

RATIONALE

Allows us to identify areas of our process that **most impact our customers**

Helps us identify how our design or process is **most likely to fail**

Points to process failures that are **most difficult to detect**

TYPES

System/Concept: (Driven by system functions) A system is an organized set of parts or subsystems to accomplish one or more functions. System FMEAs are typically very early, before specific hardware has been determined.

Design: (Driven by part or component functions) A Design/Part is a unit of physical hardware that is considered a single replaceable part with respect to repair. Design FMEAs are typically done later in the development process when specific hardware has been determined.

Process: (Driven by process functions & part characteristics) A Process is a sequence of tasks that is organized to produce a product or service. A Process FMEA can involve fabrication, assembly, transactions or services.

EXAMPLES

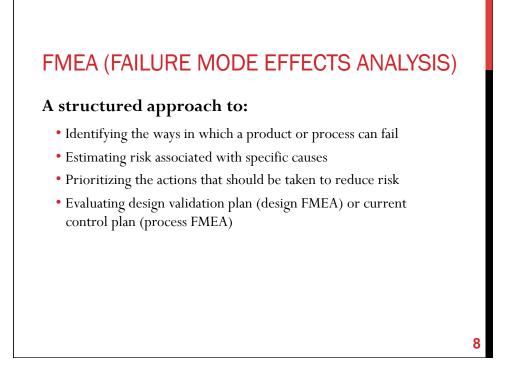
Manufacturing: A manager is responsible for moving a manufacturing operation to a new facility. He/she wants to be sure the move goes as smoothly as possible and that there are no surprises.

Design: A design engineer wants to think of all the possible ways a product being designed could fail so that robustness can be built into the product.

Software: A software engineer wants to think of possible problems a software product could fail when scaled up to large databases.

Failure Mode

the way in which the component, subassembly, product, input, or process could fail to perform its intended function


Effects Analysis

studying the consequences of failures

FMEA (FAILURE MODE EFFECTS ANALYSIS)

Why

- Methodology that facilitates process improvement
- Identifies and eliminates concerns early in the development of a process or design
- Improve internal and external customer satisfaction
- Focuses on prevention
- FMEA may be a customer requirement
- FMEA may be required by an applicable Quality System Standard

TYPES OF FMEAS

Design

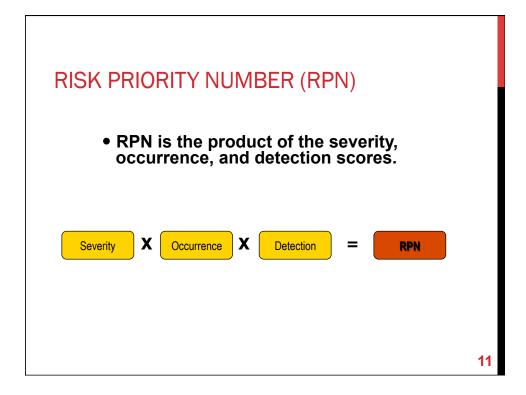
- Analyzes product design before release to production, with a focus on product function
- Analyzes systems and subsystems in early concept and design stages

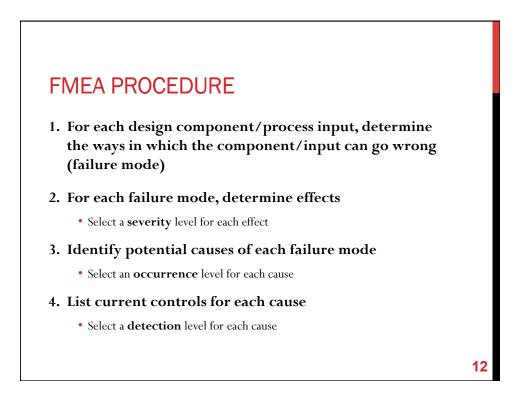
Process

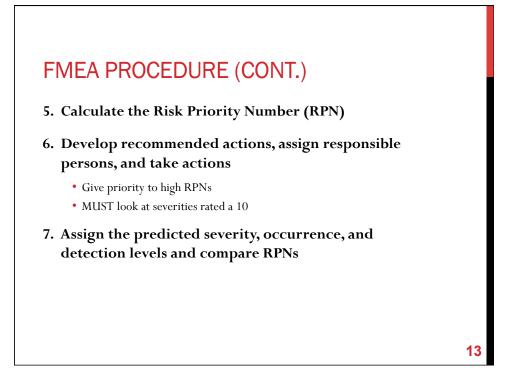
• Used to analyze manufacturing and assembly processes after they are implemented

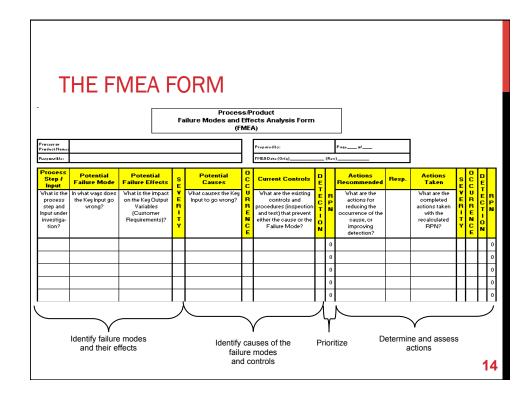
SEVERITY, OCCURRENCE, DETECTION

Severity


• Importance of the effect on customer requirements


Occurrence


• Frequency with which a given cause occurs and creates failure modes


Detection

• The ability of the current control scheme to detect or prevent a given cause

7

RATING SCALES

There are a wide variety of scoring "anchors", both quantitative or qualitative

Two types of scales are 1-5 or 1-10

The 1-5 scale makes it easier for the teams to decide on scores

The 1-10 scale may allow for better precision in estimates and a wide variation in scores (most common)

15

RATING SCALES

Severity

• 1 = Not Severe, 10 = Very Severe

Occurrence

• 1 = Not Likely, 10 = Very Likely

Detection

• 1 = Easy to Detect, 10 = Not easy to Detect

	Severity of Effect	Rating
Extreme	May endanger machine or operator. Hazardous without warning	10
Extr	May endanger machine or operator. Hazardous with warning	9
High	Major disruption to production line. Loss of primary function, 100% scrap. Possible jig lock and <u>Major</u> loss of Task Time	8
Ħ	Reduced primary function performance. Product requires repair or Major Variance. Noticeable loss of Task Time	7
rate	Medium disruption of production. Possible scrap. Noticeable loss of takt time. Loss of secondary function performance. Requires repair or Minor Variance	6
Moderate	Minor disruption to production. Product must be repaired. Reduced secondary function performance.	5
2	Minor defect, product repaired or "Use-As-Is" disposition.	4
м	Fit & Finish item. Minor defect, may be reprocessed on-line.	3
Low	Minor Nonconformance, may be reprocessed on-line.	2
None	No effect	1

FMEA SCORING: OCCURRENCE					
	Likelihood of Occurrence	Failure Rate	Rating		
Very High	Failure is also at in a stable	1 in 2	10		
Very	Failure is almost inevitable	1 in 3	9		
High	Process is not in statistical control	1 in 8	8		
Η	Process is not in statistical control. Similar processes have experienced problems.	1 in 20	7		
ite		1 in 80	6		
Moderate	Process is in statistical control but with isolated failures. Previous processes have experienced occasional failures or out-of-control conditions.	1 in 400	5		
N		1 in 2000	4		
	Process is in statistical control.	1 in 15k	3		
Low	Process is in statistical control. Only isolated failures associated with almost identical processes.	1 in 150k	2		
Kemote	Failure is unlikely. No known failures associated with almost identical processes.	1 in 1.5M	1		

FMEA SCORING: DETECTION

	Likelihood that control will detect failure	Rating
Very Low	No known control(s) available to detect failure mode.	10
Low	Controls have a remote chance of detecting the failure.	9 8
fe	Controls may detect the existence of a failure	。 7
Moderate		6
K		5
High	Controls have a good chance of detecting the existence of a failure	4
H		3
Very High	The process automatically detects failure. Controls will almost certainly detect the existence of a failure.	2
Very		1

DESIGN EXERCISE

Develop an FMEA for your project:

- Identify the ways in which your product/process can fail
- Estimate the risks associated with specific causes
- Prioritizes the actions that should be taken to reduce risk

Complete the FMEA worksheet:

- Electronic version on PolyLearn
- Submit a hardcopy at the beginning of class on Tuesday, 1/25
- One per team

SOURCES

American Society for Quality (asq.org) http://www.stat.purdue.edu/~kuczek/stat513/IT/520381_Chap_7.ppt https://oasis.northgrum.com/general/docs/.../AdvancedPFMEA.ppt

21

BONUS SLIDES! Hey there, how awesome is it that you looked through these slides after class!

WHEN TO CONDUCT AN FMEA

Early in the process improvement investigation

When new systems, products, and processes are being designed

When existing designs or processes are being changed

When carry-over designs are used in new applications

After system, product, or process functions are defined, but before specific hardware is selected or released to manufacturing

23

HISTORY OF FMEA

First formalized in the 1960's in the Aerospace industry during the Apollo missions

In 1974, the Navy developed *MIL-STD-1629* regarding the use of FMEA

Required by QS-9000 & Advanced Product Quality Planning Process in 1994 for all automotive suppliers

Driven by liability costs, used to reduce risks related to poor quality

24