
Fig. 1–4b

Fig. 1–4c

E X A M P L E 1.1

Determine the resultant internal loadings acting on the cross section
at C of the beam shown in Fig. 1–4a.

180 N/m

540 N

2 m 4 mVC

MC

NC

(b)

BC

(a)

A B

C
3 m 6 m

270 N/m

Fig. 1–4
Solution

Support Reactions. This problem can be solved in the most direct
manner by considering segment CB of the beam, since then the
support reactions at A do not have to be computed.

Free-Body Diagram. Passing an imaginary section perpendicular to the
longitudinal axis of the beam yields the free-body diagram of segment
CB shown in Fig. 1–4b. It is important to keep the distributed loading
exactly where it is on the segment until after the section is made. Only
then should this loading be replaced by a single resultant force. Notice
that the intensity of the distributed loading at C is found by proportion,
i.e., from Fig.1–4a, The
magnitude of the resultant of the distributed load is equal to the area
under the loading curve (triangle) and acts throughthe centroid of this
area.Thus, which acts 
from C as shown in Fig. 1–4b.

Equations of Equilibrium. Applying the equations of equilibrium
we have

Ans.

Ans.

Ans.

The negative sign indicates that acts in the opposite direction to
that shown on the free-body diagram. Try solving this problem using
segment AC, by first obtaining the support reactions at A, which are
given in Fig. 1–4c.

MC

MC = -1080 N # m
-MC - 540 N12 m2 = 0d+© MC = 0;

VC = 540 N

VC - 540 N = 0+q © Fy = 0;

NC = 0

-NC = 0:+  © Fx = 0;

1>316 m2 = 2 mF = 1
21180 N>m216 m2 = 540 N,

w = 180 N>m.w>6 m = 1270 N>m2>9m,

1.5 m
0.5 m

1 m

180 N/m
90 N/m

540 N
135 N

VC

MC

NC

(c)

1215 N

3645 N�m
CA



Fig. 1–5c

Fig. 1–5b

E X A M P L E 1.2

Determine the resultant internal loadings acting on the cross section
at C of the machine shaft shown in Fig. 1–5a. The shaft is supported
by bearings at A and B, which exert only vertical forces on the shaft.

225 N

C
D

200 mm
100 mm 100 mm

50 mm50 mm

800 N/m

B

(a)

A

Fig. 1–5

0.275 m
0.125 m

(800 N/m)(0.150 m) = 120 N

0.100 m

225 N

Ay By
(b)

B

Solution
We will solve this problem using segment AC of the shaft.

Support Reactions. A free-body diagram of the entire shaft is shown
in Fig. 1–5b. Since segment AC is to be considered, only the reaction
at A has to be determined. Why?

The negative sign for indicates that acts in the opposite sense to
that shown on the free-body diagram.

Free-Body Diagram. Passing an imaginary section perpendicular to
the axis of the shaft through C yields the free-body diagram of segment
AC shown in Fig. 1–5c.

Equations of Equilibrium.

Ans.

Ans.

Ans.

What do the negative signs for and indicate? As an exercise,
calculate the reaction at B and try to obtain the same results using
segment CBD of the shaft.

MCVC

MC = -5.69 N # m
MC + 40 N10.025 m2 + 18.75 N10.250 m2 = 0d+© MC = 0;

VC = -58.8 N

-18.75 N - 40 N - VC = 0+q © Fy = 0;

NC = 0:+  © Fx = 0;

AyAy

Ay = -18.75 N

-Ay10.400 m2 + 120 N10.125 m2 - 225 N10.100 m2 = 0d+  © MB = 0;

(c)

40 N
18.75 N

0.250 m

0.025 m

MC

VC

C
A

NC



Fig. 1–6a

E X A M P L E 1.3

The hoist in Fig. 1–6a consists of the beam AB and attached pulleys,
the cable, and the motor. Determine the resultant internal loadings
acting on the cross section at C if the motor is lifting the 2000 N 
(� 200 kg) load W with constant velocity. Neglect the weight of the
pulleys and beam.

(b)

1.125 m

C

125 m

2000 N

2000 N

VC

NC
MC

A

Fig. 1–6

1 m 0.5 m1.5 m

125 mm

125 mm

A C
D

B

W (a)

Solution
The most direct way to solve this problem is to section both the cable
and the beam at C and then consider the entire left segment.
Free-Body Diagram. See Fig. 1–6b.

Equations of Equilibrium.

Ans.
Ans.

Ans.
As an exercise, try obtaining these same results by considering just

the beam segment AC, i.e., remove the pulley at A from the beam and
show the 2000-N force components of the pulley acting on the beam
segment AC. Also, this problem can be worked by first finding the
reactions at B, (Bx � 0, By � 4000 N, MB � 7000 N � m) and then
considering segment CB.

MC = -2000 lb # ft
500 lb 14.5 ft2 - 500 lb 10.5 ft2 + MC = 0d+  © MC = 0;
-500 lb - VC = 0 VC = -500 lb+q © Fy = 0;
500 lb + NC = 0 NC = -500 lb:+  © Fx = 0; 2000 N

�2000 N

�2000 N

�2000 N

�2000 N • m
2000 N(1.125 m) � 2000 N(0.125 m) 1 MC � 0



Fig. 1–7d

Fig. 1–7c

Fig. 1–7b

6200 N

= 4650 N
= 7750 NFBA FBD

3
4

5

(c)

B

(d)

MG

NG

VG

1 m

3
4

5

7750 N1500 N

A G

E X A M P L E 1.4

Determine the resultant internal loadings acting on the cross section
at G of the wooden beam shown in Fig. 1–7a. Assume the joints at A,
B, C, D, and E are pin connected.

(a)

600 N/m

1 m 1 m 3 m

1500 N

A

B

G D

C

1.5 m

E

Fig. 1–7

1.5 m

3 m (3 m) = 2 m

(3 m)(600 N/m) = 900 N1
2

1500 N

= 2400 N

= 6200 N

= 6200 N

Ey

Ex

FBC

(b)

2
3

Solution

Support Reactions. Here we will consider segment AG for the
analysis. A free-body diagram of the entire structure is shown in 
Fig. 1–7b. Verify the computed reactions at E and C. In particular,
note that BC is a two-force member since only two forces act on it.
For this reason, the reaction at C must be horizontal as shown.

Since BA and BD are also two-force members, the free-body
diagram of joint B is shown in Fig. 1–7c. Again, verify the magnitudes
of the computed forces and 

Free-Body Diagram. Using the result for the left section AG
of the beam is shown in Fig. 1–7d.

Equations of Equilibrium. Applying the equations of equilibrium
to segment AG, we have

Ans.

Ans.

Ans.

As an exercise, compute these same results using segment GE.

MG = 6300 lb # ft
MG - 17750 lb2A35 B  12 ft2 + 1500 lb 12 ft2 = 0d+  © MG = 0;

VG = 3150 lb

-1500 lb + 7750 lb A35 B - VG = 0+q © Fy = 0;

7750 lb A45 B + NG = 0 NG = -6200 lb:+  © Fx = 0;

FBA,

FBD.FBA

7750 N

�1500 N 7750 N 
3150 N

(7750 N)

�6200 N

(1 m) (1500 N)(1 m) � 0

3150 N • m



Fig. 1–8a

E X A M P L E 1.5

Determine the resultant internal loadings acting on the cross section
at B of the pipe shown in Fig. 1–8a. The pipe has a mass of 2 kg/m
and is subjected to both a vertical force of 50 N and a couple moment
of at its end A. It is fixed to the wall at C.

Solution
The problem can be solved by considering segment AB, which does
not involve the support reactions at C.

Free-Body Diagram. The x, y, z axes are established at B and the
free-body diagram of segment AB is shown in Fig. 1–8b. The resultant
force and moment components at the section are assumed to act in
the positive coordinate directions and to pass through the centroid of
the cross-sectional area at B. The weight of each segment of pipe is
calculated as follows:

These forces act through the center of gravity of each segment.

Equations of Equilibrium. Applying the six scalar equations of
equilibrium, we have*

Ans.
Ans.

Ans.

Ans.

Ans.

Ans.

What do the negative signs for and indicate? 
Note that the normal force whereas the shear 

force is Also, the torsional moment 
is and the bending moment is

*The magnitude of each moment about an axis is equal to the magnitude of each force
times the perpendicular distance from the axis to the line of action of the force. The
direction of each moment is determined using the right-hand rule, with positive
moments (thumb) directed along the positive coordinate axes.

30.3 N # m.MB = 2130.322 + 102 =
1MB2y = 77.8 N # mTB =
21022 + 184.322 = 84.3 N.VB =

NB = 1FB2y = 0,
1MB2y1MB2x

1MB2z = 0©1MB2z = 0;

1MB2y = -77.8 N # m
1MB2y + 24.525 N 10.625 m2 + 50 N 11.25 m2 = 0©1MB2y = 0;

1MB2x = -30.3 N # m
- 9.81 N 10.25 m2 = 0

1MB2x + 70 N # m - 50 N 10.5 m2 - 24.525 N 10.5 m2©1MB2x = 0;

1FB2z = 84.3 N

1FB2z - 9.81 N - 24.525 N - 50 N = 0© Fz = 0;

1FB2y = 0© Fy = 0;

1FB2x = 0© Fx = 0;

WAD = 12 kg>m211.25 m219.81 N>kg2 = 24.525 N

WBD = 12 kg>m210.5 m219.81 N>kg2 = 9.81 N

70 N # m

0.625 m

70 N·m

(b)

y0.625 m

A

50 N

0.25 m
0.25 m

x

z

9.81 N

24.525 N
B

(MB)z

(MB)y

(MB)x

(FB)x

(FB)y

(FB)z

Fig. 1–8

0.75 m

50 N

1.25 m

B

A

0.5 m

C

D

70 N�m
(a)



Fig. 1–16a

(d)

30 kN

85.7 MPa35 mm

10 mm

Fig. 1–16

E X A M P L E 1.6

The bar in Fig. 1–16a has a constant width of 35 mm and a thickness
of 10 mm. Determine the maximum average normal stress in the bar
when it is subjected to the loading shown.

(b)

9 kN

9 kN

12 kN

12 kN

= 12 kNPAB

= 30 kNPBC

22 kN= 22 kNPCD

P(kN)

x
12
22
30

(c)

12 kN 22 kN
9 kN

9 kN

4 kN

4 kN
35 mm

A DB C

(a)

Solution

Internal Loading. By inspection, the internal axial forces in regions AB,
BC, and CD are all constant yet have different magnitudes. Using the
method of sections, these loadings are determined in Fig. 1–16b; and the
normal force diagram which represents these results graphically is shown
in Fig. 1–16c. By inspection, the largest loading is in region BC, where

Since the cross-sectional area of the bar is constant, the
largest average normal stress also occurs within this region of the bar.

Average Normal Stress. Applying Eq. 1–6, we have

Ans.

The stress distribution acting on an arbitrary cross section of the
bar within region BC is shown in Fig. 1–16d. Graphically the volume
(or “block”) represented by this distribution of stress is equivalent to
the load of 30 kN; that is, 30 kN = 185.7 MPa2135 mm2110 mm2.

sBC =
PBC
A

=
3011032N

10.035 m210.010 m2 = 85.7 MPa

PBC = 30 kN.



Fig. 1–17c

Fig. 1–17b

E X A M P L E 1.7

The 80-kg lamp is supported by two rods AB and BC as shown in
Fig. 1–17a. If AB has a diameter of 10 mm and BC has a diameter
of 8 mm, determine the average normal stress in each rod.

(b)

60°

FBA FBC

y

x

80(9.81) = 784.8 N

B

3
4

5

A

60° B

C

3
4

5

(a)

Fig. 1–17

Solution

Internal Loading. We must first determine the axial force in each
rod.A free-body diagram of the lamp is shown in Fig. 1–17b.Applying
the equations of force equilibrium yields

By Newton’s third law of action, equal but opposite reaction, these
forces subject the rods to tension throughout their length.

Average Normal Stress. Applying Eq. 1–6, we have

Ans.

Ans.

The average normal stress distribution acting over a cross section
of rod AB is shown in Fig. 1–17c, and at a point on this cross section,
an element of material is stressed as shown in Fig. 1–17d.

sBA =
FBA
ABA

=
632.4 N

p10.005 m22 = 8.05 MPa

sBC =
FBC
ABC

=
395.2 N

p10.004 m22 = 7.86 MPa

FBC = 395.2 N,      FBA = 632.4 N

FBC A35 B + FBA sin 60° - 784.8 N = 0+q © Fy = 0;

FBC A45 B - FBA cos 60° = 0:+  © Fx = 0;

632.4 N

8.05 MPa

8.05 MPa

(c)(d)



Fig. 1–18b

E X A M P L E 1.8

The casting shown in Fig. 1–18a is made of steel having a specific
weight of �st � 80 kN/m3. Determine the average compressive stress
acting at points A and B.

200 mm

200 mm

800 mm

y

z

x

(a)

A

B200 mm

100 mm

Fig. 1–18

800 mm

(b)

A

P

(c)

64 kN/m

B

Wst

2

Solution

Internal Loading. A free-body diagram of the top segment of the
casting where the section passes through points A and B is shown in
Fig. 1–18b.The weight of this segment is determined from 
Thus the internal axial force P at the section is

P � (80 kN/m3)(0.8 m)�(0.2 m)2 � 0
P � 8.042 kN

Average Compressive Stress. The cross-sectional area at the section
is A � �(0.2 m)2, and so the average compressive stress becomes

Ans.

The stress shown on the volume element of material in Fig. 1–18c
is representative of the conditions at either point A or B. Notice that
this stress acts upward on the bottom or shaded face of the element
since this face forms part of the bottom surface area of the cut section,
and on this surface, the resultant internal force P is pushing upward.

 = 9.36 psi

 s =
P

A
=

2381 lb

p10.75 ft22

P - Wst = 0+q © Fz = 0;

Wst = gstVst.

8.042 kN

64.0 kN/m2

�(0.2 m)2



Fig. 1–19b

E X A M P L E 1.9

Member AC shown in Fig. 1–19a is subjected to a vertical force of
3 kN. Determine the position x of this force so that the average
compressive stress at the smooth support C is equal to the average
tensile stress in the tie rod AB. The rod has a cross-sectional area
of and the contact area at C is 650 mm2.400 mm2

x

A

B

C

200 mm

(a)

3 kN

Fig. 1–19
(b)

x

3 kN

A

200 mm

FAB

FC

Solution

Internal Loading. The forces at A and C can be related by
considering the free-body diagram for member AC, Fig. 1–19b. There
are three unknowns, namely, and x. To solve this problem,
we will work in units of newtons and millimeters.

(1)

(2)

Average Normal Stress. A necessary third equation can be written
that requires the tensile stress in the bar AB and the compressive
stress at C to be equivalent, i.e.,

Substituting this into Eq.1, solving for then solving for we obtain

The position of the applied load is determined from Eq. 2,

Ans.

Note that as required.0 6 x 6 200 mm,

x = 124 mm

 FC = 1857 N

 FAB = 1143 N

FC,FAB,

 FC = 1.625FAB

 s =
FAB

400 mm2 =
FC

650 mm2

-3000 N1x2 + FC 1200 mm2 = 0d+  © MA = 0;

FAB + FC - 3000 N = 0+q © Fy = 0;

FC,FAB,



Fig. 1–24a

E X A M P L E 1.10

The bar shown in Fig. 1–24a has a square cross section for which the
depth and thickness are 40 mm. If an axial force of 800 N is applied
along the centroidal axis of the bar’s cross-sectional area, determine
the average normal stress and average shear stress acting on the
material along (a) section plane a–a and (b) section plane b–b.

a

a

b

b

800 N

20 mm60°

(a)

20 mm

(b)

800 N P = 800 N

(c)

500 kPa

500 kPa

Fig. 1–24

Solution

Part (a)
Internal Loading. The bar is sectioned, Fig. 1–24b, and the internal
resultant loading consists only of an axial force for which 

Average Stress. The average normal stress is determined from Eq.1–6.

Ans.

No shear stress exists on the section, since the shear force at the
section is zero.

Ans.

The distribution of average normal stress over the cross section is
shown in Fig. 1–24c.

tavg = 0

s =
P

A
=

800 N
10.04 m210.04 m2 = 500 kPa

P = 800 N.



Fig. 1–24e

Fig. 1–24d

V

800 N

60°

(d)

30°

y y�

x�

x
30°

60°
N

800 N

Part (b)
Internal Loading. If the bar is sectioned along b–b, the free-body
diagram of the left segment is shown in Fig. 1–24d. Here both a normal
force (N) and shear force (V) act on the sectioned area. Using x, y
axes, we require

or, more directly, using axes,

Solving either set of equations,

Average Stresses. In this case the sectioned area has a thickness
and depth of 40 mm and respectively,
Fig. 1–24a. Thus the average normal stress is

Ans.

and the average shear stress is

Ans.

The stress distribution is shown in Fig. 1–24e.

tavg =
V

A
=

400 N
10.04 m210.04619 m2 = 217 kPa

s =
N

A
=

692.8 N
10.04 m210.04619 m2 = 375 kPa

40 mm>sin 60° = 46.19 mm,

N = 692.8 N
V = 400 N

V - 800 N sin 30° = 0+˚© Fy¿ = 0;

N - 800 N cos 30° = 0+Ω© Fx¿ = 0;

y¿x¿,

V sin 60° - N cos 60° = 0+q © Fy = 0;

-800 N + N sin 60° + V cos 60° = 0:+  © Fx = 0;

(e)
375 kPa

217 kPa

375 kPa



Fig. 1–25eFig. 1–25d

Fig. 1–25b

Fig. 1–25a

E X A M P L E 1.11

The wooden strut shown in Fig. 1–25a is suspended from a 10-mm-
diameter steel rod, which is fastened to the wall. If the strut supports
a vertical load of 5 kN, compute the average shear stress in the rod
at the wall and along the two shaded planes of the strut, one of which
is indicated as abcd.

Solution

Internal Shear. As shown on the free-body diagram in Fig. 1–25b,
the rod resists a shear force of 5 kN where it is fastened to the wall.
A free-body diagram of the sectioned segment of the strut that is in
contact with the rod is shown in Fig. 1–25c. Here the shear force acting
along each shaded plane is 2.5 kN.

Average Shear Stress. For the rod,

Ans.

For the strut,

Ans.

The average-shear-stress distribution on the sectioned rod and strut
segment is shown in Figs. 1–25d and 1–25e, respectively. Also shown
with these figures is a typical volume element of the material taken
at a point located on the surface of each section. Note carefully how
the shear stress must act on each shaded face of these elements and
then on the adjacent faces of the elements.

tavg =
V

A
=

2500 N
10.04 m210.02 m2 = 3.12 MPa

tavg =
V

A
=

5000 N

p10.005 m22 = 63.7 MPa

c

5 kN

(a)

20 mm

40 mm

b

a
d

(b)

5 kN
V = 5 kN

force of 
strut on rod

a

d

c

5 kN

V = 2.5 kN

V = 2.5 kN

force of
rod on strut

(c)

b

Fig. 1–25

(d)

5 kN

63.7 MPa

5 kN

(e)

3.12 MPa



Fig. 1–26e

Fig. 1–26d

Fig. 1–26c

Fig. 1–26b

E X A M P L E 1.12

The inclined member in Fig. 1–26a is subjected to a compressive force
of 3000 N. Determine the average compressive stress along the smooth
areas of contact defined by AB and BC, and the average shear stress
along the horizontal plane defined by EDB.

(b)

3

45

3000 N

FAB

FBC

(c)
V

1800 N

Solution

Internal Loadings. The free-body diagram of the inclined member
is shown in Fig. 1–26b. The compressive forces acting on the areas of
contact are

Also, from the free-body diagram of the top segment of the bottom
member, Fig. 1–26c, the shear force acting on the sectioned horizontal
plane EDB is

Average Stress. The average compressive stresses along the horizontal
and vertical planes of the inclined member are

Ans.

Ans.

These stress distributions are shown in Fig. 1–26d.
The average shear stress acting on the horizontal plane defined by

EDB is

Ans.

This stress is shown distributed over the sectioned area in Fig. 1–26e.

tavg =
360 lb

13 in.211.5 in.2 = 80 psi

 sBC =
480 lb

12 in.211.5 in.2 = 160 psi

 sAB =
360 lb

11 in.211.5 in.2 = 240 psi

V = 360 lb:+  © Fx = 0;

FBC - 600 lb A45 B = 0 FBC = 480 lb+q© Fy = 0;

FAB - 600 lb A35 B = 0 FAB = 360 lb:+  © Fx = 0;

3

45

3000 N

1.20 N/mm

1.80 N/mm

(d)

2

2

1800 N

(e)
0.60 N/mm2

Fig. 1–26

25 mm

3

45

3000 N

(a)40 mm 75 mm

50 mm

A
C

B

D
E

1800 N

� 0.60 N/mm2

FAB � 3000 N

1800 N
————————
(75 mm)(40 mm)

� 1.80 N/mm21800 N
————————
(25 mm)(40 mm)

� 1.20 N/mm22400 N
————————
(50 mm)(40 mm)

� 1800 N

2400 NFBC � 3000 N



Fig. 1–31b

E X A M P L E 1.13

The two members are pinned together at B as shown in Fig. 1–31a.
Top views of the pin connections at A and B are also given in the
figure. If the pins have an allowable shear stress of 	allow � 90 MPa
and the allowable tensile stress of rod CB is (
t)allow � 115 MPa,
determine to the nearest mm the smallest diameter of pins A and B
and the diameter of rod CB necessary to support the load.

B

2 m

6 kN
3

5

4

C

1 m

A

B
A

(a)

Fig. 1–31

Solution
Recognizing CB to be a two-force member, the free-body diagram of
member AB along with the computed reactions at A and B is shown
in Fig. 1–31b. As an exercise, verify the computations and notice that
the resultant force at A must be used for the design of pin A, since
this is the shear force the pin resists.

2 m
A

(b)

6 kN

B
1 m

2 kN

6.67 kN

5.68 kN

5.32 kN

20.6°
35

4

Continued



Fig. 1–31c

(c)

2.84 kN

2.84 kN

5.68 kN

6.67 kN

6.67 kN

Pin at BPin at A

Diameter of the Pins. From Fig. 1–31a and the free-body diagrams
of the sectioned portion of each pin in contact with member AB,
Fig. 1–31c, it is seen that pin A is subjected to double shear, whereas
pin B is subjected to single shear. Thus,

AA �           �

AB �           �

Although these values represent the smallest allowable pin diameters,
a fabricated or available pin size will have to be chosen.We will choose
a size larger to the nearest millimeter as required.

dA � 7 mm Ans.

dB � 10 mm Ans.

Diameter of Rod. The required diameter of the rod throughout its
midsection is thus,

dBC � 8.59 mm

We will choose

dBC � 9 mm Ans.

 ABC =
P

1st2allow
=

3.333 kip

16.2 kip>in2 = 0.2058 in2 = padBC2

4
b� 58 � 10�6 m2 � �

6.67 kN
——————–
115 � 103 kPa

dBC
2

——
4( )

� 31.56 � 10�6 m2 � � dA � 6.3 mm
2.84 kN

——––——–
90 � 103 kPa

dA
2

——
4( )VA——–

Tallow

� 74.11 � 10�6 m2 � � dB � 9.7 mm
6.67 kN

——––——–
90 � 103 kPa

VB——–
Tallow

dB
2

——
4( )



Fig. 1–32a
Fig. 1–32b

E X A M P L E 1.14

The control arm is subjected to the loading shown in Fig. 1–32a.
Determine to the nearest 5 mm the required diameter of the steel pin
at C if the allowable shear stress for the steel is 	allow � 55 MPa. Note
in the figure that the pin is subjected to double shear.

3
5

4
75 mm

300 mm

Cx

15 kN
25 kN

FAB

Cy

(b)

C

50 mm

(c)

15.205 kN

15.205 kN

30.41 kN

Pin at C

Fig. 1–32

(a)

C

3
5

4
75 mm

200 mm

A

C

15 kN
25 kN

B

50 mm

Solution

Internal Shear Force. A free-body diagram of the arm is shown in
Fig. 1–32b. For equilibrium, we have

FAB � 15 kN

The pin at C resists the resultant force at C. Therefore,

Since the pin is subjected to double shear, a shear force of 15.205 kN
acts over its cross-sectional area between the arm and each supporting
leaf for the pin, Fig. 1–32c.

Required Area. We have

Use a pin having a diameter of

Ans.d = 3
4 in. = 0.750 in.

 d = 0.696 in.

 pad
2
b2

= 0.3802 in2

A =
V
tallow

=
3.041 kip

8 kip>in2 = 0.3802 in2

FC = 211 kip22 + 16 kip22 = 6.082 kip

Cy - 3 kip - 5 kip A35 B = 0 Cy = 6 kip+q© Fy = 0;

-3 kip - Cx + 5 kip A45 B = 0 Cx = 1 kip:+ © Fx = 0;

d+  © MC = 0;

d � 20 mm      

276.45 mm2

18.8 mm

� 276.45 � 10�6 m215.205 kN
———————
55 � 103 kN/m2

5 kN

(5 kN)2 � (30 kN)2 � 30.41 kN

30 kNCy � 15 kN � 25 kN

�15 kN �Cx � 25 kN

FAB(0.2 m) � 15 kN(0.075 m) � 25 kN     (0.125 m) � 0( )3–
5



Fig. 1–33b

E X A M P L E 1.15

The suspender rod is supported at its end by a fixed-connected circular
disk as shown in Fig. 1–33a. If the rod passes through a 40-mm-
diameter hole, determine the minimum required diameter of the rod
and the minimum thickness of the disk needed to support the 20-kN
load. The allowable normal stress for the rod is and
the allowable shear stress for the disk is tallow = 35 MPa.

sallow = 60 MPa,

20 kN

A allow

(b)

40 mm

20 kN

t

d

(a)

40 mm

Fig. 1–33
Solution

Diameter of Rod. By inspection, the axial force in the rod is 20 kN.
Thus, the required cross-sectional area of the rod is

So that

Ans.

Thickness of Disk. As shown on the free-body diagram of the core
section of the disk, Fig. 1–33b, the material at the sectioned area must
resist shear stress to prevent movement of the disk through the hole.
If this shear stress is assumed to be distributed uniformly over the
sectioned area, then, since we have

Since the sectioned area the required thickness
of the disk is

Ans.t =
0.5714110-32 m2

2p10.02 m2 = 4.55110-32 m = 4.55 mm

A = 2p10.02 m21t2,
A =

V
tallow

=
2011032 N

3511062 N>m2 = 0.571110-32 m2

V = 20 kN,

 d = 0.0206 m = 20.6 mm

 A = pad2

4
b = 0.3333110-22 m2

A =
P
sallow

=
2011032 N

6011062 N>m2 = 0.3333110-32 m2



Fig. 1–34d

Fig. 1–34b
Fig. 1–34a

E X A M P L E 1.16

An axial load on the shaft shown in Fig. 1–34a is resisted by the collar
at C, which is attached to the shaft and located on the right side of
the bearing at B. Determine the largest value of P for the two axial
forces at E and F so that the stress in the collar does not exceed an
allowable bearing stress at C of and the average
normal stress in the shaft does not exceed an allowable tensile stress
of 1st2allow = 55 MPa.

1sb2allow = 75 MPa

P
P2

(b)

P380 mm

60 mm
P

A

F
P2

CE

B

(a)

20 mm

(c)

Axial
Load

Position

3P
2P

Fig. 1–34

Solution
To solve the problem we will determine P for each possible failure
condition. Then we will choose the smallest value. Why?

Normal Stress. Using the method of sections, the axial load within
region FE of the shaft is 2P, whereas the largest axial load, 3P, occurs
within region EC, Fig. 1–34b. The variation of the internal loading is
clearly shown on the normal-force diagram, Fig. 1–34c. Since the cross-
sectional area of the entire shaft is constant, region EC will be subjected
to the maximum average normal stress. Applying Eq. 1–11, we have

Bearing Stress. As shown on the free-body diagram in Fig. 1–34d,
the collar at C must resist the load of 3P, which acts over a bearing
area of Thus,

By comparison, the largest load that can be applied to the shaft is
since any load larger than this will cause the allowable

normal stress in the shaft to be exceeded.
P = 51.8 kN,

P = 55.0 kN

7511062 N>m2 =
3P

2.199110-32 m2A =
P
sallow

;

Ab = [p10.04 m22 - p10.03 m22] = 2.199110-32 m2.

P = 51.8 kN

sallow =
P

A
         5511062 N>m2 =

3P

p10.03 m22

P3

(d)
C



Fig. 1–35a

E X A M P L E 1.17

The rigid bar AB shown in Fig. 1–35a is supported by a steel rod AC
having a diameter of 20 mm and an aluminum block having a cross-
sectional area of The 18-mm-diameter pins at A and C are
subjected to single shear. If the failure stress for the steel and aluminum
is and respectively, and the
failure shear stress for each pin is determine the largest
load P that can be applied to the bar.Apply a factor of safety of 

Solution
Using Eqs. 1–9 and 1–10, the allowable stresses are

The free-body diagram for the bar is shown in Fig. 1–35b. There are
three unknowns. Here we will apply the equations of equilibrium so as
to express and in terms of the applied load P. We have

(1)

(2)

We will now determine each value of P that creates the allowable stress
in the rod, block, and pins, respectively.
Rod AC. This requires

Using Eq. 1,

Block B. In this case,

Using Eq. 2,

Pin A or C. Here

From Eq. 1,

By comparison, when P reaches its smallest value (168 kN), it develops
the allowable normal stress in the aluminum block. Hence,

Ans.P = 168 kN

P =
114.5 kN12 m2

1.25 m
= 183 kN

V = FAC = tallowA = 45011062 N>m2[p10.009 m22] = 114.5 kN

P =
163.0 kN212 m2

0.75 m
= 168 kN

FB = 1sal2allow AB = 3511062 N>m2[1800 mm2110-62 m2>mm2] = 63.0 kN

P =
1106.8 kN212 m2

1.25 m
= 171 kN

FAC = 1sst2allow1AAC2 = 34011062 N>m2[p10.01 m22] = 106.8 kN

FB12 m2 - P10.75 m2 = 0d+  © MA = 0;

P11.25 m2 - FAC12 m2 = 0d+  © MB = 0;

FBFAC

 tallow =
tfail

F.S.
=

900 MPa
2

= 450 MPa

 1sal2allow =
1sal2fail

F.S.
=

70 MPa
2

= 35 MPa

 1sst2allow =
1sst2fail

F.S.
=

680 MPa
2

= 340 MPa

F.S. = 2.
tfail = 900 MPa,

1sal2fail = 70 MPa,1sst2fail = 680 MPa

1800 mm2.

2 m

A

0.75 m

(a)

Aluminum

Steel P

B

C

A

0.75 m

(b)

P

1.25 m

B

FB

FAC

Fig. 1–35


