
EXAMPLE PROBLEMS AND SOLUTIONS 

A-3-1. Simplify the block diagram shown in Figure 3-42. 

Solution. First, move the branch point of the path involving H I  outside the loop involving H,, as 
shown in Figure 3-43(a). Then eliminating two loops results in Figure 3-43(b). Combining two 
blocks into one gives Figure 3-33(c). 

A-3-2. Simplify the block diagram shown in Figure 3-13. Obtain the transfer function relating C ( s )  and 
R(3 ). 

Figure 3-42 
Block di;tgr;~ln of a 
syrern. 

Figure 3-43 
Simplified b ock 
diagrams for the 
.;ystem shown in 
Figure 3-42. 

Figure 3-44 
Block diagram of a 
system. 
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Figure 3-45 
Reduction of the 
block diagram shown 
in Figure 3-44. 

Figure 3-46 
Block diagram of a 
system. 

Solution. The block diagram of Figure 3-44 can be modified to that shown in Figure 3-45(a). 
Eliminating the minor feedforward path, we obtain Figure 3-45(b), which can be simplified to 
that shown in Figure 3--5(c).The transfer function C ( s ) / R ( s )  is thus given by 

The same result can also be obtained by proceeding as follows: Since signal X ( s )  is the sum 
of two signals GI R(s )  and R(s) ,  we have 

The output signal C ( s )  is the sum of G,X(s )  and R(s) .  Hence 

C ( s )  = G 2 X ( s )  + R(s)  = G,[G,R(s) + ~ ( s ) ]  + R(s)  

And so we have the same result as before: 

Simplify the block diagram shown in Figure 3-46.Then, obtain the closed-loop transfer function 
C(s) lR(s ) .  

u u 
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Figure 3-47 
Successive 
reductions ol the 
block diagraln shown 
in Figure 3 4 6 .  

Figure 3-48 
Control systr,m with 
reference input and 
disturbance input. 

Solution. First move the branch point between G, and G4 to the right-hand side of the loop con- 
taining G,, G,, and H,. Then move the summing point between GI  and C, to the left-hand side 
of the first summing point. See Figure 3-47(a). By simplifying each loop, the block diagram can 
be modified as shown in Figure 3-47(b). Further simplification results in Figure 3-47(c), from 
which the closed-loop transfer function C(s)/R( .s)  is obtained as 

Obtain transfer functions C( . s ) /R ( s )  and C ( s ) / D ( s )  of the system shown in Figure 3-48, 

Solution. From Figure 3-48 we have 

U ( s )  = G, R ( s )  + G, E ( s )  

C ( s )  = G,[D(.s) + G , u ( s ) ]  

E ( s )  = R ( s )  - H C ( s )  
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Figure 3-49 
System with two 
inputs and two 
outputs. 

By substituting Equation (3-88) into Equation (3-89), we get 

C ( s )  = G,D(s) + G,c,[G, ~ ( s )  + G,E(s)]  (3-91) 

By substituting Equation (3-90) into Equation (3-91), we obtain 

C ( s )  = G,D(s) + G,G,{G,R(s) + G,[R(s) - H C ( S ) ] )  

Solving this last equation for C ( s ) ,  we get 

Hence 

Note that Equation (3-92) gives the response C ( s )  when both reference input R ( s )  and distur- 
bance input D ( s )  are present. 

To find transfer function C ( s ) / R ( s ) ,  we let D(s )  = 0 in Equation (3-92).Then we obtain 

Similarly, to obtain transfer function C ( s ) / D ( s ) ,  we let R ( s )  = 0 in Equation (3-92). Then 
C ( s ) / D ( s )  can be given by 

A-3-5. Figure 3-49 shows a system with two inputs and two outputs. Derive C, ( s ) /R , ( s ) ,  C l ( s ) /R2( s ) ,  
C,(s) /R,(s) ,  and C,(s)/R,(s). (In deriving outputs for R , ( s ) ,  assume that R,(s) is zero, and vice 
versa.) 
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Solution. From the figure, we obtain 

C1 = Gl(R1 - GIC2) 

C, = G4(R2 - 

By substituting Equation (3-94) into Equation (3-93), we obtain 

By substituting Equation (3-93) into Equation (3-94), we get 

Solving Equation (3-95) for C,, we obtain 

Solving Equation (3-96) for C2 gives 

Equations (3-97) and (3-98) can be combined in the form of the transfer matrix as follows: 

Then the transfer functions Cl(s)/Rl(s),  Cl(s)/R2(s), C2(s)/R,(s) and C2(s)/R2(s) can be obtained 
as follows: 

Note that Equations (3-97) and (3-98) give responses C ,  and C,, respectively, when both inputs 
Rl  and R2 are present. 

Notice that when R2(s) = 0, the original block diagram can be simplified to those shown in 
Figures 3-50(a) and (b). Similarly, when R,(s)  = 0, the original block diagram can be simplified 
to those shown in Figures 3-50(c) and (d). From these simplified block diagrams we can also ob- 
tain C,(s)/R,(s),  C2(s)/R1(s), Cl(s)/R2(s), and C2(s)/R2(s), as shown to the right of each corre- 
sponding block diagram. 
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Figure 3-50 
Simplified block 
diagrams and 
corresponding 
closed-loop transfer 
functions. 

A-3-6. Show that for the differential equation system 

y + a , y  + a 2 y  + a 3 y  = b,u + b,ii + b2u + b3u 

state and output equations can be given, respectively, by 

and 

where state variables are defined by 

xi = Y - Pou 

X2 = y  - P"u - pIu = x1 - P1u 
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and 

PI, = h!, 

fj = I ,  - 
I I LllPli 

Pz = 02 - QIPI - ~12Po 

P1 7 & - ~ I P ,  - (~zPI  - a,/% 

Solution. From the definition of state variables x, and x,. we have 

x, = X? + plU 

i? = .Y3 -t PZu 

To derive the equation fork, ,  we first note from Equation (3-99) that 

Hence, we get 

x, = - t r , ,~ ,  - a , ~ :  - a n ,  + P-LL (3-104) 

Combining Equations (3-1021, (-3-lO3j. and (3-104) into a vector-matrix equation, we obtain 
Equation (3-.100).Also, from the definition of state variable x,,  we set  the output cquation givcrl 
by Equation (3-101). 

A-3-7. Obtain 'I state-space equation and output equation for the system defined b! 

Solution. From the ~ i v e n  transier funct~on. the clitf'crc~itial equation lor the >\isten1 is 

Comparing this equation with the xtanclard equalion y \ e n  I-rv Equation (3-3?), rewritten 
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we find 

a,  = 4, a2 = 5, a3 = 2 

bo = 2, bl = 1,  b2 = 1, b3 = 2 

Referring to Equation (3-35), we have 

Referring to Equation (3-34), we define 

Then referring to Equation (3-36), 

x, = x, - 7u 

i2 = x3 + 19u 

x, = -a,x, - a2x2 - a l x ,  + p,u 

= -2x, - 5x2 - 4x3 - 43u 

Hence, the state-space representation of the system is 

This is one possible state-space representation of the system. There are many (infinitely many) 
others. If we use MATLAB, it produces the following state-space representation: 

See MATLAB Program 3-4. (Note that all state-space representations for the same system are 
equivalent.) 
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MATLAB Program 3-4 

n u m  = [2 1 1 21; 
den = [ I  4 5 21; 
[A,B,C,Dl = tf2ss(num, den) 

Figure 3-51 
C'ontrol system. 

A-3-8. Obtain a state-space model of the system shown in Figure 3-51. 

Solution. The system involves one integrator and two delayed integrators. The output of each 
integrator or delayed integrator can be a state variable. Let us define the output of the plant as 
x , .  the output of the controller as x2, and the output of the sensor as x,. Then we obtain 

2l+J++p+ s t 5  

t Controller Plant 

Sensor 
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I 

which can be rewritten as 

sX, (s )  = -5X,(s)  + 1OX2(s) 

sX,(s)  = -X,(s) + U ( s )  

sX3(s) = X , ( s )  - X3(s) 

Y ( s )  = X, ( s )  
By taking the inverse Laplace transforms of the preceding four equations, we obtain 

x ,  = -5x, + lox,  

x2 = -x3 + u 

x,  = x ,  - Xg 

Thus, a state-space model of the system in the standard form is given by 

It is important to note that this is not the only state-space representation of the system. Many 
other state-space representations are possible. However, the number of state variables is the same 
in any state-space representation of the same system. In the present system, the number of state 
variables is three, regardless of what variables are chosen as state variables. 

A-3-9. Obtain a state-space model for the system shown in Figure 3-52(a). 

Solution. First, notice that (as + b)/s2 involves a derivative term. Such a derivative term may be 
avoided if we modify (as + b) /s2  as 

Using this modification, the block diagram of Figure 3-52(a) can be modified to that shown in 
Figure 3-52(b). 

Define the outputs of the integrators as state variables, as shown in Figure 3-52(b).Then from 
Figure 3-52(b) we obtain 
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Figure 3-52 
(a) Control system; 
(b) modified block 
diagram. 

Taking the inverse Laplace transforms of the preceding three equations, we obtain 

xl  = -ax, + x ,  + au 

Rewriting the state and output equations in the standard vector-matrix form, we obtain 

Obtain a state-space representation of the system shown in Figure 3-53(a). 

Solution. In this problem, first expand ( s  + z ) / ( s  + p )  into partial fractions. 

Next, convert K / [ s ( s  + a ) ]  into the product of K / s  and l / ( s  + a ) .  Then redraw the block diagram, 
as shown in Figure 3-53(b). Defining a set of state variables, as shown in Figure 3-53(b), we ob- 
tain the following equations: 

k,  = -ax, + x2 
X, = - K x ,  + K x ,  + K u  

x, = - ( z  - p ) x ,  - px, + ( 2  - p ) u  

Y = X I  
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igure 3-53 
t )  Control system; 

17) block diagram 
efining state 
lriables for the 
stem. 

Rewriting gives 

Notice that the output of the integrator and the outputs of the first-order delayed integrators 
[ l / ( s  + a )  and ( z  - p)/(s  + P)] are chosen as state variables. It is important to remember that 
the output of the block ( s  + z) / (s  + p) in Figure 3-53(a) cannot be a state variable, because this 
block involves a derivative term, s + z .  

A-3-11. Obtain the transfer function of the system defined by 

Solution. Referring to Equation (3-29), the transfer function G(s) is given by 

In this problem, matrices A, B, C, and D are 
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Hence 

0 s + 2  

r 1 1 1 1 

4-3-12. Obtain a state-space representation of the system shown in Figure 3-54. 

Solution. The system equations are 
mlYI + b j ,  + k j y ,  - v?) = 0 

m& + k(y2  - = u 

The output variables for this system are y ,  and y,. Define state variables as 

X I  = Yl 

X? = y ,  

x3 = y? 

X? = Y Z  

Then we obtain the following equations: 

i ,  = X2 

Figure 3-54 
Mechanical c,ystem. 

Hence, the state equation is 
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and the output equation is 

A-3-13. Consider a system with multiple inputs and multiple outputs. When the system has more than one 
output, the command 

produces transfer functions for all outputs to each input. (The numerator coefficients are returned 
to matrix NUM with as many rows as there are outputs.) 

Consider the system defined by 

This system involves two inputs and two outputs. Four transfer functions are involved: Yl(s)/Ul(s), 
Y,(s ) /U, (s ) ,  Y,(s)/U2(s), and Y2(s)/U2(s). (When considering input u,, we assume that input u2 
is zero and vice versa.) 

Solution. MATLAB Program 3-5 produces four transfer functions. 

MATLAB Program 3-5 

A = [O 1 ;-25 -41; 
B = [ 1  l;o I]; 
C = [ l  0;o I ] ;  
D = [O 0;o 01; 
[NUM,denl = ss2tf(A,B,C,D, 1 ) 

NUM = 
0 1 4  
0 0 -25 

den = 

[NUM,denl = ss2tf(A,B,C,D,2) 

NUM = 
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This is the MATLAB representation of the following four transfer functions: 

A-3-14. Obtain the equivalent spring constants for the systems shown in Figures 3-%(a) and (b), 
respectively. 

Solution. For the springs in parallel [Figure 3-55(a)] the equivalent spring constant key is obtained 
from 

For the springs in series [Figure-55(b)], the force in each spring is the same. Thus 

Elimination of y from these two equations results in 

The equivalent spring constant keg for this case is then found as 

Figure 3-55 
(a) System consisting 
of two springs in 
parallel; 
(b) system consisting 
of two springs in 
series. 
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A-3-15. Obtain the equivalent viscous-friction coefficient be, for each of the systems shown in 
Figure 3-56(a) and (b). 

Solution. 

(a) The force f due to the dampers is 

In terms of the equivalent viscous friction coefficient be,, force f is given by 

Hence 

(b) The force f due to the dampers is 

where z is the displacement of a point between damper b, and damper b2. (Note that the 
same force is transmitted through the shaft.) From Equation (3-105), we have 

(b, + b2)z = b2y + blx 
or 

In terms of the equivalent viscous friction coefficient b,,, force f is given by 

f = bey(j' - x) 
By substituting Equation (3-106) into Equation (3-105), we have 

Thus, 

Hence, 

bl b2 1 -- b,, = ------ - 
b l + b 2  1 1 - + -  

bl b2 

Figure 3-56 
(a) Tho dampers 4 
connected in parallel; u 
(b) two dampers x 4 Y l?'-l?% Y 
connected in series. (4 (b) 
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A-3-16. Figure 3-57(a) shows a schematic diagram of an automobile suspension system.As the car moves 
along the road, the vertical displacements at the tires act as the motion excitation to  the auto- 
mobile suspension system.The motion of this system consists of a translational motion of the cen- 
ter of mass and a rotational motion about the center of mass. Mathematical modeling of the 
complete system is quite complicated. 

A very simplified version of the suspension system is shown in Figure 3-57(b).Assuming that 
the motion x, at point P is the input to the system and the vertical motion x, of the body is the 
output, obtain the transfer function X , ( s ) / X , ( s ) .  (Consider the motion of the body only in the ver- 
tical direction.) Displacement x ,  is measured from the equilibrium position in the absence of 
input x,. 

Solution. The equation of motion for the system shown in Figure 3-57(b) is 

m i o  + b(x, - i,) + k(x,, - x,) = 0 

rnx,  + hx,, + kx,  = bx, + kx,  

Taking the Laplace transform of this last equation, assuming zero initial conditions, we obtain 

(ms2 + 6s + ~ ) x , ( s )  = (hs + k ) X , ( s )  

Hence the transfer function X , ( s ) / X , ( s )  is given by 

Figure 3-57 
(a) Automobile 
suspension system; 
(b) simplified 
suspension system. 

Center of mass 
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A-3-17. Obtain the trawfer function Y ( s ) / U ( s )  of tne system shown in Figure 3-58. The input u is a 
displacement input. (Like the system of Problem A-3-16, this is also a simplified version of an 
automobile or motorcycle suspension system.) 

Solution. Assume that displacements x and y are measured from respective steady-state posi- 
tions in the absence of the input u. Applying the Newton's second law to this system, we obtain 

m,x  = k2 (y  - x )  + b ( y  - x )  + k l ( u  - x )  

m 2 y  = -k2(y - x )  - b ( y  - x) 

Hence, we have 

m , x  + bx + ( k ,  + k2)x = by + k2y  + k l u  

Taking Laplace transforms of these two equations, assuming zero initial conditions, we obtain 

[ m l s 2  + bs + ( k l  + k 2 ) ] x ( s )  = (bs + k , )Y(s )  + k l U ( s )  

[m2s2  + bs + k , ] ~ ( s )  = (bs + k , ) x ( s )  

Eliminating X ( s )  from the last two equations, we have 

m2s2 + hs + k2 (w2 + bs + k ,  + k2) 
bs + k2 

Y ( s )  = (bs + k 2 ) y ( s )  + k l U ( s )  

which yields 

Y ( s )  -- - k,(bs + k2) 
U ( S )  m lm2s4  + ( m ,  + m2)bs3 + [ k l m 2  + ( m ,  + m2)k2]s2 + k,bs + k lk2  

Figure 3-58 
Suspension system. 

A-3-18. Obtain the transfer function of the mechanical system shown in Figure 3-59(a). Also obtain the 
transfer function of the electrical system shown in Figure 3-59(b). Show that the transfer functions 
of the two systems are of identical form and thus they are analogous systems. 

Solution. In Figure 3-59(a) we assume that displacements x,, x,, and y are measured from their 
respective steady-state positions.Then the equations of motion for the mechanical system shown 
in Figure 3-59(a) are 
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Figure 3-59 
(a) Mechani-al 
system; 
(b) analogous 
electrical sy%dem. 

bl(x, - x,) + k , (x ,  - x,) = b,(x, - y)  

b4 f "  - y) = k2y 

By taking the Laplace transforms of these two equations, assuming zero initial conditions, we 
have 

b l [ s x , ( s )  - s x , ( s ) ]  + k , [ x , ( s )  - X o ( s ) ]  = b2[sX0(s) - sY(s ) I  

b2[ sx , ( s )  - s ~ ( s ) ]  = k 2 Y ( s )  

If we eliminate Y ( s )  from the last two equations, then we obtain 

Hence the transfer function X , ( s ) / X , ( s )  can be obtained as 

For the electrical system shown in Figure 3-59(b), the transfer function E,(s ) /E , ( s )  is found to 
be 

1 
R,  + - 

Eo(s) - Cl s -- 
El(s) 1  1  + R , + -  

( 1 1 ~ 2 )  + C2s Cl s  
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A comparison of the transfer functions shows that the systems shown in Figures 3-59(a) and (b) 
ate  analogous. 

A-3-19. Obtain the transfer functions E,(s)/E,(s) of the bridged T networks shown in Figures 3-60(a) 
and (b). 

Solution. The bridged T networks shown can both be represented by the network of 
Figure 3-61(a), where we used complex impedances.This network may be modified to that, shown 
in Figure 3-61(b). 

In Figure 3-61(b), note that 

Figure 3-60 
Bridged T networks. 

Figure 3-61 
(a) Bridged T 
network in terms of 
complex impedances; 
(b) equivalent 
network. 
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Hence 

Then the voltages Ei(s)  and Eo(s) can be obtained as 

Hence, the transfer function Eo(s) /E, (s )  of the network shown in Figure 3-61(a) is obtained as 

Eo(s) -- - Z3Zl + z2 (2, + z, + z4) 
(3-107) 

E,(s)  &(z, + Z3 + ~ 4 )  + ZlZ,  + Z1Z4 

For the bridged T network shown in Figure 3-60(a), substitute 

1 1 
Z l = R ,  Z 2 - - & = R ,  Z 4 = -  

Cl s c2 s 

into Equation (3-107).Then, we obtain the transfer function E,(s)/E,(s) to be 

- - RClRC2s2 + 2RC2s + 1 

RC,RC2s2 + (2RC2 + R C , ) ~  + 1 

Similarly, for the bridged T network.shown in Figure 3-60(b), we substitute 

1 1 
Z - - Z2 = R I ,  Z3 = -, Z4 = R2 ' - Cs Cs 

into Equation (3-107).Then the transfer function E,(s)/E,(s)  can be obtained as follows: 
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Figure 3-62 
Operational- 
amplifier circuit. 

A-3-20. Obtain the transfer function E,(s)/E,(s)  of the op-amp circuit shown in Figure 3-62. 

Solution. The voltage at point A is 

The Laplace-trasformed version of this last equation is 

The voltage at point B is 

Since [E,(s) - E,(s)]K = E,(s) and K + 1, we must have EA(s )  = Es(s) .  Thus 

Hence 

A-3-21. Obtain the transfer function E,(s)/E,(s)  of the op-amp system shown in Figure 3-63 in terms of 
complex impedances Z,,  Z2, Z 3 ,  and Z,. Using the equation derived, obtain the transfer function 
E,(s)/E,(s) of the op-amp system shown in Figure 3-62. 

Solution. From Figure 3-63, we find 
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Figure 3-63 
Operational- 
amplifier circuit. 

or 

Since 

by substituting Equation (3-109) into Equation (3-108), we obtain 

from which we get the transfer function E,(s)/Ei(s) to  be 

To find the transfer function E,(s)/E,(s) of the circuit shown in Figure 3-62, we substitute 

1 
ZI = -, Z2 = R2, Z3 = R, ,  Z4 = R1 

Cs 

into Equation (3-110).The result is 

which is, as a matter of course, the same as that obtained in Problem A-3-20. 
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A-3-22. Obtain the transfer function E,(s)/Ei(s) of the operational-amplifier circuit shown in Figure 3-64. 

Solution. We will first obtain currents i, ,i2, i,, i,, and i, .Then we will use node equations at nodes 
A and B. 

At node A, we have i, = i2 + i3 + i4, or 

ei - eA e~ - e, deA e~ -- - +C,-+- 
RI R3 dt R2 

At node B, we get i, = i,, or 

By rewriting Equation (3-Ill), we have 

From Equation (3-112), we get 

By substituting Equation (3-114) into Equation (3-113), we obtain 

1 de, ei e, 
C, -R2C2--- + - + - + -  (-RC)-=-+- ( :>) [ R2 ) dl R1 R3 

Taking the Laplace transform of this last equation, assuming zero initial conditions, we obtain 

from which we get the transfer function E,(s)/Ei(s) as follows: 

Figure 3-64 
Operational- 
amplifier circuit. 
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A-3-23. Consider the servo system shown in Figure 3-65(a).The motor shown is a servomotor, a dc motor 
designed specifically to  be used in a control system.The operation of this system is as follows: A 
pair of potentiometers acts as an error-measuring device.They convert the input and output po- 
sitions into proportional electric signals.The command input signal determines the angular posi- 
tion r of the wiper arm of the input potentiometer. The angular position r is the reference input 
to  the system, and the electric potential of the arm is proportional to the angular position of the 
arm.The output shaft position determines the angular position c of the wiper arm of the output 
potentiometer.The difference between the input angular position r and the output angular posi- 
tion c is the error signal e ,  or 

The potential difference e, - e,. = e,, is the error voltage, where e, is proportional to r and e, is pro- 
portional to c; that is, e, = Kor and e, = K,c, where Ku is a proportionality constant.The error volt- 
age that appears at the potentiometer terminals is amplified by the amplifier whose gain constant 
is K, .The output voltage of this amplifier is applied to the armature circuit of the dc mot0r.A fixed 
voltage is applied to  the field winding. If an error exists, the motor develops a torque to rotate the 
output load in such a way as to reduce the error to zero. For constant field current, the torque de- 
veloped by the motor is 

T = K2i,, 

where K2 is the motor torque constant and i,, is the armature current. 

7- 

-7- 
Input device 

Error measuring device Amplifier Motor Gear Load 
train 

(a) 

Figure 3-65 
(a) Schematic diagram of servo system; (b) block diagram for the system; (c) simplified block 
diagram. 
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When the armature is rotating, a voltage proportional to the product of the flux and angular 
velocity is induced in the armature. For a constant flux, the induced voltage eb is directly propor- 
tional to the angular velocity d8/dt ,  or 

where eb is the back emf, K3 is the back emf constant of the motor, and 0 is the angular displace- 
ment of the motor shaft. 

Obtain the transfer function between the motor shaft angular displacement 0 and the error 
voltage e,. Obtain also a block diagram for this system and a simplified block diagram when La 
is negligible. 

Solution. The speed of an armature-controlled dc servomotor is controlled by the armature volt- 
age en. (The armature voltage e, = K , e ,  is the output of the amplifier.) The differential equation 
for the armature circuit is 

di, d8 
L, - + R,i, + K-, - = K, en 

dt dt 

The equation for torque equilibrium is 

where J,  is the inertia of the combination of the motor, load, and gear train referred to the motor 
shaft and bo is the viscous-friction coefficient of the combination of the motor, load, and gear train 
referred to the motor shaft. 

By eliminating i, from Equations (3-115) and (3-116), we obtain 

We assume that the gear ratio of the gear train is such that the output shaft rotates n times for each 
revolution of the motor shaft.Thus, 

The relationship among E,(s), R ( s ) ,  and C ( s )  is 

The block diagram of this system can be constructed from Equations (3-117), (3-118), and (3-119), 
as shown in Figure 3-65(b). The transfer function in the feedforward path of this system is 
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When L, is small, it can be neglected, and the transfer function G ( s )  in the feedforward path 
becomes 

The term [b, + (K,K,/R,)]s indicates that the back emf of the motor effectively increases the 
viscous friction of the system. The inertia Jo and viscous friction coefficient b, + (K,K,/R,) are 
referred to the motor shaft. When J,  and b, + (K,K,/R,) are multiplied by l/nz, the inertia and 
viscous-friction coefficient are expressed in terms of the output shaft. Introducing new parameters 
defined by 

J = Jo/n2 = moment of inertia referred to the output shaft 

B = [b, + ( K , K , / R , ) ] / ~ ~  y viscous-friction coefficient referred to the output shaft 

K = KO K, K,/nR, 

the transfer function G ( s )  given by Equation (3-120) can be simplified, yielding 

where 

The block diagram of the system shown in Figure 3-65(b) can thus be simplified as shown in 
Figure 3-65(c). 

A-3-24. Consider the system shown in Figure 3-66. Obtain the closed-loop transfer function C ( s ) / R ( s ) .  

Solution. In this system there is only one forward path that connects the input R ( s )  and the Out- 
put C ( s ) .  Thus, 

Example Problems and Solutions 



Figure 3-66 
Signal flow graph of 
a control system. 

There are three individual loops. Thus, 

1 1  L =--- 

C1s R, 

Loop Ll does not touch loop L2. (Loop L ,  touches loop L,, and loop L2 touches loop L,.) Hence 
the determinant A is given by 

Since all three loops touch the forward path PI, we remove L,,  L2, L3, and L, L2 from A and eval- 
uate the cofactor Al as follows: 

Thus we obtain the closed-loop transfer function to be 
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A-3-25. Obtain the transfer function Y(s) /X(s)  of the system shown in Figure 3-67 

Solution. The signal flow graph shown in Figure 3-67 can be successively simplified as shown in 
Figures 3-68 (a), (b), and (c). From Figure 3-68(c), X, can be written as 

This last equation can be simplified as 

from which we obtain 

Figure 3-67 
Signal flow graph of 
a system. 

Figure 3-68 
Succesive 
simplifications of the 
signal flow graph of 
Figure 3-67. 
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A-3-26. Figure 3-69 is the block diagram of an engine-speed control system. The speed is measured by a 
set of flyweights. Draw a signal flow graph for this system. 

Solution. Referring to Figure 3-36(e), a signal flow graph for 

may be drawn as shown in Figure 3-70(a). Similarly, a signal flow graph for 

may be drawn as shown in Figure 3-70(b). 
Drawing a signal flow graph for each of the system components and combining them together, 

a signal flow graph for the complete system may be obtained as shown in Figure 3-70(c). 

Load 
disturbance 

Figure 3-69 
Block diagram of an 
engine-speed control 
system. 

Figure 3-70 
(a) Signal flow graph for 
Y(s)/X(s) = l / ( s  + 140); 
(b) signal flow graph for 
Z(s)/X(s) = l/(s2 + 140s + 
(c) signal flow graph for the 
system shown in Fig. 3-69. 

servo 

Reference Actual 
speed speed 

144 Chapter 3 / Mathematical Modeling of Dynamic Systems 

C(s) + 1 oo2 10 

t 
s2 + 140s + 100' 20s + 1 

Flyweights Hydraulic Engine 



A-3-27. Linearize the nonlinear equation 

z = x2 + 4xy + 6y2 

in the region defined by 8 x 5 10,2 5 y 5 4. 

Solution. Define 

f ( x ,  y )  = z = x2 + 4xy + 6y2 

Then 

where f = 9, J = 3. 
Since the higher-order terms in the expanded equation are small, neglecting these higher- 

order terms, we obtain 

where 

Thus 

Hence a linear approximation of the given nonlinear equation near the operating point is 
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PROBLEMS 

B-3-1. Simplify the block diagram shown in Figure 3-71 B-3-2. Simplify the block diagram shown in Figure 3-72 
and obtain the closed-loop transfer function C ( s ) / R ( s ) .  and obtain the transfer function C ( s ) / R ( s ) .  

B-3-3. Simplify the block diagram shown in Figure 3-73 
and obtain the closed-loop transfer function C ( s ) / R ( s ) .  

Figure 3-71 
Block diagram of a system. 

Figure 3-72 
Block diagram of a system. 

Figure 3-73 
Block diagram of a system. 
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B-3-4. Consider industrial automatic controllers whose 
control actions are proportional, integral, proportional-plus- 
~ntegral, proportional-plus-derivative, and proportional-plus- 
mtegral-plus-derivative. The transfer functions of these 
controllers can be given, respectively, by 

where U ( s )  is the Laplace transform of u ( t ) ,  the controller 
output, and El s )  the Laplace transform of r ( r ) ,  the actuat- 

t Controller Plant I 

ing error signal. Sketch u ( t )  versus t curves for each of the 
.five types of controllers when the actuating errar signal is 

(a) e ( t )  = unit-step function 

(b) e ( t )  = unit-ramp function 

In sketching curves, assume that the numerical values of K,, 
K, ,  T,, and T,, are given as 

K, = proportional gain = 4 

K, = integral gain = 2 

T, = integral time = 2 sec 

T, = derivative time = 0.8 sec 

'B-3-5. Figure 3-74 shows a closed-loop system with a ref- 
erence input and disturbance input. Obtain the expression 
for the output C ( s )  when both the reference input and dis- 
turbance input are present. 

B-3-6. Consider the system shown in Figure 3-75. Derive 
the expression for the steady-state error when both the ref- 
erence input R ( s )  and disturbance input D ( s )  are present. 

B-3-7. Obtain the transfer functions C ( s ) / R ( s )  and 
C ( s ) / D ( s )  of the system shown in Figure 3-76. 

Figure 3-74 
Closed- loo^ svstem. 

Figure 3-75 
Control system. 

Figure 3-76 
Control system. 

Problems 



B-3-8. Obtain a state-space representation of the system 
shown in Figure 3-77. 

B-3-14. Obtain mathematical models of the mechanical 
systems shown in Figure 3-79(a) and (b). 

Figure 3-77 
Control system. 

B-3-9. Consider the system described by 

y + 3j; + 2y = u 

Derive a state-space representation of the system. 

B-3-10. Consider the system described by 

Obtain the transfer function of the system. 

B-3-11. Consider a system defined by the following state- 
space equations: 

Obtain the transfer function G(s) of the system. 

B-3-12. Obtain the transfer matrix of the system defined by 

B-3-13. Obtain the equivalent viscous-friction coefficient 
b, of the system shown in Figure 3-78. 

Figure 3-78 
Damper system. 

- x (Output) 

No friction 

(a) 

X (Output) 

m + u(t)  
(Input force) 

No friction 

(b) 

Figure 3-79 
Mechanical systems. 

B-3-15. Obtain a state-space representation of the me- 
chanical system shown in Figure 3-80, where u1 and u, are 
the inputs and y, and y2 are the outputs. 

Figure 3-80 
Mechanical system. 

B-3-16. Consider the spring-loaded pendulum system 
shown in Figure 3-81. Assume that the spring force acting on 
the pendulum is zero when the pendulum is vertical, or 
0 = 0. Assume also that the friction involved' is negligible 
and the angle of oscillation 0 is small. Obtain a mathemati- 
cal model of the system. 
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L B-3-19. Obtain the transfer function E,(s)/E,(s) of the 
electrical circuit shown in Figure 3-84. 

"8 
Figure 3-81 
Spring-loaded pendulum system. 

B-3-17. Referring to Examples 3-8 and 3-9, consider the 
inverted pendulum system shown in Figure 3-82. Assume 
that the mass of the inverted pendulum is rn and is evenly 
distributed along the length of the rod. (The center of grav- 
ity of the pentlulum is located at the center of the rod.) As- 
suming that 0 is small, derive mathematical models for the 
system in the Germs of differential equations, transfer func- 
tions, and statz-space equations. 

Figure 3-82 
Inverted pendulum system. 

B-3-18. 0bt;iin the transfer functions X ,  (s)/U (s) and 
X,(s)/U(s) of the mechanical system shown in Figure 3-83. 

Figure 3-84 
Electrical circuit. 

B-3-20. Consider the electrical circuit shown in Figure 3-85. 
Obtain the transfer function E,(s)/E,(s) by use of the block 
diagram approach. 

Figure 3-85 
Electrical circuit. 

B-3-21. Derive the transfer function of the electrical cir- 
cuit shown in Figure 3-86. Draw a schematic diagram of an 
analogous mechanical system. 

Figure 3-83 
Mechanical sqstem. 

Problems 

Figure 3-86 
Electrical circuit. 



B-3-22. Obtain the transfer function E,,(s)/E,(s) of the B-3-24. Using the impedance approach, obtain the trans- 
op-amp circuit shown in Figure 3-87. fer function E,(s)/E,(s)  of the op-amp circuit shown in 

Figure 3-89. 

* 
Figure 3-87 
Operational-amplifier circuit. 

B-3-23. Obtain the transfer function E,,(s)/E,(s) of the 
op-amp circuit shown in Figure 3-88. Figure 3-89 

Operational-amplifier circuit. 

0 

B-3-25. Consider the system shown in Figure 3-90. An 
armature-controlled dc servomotor drives a load consisting 

e,  of the moment of inertia J L .  The torque developed by the 
motor is T.The moment of inertia of the motor rotor is J,. 
The angular displacements of the motor rotor and the load 

0 element are 8, and 8, respectively. The gear ratio is 
n = @ / O m .  Obtain the transfer function O(s) /E i ( s ) .  

Figure 3-88 
Operational-amplifier circuit. 

Figure 3-90 
Armature-controlled dc servomotor system. 
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B-3-26. Obtain the transfer function Y ( s ) / X ( s )  of the sys- B-3-28. Linearize the nonlinear equation 
tern shown, in Figure 3-91. z = x2 + 8xy + 3y2 

b I in the region defined by 2 5 x  5 4 10 5 y 5 12. 

B-3-29. Find a linearized equation for 

= 0 . 2 ~ ~  

about a point x = 2. 

- a2 

Figure 3-91 
Signal flow graph of a system. 

B-3-27. Obtain the transfer function Y ( s ) / X ( s )  of the sys- 
tem shown in Figure 3-92. 

Figure 3-92 
Signal flow graph of a system. 

Problems 




