks.

Candidates should use the mark allocation as a guide. They need to make as many correct statements as there are marks available.

Question 3(c)

This question was usually answered well, with almost 50% of candidates scoring full marks. The most common error was in handling powers of 10.

One of the many excellent responses to this question. It is similar to the 'show that' format where many candidates seem to do well.

(c) Light travels the 150 million km from the Sun to the Earth in about 500 s. It takes about 2100 s for light to reach the Earth from Jupiter. Using this information, calculate the approximate distance of Jupiter from the Earth.

Earth.
$$150,000,000 = 500 = 300,000$$
 km per second light trairels $300,000 \times 2100 = 630,000,000$

= 630, million Um from Earth to Jopiter.

distance of Jupiter from the Earth = 630 million km

(Total for Question 3 = 10 marks)

This was an excellent response to the question. The candidate showed full working and made the effort to annotate the work. Had there been an error in the final evaluation, then some of the marks would still have been available.

It is always better to show HOW you arrived at your answer. You may be able to get a mark if your answer is wrong and the examiner can see that you used the correct method.

This is an example of a 1 mark response.

(c) Light travels the 150 million km from the Sun to the Earth in about 500 s. It takes about 2100 s for light to reach the Earth from Jupiter. Using this information, calculate the approximate distance of Jupiter from the Earth.

150 000 000 = 300 000

300 000 x 2100 = 690 000 000

distance of Jupiter from the Earth = 690 million

(Total for Question 3 = 10 marks)

The candidate has shown a clear method of working and so the examiner was able to award 1 mark.

Always show your working. Without working this response would score no marks.

No marks were awarded for this response:

(c) Light travels the 150 million km from the Sun to the Earth in about 500 s. It takes about 2100 s for light to reach the Earth from Jupiter. Using this information, calculate the approximate distance of Jupiter from the Earth.

(2)

(2)

distance of Jupiter from the Earth =

million km

(Total for Question 3 = 10 marks)

Examiner Comments

As there is no working the examiner is unable to award any marks.

However, it seems certain that this candidate must be using a correct method by obtaining an answer of the correct order of magnitude.

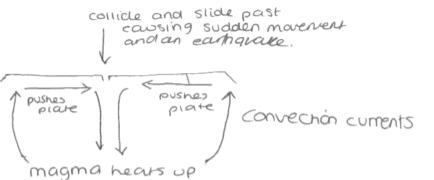
Always show your working. You can still get marks even if your final answer is wrong.

Question 4(b)

Most candidates had some understanding of the processes involved. They appreciated that tectonic plates moved and caused earthquakes, but many thought the thermal energy was causing the plates to expand, or that it was created by the friction of the plates moving. Quite a few had the idea that the convection currents were in hot water or air below the Earth's crust.

Better candidates displayed a very good understanding, but some answers from less successful candidates were very confused.

The most frequently missed points were about pressure/energy building up, before being released suddenly when the plates jolted/slipped.


One of the many 3 mark answers:

(b) The Earth's surface is made up of many tectonic plates. The interior of the Earth is a source of thermal energy.

Describe how this thermal energy can cause earthquakes.

You may draw a labelled diagram to help with your answer.

(3)

The thermal energy causes magma to move slassy. As the magma leats up it isses and pushes between the tectonic plates.

Causing the tectonic plates to move. The magma coals sinks, is releated and the process thappens again, there are caused convection currents. The plates either move rowards or away from each oner, if they move towards or past each other and addide and one slips past the other causing a sudden movement, an earmy cause occurs.

The candidate has a good understanding of the process and whilst not fully explained is sufficient to score 3 marks.

Ensure that when there are three marks for the question, three points are made in the answer.

A typical 1 mark response:

(b) The Earth's surface is made up of many tectonic plates. The interior of the Earth is a source of thermal energy.

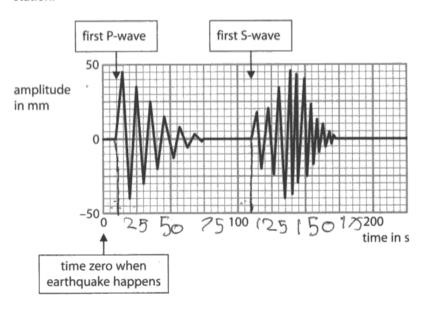
Describe how this thermal energy can cause earthquakes.

You may draw a labelled diagram to help with your answer.

(3)

this thermal Energy is in the mantle in the middle of the earth, when the heat passes through the inner care + outer core they can cause friction between the tectonic Plates, when these plates slide or crash into each other an earthquaice gets produced, from the amount or every that's there

The candidate scores one mark for the implication of tectonic plates moving. The idea that earthquakes result from tectonic plates crashing into each other was often stated by weaker candidates.


Candidates must prepare by memorising the basic facts as stated in the specification and using technical terms wherever possible in descriptions and explanations.

Question 4(c)

This item was answered correctly by more than 60% of candidates. The main sources of errors were misreading the graph or to give an answer 110 ie failing to subtract 10. Once again, many candidates lost a mark here through failing to show their working.

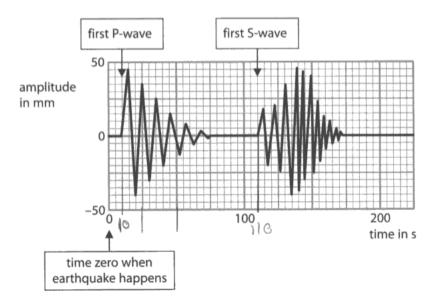
One of the many correct responses:

(c) The chart shows the arrival of earthquake waves at an earthquake monitoring station.

The S – P time (S minus P time) for earthquake waves is the time difference between the arrival of the first P wave and the first S wave.

Use the chart to estimate the S – P time for the earthquake waves shown.

(2)


The candidate clearly shows working on the graph and the final subtraction, an excellent response.

It is always better to show HOW you arrived at your answer. You may be able to get a mark if your answer is wrong and the examiner can see that you used the correct method.

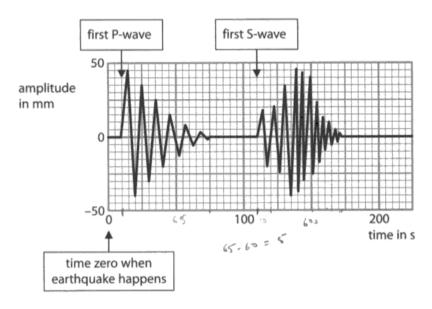
Another example scoring both marks:

(c) The chart shows the arrival of earthquake waves at an earthquake monitoring station.

The S – P time (S minus P time) for earthquake waves is the time difference between the arrival of the first P wave and the first S wave.

Use the chart to estimate the S-P time for the earthquake waves shown.

(2)



Always show your method of working in graphical and calculation questions.

This is a good example of why you should always show your method of working.

(c) The chart shows the arrival of earthquake waves at an earthquake monitoring station.

The S-P time (S minus P time) for earthquake waves is the time difference between the arrival of the first P wave and the first S wave.

Use the chart to estimate the S - P time for the earthquake waves shown.

110 -10 = 10

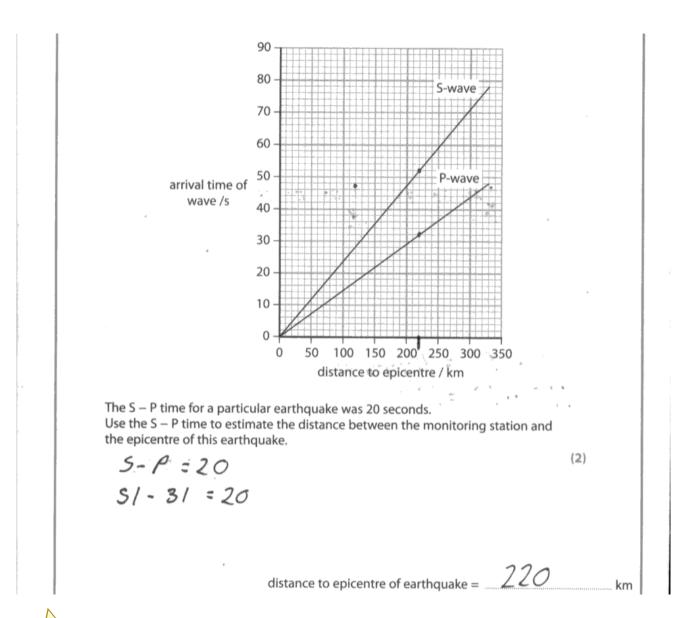
(2)

65-

S – P time = 10 seconds

Unfortunately, the candidate has made an error whilst subtracting.

The examiner is able to award 1 mark for the correct readings from the graph being used in the subtraction.


Read the question carefully to make sure that you have given the right answer. If you have spare time at the end of the examination, use it to check your work.

Question 4(d)

Only the most able candidates fared well with this item. Most candidates did not grasp the idea of S-P time. This resulted in many reading across the graph from 20s on the y-axis rather than looking for a 20s separation between the two lines on the graph. This led to a variety of answers based around the distances 80 km and 140 km, or various manipulations of them.

The other common incorrect responses were based around the final data points on the plotted graphs, either the S-P time of 30s or the distance to epicentre of 330km.

This is an example of a successful response.

The candidate has identified the S-P time interval of 20 seconds on the graph and then indicated the correct distance on the X-axis.

Although there was misreading of the values of time on the y-axis, the values quoted were within the tolerance allowed for this item.

It is always better to show HOW you arrived at your answer.

You may be able to get a mark if your answer is wrong and the examiner can see that you used the correct method.

Question 4(e)

This item was generally well answered with almost 75% of candidates scoring 1 or 2 marks. Many candidates missed out on marks as their answers were too vague eg `...too low for humans to hear' rather than `...the frequency was too low.'

An example of one of the many 2 mark responses:

(e) Many earthquakes and volcanoes are linked to the production of infrasound waves.

Describe what is meant by infrasound waves.

(2)

they are longlitudinal waves that have frequencies bolow 20Hz, Belowa point which humans Cannot Nov.

(Total for Question 4 = 10 marks)

This is a clear response. The marks are both scored in the first sentence.

Ensure that when there are two marks for the question, two points are made in the answer.

An example of a response scoring 1 mark:

(e) Many earthquakes and volcanoes are linked to the production of infrasound waves.

Describe what is meant by infrasound waves.

(2)

infrasound waves are waves that have a wavelength frequency lower than 20,000 Hz and can't be neard by humans. They are longitudinal and can travel long distances

(Total for Question 4 = 10 marks)

The candidate has confused infrasound and ultrasound. However, as the marks are independent of one another, one mark has been awarded by the examiner for identifying the wave type as longitudinal.

Candidates should read the question through very carefully, both before and after writing their answer.

Question 5(a)(i)

Over 80% of candidates correctly identified an electromagnetic wave that is also an ionising radiation.

Question 5(a)(ii)

Only the most able candidates fared well with this item. Most candidates were not able transfer their knowledge of the uses of fluorescence in identifying genuine bank notes to suggest the reason why the bank note glowed when ultraviolet radiation is shone on it.

A typical 1 mark response:

(ii) Genuine banknotes contain a special ink.
This ink is invisible under normal light.

Suggest why the ink glows when ultraviolet radiation is shone on it.

(2)

The ink contains a substance that absorbs UV (ight and ausze is to glow when exposed to UV (ight).

The candidate is awarded a mark for stating that the ink absorbs (energy from) ultraviolet radiation.

Ensure that when there are two marks for the question, two points are made in the answer that are not merely repeating the wording of the question.

An example of a response scoring both marks:

(ii) Genuine banknotes contain a special ink.
This ink is invisible under normal light.

Suggest why the ink glows when ultraviolet radiation is shone on it.

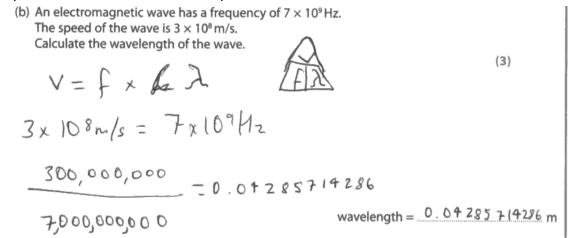
(2)

It is fluorescent ink which means that it absorbs the UV light and re-emits it as

Visible light, therefore it glows.

This is an example of the type of response that we were hoping for.

This response was awarded 2 marks.



Read the question carefully to make sure that you have given the right answer. If you have spare time at the end of the examination, use it to check your work.

Question 5(b)

Almost 60% of candidates scored at least one mark for this item with almost 30% scoring all three marks. It was pleasing to note that many candidates are now writing the equation, transforming it and then making the substitution. However, having transformed the equation correctly, putting the smaller number on top seems to present a problem for some candidates. A number of candidates appeared either not to have a calculator or not to be familiar with how to use it for standard form.

An example of one of the 3 mark responses:

Although not all the working is included, there is sufficient for the examiner to award 2 marks if the answer had been incorrect.

Triangles are a good way to help to remember some equations BUT, the examiner will not award any marks for them.

A typical 2 mark response:

(b) An electromagnetic wave has a frequency of 7×10^9 Hz. The speed of the wave is 3×10^8 m/s. Calculate the wavelength of the wave.

Word length = Speed - 3x108 (3)

Frequency

7000000000

0.678571078

wavelength = _____ n

This response shows good evidence of the candidate's method of working. This allows the examiner to award 2 marks as unfortunately, the candidate has made a power of ten error when converting the speed from standard form.

Candidates should always show their working. If they get the answer correct with no working, then they will get full marks but if their answer is wrong with no working, they will get zero.

Question 5(c)

Over 80% of candidates scored 2 or more marks on this item with over 55% scoring 4 or more marks. The different regions of the spectrum were well known and most candidates knew the damage caused by radiation. However, less successful candidates failed to associate the damage with specific radiations or named the wrong type of radiation. The link between frequency-energy and ability to cause damage to cells was often made, although some candidates who mentioned increasing frequencies did not associate that explicitly with increasing damage, and even fewer linked relevant cell or tissue damage or DNA mutation to penetrating ability.

A typical 4 mark response:

*(c) Radiation from different regions of the electromagnetic spectrum can affect the human body in many ways. Discuss the different ways in which excessive exposure to electromagnetic radiations of various frequencies may cause damage to the human body. (6) Radiocoaves have been been brown tymours by the constant usage of mobile can cause bad from the waves causing skin to move orns bulkanosau tare et maratita de la companio produce neat which burns upu to mutate wonich CELLS EDITION CONTROL cancer. It can also cause oud eye damage. Cramma rays and x rays known to be able to penetrate the skin mutate or destroy when exposed It can also cause cancer to the design the control of (Total for Question 5 = 12 marks)

The candidate has failed to make any link between the frequency of electromagnetic radiation and its ability to cause damage.

To access full marks candidates must answer all aspects of a question.

*(c) Radiation from different regions of the electromagnetic spectrum can affect the human body in many ways.

Discuss the different ways in which excessive exposure to electromagnetic radiations of various frequencies may cause damage to the human body.

Exposure to microwave radiation can cause the internal heating of body cells, since they contain water, and nicrowaves heat the misture in objects. In Sna-real radiation has a higher Gregoliency than nicromaner, and can cause skin hums. Protonged exposure to ultrainslet waves can cause you damage if they are from the sun and skin cancer in some cases since it has an even higher frequency than in fra-real. X-rays and gamma rays are the most damagemus since they have higher frequencies than all other electromagnetic waves, and so carry more energy. Try are also both imissing and can cause DNA damage, cell mitation and cancer if (Total for Question 5 = 12 marks) exposed to those waves for a long period of time.

The candidate has correctly linked at least three types of electromagnetic radiation to the damage they can cause. Although not explicit, there is a clear link between the frequency of the electromagnetic radiations and their ability to cause damage.

An example of a 2 mark response:

*(c) Radiation from different regions of the electromagnetic spectrum can affect the human body in many ways.

Discuss the different ways in which excessive exposure to electromagnetic radiations of various frequencies may cause damage to the human body.

(6)

One electromagnetic radiation is x-rays. This can cause cancer & and also damage the culs. Another one is ultra-violet. To a much exposion to this could cause damage to the skin and eyer Micro radiation in things like mobile phones can even teally damage.

The candidate has linked the minimum number of electromagnetic radiations to the correct damage caused by the radiations. There is no detail of the damage caused and so the examiner has awarded 2 marks.

Question 6(a)

Over 50% of candidates scored this mark. One of the more common incorrect responses was alternator.

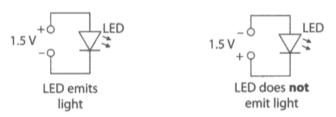
Question 6(b)

Only the most able candidates fared well with this item. Most candidates found it difficult to transfer their understanding of a.c and d.c. to this unfamiliar situation.

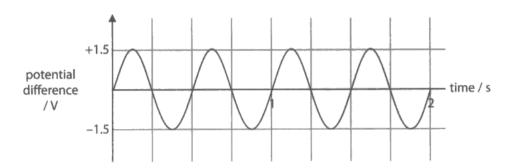
An example of a 2 mark response:

(b) A light emitting diode (LED) can only emit light when connected correctly to a potential difference. LED LED does not LED emits emit light light Use this information to suggest what happens when this alternating voltage is connected across the LED. (2)potential time / s difference / V -1.5the LED will emit light when the potential disserence is positive, but swap will stop when regative theregare the LED will grash on and agg very

guickly.


The candidate has done enough to gain both marks.

Candidates should practise applying their knowledge to new situations by attempting questions in support materials, or exam papers from previous sessions.


This response is typical of those scoring 1 mark.

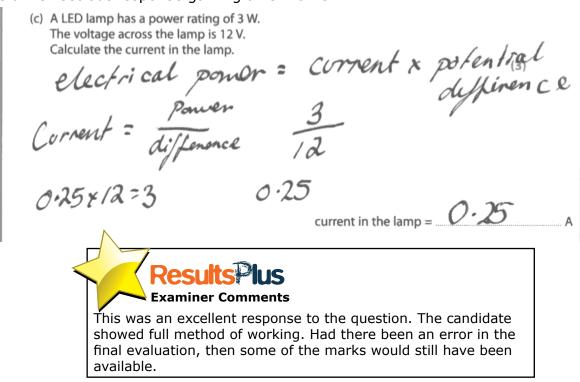
(b) A light emitting diode (LED) can only emit light when connected correctly to a potential difference.

Use this information to suggest what happens when this alternating voltage is connected across the LED.

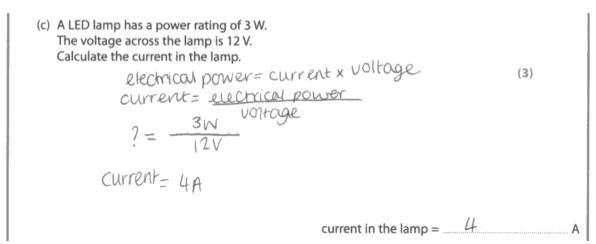
(2)

the light could flicher and turn

The candidate states that the LED will turn on and off but does not explain why this will happen.



The command word **describe** requires candidates to say what is happening. **Explain** is the command word used when we want you to use some Science to say why something happens.


Question 6(c)

Almost 40% of candidates scored full marks on this item. It was pleasing to note that most of the candidates gaining full marks are writing the equation, transforming it and then making the substitution. However, for some candidates, having transformed the equation, evaluating a fraction with the smaller number on top, seems to present a problem. A very common error was to write 3/12 = 4, whilst a significant proportion of candidates crossed out correct answers and replaced them when the number had not come out as an integer.

This is a well set out response gaining all 3 marks.

This was an all too familiar example of a response scoring 2 marks.

The candidate has been awarded 2 marks for a correct transformation and substitution. Unfortunately, the candidate then evaluated 12/3 rather than 3/12.

Candidates should always show their working. If they get the answer correct with no working, they will get full marks, but if their answer is wrong with no working, they will get zero.

Question 6(d)

This item was answered well by many candidates. Responses at level 1 were from candidates who did no or very little processing of the information provided about LED and fluorescent light fittings. However, almost 60% of candidates did some processing of the information in their discussion of the benefits of LED fittings to reach levels 2 and 3.

An example of a level 3 response:

Use the information to discuss the benefits of replacing fluorescent fittings with ED fittings fluorescent (Total for Question 6 = 12 marks)

The candidate has processed more than half the data points in the table including calculating the amount of money saved each year by switching to LED fittings and also the payback time of the LED fittings. The examiner was able to match this response to the criteria for level 3 and award 6 marks.

Candidates must be very clear in their responses and say exactly what they mean. Examiners will not make assumptions from what they have not said.

A typical level 1 response:

Use the information to discuss the benefits of replacing fluorescent fittings with LED fittings.

(6)

The LED'S save 3000 kWh of energy each year they also save 16 tomes of CO2 each year. The ughting levels are much higher *and the light is singleten *200% raused compared to the fluorescent fittings the LED'S will last 40,000 hours more the LED'S consideration deap.

The candidate has done some processing of the information to be able to say that LED fittings last 40 000 hours longer than fluorescent fittings. The examiner was able to award 2 marks for this response.

When provided with information to consider, you will gain little or no credit for simply repeating the data. Always try to process the data before using it in your answer.

This is an example of a level 2 response.

Use the information to discuss the benefits of replacing fluorescent fittings with LED fittings.
2 Replacing Propessent Greings with LED Greings
15 Very beneficial. Partherpetts of replacing
The lighting is much better + the total energy Swed
ench Year by using LEDs mens that it is
more efficient.
The Coz Sairy each year by using LEDS is
1.6 bonnes, to this cuso benefits the environment.
##20 is Swed lack year the awage is telime Of LED Citings is longer than the
Quorescent Chair, by about 40000 hours

The candidate has done some processing including calculating the amount of money saved each year by switching to LED fittings. However there is insufficient processing to reach level 3. The examiner was able to match this response to the criteria for level 2 and award 4 marks.

Paper Summary

The paper allowed candidates of all abilities to access marks in all questions. Less successful candidates found difficulty with describe, explain and discuss questions, and with some of the calculations. In order to improve their performance, candidates should:

- memorise the basic facts as stated in the specification
- use technical terms wherever possible in descriptions and explanations
- give a reason as well as a statement when answering an 'explain' question
- practise applying their knowledge to new situations by attempting questions in support materials or exam papers from previous sessions
- read the question carefully and underline the key words
- use the marks at the side of a question as a guide to the form and content of their answer.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

