
EXAMPLE PROBLEMS AND SOLUTIONS 

A-5-1. In the system of Figure 5-52, x ( t )  is the input displacement and B(t) is the output angular 
displacement. Assume that the masses involved are negligibly small and that all motions are 
restricted to be small; therefore, the system can be considered linear. The initial conditions for x 
and 0 are zeros, or x ( 0 - )  = 0 and H(0-) = 0. Show that this system is a differentiating element. 
Then obtain the response B(t) when x ( t )  is a unit-step input. 

Solution. The equation for the system is 

b(X - L8) = kLB 

or 

The Laplace transform of this last equation, using zero initial conditions, gives 

And so 

Thus the system is a differentiating system. 
For the unit-step input X ( s )  = l / s ,  the output O(s)  becomes 

The inverse Laplace transform of O(s)  gives 

Figure 5-52 
Mechanical system. 
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Figure 5-53 
Unit-step input and 
the response of the 
mechanical s) stem 
shown in Figure 
5-52. 

Note that if the value of klb  is large the response O ( t )  approaches a pulse signal as shown in 
Figure 5-53. 

A-5-2. Consider the mechanical system shown in Figure 5-54. Suppose that the system is at rest initially 
[ x ( o )  = 0,  i ( 0 )  = 01, and at t = 0  it is set into motion by a unit-impulse force. Obtain a mathe- 
matical model for the system.Then find the motion of the system. 

Solution. The system is excited by a unit-impulse input. Hence 

This is a mathematical model for the system. 
Taking the Laplace transform of both sides of this last equation gives 

By substituting the initial conditions x(0)  = 0  and x ( 0 )  = 0  into this last equation and solving for 
X ( s ) ,  we obtain 

1 
X ( s )  = -------- 

ms2 + k 

The inverse Laplace transform of X ( s )  becomes 

The oscillation is a simple harmonic motion.The amplitude of the oscillation is l / m  

Figure 5-54 
Mechanical system. 
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A-5-3. Gear trains are often used in servo systems to reduce speed, to magnify torque, o r  to  obtain the 
most efficient power transfer by matching the driving member to the given load. 

Consider the gear train system shown in Figure 5-55. In this system, a load is driven by a 
motor through the gear train. Assuming that the stiffness of the shafts of the gear train is infinite 
(there is neither backlash nor elastic deformation) and that the number of teeth on each gear is 
proportional to  the radius of the gear, obtain the equivalent moment of inertia and equivalent 
viscous-friction coefficient referred to the motor shaft and referred to the load shaft. 

In Figure 5-55 the numbers of teeth on gears 1,2,3, and 4 are N , ,  N 2 ,  N3 ,  and N4, respectively. 
The angular displacements of shafts, 1,2, and 3 are 0 ,  , 0 2 ,  and O , ,  respectively.Thus, 02/01  = Nl IN2 
and 0 3 / &  = N 3 / N 4 .  The moment of inertia and viscous-fraction coefficient of each gear train 
component are denoted by J , ,  b , ;  J2,  6 , ;  and J,, b,;  respectively. (J, and b3 include the moment of 
inertia and friction of the load.) 

Solution. For this gear train system, we can obtain the following equations: For shaft 1, 

where T,,, is the torque developed by the motor and TI is the load torque o n  gear 1 due to the rest 
of the gear train. For shaft 2, 

~ ~ 6 ' ~  + b2& + T3 = T2 (5-64) 

where T, is the torque transmitted to gear 2 and T, is the load torque on  gear 3 due to the rest of 
the gear train. Since the work done by gear 1 is equal to that of gear 2, 

Figure 5-55 
Gear train system. 

If N 1 / N 2  < 1, the gear ratio reduces the speed as well as magnifies the torque. For shaft 3, 

where TL is the load torque and T4 is the torque transmitted to gear 4. T3 and T4 are related by 

and 0, and 19, are related by 
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Eliminating T I ,  T2, T,, and T4 from Equations (5-63), (5-64) and (5-65) yields 

Eliminating O2 and 8, from this last equation and writing the resulting equation in terms of 0, and 
its time derivatives, we obtain 

Thus, the equivalent moment of inertia and viscous-friction coefficient of the gear train referred 
to shaft 1 are given, respectively, by 

Similarly, the equivalent moment of inertia and viscous-friction coefficient of the gear train referred 
to the load shaft (shaft 3) are given, respectively, by 

The relationship between JI,, and J3,, is thus 

and that between b,,, and b,,, is 

The effect of J2 and J,  on an equivalent moment of inertia is determined by the gear ratios N,/  N2 
and N, I N4. For speed-reducing gear trains, the ratios, Nl / N2 and N3 / N, are usually less than unity. 
If N, /N2 e 1 and N3/N, 1, then the effect of J2 and J3 on the equivalent moment of inertia Jleq 
is negligible. Similar comments apply to the equivalent viscous-friction coefficient bl,, of the gear 
train. In terms of the equivalent moment of inertia Jleq and equivalent viscous-friction coefficient 
b,,, , Equation (5-66) can be simplified to give 

where 
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Figure 5-56 
(a) Closed-loop 
system; (b) unit-step 
response curve. 

When the system shown in Figure 5-56(a) is subjected to a unit-step input, the system output 
1 

responds as shown in Figure 5-56(b). Determine the values of K and T from the response curve. 

Solution. The maximum overshoot of 25.4% corresponds to 5 = 0.4. From the response curve 
we have 

t ,  = 3 

Consequently, 

It follows that 

From the block diagram we have 

from which 

Therefore, the values of T and K are determined as 
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A-5-5. Determine the values, of K and k of the closed-loop system shown in Figure 5-57 so that the maximum 
overshoot in unit-step response is 25% and the peak time is 2 sec. Assume that J = 1 kg-m2. 

Solution. The closed-loop transfer function is 

C(s) -- - 
K 

R ( s )  .Is2 + K k s  + K  

By substituting J = 1 kg-m2 into this last equation, we have 

C(J) - 
- 

K  

R ( s )  s 2 +  K k s +  K  

Note that in this problem 

w , = V E ,  2 j w , = K k  

The maximum overshoot M ,  is 

M = e-i"l \ '2  
P 

which is specified as 25%. Hence 

e-ir~m = 0.25 

from which 

or 

< = 0.404 

The peak time t ,  is specified as 2 sec. And so 

or 

w,, = 1.57 

Then the undamped natural frequency w,, is 

w,/ - 1.57 

wrL = - l,cTGG 
= 1.72 

Therefore, we obtain 

K  = w; = 1.72' = 2.95 N-m 

2[w,, - 2 X 0.404 X 1.72 k  = -- - 
K  

= 0.471 sec 
2.95 

Figure 5-57 
Closed-loop system. 
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A-5-6. Figures 5-58(a) shows a mechanical vibratory system. When 2 Ib of force (step input) is applied 
to the system, the mass oscillates, as shown in Figure 5-58(b). Determine m, b, and k of the system 
from this response curve. The displacement x is measured from the equilibrium position. 

Solution. The transfer function of this system is 

Since 

we obtain 

It follows that the steady-state value of x is 

Hence 

Note that M, = 9.5% corresponds to 5 = 0.6.The peak time t ,  is given by 

The experimental curve shows that t ,  = 2 sec.Therefore, 

3.14 
w ,  = ----- = 1.96 rad/sec 

2 X 0.8 

( P(2-lb force) t 

Figure 5-58 
(a) Mechanical 
vibratory system; 
(b) step-response 
curve. 
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Since w2, = k l m  = 20/rn, we obtain 

20 20 
- 5.2 slugs = 166 Ib m = - = - - -  

w i .  1.96~ 
(Note that 1 slug = 1 lb,-sec2/ft.) Then b is determined from 

4-5-7. Consider the unit-step response of the second-order system 

The amplitude of the exponentially damped sinusoid changes as a geometric series. A t  time 
t = t ,= . r r /w, ,  the amplitude is equal to e-(ul",l)n. After one oscillation, o r  at 
t = t ,  + 2.rr/w,, = 3n/w,,, the amplitude is equal to e-(""wg1)3"; after another cycle of oscillation, the 
amplitude is e-(u;"~)5". The logarithm of the ratio of successive amplitudes is called the logarithmic 
decrement. Determine the logarithmic decrement for this second-order system. Describe a method 
for experimental determination of the damping ratio from the rate of decay of the oscillation. 

Solution. Let us define the amplitude of the output oscillation at t = t ,  to be x,, where 
t ,  = t, + ( i  - 1)T(T  = period of oscillation). The amplitude ratio per one period of damped 
oscillation is 

Thus, the logarithmic decrement 6 is 

I t  is 3 function only of the damping ratio j .  Thus, the damping ratio j can be determined by use 
of  the logarithmic. decrement. 

In the experimental determination of the damping ratio 6 from the rate of decay of the oscil- 
lation, we measure the amplitude x, at t  = t ,  and amplitude x, at t  = t ,  + ( n  - l ) T .  Note that 
it is necessary to choose n large enough so that the ratio o x,/x, is not near unity.Then 

Hence 
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Figure 5-59 . 
Spring-mass-damper 
system. 

In the system shown in Figure 5-59, the numerical values of rn, b, and k are given as rn = 1 kg, 
b = 2 N-sec/m, and k = 100 N/m. The mass is displaced 0.05 m and released without initial ve- 
locity. Find the frequency observed in the vibration. In addition, find the amplitude four cycles later. 
The displacement x is measured from the equilibrium position. 

Solution. The equation of motion for the system is 

rnx + bx + kx = 0 

Substituting the numerical values for m, b, and k into this equation gives 

where the initial conditions are x(0) = 0.05 and x(0) = 0. From this last equation the undamped 
natural frequency w,, and the damping ratio 5 are found to be 

In the present analysis, x(0) is given as zero.Thus, solution x(t) can be written as 

It follows that at t = nT, where T = Z.rr/w,,, 

Consequently, the amplitude four cycles later becomes 

Obtain both analytically and computationally the unit-step response of tbe following higher-order 
system: 

[Obtain the partial-fraction expansion of C(s) with MATLAB when R(s) is a unit-step function.] 

Solution. MATLAB Program 5-19 yields the unit-step response curve shown in Figure 5-60. It 
also yields the partial-fraction expansion of C(s) as follows: 

Chapter 5 / Transient and Steady-State Response Analyses 
I 



MATLAB Program 5-1 9 

% ------- Unit-Step Response of C(s)/R(s) and Partial-Fraction Expansion of C(s) ------- 

num = [0 3 25 72 801; 
den = [ I  8 40 96 801; 
step(num,den); 
v = [ O  3 0 1.21; axidv), grid 

TO obtain the partial-fraction expansion of C(s), enter commands 

% numl = [0 0 3 25 72 801; 
% denl = [I 8 40 96 80 01; 
O/O [r,p,k] = residue(num1 ,den1 1 

numl = [O 0 3 25 72 801; 
denl = [ I  8 40 96 80 01; 
[r,p,k] = residuehum1 ,den1 ) 

Hence, the time response c ( t )  can be given by 

c( t ) = -0.5626e-~' cos 4t + 0.3438e-2' sin 4t 

The fact that the response curve is an exponential curve superimposed by damped sinusoidal 
curves can be seen from Figure 5-60. 
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Step Response 

Figure 5-60 
Unit-step response 
curve. 

0 0.5 1 1.5 2 2.5 3 
Time (sec) 

A-5-10. Obtain both analytical and computational solutions of the unit-step response of a unity-feedback 
system whose open-loop transfer function is 

Solution. The closed-loop transfer function is 

The unit-step response of this system is then 

The time response c(t) can be found by taking the inverse Laplace transform of C(s) as follows: 

3 17 11 13 
~ ( t )  = 1 + - e-'cos3t - - e-' sin3t - - e-"cos t - - e-3' sint, for t 2 0 

8 24 8 8 

A MATLAB program to obtain the unit-step response of this system is shown in MATLAB 
Program 5-20.The resulting unit-step response curve is shown in Figure 5-61. 
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Figure 5-61 
Unit-step resFonse 
curve. 

MATLAB Program 5-20 

o/o - - - - - - - - - - - - - - - Unit-step-response --------------- 

num = [O 0 0 5 1001; 
den= 11 8 32 80 1001; 
step(num,den) 
grid 
title('Unit-Step Response of C(s)/R(s) = (5s + 1 00)/(sA4 + 8sA3 + 32sA2 + 80s + 100)') 

IJnit-Step Response of C(s)/H(s) = (5s+ 1 00)/(.s4+8s3+32s2+80s+ 100) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time (sec) 

A-5-11. When the closed-loop system involves a numerator dynamics, the unit-step response curve may 
exhibit a large overshoot. Obtain the unit-step response of the following system with MATLAB: 

Obtain also the unit-ramp response with MATLAB. 

Solution. MATLAB Program 5-21 produces the unit-step response as well as the unit-ramp 
response of the system.The unit-step response curve and unit-ramp response curve, together with 
the unit-ramp input, are shown in Figures 5-62(a) and (b), respectively. 

Notice that the unit-step response curve exhibits over 215% of overshoot. The unit-ramp 
response curve leads the input curve.These phenomena occurred because of the presence of a large 
derivative term in the numerator. 
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MATLAB Program 5-21 

num = [O 10 41; 
den = [I 4 41; 
t = 0:0.02:10; 
y = step(num,den,t); 
plot(t,y) 
grid 
titletunit-Step Response') 
xlabel('t (sec)') 
ylabel('Outputl) 

numl = [O O 10 41; 
den1 = 11 4 4 01; 
y l  = stephum1 ,den1 ,t); 
plot(t,t,'--',t,yl) 
v = [O 10 0 101; axis(v); 
grid 
title('Unit-Ramp Response') 
xlabel('t (sec)') 
ylabel('Unit-Ramp Input and Output') 
text(6.1 ,5.0ftUnit-Ramp Input') 
text(3.5,7.1 ,'Output1) 

1 

0 1 2 3 4 5 6 7 8 9 1 0  
t (sec) 

(a) 

Figure 5-62 
(a) Unit-step response curve; (b) unit-ramp response curve plotted with unit-ramp input. 
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.I-5-12. Consider a higher-order system defined by 

C ( s )  - --  6.3223s2 + 18s t 12.811 

R ( s )  s4 + 6s3 + 1k.3223s2 + 18s + 12.811 

Using MATLAB, plot the unit-step response curve of this system. Using MATLAB, obtain the rise 
time, peak time, maximum overshoot, and settling time. 

Solution. MATLAB Program 5-22 plots the unit-step response curve as well as to give the rise 
time, peak time, maximum overshoot, and settling time.The unit-step response curve is shown in 
Figure 5-63. 

MATLAB Program 5-22 

O/O ------- This program is to plot the unit-step response curve, as well as to 
find the rise time, peak time, maximum overshoot, and settling time. 

% In this program the rise time is calculated as the time required for the 
O/" response to rise from 10% to 90'% of its final value. ------- 

num = [0 O 6.3223 18 12.811 1; 
d e n = [ l  6 11.3223 18 12.8111; 
t = 0:0.02:20; 
[y,x,t] = step(num,den,t); 
plot(t,y) 
grid 
title('Unit-Step Response') 
xlabel('t (set)') 
ylabel('0utput y(t)') 

r l  = 1; while y(r1) < 0.1, rl. = r l  +l ; end; 
r2 = 1; while y(r2) < 0.9, r2 = r2+l; end; 
rise-time = (r2-rl)*O. 02 

rise-time = 

0.5800 

[ymax,tp] = max(y); 
peak-time = (tp-1)*0.02 

peak-time = 

max-overshoot = ymax-l 

5 = 1001; while y(s) > 0.98 8( y(s) < 1.02; s = s-1; end; 
settlingtime = (s-1)*0.02 

settling-time = 
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Unit-Step Response 

Figure 5-63 
Unit-step response 
curve. 

A-5-13. Consider the closed-loop system defined by 

Using a "for loop," write a MATLAB program to obtain unit-step response of this system for the 
following four cases: 

Case 2: 5 = 0.5, w, = 2 

Case 3: 5 = 0.7, w, = 4 

Case 4: 5 = 0.8, on = 6 

Solution. Define w i  = a and 25w, = b. Then, u and b each have four elements as follows: 

Using vectors a and b, MATLAB Program 5-23 will produce the unit-step response curves as 
shown in Figure 5-64. 
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Figure 5-64 
Unit-step response 
curves for four cases. 

MATLAB Program 5-23 

a =  [ I  4 16 361; 
\ 

b = [0.6 2 5.6 9.61; 
t = 0:0.1:8; 
y = zeros(81,4); 

for i = 1:4; 
nurn = [O 0 a(i)l; 
den = [ I  b(i) a(i)]; 
y(: , i )  = step(num,den,t); 
end 

plot(t,y(:,l ~ , ' o ' , t , y ~ : , 2 ~ , ~ x 1 , t , y ~ : 1 3 ~ , 1 - ' l t , y ~ : 1 4 ~ , ' - . ' ~  
grid 
titleilUnit-Step Response Curves for Four Cases') 
xlabeli't Secl) 
ylabeli'Outputs') 
gtext(' 1 ')  
gtext('2') 
gtext('3') 
gtext('4') 

Unit-Step Response Curves for Four Cases 

t Sec 
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A-5-14. Using MATLAB, obtain the unit-ramp response of the closed-loop control system whose closed- 
I 

loop transfer function is 

Also, obtain the response of this system when the input is given by 
= e - ~ . 5 r  

Solution. MATLAB Program 5-24 produces the unit-ramp response and the response to the 
exponential input r = e-O.S'. The resulting response curves are shown in Figures 5-65(a) and (b), 
respectively. 

MATLAB Program 5-24 

% - - - - - - - - - Unit-Ramp Response --------- 

num = [O 0 I lo] ;  
den = [ I  6 9 101; 
t = 0:0.1:10; 
r = t; 
y = Isim(num,den,r,t); 
plot(t,r,'-',t,yl'ol) 
grid 
title('Unit-Ramp Response by Use of Command "lsim"') 
xlabel('t Sec') 
ylabel('Outputl) 
text(3.2,6.5,'Unit-Ramp Input') 
text(6.0,3.1 ,'Output1) 

% - - - - - - - - - Response to Input r l  = exp(-0.5t). --------- 

num = [O 0 1 101; 
den = [I 6 9 101; 
t = 0:O.l : I  2; 
r l  = exp(-0.5*t); 
y l  = Isim(num,den,rl ,t); 
plot(t,rl ,I-',t,yl ,'or) 
grid 
title('Response to lnput r l  = exp(-0.5t)') 
xlabel('t Sec') 
ylabel('lnput and Output') 
text(l.4,0.75,'lnput r l  = exp(-0.5t)') 
text(6.2,0.34,'0utput1) 
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Unit-Ramp Response by Use of Command "lsim" 

Figure 5-65 
(a) Unit-ramp 
response curve; 
(b) response to  
exponential ir put 

= e-05r 

Response to Input r ,  = e-0.5r 

0 
0 2 4 6 8 10 12 

t Sec 

(b) 

~1-5-15. Obtain the response of the closed-loop system defined by 

when the input r ( t )  is given by 

[The input r ( t )  is a step input of magnitude 2 plus unit-ramp input.] 
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Solution. A possible MATLAB program is shown in MATLAB Program 5-25. The resulting 
response curve, together with a plot of the input function, is shown in Figure 5-66. 

1 

Figure 5-66 
Response to input 
r ( t )  = 2 + t .  

Figure 5-67 
Control system. 

MATLAB Program 5-25 

num = [O 0 51; 
den = [ l  1 51; 
t = 0:0.05:10; 
r = 2+t; 
c = Isiminum,den,r,t); 
plot(t,r,'-',t,c,lol) 
grid 
title('Response to lnput r(t) = 2 + t') 
xlabel('t Sec') 
ylabelilOutput cit) and lnput r(t) = 2 + t') 

Response to Input r(t) = 2 + t 

t Sec 

Obtain the response of the system shown in Figure 5-67 when the input r ( t )  is given by 

1 
r ( t )  = - t2  

2 

[The input r ( t )  is the unit-acceleration input.] 

Chapter 5 / Transient and Steady-State Response Analyses 



Figure 5-68 
Response to unit- 
acceleration input. 

Solution. The closed-loop transfer function is 

MATLAB Program 5-26 produces the unit-accerelation response.The resulting response, together 
with the unit-acceleratioh input, is shown in Figure 5-68. 

MATLAB Program 5-26 

num = [O O 21; 
den = [ l  1 21; 
t = 0:0.2:10; 
r = 0.5*LA2; 
y = Isim(num,den,r,t); 
plot(t,r,'-',t,y,'o4,t,y,'-') 
grid 
title('Unit-Acceleration Response') 
xlabel('t Sec') 
ylabel('lnput and Output') 
text(2.1,27.5,'Unit-Acceleration Input') 
text(7.2,7.5,'0utput') 

Unit-Acceleration Response 

t Sec 

A-5-17. Consider the system defined by 

Example Problems and Solutions 



where 5 = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Write a MATLAB program using a "for loop" to 
obtain the two-dimensional and three-dimensional plots of the system output. The input is the 
unit-step function. 

Solution. MATLAB Program 5-27 is a possible program to obtain two-dimensional and three- 
dimensional plots. Figure 5-69(a) is the two-dimensional plot of the unit-step response curves for 
various values of 5. Figure 5-69(b) is the three-dimensional plot obtained by use of the command 
"mesh(y)" and Figure 5-69(c) is obtained by use of the command "mesh(yl)". (These two 
three-dimensional plots are basically the same.The only difference is that x axis and y axis are in- 
terchanged.) 

MATLAB Program 5-27 

t = 0:0.2:12; 
for n = 1 :6; 
num= [O O 11; 
den = [ I  2*(n-1)*0.2 I ] ;  
[y(l:61 ,n),x,t] = step(num,den,t); 
end 

plot(t,y) 
grid 
title('Unit-Step Response Curves') 
xlabel('t Sect) 
ylabel('Outputs0 
gtext('\zeta = 0'1, 
gtext('0.2') 
gtext('0.4') 
gtext('0.6') 
gtext('0.8') 
gtext('1 .O1) 

O/O To draw a three-dimensional plot, enter the following command: mesh(y) or mesh(yt) 
% We shall show two three-dimensional plots, one using "mesh(y)" and the other using 
'10 "mesh(yl)". These two plots are the same, except that the x axis and y axis are 
% interchanged. 

mesh(y) 
title('Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y)"O 
xlabel('n, where n = 1,2,3,4,5,6') 
ylabel('Computation Time Points') 
zlahel('0utputs') 

mesh(yl) 
title('Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y transpose)"') 
xlabel('Computation Time Points') 
ylabel('n, where n = 1,2,3,4,5,6') 
zlabel('0utputs') 
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Figure 5-69 
( a )  Two-dimmsional 
plot of unit-step 
response curves; 
(b) three-dimensional 
plot of uni t -~tep 
response curves 
usign commaind 
"mesh(y)"; 
(c) three-dirr.ensional 
plot of unit-step 
response curves 
using command 
"mesh(y')". 

Un~t-Step Response Curves 

0 2 4 6 8 10 12 
t Sec 

~ h ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ a i  plot of '~ni t .~ tep  R~~~~~~~ curves using command "mesh(y)" Three-Dmrnstonal Plot of Unit-Step Response Curves usmg Command "mesh(y transpose)" 

U 1 
Computation T i m  Points n,  where n = 1 , 2 , 3 , 4 ,  5.6 

I U 
n, where n = 1, 2, 3 .4 ,  5 ,  6 Computation Tune Poms 

A-5-18. Consider the following characteristic equation: 

s 4 + K s 3 + s 2 + s + 1 = 0  

Determine the range of K for stability. 

Solution. The Routh array of coefficients is 

s4 1 1 1  
s3 K 1 0  
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For stability, we require that 

From the first and second conditions, K must be greater than 1. For K > 1, notice that the term 
1 - [ K 2 / ( K  - I)]  is always negative,since 

Thus, the three conditions cannot be fulfilled simultaneously.Therefore, there is no value of K that 
allows stability of the system. 

A-5-19. Consider the characteristic equation given by 

The Hurwitz stability criterion, given next, gives conditions for all the roots to have negative real 
parts in terms of the coefficients of the polynomial. As stated in the discussions of Routh's stability 
criterion in Section 5-7, for all the roots to have negative real parts, all the coefficients a's must 
be positive.This is a necessary condition but not a sufficient condition. If this condition is not sat- 
isfied, it indicates that some of the roots have positive real parts or are imaginary or zero. A suf- 
ficient condition for all the roots to have negative real parts is given in the following Hurwitz 
stability criterion: If all the coefficients of the polynomial are positive, arrange these coefficients 
in the following determinant: 

a,  a3 a,  . . .  0  0 0  
a, a, a, ... . 
0 a l  a, ... an 0 0 

A,, = 0 a, a, . . .  a 0 0 
. . .  an-2 an 0 
. . . 

- 3  - 1  0 
0 0 0 ... an-4 an-2 at 

where we substituted zero for a, if s > n. For all the roots to have negative real parts, it is neces- 
sary and sufficient that successive principal minors of A, be positive. The successive principal 
minors are the following determinants: 

where a, = 0 if s > n. (It is noted that some of the conditions for the lower-order determinants 
are included in the conditions for the higher-order determinants.) If all these determinants are 
positive, and a, > 0 as already assumed, the equilibrium state of the system whose characteristic 
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equation is given by Equation (5-67) is asymptotically stable. Note that exact values of determi- 
nants are not needed; instead, only signs of these determinants are needed for the stability criterion. 

Now consider the following characteristic equation: 

Obtain the conditions for stability using the Hurwitz stability criterion. 

Solution. The conditions for stability are that all the a's be positive and that 

It is clear that, if all the a's are positive and if the condition A 3  > 0 is satisfied, the condition 
A2 > 0 is also satisfied.Therefore, for all the roots of the given characteristic equation to have neg- 
ative real parts, it is necessary and sufficient that all the coefficients a's are positive and A 3  > 0. 

A-5-20. Show that the first column of the Routh array of 

is given by 

where 

Solution. The Routh array of coefficients has the form 
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The first term in the first column of the Routh array is 1.The next term in the first column is a, ,  
which is equal to A I .  The next term is bl  , which is equal to 

The next term in the first column is c , ,  which is equal to  

[ " l a b ;  " ' I a 3  - a l [ " l a h ,  "'1 - a,b2 - - 
bl 

In a similar manner the remaining terms in the first column of the Routh array can be found. 
The Routh array has the property that the last nonzero terms of any columns are the same; 

that is, if the array is given by 

then 

and if the array is given by 

then 

In any case, the last term of the first column is equal to a,,, or 
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For example, if n = 4, then 

Thus it has been shown that the first column of the Routh array is given by 

A-5-21. Show that the Routh's stability criterion and Hurwitz stability criterion are equivalent. 

Solution. If we write Hurwitz determinants in the triangular form 

where the elements below the diagonal line are all zeros and the elements above the diagonal 
line any numbers, then the Hurwitz conditions for asymptotic stability become 

which are equivalent to the conditions 

We shall show that these conditions are equivalent to 

a , > O ,  b ,>O,  c l > O ,  ... 

where a, ,  b, , c, , . . . , are the elements of the first column in the Routh array. 
Consider, for example, the following Hurwitz determinant, which corresponds to  i = 4: 

The determinant is unchanged if we subtract from the ith row k times the jth row. By subtracting 
from the second row a,/a, times the first row, we obtain 

a11 a3 a5 a7 

A, = 
a22 

0 a,  a, us 

0 a" a2 a4 
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where 

a11 = a1 

Similarly, subtracting from the fourth row a,/al times the third row yields 

where 

Next, subtracting from the third row L I ,  /a2, times the second row yields 

where 

Finally, subtracting from the last row &,/a, times the third row yields 

where 
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From this analysis, we see that 

A4 = alla22a33a44 

A3 = a11a22a33 

4 = a,1a22 

A1 = all 

The Hurwitz conditions for asymptotic stability 

A l > O ,  A 2 > 0 ,  A 3 > 0 ,  A 4 > 0 ,  . . a  

reduce to the conditions 

al l  > 0 ,  a,, > 0,  q3 > 0, 4, > 0, . .  

The Routh array for the polynomial' 

a,s4 + a,s3 + a2s2 + a3s + a, = 0 

where a, > 0 and n = 4, is given by 

a0 a2 a4 

a1 a3 
bl b2 

c I 
d 1 

From this Routh array, we see that 

all = al 

(The last equation is obtained using the fact that a,, = 0, G,, = a,, and a, = b2 = d l  .) Hence the 
Hurwitz conditions for asymptotic stability become 

Thus we have demonstrated that Hurwitz conditions for asymptotic stability can be reduced to 
Routh's conditions for asymptotic stability. The same argument can be extended to Hurwitz 
determinants of any order, and the equivalence of Routh's stability criterion and Hurwitz stabil- 
ity criterion can be established. 

A-5-22. Consider the characteristic equation 

s4 + 2s3 + ( 4  + K ) s 2  + 9s + 25 = 0 

Using the Hurwitz stability criterion, determine the range of K for stability. 

Solution. Comparing the given characteristic equation 

s4 + +s, + (4 + K ) S ~  + os + 25 = o 
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with the following standard fourth-order characteristic equation: 

Figure 5-70 
Control system. 

we find 

The Hurwitz stability criterion states that A, is given by 

For all the roots to have negative real parts, it is necessary and sufficient that succesive principal 
minors of A, be positive. The successive principal minors are 

For all principal minors to be positive, we require that A,(i = 1,2,3) be positive.Thus, we require 

2 K - l > O  

from which we obtain the region of K for stability to be 

Explain why the proportional control of a plant that does not possess an integrating property 
(which means that the plant transfer function does not include the factor 11s) suffers offset in 
response to step inputs. 

Solution. Consider, for example, the system shown in Figure 5-70.At steady state, if c were equal 
to a nonzero constant r, then e = 0 and u = Ke = 0, resulting in c = 0, which contradicts the 
assumption that c = r = nonzero constant. 

A nonzero offset must exist for proper operation of such a control system. In other words, at 
steady state, if e were equal to r / ( l  + K), then u = Kr/(l  + K )  and c = Kr/(l  + K), which 
results in the assumed error signal e = r /( l  + K).Thus the offset of r / ( l  + K)  must exist in such 
a system. 

- - 
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.1-5-24. Consider the system shown in Figure 5-71. Show that the steady-state error in following the unit- 
ramp input is B/K.This error can be made smaller by choosing B small and/or K large. However. 
making B small and/or K large would have the effect of making the damping ratio small, which 
is normally not desirable. Describe a method or methods to make B/K  small and yet make the 
damping ratio have reasonable value (0.5 < [ < 0.7). 

Solution. From Figure 5-71 we obtain 

The steady-state error for the unit-ramp response can bc obtained as follows: For the unit-ramp 
input, the steady-state error r,, is 

e,, = l imsE(5) , -+O 

where 

To assure acceptable transient response and acceptable steady-state error in following a ramp 
input, [ must not be too small and w ,  must be sufficiently large. It is possible to make the steady- 
state error e,, small by making the value of the gain K large. (A large value of K has an additional 
advantage of suppressing undesirable effects caused by dead zone. backlash, coulomb friction, 
and the like.) A large value of K would, however, make the value of [ small and increase the 
maximum overshoot, which is undesirable. 

It is therefore necessary to compromise between the magnitude of the steady-state error to a 
ramp input and the maximum overshoot to a unit-step input. In the system shown in Figure 5-71, 
a reasonable compromise may not be reached easily. It is then desirable to consider other types 
of control action that may improve both the transient-response and steady-state behavior. Two 
schemes to improve both the transient-response and steady-state behavior are available. One 
scheme is to use a proportional-plus-derivative controller and the other is to use tachometer feed- 
back. 

Figure 5-71 
Control systerl. 
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A-5-25. The block diagram of Figure 5-72 shows a speed control system in which the output member of 
the system is subject to a torque disturbance. In the diagram, i&(s) ,  f I ( s ) ,  T(s), and D ( s )  are the 
Laplace transforms of the reference speed, output speed, driving torque, and disturbance torque, 
respectively. In the absence of a disturbance torque, the output speed is equal to the reference 
speed. 

Figure 5-72 
Block diagram of a 
speed control system. 

Figure 5-73 
Block diagram of the 
speed control system 
of Figure 5-72 when 
f q s )  = 0. 

Investigate the response of this system to a unit-step disturbance torque. Assume that the 
reference input is zero, or L&(s) = 0. 

Solution. Figure 5-73 is a modified block diagram convenient for the present analysis.The closed- 
loop transfer function is 

where O D ( s )  is the Laplace transform of the output speed due to the disturbance torque. For a unit- 
step disturbance torque, the steady-state output velocity is 

From this analysis, we conclude that, if a step disturbance torque is applied to the output 
member of the system, an error speed will result so that the ensuing motor torque will exactly can- 
cel the disturbance torque.To develop this motor torque, it is necessary that there be an error in 
speed so that nonzero torque will result. 
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1\4-26. In the system considered in Problem A-5-25, it is desired to eliminate as much as possible the 
speed errors due to  torque disturbances. 

Is it possible to cancel the effect of a disturbance torque at steady state so that a constant 
disturbance torque applied to the output member will cause no speed change at  steady state? 

Solution. Suppose that we choose a suitable controller whose transfer function is G,(s), as shown 
in Figure 5-74.Then in the absence of the reference input the closed-loop transfer function between 
the output velocity RD(s) and the disturbance torque D ( s )  is 

The steady-state output speed due to a unit-step disturbance torque is 

S 1 
= lim - 

J S  + G,(s) s 

To satisfy the requirement that 

we must choose GJO) = oo. This can be realized if we choose 

Integral control action will continue to correct until the error is zero. This controller, however, 
presents a stability problem because the characteristic equation will have two imaginary roots. 

One method of stabilizing such a system is to add a proportional mode to the controller or 
choose 

ti 
G,(s) = ti, -t - 

s 

Figure 5-74 
Block diagram of a 
speed control system. 
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Figure 5-75 
Block diagram of the 
speed control system 
of Figure 5-74 when 
G,(s) = K, + ( K l s )  
and Or(s) = 0. 

With this controller, the block diagram of Figure 5-74 in the absence of the reference input can 
be modified to that of Figure 5-75. The closed-loop transfer function fl,(s)/D(s) becomes 

For a unit-step disturbance torque, the steady-state output speed is 

s2 1 
W,(CO) = lims(2,(s) = lim - = o  

F + O  1-0 JS' + Kps + K S 

Thus, we see that the proportional-plus-integral controller eliminates speed error at steady state. 
The use of integral control action has increased the order of the system by 1. (This tends to 

produce an oscillatory response.) 
In the present system, a step disturbance torque will cause a transient error in the output 

speed, but the error will become zero at steady state. The integrator provides a nonzero output 
with zero error. (The nonzero output of the integrator produces a motor torque that exactly 
cancels the disturbance torque.) 

Note that the integrator in the transfer function of the plant does not eliminate the steady-state 
error due to a step disturbance torque. To ehminate this, we must have an integrator before the 
point where the disturbance torque enters. 

A-5-27. Consider the system shown in Figure 5-76(a). The steady-state error to  a unit-ramp input is 
e,, = 24'/w,. Show that the steady-state error for following a ramp input may be eliminated if the 
input is introduced to the system through a proportional-plus-derivative filter, as shown in Figure 
5-76(b), and the value of k is properly set. Note that the error e(t) is given by r ( t )  - c(t). 

Solution. The closed-loop transfer function of the system shown in Figure 5-76(b) is 

Then 

7 , y - y 7  , CE 

1 + ks 
4 s  + 25%) 4 s  + 25%) 

Figure 5-76 
(a) Control system; 
(b) control system 
with input filter. (a) (b) 
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If the input is a unit ramp, then the steady-state error is 

Therefore, if k is chosen as 

then the steady-state error for following a ramp input can be made equal to zero. Note that, if there 
are any variations in the values of i and/or w, due to environmental changes or aging, then a 
nonzero steady-state error for a ramp response may result. 

A-5-28. Consider the servo system with tachometer feedback shown in Figure 5-77. Obtain the error 
signal E ( s )  when both the reference input R ( s )  and disturbance input D ( s )  are present. Obtain 
also the steady-state error when the system is subjected to a reference input (unit-ramp input) and 
disturbance input (step input of magnitude d). 

Figure 5-77 
Servo system with 
tachometer 
feedback. 

Solution. When we consider the reference input R ( s )  we can assume that the disturbance input 
D ( s )  is zero, and vice versa. Then, a block diagram that relates the referenceinput R ( s )  and the 
output C ( s )  may be drawn as shown in Figure 5-78(a). Similarly, Figure 5-78(b) relates the 
disturbance input D ( s )  and the output C(.s). 

The closed-loop transfer function C ( s ) / R ( s )  can be obtained from Figure 5-78(a) as follows: 

Similarly. the closed-loop transfer function C ( s ) / D ( s )  can be obtained from Figure 5-78(b) as 

If both R ( s )  and D ( s )  are present, then 
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Figure 5-78 
(a) Block diagram 
that relates reference 
input R(s) and 
output C(s); 
(b) block diagram 
that relates 
disturbance input 
D(s) and output 
C(s). 

Since 

we obtain 

Hence the steady-state error can be obtained as follows: 

lirn e ( t )  = lirn sE(s) 
1-m s-O 

S 
= lim [ ~ ( J s  + B + KK,)R(S) - ~ ( s ) ]  

-0 J S ~  + (B + KKJS + K 

Since R(s) = l/s2 (unit-ramp input) and D(s) = d/s (step input of magnitude d) the steady-state 
error is 

[ B + K K h z  l s d ]  
lirn e ( t )  = lirn 
I--too -0 K s2 K s 
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4-5-29. Consider the stable unity-feedback control system wlth feedforward transfer function G ( s ) .  
Suppose that the closed-loop transfer function can be written 

C ( S )  G ( S )  - (T ,S  + I)(T,S + I )  . . .  (T,,,S + I )  -- - 7 - ( m  I n )  
R ( s )  1 + G ( s )  (T ,s  + 1)(T2s + l ) . . . (T , s  + 1) 

Show that 

where e ( t )  is the error in the unit-step response. Show also that 

Solution. Let us define 

(TJ + l)(T,,s + 1) . . .  (T,s + I )  = P ( s )  

and 

( T , S  + I)(T,S + I )  . .  . (T,,s + I )  = Q ( S )  

Then 

and 

For a unit-step input, R ( s )  = l / s  and 

Since the system is stable, Jiwe(t) dt converges to a constant value. Referring to Table 2-2 (item 9), 
we have 

E ( s )  e ( t )  d l  = lim s ---- = lim E ( s )  
s+o  S s-0 

Hence 
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Since 

lim Pf ( s )  = T,, + Th + ... + T, 
s+O 

limQ1(s) = T, + T2 + ... + T,, 
5--to 

we have 

k;(i)dt = (T, + T2 + . + 7,) - ( T ~  + Tb + . + Tm) 

For a unit-step input r ( t ) ,  since 

l w e ( t ) d t  = ! ~ E ( S )  = lim 1 R(s) = lim 1 1  - 1 = - 1 
s-0 1 + G(s) s-0 1 -t G(s) J - !$sG(s) K. 

we have 

Note that zeros in the left half-plane (that is, positive T,, T,, . . . , T,J will improve K,. Poles close 
to the origin cause low velocity-error constants unless there are zeros nearby. 

PROBLEMS 

B-5-1. A thermometer requires 1 min to indicate 98% of 
the response t'o a step input. Assuming the thermometer to 
be a first-order system, find the time constant. 

If the thermometer is placed in a bath, the temperature 
of which is changing linearly at a rate of lOQ/min, how much 
error does the thermometer show? 

B-5-2. Consider the unit-step response of a unity-feedback 
control system whose open-loop transfer function is 

B-5-4. Figure 5-79 is a block diagram of a space-vehicle 
attitude-control system. Assuming the time constant T of 
the controller to be 3 sec and the ratio K/J  to be 8 rad2/sec2, 
find the damping ratio of the system. 

Space 
vehicle I 

Figure 5-79 
Space-vehicle attitude-control system. 

B-5-5. Consider the system shown in Figure 5-80. The sys- 
Obtain the rise time, peak time, maximum overshoot, and tem is initially at rest. Suppose that the cart is set into mo- 
settling time. tion by an impulsive force whose strength is unity. Can it be 

stopped by another such impulsive force? 
B-5-3. Consider the closed-loop system given by 

-X 

C(s) Impulsive =- 4 
R(s) s2 + 2iw,,s + w3 

Determine the values of 5 and o, so that the system 
responds to a step input with approximately 5% overshoot Figure 5-80 
and with a settling time of 2 sec. (Use the 2% criterion.) Mechanical system. 
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B-5-6. Obtain the unit-impulse response and the unit- Assume that a record of a damped oscillation is available 
step response of a unity-feedback system whose open-loop as shown in Figure 5-82. Determine the damping ratio ( oi 
transfer function is the system from the graph. 

B-5-7. Consider the system shown in Figure 5-81. Show 
that the transfer function Y ( s ) / X ( s )  has a zero in the right- 
half s plane.'Ken obtain y ( t )  when x ( t )  is a unit step. Plot 
y ( f )  versus t .  

B-5-8. An oscillatory system is known to have a transfer 
function of tl 'e following form: 

B-5-9. Consider the system shown in Figure 5-83(a). The 
damping ratio of this system is 0.158 and the undamped nar- 
ural frequency is 3.16 radlsec. To improve the relative sta- 
bility, we employ tachometer feedback. Figure 5-83(b) shows 
such a tachometer-feedback system. 

Determine the value of K, so that the damping ratio of 
the system is 0.5. Draw unit-step response curves of both 
the original and tachometer-feedback systems. Also draw 
the error-versus-time curves for the unit-ramp response of 
both systems. 

Figure 5-81 
System with zero in the right-half s plane. 

Figure 5-82 
Decaying oscillation. 

(b) 

Figure 5-83 
(a) Control system; (b) control system with tachometer feedback. 
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B-5-10. Referring to the system shown in Figure 5-84, de- B-5-13. Using MATLAB, obtain the unit-step response, 
termine the values of K and k such that the system has a unit-ramp response, and unit-impulse response of the fol- 
damping ratio 6 of 0.7 and an undamped natural frequency lowing system: 
w, of 4 rad/sec. 

B-5-11. Consider the system shown in Figure 5-85. Deter- 
mine the value of k such that the damping ratio 6 is O.5.Then 
obtain the rise time t,, peak time r,, maximum overshoot 
M,, and settling time t ,  in the unit-step response. Y = [ l  01[~ ' ]  

x2 
B-5-12. Using MATLAB, obtain the unit-step response, 
unit-ramp response, and unit-impulse response of the fol- where is the input and is the output. 
lowing system: 

B-5-14. Obtain both analytically and computationally the 
C ( s )  -- 10 rise time, peak time, maximum overshoot, and settling time 

- 
R ( s )  s2 + 2s + 10 in the unit-step response of a closed-loop system given by 

where R ( s )  and C ( s )  are Laplace transforms of the input * -- c ( s )  - 36 

r ( t )  and output c ( t ) ,  respectively. R ( s )  s2 + 2s + 36 

Figure 5-84 
Closed-loop system. 

Figure 5-85 
Block diagram of a system. 
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R-5-15. Figure 5-86 shows three systems. System I is a PO- B-5-16. Consider the position control system shown in Fig- 
sitional servo system. System I1 is a positional servo system ure 5-87. Write a MATLAB program to obtain a unit-step 
with P D  control action. System 111 is a positional servo sys- response and a unit-ramp response of the system. Plot curves 
ten1 with velocity feedback. Compare the unit-step, unit- x , ( t )  versus t ,  x,(t) versus t ,  x , ( t )  versus t ,  and e ( t )  versus t 
impulse, and unit-ramp responses of the three systems. [where e ( t )  = r ( t )  - x , ( t ) ]  for both the unit-step response 
Which system is best with respect to the speed of response and the unit-ramp response. 
and maximum overshoot in the step response? 

System I 

System 11 

I I 
System Ill 

Figure 5-86 
Positional servo system (System I). positional servo system with P D  control 
action (System 11), and positional servo system with velocity feedback 
(System 111). 

Problems 

Figure 5-87 
Position control system. 



B-5-17. Using MATLAB, obtain the unit-step response 
curve for the unity-feedback control system whose open- 
loop transfer function is 

Using MATLAB, obtain also the rise time, peak time, max- 
imum overshoot, and settling time in the unit-step response 
curve. 

B-5-18. Consider the closed-loop system defined by 

where 5 = 0.2,0.4,0.6,0.8, and 1.0. Using MATLAB, plot 
a two-dimensional diagram of unit-impulse response 
curves.Also plot a three-dimensional plot of the response 
curves. 

B-5-19. Consider the second-order system defined by 

where 5 = 0.2, 0.4,0.6, 0.8, 1.0. Plot a three-dimensional 
diagram of the unit-step response curves. 

B-5-20. Obtain the unit-ramp response of the system 
defined by 

where u is the unit-ramp input. Use lsim command to obtain 
the response. 

B-5-21. Using MATLAB obtain the unit acceleration 
response curve of the unity-feedback control system whose 
open-loop transfer function is 

The unit acceleration input is defined by 

B-5-22. Consider the differential equation system given by 

Obtain the response y ( t ) ,  subject to the given initial 
condition. 

B-5-23. Determine the range of K for stability of a unity- 
feedback control system whose open-loop transfer func- 
tion is 

B-5-24. Consider the unity-feedback control system with 
the following open-loop transfer function: 

Is this system stable? 

B-5-25. Consider the following characteristic equation: 

Using Routh stability criterion, determine the range of K 
for stability. 

B-5-26. Consider the closed-loop system shown in Figure 
5-88. Determine the range of K for stability. Assume that 
K > 0. 

L I 

Figure 5-88 
Closed-loop system. 
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B-5-27. Consider the satellite attitude control system 
shown in Figure 5-89(a).The output of this system exhibits 
continued oscillations and is not desirable.This system can 
be stabilized by use of tachometer feedback, as shown in 
Figure 5-89(1)). If K / J  = 4, what value of K,  will yield the 
damping ratio to be 0.6? 

B-5-28. Consider the servo system with tachometer 
feedback shcjwn in Figure 5-90. Determine the ranges of 
stability for K and Kh.  (Note that K,, must be positive.) 

B-5-29. Consider the system 
x = A x  

where matrix A is given by 

A = [-:I3 : ] 
- b2  - b l  

(A is called Schwarz matrix.) Show that the first column of 
the Routh's array of the characteristic equation Is1 - A1 = O 
consists of 1. b,, b2. and bib,. 

Figure 5-89 
(a) Unstable satellite attitude control system; (b) stabilized 
system. 

Figure 5-90 
Servo system with tachometer feedback 

Problems 



B-5-30. Consider a unity-feedback control system with the 
closed-loop transfer function 

C ( s )  Ks  + b -- - 
R ( s )  s2 + as + b 

Determine the open-loop transfer function C ( s ) .  
Show that the steady-state error in the unit-ramp 

response is given by 

B-5-31. Consider a unity-feedback control system whose 
open-loop transfer function is 

Discuss the effects that varying the values of K and B has on 
the steady-state error in unit-ramp response. Sketch typical 
unit-ramp response curves for a small value, medium value, 
and large value of K ,  assuming that B is constant. 

B-5-32. If the feedforward path of a control system 
contains at least one integrating element, then the output 
continues to change as long as an error is present.The out- 
put stops when the error is precisely zero. If an external dis- 
turbance enters the system, it is desirable to have an 
integrating element between the error-measuring element 
and the point where the disturbance enters so that the effect 
of the external disturbance may be made zero at steady state. 

Show that, if the disturbance is a ramp function, then 
the steady-state error due to this ramp disturbance may be 
eliminated only if two integrators precede the point where 
the disturbance enters. 
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