
Download the coolest fonts for PC
& MAC at a-font [Click Here]

Top 40 Wallpaper Websites on the
Web [Click Here]

Latest Cell Phones reviewed plus
video reviews [Click Here]

Coolest Online Web Flash Games,
Addictive & Fun [Click Here]

High resolution wallpapers, the
best online.. [Click Here]

Free Ebooks & Magazines For
download [Click Here]

Amazing Wallpapers to go with
your Windows Vista [Click Here]

Cool Fun Tech News & Bookmarks
[Click Here]

Latest Software Available For
Download For Free [Click Here]

The Best Collection of Free
Professional Website Templates
for your website [Click Here]

A Collection of the Best Car
Wallpapers Updated Often [Click
Here]

Download Vista-Supported
Software [Click Here]

http://a-font.blogspot.com/
http://bestwallpaperwebsites.blogspot.com/
http://cellphonereviewed.blogspot.com/
http://webgamez.blogspot.com/
http://ebook-portal.blogspot.com/
http://forvistawallpapers.blogspot.com/
http://geekiee.blogspot.com/
http://freewarelibrary.blogspot.com/
http://readytemplates.blogspot.com/
http://forcarwallpapers.blogspot.com/
http://forcarwallpapers.blogspot.com/
http://forvistasoftware.blogspot.com/
http://desktop-it.blogspot.com

Excel® 2007 VBA
Programmer’s Reference

John Green
Stephen Bullen

Rob Bovey
Michael Alexander

01_046432 ffirs.qxp 2/16/07 9:52 PM Page iii

01_046432 ffirs.qxp 2/16/07 9:52 PM Page ii

Excel® 2007 VBA
Programmer’s Reference

01_046432 ffirs.qxp 2/16/07 9:52 PM Page i

01_046432 ffirs.qxp 2/16/07 9:52 PM Page ii

Excel® 2007 VBA
Programmer’s Reference

John Green
Stephen Bullen

Rob Bovey
Michael Alexander

01_046432 ffirs.qxp 2/16/07 9:52 PM Page iii

Excel®2007 VBA Programmer’s Reference
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-04643-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107
or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax
(317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Excel 2007 VBA programmer’s reference / John Green ... [et al.].
p. cm.

Includes index.
ISBN 978-0-470-04643-2 (paper/website)

1. Microsoft Excel (Computer file) 2. Business—Computer programs. I. Green, John, 1945-
HF5548.4.M523E92988 2007
005.54—dc22

2007004976

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and
may not be used without written permission. Microsoft and Excel are registered trademarks of Microsoft Corpora-
tion in the United States and/or other countries. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

01_046432 ffirs.qxp 2/16/07 9:52 PM Page iv

www.wiley.com

About the Authors
John Green lives and works in Sydney, Australia, as an independent computer consultant, specializing in
Excel and Access. He has 35 years of computing experience, a Chemical Engineering degree, and an MBA.

He wrote his first programs in FORTRAN, took a part in the evolution of specialized planning languages
on mainframes and, in the early ‘80s, became interested in spreadsheet systems, including 1-2-3 and Excel.

John established his company, Execuplan Consulting, in 1980, specializing in developing computer-
based planning applications and in training. He has led training seminars for software applications and
operating systems both in Australia and overseas.

John has had regular columns in a number of Australian magazines and has contributed chapters to a num-
ber of books including Excel Expert Solutions and Using Visual Basic for Applications 5. He also co-authored
Professional Excel Development with Stephen Bullen and Rob Bovey.

From 1995 to 2005 he was accorded the status of MVP (Most Valuable Professional) by Microsoft for his
contributions to the CompuServe Excel forum and MS Internet newsgroups.

John Green contributed the Introduction, Chapters 1–11, 13, 15–17, and 19 to this book.

Stephen Bullen lives in Woodford Green, London, England, with his partner Clare, daughter Becky, and
their dogs, Fluffy and Charlie. He has two other daughters, Jane and Katie, from his first marriage.

A graduate of Oxford University, Stephen has an MA in Engineering, Economics, and Management,
providing a unique blend of both business and technical skills. He has been providing Excel consulting
and application development services since 1994, originally as an employee of Price Waterhouse
Management Consultants and later as an independent consultant trading under the names of Business
Modelling Solutions Limited and Office Automation Limited. Stephen now works for Barclays Capital in
London, developing trading systems for complex exotic derivative products.

The Office Automation web site, www.oaltd.co.uk, provides a number of helpful and interesting utili-
ties, examples, tips and techniques to help in your use of Excel and development of Excel applications.

As well as co-authoring previous editions of the Excel VBA Programmer’s Reference, Stephen co-authored
Professional Excel Development.

In addition to his consulting and writing assignments, Stephen actively supports the Excel user community
in Microsoft’s peer-to-peer support newsgroups and the Daily Dose of Excel blog. In recognition of his
knowledge, skills and contributions, Microsoft has awarded him the title of Most Valuable Professional
each year since 1996.

Stephen Bullen contributed Chapters 14, 18, 24–27, and Appendix B to this book.

Rob Bovey is president of Application Professionals, a software development company specializing in
Microsoft Office, Visual Basic, and SQL Server applications. He brings many years’ experience creating
financial, accounting, and executive information systems for corporate users to Application
Professionals. You can visit the Application Professionals web site at www.appspro.com.

01_046432 ffirs.qxp 2/16/07 9:52 PM Page v

Rob developed several add-ins shipped by Microsoft for Microsoft Excel and co-authored the Microsoft
Excel 97 Developers Kit and Professional Excel Development. He earned his Bachelor of Science degree from
The Rochester Institute of Technology and his MBA from the University of North Carolina at Chapel
Hill. He is a Microsoft Certified Systems Engineer (MCSE) and a Microsoft Certified Solution Developer
(MCSD). Microsoft has awarded him the title of Most Valuable Professional each year since 1995.

Rob Bovey contributed Chapters 20–22 to this book.

Michael Alexander is a Microsoft Certified Application Developer (MCAD) with more than 14 years’
experience consulting and developing office solutions. He parlayed his experience with VBA and VB
into a successful consulting practice in the private sector, developing middleware and reporting solu-
tions for a wide variety of industries. He currently lives in Frisco, Texas, where he serves as a Senior
Program Manager for a top technology firm. Michael is the author of several books on Microsoft Access
and Excel, and is the principle behind DataPig Technologies, where he shares Access and Excel knowl-
edge with the Office community.

Michael Alexander contributed Chapters 12 and 23 and Appendices A and C to this book.

01_046432 ffirs.qxp 2/16/07 9:52 PM Page vi

Credits
Acquisitions Editor
Katie Mohr

Development Editor
Brian Herrmann

Technical Editor
Dick Kusleika

Production Editor
William A. Barton

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Jennifer Theriot

Graphics and Production Specialists
Carrie A. Foster
Denny Hager
Joyce Haughey
Jennifer Mayberry
Barbara Moore
Barry Offringa
Heather Ryan

Quality Control Technicians
Jessica Kramer
Christine Pingleton

Proofreading and Indexing
Kevin Broccoli
Sean Medlock

01_046432 ffirs.qxp 2/16/07 9:52 PM Page vii

ts

01_046432 ffirs.qxp 2/16/07 9:52 PM Page viii

Contents

Acknowledgments xxi
Introduction xxiii

Chapter 1: Primer in Excel VBA 1

Using the Macro Recorder 2
Recording Macros 2
Running Macros 6
The Visual Basic Editor 8
Other Ways to Run Macros 11

User-Defined Functions 17
Creating a UDF 18
What UDFs Cannot Do 21

The Excel Object Model 21
Objects 22
Getting Help 27
Experimenting in the Immediate Window 29

The VBA Language 30
Basic Input and Output 30
Calling Functions and Sub Procedures 35
Parentheses and Argument Lists 37
Variable Declaration 38
Scope and Lifetime of Variables 40
Variable Type 42
Object Variables 45
Making Decisions 47
Looping 50
Arrays 55
Run-Time Error-Handling 59

Summary 62

Chapter 2: The Application Object 63

Globals 63
The Active Properties 64
Display Alerts 65
Screen Updating 66

ts

02_046432 ftoc.qxp 2/16/07 9:52 PM Page ix

x

Contents

Evaluate 66
InputBox 68
StatusBar 70
SendKeys 70
OnTime 71
OnKey 72
Worksheet Functions 73
Caller 74
Summary 75

Chapter 3: Workbooks and Worksheets 77

The Workbooks Collection 77
Getting a Filename from a Path 78
Files in the Same Directory 81
Overwriting an Existing Workbook 81
Saving Changes 82

The Sheets Collection 83
Worksheets 83
Copy and Move 85
Grouping Worksheets 87

The Window Object 89
Synchronizing Worksheets 90

Summary 91

Chapter 4: Using Ranges 93

Activate and Select 93
Range Property 95

Shortcut Range References 96
Ranges on Inactive Worksheets 96
Range Property of a Range Object 97
Cells Property 97
Cells Used in Range 98
Ranges of Inactive Worksheets 99
More on the Cells Property of the Range Object 99
Single-Parameter Range Reference 101

Offset Property 102
Resize Property 103
SpecialCells Method 105

Last Cell 105
Deleting Numbers 107

02_046432 ftoc.qxp 2/16/07 9:52 PM Page x

xi

Contents

CurrentRegion Property 108
End Property 110

Referring to Ranges with End 110
Summing a Range 111
Columns and Rows Properties 112

Areas 113
Union and Intersect Methods 115
Empty Cells 115
Transferring Values between Arrays and Ranges 118

Deleting Rows 121
Summary 123

Chapter 5: Using Names 125

Naming Ranges 127
Using the Name Property of the Range Object 128

Special Names 128
Storing Values in Names 129
Storing Arrays 130
Hiding Names 131
Working with Named Ranges 132
Searching for a Name 133

Searching for the Name of a Range 135
Determining which Names Overlap a Range 136

Summary 139

Chapter 6: Data Lists 141

Structuring the Data 141
Sorting a Range 142

Older Excel Versions 144
Creating a Table 144
Sorting a Table 145
AutoFilter 146

AutoFilter Object 147
Filter Object 148
Date Custom Filter 148
Adding Combo Boxes 149
Copying the Visible Rows 153
Finding the Visible Rows 154

Advanced Filter 156
Data Form 158
Summary 159

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xi

xii

Contents

Chapter 7: PivotTables 161

Creating a PivotTable Report 162
PivotCaches 165
PivotTables Collection 165

PivotFields 166
CalculatedFields 170

PivotItems 171
Grouping 171
Visible Property 175
CalculatedItems 176

PivotCharts 177
External Data Sources 178
Summary 180

Chapter 8: Charts 181

Chart Sheets 182
The Recorded Macro 184
Adding a Chart Sheet Using VBA Code 184

Embedded Charts 185
Using the Macro Recorder 186
Adding an Embedded Chart Using VBA Code 186

Editing Data Series 187
Defining Chart Series with Arrays 190
Converting a Chart to Use Arrays 193
Determining the Ranges Used in a Chart 194
Chart Labels 195
Summary 196

Chapter 9: Event Procedures 199

Worksheet Events 199
Enable Events 200
Worksheet Calculate 201

Chart Events 202
Before Double Click 202

Workbook Events 205
Save Changes 206

Headers and Footers 207
Summary 208

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xii

xiii

Contents

Chapter 10: Adding Controls 209

Form and ActiveX Controls 209
ActiveX Controls 210

Scrollbar Control 211
Spin Button Control 211
CheckBox Control 212
Option Button Controls 212

Forms Controls 214
Dynamic ActiveX Controls 216
Controls on Charts 220
Summary 221

Chapter 11: Text Files and File Dialog 223

Opening Text Files 223
Writing to Text Files 224
Reading Text Files 226
Writing to Text Files Using Print 227

Reading Data Strings 229
Flexible Separators and Delimiters 230

FileDialog 233
FileDialogFilters 235
FileDialogSelectedItems 235
Dialog Types 235
Execute Method 235
MultiSelect 236

Summary 238

Chapter 12: Working with XML and the Open XML File Formats 239

The Basics of Using XML Data in Excel 240
XML Fundamentals 240
Consuming XML Data Directly 246
Creating and Managing Your Own XML Maps 249

Using VBA to Program XML Processes 253
Programming XML Maps 253
Leveraging DOM and XPath to Manipulate XML Files 258

Using VBA to Program Open XML Files 265
Programming Open XML Files with VBA 266
Programmatically Zipping an Excel Container 267

Summary 272

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xiii

xiv

Contents

Chapter 13: UserForms 273

Displaying a UserForm 273
Creating a UserForm 275
Directly Accessing Controls in UserForms 277
Stopping the Close Button 281
Maintaining a Data List 282
Modeless UserForms 288

Progress Indicator 288
Variable UserForm Name 291
Summary 291

Chapter 14: RibbonX 293

Overview 293
Prerequisites 294
Adding the Customizations 294
XML Structure 295
RibbonX and VBA 298
Control Types 299

Basic Controls 299
Container Controls 300

Control Attributes 301
Control Callbacks 303
Managing Control Images 305
Other RibbonX Elements, Attributes, and Callbacks 307

Sharing Controls among Multiple Workbooks 308
Updating Controls at Run Time 309
Hooking Built-In Controls 311
RibbonX in Dictator Applications 312
Customizing the Office Menu 312
Customizing the QAT 313
Controlling Tabs, Tab Sets, and Groups 313

Dynamic Controls 314
dropDown, comboBox, and gallery 315
dynamicMenu 315

CommandBar Extensions for the Ribbon 316
RibbonX Limitations 317
Summary 318

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xiv

xv

Contents

Chapter 15: Command Bars 319

Toolbars, Menu Bars, and Popups 320
Excel’s Built-in Command Bars 322
Controls at All Levels 325

FaceIds 328
Creating New Menus 330

The OnAction Macros 332
Passing Parameter Values 333
Deleting a Menu 334
Creating a Toolbar 335
Popup Menus 338
Showing Popup Command Bars 342

Table-Driven Command Bar Creation 344
Summary 354

Chapter 16: Class Modules 355

Creating Your Own Objects 356
Property Procedures 357
Creating Collections 359

Class Module Collection 360
Encapsulation 363
Trapping Application Events 363
Embedded Chart Events 365
A Collection of UserForm Controls 368
Referencing Classes Across Projects 370
Summary 371

Chapter 17: Add-ins 373

Hiding the Code 374
Creating an Add-in 374
Closing Add-ins 375
Code Changes 376
Saving Changes 377
Interface Changes 377
Installing an Add-in 379
AddinInstall Event 381
Removing an Add-in from the Add-ins List 381
Summary 382

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xv

xvi

Contents

Chapter 18: Automation Add-Ins and COM Add-Ins 383

Automation Add-Ins 383
A Simple Add-In — Sequence 384
Registering Automation Add-Ins with Excel 385
Using Automation Add-Ins 386
Introducing the IDTExtensibility2 Interface 388

COM Add-Ins 394
The IDTExtensibility2 Interface (Continued) 395
Registering a COM Add-In with Excel 395
The COM Add-In Designer 396

Summary 409

Chapter 19: Interacting with Other Office Applications 411

Establishing the Connection 411
Late Binding 412
Early Binding 414

Opening a Document in Word 416
Accessing an Active Word Document 417
Creating a New Word Document 418
Access and ADO 419
Access, Excel, and, Outlook 420
Better than Mail Merge 423

Readable Document Variables 428
Summary 430

Chapter 20: Data Access with ADO 431

An Introduction to Structured Query Language (SQL) 431
The SELECT Statement 432
The INSERT Statement 434
The UPDATE Statement 434
The DELETE Statement 435

An Overview of ADO 436
The Connection Object 437
The Recordset Object 441
The Command Object 445
Using ADO in Microsoft Excel Applications 447
Using ADO with Microsoft Access 448
Using ADO with Microsoft SQL Server 454
Using ADO with Non-Standard Data Sources 463

Summary 468

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xvi

xvii

Contents

Chapter 21: Managing External Data 469

The External Data User Interface 469
Get External Data 470
Manage Connections 471

The QueryTable and ListObject 472
A QueryTable from a Relational Database 472
A Query Table Associated with a ListObject 475
QueryTables and Parameter Queries 476
QueryTables from Web Queries 479
A QueryTable from a Text File 482
Creating and Using Connection Files 484

The WorkbookConnection Object and the Connections Collection 487
External Data Security Settings 489
Summary 490

Chapter 22: The Trust Center and Document Security 491

The Trust Center 491
Trusted Publishers 492
Trusted Locations 492
Add-ins 494
ActiveX Settings 495
Macro Settings 497
Message Bar 498
External Content 499
Privacy Options 501

Automating Document Inspection 503
The RemoveDocumentInformation Method 503
The DocumentInspectors Collection 505

Summary 506

Chapter 23: Browsing OLAP Data Sources with Excel 507

Analyzing OLAP Data via Pivot Tables 508
Connecting to an OLAP Data Source 508
Browsing the OLAP Data Source 510

Understanding the MDX behind OLAP-based Pivot Tables 512
The Basics of MDX 513

Browsing OLAP Data Sources without Pivot Tables 517
Using ADO to Return Flattened Recordsets 517
Using ADO MD to Get Cube Schema Information 518
Creating an Inventory of Dimensions, Hierarchies, and Levels 519

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xvii

xviii

Contents

Creating Offline Cubes 521
Creating an Offline Cube Manually 521
Using the CreateCubeFile Method 521
Creating an Offline Cube Using ADO MD and VBA 522

Summary 523

Chapter 24: Excel and the Internet 525

What Can the Internet Do for You? 526
Using the Internet for Storing Workbooks 526
Using the Internet as a Data Source 527

Opening Web Pages as Workbooks 528
Using Web Queries 528
Parsing Web Pages for Specific Information 530

Using the Internet to Publish Results 531
Setting Up a Web Server 532
Saving Worksheets as Web Pages 532
Creating Interactive Web Pages 533

Using the Internet as a Communication Channel 533
Communicating with a Web Server 534

Summary 536

Chapter 25: International Issues 537

Changing Windows Regional Settings and the Office 2007 UI Language 537
Responding to Regional Settings and the Windows Language 538

Identifying the User’s Regional Settings and Windows Language 538
VBA Conversion Functions from an International Perspective 539

Interacting with Excel 545
Sending Data to Excel 545
Reading Data from Excel 548
The Rules for Working with Excel 548

Interacting with Users 549
Paper Sizes 549
Displaying Data 549
Interpreting Data 550
The xxxLocal Properties 550
The Rules for Working with Your Users 551

Excel 2007’s International Options 552
Features That Don’t Play by the Rules 554

The OpenText Function 555
The SaveAs Function 556
The ShowDataForm Sub Procedure 556

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xviii

xix

Contents

Pasting Text 557
PivotTable Calculated Fields and Items, and Conditional Format and
Data Validation Formulas 557
Web Queries 558
=TEXT() Worksheet Function 558

The Range.Value, Range.Formula, and Range.FormulaArray Properties 559
The Range.AutoFilter Method 559
The Range.AdvancedFilter Method 559
The Application.Evaluate, Application.ConvertFormula, and
Application.ExecuteExcel4Macro Functions 560
Responding to Office 2007 Language Settings 560

Where Does the Text Come From? 560
Identifying the Office UI Language Settings 562
Creating a Multilingual Application 562
Working in a Multilingual Environment 564
The Rules for Developing a Multilingual Application 565

Some Helpful Functions 565
The bWinToNum Function 566
The bWinToDate Function 566
The sFormatDate Function 567
The ReplaceHolders Function 568

Summary 568

Chapter 26: Programming the VBE 571

Identifying VBE Objects in Code 572
The VBE Object 572
The VBProject Object 572
The VBComponent Object 573
The CodeModule Object 574
The CodePane Object 574
The Designer Object 574

Starting Up 575
Adding Menu Items to the VBE 576
Working with Workbooks 580
Working with Code 589
Working with UserForms 594
Working with References 598
COM Add-ins 599
Summary 600

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xix

xx

Contents

Chapter 27: Programming with the Windows API 601

Anatomy of an API Call 602
Interpreting C-Style Declarations 603
Constants, Structures, Handles, and Classes 606
What If Something Goes Wrong? 609
Wrapping API Calls in Class Modules 611
Some Example Classes 616

A High-Resolution Timer Class 616
Class Module CHighResTimer 616
Freeze a UserForm 618
A System Info Class 619

Modifying UserForm Styles 622
Window Styles 623
The CFormChanger Class 624

Resizable UserForms 625
Absolute Changes 626
Relative Changes 627
The CFormResizer Class 628

Summary 634

Appendix A: Excel 2007 Object Model 635

Appendix B: VBE Object Model 971

Appendix C: Office 2007 Object Model 995

Index 1079

02_046432 ftoc.qxp 2/16/07 9:52 PM Page xx

Acknowledgments

John Green
Thanks to Katie Mohr and Michael Alexander for getting us back together, and thanks to Brian Herrmann
for melding us into a coherent whole.

Dick Kusleika deserves special mention as our technical editor. He has saved us from some embarrass-
ment and suggested numerous improvements in the examples and text. Thank you, Dick.

I would like to thank Michael Beale for seeding some of the examples of interaction with other Office
applications.

Finally, a heartfelt thank you to my fellow authors. I have handled the basics and Michael, Rob, and
Stephen have supplied the benefits of their specialized knowledge in the higher-level topics to take us
further than I would have ever dared on my own.

Stephen Bullen
First and foremost, I’d like to thank my long-suffering girlfriend, Clare, for putting up with all the late
nights and lonely evenings she endured while I wrote this update. Thanks also goes to Mike Alexander
and Katie Mohr for their efforts in resurrecting the original author team to write this update to the book,
and to John and Rob for agreeing to do it—your professionalism leaves me humbled.

Dick Kusleika is the unsung hero of this book. While the four authors could concentrate on our own
chapters, Dick had to carefully read every word and check its accuracy. The credit for the amazingly
high quality of this work goes to him, while any remaining errors are ours.

Of course, without the Excel team at Microsoft, we wouldn’t have had anything to write about, so thanks
goes to David Gainer and his team for crafting an amazing update to a quite mature product, and for
being so open with the Excel MVPs and wider public over the past few years. The Ribbon is the biggest
change that has happened to Office for many years and Jensen Harris and Savraj Dhanjal and their teams
have done a brilliant job in designing the Ribbon’s UI and programmability model, respectively. I’d par-
ticularly like to thank them for listening to the (sometimes harsh) criticism from the beta testers, and for
updating their designs in response.

Last, I’d like to thank you, the reader, for buying this book, writing the five-star reviews on Amazon and
recommending it to all your friends and colleagues!

Mike Alexander
I would like to first thank the original authors—John Green, Stephen Bullen, and Rob Bovey—for agreeing
to reclaim their work. Believe me when I say that these men are very well respected among professional
Excel developers, and it is an absolute honor to be associated with their work.

03_046432 flast.qxp 2/16/07 9:52 PM Page xxi

xxii

Acknowledgments

A big thank you goes to Katie Mohr for joining me in lobbying to get the original author team back on
board. It is safe to say that without her efforts, this title would not be the superb product it is today. I would
also like to thank Brian Herrmann and the professionals at Wiley for all of their time and resources in help-
ing this ambitious title come to fruition.

Dick Kusleika is definitely the “the fifth Beatle” of this book. Dick clearly put a lot of time and effort into
keeping us honest and ensuring that our work is as clean as possible. A solid technical editor is paramount
for an all-encompassing reference like this one, and Dick Kusleika really came through for all of us.

A very special thank you to Mary for putting up with all of my crazy projects. The royalty checks are in
the mail, my love.

03_046432 flast.qxp 2/16/07 9:52 PM Page xxii

Introduction

Excel made its debut on the Macintosh in 1985 and has never lost its position as the most popular
spreadsheet application in the Mac environment. In 1987, Excel was ported to the PC, running under
Windows. It took many years for Excel to overtake Lotus 1-2-3, which was one of the most successful
software systems in the history of computing at that time.

A number of spreadsheet applications enjoyed success prior to the release of the IBM PC in 1981. Among
these were VisiCalc and Multiplan. VisiCalc started it all, but fell by the wayside early on. Multiplan was
Microsoft’s predecessor to Excel, using the R1C1 cell addressing which is still available as an option in
Excel. But it was 1-2-3 that shot to stardom very soon after its release in 1982 and came to dominate the
PC spreadsheet market.

Early Spreadsheet Macros
1-2-3 was the first spreadsheet application to offer spreadsheet, charting, and database capabilities in one
package. However, the main reason for its runaway success was its macro capability. Legend has it that
the 1-2-3 developers set up macros as a debugging and testing mechanism for the product. It is said that
they only realized the potential of macros at the last minute, and included them in the final release
pretty much as an afterthought.

Whatever their origins, macros gave non-programmers a simple way to become programmers and
automate their spreadsheets. They grabbed the opportunity and ran. At last they had a measure of
independence from the computer department.

The original 1-2-3 macros performed a task by executing the same keystrokes that a user would use to
carry out the same task. It was, therefore, very simple to create a macro because there was virtually nothing
new to learn to progress from normal spreadsheet manipulation to programmed manipulation. All you
had to do was remember what keys to press and write them down. The only concessions to traditional pro-
gramming were eight extra commands, the /x commands. The /x commands provided some primitive
decision-making and branching capabilities, a way to get input from a user, and a way to construct menus.

One major problem with 1-2-3 macros was their vulnerability. The multi-sheet workbook had not yet been
invented and macros had to be written directly into the cells of the spreadsheet they supported, along with
input data and calculations. Macros were at the mercy of the user. For example, they could be inadvertently
disrupted when a user inserted or deleted rows or columns. Macros were also at the mercy of the program-
mer. A badly designed macro could destroy itself quite easily while trying to edit spreadsheet data.

Despite the problems, users reveled in their newfound programming ability and millions of lines of code
were written in this cryptic language, using arcane techniques to get around its many limitations. The
world came to rely on code that was often badly designed, nearly always poorly documented, and at all
times highly vulnerable, often supporting enterprise-critical control systems.

03_046432 flast.qxp 2/16/07 9:52 PM Page xxiii

xxiv

Introduction

The XLM Macro Language
The original Excel macro language required you to write your macros in a macro sheet that was saved in
a file with an .xlm extension. In this way, macros were kept separate from the worksheet, which was
saved in a file with an .xls extension. These macros are now often referred to as XLM macros, or Excel 4
macros, to distinguish them from the VBA macro language introduced in Excel Version 5.

The XLM macro language consisted of function calls, arranged in columns in the macro sheet. There
were many hundreds of functions necessary to provide all the features of Excel and allow programmatic
control. The XLM language was far more sophisticated and powerful than the 1-2-3 macro language,
even allowing for the enhancements made in 1-2-3 Releases 2 and 3. However, the code produced was
not much more intelligible.

The sophistication of Excel’s macro language was a two-edged sword. It appealed to those with high
programming aptitude, who could tap the language’s power, but was a barrier to most users. There was
no simple relationship between the way you manually operated Excel and the way you programmed it.
There was a very steep learning curve involved in mastering the XLM language.

Another barrier to Excel’s acceptance on the PC was that it required Windows. The early versions of
Windows were restricted by limited access to memory, and Windows required much more horsepower
to operate than DOS. The Graphical User Interface was appealing, but the tradeoffs in hardware cost and
operating speed were perceived as problems.

Lotus made the mistake of assuming that Windows was a flash in the pan, soon to be replaced by OS/2,
and did not bother to plan a Windows version of 1-2-3. Lotus put its energy into 1-2-3/G, a very nice GUI
version of 1-2-3 that only operated under OS/2. This one-horse bet was to prove the undoing of 1-2-3.

By the time it became clear that Windows was here to stay, Lotus was in real trouble as it watched users
flocking to Excel. The first attempt at a Windows version of 1-2-3, released in 1991, was really 1-2-3
Release 3 for DOS in a thin GUI shell. Succeeding releases have closed the gap between 1-2-3 and Excel,
but have been too late to stop the almost universal adoption of Microsoft Office by the market.

Excel 5
Microsoft made a brave decision to unify the programming code behind its Office applications by intro-
ducing VBA (Visual Basic for Applications) as the common macro language in Office. Excel 5, released
in 1993, was the first application to include VBA. It was gradually introduced into the other Office appli-
cations in subsequent versions of Office. Excel, Word, Access, PowerPoint, and Outlook all use VBA as
their macro language in Office.

Since the release of Excel 5, Excel has supported both the XLM and the VBA macro languages, and the
support for XLM should continue into the foreseeable future, but has decreased in significance as users
switch to VBA.

VBA is an object-oriented programming language that is identical to the Visual Basic programming lan-
guage in the way it is structured and in the way it handles objects. If you learn to use VBA in Excel, you
know how to use it in the other Office applications.

03_046432 flast.qxp 2/16/07 9:52 PM Page xxiv

xxv

Introduction

The Office applications differ in the objects they expose to VBA. To program an application, you need
to be familiar with its object model. The object model is a hierarchy of all the objects that you find in the
application. For example, part of the Excel object model tells us that there is an Application object that
contains a Workbook object that contains a Worksheet object that contains a Range object.

VBA is somewhat easier to learn than the XLM macro language, is more powerful, is generally more
efficient, and allows you to write well-structured code. You can also write badly structured code, but by
following a few principles, you should be able to produce code that is readily understood by others and is
reasonably easy to maintain.

In Excel 5, VBA code was written in modules, which were sheets in a workbook. Worksheets, chart
sheets, and dialog sheets were other types of sheets that could be contained in an Excel 5 workbook.

Excel 97
In Excel 97, Microsoft introduced some dramatic changes in the VBA interface and some changes in the
Excel object model. From Excel 97 onward, modules are not visible in the Excel application window and
modules are no longer objects contained by the Workbook object. Modules are contained in the VBA pro-
ject associated with the workbook and can only be viewed and edited in the Visual Basic Editor (VBE)
window.

In addition to the standard modules, class modules were introduced, which allow you to create your
own objects and access application events. CommandBars were introduced to replace menus and tool-
bars, and UserForms replaced dialog sheets. Like modules, UserForms can only be edited in the VBE
window. As usual, the replaced objects are still supported in Excel, but are considered to be hidden
objects and are not documented in the Help screens.

In previous versions of Excel, objects such as buttons embedded in worksheets could only respond to a
single event, usually the Click event. Excel 97 greatly increased the number of events that VBA code
can respond to and formalized the way in which this is done by providing event procedures for the
workbook, worksheet, and chart sheet objects. For example, in Excel 2007 workbooks have 29 events
they can respond to, such as BeforeSave, BeforePrint, and BeforeClose. Excel 97 also introduced
ActiveX controls that can be embedded in worksheets and UserForms. ActiveX controls can respond to
a wide range of events such as GotFocus, MouseMove, and DblClick.

The VBE provides users with much more help than was previously available. For example, as you write
code, pop-ups appear with lists of appropriate methods and properties for objects, and arguments and
parameter values for functions and methods. The Object Browser is much better than previous versions,
allowing you to search for entries, for example, and providing comprehensive information on intrinsic
constants.

A module is really just a word-processing document with some special characteris-
tics that help you write and test code.

03_046432 flast.qxp 2/16/07 9:52 PM Page xxv

xxvi

Introduction

Microsoft has provided an Extensibility library that makes it possible to write VBA code that manipu-
lates the VBE environment and VBA projects. This makes it possible to write code that can directly
access code modules and UserForms. It is possible to set up applications that indent module code or
export code from modules to text files, for example.

Excel 2000
Excel 2000 did not introduce dramatic changes from a VBA programming perspective. There were a
large number of improvements in the Office 2000 and Excel 2000 user interfaces and improvements in
some Excel features such as PivotTables. A new PivotChart feature was added. Web users benefited the
most from Excel 2000, especially through the ability to save workbooks as web pages. There were also
improvements for users with a need to share information, through new online collaboration features.

One long-awaited improvement for VBA users was the introduction of modeless UserForms. Previously,
Excel only supported modal dialog boxes, which take the focus when they are onscreen so that no other
activity can take place until they are closed. Modeless dialog boxes allow the user to continue with other
work while the dialog box floats above the worksheet. Modeless dialog boxes can be used to show a
“splash” screen when an application written in Excel is loaded and to display a progress indicator while
a lengthy macro runs.

Excel 2002
Excel 2002 also introduced only incremental changes. Once more, the major improvements were in the
user interface rather than in programming features. Microsoft continued to concentrate on improving
web-related features to make it easier to access and distribute data using the Internet. New features that
can be useful for VBA programmers included a new Protection object, SmartTags, RTD (Real Time
Data), and improved support for XML.

The Protection object allows selective control over the features that are accessible to users when you
protect a worksheet. You can decide whether users can sort, alter cell formatting, or insert and delete
rows and columns, for example. There is also a new AllowEditRange object that you can use to specify
which users can edit specific ranges and whether they must use a password to do so. You can apply dif-
ferent combinations of permissions to different ranges.

SmartTags allow Excel to recognize data typed into cells as having special significance. For example,
Excel 2002 can recognize stock market abbreviations, such as MSFT for Microsoft Corporation. When
Excel sees an item like this, it displays a SmartTag symbol that has a pop-up menu. You can use the
menu to obtain related information, such as the latest stock price or a summary report on the company.
Microsoft provides a kit that allows developers to create new SmartTag software to make data available
throughout an organization or across the Internet.

RTD allows developers to create sources of information that users can draw from. Once you establish a
link to a worksheet, changes in the source data are automatically passed on. An obvious use for this is to
obtain stock prices that change in real time during the course of trading. Other possible applications
include the ability to log data from scientific instruments or industrial process controllers.

03_046432 flast.qxp 2/16/07 9:52 PM Page xxvi

xxvii

Introduction

Improved XML support meant that it was getting easier to create applications that exchange data
through the Internet and intranets. As everyone becomes more dependent on these burgeoning tech-
nologies, XML support becomes of increasing importance.

Excel 2003
Excel 2003 continued to introduce new web-orientated features, including improved support for XML
and improved online help and the ability to share and update data using Windows SharePoint Services.

Excel 2003 introduced corrected versions of a number of Excel’s statistical functions.

The List feature was introduced to allow easier management of a database table. Lists make it easier to
sort, filter, and edit data. Lists can also be integrated into SharePoint to share data via the Internet.

New features were introduced to enhance document sharing and management of access rights. Side-by-
side comparison of workbooks was also introduced.

Excel 2007
Excel 2007 represents the greatest change in Excel since Excel 97. The most impact will be made by the
new user interface, which uses the Ribbon as the primary navigation tool, replacing menus and toolbars.
Although the Ribbon is probably much easier to digest for new users, it means that experienced users
need to be re-educated. From a developer’s point of view, the Ribbon is a major challenge requiring a
whole new approach in application interfaces and a completely new set of programming rules.

Excel 2007 lifts many of the old limits, supporting 1,048,576 rows and 16,384 columns, for example. There
are many changes to the way features are accessed so that PivotTables and charts are more accessible and
easier to manipulate, as are many other features.

The List feature of Excel 2003, which handles database tables, has become the Table feature in Excel 2007
and is easier to use and has more capabilities. Sorting and filtering have been redesigned. You can sort on
up to 64 keys simultaneously, for example. Enhancements have also been made in the range of external
data sources that are now accessible, and the ways in which the data is accessed have been improved.

New file formats are used in Excel 2007, which are not compatible with previous versions although data
can be saved back to older formats with the loss of any new features. If you want to have VBA code
saved with a workbook, the format of the file is different compared with a standard workbook file.

Security concepts have been redesigned, introducing the Trust Center. You can now designate folders as
“trusted,” and macros in these folders will be allowed to run without needing digital certificates.

For a VBA programmer there are a number of new objects to be discovered and new concepts to be
learned.

03_046432 flast.qxp 2/16/07 9:52 PM Page xxvii

xxviii

Introduction

Excel 2007 VBA Programmer’s Reference
This book is aimed squarely at Excel users who want to harness the power of the VBA language in their
Excel applications. At all times, the VBA language is presented in the context of Excel, not just as a gen-
eral application programming language.

The pages that follow have been loosely divided into three sections:

❑ Primer (Chapter 1)

❑ Working with Specific Objects (Chapters 2–27)

❑ Object Model References (Appendices A–C)

The Primer has been written for those who are new to VBA programming and the Excel object model. It
introduces the VBA language and the features of the language that are common to all VBA applications.
It explains the relationship between collections, objects, properties, methods, and events and shows how
to relate these concepts to Excel through its object model. It also shows how to use the Visual Basic
Editor and its multitude of tools, including how to obtain help.

The middle section of the book takes the key objects in Excel and shows, through many practical examples,
how to go about working with those objects. The techniques presented have been developed through the
exchange of ideas of many talented Excel VBA programmers over many years and show the best way to
gain access to workbooks, worksheets, charts, ranges, and so on. The emphasis is on efficiency—that is,
how to write code that is readable and easy to maintain and that runs at maximum speed. In addition, the
chapters devoted to accessing external databases detail techniques for accessing data in a range of formats.

The final four chapters of the book address the following advanced issues: linking Excel to the Internet,
writing code for international compatibility, programming the Visual Basic Editor, and how to use the
functions in the Win32 API (Windows 32-bit Application Programming Interface).

Finally, the appendices are a comprehensive reference to the Excel 2007 object model, as well as the
Visual Basic Editor and Office object models. All the objects in the models are presented together with all
their properties, methods, and events. I trust that this book will become a well-thumbed resource that
you can dig into, as needed, to reveal that elusive bit of code that you must have right now.

Version Issues
Previous editions of this book were able to cover all versions of Excel from Excel 97 onward, because the
changes in the Excel object model and user interface were relatively minor. The changes in Excel 2007
have meant that it is no longer possible to do this without filling the book with complicated alternatives.
This book applies to Excel 2007.

What You Need to Use this Book
Nearly everything discussed in this book has examples with it. All the code is written out and there are
plenty of screenshots where they are appropriate. The version of Windows you use is not important. It is

03_046432 flast.qxp 2/16/07 9:52 PM Page xxviii

xxix

Introduction

important to have a full installation of Excel and, if you want to try the more advanced chapters involving
communication between Excel and other Office applications, you will need a full installation of Office.
Make sure your installation includes access to the Visual Basic Editor and the VBA Help files. It is possible
to exclude these items during the installation process.

Note that Chapter 18 requires you to have VB6 installed because it covers the topics of COM Addins.
Chapter 23 requires you to have IIS 5.0, SQL Server 2000, and SQL Server 2005 installed in order to inter-
act with OLAP data sources.

Conventions Used
This book uses a number of different styles of text and layout in the book, to help differentiate between
different kinds of information. Here are some of the styles and an explanation of what they mean:

Background information, asides, and references appear in text like this.

❑ Important words are italicized

❑ Words that appear on the screen, such as menu options, are capitalized—for example, the
Tools menu.

❑ All object names, function names, and other code snippets are in this style: SELECT.

Code that is new or important is presented like this:

SELECT CustomerID, ContactName, Phone
FROM Customers

Code that you’ve seen before or has little to do with the matter being discussed, looks like this:

SELECT ProductName FROM Products

In Case of a Crisis...
There are a number of places you can turn to if you encounter a problem. The best source of information on
all aspects of Excel is your peers. You can find them in a number of newsgroups across the Internet. Try
pointing your newsreader to the following site where you will find all of the authors actively participating:

❑ msnews.microsoft.com

Subscribe to microsoft.public.excel.programming or any of the groups that appeal to you. You
can submit questions and generally receive answers within an hour or so.

These boxes hold important, not-to-be forgotten, mission-critical details that are
directly relevant to the surrounding text.

03_046432 flast.qxp 2/16/07 9:52 PM Page xxix

xxx

Introduction

Stephen Bullen and Rob Bovey maintain very useful web sites, where you will find a great deal of infor-
mation and free downloadable files, at the following addresses:

❑ www.oaltd.co.uk

❑ www.appspro.com

John Walkenbach maintains another useful site at:

❑ www.j-walk.com

Wrox can be contacted directly at:

❑ www.wrox.com—for downloadable source code and support

❑ http://p2p.wrox.com/list.asp?list=vba_excel—for open Excel VBA discussion

Other useful Microsoft information sources can be found at:

❑ www.microsoft.com/office/—for up-to-the-minute news and support

❑ http://msdn.microsoft.com/office/—for developer news and good articles about how to
work with Microsoft products

❑ www.microsoft.com/technet—for Microsoft Knowledge Base articles, security information,
and a bevy of other more admin-related items

Feedback
We’ve tried, as far as possible, to write this book as though we were sitting down next to each other. We’ve
made a concerted effort to keep it from getting “too heavy” while still maintaining a fairly quick pace. We’d
like to think that we’ve been successful at it, but encourage you to e-mail us and let us know what you
think one way or the other. Constructive criticism is always appreciated, and can only help future versions
of this book. You can contact us either by e-mail (support@wrox.com) or via the Wrox web site.

Questions?
Seems like there are always some, eh? From the previous edition of this book, we received hundreds of
questions. We have tried to respond to every one of them as best as possible. What we ask is that you
give it your best shot to understand the problem based on the explanations in the book.

If the book fails you, then you can either e-mail Wrox (support@wrox.com) or us personally (greenj@
bigpond.net.au, RobBovey@AppsPro.com, Stephen@oaltd.co.uk). You can also ask questions on the
vba_excel list at http://p2p.wrox.com. Wrox has a dedicated team of support staff and we personally try
(no guarantees!) to answer all the mail that comes to them. For the previous book, we responded to about
98% of the questions asked—but life sometimes becomes demanding enough that we can’t get to them all.
Just realize that the response may take a few days (because we get an awful lot of mail).

03_046432 flast.qxp 2/16/07 9:52 PM Page xxx

Primer in Excel VBA
This chapter is intended for those who are not familiar with Excel and the Excel macro recorder, or
who are inexperienced with programming using the Visual Basic language. If you are already
comfortable with navigating around the features provided by Excel, have used the macro recorder,
and have a working knowledge of Visual Basic and the Visual Basic Editor, you might want to skip
straight to Chapter 2.

If this is not the case, this chapter has been designed to provide you with the information you need
to be able to move on comfortably to the more advanced features presented in the following chap-
ters. Specifically, this chapter covers the following topics:

❑ The Excel macro recorder

❑ User-defined functions

❑ The Excel object model

❑ VBA programming concepts

Excel VBA is a programming application that allows you to use Visual Basic code to run the many
features of the Excel package, thereby allowing you to customize your Excel applications. Units of
VBA code are often referred to as macros. More formal terminology is covered in this chapter, but
you will continue to see the term macro as a general way to refer to any VBA code.

In your day-to-day use of Excel, if you carry out the same sequence of commands repetitively, you
can save a lot of time and effort by automating those steps using macros. If you are setting up an
application for other users who don’t know much about Excel, you can use macros to create but-
tons and dialog boxes to guide them through your application as well as automate the processes
involved.

If you are able to perform an operation manually, you can use the macro recorder to capture that
operation. This is a very quick and easy process and requires no prior knowledge of the VBA lan-
guage. Many Excel users record and run macros and feel no need to learn about VBA.

04_046432 ch01.qxp 2/16/07 9:53 PM Page 1

However, the recorded results might not be very flexible, in that the macro can only be used to carry out
one particular task on one particular range of cells. In addition, the recorded macro is likely to run much
more slowly than code written by someone with knowledge of VBA. To set up interactive macros that
can adapt to change and also run quickly, and to take advantage of more advanced features of Excel
such as customized dialog boxes, you need to learn about VBA.

In this chapter, you learn how to use the macro recorder and you see all the ways Excel provides to run
your macros. You see how to use the Visual Basic Editor to examine and change your macros, thus going
beyond the recorder and tapping into the power of the VBA language and the Excel object model.

You can also use VBA to create your own worksheet functions. Excel comes with hundreds of built-in
functions, such as SUM and IF, which you can use in cell formulas. However, if you have a complex cal-
culation that you use frequently and that is not included in the set of standard Excel functions — such as
a tax calculation or a specialized scientific formula — you can write your own user-defined function.

Using the Macro Recorder
Excel’s macro recorder operates very much like the recorder that stores the greeting on your telephone
answering machine. To record a greeting, you first prepare yourself by rehearsing the greeting to ensure
that it says what you want. Then you switch on the recorder and deliver the greeting. When you have
finished, you switch off the recorder. You now have a recording that automatically plays when you leave
a call unanswered.

Recording an Excel macro is very similar. You first rehearse the steps involved and decide at what points
you want to start and stop the recording process. You prepare your spreadsheet, switch on the Excel
recorder, carry out your Excel operations, and switch off the recorder. You now have an automated
procedure that you and others can reproduce at the press of a button.

Recording Macros
Say you want a macro that types six month names as three-letter abbreviations, Jan to Jun, across the top
of your worksheet, starting in cell B1. I know this is rather a silly macro because you could do this easily
with an AutoFill operation, but this example will serve to show you some important general concepts:

❑ First, think about how you are going to carry out this operation. In this case, it is easy — you
will just type the data across the worksheet. Remember, a more complex macro might need
more rehearsals before you are ready to record it.

Don’t get the impression that we are dismissing the macro recorder. The macro
recorder is one of the most valuable tools available to VBA programmers. It is the
fastest way to generate working VBA code, but you must be prepared to apply your
own knowledge of VBA to edit the recorded macro to obtain flexible and efficient
code. A recurring theme in this book is recording an Excel macro and then showing
how to adapt the recorded code.

2

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 2

❑ Next, think about when you want to start recording. In this case, you should include the selec-
tion of cell B1 in the recording, because you want to always have Jan in B1. If you don’t select B1
at the start, you will record typing Jan into the active cell, which could be anywhere when you
play back the macro.

❑ Next, think about when you want to stop recording. You might first want to include some for-
matting such as making the cells bold and italic, so you should include that in the recording.
Where do you want the active cell to be after the macro runs? Do you want it to be in the same
cell as Jun, or would you rather have the active cell in column A or column B, ready for your
next input? Assume that you want the active cell to be A2, at the completion of the macro, so
you will select A2 before turning off the recorder.

❑ Now you can set up your screen, ready to record.

In this case, start with an empty worksheet with cell A1 selected. If you can’t see the Developer tab
above the Ribbon, you will need to click the round Microsoft Office button that you can see in the top-
left corner of the Excel screen shown in Figure 1-1. Click Excel Options at the bottom of the dialog box
and select Personalize. Select the checkbox for Show Developer tab in the Ribbon and click OK. Now
you can select the Developer section of the Ribbon and click Record Macro to display the Record Macro
dialog box, shown in Figure 1-1.

Figure 1-1

In the Macro name: box, replace the default entry, such as Macro1, with the name you want for your
macro. The name should start with a letter and contain only letters, numbers, and the underscore charac-
ter, with a maximum length of 255 characters. The macro name must not contain special characters such
as exclamation points (!) or question marks (?), nor should it contain blank spaces. It is also best to use a
short but descriptive name that you will recognize later. You can use the underscore character to sepa-
rate words, but it is easy to just use capitalization to distinguish words.

3

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 3

Call the macro MonthNames1, because you will create another version later.

In the Shortcut key: box, you can type in a single letter. This key can be pressed later, while holding
down the Ctrl key, to run the macro. Use a lowercase m. Alternatively, you can use an uppercase M.
In this case, when you later want to run the macro, you need to use the keystroke combination
Ctrl+Shift+M. It is not mandatory to provide a shortcut key; you can run a macro in a number of other
ways, as you will see.

In the Description: box, you can add text that will be added as comments to the macro. These lines will
appear at the top of your macro code. They have no significance to VBA, but provide you and others
with information about the macro.

All Excel macros are stored in workbooks. You are given a choice regarding where the recorded macro
will be stored. The Store macro in: combo box lists three possibilities. If you choose New Workbook, the
recorder will open a new empty workbook for the macro. Personal Macro Workbook refers to a special
hidden workbook, which is discussed in a moment. Choose This Workbook to store the macro in the cur-
rently active workbook.

When you have filled in the Record Macro dialog box, click the OK button. You will see a new Stop
Recording button appear on the left side of the status bar at the bottom of the screen, as shown in
Figure 1-2. You will also notice that the Start Recording button in the Ribbon has been replaced by a
new Stop Recording button.

Figure 1-2

You should now click cell B1, type in Jan, and fill in the rest of the cells as shown in Figure 1-2. Then
select B1:G1 and click the Bold and Italic buttons on the Home tab of the Ribbon. Click the A2 cell and
then stop the recorder. You can stop the recorder by clicking the Stop Recording button on the Ribbon or
by clicking the Stop Recording button on the status bar.

4

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 4

You could now save the workbook, but before you do so, you should determine the file type you need
and consider the security issues covered in the next section.

You can’t save the workbook as the default Excel Workbook (*.xlsx) type. This file format does not allow
macros to be included. You can save the workbook as an Excel Macro-Enabled Workbook (*.xlsm) type,
which is in XLM format, or you can save it as an Excel Binary Workbook (*.xlsb) type, which is in a
binary format. Neither of these file types is compatible with previous versions of Excel. Another alterna-
tive is to save the workbook as an Excel 97-2003 Workbook (*.xls) type, which produces a workbook
compatible with Excel versions from Excel 97 through Excel 2003.

Macro Security
To develop macros with minimum interruption, work with Office 2007’s security restrictions. Without
getting into the complications of digitally signing your workbooks, you have a couple of simple options.
Select the Developer tab on the Ribbon and click the Macro Security button. You will see the Trust Center
dialog box, where you can select Macro Settings. Here you can enable all macros. This is not recom-
mended because it leaves you wide open to macro viruses.

A better alternative is to nominate a specific directory as a trusted location. Click Trusted Locations to
the left of the Trust Center dialog box. You probably already have a number of trusted locations, includ-
ing your XLSTART directory and templates directories. Use the Add new location button to specify a
suitable directory for storing your workbooks.

You should now save the workbook containing the newly recorded macro into the trusted location. Click
the Microsoft Office button and select Save As. In the Save as type drop-down, select the .xlsm type and
save the workbook in the trusted location as Recorder.xlsm.

The Personal Macro Workbook
If you choose to store your recorded macro in the Personal Macro Workbook, the macro is added to a
special file called Personal.xlsb, which is a hidden file that is saved in your Excel Startup directory
when you close Excel. This means that Personal.xlsb is automatically loaded when you launch Excel
and, therefore, its macros are always available for any other workbook to use.

If you can’t see the file extensions, such as .xlsm, in the Save As dialog box, you
should open Windows Explorer, click the Tools menu, and choose Folder Options.
In the View tab, remove the check against Hide extensions for known file types.

It is important to remember to stop the recorder. If you leave the recorder on and try
to run the recorded macro, you can go into a loop where the macro runs itself over
and over again. If this does happen to you, or any other error occurs while testing
your macros, hold down the Ctrl key and press the Break key to interrupt the macro.
You can then end the macro or go into debug mode to trace errors. You can also inter-
rupt a macro with the Esc key, but it is not as effective as Ctrl+Break for a macro that
is pausing for input.

5

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 5

If Personal.xlsb does not already exist, the recorder will create it for you. You can use the Unhide but-
ton on the View tab of the Ribbon to see this workbook in the Excel window, but it is seldom necessary
or desirable to do this because you can examine and modify the Personal.xlsb macros in the Visual
Basic Editor window.

An exception where you might want to make Personal.xlsb visible is if you need to store data in its
worksheets. You can hide it again, after adding the data, with the Hide button on the View tab of the
Ribbon. If you are creating a general-purpose utility macro, which you want to be able to use with any
workbook, store it in Personal.xlsb. If the macro relates to just the application in the current work-
book, store the macro with the application.

Running Macros
To run the macro, either use another worksheet in the Recorder.xlsm workbook or open a new empty
workbook, leaving Recorder.xlsm open in memory. You can only run macros that are in open work-
books, but they can be run from within any other open workbook.

You can run the macro by pressing Ctrl+M, the shortcut you assigned at the start of the recording pro-
cess. You can also run the macro by clicking the Macros button in the View tab of the Ribbon or by
clicking the Macros button in the Developer tab of the Ribbon. Both buttons open the dialog box shown
in Figure 1-3. You can run the macro by double-clicking the macro name, or by selecting the macro name
and clicking Run.

Figure 1-3

The same dialog box can be opened by pressing Alt+F8.

Shortcut Keys
You can change the shortcut key assigned to a macro using the Macro dialog box shown in Figure 1-3.
Select the macro name and click Options. This opens the dialog box shown in Figure 1-4.

6

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 6

Figure 1-4

It is possible to assign the same shortcut key to more than one macro in the same workbook using this
dialog box (although the dialog box that appears when you start the macro recorder will not let you
assign a shortcut that is already in use).

Shortcuts are appropriate for macros that you use frequently, especially if you prefer to keep your hands
on the keyboard. It is worth memorizing the shortcuts so you won’t forget them if you use them regularly.
Shortcuts are not appropriate for macros that are run infrequently or are intended to make life easier for
less experienced users of your application. It is better to assign meaningful names to those macros and
run them from the Macro dialog box. Alternatively, they can be run from buttons that you add to the
worksheet. You learn how to do this shortly.

Absolute and Relative Recording
When you run MonthNames1, the macro returns to the same cells you selected while typing in the
month names. It doesn’t matter which cell is active when you start; if the macro contains the command
to select cell B1, that is what it selects. The macro selects B1 because you recorded in absolute record
mode. The alternative, relative record mode, remembers the position of the active cell relative to its pre-
vious position. If you have cell A10 selected, turn on the recorder, and go on to select B10, the recorder
notes that you moved one cell to the right, rather than noting that you selected cell B10.

Record a second macro called MonthNames2. There will be three differences in this macro compared
with the previous one:

❑ Click the Use Relative References button on the Developer tab of the Ribbon. You can do this
before you start recording or while you are recording.

❑ Do not select the Jan cell before typing. You want your recorded macro to type Jan into the
active cell when you run the macro.

❑ Finish by selecting the cell under Jan, rather than A2, just before turning off the recorder.

It is also quite likely that two different workbooks could contain macros with the
same shortcut key assigned. If this happens, which macro runs when you use the
shortcut? The macro that comes first alphabetically.

7

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 7

Start with an empty worksheet and select the B1 cell. Turn on the macro recorder and specify the macro
name as MonthNames2. Enter the shortcut as uppercase M — the recorder won’t let you use lowercase m
again. Click OK and select the Use Relative References button on the Developer tab of the Ribbon.

Type Jan and the other month names, as you did when recording MonthNames1. Select cells B1:G1 and
click the Bold and Italic buttons on the Home tab of the Ribbon.

Finally, select cell B2, the cell under Jan, and turn off the recorder.

Before running MonthNames2, select a starting cell, such as A10. You will find that the macro now types
the month names across row 10, starting in column A, and finishes by selecting the cell under the start-
ing cell.

Before you record a macro that selects cells, you need to think about whether to use absolute or relative
reference recording. If you are selecting input cells for data entry, or for a print area, you will probably
want to record with absolute references. If you want to be able to run your macro in different areas of
your worksheet, you will probably want to record with relative references.

If you are trying to reproduce the effect of the Ctrl+arrow keys to select the last cell in a column or row
of data, you should record with relative references. You can even switch between relative and absolute
reference recording in the middle of a macro, if you want. You might want to select the top of a column
with an absolute reference, switch to relative references, and use Ctrl+down arrow to get to the bottom
of the column and an extra down arrow to go to the first empty cell.

Excel 2000 was the first version of Excel to let you successfully record selecting a block of cells of vari-
able height and width using the Ctrl key. If you start at the top left-hand corner of a block of data, you
can hold down the Shift and Ctrl keys and press the down arrow and then the right arrow to select the
whole block (as long as there are no gaps in the data). If you record these operations with relative refer-
encing, you can use the macro to select a block of different dimensions. Previous versions of Excel
recorded an absolute selection of the original block size, regardless of recording mode.

The Visual Basic Editor
It is now time to see what has been going on behind the scenes. If you want to understand macros, be
able to modify your macros, and tap into the full power of VBA, you need to know how to use the Visual
Basic Editor (VBE). The VBE runs in its own window, separate from the Excel window. You can activate
it in many ways.

First, you can activate it by clicking the Visual Basic button on the Developer tab of the Ribbon. You can
also activate it by holding down the Alt key and pressing the F11 key. Alt+F11 acts as a toggle, taking

Make sure you select B1:G1 from left to right, so that B1 is the active cell. There is a
small kink in the recording process that can cause errors in the recorded macro if
you select cells from right to left or from bottom to top. Always select from the top-
left corner when recording relatively. This has been a problem with all versions of
Excel VBA.

8

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 8

you between the Excel window and the VBE window. If you want to edit a specific macro, you can use
the Macros button on the Developer tab of the Ribbon or the Play Macro button on the left of the status
bar to open the Macro dialog box, select the macro, and click the Edit button. The VBE window will look
something like Figure 1-5.

Figure 1-5

It is quite possible that you will see nothing but the menu bar when you switch to the VBE window. If you
can’t see the toolbars, use View ➪ Toolbars and click the Standard toolbar. Use View ➪ Project Explorer
and View ➪ Properties Window to show the windows on the left. If you can’t see the code module on the
right, double-click the icon for Module1 in the Project Explorer window.

Code Modules
All macros reside in code modules like the one on the right of the VBE window in Figure 1-5. There are
two types of code modules — standard modules and class modules. The one you see on the right is a
standard module. You can use class modules to create your own objects. You won’t need to know much
about class modules until you are working at a very advanced level. See Chapter 15 for more details on
how to use class modules.

Some class modules have already been set up for you. They are associated with each worksheet in your
workbook, and there is one for the entire workbook. You can see them in the Project Explorer window, in
the folder called Microsoft Excel Objects. You will find out more about them later in this chapter.

9

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 9

You can add as many code modules to your workbook as you like. The macro recorder has inserted the
one named Module1. Each module can contain many macros. For a small application, you would proba-
bly keep all your macros in one module. For larger projects, you can organize your code better by filing
unrelated macros in separate modules.

Procedures
In VBA, macros are referred to as procedures. There are two types of procedures — sub procedures and
function procedures. You will find out about function procedures in the next section. The macro recorder
can only produce sub procedures. You can see the MonthNames1 sub procedure set up by the recorder in
Figure 1-5.

Sub procedures start with the keyword Sub, followed by the name of the procedure and opening and
closing parentheses. The end of a sub procedure is marked by the keywords End Sub. Although it is not
mandatory, the code within the sub procedure is normally indented to make it stand out from the start
and end of the procedure, so that the whole procedure is easier to read. Further indentation is normally
used to distinguish sections of code such as If tests and looping structures. For example:

If ActiveCell.Value = 10 Then
ActiveCell.Font.Bold = True

End If

Any lines starting with a single quote are comment lines, which are ignored by VBA. They are added to
provide documentation, which is a very important component of good programming practice. You can
also add comments to the right of lines of code. For example:

Range(“B1”).Select ‘Select the B1 cell

At this stage, the code may not make perfect sense, but you should be able to make out roughly what is
going on. If you look at the code in MonthNames1, you will see that cells are being selected and then the
month names are assigned to the active cell formula. You can edit some parts of the code, so if you had
spelled a month name incorrectly, you could fix it; or you could identify and remove the line that sets the
font to bold; or you can select and delete an entire macro.

Notice the differences between MonthNames1 and MonthNames2. MonthNames1 selects specific cells
such as B1 and C1. MonthNames2 uses Offset to select a cell that is zero rows down and one column
to the right from the active cell. Already, you are starting to get a feel for the VBA language.

The Project Explorer
The Project Explorer is an essential navigation tool. In VBA, each workbook contains a project. The
Project Explorer displays all the open projects and the component parts of those projects, as you can
see in Figure 1-6.

You can use the Project Explorer to locate and activate the code modules in your project. You can double-
click a module icon to open and activate that module. You can also insert and remove code modules in
the Project Explorer. Right-click anywhere in the Project Explorer window, and from the context menu
select Insert to add a new standard module, class module, or UserForm.

To remove Module1, right-click it and choose Remove Module1. Note that you can’t do this with the
modules associated with workbook or worksheet objects. You can also export the code in a module to a
separate text file, or import code from a text file.

10

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 10

Figure 1-6

The Properties Window
The Properties window shows you the properties that can be changed at design time for the currently
active object in the Project Explorer window. For example, if you click Sheet1 in the Project Explorer, the
Sheet1 properties are displayed in the Properties window, as shown in Figure 1-7. The ScrollArea
property has been set to A1:D10, to restrict users to that area of the worksheet.

Figure 1-7

You can get to the help screen associated with any property very easily. Just select the property, such as
the ScrollArea property, which is selected in Figure 1-7, and press F1.

Other Ways to Run Macros
You have seen how to run macros with shortcuts and how to run them from the Ribbon and status bar
macro buttons. Neither method is particularly friendly. You need to be very familiar with your macros to
be comfortable with these techniques. You can make your macros much more accessible by attaching
them to buttons.

If the macro is worksheet-specific, and will only be used in a particular part of the worksheet, then it is
suitable to use a button that has been embedded in the worksheet at the appropriate location. If you
want to be able to use a macro in any worksheet or workbook and in any location in a worksheet, it is
appropriate to attach the macro to a button on the Quick Access Toolbar.

11

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 11

There are many other objects that you can attach macros to, including combo boxes, list boxes, scrollbars,
checkboxes, and option buttons. These are all referred to as controls. (See Chapter 11 for more informa-
tion on controls.) You can also attach macros to graphic objects in the worksheet, such as shapes created
with the Shapes button on the Insert tab of the Ribbon.

Worksheet Buttons
Excel 2007 has two different sets of controls that can be embedded in worksheets. One set has been
inherited from the Forms toolbar in previous versions, and the other has been inherited from the Control
ToolBox toolbar in previous versions. The Forms toolbar appeared in Excel 5 and 95. The Forms controls
can be embedded in a worksheet and are also used with Excel 5 and 95 dialog sheets to create dialog
boxes. Excel 97 introduced the newer ActiveX controls on the Control ToolBox toolbar. You can embed
ActiveX controls in a worksheet or use them on UserForms, in the VBE, to create dialog boxes.

To create controls in Excel 2007, select the Developer tab on the Ribbon. In the Controls group, click the
Insert button to open the window shown in Figure 1-8.

Figure 1-8

For compatibility with the older versions of Excel, both sets of controls and techniques for creating dia-
log boxes are supported in Excel 97 and higher. If you have no need to maintain backward compatibility
with Excel 5 and 95, you can use just the ActiveX controls.

Forms Controls
A good reason for using the Forms controls is that they are simpler to use than the ActiveX controls,
because they do not have all the features of ActiveX controls. For example, Forms controls can only
respond to a single, predefined event, which is usually the mouse-click event. ActiveX controls can
respond to many events, such as a mouse click, a double-click, or pressing a key on the keyboard. If you
have no need of such features, you might prefer the simplicity of Forms controls. To create a Forms but-
ton in a worksheet, click the top-left button in the Controls dialog box, opened from the Insert button on
the Developer tab of the Ribbon.

You can now draw the button in your worksheet by clicking where you want a corner of the button to
appear and dragging to where you want the diagonally opposite corner to appear. The Assign Macro
dialog box will appear as shown in Figure 1-9, and you can select the macro to attach to the button.

12

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 12

Figure 1-9

Click OK to complete the assignment. You can then edit the text on the button to give a more meaningful
indication of its function. After you click a worksheet cell, you can click the button to run the attached
macro. If you need to edit the button and it is not already selected, right-click it to select the control and
display a context menu. If you don’t want the context menu, hold down Ctrl and left-click or right-click
the button to select it. (Don’t drag the mouse while you hold down Ctrl, or you will create a copy of the
button.)

If you want to align the button with the worksheet gridlines, hold down Alt as you draw it with the
mouse. If you have already drawn the button, select it and hold down Alt as you drag any of the white
boxes that appear on the corners and edges of the button. The edge or corner you drag will snap to the
nearest gridline.

ActiveX Controls
To create an ActiveX command button control, click the top-left button in the ActiveX Controls section of
the Controls dialog box, opened from the Insert button on the Developer tab of the Ribbon. When you
draw your button in the worksheet, you enter into design mode. When you are in design mode, you can
select a control with a left-click and edit it. You must turn off design mode if you want the new control to
respond to events. You can do this by clicking the Design Mode button on the Developer tab of the
Ribbon so it is no longer highlighted. Figure 1-10 shows the Design Mode button as it appears when
design mode is active, after the insertion of the ActiveX control.

13

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 13

Figure 1-10

You are not prompted to assign a macro to the ActiveX command button, but you do need to write a
click-event procedure for the button. An event procedure is a sub procedure that is executed when, for
example, you click a button. To do this, make sure you are still in design mode and double-click the
command button to open the VBE window and display the code module behind the worksheet. The Sub
and End Sub statement lines for your code will have been inserted in the module, and you can add in the
code necessary to run the MonthNames2 macro, as shown in Figure 1-11.

Figure 1-11

To run this code, switch back to the worksheet, turn off design mode, and click the command button.

If you want to make changes to the command button, you need to return to design mode by clicking the
Design Mode button. You can then select the command button and change its size and position on the
worksheet. You can also display its properties by right-clicking it and choosing Properties to display the
window shown in Figure 1-12.

14

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 14

Figure 1-12

To change the text on the command button, change the Caption property. You can also set the font for
the caption and the foreground and background colors. If you want the button to work satisfactorily in
Excel 97, it is a good idea to change the TakeFocusOnClick property from its default value of True to
False. If the button takes the focus when you click it, Excel 97 does not allow you to assign values to
some properties, such as the NumberFormat property of the Range object.

Quick Access Toolbar
In versions of Excel prior to Excel 2007, you can attach macros to toolbar buttons. Because toolbars and
menus have been replaced by the Ribbon in Excel 2007, this ability no longer exists, with the exception of
the Quick Access Toolbar. The Quick Access Toolbar sits either above or below the Ribbon, and you can
add any button from the Ribbon to it to give you direct access to the button. When you right-click a
Ribbon button, you can choose Add to Quick Access Toolbar from the pop-up menu. The same pop-up
menu offers a second choice, which is Customize Quick Access Toolbar. This choice opens the dialog box
shown in Figure 1-13.

Select Macros from the Choose commands from: drop-down menu. You can now assign macros from
open workbooks to the Quick Access Toolbar by selecting them and clicking the Add button. The icon
associated with the macro can be changed by clicking the Modify button, which provides a selection of
icons and a text box where you can enter a quick tip for the button.

15

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 15

Figure 1-13

Event Procedures
Event procedures are special macro procedures that respond to the events that occur in Excel. Events
include user actions, such as clicking the mouse on a button, and system actions, such as the recalcula-
tion of a worksheet. Versions of Excel since Excel 97 expose a wide range of events for which you can
write code.

The click-event procedure for the ActiveX command button that ran the MonthNames2 macro, which you
have already seen, is a good example. You entered the code for this event procedure in the code module
behind the worksheet where the command button was embedded. All event procedures are contained in
the class modules behind the workbook, worksheets, charts, and UserForms.

You can see the events that are available by activating a module, such as the ThisWorkbook module,
choosing an object, such as Workbook, from the left drop-down list at the top of the module, and then
activating the right drop-down, as shown in Figure 1-14.

The Workbook_Open() event can be used to initialize the workbook when it is opened. The code could
be as simple as activating a particular worksheet and selecting a range for data input. The code could
also be more sophisticated and construct new buttons in the Ribbon.

As you can see, there are many events to choose from. Some events, such as the BeforeSave and
BeforeClose events, allow cancellation of the event. The following event procedure stops the work-
book from being closed until cell A1 in Sheet1 contains the value True:

For compatibility with Excel 5 and 95, you can still create a sub procedure called
Auto_Open(), in a standard module, that runs when the workbook is opened. If you
also have a Workbook_Open() event procedure, the event procedure runs first.

16

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 16

Private Sub Workbook_BeforeClose(Cancel As Boolean)
If ThisWorkbook.Sheets(“Sheet1”).Range(“A1”).Value <> True Then

Cancel = True
End If

End Sub

Figure 1-14

This code even prevents the closure of the Excel window.

User-Defined Functions
Excel has hundreds of built-in worksheet functions that you can use in cell formulas. You can select an
empty worksheet cell, select the Formulas tab of the Ribbon, and click one of the buttons in the Function
Library chunk to see a list of functions. Among the most frequently used functions are SUM, IF, and
VLOOKUP. If the function you need is not already in Excel, you can write your own user-defined function
(or UDF) using VBA.

UDFs can reduce the complexity of a worksheet. It is possible to reduce a calculation that requires many
cells of intermediate results down to a single function call in one cell. UDFs can also increase productiv-
ity when many users have to repeatedly use the same calculation procedures. You can set up a library of
functions tailored to your organization.

17

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 17

Creating a UDF
Unlike manual operations, UDFs cannot be recorded — you have to write them from scratch using a
standard module in the VBE. If necessary, you can insert a standard module by right-clicking in the
Project Explorer window and choosing Insert ➪ Module. A simple example of a UDF is shown here:

Function Fahrenheit(Centigrade)
Fahrenheit = Centigrade * 9 / 5 + 32

End Function

Here, a function called Fahrenheit() is created that converts degrees Centigrade to degrees
Fahrenheit. In the worksheet, you could have column A containing degrees Centigrade and column B
using the Fahrenheit() function to calculate the corresponding temperature in degrees Fahrenheit.
You can see the formula in cell B2 by looking at the Formula bar in Figure 1-15.

Figure 1-15

The formula has been copied into cells B3:B12.

The key difference between a sub procedure and a function procedure is that a function procedure
returns a value. Fahrenheit() calculates a numeric value, which is returned to the worksheet cell
where Fahrenheit() is used. A function procedure indicates the value to be returned by setting its own
name equal to the return value.

Function procedures normally have one or more input parameters. Fahrenheit() has one input param-
eter called Centigrade, which is used to calculate the return value. When you enter the formula,
Fahrenheit(A2), the value in cell A2 is passed to Fahrenheit() through Centigrade. In the case
where the value of Centigrade is 0, Fahrenheit() sets its own name equal to the calculated result,
which is 32. The result is passed back to cell B2, as shown in Figure 1-15. The same process occurs in
each cell that contains a reference to Fahrenheit().

A different example that shows how you can reduce the complexity of spreadsheet formulas for users is
shown in Figure 1-16. The lookup table in cells A1:D5 gives the price of each product, the discount sales

18

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 18

volume (above which a discount will be applied), and the percent discount for units above the discount
volume. Using normal spreadsheet formulas, users would have to set up three lookup formulas together
with some logical tests to calculate the invoice amount.

Figure 1-16

The InvoiceAmount() function has three input parameters: Product is the name of the product,
Volume is the number of units sold, and Table is the lookup table. The formula in cell C9, in Figure 1-16,
defines the ranges to be used for each input parameter:

Function InvoiceAmount(Product, Volume, Table)
‘Find price in table
Price = WorksheetFunction.VLookup(Product, Table, 2)

‘Find discount volume threshold
DiscountVolume = WorksheetFunction.VLookup(Product, Table, 3)

‘Apply discount if volume above threshold
If Volume > DiscountVolume Then
‘Calculate invoice with discount
DiscountPct = WorksheetFunction.VLookup(Product, Table, 4)
InvoiceAmount = Price * DiscountVolume + Price * _

(1 - DiscountPct) * (Volume - DiscountVolume)
Else
‘Calculate invoice without discount
InvoiceAmount = Price * Volume

End If
End Function

The range for the table is absolute so that the copies of the formula below cell C8 refer to the same range.
The first calculation in the function uses the VLookup function to find the product in the lookup table
and return the corresponding value from the second column of the lookup table, which it assigns to the
variable Price.

19

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 19

If you want to use an Excel worksheet function in a VBA procedure, you need to tell VBA where to find
it by preceding the function name with WorksheetFunction and a period. For compatibility with
Excel 5 and 95, you can use Application instead of WorksheetFunction. Not all worksheet func-
tions are available this way. In these cases, VBA has equivalent functions, or mathematical operators, to
carry out the same calculations.

In the next line of the function, the discount volume is found in the lookup table and assigned to the
variable DiscountVolume. The If test on the next line compares the sales volume in Volume with
DiscountVolume. If Volume is greater than DiscountVolume, the calculations following it, down to the
Else statement, are carried out. Otherwise, the calculation after the Else is carried out.

If Volume is greater than DiscountVolume, the percent discount rate is found in the lookup table and
assigned to the variable DiscountPct. The invoice amount is then calculated by applying the full price
to the units up to DiscountVolume plus the discounted price for units above DiscountVolume. Note
the use of the underscore character, preceded by a blank space, to indicate the continuation of the code
on the next line.

The result is assigned to the name of the function, InvoiceAmount, so that the value will be returned to
the worksheet cell. If Volume is not greater than DiscountVolume, the invoice amount is calculated by
applying the price to the units sold, and the result is assigned to the name of the function.

Direct Reference to Ranges
When you define a UDF, it is possible to directly refer to worksheet ranges rather than through the input
parameters of the UDF. This is illustrated in the following version of the InvoiceAmount() function:

Function InvoiceAmount2(Product, Volume)
‘Create object variable referring to table in worksheet
Set Table = ThisWorkbook.Worksheets(“Sheet2”).Range(“A2:D5”)

‘Find price in table
Price = WorksheetFunction.VLookup(Product, Table, 2)

‘Find discount volume threshold
DiscountVolume = WorksheetFunction.VLookup(Product, Table, 3)

‘Apply discount if volume above threshold
If Volume > DiscountVolume Then
‘Calculate invoice with discount
DiscountPct = WorksheetFunction.VLookup(Product, Table, 4)
InvoiceAmount2 = Price * DiscountVolume + Price * _

(1 - DiscountPct) * (Volume - DiscountVolume)
Else
‘Calculate invoice without discount
InvoiceAmount2 = Price * Volume

End If
End Function

Note that Table is no longer an input parameter. Instead, the Set statement defines Table with a direct
reference to the worksheet range. Although this method still works, the return value of the function will
not be recalculated if you change a value in the lookup table. Excel does not realize that it needs to recal-
culate the function when a lookup table value changes, because it does not see that the table is used by
the function.

20

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 20

Excel only recalculates a UDF when it sees its input parameters change. If you want to remove the
lookup table from the function parameters and still have the UDF recalculate automatically, you can
declare the function to be volatile on the first line of the function, as shown here:

Function InvoiceAmount2(Product, Volume)
Application.Volatile
Set Table = ThisWorkbook.Worksheets(“Sheet2”).Range(“A2:D5”)
...

However, you should be aware that this feature comes at a price. If a UDF is declared volatile, the UDF
is recalculated every time any value changes in the worksheet. This can add a significant recalculation
burden to the worksheet if the UDF is used in many cells.

What UDFs Cannot Do
A common mistake made by users is to attempt to create a worksheet function that changes the structure
of the worksheet by, for example, copying a range of cells. Such attempts will fail. No error messages are
produced because Excel simply ignores the offending code lines, so the reason for the failure is not obvious.

A distinction is made (in Excel VBA) between UDFs that are used in worksheet cells and function proce-
dures that are not connected with worksheet cells. As long as the original calling procedure was not a
UDF in a worksheet cell, a function procedure can carry out any Excel action, just like a sub procedure.

It should also be noted that UDFs are not as efficient as the built-in Excel worksheet functions. If UDFs
are used extensively in a workbook, recalculation time will be greater compared with a similar work-
book using the same number of built-in functions.

The Excel Object Model
The Visual Basic for Applications programming language is common across all the Microsoft Office
applications. In addition to Excel, you can use VBA in Word, Access, PowerPoint, and Outlook. Once
you learn it, you can apply it to any of these. However, to work with an application, you need to learn
about the objects it contains. In Word, you deal with documents, paragraphs, and words. In Access, you
deal with databases, recordsets, and fields. In Excel, you deal with workbooks, worksheets, and ranges.

UDFs, used in worksheet cells, are not permitted to change the structure of the
worksheet, meaning that a UDF cannot return a value to any other cell than the one
it is used in, and it cannot change a physical characteristic of a cell, such as the font
color or background pattern. In addition, UDFs cannot carry out actions such as
copying or moving spreadsheet cells. They cannot even carry out some actions that
imply a change of cursor location, such as an Edit ➪ Find. A UDF can call another
function procedure, or even a sub procedure, but that procedure will be under the
same restrictions as the UDF. It will still not be permitted to change the structure of
the worksheet.

21

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 21

Unlike many programming languages, you don’t have to create your own objects in Office VBA. Each
application has a clearly defined set of objects that are arranged according to the relationships between
them. This structure is referred to as the application’s object model. This section is an introduction to the
Excel object model, which is fully documented in Appendix A.

Objects
First up, this section covers a few basics about Object-Oriented Programming (OOP). This not a complete
formal treatise on the subject, but it covers what you need to know to work with the objects in Excel.

OOP’s basic premise is that you can describe everything known to us as objects. You and I are objects,
the world is an object, and the universe is an object. In Excel, a workbook is an object, a worksheet is an
object, and a range is an object. These objects are only a small sample of around two hundred object
types available to us in Excel. Look at some examples of how to refer to Range objects in VBA code.
One simple way to refer to cells B2:C4 is as follows:

Range(“B2:C4”)

If you give the name Data to a range of cells, you can use that name in a similar way:

Range(“Data”)

There are also ways to refer to the currently active cell and selection using shortcuts.

In Figure 1-17, ActiveCell refers to the B2 cell, and Selection refers to the range B2:E6. For more
information on ActiveCell and Selection, see Chapter 3.

Figure 1-17

Collections
Many objects belong to collections. A city block is a collection of high-rise buildings. A high-rise building
is a collection of floor objects. A floor is a collection of room objects. Collections are objects themselves —
objects that contain other objects that are closely related. Collections and objects are often related in a
hierarchical or tree structure.

22

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 22

Excel is an object itself, called the Application object. In the Excel Application object, there is a
Workbooks collection that contains all the currently open Workbook objects. Each Workbook object has
a Worksheets collection that contains the Worksheet objects in that workbook.

If you want to refer to a member of a collection, you can refer to it by its position in the collection, as an
index number starting with 1, or by its name, as quoted text. If you have opened just one workbook
called Data.xls, you can refer to it by either of the following:

Workbooks(1)
Workbooks(“Data.xls”)

If you have three worksheets in the active workbook that have the names North, East, and South, in
that order, you can refer to the second worksheet by either of the following:

Worksheets(2)
Worksheets(“East”)

If you want to refer to a worksheet called DataInput in a workbook called Sales.xls, and Sales.xls
is not the active workbook, you must qualify the worksheet reference with the workbook reference, sep-
arating them with a period, as follows:

Workbooks(“Sales.xls”).Worksheets(“DataInput”)

When you refer to the B2 cell in DataInput, while another workbook is active, you use:

Workbooks(“Sales.xls”).Worksheets(“DataInput”).Range(“B2”)

The following section examines objects more closely and explains how you can manipulate them in VBA
code. You need to be aware of two key characteristics of objects to do this. They are the properties and
methods associated with an object.

Properties
Properties are the physical characteristics of objects, and can be measured or quantified. You and I have
a height property, an age property, a bank balance property, and a name property. Some of our proper-
ties can be changed fairly easily, such as our bank balance. Other properties are more difficult or impos-
sible to change, such as our name and age.

A worksheet Range object has a RowHeight property and a ColumnWidth property. A Workbook object
has a Name property, which contains its filename. Some properties can be changed easily, such as the
Range object’s ColumnWidth property, by assigning the property a new value. Other properties, such as
the Workbook object’s Name property, are read-only. You can’t change the Name property by simply
assigning a new value to it.

Note that you need to make a clear distinction between the plural Worksheets object,
which is a collection, and the singular Worksheet object. They are quite different
objects.

23

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 23

You refer to the property of an object by referring to the object, then the property, separated by a period.
For example, to change the width of the column containing the active cell to 20 points, you would assign
the value to the ColumnWidth property of the ActiveCell using:

ActiveCell.ColumnWidth = 20

To enter the name Florence into cell C10, you assign the name to the Value property of the Range
object:

Range(“C10”).Value = “Florence”

If the Range object is not in the active worksheet in the active workbook, you need to be more specific:

Workbooks(“Sales.xls”).Worksheets(“DataInput”).Range(“C10”).Value = 10

In the previous examples, you have seen how to assign values to the properties of objects. You can also
assign the property values of objects to variables or to other objects’ properties. You can directly assign
the column width of one cell to another cell on the active sheet, using:

Range(“C1”).ColumnWidth = Range(“A1”).ColumnWidth

You can assign the value in C1 in the active sheet to D10 in the sheet named Sales, in the active work-
book, using:

Worksheets(“Sales”).Range(“D10”).Value = Range(“C1”).Value

You can assign the value of a property to a variable so it can be used in later code. This example stores
the current value of cell M100, sets M100 to a new value, prints the auto-recalculated results, and sets
M100 back to its original value:

OpeningStock = Range(“M100”).Value
Range(“M100”).Value = 100
ActiveSheet.PrintOut
Range(“M100”).Value = OpeningStock

Some properties are read-only, which means that you can’t assign a value to them directly. Sometimes
there is an indirect way. One example is the Text property of a Range object. You can assign a value to a
cell using its Value property, and you can give the cell a number format using its NumberFormat property.
The Text property of the cell gives you the formatted appearance of the cell. The following example dis-
plays $12,345.60 in a Message box:

VBA can do what is impossible to do manually. It can enter data into worksheets that
are not visible on the screen. It can copy and move data without having to make the
sheets involved active. Therefore, it is very seldom necessary to activate a specific
workbook, worksheet, or range to manipulate data using VBA. The more you can
avoid activating objects, the faster your code will run. Unfortunately, the macro
recorder can only record what you do and uses activation extensively.

24

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 24

Range(“B10”).Value = 12345.6
Range(“B10”).NumberFormat = “$#,##0.00”
MsgBox Range(“B10”).Text

This is the only means by which you can set the value of the Text property.

Methods
Whereas properties are the quantifiable characteristics of objects, methods are the actions that can be
performed by objects or on objects. If you have a linguistic bent, you might like to think of objects as
nouns, properties as adjectives, and methods as verbs. Methods often change the properties of objects.
I have a walking method that takes me from A to B, changing my location property. I have a spending
method that reduces my bank balance property and a working method that increases my bank balance
property. My dieting method reduces my weight property, temporarily.

A simple example of an Excel method is the Select method of the Range object. To refer to a method, as
with properties, put the object first, add a period, and then add the method. The following selects cell
G4:

Range(“G4”).Select

Another example of an Excel method is the Copy method of the Range object. The following copies the
contents of range A1:B3 to the clipboard:

Range(“A1:B3”).Copy

Methods often have parameters that you can use to modify the way the method works. For example,
you can use the Paste method of the Worksheet object to paste the contents of the clipboard into a
worksheet, but if you do not specify where the data is to be pasted, it is inserted with its top-left corner
in the active cell. This can be overridden with the Destination parameter (parameters are discussed
later in this section):

ActiveSheet.Paste Destination:=Range(“G4”)

Note that the value of a parameter is specified using :=, not just =.

Often, Excel methods provide shortcuts. The previous examples of Copy and Paste can be carried out
entirely by the Copy method:

Range(“A1:B3”).Copy Destination:=Range(“G4”)

This is far more efficient than the code produced by the macro recorder:

Range(“A1:B3”).Select
Selection.Copy
Range(“G4”).Select
ActiveSheet.Paste

25

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 25

Events
Another important concept in VBA is that objects can respond to events. A mouse click on a command
button, a double-click on a cell, a recalculation of a worksheet, and the opening and closing of a work-
book are examples of events.

All of the ActiveX controls can respond to events. These controls can be embedded in worksheets and in
UserForms to enhance the functionality of those objects. Worksheets and workbooks can also respond
to a wide range of events. If you want an object to respond to an event, enter VBA code into the appro-
priate event procedure for that object. The event procedure resides in the code module behind the
Workbook, Worksheet, or UserForm object concerned.

For example, you might want to detect that a user has selected a new cell and highlight the cell’s com-
plete row and column. You can do this by entering code in the Worksheet_SelectionChange() event
procedure:

1. First activate the VBE window and double-click the worksheet in the Project Explorer.

2. From the drop-down lists at the top of the worksheet code module, choose Worksheet and
SelectionChange, and enter the following code:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Rows.Interior.ColorIndex = xlColorIndexNone
Target.EntireColumn.Interior.ColorIndex = 36
Target.EntireRow.Interior.ColorIndex = 36

End Sub

This event procedure runs every time the user selects a new cell, or block of cells. The parameter,
Target, refers to the selected range as a Range object. The first statement sets the ColorIndex property
of all the worksheets cells to no color, to remove any existing background color. The second and third
statements set the entire columns and entire rows that intersect with the selected cells to a background
color of pale yellow. This color can be different, depending on the color palette set up in your workbook.

The use of properties in this example is more complex than you have seen before. Now analyze the com-
ponent parts. If you assume that Target is a Range object referring to cell B10, then the following code
uses the EntireColumn property of the B10 Range object to refer to the entire B column, which is the
range B1:B1048576, or B:B for short:

Target.EntireColumn.Interior.ColorIndex = 36

Similarly, the next line of code changes the color of row 10, which is the range A10:XFD10, or 10:10 for
short:

Target.EntireRow.Interior.ColorIndex = 36

The Interior property of a Range object refers to an Interior object, which is the background of a
range. Finally, set the ColorIndex property of the Interior object equal to the index number for the
required color.

26

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 26

This code might appear to many to be far from intuitive. So how do you go about figuring out how to
carry out a task involving an Excel object?

Getting Help
The easiest way to discover the required code to perform an operation is to use the macro recorder. The
recorded code is likely to be inefficient, but it will indicate the objects required and the properties and
methods involved. If you turn on the recorder to find out how to color the background of a cell, you will
get something like the following:

With Selection.Interior
.Pattern = xlSolid
.PatternColorIndex = 56
.Color = 65535
.TintAndShade = 0
.PatternTintAndShade = 0

End With

This With...End With construction is discussed in more detail later in this chapter. It is equivalent to:

Selection.Interior.Pattern = xlSolid
Selection.Interior.PatternColorIndex = 56
Selection.Interior.Color = 65535
Selection.Interior.TintAndShade = 0
Selection.Interior.PatternTintAndShade = 0

The lines of code that specify Pattern, TintAndShade, and PatternTintAndShade are unnecessary,
because they specify default values. The macro recorder is not sophisticated enough to know what the
user does or doesn’t want, so it includes everything. However, the recorded code provides the clues you
need to get started. You only need to figure out how to change the Range object, Selection, into a
complete row or complete column. If this can be done, it will be accomplished by using a property or
method of the Range object.

The Object Browser
The Object Browser is a valuable tool for discovering the properties, methods, and events applicable to
Excel objects. To display the Object Browser, you need to be in the VBE window. You can use View ➪

Object Browser, press F2, or click the Object Browser button on the Standard toolbar to see the window
shown in Figure 1-18.

The objects are listed in the window with the title Classes. Objects are instances of classes. You can click
in this window and type an r to get quickly to the Range object.

Alternatively, you can click in the search box, second from the top with the binoculars to its right, and
type in range. When you press Enter or click the binoculars, you will see a list of items containing this
text. When you click Range, under the Class heading in the Search Results window, Range will be high-
lighted in the Classes window below. This technique is handy when you are searching for information
on a specific property, method, or event.

27

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 27

Figure 1-18

You now have a list of all the properties, methods, and events (if applicable) for this object, sorted alpha-
betically. If you right-click this list, you can choose Group Members to separate the properties, methods,
and events, which makes it easier to read. If you scan through this list, you will see the EntireColumn
and EntireRow properties, which look to be likely candidates for your requirements. To confirm this,
select EntireColumn and click the question mark icon at the top of the Object Browser window to go to
the window in Figure 1-19.

Figure 1-19

28

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 28

See Also can often lead to further information on related objects and methods. Now, all that remains to
do is connect the properties you found and apply them to the right object.

Experimenting in the Immediate Window
If you want to experiment with code, you can use the VBE’s Immediate window. Use View ➪ Immediate
Window, press Ctrl+G, or click the Immediate Window button on the Debug toolbar to make the
Immediate window visible. You can tile the Excel window and the VBE window so you can type com-
mands into the Immediate window and see the effects in the Excel window, as shown in Figure 1-20.

Figure 1-20

When a command is typed in and Enter is pressed, the command is immediately executed. To execute
the same command again, click anywhere in the line with the command and press Enter again.

Here, the Value property of the ActiveCell object has been assigned the text “Sales”. If you want to
display a value, you precede the code with a question mark, which is a shortcut for Print:

?Range(“B2”).Value

29

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 29

This code has printed Sales on the next line of the Immediate window. The last command has copied
the value in B2 to J2.

The VBA Language
In this section, you see the elements of the VBA language that are common to all versions of Visual Basic
and the Microsoft Office applications. The section uses examples that employ the Excel object model, but
the aim is to examine the common structures of the language. Many of these structures and concepts are
common to other programming languages, although the syntax and keywords can vary. This section
examines the following:

❑ Storing information in variables and arrays

❑ Decision-making in code

❑ Using loops

❑ Basic error-handling

Basic Input and Output
First, look at some simple communication techniques you can use to make your macros more flexible
and useful. If you want to display a message, use the MsgBox function, which is useful if you want to
display a warning message or ask a simple question.

In the first example, you want to make sure that the printer is switched on before a print operation.
The following code generates the dialog box in Figure 1-21, giving the user a chance to check the
printer. The macro pauses until the OK button is clicked:

MsgBox “Please make sure that the printer is switched on”

Figure 1-21

If you want to experiment, you can use the Immediate window to execute single lines of code.
Alternatively, you can insert your code into a standard module in the VBE window. In this case, you
need to include Sub and End Sub lines as follows:

Sub Test1()
MsgBox “Please make sure that the printer is switched on”

End Sub

30

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 30

An easy way to execute a sub procedure is to click somewhere in the code to create an insertion point,
then press F5.

MsgBox has many options that control the types of buttons and icons that appear in the dialog box.
If you want to get help with this, or any VBA word, just click somewhere in the word and press the F1
key. The Help screen for the word will immediately appear. Among other details, you will see the input
parameters accepted by the function:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

Parameters in square brackets are optional, so only the prompt message is required. If you want to have
a title at the top of the dialog box, you can specify the third parameter. There are two ways to specify
parameter values: by position and by name.

Parameters Specified by Position
If you specify a parameter by position, you need to make sure that the parameters are entered in the cor-
rect order. You also need to include extra commas for missing parameters. The following code provides a
title for the dialog box, specifying the title by position and producing the result shown in Figure 1-22:

MsgBox “Is the printer on?”, , “Caution!”

Figure 1-22

Parameters Specified by Name
There are some advantages and some special considerations required when specifying parameters by name:

❑ You can enter them in any order and do not need to include extra commas with nothing
between them to allow for undefined parameters.

❑ You do need to use := rather than just = between the parameter name and the value, as already
pointed out.

The following code generates the same dialog box as in Figure 1-22:

MsgBox Title:=”Caution!”, Prompt:=”Is the printer on?”

Another advantage of specifying parameters by name is that the code is better documented. Anyone
reading the code is more likely to understand it.

If you want more information on the buttons parameter, you will find a table of options in the help
screen as follows:

31

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 31

Constant Value Description

vbOKOnly 0 Display OK button only

vbOKCancel 1 Display OK and Cancel buttons

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons

vbYesNoCancel 3 Display Yes, No, and Cancel buttons

vbYesNo 4 Display Yes and No buttons

vbRetryCancel 5 Display Retry and Cancel buttons

vbCritical 16 Display Critical Message icon

vbQuestion 32 Display Warning Query icon

vbExclamation 48 Display Warning Message icon

vbInformation 64 Display Information Message icon

vbDefaultButton1 0 First button is default

vbDefaultButton2 256 Second button is default

vbDefaultButton3 512 Third button is default

vbDefaultButton4 768 Fourth button is default

vbApplicationModal 0 Application modal; the user must respond to the message box
before continuing work in the current application

vbSystemModal 4096 System modal; all applications are suspended until the user
responds to the message box

vbMsgBoxHelpButton 16384 Adds Help button to the message box

vbMsgBoxSet 65536 Specifies the message box window as the foreground window
Foreground

vbMsgBoxRight 524288 Text is right-aligned

vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left reading on
Hebrew and Arabic systems

Values 0 to 5 control the buttons that appear. A value of 4 gives Yes and No buttons, as shown in Figure 1-23:

MsgBox Prompt:=”Delete this record?”, Buttons:=4

Figure 1-23

32

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 32

Values 16 to 64 control the icons that appear; 32 gives a question mark icon. If you want both value 4 and
value 32, add them to see the dialog box in Figure 1-24:

MsgBox Prompt:=”Delete this record?”, Buttons:=36

Figure 1-24

Constants
Specifying a Buttons value of 36 ensures that your code is indecipherable to all but the most battle-
hardened programmer. This is why VBA provides the constants shown to the left of the button values in
the help screen. Rather than specifying Buttons by numeric value, you can use the constants, which
provide a better indication of the choice behind the value. The following code generates the same dialog
box as the previous example:

MsgBox Prompt:=”Delete this record?”, Buttons:=vbYesNo + vbQuestion

Constants are a special type of variable that do not change, if that makes sense. They are used to hold
key data and, as you have seen, provide a way to write more understandable code. VBA has many built-
in constants that are referred to as intrinsic constants. You can also define your own constants, as you
will see later in this chapter.

Return Values
There is something missing from the previous examples of MsgBox. You are asking a question, but fail-
ing to capture the user’s response to the question. That is because you have been treating MsgBox as a
statement, rather than a function. This is perfectly legal, but you need to know some rules if you are
to avoid syntax errors. You can capture the return value of the MsgBox function by assigning it to a
variable.

However, if you try the following, you will get a syntax error:

Answer = MsgBox Prompt:=”Delete this record?”, Buttons:=vbYesNo + vbQuestion

The VBE helps you as you type by providing a pop-up list of the appropriate con-
stants after you type Buttons:=. Point to the first constant and press the plus key
(+), and you will be prompted for the second constant. Choose the second and press
the spacebar or Tab to finish the line. If there is another parameter to be specified,
enter a comma rather than a space or a Tab.

33

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 33

The error message, Expected: End of Statement, is not really very helpful. You can click the Help but-
ton on the error message to get a more detailed description of the error, but even then you might not
understand the explanation.

Parentheses
The problem with the previous line of code is that there are no parentheses around the function argu-
ments. It should read as follows:

Answer = MsgBox(Prompt:=”Delete this record?”, Buttons:=vbYesNo + vbQuestion)

The general rule is that if you want to capture the return value of a function, you need to put any argu-
ments in parentheses. If you don’t want to use the return value, you should not use parentheses, as with
the original examples of using MsgBox.

The parentheses rule also applies to methods used with objects. Many methods have return values that
you can ignore or capture. See the section on object variables later in this chapter for an example.

Now that you have captured the return value of MsgBox, how do you interpret it? Once again, the help
screen provides the required information in the form of the following table of return values:

Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

If the Yes button is clicked, MsgBox returns a value of 6. You can use the constant vbYes, instead of the
numeric value, in an If test:

Answer = MsgBox(Prompt:=”Delete selected Row?”, Buttons:=vbYesNo + vbQuestion)
If Answer = vbYes Then ActiveCell.EntireRow.Delete
...

InputBox
Another useful VBA function is InputBox, which allows you to get input data from a user in the form of
text. The following code generates the dialog box shown in Figure 1-25:

UserName = InputBox(Prompt:=”Please enter your name”)

34

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 34

Figure 1-25

InputBox returns a text (string) result. Even if a numeric value is entered, the result is returned as text.
If you click Cancel or OK without typing anything into the text box, InputBox returns a zero-length
string. It is a good idea to test the result before proceeding so this situation can be handled. In the fol-
lowing example, the sub procedure does nothing if Cancel is clicked. The Exit Sub statement stops the
procedure at that point. Otherwise, it places the entered data into cell B2:

Sub GetData()
Sales = InputBox(Prompt:=”Enter Target Sales”)
If Sales = “” Then Exit Sub
Range(“B2”).Value = Sales

End Sub

In this code, the If test compares Sales with a zero-length string. There is nothing between the two
double quote characters. Don’t be tempted to put a blank space between the quotes.

There is a more powerful version of InputBox that is a method of the Excel Application object. It has
the ability to restrict the type of data that you can enter. It is covered in Chapter 2.

Calling Functions and Sub Procedures
When you develop an application, you should not attempt to place all your code in one large procedure.
You should write small procedures that carry out specific tasks, and test each procedure independently.
You can then write a master procedure that runs your task procedures. This approach makes the testing
and debugging of the application much simpler, and also makes it easier to modify the application later.

The following code illustrates this modular approach, although in a practical application your proce-
dures would have many more lines of code:

Sub Master()
SalesData = GetInput(“Enter Sales Data”)
If SalesData = False Then Exit Sub
PostInput SalesData, “B3”

End Sub

Function GetInput(Message)
Data = InputBox(Message)
If Data = “” Then GetInput = False Else GetInput = Data

End Function

Sub PostInput(InputData, Target)
Range(Target).Value = InputData

End Sub

35

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 35

Master uses the GetInput function and the PostInput sub procedure. GetInput has one input param-
eter, which passes the prompt message for the InputBox function and tests for a zero-length string in
the response. A value of False is returned if this is found. Otherwise, GetInput returns the response.

Master tests the return value from GetInput and exits if it is False. Otherwise, Master calls PostInput,
passing two values that define the data to be posted and the cell the data is to be posted to.

Also note that, when calling PostInput and passing two parameters to it, Master does not place paren-
theses around the parameters. Because sub procedures do not generate a return value, you should not
put parentheses around the arguments when one is called, except when using the Call statement that is
discussed next.

When calling your own functions and subs, you can specify parameters by name, just as you can with
built-in procedures. The following version of Master uses this technique:

Sub Master()
SalesData = GetInput(Message:=”Enter Sales Data”)
If SalesData = False Then Exit Sub

PostInput Target:=”B3”, InputData:=SalesData

End Sub

The Call Statement
When running a sub procedure from another procedure, you can use the Call statement. There is no
particular benefit in doing this; it is just an alternative to the previous method. Master can be modified
as follows:

Sub Master()
SalesData = GetInput(“Enter Sales Data”)
If SalesData = False Then Exit Sub

Call PostInput(SalesData, “B3”)

End Sub

Note that if you use Call, you must put parentheses around the parameters passed to the called proce-
dure, regardless of the fact that there is no return value from the procedure. You can also use Call with
a function, but only if the return value is not used.

Note that sub procedures can accept input parameters, just like function procedures,
if they are called from another procedure. You can’t run a sub procedure with input
parameters directly.

36

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 36

Parentheses and Argument Lists
As you have seen, the use of parentheses around arguments when calling procedures is a bit of a mine-
field, so the following sections summarize when to use them, at the risk of opening a can of worms and
getting lost in mixed metaphors. Bear in mind that the same rules apply to argument lists of methods.

Without the Call Statement
Only place parentheses around the arguments when you are calling a function procedure and are also
making use of the return value from the function procedure:

SalesData = GetInput(“Enter Sales Data”)

Don’t place parentheses around the arguments when you are calling a function procedure and are not
making use of the return value from the function procedure:

GetInput “Enter Sales Data”

Don’t place parentheses around the arguments when you are calling a sub procedure:

PostInput SalesData, “B3”

An Important Subtlety Regarding Parentheses
The following is correct syntax and leads to untold confusion:

MsgBox (“Insert Disk”)

It is not what it appears and it is not a negation of the parentheses rules. VBA has inserted a space
between MsgBox and the left parenthesis, which it does not insert in the following:

Response = MsgBox(“Insert Disk”)

The extra space indicates that the parentheses are around the argument, not around the argument list.
If you pass two input parameters, the following is not valid syntax:

MsgBox (“Insert Disk”, vbExclamation)

The following is valid syntax:

MsgBox (“Insert Disk”), (vbExclamation)

It is fine to place parentheses around individual arguments, but not around the argument list. However,
you might not get the result you expect.

Apologies if you are bored, but this is important stuff. It is more important when you get to refer to
objects in parameter lists. Placing an object reference in parentheses causes VBA to convert the object ref-
erence to the object’s default property. For example, (Range(“B1”)) is converted to the value in the B1
cell and is not a reference to a Range object. The following is valid syntax to copy A1 to B1:

Range(“A1”).Copy Range(“B1”)

37

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 37

The following is valid syntax but causes a run-time error:

Range(“A1”).Copy (Range(“B1”))

With the Call Statement
If you use the Call statement, you must place parentheses around the arguments you pass to the called
procedure:

Call PostInput(SalesData, “B3”)

Because Call is of limited use, not being able to process a return value, and muddies the water with its
own rules, it is preferable not to use it.

Variable Declaration
You have seen many examples of the use of variables for storing information. It is now time to discuss
the rules for creating variable names, look at different types of variables, and talk about the best way to
define variables.

So far you have been creating variables simply by using them. This is referred to as implicit variable dec-
laration. Most computer languages require you to employ explicit variable declaration. This means that
you must define the names of all the variables you are going to use before using them in code. VBA
allows both types of declarations. If you want to declare a variable explicitly, do so using a Dim state-
ment or one of its variations, which is discussed shortly. The following Dim statement declares a variable
called SalesData:

Sub GetData()
Dim SalesData
SalesData = InputBox(Prompt:=”Enter Target Sales”)
...

Most users find implicit declaration easier than explicit declaration, but there are many advantages to
being explicit. One advantage is the preservation of capitalization. More important advantages are dis-
cussed later in this chapter.

Variable names can be constructed from letters and numbers and the underscore
character. The name must start with a letter and can be up to 255 characters in length.
It is a good idea to avoid using any special characters in variable names. To be on the
safe side, you should only use the letters of the alphabet (upper- and lowercase),
plus the numbers 0–9 and the underscore (_). Also, variable names can’t be the same
as VBA keywords, such as Sub and End, or VBA function names.

38

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 38

If you do not explicitly declare a variable name, you can get odd effects regarding its capitalization. Say
you write the following code:

Sub GetData()
SalesData = InputBox(Prompt:=”Enter Target Sales”)
If salesdata = “” Then Exit Sub
...

You will find that when you press Enter at the end of line 3, the original occurrence of SalesData loses
its capitalization and the procedure reads as follows:

Sub GetData()
salesdata = InputBox(Prompt:=”Enter Target Sales”)
If salesdata = “” Then Exit Sub
...

In fact, any time you edit the procedure and alter the capitalization of salesdata, the new version will
be applied throughout the procedure. If you declare SalesData in a Dim statement, the capitalization
you use on that line will prevail throughout the procedure. You can now type the variable name in low-
ercase in the body of the code and obtain confirmation that it has been correctly spelled as you move to a
new line.

Option Explicit
There is a way to force explicit declaration in VBA. Place the statement Option Explicit in the declara-
tions section of your module, which is at the very top of your module, before any procedures, as shown
in Figure 1-26.

Figure 1-26

You might have noticed that if you enter VBA words, such as inputbox, in lowercase,
they are automatically converted to VBA’s standard capitalization when you move to
the next line. This is a valuable form of feedback that tells you the word has been
recognized as valid VBA code. It is a good idea to always type VBA words in lower-
case and look for the change.

39

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 39

When you try to compile your module or run a procedure using explicit variable declaration, VBA will
check for variables that have not been declared, highlight them, and show an error message. This has an
enormous benefit. It picks up spelling mistakes, which are among the most common errors in program-
ming. Consider the following version of GetData, where there is no Option Explicit at the top of the
module and, therefore, implicit declaration is used:

Sub GetData()
SalesData = InputBox(Prompt:=”Enter Target Sales”)
If SaleData = “” Then Exit Sub
Range(“B2”).Value = SalesData

End Sub

This code will never enter any data into cell B2. VBA happily accepts the misspelled SaleData in the If
test as a new variable that is empty, and thus is considered to be a zero-length string for the purposes of
the test. Consequently, the Exit Sub is always executed and the final line is never executed. This type of
error, especially when embedded in a longer section of code, can be very difficult to see.

If you include Option Explicit in your declarations section, and Dim SalesData at the beginning of
GetData, you will get an error message, Variable not defined, immediately after you attempt to run
GetData. The undefined variable will be highlighted so that you can see exactly where the error is.

Scope and Lifetime of Variables
There are two important concepts associated with variables:

❑ The scope of a variable defines which procedures can use that variable

❑ The lifetime of a variable defines how long that variable retains the values assigned to it

The following procedure illustrates the lifetime of a variable:

Sub LifeTime()
Dim Sales
Sales = Sales + 1
MsgBox Sales

End Sub

You can have Option Explicit automatically added to any new modules you create.
In the VBE, use Tools ➪ Options and click the Editor tab. Check the box against
Require Variable Declaration. This is a highly recommended option. Note that sett-
ting this option will not affect any existing modules, where you will need to insert
Option Explicit manually.

Option Explicit only applies to the module it appears in. Each module requiring
explicit declaration of variables must repeat the statement in its declarations section.

40

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 40

Every time LifeTime is run, it displays a value of one. This is because the variable Sales is only
retained in memory until the end of the procedure. The memory Sales uses is released when the End
Sub is reached. Next time LifeTime is run, Sales is re-created and treated as having a 0 value. The life-
time of Sales is the time taken to run the procedure. You can increase the lifetime of Sales by declaring
it in a Static statement:

Sub LifeTime()
Static Sales
Sales = Sales + 1
MsgBox Sales

End Sub

The lifetime of Sales is now extended to the time that the workbook is open. The more times LifeTime
is run, the higher the value of Sales will become.

The following two procedures illustrate the scope of a variable:

Sub Scope1()
Static Sales
Sales = Sales + 1
MsgBox Sales

End Sub

Sub Scope2()
Static Sales
Sales = Sales + 10
MsgBox Sales

End Sub

The variable Sales in Scope1 is not the same variable as the Sales in Scope2. Each time Scope1 is
executed, the value of its Sales will increase by one, independently of the value of Sales in Scope2.
Similarly, the Sales in Scope2 will increase by 10 with each execution of Scope2, independently of the
value of Sales in Scope1. Any variable declared within a procedure has a scope that is confined to that
procedure. A variable that is declared within a procedure is referred to as a procedure-level variable.

Variables can also be declared in the declarations section at the top of a module, as shown in the follow-
ing version of the code:

Option Explicit
Dim Sales

Sub Scope1()
Sales = Sales + 1
MsgBox Sales

End Sub

Sub Scope2()
Sales = Sales + 10
MsgBox Sales

End Sub

41

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 41

Scope1 and Scope2 are now processing the same variable, Sales. A variable declared in the declarations
section of a module is referred to as a module-level variable, and its scope is now the whole module.
Therefore, it is visible to all the procedures in the module. Its lifetime is now the time that the workbook
is open.

If a procedure in the module declares a variable with the same name as a module-level variable, the
module-level variable will no longer be visible to that procedure. It will process its own procedure-level
variable.

Module-level variables, declared in the declarations section of the module with a Dim statement, are not
visible to other modules. If you want to share a variable between modules, you need to declare it as
Public in the declarations section:

Public Sales

Public variables can also be made visible to other workbooks, or VBA projects. To accomplish this, a
reference to the workbook containing the Public variable is created in the other workbook, using Tools
➪ References in the VBE.

Variable Type
Computers store different types of data in different ways. The way a number is stored is quite different
from the way text, or a character string, is stored. Different categories of numbers are also stored in dif-
ferent ways. An integer (a whole number with no decimals) is stored differently from a number with
decimals. Most computer languages require that you declare the type of data to be stored in a variable.
VBA does not require this, but your code will be more efficient if you do declare variable types. It is also
more likely that you will discover any problems that arise when data is converted from one type to
another, if you have declared your variable types.

The following table has been taken directly from the VBA Help files. It defines the various data types
available in VBA and their memory requirements. It also shows you the range of values that each type
can handle:

Data type Storage size Range

Byte 1 byte 0 to 255

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,647
(long integer)

Single 4 bytes -3.402823E38 to -1.401298E-45 for negative values;
(single-precision 1.401298E-45 to 3.402823E38 for positive values
floating-point)

Double 8 bytes -1.79769313486231E308 to -4.94065645841247E-324
(double-precision for negative values; 4.94065645841247E-324 to
floating-point) 1.79769313486232E308 for positive values

42

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 42

Data type Storage size Range

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807
(scaled integer)

Decimal 14 bytes +/-79,228,162,514,264,337,593,543,950,335 with no decimal
point; +/-7.9228162514264337593543950335 with 28 places
to the right of the decimal; the smallest non-0 number is
+/-0.0000000000000000000000000001

Date 8 bytes January 1, 100 to December 31, 9999

Object 4 bytes Any Object reference

String 10 bytes + string 0 to approximately 2 billion characters
(variable-length) length

String Length of string 1 to approximately 65,400 characters
(fixed-length)

Variant 16 bytes Any numeric value up to the range of a Double
(with numbers)

Variant 22 bytes + string Same range as for variable-length String
(with characters) length

User-defined Number required The range of each element is the same as the range of its
(using Type) by elements data type

If you do not declare a variable’s type, it defaults to the Variant type. Variants take up more memory
than any other type because each Variant has to carry information with it that tells VBA what type of
data it is currently storing, as well as store the data itself.

Variants use more computer overhead when they are processed. VBA has to figure out what types it is
dealing with and whether it needs to convert between types in order to process the number. If maximum
processing speed is required for your application, you should declare your variable types, taking advan-
tage of those types that use less memory when you can. For example, if you know your numbers will be
whole numbers in the range of -32000 to +32000, you would use an Integer type.

Declaring Variable Type
You can declare a variable’s type on a Dim statement, or related declaration statements such as Public.
The following declares Sales to be a double precision floating-point number:

Dim Sales As Double

You can declare more than one variable on a Dim:

Dim SalesData As Double, Index As Integer, StartDate As Date

The following can be a trap:

Dim Col, Row, Sheet As Integer

43

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 43

Many users assume that this declares each variable to be Integer. This is not true. Col and Row are
Variant because they have not been given a type. To declare all three as Integer, the line should be
as follows:

Dim Col As Integer, Row As Integer, Sheet As Integer

Declaring Function and Parameter Types
If you have input parameters for sub procedures or function procedures, you can define each parameter
type in the first line of the procedure as follows:

Function IsHoliday(WhichDay As Date)

Sub Marine(CrewSize As Integer, FuelCapacity As Double)

You can also declare the return value type for a function. The following example is for a function that
returns a value of True or False:

Function IsHoliday(WhichDay As Date) As Boolean

Constants
You have seen that many intrinsic constants are built into VBA, such as vbYes and vbNo, discussed pre-
viously. You can also define your own constants. Constants are handy for holding numbers or pieces of
text that do not change while your code is running, but that you want to use repeatedly in calculations
and messages. Constants are declared using the Const keyword, as follows:

Const Pi = 3.14159265358979

You can include the constant’s type in the declaration:

Const Version As String = “Release 3.9a”

Constants follow the same rules regarding scope as variables. If you declare a constant within a proce-
dure, it will be local to that procedure. If you declare it in the declarations section of a module, it will be
available to all procedures in the module. If you want to make it available to all modules, you can
declare it to be Public as follows:

Public Const Error666 As String = “You can’t do that”

Variable Naming Conventions
You can call your variables and user-defined functions anything you want, except where there is a clash
with VBA keywords and function names. However, many programmers adopt a system whereby the
variable or object type is included, in abbreviated form, in the variable name, usually as a prefix, so
instead of declaring:

Dim SalesData As Double

you can use:

Dim dSalesData As Double

44

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 44

Wherever dSalesData appears in your code, you will be reminded that the variable is of type Double.
Alternatively, you could use this line of code:

Dim dblSalesData As Double

For the sake of simplicity, this approach has not been used so far in this chapter, but from here onward,
the examples will use a system to create variable names. This is the convention used in this book:

❑ One-letter prefixes for the common data types:

Dim iColumn As Integer
Dim lRow As Long
Dim dProduct As Double
Dim sName As String
Dim vValue As Variant
Dim bChoice As Boolean

❑ Two- or three-letter prefixes for object types:

Dim objExcel As Object
Dim rngData As Range
Dim wkbSales As Workbook

In addition to these characters, a lowercase a will be inserted in front of array variables, which are dis-
cussed later in this chapter. If the variable is a module-level variable, it will also have a lowercase m
placed in front of it. If it is a public variable, it will have a lowercase g (for global) placed in front of it.
For example, malEffect would be a module-level array variable containing long integer values.

Object Variables
The variables you have seen so far have held data such as numbers and text. You can also create object
variables to refer to objects such as worksheets and ranges. The Set statement is used to assign an object
reference to an object variable. Object variables should also be declared and assigned a type as with nor-
mal variables. If you don’t know the type, you can use the generic term Object as the type:

Dim objWorkbook As Object
Set objWorkbook = ThisWorkbook
MsgBox objWorkbook.Name

It is more efficient to use the specific object type if you can. The following code creates an object variable
rng, referring to cell B10 in Sheet1, in the same workbook as the code. It then assigns values to the
object and the cell above:

Sub ObjectVariable()
Dim rng As Range
Set rng = ThisWorkbook.Worksheets(“Sheet1”).Range(“C10”)
rng.Value = InputBox(“Enter Sales for January”)
rng.Offset(-1, 0).Value = “January Sales”

End Sub

If you are going to refer to the same object more than once, it is more efficient to create an object variable
than to keep repeating a lengthy specification of the object. It also makes code easier to read and write.

45

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 45

Object variables can also be very useful for capturing the return values of some methods, particularly
when you are creating new instances of an object. For example, with either the Workbooks object or the
Worksheets object, the Add method returns a reference to the new object. This reference can be assigned
to an object variable so that you can easily refer to the new object in later code:

Sub NewWorkbook()
Dim wkb As Workbook, wks As Worksheet

Set wkb = Workbooks.Add
Set wks = wkb.Worksheets.Add(After:=wkb.Sheets(wkb.Sheets.Count))
wks.Name = “January”
wks.Range(“A1”).Value = “Sales Data”
wkb.SaveAs Filename:=”JanSales.xlsx”

End Sub

This example creates a new empty workbook and assigns a reference to it to the object variable wkb.
A new worksheet is added to the workbook, after any existing sheets, and a reference to the new work-
sheet is assigned to the object variable wks. The name on the tab at the bottom of the worksheet is then
changed to January, and the heading Sales Data is placed in cell A1. Finally, the new workbook is saved
as JanSales.xlsx.

Note that the parameter after the Worksheets.Add is in parentheses. Because you are assigning the
return value of the Add method to the object variable, any parameters must be in parentheses. If the
return value of the Add method were ignored, the statement would be without parentheses, as follows:

wkb.Worksheets.Add After:=wkb.Sheets(wkb.Sheets.Count)

With...End With
Object variables provide a useful way to refer to objects in shorthand, and are also more efficiently pro-
cessed by VBA than fully qualified object strings. Another way to reduce the amount of code you write,
and also increase processing efficiency, is to use a With...End With structure. The final example in the
previous section could be rewritten as follows:

With wkb
.Worksheets.Add After:=.Sheets(.Sheets.Count)

End With

VBA knows that anything starting with a period is a property or a method of the object following the
With. You can rewrite the entire NewWorkbook procedure to eliminate the wkb object variable, as follows:

Sub NewWorkbook()
Dim wks As Worksheet
With Workbooks.Add
Set wks = .Worksheets.Add(After:=.Sheets(.Sheets.Count))
wks.Name = “January”
wks.Range(“A1”).Value = “Sales Data”
.SaveAs Filename:=”JanSales.xlsx”

End With
End Sub

You can take this a step further and eliminate the wks object variable:

46

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 46

Sub NewWorkbook()
With Workbooks.Add
With .Worksheets.Add(After:=.Sheets(.Sheets.Count))
.Name = “January”
.Range(“A1”).Value = “Sales Data”

End With
.SaveAs Filename:=”JanSales.xlsx”

End With
End Sub

If you find this confusing, you can compromise with a combination of object variables and With...End
With:

Sub NewWorkbook()
Dim wkb As Workbook, wks As Worksheet

Set wkb = Workbooks.Add
With wkb
Set wks = .Worksheets.Add(After:=.Sheets(.Sheets.Count))
With wks
.Name = “January”
.Range(“A1”).Value = “Sales Data”

End With
.SaveAs Filename:=”JanSales.xlsx”

End With
End Sub

With...End With is useful when references to an object are repeated in a small section of code.

Making Decisions
VBA provides two main structures for making decisions and carrying out alternative processing, repre-
sented by the If and Select Case statements. If is the more flexible one, but Select Case is better
when you are testing a single variable.

If Statements
If comes in three forms: the IIf function, the one-line If statement, and the block If structure. The fol-
lowing dTax function uses the IIf (Immediate If) function:

Function dTax(dProfitBeforeTax As Double) As Double
dTax = IIf(dProfitBeforeTax > 0, 0.3 * dProfitBeforeTax, 0)

End Function

IIf is similar to the Excel worksheet IF function. It has three input arguments: the first is a logical test,
the second is an expression that is evaluated if the test is true, and the third is an expression that is eval-
uated if the test is false.

In this example, the IIf function tests that the dProfitBeforeTax value is greater than 0. If the test is
true, IIf calculates 30% of dProfitBeforeTax. If the test is false, IIf calculates 0. The calculated IIf
value is then assigned to the return value of the Tax function. The Tax function can be rewritten using
the single-line If statement as follows:

47

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 47

Function dTax(dProfitBeforeTax As Double) As Double
If dProfitBeforeTax > 0 Then dTax = 0.3 * dProfitBeforeTax Else dTax = 0

End Function

One difference between IIf and the single-line If is that the Else section of the single-line If is
optional. The third parameter of the IIf function must be defined. In VBA, it is often useful to omit the
Else:

If dProfitBeforeTax < 0 Then MsgBox “A Loss has occurred”, , “Warning”

Another difference is that, whereas IIf can only return a value to a single variable, the single-line If
can assign values to different variables:

If iJohnsScore > iMarysScore Then iJohn = iJohn + 1 Else iMary = iMary + 1

Block If
If you want to carry out more than one action when a test is true, you can use a block If structure, as
follows:

If iJohnsScore > iMarysScore Then
iJohn = iJohn + 1
iMary = iMary - 1

End If

Using a block If, you must not include any code after the Then, on the same line. You can have as many
lines after the test as required, and you must terminate the scope of the block If with an End If statement.
A block If can also have an Else section, as follows:

If iJohnsScore > iMarysScore Then
iJohn = iJohn + 1
iMary = iMary - 1

Else
iJohn = iJohn - 1
iMary = iMary + 1

End If

A block If can also have as many ElseIf sections as required:

If iJohnsScore > iMarysScore Then
iJohn = iJohn + 1
iMary = iMary - 1

ElseIf iJohnsScore < iMarysScore Then
iJohn = iJohn - 1
iMary = iMary + 1

Else
iJohn = iJohn + 1
iMary = iMary + 1

End If

When you have a block If followed by one or more ElseIf tests, VBA keeps testing until it finds a true
section. It executes the code for that section and then proceeds directly to the statement following the
End If. If no test is true, the Else section is executed.

48

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 48

A block If does nothing when all tests are false and the Else section is missing. Block If tests can be
nested, one inside the other. You should make use of indenting to show the scope of each block. This is
vital — you can get into an awful muddle with the nesting of If blocks within other If blocks, and If
blocks within Else blocks, and so on. If code is unindented, it isn’t easy, in a long series of nested If
tests, to match each End If with each If:

If Not ThisWorkbook.Saved Then
lAnswer = MsgBox(“Do you want to save your changes”, vbQuestion + _

vbYesNo)
If lAnswer = vbYes Then
ThisWorkbook.Save
MsgBox ThisWorkbook.Name & “ has been saved”

End If
End If

This code uses the Saved property of the Workbook object containing the code to see if the workbook has
been saved since changes were last made to it. If changes have not been saved, the user is asked if they
want to save changes. If the answer is yes, the inner block If saves the workbook and informs the user.

Select Case
The following block If is testing the same variable value in each section:

Function vPrice(sProduct As String) As Variant
If sProduct = “Apples” Then
vPrice = 12.5

ElseIf sProduct = “Oranges” Then
vPrice = 15

ElseIf sProduct = “Pears” Then
vPrice = 18

ElseIf sProduct = “Mangoes” Then
vPrice = 25

Else
vPrice = CVErr(xlErrNA)

End If
End Function

If sProduct is not found, the vPrice function returns an Excel error value of #NA. Note that vPrice is
declared as a Variant so it can handle the error value as well as numeric values. For a situation like this,
Select Case is a more elegant construction. It looks like this:

Function vPrice(sProduct As String) As Variant
Select Case sProduct
Case “Apples”
vPrice = 12.5

Case “Oranges”
vPrice = 15

Case “Pears”
vPrice = 18

Case “Mangoes”
vPrice = 25

Case Else
vPrice = CVErr(xlErrNA)

End Select
End Function

49

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 49

If you have only one statement per case, the following format works quite well. You can place multiple
statements on a single line by placing a colon between statements:

Function vPrice(sProduct As String) As Variant
Select Case sProduct
Case “Apples”: vPrice = 12.5
Case “Oranges”: vPrice = 15
Case “Pears”: vPrice = 18
Case “Mangoes”: vPrice = 25
Case Else: vPrice = CVErr(xlErrNA)

End Select
End Function

Select Case can also handle ranges of numbers or text, as well as comparisons using the keyword Is.
The following example calculates a fare of 0 for infants up to 3 years old and anyone older than 65, with
two ranges between. Negative ages generate an error:

Function vFare(iAge As Integer) As Variant
Select Case iAge
Case 0 To 3, Is > 65
vFare = 0

Case 4 To 15
vFare = 10

Case 16 To 65
vFare = 20

Case Else
vFare = CVErr(xlErrNA)

End Select
End Function

Looping
All computer languages provide a mechanism for repeating the same, or similar, operations in an effi-
cient way. VBA has two main structures that allow you to loop through the same code over and over
again. They are the Do...Loop and the For...Next loop.

The Do...Loop is for those situations where the loop will be terminated when a logical condition
applies, such as reaching the end of your data. The For...Next loop is for situations where you can
predict in advance how many times you want to loop, such as when you want to enter expenses for the
10 people in your department.

VBA also has an interesting variation on the For...Next loop that is used to process all the objects in a
collection — the For Each...Next loop. You can use it to process all the cells in a range or all the sheets
in a workbook, for example.

Do...Loop
To illustrate the use of a Do...Loop, construct a sub procedure to shade every second line of a work-
sheet, as shown in Figure 1-27, to make it more readable. You want to apply the macro to different report
sheets with different numbers of products, so the macro will need to test each cell in the A column until
it gets to an empty cell to determine when to stop.

50

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 50

Figure 1-27

The first macro will select every other row and apply the formatting:

Sub ShadeEverySecondRow()
Range(“A2”).EntireRow.Select
Do While ActiveCell.Value <> “”
Selection.Interior.ColorIndex = 15
ActiveCell.Offset(2, 0).EntireRow.Select

Loop
End Sub

ShadeEverySecondRow begins by selecting row 2 in its entirety. When you select an entire row, the left-
most cell (in column A) becomes the active cell. The code between the Do and Loop statements is then
repeated While the value property of the active cell is not a zero-length string, that is, the active cell is
not empty. In the loop, the macro sets the interior color index of the selected cells to 15, which is gray.
Then the macro selects the entire row, two rows under the active cell. When a row is selected that has an
empty cell in column A, the While condition is no longer true and the loop terminates.

You can make ShadeEverySecondRow run faster by avoiding selecting. It is seldom necessary to select
cells in VBA, but you are led into this way of doing things because that’s the way you do it manually,
and that’s what you get from the macro recorder.

The following version of ShadeEverySecondRow does not select cells, and it runs considerably faster.
It sets up an index lRow, which indicates the row of the worksheet and is initially assigned a value of 2.
The Cells property of the worksheet allows you to refer to cells by row number and column number, so

51

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 51

when the loop starts, Cells(lRow,1) refers to cell A2. Each time around the loop, i is increased by two.
You can, therefore, change any reference to the active cell to a Cells(lRow,1) reference and apply the
EntireRow property to Cells(lRow,1) to refer to the complete row:

Sub ShadeEverySecondRow()
Dim lRow As Long
lRow= 2
Do Until IsEmpty(Cells(lRow, 1))
Cells(lRow, 1).EntireRow.Interior.ColorIndex = 15
lRow= lRow+ 2

Loop
End Sub

To illustrate some alternatives, two more changes have been made on the Do statement line in the previ-
ous code. Either While or Until can be used after the Do, so the test has been changed to an Until and
you have used the VBA IsEmpty function to test for an empty cell.

It is also possible to exit a loop using a test within the loop and the Exit Do statement, as follows, which
also shows another way to refer to entire rows:

Sub ShadeEverySecondRow()
Dim lRow as Long
lRow= 0
Do
lRow= lRow+ 2
If IsEmpty(Cells(lRow, 1)) Then Exit Do
Rows(lRow).Interior.ColorIndex = 15

Loop
End Sub

Yet another alternative is to place the While or Until on the Loop statement line. This ensures that the
code in the loop is executed at least once. When the test is on the Do line, it is possible that the test will
be false to start with, and the loop will be skipped.

Sometimes, it makes more sense if the test is on the last line of the loop. In the following example, it
seems more sensible to test sPassWord after getting input from the user, although the code would still
work if the Until statement were placed on the Do line:

Sub GetPassword()
Dim sPassWord As String, i As Integer
i = 0
Do
i = i + 1
If i > 3 Then
MsgBox “Sorry, Only three tries”
Exit Sub

End If

The IsEmpty function is the best way to test that a cell is empty. If you use If Cells
(lRow,1) = “”, the test will be true for a formula that calculates a zero-length string.

52

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 52

sPassWord = InputBox(“Enter Password”)
Loop Until sPassWord = “XXX”

MsgBox “Welcome”
End Sub

GetPassword loops until the password XXX is supplied, or the number of times around the loop exceeds
three.

For...Next Loop
The For...Next loop differs from the Do...Loop in two ways. It has a built-in counter that is automati-
cally incremented each time the loop is executed, and it is designed to execute until the counter exceeds
a predefined value, rather than depending on a user-specified logical test. The following example places
the full file path and name of the workbook into the center footer for each worksheet in the active work-
book:

Sub FilePathInFooter()
Dim i As Integer, sFilePath As String

sFilePath = ActiveWorkbook.FullName
For i = 1 To Worksheets.Count Step 1
Worksheets(i).PageSetup.CenterFooter = sFilePath

Next i
End Sub

Versions of Excel prior to Excel 2002 do not have an option to automatically include the full file path
in a custom header or footer, so this macro inserts the information as text. It begins by assigning the
FullName property of the active workbook to the variable sFilePath. The loop starts with the For
statement and loops on the Next statement. i is used as a counter, starting at 1 and finishing when i
exceeds Worksheets.Count, which uses the Count property of the Worksheets collection to determine
how many worksheets there are in the active workbook.

The Step option defines the amount that i will be increased each time around the loop. Step 1 could be
left out of this example, because a step of 1 is the default value. In the loop, i is used as an index to the
Worksheets collection to specify each individual Worksheet object. The PageSetup property of the
Worksheet object refers to the PageSetup object in that worksheet, so that the CenterFooter property
of the PageSetup object can be assigned the sFilePath text.

The following example shows how you can step backwards. It takes a complete file path and strips out
the filename, excluding the file extension. The example uses the FullName property of the active work-
book as input, but the same code could be used with any file path. It starts at the last character in the file
path and steps backwards until it finds the period between the filename and its extension, and then the
backslash character before the filename. It then extracts the characters between the two:

Sub GetFileName()
Dim iBackSlash As Integer, iPoint As Integer
Dim sFilePath As String, sFileName As String
Dim i As Integer

sFilePath = ActiveWorkbook.FullName
For i = Len(sFilePath) To 1 Step -1

53

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 53

If Mid$(sFilePath, i, 1) = “.” Then
iPoint = i
Exit For

End If
Next i
If iPoint = 0 Then iPoint = Len(sFilePath) + 1
For i = iPoint - 1 To 1 Step -1
If Mid$(sFilePath, i, 1) = “\” Then
iBackSlash = i
Exit For

End If
Next i
sFileName = Mid$(sFilePath, iBackSlash + 1, iPoint - iBackSlash - 1)
MsgBox sFileName

End Sub

The first For...Next loop uses the Len function to determine how many characters are in the
sFilePath variable, and i is set up to step backwards, counting from the last character position, work-
ing toward the first character position. The Mid$ function extracts the character from sFilePath at the
position defined by i and tests it to see if it is a period.

When a period is found, the position is recorded in iPoint and the first For...Next loop is exited.
If the filename has no extension, no period is found and iPoint will have its default value of 0. In this
case, the If test records an imaginary period position in iPoint that is one character beyond the end of
the filename.

The same technique is used in the second For...Next loop as the first, starting one character before the
period, to find the position of the backslash character, and storing the position in iBackSlash. The Mid$
function is then used to extract the characters between the backslash and the period.

For Each...Next Loop
When you want to process every member of a collection, you can use the For Each...Next loop. The
following example is a rework of the FilePathInFooter procedure:

Sub FilePathInFooter()
Dim sFilePath As String, wks As Worksheet

sFilePath = ActiveWorkbook.FullName
For Each wks In Worksheets
wks.PageSetup.CenterFooter = sFilePath

Next wks
End Sub

The loop steps through all the members of the collection. During each pass, a reference to the next mem-
ber of the collection is assigned to the object variable wks.

The following example lists all the files in the root directory of the C: drive. It uses the Windows
Scripting FileSystemObject to create a reference to the C drive root directory. The example uses a
For Each...Next loop to display the names of all the files in the directory:

54

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 54

Sub FileList()
‘Listing files with a For...Each loop

Dim objFSO As Object
Dim objFolder As Object
Dim objFile As Object

‘Create a reference to the FileSystemObject
Set objFSO = CreateObject(“Scripting.FileSystemObject”)

‘Create a folder reference
Set objFolder = objFSO.GetFolder(“C:\”)

‘List files in folder
For Each objFile In objFolder.Files

MsgBox objFile.Name
Next objFile

End Sub

The code uses techniques that are discussed in Chapter 19 to reference objects outside the Excel object
model. If you test this procedure on a directory with lots of files, and get tired of clicking OK, don’t for-
get that you can break out of the code with Ctrl+Break.

Arrays
Arrays are VBA variables that can hold more than one item of data. An array is declared by including
parentheses after the array name. An integer is placed within the parentheses, defining the number of
elements in the array:

Dim avData(2)

You assign values to the elements of the array by indicating the element number as follows:

avData(0) = 1
avData(1) = 10
avData(2) = 100

The number of elements in the array depends on the array base. The default base is 0, which means that the
first data element is item 0. Dim avData(2) declares a three-element array if the base is 0. Alternatively,
you can place the following statement in the declarations section at the top of your module to declare
that arrays are 1-based:

Option Base 1

With a base of 1, Dim avData(2) declares a two-element array. Item 0 does not exist.

You can use the following procedure to test the effect of the Option Base statement:

55

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 55

Sub Array1()
Dim aiData(10) As Integer
Dim sMessage As String, i As Integer

For i = LBound(aiData) To UBound(aiData)
aiData(i) = i

Next i
sMessage = “Lower Bound = “ & LBound(aiData) & vbCr
sMessage = sMessage & “Upper Bound = “ & UBound(aiData) & vbCr
sMessage = sMessage & “Num Elements = “ & WorksheetFunction.Count(aiData) & vbCr
sMessage = sMessage & “Sum Elements = “ & WorksheetFunction.Sum(aiData)
MsgBox sMessage

End Sub

Array1 uses the LBound (lower bound) and UBound (upper bound) functions to determine the lowest
and highest index values for the array. It uses the Count worksheet function to determine the number of
elements in the array. If you run this code with Options Base 0, or no Options Base statement, in the
declarations section of the module, it will show a lowest index number of 0 and 11 elements in the array.
With Options Base 1, it shows a lowest index number of 1 and 10 elements in the array.

Note the use of the intrinsic constant vbCr, which contains a carriage return character. vbCr is used to
break the message text to a new line.

If you want to make your array size independent of the Option Base statement, you can explicitly
declare the lower bound as well as the upper bound as follows:

Dim avData(1 To 2)

Arrays are very useful for processing lists or tables of items. If you want to create a short list, you can
use the Array function as follows:

Dim avData As Variant
avData = Array(“North”, “South”, “East”, “West”)

You can then use the list in a For...Next loop. For example, you could open and process a series of
workbooks called North.xls, South.xls, East.xls, and West.xls:

Sub Array2()
Dim avData As Variant, wkb As Workbook
Dim i As Integer

avData = Array(“North”, “South”, “East”, “West”)
For i = LBound(avData) To UBound(avData)
Set wkb = Workbooks.Open(Filename:=avData(i) & “.xls”)
‘Process data here
wkb.Close SaveChanges:=True

Next i
End Sub

56

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 56

Multi-Dimensional Arrays
So far you have only looked at arrays with a single dimension. You can actually define arrays with up to
60 dimensions, although few people would use more than two or three dimensions. The following state-
ments declare two-dimensional arrays:

Dim avData(10,20)
Dim avData(1 To 10,1 to 20)

You can think of a two-dimensional array as a table of data. The preceding example defines a table with
10 rows and 20 columns.

Arrays are very useful in Excel for processing the data in worksheet ranges. It can be far more efficient
to load the values in a range into an array, process the data, and write it back to the worksheet, than to
access each cell individually.

The following procedure shows how you can assign the values in a range to a Variant. The code uses
the LBound and UBound functions to find the number of dimensions in avData. Note that there is a sec-
ond parameter in LBound and UBound to indicate which index you are referring to. If you leave this
parameter out, the functions refer to the first index:

Sub Array3()
Dim avData As Variant, vUBound As Variant
Dim Message As String, i As Integer

avData = Range(“A1:A20”).Value
i = 1
Do
Message = “Lower Bound = “ & LBound(avData, i) & vbCr
Message = Message & “Upper Bound = “ & UBound(avData, i) & vbCr
MsgBox Message, , “Index Number = “ & i
i = i + 1
On Error Resume Next
vUBound = UBound(avData, i)
If Err.Number <> 0 Then Exit Do
On Error GoTo 0

Loop
Message = “Number of Non Blank Elements =” _

& WorksheetFunction.CountA(avData) & vbCr
MsgBox Message

End Sub

The first time around, the Do...Loop, Array3 determines the upper and lower bounds of the first
dimension of avData, as i has a value of 1. It then increases the value of i to look for the next dimen-
sion. It exits the loop when an error occurs, indicating that no more dimensions exist.

By substituting different ranges into Array3, you can determine that the array created by assigning a
range of values to a Variant is two-dimensional, even if there is only one row or one column in the
range. You can also determine that the lower bound of each index is 1, regardless of the Option Base
setting in the declarations section.

57

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 57

Dynamic Arrays
When writing your code, it is sometimes not possible to determine the size of the array that will be
required. For example, you might want to load the names of all the .xls files in the current directory
into an array. You won’t know in advance how many files there will be. One alternative is to declare an
array that is big enough to hold the largest possible amount of data — but this would be inefficient.
Instead, you can define a dynamic array and set its size when the procedure runs.

You declare a dynamic array by leaving out the dimensions:

Dim avData()

You can declare the required size at run time with a ReDim statement, which can use variables to define
the bounds of the indexes:

ReDim avData(iRows, iColumns)
ReDim avData(iminRow to imaxRow, iminCol to imaxCol)

ReDim will re-initialize the array and destroy any data in it, unless you use the Preserve keyword.
Preserve is used in the following procedure that uses a Do...Loop to load the names of files into the
dynamic array called asFNames, increasing the upper bound of its index by one each time to accommo-
date the new name.

The Dir function returns the first filename found that matches the wildcard specification in sFType.
Subsequent usage of Dir, with no parameter, repeats the same specification, getting the next file that
matches, until it runs out of files and returns a zero-length string:

Sub FileNames()
Dim sFName As String
Dim asFNames() As String
Dim sFType As String
Dim i As Integer

sFType = “*.xls”
sFName = Dir(sFType)
Do Until sFName = “”
i = i + 1
ReDim Preserve asFNames(1 To i)
asFNames(i) = sFName
sFName = Dir

Loop
If i = 0 Then
MsgBox “No files found”

Else
For i = 1 To UBound(asFNames)
MsgBox asFNames(i)

Next i
End If

End Sub

If you intend to work on the files in a directory and save the results, it is a good idea to get all the file-
names first, as in the FileNames procedure, and use that list to process the files. It is not a good idea to
rely on the Dir function to give you an accurate file list while you are in the process of reading and
overwriting files.

58

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 58

Run-Time Error-Handling
When you are designing an application, you should try to anticipate any problems that could occur
when the application is used in the real world. You can remove all the bugs in your code and have flaw-
less logic that works with all permutations of conditions, but a simple operational problem could still
bring your code crashing down with a less than helpful message displayed to the user.

For example, if you try to save a workbook file to the floppy disk in the A: drive, and there is no disk in
the A: drive, your code will grind to a halt and display a message that will probably not mean anything
to the average user.

If you anticipate this particular problem, you can set up your code to gracefully deal with the situation.
VBA allows you to trap error conditions using the following statement:

On Error GoTo LineLabel

LineLabel is a marker that you insert at the end of your normal code, as shown in the following code
with the line label errTrap. Note that a colon follows the line label. The line label marks the start of
your error recovery code and should be preceded by an Exit statement to prevent execution of the error
recovery code when no error occurs:

Sub ErrorTrap1()
Dim lAnswer As Long, sMyFile As String
Dim sMessage As String, sCurrentPath As String

On Error GoTo errTrap
sCurrentPath = CurDir$

ChDrive “A”
ChDrive sCurrentPath
ChDir sCurrentPath
sMyFile = “A:\Data.xls”
Application.DisplayAlerts = False
ActiveWorkbook.SaveAs Filename:=sMyFile

TidyUp:
ChDrive sCurrentPath
ChDir sCurrentPath

Exit Sub
errTrap:
sMessage = “Error No: = “ & Err.Number & vbCr
sMessage = sMessage & Err.Description & vbCr & vbCr
sMessage = sMessage & “Please place a disk in the A: drive” & vbCr
sMessage = sMessage & “and press OK” & vbCr & vbCr
sMessage = sMessage & “Or press Cancel to abort File Save”
lAnswer = MsgBox(sMessage, vbQuestion + vbOKCancel, “Error”)
If lAnswer = vbCancel Then Resume TidyUp
Resume

End Sub

Once the On Error statement is executed, error trapping is enabled. If an error occurs, no message is
displayed and the code following the line label is executed. You can use the Err object to obtain infor-
mation about the error. The Number property of the Err object returns the error number, and the
Description property returns the error message associated with the error. You can use Err.Number to

59

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 59

determine the error when it is possible that any of a number of errors could occur. You can incorporate
Err.Description into your own error message, if appropriate.

In Excel 5 and 95, Err was not an object, but a function that returned the error number. Because
Number is the default property of the Err object, using Err by itself is equivalent to using
Err.Number, and the code from the older versions of Excel still works in Excel 97 and later versions.

The code in ErrorTrap1, after executing the On Error statement, saves the current directory drive and
path into the variable sCurrentPath. It then executes the ChDrive statement to try to activate the A:
drive. If there is no disk in the A: drive, error 68 — (Device unavailable) occurs and the error recovery
code executes. For illustration purposes, the error number and description are displayed and the user is
given the opportunity to either place a disk in the A: drive and continue, or abort the save.

If the user wishes to stop, you branch back to TidyUp and restore the original drive and directory set-
tings. Otherwise the Resume statement is executed. This means that execution returns to the statement
that caused the error. If there is still no disk in the A: drive, the error recovery code is executed again.
Otherwise the code continues normally.

The only reason for the ChDrive “A” statement is to test the readiness of the A: drive, so the code
restores the stored drive and directory path. The code sets the DisplayAlerts property of the
Application object to False, before saving the active workbook. This prevents a warning if an old file
called Data.xls is being replaced by the new Data.xls. (See Chapter 3 for more on DisplayAlerts.)

The Resume statement comes in three forms:

❑ Resume causes execution of the statement that caused the error.

❑ Resume Next returns execution to the statement following the statement that caused the error,
so the problem statement is skipped.

❑ Resume LineLabel jumps back to any designated line label in the code, so you can decide to
resume where you want.

The following code uses Resume Next to skip the Kill statement, if necessary. The charmingly named
Kill statement removes a file from disk. The following code removes any file with the same name as the
one you are about to save, so there will be no need to answer the warning message about overwriting
the existing file.

The problem is that Kill will cause a fatal error if the file does not exist. If Kill does cause a problem,
the error recovery code executes and you use Resume Next to skip Kill and continue with SaveAs. The
MsgBox is there for educational purposes only. You would not normally include it:

Sub ErrorTrap2()
Dim sMyFile As String, sMessage As String
Dim sAnswer As String

On Error GoTo errTrap

Workbooks.Add
sMyFile = “C:\Data.xls”
Kill sMyFile

60

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 60

ActiveWorkbook.SaveAs Filename:=sMyFile
ActiveWorkbook.Close

Exit Sub
errTrap:
sMessage = “Error No: = “ & Err.Number & vbCr
sMessage = sMessage & Err.Description & vbCr & vbCr
sMessage = sMessage & “File does not exist”
sAnswer = MsgBox(sMessage, vbInformation, “Error”)
Resume Next

End Sub

On Error Resume Next
As an alternative to On Error GoTo, you can use:

On Error Resume Next

This statement causes errors to be ignored, so it should be used with caution. However, it has many
uses. The following code is a rework of ErrorTrap2:

Sub ErrorTrap3()
Dim sMyFile As String

Workbooks.Add
sMyFile = “C:\Data.xls”
On Error Resume Next
Kill sMyFile
On Error GoTo 0
ActiveWorkbook.SaveAs Filename:=sMyFile
ActiveWorkbook.Close

End Sub

Use On Error Resume Next just before the Kill statement. If C:\Data.xls does not exist, the error
caused by Kill is ignored and execution continues on the next line. After all, you don’t care if the file
does not exist. That’s the situation you are trying to achieve.

On Error GoTo 0 is used to turn on normal VBA error-handling again. Otherwise, any further errors
would be ignored. It is best not to try to interpret this statement, which appears to be directing error-
handling to line 0. Just accept that it works.

You can use On Error Resume Next to write code that would otherwise be less efficient. The following
sub procedure determines whether a name exists in the active workbook:

Sub TestForName()
If bNameExists(“SalesData”) Then
MsgBox “Name Exists”

Else
MsgBox “Name does not exist”

End If
End Sub

Function bNameExists(sMyName As String) As Boolean

61

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 61

Dim sName As String
On Error Resume Next
sName = Names(sMyName).RefersTo
If Err.Number <> 0 Then
bNameExists = False
Err.Clear

Else
bNameExists = True

End If
End Function

TestForName calls the bNameExists function, which uses On Error Resume Next to prevent a fatal
error when it tries to assign the name’s RefersTo property to a variable. There is no need for On Error
GoTo 0 here, because error-handling in a procedure is disabled when a procedure exits, although
Err.Number is not cleared.

If no error occurred, the Number property of the Err object is 0. If Err.Number has a non-0 value, an
error occurred, presumably because the name did not exist, so bNameExists is assigned a value of
False and the error is cleared. The alternative to this single pass procedure is to loop through all the
names in the workbook, looking for a match. If there are lots of names, this can be a slow process.

Summary
In this chapter, you have seen those elements of the VBA language that enable you to write useful and
efficient procedures. You have seen how to add interaction to macros with the MsgBox and InputBox
functions, how to use variables to store information, and how to get help with VBA keywords.

You have seen how to declare variables and define their type, and the effect on variable scope and life-
time of different declaration techniques. In addition, you used the block If and Select Case structures
to perform tests and carry out alternative calculations, and Do...Loop and For...Next loops that
allow you to efficiently repeat similar calculations. You have seen how arrays can be used, particularly
with looping procedures. Moreover, you learned how to use On Error statements to trap errors.

When writing VBA code for Excel, the easiest way to get started is to use the macro recorder. You can
then modify that code, using the VBE, to better suit your purposes and to operate efficiently. Using the
Object Browser, Help screens, and the reference section of this book, you can discover objects, methods,
properties, and events that can’t be found with the macro recorder. Using the coding structures provided
by VBA, you can efficiently handle large amounts of data and automate tedious processes.

You now have the knowledge required to move on to the next chapter, where you will find a rich set of
practical examples showing you how to work with key Excel objects. You will discover how to create
your own user interface, setting up your own Ribbon buttons and dialog boxes, and embedding controls
in your worksheets to enable yourself and others to work more productively.

62

Chapter 1: Primer in Excel VBA

04_046432 ch01.qxp 2/16/07 9:53 PM Page 62

The Application Object
This chapter examines a range of Excel functionality, looking at features that are not necessarily
related to each other. In general, the Excel object model contains objects designed to address quite
specific tasks. The Application object sits at the top of the Excel object model hierarchy and con-
tains all the other objects in Excel. It also acts as a catch-all area for properties and methods that do
not fall neatly into any other object, but are necessary for programmatic control of Excel. There are
Application properties that control screen updating and toggle alert messages, for example.
There is an Application method that calculates the formulas in the open workbooks.

Globals
Many of the Application object’s methods and properties are also members of <globals>,
which can be found at the top of the list of classes in the Object Browser, as shown in Figure 2-1.

If a property or method is in <globals>, you can refer to that property or method without a pre-
ceding reference to an object. For example, the following two references are equivalent:

Application.ActiveCell
ActiveCell

However, you do need to be careful. It is easy to assume that frequently used Application object
properties, such as ScreenUpdating, are <globals> when they are not. The following code is
correct:

Application.ScreenUpdating = False

You will get unexpected results with the following:

ScreenUpdating = False

This code sets up a new variable and assigns the value False to it. You can easily avoid this error
by having the line of code Option Explicit at the top of each module so that such references are
flagged as undefined variables when your code is compiled.

05_046432 ch02.qxp 2/16/07 9:53 PM Page 63

Figure 2-1

The Active Proper ties
The Application object provides many shortcuts that allow you to refer to active objects without nam-
ing them explicitly. This makes it possible to discover what is currently active when your macro runs. It
also makes it easy to write generalized code that can be applied to objects of the same type with different
names.

The following Application object properties are global properties that allow you to refer to active
objects:

❑ ActiveCell

❑ ActiveChart

❑ ActivePrinter

❑ ActiveSheet

❑ ActiveWindow

Remember that you can have Option Explicit automatically inserted in new mod-
ules if you use Tools ➪ Options in the VBE window and, under the Editor tab, tick
the Require Variable Declaration checkbox.

64

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 64

❑ ActiveWorkbook

❑ Selection

If you have just created a new workbook and want to save it with a specific filename, using the
ActiveWorkbook property is an easy way to return a reference to the new Workbook object:

Workbooks.Add
ActiveWorkbook.SaveAs Filename:=”C:\Data.xls”

If you want to write a macro that can apply a bold format to the currently selected cells, you can use the
Selection property to return a reference to the Range object containing the selected cells:

Selection.Font.Bold = True

Be aware that Selection will not refer to a Range object if another type of object, such as a Shape
object, is currently selected or the active sheet is not a worksheet. You might want to build a check into a
macro to ensure that a worksheet is selected before attempting to enter data into it:

If TypeName(ActiveSheet) <> “Worksheet” Or _
TypeName(Selection) <> “Range” Then

MsgBox “You can only run this macro in a range”, vbCritical
Exit Sub

End If

Display Aler ts
It can be annoying to have to respond to system alerts while a macro runs. For example, if a macro deletes a
worksheet, an alert message appears and you have to click the OK button to continue. However, there is
also the possibility of a user clicking the Cancel button, which would abort the delete operation and could
adversely affect subsequent code where the delete operation was assumed to have been carried out.

You can suppress most alerts by setting the DisplayAlerts property to False. When you suppress an
alert dialog box, the action that is associated with the default button in that box is automatically carried
out, as follows:

Application.DisplayAlerts = False
ActiveSheet.Delete
Application.DisplayAlerts = True

DisplayAlerts is commonly used to suppress the warning that you are about to overwrite an existing
file using File ➪ SaveAs. When you suppress this warning, the default action is taken and the file is over-
written without interrupting the macro.

It is not necessary to reset DisplayAlerts to True at the end of your macro because
VBA does this automatically. However, it is usually a good idea, after suppressing a
particular message, to turn the alerts back on so that any unexpected warnings do
appear on screen.

65

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 65

Screen Updating
It can likewise be annoying to see the screen change and flicker while a macro is running. This happens
with macros that select or activate objects and is typical of the code generated by the macro recorder.

If you want to freeze the screen while your macro runs, you use the following line of code:

Application.ScreenUpdating = False

The screen remains frozen until you assign the property a value of True, or when your macro finishes
executing and returns control to the user interface. There is no need to restore ScreenUpdating to True,
unless you want to display screen changes while your macro is still running.

There is one situation where it is a good idea to set ScreenUpdating to True while your macro is run-
ning. If you display a user form or built-in dialog box while your macro is running, you should make
sure screen updating is on before showing the object. If screen updating is off and the user drags the
user form around the screen, the user form will act as an eraser on the screen behind it. You can turn
screen updating off again after showing the object.

Evaluate
The Evaluate method can be used to calculate Excel worksheet formulas and generate references to
Range objects. The normal syntax for the Evaluate method is as follows:

Evaluate(“Expression”)

You can also use a shortcut format where you omit the quotes and place square brackets around the
expression, as follows:

[Expression]

Expression can be any valid worksheet calculation, with or without the equal sign on the left, or it can
be a reference to a range of cells. The worksheet calculations can include worksheet functions that are
not made available to VBA through the WorksheetFunction object, or they can be worksheet array for-
mulas. You will find more information about the WorksheetFunction object later in this chapter.

A beneficial side effect of turning off screen updating is that your code runs faster. It
will even speed up code that avoids selecting objects, where little screen updating is
required. Your code runs at maximum speed when you avoid selecting and turn off
screen updating.

It is better to avoid selecting objects in VBA. It is seldom necessary to do this, and
your code will run faster if you can avoid selecting or activating objects. Most of the
code in this book avoids selecting where possible.

66

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 66

For instance, the ISBLANK function, which you can use in your worksheet formulas, is not available to
VBA through the WorksheetFunction object, because the VBA equivalent function IsEmpty provides
the same functionality. All the same, you can use ISBLANK if you need to. The following two examples
are equivalent and return True if A1 is empty or False if A1 is not empty:

MsgBox Evaluate(“=ISBLANK(A1)”)
MsgBox [ISBLANK(A1)]

The advantage of the first technique is that you can generate the string value using code, which makes it
very flexible. The second technique is shorter, but you can only change the expression by editing your
code. The following procedure displays a True or False value to indicate whether or not the active cell
is empty, and illustrates the flexibility of the first technique:

Sub IsActiveCellEmpty()
Dim sFunctionName As String, sCellReference As String
sFunctionName = “ISBLANK”
sCellReference = ActiveCell.Address
MsgBox Evaluate(sFunctionName & “(“ & sCellReference & “)”)

End Sub

Note that you cannot evaluate an expression containing variables using the second technique.

The following two lines of code show you two ways you can use Evaluate to generate a reference to a
Range object, and assign a value to that object:

Evaluate(“A1”).Value = 10
[A1].Value = 10

The first expression is unwieldy and is rarely used, but the second is a convenient way to refer to a
Range object, although it is not very flexible. You can further shorten the expressions by omitting the
Value property, because this is the default property of the Range object:

[A1] = 10

More interesting uses of Evaluate include returning the contents of a workbook’s Names collection and
efficiently generating arrays of values. The following code creates a hidden name to store a password.
Hidden names cannot be seen in the Insert ➪ Name ➪ Define dialog box, so they are a convenient way to
store information in a workbook without cluttering the user interface:

Names.Add Name:=”PassWord”, RefersTo:=”Bazonkas”, Visible:=False

You can then use the hidden data in expressions like the following:

sUserInput = InputBox(“Enter Password”)
If sUserInput = [PassWord] Then
...

The use of names for storing data is discussed in more detail in Chapter 5.

67

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 67

The Evaluate method can also be used with arrays. The following expression generates a Variant
array with two dimensions, 100 rows and one column, containing the values from 101 to 200. This pro-
cess is carried out more efficiently than using a For...Next loop:

vRowArray = [ROW(101:200)]

Similarly, the following code assigns the values 101 to 200 to the range B1:B100, and again does it more
efficiently than a For...Next loop:

[B1:B100] = [ROW(101:200)]

InputBox
VBA has an InputBox function that provides an easy way to prompt for input data. There is also the
InputBox method of the Application object that produces a very similar dialog box for obtaining data,
but is more powerful. It allows you to control the type of data that must be supplied by the user, and
allows you to detect when the Cancel button is clicked.

If you have an unqualified reference to InputBox in your code, as follows, you are using the VBA
InputBox function:

sAnswer = InputBox(prompt:=”Enter range”)

The user can only type data into the dialog box. It is not possible to point to a cell with the mouse. The
return value from the InputBox function is always a string value, and there is no check on what that
string contains. If the user enters nothing, a zero-length string is returned. If the user clicks the Cancel
button, a zero-length string is also returned. Your code cannot distinguish between no entry and the
result of clicking Cancel.

The following example uses the Application object’s InputBox method to prompt for a range:

vAnswer = Application.InputBox(Prompt:=”Enter range”, Type:=8)

The Type parameter can take the following values, or any sum of the following values if you want to
allow for multiple types.

Value of Type Meaning

0 A formula

1 A number

2 Text (a string)

4 A logical value (True or False)

8 A cell reference, as a Range object

16 An error value, such as #N/A

64 An array of values

68

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 68

The user can point to cells with the mouse or type in data. If the input is of the wrong type, the InputBox
method displays an error message and prompts for the data again. If the user clicks the Cancel button, the
InputBox method returns a value of False.

If you assign the return value to a Variant, you can check to see if the value is False, for most return
types, to detect a Cancel. If you are prompting for a range, the situation is not so simple. You need to use
code like the following:

Sub GetRange()
Dim rng As Range

On Error Resume Next
Set rng = Application.InputBox(prompt:=”Enter range”, Type:=8)
If rng Is Nothing Then
MsgBox “Operation Cancelled”

Else
rng.Select

End If
End Sub

When you run this code, use the mouse to select the range. The output should look something like
Figure 2-2.

Figure 2-2

The problem is that you must use the Set statement to assign a range object to an object variable. If the
user clicks Cancel and a False value is returned, the Set fails and you get a run-time error. Using the On
Error Resume Next statement, you can avoid the run-time error and then check to see if a valid range
was generated. You know that the built-in type checking of the InputBox method ensures a valid range
will be returned if the user clicks OK, so an empty range indicates that Cancel was clicked.

69

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 69

StatusBar
The StatusBar property allows you to assign a text string to be displayed at the left-hand side of the
Excel status bar at the bottom of the screen. This is an easy way to keep users informed of progress dur-
ing a lengthy macro operation. It is a good idea to keep users informed, particularly if you have screen
updating turned off and there is no sign of activity on the screen. Even though you have turned off
screen updating, you can still display messages on the status bar.

The following code shows how you can use this technique in a looping procedure:

Sub ShowMessage()
Dim lCounter As Long
For lCounter = 0 To 100000000
If lCounter Mod 1000000 = 0 Then
Application.StatusBar = “Processing Record “ & lCounter

End If
Next lCounter
Application.StatusBar = False

End Sub

At the end of your processing, you must set the StatusBar property to False so that it returns to nor-
mal operation. Otherwise, your last message will stay on the screen.

SendKeys
SendKeys allows you to send keystrokes to the currently active window. It is used to control applica-
tions that do not support any other form of communication, such as DDE (Dynamic Data Exchange) or
OLE. It is generally considered a last-resort technique.

The following example opens the Notepad application, which does not support DDE or OLE, and writes
a line of data to the Notepad document:

Sub SKeys()
Dim dReturnValue As Double
dReturnValue = Shell(“NOTEPAD.EXE”, vbNormalFocus)
AppActivate dReturnValue
Application.SendKeys “Copy Data.xlsx c:\”, True
Application.SendKeys “~”, True
Application.SendKeys “%FABATCH%S”, True

End Sub

SKeys uses Alt+F+A to perform a File ➪ SaveAs and enters the filename as BATCH and then enters Alt+S
to save the text file. The percent symbol (%) is used to represent Alt and the tilde (~) represents Enter. The
caret symbol (^) is used to represent Ctrl, and other special keys are specified by putting their names in
curly braces. For example, the Delete key is represented by {Del}, as shown in the following example.

This example might not execute correctly from the VBE. Run it from the Excel
window.

70

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 70

You can also send keystrokes directly to Excel. The following procedure clears the VBE’s Immediate win-
dow. If you have been experimenting in the Immediate window or using Debug.Print to write to the
Immediate window, it can get cluttered with old information. This procedure switches focus to the
Immediate window and sends Ctrl+a to select all the text in the window. The text is then deleted by
sending Del:

Sub ImmediateWindowClear()
Application.VBE.Windows.Item(“Immediate”).SetFocus
Application.SendKeys “^a”
Application.SendKeys “{Del}”

End Sub

OnTime
You can use the OnTime method to schedule a macro to run sometime in the future. You need to specify
the date and time for the macro to run, and the name of the macro. If you use the Wait method of the
Application object to pause a macro, all Excel activity, including manual interaction, is suspended. The
advantage of OnTime is that it allows you to return to normal Excel interaction, including running other
macros, while you wait for the scheduled macro to run.

Say you have an open workbook with links to Data.xls, which exists on your network server but is not
currently open. At 3 p.m. you want to update the links to Data.xls. The following example schedules
the RefreshData macro to run at 3 p.m., which is 15:00 hours using a 24-hour clock, on the current day.
Date returns the current date, and the TimeSerial function is used to add the necessary time:

Sub RunOnTime()
Application.OnTime Date + TimeSerial(15, 0, 0), “RefreshData”

End Sub

The following RefreshData macro updates the links to Data.xlsx that exist in ThisWorkbook using
the UpdateLink method. ThisWorkbook is a convenient way to refer to the workbook containing the
macro:

Sub RefreshData()
ThisWorkbook.UpdateLink Name:=”C:\Data.xlsx”, Type:=xlExcelLinks

End Sub

It is worth noting that if you attempt to run this macro when it is currently after 3
p.m., you will receive an error message because you cannot schedule a task to run in
the past. If necessary, change the time to one in the future.

It is necessary for you to have programmatic access to your Visual Basic project for
this macro to work. This can be set from the Excel Ribbon. Select the Developer tab,
select Macro Security, and check the box against Trust access to the VBA project
object model.

71

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 71

If you want to keep refreshing the data on a regular basis, you can make the macro run itself as follows:

Dim mdteScheduledTime As Date

Sub RefreshData()
ThisWorkbook.UpdateLink Name:=”C:\Data.xlsx”, Type:= xlExcelLinks
mdteScheduledTime = Now + TimeSerial(0, 1, 0)
Application.OnTime mdteScheduledTime, “RefreshData”

End Sub

Sub StopRefresh()
Application.OnTime mdteScheduledTime, “RefreshData”, , False

End Sub

Once you run RefreshData, it will keep scheduling itself to run every minute. In order to stop the
macro, you need to know the scheduled time, so the module-level variable mdteScheduledTime is used
to store the latest scheduled time. StopRefresh sets the fourth parameter of OnTime to False to cancel
the scheduled run of RefreshData.

The OnTime method is also useful when you want to introduce a delay in macro processing to allow an
event to occur that is beyond your control. For example, you might want to send data to another applica-
tion through a DDE link and wait for a response from that application before continuing with further
processing. To do this, you would create two macros. The first macro sends the data and schedules the
second macro (which processes the response) to run after sufficient time has passed. The second macro
could keep running itself until it detected a change in the worksheet or the environment caused by the
response from the external application.

OnKey
You can use the OnKey method to assign a macro procedure to a single keystroke or any combination of
Ctrl, Shift, and Alt with another key. You can also use the method to disable key combinations.

The following example shows how to assign the DownTen macro to the down arrow key. Once
AssignDown has been run, the down arrow key will run the DownTen macro and move the cell pointer
down ten rows instead of one:

Sub AssignDown()
Application.OnKey “{Down}”, “DownTen”

End Sub

Sub DownTen()
ActiveCell.Offset(10, 0).Select

When you schedule a macro to run at a future time using the OnTime method, you
must make sure that Excel keeps running in memory until the scheduled time
occurs. It is not necessary to leave the workbook containing the OnTime macro open.
Excel will open it, if it needs to.

72

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 72

End Sub

Sub ClearDown()
Application.OnKey “{Down}”

End Sub

ClearDown returns the down arrow key to its normal function.

OnKey can be used to disable existing keyboard shortcuts. You can disable the Ctrl+c shortcut, normally
used to copy, with the following code that assigns a null procedure to the key combination:

Sub StopCopyShortCut()
Application.OnKey “^c”, “”

End Sub

Note that a lowercase c is used. If you used an uppercase C, it would apply to Ctrl+Shift+c. Once again,
you can restore the normal operation of Ctrl+c with the following code:

Sub ClearCopyShortCut()
Application.OnKey “^c”

End Sub

Worksheet Functions
You can use two sources of built-in functions directly in your Excel VBA code. One group of functions is
part of the VBA language. The other group of functions is a subset of the Excel worksheet functions.

Excel and the Visual Basic language, in the form of VBA, were not merged until Excel 5. Each system
independently developed its own functions, so there are inevitably some overlaps and conflicts between
the two series of functions. For example, Excel has a DATE function and VBA also has a Date function.
The Excel DATE function takes three input arguments (year, month, and day) to generate a specific date.
The VBA Date function takes no input arguments and returns the current date from the system clock. In
addition, VBA has a DateSerial function that takes the same input arguments as the Excel DATE func-
tion and returns the same result as the Excel DATE function. Finally, Excel’s TODAY function takes no
arguments and returns the same result as the VBA Date function.

As a general rule, if a VBA function serves the same purpose as an Excel function, the Excel function is
not made directly available to VBA macros (although you can use the Evaluate method to access any
Excel function, as pointed out previously in this chapter). There is also a special case regarding the Excel
MOD function. MOD is not directly available in VBA, but VBA has a Mod operator that serves the same pur-
pose. The following line of code uses the Evaluate method shortcut and displays the day of the week as
a number, using the Excel MOD function and the Excel TODAY function:

MsgBox [MOD(TODAY(),7)]

The key assignments made with the OnKey method apply to all open workbooks and
only persist during the current Excel session.

73

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 73

The same result can be achieved more simply with the VBA Date function and the Mod operator, as
follows:

MsgBox Date Mod 7

The Excel CONCATENATE function is also not available in VBA. You can use the concatenation operator (&)
as a substitute, just as you can in an Excel worksheet formula. If you insist on using the CONCATENATE func-
tion in VBA, you can write code like the following:

Sub ConcatenateExample1()
Dim s1 As String, s2 As String
s1 = “Jack “
s2 = “Smith”
MsgBox Evaluate(“CONCATENATE(“”” & s1 & “””,””” & s2 & “””)”)

End Sub

On the other hand, you can avoid being absurd and get the same result with the following code:

Sub ConcatenateExample2()
Dim s1 As String, s2 As String
s1 = “Jack “
s2 = “Smith”
MsgBox s1 & s2

End Sub

The VBA functions, such as Date, DateSerial, and IsEmpty, can be used without qualification,
because they are members of <globals>. For example, you can use the following:

StartDate = DateSerial(1999, 6, 1)

The Excel functions, such as VLOOKUP and SUM, are methods of the WorksheetFunction object and are
used with the following syntax:

Total = WorksheetFunction.Sum(Range(“A1:A10”))

For compatibility with Excel 5 and Excel 95, you can use Application rather than
WorksheetFunction:

Total = Application.Sum(Range(“A1:A10”))

For a complete list of the worksheet functions directly available in VBA, see the WorksheetFunction
object in Appendix A.

Caller
The Caller property of the Application object returns a reference to the object that called or executed
a macro procedure. It had a wide range of uses in Excel 5 and Excel 95, where it was used with menus
and controls on dialog sheets. From Excel 97 onward, command bars and ActiveX controls on user forms
have replaced menus and controls on dialog sheets, and the Ribbon and Quick Access Menu have now
replaced command bars. The Caller property does not apply to these new features.

74

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 74

Caller still applies to the Forms toolbar controls, drawing objects that have macros attached and user-
defined functions. It is particularly useful in determining the cell that called a user-defined function. The
worksheet in Figure 2-3 uses the WorksheetName function to display the name of the worksheet in B2.

Figure 2-3

When used in a function, Application.Caller returns a reference to the cell that called the function,
which is returned as a Range object. The following WorksheetName function uses the Parent property
of the Range object to generate a reference to the Worksheet object containing the Range object. It
assigns the Name property of the Worksheet object to the return value of the function. The Volatile
method of the Application object forces Excel to recalculate the function every time the worksheet is
recalculated, so that if you change the name of the sheet, the new name is displayed by the function:

Function WorksheetName()
Application.Volatile
WorksheetName = Application.Caller.Parent.Name

End Function

It would be a mistake to use the following code in the WorksheetName function:

WorksheetName = ActiveSheet.Name

If a recalculation takes place while a worksheet is active that is different from the one containing the for-
mula, the wrong name will be returned to the cell.

Summary
This chapter highlighted some of the more useful properties and methods of the Application object.
Because Application is used to hold general-purpose functionality that does not fall clearly under
other objects, it is easy to miss some of these very useful capabilities.

75

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 75

The following properties and methods were covered:

❑ ActiveCell: Contains a reference to the active cell.

❑ ActiveChart: Contains a reference to the active chart.

❑ ActivePrinter: Contains a reference to the active printer.

❑ ActiveSheet: Contains a reference to the active worksheet.

❑ ActiveWindow: Contains a reference to the active window.

❑ ActiveWorkbook: Contains a reference to the active workbook.

❑ Caller: Contains reference to the object that called a macro.

❑ DisplayAlerts: Determines whether or not alert dialogs are displayed.

❑ Evaluate: Used to calculate Excel functions and generate Range objects.

❑ InputBox: Used to prompt a user for input.

❑ OnKey: Assigns a macro to a single keystroke, or a combination (with Ctrl, Alt, and so on).

❑ OnTime: Used to set the time for a macro to run.

❑ ScreenUpdating: Determines whether screen updating is turned on or off.

❑ Selection: Contains a reference to the selected range.

❑ SendKeys: Sends keystrokes to the active window.

❑ StatusBar: Allows messages to be displayed on the status bar.

❑ WorksheetFunction: Contains the Excel functions available to VBA.

This is but a small sample of the total number of properties and methods of the Application object —
there are more than 200 of them in Excel 2007. A full list is given in Appendix A.

76

Chapter 2: The Application Object

05_046432 ch02.qxp 2/16/07 9:53 PM Page 76

Workbooks and Worksheets
In this chapter, you learn how to create new Workbook objects and how to interact with the files
that you use to store those workbooks. To do this, some basic utility functions are presented. You
also see how to handle the Sheet objects within the workbook, and how some important features
must be handled through the Window object. Finally, you learn how to synchronize your work-
sheets as you move from one worksheet to another.

The Workbooks Collection
The Workbooks collection consists of all the currently open Workbook objects in memory. Members
can be added to the Workbooks collection in a number of ways. You can create a new empty work-
book based on the default properties of the Workbook object, or you can create a new workbook
based on a template file. Finally, you can open an existing workbook file.

To create a new empty workbook based on the default workbook, use the Add method of the
Workbooks collection:

Workbooks.Add

The new workbook will be the active workbook, so you can refer to it in the following code as
ActiveWorkbook. If you immediately save the workbook, using the SaveAs method, you can give
it a filename that can be used to refer to the workbook in later code, even if it is no longer active.
Before you try the following code, make sure you have a C:\Data directory or change the direc-
tory name used in the code:

Workbooks.Add
ActiveWorkbook.SaveAs Filename:=”C:\Data\SalesData1.xlsx”
Workbooks.Add
ActiveWorkbook.SaveAs Filename:=”C:\Data\SalesData2.xlsx”
Workbooks(“SalesData1.xlsx”).Activate

06_046432 ch03.qxp 2/16/07 9:54 PM Page 77

However, a better technique is to use the return value of the Add method to create an object variable that
refers to the new workbook. This provides a shortcut to refer to your workbook, and you can keep track
of a temporary workbook without the need to save it:

Sub NewWorkbooks()
Dim wkb1 As Workbook
Dim wkb2 As Workbook

Set wkb1 = Workbooks.Add
Set wkb2 = Workbooks.Add
wkb1.Activate

End Sub

The Add method allows you to specify a template for the new workbook. The template does not need to
be a file saved as a template, with an .xltx extension — it can be a normal workbook file with an .xlsx
extension. The following code creates a new, unsaved workbook called SalesDataX, where X is a
sequence number that increments as you create more workbooks based on the same template, in the
same way that Excel creates workbooks called Book1, Book2, and so forth when you create new work-
books through the user interface:

Set wkb1 = Workbooks.Add(Template:=”C:\Data\SalesData.xlsx”)

To add an existing workbook file to the Workbooks collection, you use the Open method. Once again, it
is a good idea to use the return value of the Open method to create an object variable that you can use
later in your code to refer to the workbook:

Set wkb1 = Workbooks.Open(Filename:=”C:\Data\SalesData1.xlsx”)

Getting a Filename from a Path
When you deal with workbooks in VBA, you often need to specify directory paths and filenames. Some
tasks require that you know just the path — for example, if you set a default directory. Some tasks
require you to know just the filename — for example, if you want to activate an open workbook. Other
tasks require both path and filename — for example, if you want to open an existing workbook file that
is not in the active directory.

Once a workbook is open, there is no problem getting its path, getting its full path and filename, or just
getting the filename. For example, the following code displays SalesData1.xlsx in the message box:

Set wkb = Workbooks.Open(FileName:=”C:\Data\SalesData1.xlsx”)
MsgBox wkb.Name

wkb.Path returns “C:\Data” and wkb.FullName returns “C:\Data\SalesData1.xlsx”.

Many of the examples have data, such as filenames, hard coded. That is, data is placed
inside the code instead of putting it into a variable and using the variable in the code.
This is not good programming practice, in general, and isn’t to be recommended.
However, examples will continue in this format in order to simplify the code.

78

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 78

However, if you are trying to discover whether a certain workbook is already open, and you have the full
path information, you need to extract the filename from the full path to get the value of the Name property
of the Workbook object. The following GetFileName function returns the name “SalesData1.xlsx” from
the full path “C:\Data\SalesData1.xlsx”:

Function sGetFileName(sFullName As String) As String
‘sGetFileName returns the file name, such as Cash.xlsx from
‘the end of a full path such as C:\Data\Project1\Cash.xlsx
‘sFullName is returned if no path separator is found
Dim sPathSeparator As String ‘Path Separator Character
Dim iFNLength As Integer ‘Length of FullName
Dim i As Integer

sPathSeparator = Application.PathSeparator
iFNLength = Len(sFullName)
‘Find last path separator character, if any
For i = iFNLength To 1 Step -1
If Mid(sFullName, i, 1) = sPathSeparator Then Exit For

Next i
sGetFileName = Right(sFullName, iFNLength - i)

End Function

So that sGetFileName works on the Macintosh as well as under Windows, the path separator character
is obtained using the PathSeparator property of the Application object. This returns : on the
Macintosh and \ under Windows. The Len function returns the number of characters in sFullName,
and the For...Next loop searches backwards from the last character in sFullName, looking for the
path separator. If it finds one, it exits the For...Next loop, and the index i is equal to the character
position of the separator. If it does not find a separator, i will have a value of 0 when the For...Next
loop is completed.

sGetFileName uses the Right function to extract the characters to the right of the separator in
sFullName. If there is no separator, all the characters from sFullName are returned. Once you have the
filename of a workbook, you can use the following bIsWorkbookOpen function to see if the workbook is
already a member of the Workbooks collection:

Function bIsWorkbookOpen(wkbName As String) As Boolean
‘bIsWorkbookOpen returns True if wkbName is a member
‘of the Workbooks collection. Otherwise, it returns False
‘wkbName must be provided as a file name without path
Dim wkb As Workbook

On Error Resume Next
Set wkb = Workbooks(wkbName)
If Not wkb Is Nothing Then
bIsWorkbookOpen = True

End If
End Function

When a For...Next loop is permitted to complete normally, the index variable will
not be equal to the Stop value. It will have been incremented past the end value.

79

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 79

In this code, bIsWorkbookOpen tries to assign a reference to the workbook to an object variable, and
then sees whether or not that attempt was successful. An alternative way to achieve the same result
would be to search through the WorkBooks collection to see if any Workbook object had the name
required.

In the preceding code, the On Error Resume Next ensures that no run-time error occurs when the work-
book is not open. If the named document is found, bIsWorkbookOpen returns a value of True. If you do
not define the return value of a Boolean function, it will return False. In other words, if no open work-
book of the given name is found, False is returned.

If wkb Is Nothing Then
bIsWorkbookOpen = False

Else
bIsWorkbookOpen = True

End If

The following code uses the user-defined sGetFileName and bIsWorkbookOpen functions described
earlier. ActivateWorkbook1 is designed to activate the workbook file in the path assigned to the vari-
able sFullName:

Sub ActivateWorkbook1()
Dim sFullName As String
Dim sFileName As String
Dim wkb As Workbook

sFullName = “C:\Data\SalesData1.xlsx”
sFileName = sGetFileName(sFullName)
If bIsWorkbookOpen(sFileName) Then
Set wkb = Workbooks(sFileName)
wkb.Activate

Else
Set wkb = Workbooks.Open(FileName:=sFullName)

End If
End Sub

ActivateWorkbook1 first uses sGetFileName to extract the workbook filename, SalesData1.xlsx,
from sFullName and assigns it to sFileName. Then it uses bIsWorkbookOpen to determine whether
SalesData1.xlsx is currently open. If the file is open, it assigns a reference to the Workbook object to
the wkb object variable and activates the workbook. If the file is not open, it opens the file and assigns
the return value of the Open method to wkb. When the workbook is opened, it will automatically become
the active workbook.

Note that the preceding code assumes that the workbook file exists at the specified location. It will fail
if this is not the case. You will find a function, called bFileExists, in the “Overwriting an Existing
Workbook” section later in the chapter that you can use to test for the file’s existence.

You might prefer to use the following more lengthy but more explicit code to define
the return value of bIsWorkbookOpen. It is also easier to understand because it
avoids the double negative. Despite this, my own preference is for the shorter code
as just presented, because it is shorter.

80

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 80

Files in the Same Directory
It is common practice to break up an application into a number of workbooks and keep the related
workbook files in the same directory, including the workbook containing the code that controls the
application. In this case, you could use the common directory name in your code when opening the
related workbooks. However, if you “hard wire” the directory name into your code, you will have prob-
lems if the directory name changes, or if you copy the files to another directory on the same PC or
another PC. You will have to edit the directory path in your macros.

To avoid maintenance problems in this situation, you can make use of ThisWorkbook.Path.
ThisWorkbook is a reference to the workbook that contains the code. No matter where the workbook is
located, the Path property of ThisWorkbook gives you the required path to locate the related files, as
demonstrated in the following code:

Sub ActivateWorkbook2()
Dim sPath As String
Dim sFileName As String
Dim sFullName As String
Dim wkb As Workbook

sFileName = “SalesData1.xlsx”
If bIsWorkbookOpen(sFileName) Then
Set wkb = Workbooks(sFileName)
wkb.Activate

Else
sPath = ThisWorkbook.Path
sFullName = sPath & “\” & sFileName
Set wkb = Workbooks.Open(FileName:=sFullName)

End If
End Sub

Overwriting an Existing Workbook
When you want to save a workbook using the SaveAs method and using a specific filename, there is the
possibility that a file with that name will already exist on disk. If the file does already exist, the user
receives an alert message and has to make a decision about overwriting the existing file. If you want,
you can avoid the alert and take control programmatically.

If you want to overwrite the existing file every time, you can just suppress the alert with the following
code:

Set wkb1 = Workbooks.Add
Application.DisplayAlerts = False
wkb1.SaveAs Filename:=”C:\Data\SalesData1.xlsx”
Application.DisplayAlerts = True

If you want to check for the existing file and take alternative courses of action, you can use the Dir func-
tion. If this is a test that you need to perform often, you can create the following bFileExists function:

Function bFileExists(sFile As String) As Boolean
If Dir(sFile) <> “” Then bFileExists = True

End Function

81

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 81

The Dir function attempts to match its input argument against existing files. Dir can be used with wild-
cards under Windows for matches such as “*.xlsx”. If it finds a match, it returns the first match found
and can be called again without an input argument to get subsequent matches. Here, you are trying for
an exact match that will either return the same value as the input argument or a zero-length string if
there is no match. The bFileExists function has been declared to return a Boolean type value and, as
explained earlier, is set to the default value of False if no return value is defined. The If test assigns a
value of True to the return value if Dir does not return a zero-length string.

The following code shows how you can use the bFileExists function to test for a specific filename and
take alternative courses of action:

Sub TestForFile()
Dim sFileName As String

sFileName = “C:\Data\SalesData1.xlsx”
If bFileExists(sFileName) Then
MsgBox sFileName & “ exists”

Else
MsgBox sFileName & “ does not exist”

End If
End Sub

What you actually do in each alternative depends very much on the situation you are dealing with. One
alternative could be to prompt the user for a new filename if the name already exists. Another approach
could be to compute a new filename by finding a new sequence number to be appended to the end of
the text part of the filename, as shown here:

Sub CreateNextFileName()
Dim wkb1 As Workbook
Dim i As Integer
Dim sFName As String

Set wkb1 = Workbooks.Add(Template:=”C:\Data\SalesData.xlsx”)
i = 0
Do
i = i + 1
sFName = “C:\Data\SalesData” & i & “.xlsx”

Loop While bFileExists(sFName)

wkb1.SaveAs FileName:=sFName
End Sub

Here, the code in the Do...Loop is repeated, increasing the value of i by one for each loop, as long as
the filename generated exists. When i reaches a value for which there is no matching filename, the loop
ends and the file is saved using the new name.

Saving Changes
You can close a workbook using the Close method of the Workbook object, as shown here:

ActiveWorkbook.Close

82

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 82

If changes have been made to the workbook, the user will be prompted to save the changes when an
attempt is made to close the workbook. If you want to avoid this prompt, you can use several tech-
niques, depending on whether or not you want to save the changes.

If you want to save changes automatically, you can specify this as a parameter of the Close method:

Sub CloseWorkbook()
Dim wkb1 As Workbook

Set wkb1 = Workbooks.Open(FileName:=”C:\Data\SalesData1.xlsx”)
Range(“A1”).Value = Format(Date, “ddd mmm dd, yyyy”)
Range(“A1”).EntireColumn.AutoFit
wkb1.Close SaveChanges:=True

End Sub

If you don’t want to save changes, you can set the SaveChanges parameter of the Close method to False.

Another situation that could arise is where you want to leave a changed workbook open to view, but
you don’t want to save those changes or be prompted to save the changes when you close the workbook
or Excel. In this situation, you can set the Saved property of the workbook to True and Excel will think
that there are no changes to be saved. You should make doubly sure you would want to do this before
you add this line of code:

ActiveWorkbook.Saved = True

The Sheets Collection
Within a Workbook object, there is a Sheets collection whose members can be either Worksheet objects
or Chart objects. For compatibility with older versions of Excel, they can also be DialogSheets,
Excel4MacroSheets, and Excel4InternationalMacroSheets. Excel 5 and Excel 95 included mod-
ules as part of the Sheets collection, but since Excel 97, modules have moved to the VBE.

Worksheet and Chart objects also belong to their own collections — the Worksheets collection and the
Charts collection, respectively. The Charts collection only includes chart sheets — that is, charts that
are embedded in a worksheet are not members of the Charts collection. Charts embedded in worksheets
are contained in ChartObject objects, which are members of the ChartObjects collection of the work-
sheet. See Chapter 9 for more details.

Worksheets
You can refer to a worksheet by its name or index number in the Sheets collection and the Worksheets
collection. If you know the name of the worksheet you want to work on, it is appropriate, and usually

Modules in workbooks created under Excel 5 or Excel 95 are considered by later ver-
sions of Excel to belong to a hidden Modules collection and can still be manipulated
by the code originally set up in the older versions.

83

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 83

safer, to use that name to specify the required member of the Worksheets collection. If you want to pro-
cess all the members of the Worksheets collection — in a For...Next loop, for example — you would
usually reference each worksheet by its index number.

The index number of a worksheet in the Worksheets collection can be different from the index number
of the worksheet in the Sheets collection. In the workbook shown in Figure 3-1, Sheet1 can be refer-
enced by any of the following:

ActiveWorkbook.Sheets(“Sheet1”)
ActiveWorkbook.Worksheets(“Sheet1”)
ActiveWorkbook.Sheets(2)
ActiveWorkbook.Worksheets(1)

Figure 3-1

There is a trap, however, concerning the Index property of the Worksheet object in that it returns
the value of the index in the Sheets collection, not the Worksheets collection. The following code
tells you that Worksheets(1) is Sheet1 with index 2, Worksheets(2) is Sheet2 with index 4, and
Worksheets(3) is Sheet3 with index 5. You can see the message for Sheet2 in Figure 3-2.

Sub WorksheetIndex()
Dim i As Integer

For i = 1 To ThisWorkbook.Worksheets.Count
MsgBox ThisWorkbook.Worksheets(i).Name & _

“ has Index = “ & _
ThisWorkbook.Worksheets(i).Index

Next i
End Sub

Figure 3-2

84

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 84

You should avoid using the Index property of the worksheet, if possible, because it leads to confusing
code. The following example shows how you must use the worksheet Index as an index in the Sheets
collection, not the Worksheets collection. The macro adds a new empty chart sheet to the left of every
worksheet in the active workbook:

Sub InsertChartsBeforeWorksheets()
Dim wks As Worksheet

For Each wks In Worksheets
Charts.Add Before:=Sheets(wks.Index)

Next wks
End Sub

In most cases you can avoid using the worksheet Index property. The preceding code should have been
written as follows:

Sub InsertChartsBeforeWorksheets2()
Dim wks As Worksheet

For Each wks In Worksheets
Charts.Add Before:=wks

Next wks
End Sub

Strangely enough, Excel will not allow you to add a new chart after the last worksheet, although it will
let you move a chart after the last worksheet. If you want to insert chart sheets after each worksheet, you
can use code like the following:

Sub InsertChartsAfterWorksheets()
Dim wks As Worksheet
Dim cht As Chart

For Each wks In Worksheets
Set cht = Charts.Add
cht.Move After:=wks

Next wks
End Sub

Chart sheets are covered in more detail in Chapter 8.

Copy and Move
The Copy and Move methods of the Worksheet object allow you to copy or move one or more work-
sheets in a single operation. They both have two optional parameters that allow you to specify the desti-
nation of the operation. The destination can be either before or after a specified sheet. If you do not use
one of these parameters, the worksheet will be copied or moved to a new workbook.

Copy and Move do not return any value or reference, so you have to rely on other techniques if you want
to create an object variable referring to the copied or moved worksheets. This is not generally a problem,
because the first sheet created by a Copy operation, or the first sheet resulting from moving a group of
sheets, will be active immediately after the operation.

85

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 85

Say you have a workbook like that shown in Figure 3-3 and want to add another worksheet for
February — and then more worksheets for the following months. The numbers on rows 3 and 4 are the
input data, but row 5 contains calculations to give the difference between rows 3 and 4. When you
copy the worksheet, you will want to clear the input data from the copies but retain the headings and
formulas.

Figure 3-3

The following code creates a new monthly worksheet that is inserted into the workbook after the latest
month. It copies the first worksheet, removes any numeric data from it but leaves any headings or for-
mulas in place, and then renames the worksheet to the new month and year:

Sub NewMonth()
‘Copy the first worksheet in the active workbook
‘to create a new monthly sheet with name of format “mmm yyyy”.
‘The first worksheet must have a name that is in a recognizable
‘date format.
Dim wks As Worksheet
Dim dteFirstDate As Date
Dim iFirstMonth As Integer
Dim iFirstYear As Integer
Dim iCount As Integer

‘Initialize counter to number of worksheets
iCount = Worksheets.Count

‘Copy first worksheet after last worksheet and increase counter
Worksheets(1).Copy After:=Worksheets(iCount)
iCount = iCount + 1

‘Assign last worksheet to wks
Set wks = Worksheets(iCount)

‘Calculate date from first worksheet name
dteFirstDate = DateValue(Worksheets(1).Name)

‘Extract month and year components
iFirstMonth = Month(dteFirstDate)
iFirstYear = Year(dteFirstDate)

‘Compute and assign new worksheet name

86

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 86

wks.Name = _
Format(DateSerial(iFirstYear, iFirstMonth + iCount - 1, 1), “mmm yyyy”)

‘Clear data cells in wks, avoiding error if there is no data
wks.Cells.SpecialCells(xlCellTypeConstants, 1).ClearContents

End Sub

The result of the copy is shown in Figure 3-4.

Figure 3-4

NewMonth first determines how many worksheets are in the workbook and then copies the current
worksheet, appending it to the workbook. It updates the number of worksheets in iCount and creates
an object variable wks that refers to the copied sheet. It then uses the DateValue function to convert the
name of the January worksheet to a date.

NewMonth extracts the month and year of the date into the two integer variables iFirstMonth and
iFirstYear using the Month and Year functions. It then uses the DateSerial function to calculate a
new date that follows on from the last one. This calculation is valid even when new years are created,
because DateSerial, like the worksheet DATE function, treats month numbers greater than 12 as the
appropriate months in the following year.

NewMonth uses the VBA Format function to convert the new date into “mmm yyyy” format as a string. It
assigns the text to the Name property of the new worksheet. Finally, NewMonth clears the contents of any
cells containing numbers, using the SpecialCells method to find the numbers. SpecialCells is dis-
cussed in more detail in the following chapter on the Range object. The On Error Resume Next state-
ment suppresses a run-time error when there is no numeric data to be cleared.

Grouping Worksheets
You can manually group the sheets in a workbook by clicking a sheet tab, then holding down Shift or
Ctrl and clicking on another sheet tab. Shift groups all the sheets between the two tabs. Ctrl adds just
the new sheet to the group. You can also group sheets in VBA by using the Select method of the
Worksheets collection in conjunction with the Array function. The following code groups the first,
third, and fifth worksheets and makes the third worksheet active:

Worksheets(Array(1, 3, 5)).Select
Worksheets(3).Activate

87

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 87

In addition to this, you can also create a group using the Select method of the Worksheet object. The
first sheet is selected in the normal way. Other worksheets are added to the group by using the Select
method while setting its Replace parameter to False:

Sub GroupSheets()
Dim asNames(1 To 3) As String
Dim i As Integer

asNames(1) = “Jan 2007”
asNames(2) = “Mar 2007”
asNames(3) = “May 2007”

Worksheets(asNames(1)).Select

For i = 2 To 3
Worksheets(asNames(i)).Select Replace:=False

Next i

End Sub

This technique is particularly useful when the names have been specified by user input, via a multi-
select list box, for example.

The following code places the value 100 into the A1 cell of worksheets with index numbers 1, 3, and 5
and bolds the numbers:

Sub FormatGroup()
Dim shts As Sheets
Dim wks As Worksheet

Set shts = Worksheets(Array(1, 3, 5))

For Each wks In shts
wks.Range(“A1”).Value = 100
wks.Range(“A1”).Font.Bold = True

Next wks

End Sub

One benefit of grouping sheets manually is that any data inserted into the active
sheet and any formatting applied to the active sheet is automatically copied to the
other sheets in the group. However, only the active sheet is affected when you apply
changes to a grouped sheet using VBA code. If you want to change the other mem-
bers of the group, you need to set up a For Each...Next loop and carry out the
changes on each member.

88

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 88

The Window Object
In VBA, if you want to detect what sheets are currently grouped, you use the SelectedSheets property of
the Window object. You might think that SelectedSheets should be a property of the Workbook object,
but that is not the case. SelectedSheets is a property of the Window object, because you can open many
windows on the same workbook and each window can have different groups, as Figure 3-5 shows.

Figure 3-5

There are many other common workbook and worksheet properties that you might presume to be prop-
erties of the Workbook object or the Worksheet object, but which are actually Window object properties.
Some examples of these are ActiveCell, DisplayFormulas, DisplayGridlines, DisplayHeadings,
and Selection. See the Window object in Appendix A for a full list.

The following code determines which cells are selected on the active sheet, makes them bold, and then
goes on to apply bold format to the corresponding ranges on the other sheets in the group:

Sub FormatSelectedGroup()
Dim sht As Object
Dim sRangeAddress As String

sRangeAddress = Selection.Address

For Each sht In ActiveWindow.SelectedSheets
If TypeName(sht) = “Worksheet” Then
sht.Range(sRangeAddress).Font.Bold = True

End If
Next sht

End Sub

89

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 89

The address of the selected range on the active sheet is captured in sRangeAddress as a string. It is possi-
ble to activate only the selected sheets and apply bold format to the selected cells. Group mode ensures that
the selections are the same on each worksheet. However, activating sheets is a slow process. By capturing
the selection address as a string, you can generate references to the same range on other sheets using the
Range property of the other sheets. The address is stored as a string in the form “B2:E2,A3:A4”,
for example, and need not be a single contiguous block.

FormatSelectedGroup allows for the possibility that the user can include a chart sheet or another type
of sheet in the group of sheets. It checks that the TypeName of the sheet is indeed “Worksheet” before
applying the new format.

Synchronizing Worksheets
When you move from one worksheet in a workbook to another, the sheet you activate will be configured
as it was when it was last active. The top-left corner cell, the selected range of cells, and the active cell
will be in exactly the same positions as they were the last time the sheet was active, unless you are in
Group mode. In Group mode, the selection and active cell are synchronized across the group. However,
the top-left corner cell is not synchronized in Group mode, and it is possible that you will not be able to
see the selected cells and the active cell when you activate a worksheet.

If you want to synchronize your worksheets completely, even out of Group mode, you can add the fol-
lowing code to the ThisWorkbook module of your workbook:

Dim mshtOldSheet As Object

Private Sub Workbook_SheetDeactivate(ByVal Sht As Object)
‘If the deactivated sheet is a worksheet,
‘store a reference to it in mshtOldSheet
If TypeName(Sht) = “Worksheet” Then Set mshtOldSheet = Sht

End Sub

Private Sub Workbook_SheetActivate(ByVal NewSheet As Object)
Dim lCurrentCol As Long
Dim lCurrentRow As Long
Dim sCurrentCell As String
Dim sCurrentSelection As String

On Error GoTo Fin
If mshtOldSheet Is Nothing Then Exit Sub
If TypeName(NewSheet) <> “Worksheet” Then Exit Sub
Application.ScreenUpdating = False
Application.EnableEvents = False

mshtOldSheet.Activate ‘Get the old worksheet configuration
lCurrentCol = ActiveWindow.ScrollColumn
lCurrentRow = ActiveWindow.ScrollRow

It is necessary to declare sht as the generic Object type if you want to allow it to
refer to different sheet types. There is a Sheets collection in the Excel object model,
but there is no Sheet object.

90

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 90

sCurrentSelection = Selection.Address
sCurrentCell = ActiveCell.Address

NewSheet.Activate ‘Set the new worksheet configuration
ActiveWindow.ScrollColumn = lCurrentCol
ActiveWindow.ScrollRow = lCurrentRow
Range(sCurrentSelection).Select
Range(sCurrentCell).Activate

Fin:
Application.EnableEvents = True

End Sub

The Dim mshtOldSheet as Object statement must be at the top of the module in the declarations area,
so that mshtOldSheet is a module-level variable that will retain its value while the workbook is open
and can be accessed by the two event procedures. The Workbook_SheetDeactivate event procedure
is used to store a reference to any worksheet that is deactivated. The Deactivate event occurs after
another sheet is activated, so it is too late to store the active window properties. The procedure’s Sht
parameter refers to the deactivated sheet and its value is assigned to mshtOldSheet.

The Workbook_SheetActivate event procedure executes after the Deactivate procedure. The On
Error GoTo Fin statement ensures that, if an error occurs, there are no error messages displayed and
that control jumps to the Fin: label where event processing is enabled, just in case event processing has
been switched off.

The first If tests check that mshtOldSheet has been defined, indicating that a worksheet has been deac-
tivated during the current session. The second If test checks that the active sheet is a worksheet. If
either If test fails, the procedure exits. These tests allow for other types of sheets, such as charts, being
deactivated or activated.

Next, screen updating is turned off to minimize screen flicker. It is not possible to eliminate all flicker,
because the new worksheet has already been activated and the user will get a brief glimpse of its old
configuration before it is changed. Then, event processing is switched off so that no chain reactions
occur. To get the data it needs, the procedure has to reactivate the deactivated worksheet, which would
trigger the two event procedures again.

After reactivating the old worksheet, the ScrollRow (the row at the top of the screen), the
ScrollColumn (the column at the left of the screen), the addresses of the current selection, and the
active cell are stored. The new worksheet is then reactivated and its screen configuration is set to match
the old worksheet. Because there is no Exit Sub statement before the Fin: label, the final statement is
executed to make sure event processing is enabled again.

Summary
In this chapter you saw many techniques for handling workbooks and worksheets in VBA code. You
have seen how to:

❑ Create new workbooks and open existing workbooks.

❑ Handle saving workbook files and overwriting existing files.

❑ Move and copy worksheets and interact with Group mode.

91

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 91

You have also seen that you access some workbook and worksheet features through the Window object,
and have been shown that you can synchronize your worksheets using workbook events procedures.
See Chapter 9 for more discussion on this topic.

In addition, a number of utility macros have been presented, including routines to check that a work-
book is open and to extract a filename from the full file path, and a simple macro that confirms that a file
does indeed exist.

92

Chapter 3: Workbooks and Worksheets

06_046432 ch03.qxp 2/16/07 9:54 PM Page 92

Using Ranges
The Range object is probably the object you will utilize the most in your VBA code. A Range object
can be a single cell, a rectangular block of cells, or the union of many rectangular blocks (a non-
contiguous range). A Range object is contained within a Worksheet object.

The Excel object model does not support three-dimensional Range objects that span multiple
worksheets — every cell in a single Range object must be on the same worksheet. If you want to
process 3D ranges, you must process a Range object in each worksheet separately.

This chapter examines the most useful properties and methods of the Range object.

Activate and Select
The Activate and Select methods cause some confusion, and it is sometimes claimed that there
is no difference between them. To understand the difference between them, you first need to
understand the difference between the ActiveCell and Selection properties of the
Application object. The screen in Figure 4-1 illustrates this.

Selection refers to B3:E10. ActiveCell refers to C5, the cell where data will be inserted if the
user types something. ActiveCell only ever refers to a single cell, whereas Selection can refer
to a single cell or a range of cells. The active cell is usually the top left-hand cell in the selection,
but can be any cell in the selection, as shown in Figure 4-1. You can manually change the position
of the active cell in a selection by pressing Tab, Enter, Shift+Tab, or Shift+Enter.

You can achieve the combination of selection and active cell shown in Figure 4-1 by using the fol-
lowing code:

Range(“B3:E10”).Select
Range(“C5”).Activate

07_046432 ch04.qxp 2/16/07 9:54 PM Page 93

Figure 4-1

If you try to activate a cell that is outside the selection, you will change the selection, and the selection
will become the activated cell.

Confusion also arises because you are permitted to specify more than one cell when you use the Activate
method. Excel’s behavior is determined by the location of the top-left cell in the range you activate. If the
top-left cell is within the current selection, the selection does not change and the top-left cell becomes
active. The following example creates the screen in Figure 4-1:

Range(“B3:E10”).Select
Range(“C5:Z100”).Activate

If the top-left cell of the range you activate is not in the current selection, the range that you activate
replaces the current selection, as shown by the following:

Range(“B3:E10”).Select
Range(“A2:C5”).Activate

In this case, the Select is overruled by the Activate and A2:C5 becomes the selection.

To avoid errors, it is recommended that you don’t use the Activate method to select
a range of cells. If you get into the habit of using Activate instead of Select, you
will get unexpected results when the top-left cell you activate is within the current
selection.

94

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 94

Range Proper ty
You can use the Range property of the Application object to refer to a Range object on the active
worksheet. The following example refers to a Range object that is the B2 cell on the currently active
worksheet:

Application.Range(“B2”)

Note that you can’t test code examples like this one as they are presented. However, as long as you are
referring to a range on the active worksheet, these examples can be tested by the Immediate window of
the VBE, as follows:

Application.Range(“B2”).Select

It is important to note that the preceding reference to a Range object will cause an error if there is no
worksheet currently active. For example, it will cause an error if you have a chart sheet active.

Because the Range property of the Application object is a member of <globals>, you can omit the ref-
erence to the Application object, as follows:

Range(“B2”)

You can refer to more complex Range objects than a single cell. The following example refers to a single
block of cells on the active worksheet:

Range(“A1:D10”)

And this code refers to a non-contiguous range of cells:

Range(“A1:A10,C1:C10,E1:E10”)

The Range property also accepts two arguments that refer to diagonally opposite corners of a range.
This gives you an alternative way to refer to the A1:D10 range:

Range(“A1”,”D10”)

Range also accepts names that have been applied to ranges. If you have defined a range of cells with the
name SalesData, you can use the name as an argument:

Range(“SalesData”)

The arguments can be objects as well as strings, which provides much more flexibility. For example, you
might want to refer to every cell in column A, from cell A1 down to a cell that has been assigned the
name LastCell:

Range(“A1”,Range(“LastCell”))

95

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 95

Shortcut Range References
You can also refer to a range by enclosing an A1 style range reference or a name in square brackets,
which is a shortcut form of the Evaluate method of the Application object. It is equivalent to using a
single string argument with the Range property, but is shorter:

[B2]
[A1:D10]
[A1:A10,C1:C10,E1:E10]
[SalesData]

This shortcut is convenient when you want to refer to an absolute range. However, it is not as flexible as
the Range property, because it cannot handle variable input as strings or object references.

Ranges on Inactive Worksheets
If you want to work efficiently with more than one worksheet at the same time, it is important to be able
to refer to ranges on worksheets without having to activate those worksheets. Switching between work-
sheets is slow, and code that does this is more complex than it needs to be. This also leads to code that is
harder to read and debug.

All the examples so far apply to the active worksheet, because they have not been qualified by any spe-
cific worksheet reference. If you want to refer to a range on a worksheet that is not active, simply use the
Range property of the required Worksheet object:

Worksheets(“Sheet1”).Range(“C10”)

If the workbook containing the worksheet and range is not active, you need to further qualify the refer-
ence to the Range object as follows:

Workbooks(“Sales.xls”).Worksheets(“Sheet1”).Range(“C10”)

However, you need to be careful if you want to use the Range property as an argument to another
Range property. Say you want to sum A1:A10 on Sheet1 while Sheet2 is the active sheet. You might be
tempted to use the following code, which results in a run-time error:

MsgBox WorksheetFunction.Sum(Sheets(“Sheet1”).Range(Range(“A1”), _
Range(“A10”)))

The problem is that Range(“A1”) and Range(“A10”) refer to the active sheet, Sheet2. You need to use
fully qualified properties:

MsgBox WorksheetFunction.Sum(Sheets(“Sheet1”).Range(_
Sheets(“Sheet1”).Range(“A1”), _
Sheets(“Sheet1”).Range(“A10”)))

In this situation it is more elegant, and more efficient, to use a With...End With construct:

With Sheets(“Sheet1”)
MsgBox WorksheetFunction.Sum(.Range(.Range(“A1”), .Range(“A10”)))

End With

96

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 96

Range Property of a Range Object
The Range property is normally used as a property of the Worksheet object. You can also use the Range
property of the Range object. In this case, it acts as a reference relative to the Range object itself. The fol-
lowing is a reference to the D4 cell:

Range(“C3”).Range(“B2”)

If you consider a virtual worksheet that has C3 as the top left-hand cell, and B2 is one column across and
one row down on the virtual worksheet, you arrive at D4 on the real worksheet.

You will see this “Range in a Range” technique used in code generated by the macro recorder when rela-
tive recording is used (discussed in Chapter 2). For example, the following code was recorded when the
active cell and the four cells to its right were selected while recording relatively:

ActiveCell.Range(“A1:E1”).Select

Because the preceding code is obviously very confusing, it is best to avoid this type of referencing. The
Cells property is a much better way to reference relatively.

Cells Property
You can use the Cells property of the Application, Worksheet, or Range objects to refer to the Range
object containing all the cells in a Worksheet object or Range object. The following two lines of code
each refer to a Range object that contains all the cells in the active worksheet:

ActiveSheet.Cells
Application.Cells

Because the Cells property of the Application object is a member of <globals>, you can also refer to
the Range object containing all the cells on the active worksheet as follows:

Cells

You can use the Cells property of a Range object as follows:

Range(“A1:D10”).Cells

However, this code achieves nothing because it simply refers to the original Range object it qualifies.

You can refer to a specific cell relative to the Range object by using the Item property of the Range object
and specifying the relative row and column positions. The row parameter is always numeric. The col-
umn parameter can be numeric, or you can use the column letters entered as a string. The following are
both references to the Range object containing the B2 cell in the active worksheet:

Cells.Item(2,2)
Cells.Item(2,”B”)

Because the Item property is the default property of the Range object, you can omit it as follows:

Cells(2,2)
Cells(2,”B”)

97

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 97

The numeric parameters are particularly useful when you want to loop through a series of rows or
columns using an incrementing index number. The following example loops through rows 1 to 10 and
columns A to E in the active worksheet, placing values in each cell:

Sub FillCells()
Dim lRow As Long, lColumn As Long

‘Using Cells property to refer to range

‘Loop through rows
For lRow = 1 To 10

‘Loop through columns
For lColumn = 1 To 5

Cells(lRow, lColumn).Value = lRow * lColumn

Next lColumn

Next lRow
End Sub

This gives the results shown in Figure 4-2.

Figure 4-2

Cells Used in Range
You can use the Cells property to specify the parameters within the Range property to define a Range
object. The following code refers to A1:E10 in the active worksheet:

Range(Cells(1,1), Cells(10,5))

This type of referencing is particularly powerful because you can specify the parameters using numeric
variables, as shown in the previous looping example.

98

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 98

Ranges of Inactive Worksheets
As with the Range property, you can apply the Cells property to a worksheet that is not currently active:

Worksheets(“Sheet1”).Cells(2,3)

If you want to refer to a block of cells on an inactive worksheet using the Cells property, the same pre-
cautions apply as with the Range property. You must make sure you qualify the Cells property fully. If
Sheet2 is active, and you want to refer to the range A1:E10 on Sheet1, the following code will fail because
Cells(1,1) and Cells(10,5) are properties of the active worksheet:

Sheets(“Sheet1”).Range(Cells(1,1), Cells(10,5)).Font.Bold = True

A With...End With construct is an efficient way to incorporate the correct sheet reference:

With Sheets(“Sheet1”)
.Range(.Cells(1, 1), .Cells(10, 5)).Font.Bold = True

End With

More on the Cells Property of the Range Object
The Cells property of a Range object provides a nice way to refer to cells relative to a starting cell, or
within a block of cells. The following refers to cell F11:

Range(“D10:G20”).Cells(2,3)

If you want to examine a range with the name SalesData and color any figure under 100 red, you can
use the following code:

Sub ColorCells()
Dim rngSales As Range
Dim lRow As Long, lColumn As Long

‘Color cells using Cells property
Set rngSales = Range(“SalesData”)

For lRow = 1 To rngSales.Rows.Count

For lColumn = 1 To rngSales.Columns.Count

If rngSales.Cells(lRow, lColumn).Value < 100 Then
rngSales.Cells(lRow, lColumn).Font.ColorIndex = 3

Else
rngSales.Cells(lRow, lColumn).Font.ColorIndex = 1

End If

Next lColumn

Next lRow

End Sub

99

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 99

The result is shown in Figure 4-3.

Figure 4-3

It is not, in fact, necessary to confine the referenced cells to the contents of the Range object. You can ref-
erence cells outside the original range. This means that you really only need to use the top-left cell of the
Range object as a starting point. This code refers to F11, as in the earlier example:

Range(“D10”).Cells(2,3)

You can also use a shortcut version of this form of reference. The following is also a reference to cell F11:

Range(“D10”)(2,3)

Technically, this works because it is an allowable shortcut for the Item property of the Range object,
rather than the Cells property, as described previously:

Range(“D10”).Item(2,3)

It is even possible to use zero or negative subscripts, as long as you don’t attempt to reference outside
the worksheet boundaries. This can lead to some odd results. The following code refers to cell C9:

Range(“D10”)(0,0)

If you want to count all the cells in an Excel 2007 worksheet, you need to be aware
that the Count property of the Range object is a Long Integer type and Cells.Count
can’t return the value of 17,179,869,184 cells, which exceeds the size of a Long. For
compatibility with previous versions of Excel, Count is retained as it was and is sup-
plemented by a new CountLarge property, which is a Variant that can return the
larger value.

100

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 100

The following refers to B8:

Range(“D10”)(-1,-1)

The previous Font.ColorIndex example using rngSales can be written as follows, using this technique:

Sub ColorCells2()
Dim rngSales As Range
Dim lRow As Long, lColumn As Long

‘Color cells using implied Item property
Set rngSales = Range(“SalesData”)

For lRow = 1 To rngSales.Rows.Count

For lColumn = 1 To rngSales.Columns.Count

If rngSales(lRow, lColumn).Value < 100 Then
rngSales(lRow, lColumn).Font.ColorIndex = 3

Else
rngSales(lRow, lColumn).Font.ColorIndex = 1

End If

Next lColumn

Next lRow
End Sub

There is actually a small increase in speed if you adopt this shortcut. Running the second example, the
increase is about 5% on my PC when compared to the first example.

Single-Parameter Range Reference
The shortcut range reference accepts a single parameter as well as two. If you are using this technique
with a range with more than one row, and the index exceeds the number of columns in the range, the
reference wraps within the columns of the range, down to the appropriate row.

The following refers to cell E10:

Range(“D10:E11”)(2)

The following refers to cell D11:

Range(“D10:E11”)(3)

The index can exceed the number of cells in the Range object and the reference will continue to wrap
within the Range object’s columns. The following refers to cell D12:

Range(“D10:E11”)(5)

101

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 101

Qualifying a Range object with a single parameter is useful when you want to step through all the cells
in a range without having to separately track rows and columns. The ColorCells example can be fur-
ther rewritten as follows, using this technique:

Sub ColorCells3()
Dim rngSales As Range
Dim lCell As Long

‘Color cells using single parameter range reference
Set rngSales = Range(“SalesData”)

For lCell = 1 To rngSales.Count

If rngSales(lCell).Value < 100 Then
rngSales(lCell).Font.ColorIndex = 3

Else
rngSales(lCell).Font.ColorIndex = 1

End If

Next lCell
End Sub

In the fourth and final variation on the ColorCells theme, you can step through all the cells in a range
using a For Each...Next loop, if you do not need the index value of the For...Next loop for other
purposes:

Sub ColorCells4()
Dim rng As Range

‘Color cells using For Each...Next loop

For Each rng In Range(“SalesData”)

If rng.Value < 100 Then
rng.Font.ColorIndex = 6

Else
rng.Font.ColorIndex = 1

End If

Next rng

End Sub

Offset Proper ty
The Offset property of the Range object returns a similar object to the Cells property, but is different
in two ways. The first difference is that the Offset parameters are zero-based, rather than one-based, as
the term offset implies. These examples both refer to the A10 cell:

Range(“A10”).Cells(1,1)
Range(“A10”).Offset(0,0)

102

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 102

The second difference is that the Range object generated by Cells consists of one cell. The Range object
referred to by the Offset property of a range has the same number of rows and columns as the original
range. The following refers to B2:C3:

Range(“A1:B2”).Offset(1,1)

Offset is useful when you want to refer to ranges of equal sizes with a changing base point. For exam-
ple, you might have sales figures for January to December in B1:B12 and want to generate a three-month
moving average from March to December in C3:C12. The code to achieve this is:

Sub MovingAvgerage()
Dim rng As Range
Dim lRow As Long

‘Calculate moving average using Offset property
Set rng = Range(“B1:B3”)

For lRow = 3 To 12
Cells(lRow, “C”).Value = WorksheetFunction.Sum(rng) / 3
Set rng = rng.Offset(1, 0)

Next lRow

End Sub

The result of running the code is shown in Figure 4-4.

Figure 4-4

Resize Proper ty
You can use the Resize property of the Range object to refer to a range with the same top left-hand
corner as the original range, but with a different number of rows and columns. The following refers to
D10:E10:

Range(“D10:F20”).Resize(1,2)

103

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 103

Resize is useful when you want to extend or reduce a range by a row or column. For example, if you
have a data list, which has been given the name Database, and you have just added another row at the
bottom, you need to redefine the name to include the extra row. The following code extends the name by
the extra row:

With Range(“Database”)
.Resize(.Rows.Count + 1).Name = “Database”

End With

When you omit the second parameter, the number of columns remains unchanged. Similarly, you can
omit the first parameter to leave the number of rows unchanged. The following refers to A1:C10:

Range(“A1:B10”).Resize(, 3)

You can use the following code to search for a value in a list and, having found it, copy it and the two
columns to the right to a new location. The code to do this is:

Sub FindIt()
Dim rng As Range

‘Find data and use Resize property to copy range
Set rng = Range(“A1:A12”).Find(What:=”Jun”, _

LookAt:=xlWhole, LookIn:=xlValues)
If rng Is Nothing Then

MsgBox “Data not found”
Exit Sub

Else
rng.Resize(1, 3).Copy Destination:=Range(“G1”)

End If

End Sub

And the result is shown in Figure 4-5.

Figure 4-5

104

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 104

The Find method does not act like the Edit ➪ Find command. It returns a reference to the found cell as
a Range object, but it does not select the found cell. If Find does not locate a match, it returns a null
object that you can test for with the Is Nothing expression. If you attempt to copy the null object, a
run-time error occurs.

SpecialCells Method
When you press the F5 key in a worksheet, the Go To dialog box appears. You can then click the Special
button to show the dialog box in Figure 4-6.

Figure 4-6

This dialog allows you to do a number of useful things, such as find the last cell in the worksheet or all
the cells with numbers rather than calculations. As you might expect, all these operations can be carried
out in VBA code. Some have their own methods, but most of them can be performed using the
SpecialCells method of the Range object.

Last Cell
The following code determines the last row and column in the worksheet:

Set rngLast = Range(“A1”).SpecialCells(xlCellTypeLastCell)
lLastRow = rngLast.Row
lLastCol = rngLast.Column

The last cell is considered to be the intersection of the highest-numbered row in the worksheet that con-
tains information and the highest-numbered column in the worksheet that contains information. Excel
also includes cells that have contained information during the current session, even if you have deleted
that information. The last cell is not reset until you save the worksheet.

105

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 105

Excel considers formatted cells and unlocked cells to contain information. As a result, you will often find
the last cell well beyond the region containing data, especially if the workbook has been imported from
another spreadsheet application, such as Lotus 1-2-3. If you want to consider only cells that contain data
in the form of numbers, text, and formulas, you can use the following code:

Sub GetRealLastCell()
Dim lRealLastRow As Long
Dim lRealLastColumn As Long

‘Get bottom right corner of cells with data
Range(“A1”).Select

On Error Resume Next
lRealLastRow = Cells.Find(“*”, Range(“A1”), xlFormulas, , xlByRows, _

xlPrevious).Row
lRealLastColumn = Cells.Find(“*”, Range(“A1”), xlFormulas, , _

xlByColumns, xlPrevious).Column

Cells(lRealLastRow, lRealLastColumn).Select

End Sub

In this example, the Find method searches backward from the A1 cell (which means that Excel wraps
around the worksheet and starts searching from the last cell toward the A1 cell) to find the last row and
column containing any characters. The On Error Resume Next statement is used to prevent a run-time
error when the spreadsheet is empty.

If you want to get rid of the extra rows containing formats, you should select the entire rows by selecting
their row numbers and then clicking Edit ➪ Delete to remove them. You can also select the unnecessary
columns by their column letters and delete them. At this point, the last cell will not be reset. You can
save the worksheet to reset the last cell, or execute ActiveSheet.UsedRange in your code to perform a
reset. The following code will remove extraneous rows and columns and reset the last cell:

Sub DeleteUnusedFormats()
Dim lLastRow As Long, lLastColumn As Long
Dim lRealLastRow As Long, lRealLastColumn As Long

‘Delete from used range rows & columns that have no data

‘Detect end of used range including empty formatted cells
With Range(“A1”).SpecialCells(xlCellTypeLastCell)

lLastRow = .Row
lLastColumn = .Column

Note that it is necessary to declare the row number variables as Long, rather than
Integer, because integers can only be as high as 32,767 and Excel 2007 worksheets
can contain 1,048,576 rows.

106

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 106

End With

‘Find end of cells with data
lRealLastRow = _
Cells.Find(“*”, Range(“A1”), xlFormulas, , xlByRows, xlPrevious).Row

lRealLastColumn = _
Cells.Find(“*”, Range(“A1”), xlFormulas, , _

xlByColumns, xlPrevious).Column

‘If used range exceeds data, delete unused rows & columns
If lRealLastRow < lLastRow Then

Range(Cells(lRealLastRow + 1, 1), Cells(lLastRow, 1)).EntireRow.Delete
End If

If lRealLastColumn < lLastColumn Then
Range(Cells(1, lRealLastColumn + 1), _

Cells(1, lLastColumn)).EntireColumn.Delete
End If

ActiveSheet.UsedRange ‘Resets LastCell
End Sub

The EntireRow property of a Range object refers to a Range object that spans the entire spreadsheet — that
is, columns 1 to 16,384. (Or A to XFD on the rows contained in the original range. The EntireColumn prop-
erty of a Range object refers to a Range object that spans the entire spreadsheet [rows 1 to 1,048,576] in the
columns contained in the original object.)

Deleting Numbers
Sometimes it is useful to delete all the input data in a worksheet or template so it is more obvious where
new values are required. The following code deletes all the numbers in a worksheet, leaving the formu-
las intact:

On Error Resume Next
Cells.SpecialCells(xlCellTypeConstants, xlNumbers).ClearContents

Excel considers dates as numbers, and they will be cleared by the preceding code. If you have used dates
as headings and want to avoid this, you can use the following code:

On Error Resume Next
For Each rng In Cells.SpecialCells(xlCellTypeConstants, xlNumbers)
If Not IsDate(rng.Value) Then rng.ClearContents

Next rng

The preceding code should begin with the On Error statement if you want to pre-
vent a run-time error when there are no numbers to be found.

107

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 107

CurrentRegion Proper ty
If you have tables of data that are separated from surrounding data by at least one empty row and one
empty column, you can select an individual table using the CurrentRegion property of any cell in the
table. It is equivalent to the manual Ctrl+* keyboard shortcut (or Ctrl+A). In the Figure 4-7 worksheet,
you could select the Bananas table by clicking the A9 cell and pressing Ctrl+*.

Figure 4-7

The same result can be achieved with the following code, given that cell A9 has been named Bananas:

Range(“Bananas”).CurrentRegion.Select

This property is very useful for tables that change size over time. You can select all the months up to the
current month as the table grows during the year, without having to change the code each month.
Naturally, in your code, there is rarely any need to select anything. If you want to perform a consolida-
tion of the fruit figures into a single table in a sheet called Consolidation, and you have named the
top-left corner of each table with the product name, you can use the following code:

Sub Consolidate()
Dim vProducts As Variant
Dim rngCopy As Range ‘Range to be copied
Dim rngDestination As Range

108

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 108

Dim iProductIndex As Integer

‘Sum each product to give consolidated result

Application.ScreenUpdating = False

vProducts = Array(“Mangoes”, “Bananas”, “Lychees”, “Rambutan”)

Set rngDestination = Worksheets(“Consolidation”).Range(“B4”)

For iProductIndex = LBound(vProducts) To UBound(vProducts)

With Range(vProducts(iProductIndex)).CurrentRegion
‘Exclude headings from copy range
Set rngCopy = .Offset(1, 1).Resize(.Rows.Count - 1, .Columns.Count - 1)

End With

rngCopy.Copy

If iProductIndex = LBound(vProducts) Then
‘Paste the first product values
rngDestination.PasteSpecial xlPasteValues, xlPasteSpecialOperationNone

Else
‘Add the other product values
rngDestination.PasteSpecial xlPasteValues, xlPasteSpecialOperationAdd

End If

Next iProductIndex

Application.CutCopyMode = False ‘Clear the clipboard
End Sub

This gives the output in Figure 4-8.

Figure 4-8

Screen updating is suppressed to cut out screen flicker and speed up the macro. The Array function is a
convenient way to define relatively short lists of items to be processed. The LBound and UBound func-
tions are used to avoid worrying about which Option Base has been set in the declarations section of
the module. The code can be reused in other modules without a problem.

109

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 109

The first product is copied and its values are pasted over any existing values in the destination cells. The
other products are copied and their values added to the destination cells. The clipboard is cleared at the
end to prevent users accidentally carrying out another paste by pressing the Enter key.

End Proper ty
The End property emulates the operation of Ctrl+arrow key. If you have selected a cell at the top of a col-
umn of data, Ctrl+down arrow takes you to the next item of data in the column that is before an empty cell.
If there are no empty cells in the column, you go to the last data item in the column. If the cell after the
selected cell is empty, you jump to the next cell with data, if there is one, or the bottom of the worksheet.

The following code refers to the last data cell at the bottom of column A if there are no empty cells
between it and A1:

Range(“A1”).End(xlDown)

To go in other directions, you use the constants xlUp, xlToLeft, and xlToRight.

If there are gaps in the data, and you want to refer to the last cell in column A, you can start from the
bottom of the worksheet and go up, as long as data does not extend as far as A1048576:

Range(“A1048576”).End(xlUp)

In the section on rows later in this chapter, you will see a way to avoid the A1048576 reference and gen-
eralize the preceding code for different versions of Excel.

Referring to Ranges with End
You can refer to a range of cells from the active cell to the end of the same column with:

Range(ActiveCell, ActiveCell.End(xlDown)).Select

Say you have a table of data, starting at cell B3, which is separated from surrounding data by an empty
row and an empty column. You can refer to the table, as long as it has continuous headings across the
top and continuous data in the last column, using this line of code:

Range(“B3”, Range(“B3”).End(xlToRight).End(xlDown)).Select

The effect, in this case, is the same as using the CurrentRegion property, but End has many more uses,
as you will see in the following examples.

As usual, there is no need to select anything if you want to operate on a Range object in VBA. The fol-
lowing code copies the continuous headings across the top of Sheet1 to the top of Sheet2:

With Worksheets(“Sheet1”).Range(“A1”)
.Range(.Cells(1), .End(xlToRight)).Copy Destination:= _

Worksheets(“Sheet2”).Range(“A1”)
End With

110

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 110

This code can be executed, no matter what sheet is active, as long as the workbook that contains Sheet1
and Sheet2 is active.

Summing a Range
Say you want to place a SUM function in the active cell to add the values of the cells below it, down to the
next empty cell. You can do that with the following code:

With ActiveCell
Set rng = Range(.Offset(1), .Offset(1).End(xlDown))
.Formula = “=SUM(“ & rng.Address & “)”

End With

The Address property of the Range object returns an absolute address by default. If you want to be able
to copy the formula to other cells and sum the data below them, you can change the address to a relative
one and perform the copy as follows:

With ActiveCell
Set rng = Range(.Offset(1), .Offset(1).End(xlDown))
.Formula = “=SUM(“ & rng.Address(RowAbsolute:=False, _

ColumnAbsolute:=False) & “)”
.Copy Destination:=Range(.Cells(1), .Offset(1).End(xlToRight).Offset(-1))

End With

The end of the destination range is determined by dropping down a row from the SUM, finding the last
data column to the right, and popping back up a row.

Figure 4-9 shows what you get after selecting B2 and running the code.

Figure 4-9

111

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 111

Columns and Rows Proper ties
Columns and Rows are properties of the Application, Worksheet, and Range objects. They return a
reference to all the columns or rows in a worksheet or range. In each case, the reference returned is a
Range object, but this Range object has some odd characteristics that might make you think there are
such things as a “Column object” and a “Row object,” which do not exist in Excel. They are useful when
you want to count the number of rows or columns, or process all the rows or columns of a range.

Excel 97 increased the number of worksheet rows from the 16,384 in previous versions to 65,536. Excel
2007 has increased the number to 1,048,576. If you want to write code to detect the number of rows in
the active sheet, you can use the Count property of Rows:

Rows.Count

This is useful if you need a macro that will work with all versions of Excel VBA and detect the last row
of data in a column, working from the bottom of the worksheet:

Cells(Rows.Count, “A”).End(xlUp).Select

If you have a multi-column table of data in a range named Data, and you want to step through each row
of the table, making every cell in each row bold where the first cell is greater than 1000, you can use:

For Each rngRow In Range(“Data”).Rows

If rngRow.Cells(1).Value > 1000 Then
rngRow.Font.Bold = True

Else
rngRow.Font.Bold = False

End If

Next rngRow

This provides the result shown in Figure 4-10.

Figure 4-10

112

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 112

Curiously, you cannot replace rngRow.Cells(1) with rngRow(1), as you can with a normal Range
object, because it returns a reference to the entire row and causes a run-time error. It seems that there is
something special about the Range object referred to by the Rows and Columns properties. You may find
it helps to think of them as Row and Column objects, even though such objects do not officially exist.

Areas
You need to be careful when using the Columns or Rows properties of non-contiguous ranges, such as
those returned from the SpecialCells method when locating the numeric cells or blank cells in a
worksheet, for example. Recall that a non-contiguous range consists of a number of separate rectangular
blocks. If the cells are not all in one block, and you use the Rows.Count properties, you only count the
rows from the first block. The following code generates an answer of 5, because only the first range,
A1:B5, is evaluated:

Range(“A1:B5,C6:D10,E11:F15”).Rows.Count

The blocks in a non-contiguous range are Range objects contained within the Areas collection and can
be processed separately. The following displays the address of each of the three blocks in the Range
object, one at a time:

For Each rng In Range(“A1:B5,C6:D10,E11:F15”).Areas
MsgBox rng.Address

Next rng

The worksheet shown in Figure 4-11 contains sales estimates that have been entered as numbers. The
cost figures are calculated by formulas.

Figure 4-11

113

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 113

The following code copies all the numeric constants in the active sheet to blocks in the sheet named
Constants, leaving an empty row between each block:

Sub CopyAreas()
Dim rng As Range, rngDestination As Range

‘Copy the areas in a non-contiguous range

‘Set the destination range
Set rngDestination = Worksheets(“Constants”).Range(“A1”)

‘Process each non-contiguous area of numeric values
For Each rng In Cells.SpecialCells(xlCellTypeConstants, xlNumbers).Areas

rng.Copy Destination:=rngDestination

‘ Set next destination under previous block copied
Set rngDestination = rngDestination.Offset(rng.Rows.Count + 1)

Next rng

End Sub

This gives the result shown in Figure 4-12.

Figure 4-12

114

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 114

Union and Intersect Methods
Union and Intersect are methods of the Application object, but they can be used without preceding
them with a reference to Application because they are members of <globals>. They can be very use-
ful tools, as you shall see.

Use Union when you want to generate a range from two or more blocks of cells. Use Intersect when
you want to find the cells that are common to two or more ranges, or in other words, where the ranges
overlap. The following event procedure, entered in the module behind a worksheet, illustrates how you
can apply the two methods to prevent a user from selecting cells in two ranges B10:F20 and H10:L20.
One use for this routine is to prevent a user from changing data in these two blocks:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Dim rngForbidden As Range

‘Define forbidden range
Set rngForbidden = Union(Range(“B10:F20”), Range(“H10:L20”))

‘If selection does not overlap forbidden areas, do nothing
If Intersect(Target, rngForbidden) Is Nothing Then Exit Sub

‘Select A1 and issue warning
Range(“A1”).Select
MsgBox “You can’t select cells in “ & rngForbidden.Address, vbCritical

End Sub

If you are not familiar with event procedures, refer to the “Events” section in Chapter 1. For more infor-
mation on event procedures, see Chapter 10.

The Worksheet_SelectionChange event procedure is triggered every time the user selects a new
range in the worksheet associated with the module containing the event procedure. The preceding code
uses the Union method to define a forbidden range consisting of the two non-contiguous ranges. It then
uses the Intersect method, in the If test, to see if the Target range, which is the new user selection, is
within the forbidden range. Intersect returns Nothing if there is no overlap and the Sub exits. If there
is an overlap, the code in the two lines following the If test are executed — cell A1 is selected and a
warning message is issued to the user.

Empty Cells
You have seen that if you want to step through a column or row of cells until you get to an empty cell,
you can use the End property to detect the end of the block. Another way is to examine each cell, one at a
time, in a loop structure and stop when you find an empty cell. You can test for an empty cell with the
VBA IsEmpty function.

In the spreadsheet shown in Figure 4-13, you want to insert blank rows between each week to produce a
report that is more readable.

115

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 115

Figure 4-13

The following macro compares dates, using the VBA Weekday function to get the day of the week as a
number. By default, Sunday is day 1 and Saturday is day 7. If the macro finds that today’s day number is
less than yesterday’s, it assumes a new week has started and inserts a blank row:

Sub ShowWeeks()
Dim iToday As Integer
Dim iYesterday As Integer

‘Insert empty rows between weeks

Range(“A2”).Select

iYesterday = Weekday(ActiveCell.Value)

‘Loop until an empty cell is found
Do Until IsEmpty(ActiveCell.Value)

‘Select cell below
ActiveCell.Offset(1, 0).Select

‘Calculate day of week from date in cell

116

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 116

iToday = Weekday(ActiveCell.Value)

‘If day index has decreased, insert row
If iToday < iYesterday Then
ActiveCell.EntireRow.Insert
ActiveCell.Offset(1, 0).Select

End If

‘Store latest week day index
iYesterday = iToday

Loop
End Sub

The result is shown in Figure 4-14.

Figure 4-14

Note that many users detect an empty cell by testing for a zero-length string:

Do Until ActiveCell.Value = “”

117

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 117

This test works in most cases, and would have worked in the previous example, had it been used.
However, problems can occur if you are testing cells that contain formulas that can produce zero-length
strings, such as the following:

=IF(B2=”Kee”,”Trainee”,””)

The zero-length string test does not distinguish between an empty cell and a zero-length string resulting
from a formula. It is better practice to use the VBA IsEmpty function when testing for an empty cell.

Transferring Values between
Arrays and Ranges

If you want to process all the data values in a range, it is much more efficient to assign the values to a
VBA array and process the array rather than process the Range object itself. You can then assign the
array back to the range.

You can assign the values in a range to an array very easily, as follows:

vSalesData = Range(“A2:F10000”).Value

The transfer is very fast compared with stepping through the cells one at a time. Note that this is quite
different from creating an object variable referring to the range using:

Set rngSalesData = Range(“A2:F10000”)

When you assign range values to a variable such as vSalesData, the variable must have a Variant
data type. VBA copies all the values in the range to the variable, creating an array with two dimensions.
The first dimension represents the rows and the second dimension represents the columns, so you can
access the values by their row and column numbers in the array. To assign the value in the first row and
second column of the array to sCustomer, use:

sCustomer = vSalesData(1, 2)

When the values in a range are assigned to a Variant, the indexes of the array that is created are always
one-based, not zero-based, regardless of the Option Base setting in the declarations section of the mod-
ule. Also, the array always has two dimensions, even if the range has only one row or one column. This
preserves the inherent column and row structure of the worksheet in the array and is an advantage
when you write the array back to the worksheet.

For example, if you assign the values in A1:A10 to vSalesData, the first element is vSalesData(1,1)
and the last element is vSalesData(10,1). If you assign the values in A1:E1 to vSalesData, the first
element is vSalesData(1,1) and the last element is vSalesData(1,5).

You might want a macro that sums all the Revenues for Kee in the previous example. The following
macro uses the traditional method to directly test and sum the range of data:

118

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 118

Sub KeeTotal()
Dim dTotal As Double
Dim lRow As Long

‘Specify data range
With Range(“A2:F54”)

‘Loop through rows
For lRow = 1 To .Rows.Count

‘Sum rows for Kee
If .Cells(lRow, 2) = “Kee” Then dTotal = dTotal + .Cells(lRow, 6)

Next lRow

End With

‘Display result
MsgBox “Kee Total = “ & Format(dTotal, “$#,##0”)

End Sub

The following macro does the same job by first assigning the Range values to a Variant and processing
the resulting array. The speed increase is very significant, which can be a great advantage if you are han-
dling large ranges:

Sub KeeTotal2()
Dim vSalesData As Variant
Dim dTotal As Double
Dim lRow As Long

‘Assign range values to variant
vSalesData = Range(“A2:F54”).Value

‘Sum elements of the array
For lRow = 1 To UBound(vSalesData, 1)

If vSalesData(lRow, 2) = “Kee” Then dTotal = dTotal + vSalesData(lRow, 6)
Next lRow

‘Display result
MsgBox “Kee Total = “ & Format(dTotal, “$#,##0”)

End Sub

You can also assign an array of values directly to a Range. Say you want to place a list of numbers in col-
umn G of the RangeObject2.xlsm example, containing a 10% discount on Revenue for customer Kee
only. The following macro, once again, assigns the range values to a Variant for processing:

Sub KeeDiscount()
Dim vSalesData As Variant
Dim vaDiscount() As Variant
Dim i As Long

‘Assign range values to variant

119

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 119

vSalesData = Range(“A2:F54”).Value

‘Match output array row count to input row count
ReDim vaDiscount(1 To UBound(vSalesData, 1), 1 To 1)

‘Process data in variant
For i = 1 To UBound(vSalesData, 1)

If vSalesData(i, 2) = “Kee” Then
vaDiscount(i, 1) = vSalesData(i, 6) * 0.1

End If
Next i

‘Write array values to worksheet
Range(“G2”).Resize(UBound(vSalesData, 1), 1).Value = vaDiscount

End Sub

The code sets up a dynamic array called vaDiscount and uses ReDim to give vaDiscount the same
number of rows in vSalesData and one column, so that it retains a two-dimensional structure like a
range, even though there is only one column. After the values have been assigned to vaDiscount,
vaDiscount is directly assigned to the range in column G. Note that it is necessary to specify the correct
size of the range receiving the values, not just the first cell as in a worksheet copy operation.

The outcome of this operation is shown in Figure 4-15.

Figure 4-15

It is possible to use a one-dimensional array for vaDiscount. However, if you assign the one-dimensional
array to a range, it will be assumed to contain a row of data, not a column. It is possible to get around

120

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 120

this by using the worksheet Transpose function when assigning the array to the range. Say you have
changed the dimensions of vaDiscount as follows:

ReDim vaDiscount(1 To Ubound(vSalesData,1))

You could assign this version of vaDiscount to a column with:

Range(“G2”).Resize(UBound(vSalesData, 1), 1).Value = _
WorkSheetFunction.Transpose(vaDiscount)

Deleting Rows
A commonly asked question is, “What is the best way to delete unneeded rows from a spreadsheet?”
Generally, the requirement is to find the rows that have certain text in a given column and remove those
rows. The best solution depends on how large the spreadsheet is and how many items are likely to be
removed.

Say that you want to remove all the rows that contain the text Mangoes in column C. One way to do this
is to loop through all the rows and test every cell in column C. If you do this, it is better to test the last
row first and work up the worksheet row by row. This is more efficient because Excel does not have to
move any rows up that would later be deleted, which would not be the case if you worked from the top
down. Also, if you work from the top down, you can’t use a simple For...Next loop counter to keep
track of the row you are on, because as you delete rows, the counter and the row numbers no longer
correspond:

Sub DeleteRows()
Dim lRow As Long

‘Freeze screen
Application.ScreenUpdating = False

‘Process rows from last data row up to row 1
For lRow = Cells(Rows.Count, “C”).End(xlUp).Row To 1 Step -1

‘Delete rows with Mangoes in C column
If Cells(lRow, “C”).Value = “Mangoes” Then

Cells(lRow, “C”).EntireRow.Delete
End If

Next lRow
End Sub

A good programming principle to follow is this: If there is an Excel spreadsheet technique you can uti-
lize, it is likely to be more efficient than a VBA emulation of the same technique, such as the
For...Next loop used here.

Excel VBA programmers, especially when they do not have a strong background in the user interface fea-
tures of Excel, often fall into the trap of writing VBA code to perform tasks that Excel can handle already.
For example, you can write a VBA procedure to work through a sorted list of items, inserting rows with
subtotals. You can also use VBA to execute the Subtotal method of the Range object. The second method
is much easier to code, and it executes in a fraction of the time taken by the looping procedure.

121

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 121

However, it isn’t always obvious which Excel technique is the best one to employ. A fairly obvious Excel
contender to locate the cells to be deleted, without having to examine every row using VBA code, is the
Edit ➪ Find command. The following code uses the Find method to reduce the number of cycles spent
in VBA loops:

Sub DeleteRows2()
Dim rngFoundCell As Range

‘Freeze screen
Application.ScreenUpdating = False

‘Find a cell containing Mangoes
Set rngFoundCell = Range(“C:C”).Find(What:=”Mangoes”)

‘Keep looping until no more cells found
Do Until rngFoundCell Is Nothing

‘Delete found cell row
rngFoundCell.EntireRow.Delete

‘Find next
Set rngFoundCell = Range(“C:C”).FindNext

Loop
End Sub

This code is faster than the first procedure when there are not many rows to be deleted. As the percent-
age increases, the code becomes less efficient. Perhaps you need to look for a better Excel technique.

The fastest way to delete rows that I am aware of is provided by Excel’s AutoFilter feature:

Sub DeleteRows3()
Dim lLastRow As Long ‘Last row
Dim rng As Range
Dim rngDelete As Range

‘Freeze screen
Application.ScreenUpdating = False

‘Insert dummy row for dummy field name
Rows(1).Insert

‘Insert dummy field name
Range(“C1”).Value = “Temp”

With ActiveSheet
‘Reset Last Cell

It is much better to use VBA to harness the power built into Excel than to reinvent
existing Excel functionality.

122

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 122

.UsedRange

‘Determine last row
lLastRow = .Cells.SpecialCells(xlCellTypeLastCell).Row

‘Set rng to the C column data rows
Set rng = Range(“C1”, Cells(lLastRow, “C”))

‘Filter the C column to show only the data to be deleted
rng.AutoFilter Field:=1, Criteria1:=”Mangoes”

‘Get reference to the visible cells, including dummy field name
Set rngDelete = rng.SpecialCells(xlCellTypeVisible)

‘Turn off AutoFilter
rng.AutoFilter

‘Delete rows
rngDelete.EntireRow.Delete

‘Reset the last cell
.UsedRange

End With
End Sub

This is a bit more difficult to code, but it is significantly faster than the other methods, no matter how
many rows are to be deleted. To use AutoFilter, you need to have field names at the top of your data.
A dummy row is first inserted above the data, and a dummy field name is supplied for column C. The
AutoFilter is only carried out on column C, which hides all the rows except those that have the text
Mangoes.

The SpecialCells method is used to select only the visible cells in column C, which includes the
dummy field name row. A reference to these rows is assigned to rngDelete. The AutoFilter is turned
off and the rows in rngDelete are deleted.

Summary
This chapter has shown you the most important properties and methods that can be used to manage
ranges of cells in a worksheet. The emphasis was on techniques that are difficult or impossible to dis-
cover using the macro recorder. The properties and methods discussed include the following:

❑ Activate method

❑ Cells property

❑ Columns and Rows properties

❑ CurrentRegion property

❑ End property

123

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 123

❑ Offset property

❑ Range property

❑ Resize property

❑ Select method

❑ SpecialCells method

❑ Union and Intersect methods

You also saw how to assign a worksheet range of values to a VBA array for efficient processing, and how
to assign a VBA array of data to a worksheet range.

This chapter also emphasized that it is very rarely necessary to select cells or activate worksheets, which
the macro recorder invariably does because it can only record what you do manually. Activating cells
and worksheets is a very time-consuming process and should be avoided if you want your code to run
at maximum speed.

The final examples showed that it is usually best to utilize Excel’s existing capabilities, tapping into the
Excel object model, rather than to write a VBA-coded equivalent. And bear in mind that some Excel
techniques are better than others. Experimentation might be necessary to get the best code when speed
is important.

124

Chapter 4: Using Ranges

07_046432 ch04.qxp 2/16/07 9:54 PM Page 124

Using Names
One of the most useful features in Excel is the ability to create names. You can create a name by
selecting the Formulas tab on the Ribbon and clicking the Name Manager button to display the
Name Manager dialog box, shown in Figure 5-1. If the name refers to a range, you can create it by
selecting the range, typing the name into the Name box at the left side of the Formula bar, and
pressing Enter. However, in Excel, names can refer to more than just ranges.

Figure 5-1

A name can contain a number, text, or a formula. Such a name has no visible location on the work-
sheet and can only be viewed in the Name Manager dialog box. Therefore, you can use names to
store information in a workbook without having to place the data in a worksheet cell. Names can
be declared hidden so they don’t appear in the Name Manager dialog box. This can be a useful
way to keep the stored information from being seen by users.

08_046432 ch05.qxp 2/16/07 9:55 PM Page 125

The normal use of names is to keep track of worksheet ranges. This is particularly useful for tables of
data that vary in size. If you know that a certain name is used to define the range containing the data
you want to work on, your VBA code can be much simpler than it might otherwise be. It is also rela-
tively simple, given a few basic techniques, to change the definition of a name to allow for changes that
you make to the tables in your code.

The Excel object model includes a Names collection and a Name object that can be used in VBA code.
Names can be defined globally, at the workbook level, or they can be local, or worksheet-specific. The
Name Manager dialog box indicates the level of a name under Scope. If you create local names, you can
repeat the same name on more than one worksheet in the workbook. To make a Name object worksheet-
specific, if you are entering it in the Name box, you precede its Name property with the name of the
active worksheet and an exclamation mark. For example, you can type Sheet1!Costs to define a name
Costs that is local to Sheet1, as shown in Figure 5-2.

Figure 5-2

If you create the name using the New button in the Name Manager dialog box, you can select the scope
of the name in the drop-down shown in Figure 5-3.

Figure 5-3

When you select a name using the Name box, you see the global names and those that are local to the
active sheet. When you display the Name Manager dialog box, you see all the names in the workbook.
The local names are identified by the worksheet name under Scope.

126

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 126

A great source of confusion with names is that they also have names. You need to distinguish between a
Name object and the Name property of that object. The following code returns a reference to a Name object
in the Names collection:

Names(“Data”)

If you want to change the Name property of a Name object, you use code like the following:

Names(“Data”).Name = “NewData”

Having changed its Name property, you would now refer to this Name object as follows:

Names(“NewData”)

Global names and local names belong to the Names collection associated with the Workbook object. If
you use a reference such as Application.Names or Names, you are referring to the Names collection for
the active workbook. If you use a reference such as Workbooks(“Data.xls”).Names, you are referring
to the Names collection for that specific workbook.

Local names, but not global names, also belong to the Names collection associated with the WorkSheet
object to which they are local. If you use a reference such as Worksheets(“Sheet1”).Names or
ActiveSheet.Names, you are referring to the local Names collection for that worksheet.

There is also another way to refer to names that refer to ranges. You can use the Name property of the
Range object. More on this later.

Naming Ranges
You can create a global name that refers to a range using the Add method of the Workbook object’s Names
collection:

Names.Add Name:=”Data”, RefersTo:=”=Sheet1!D10:D12”

It is important to include the equals sign in front of the definition and to make the cell references abso-
lute, using the dollar sign ($). Otherwise, the name will refer to an address relative to the cell address
that was active when the name was defined. You can omit the worksheet reference if you want the name
to refer to the active worksheet:

Names.Add Name:=”Data”, RefersTo:=”=D10:D12”

If the name already exists, it will be replaced by the new definition.

If you want to create a local name, you can use the following:

Names.Add Name:=”Sheet1!Sales”, RefersTo:=”=Sheet1!E10:E12”

127

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 127

Alternatively, you can add the name to the Names collection associated with the worksheet, which only
includes the names that are local to that worksheet:

Worksheets(“Sheet1”).Names.Add Name:=”Costs”, RefersTo:=”=Sheet1!F10:F12”

Using the Name Property of the Range Object
There is a much simpler way to create a name that refers to a Range. You can directly define the Name
property of the Range object:

Range(“A1:D10”).Name = “SalesData”

If you want the name to be local, you can include a worksheet name:

Range(“F1:F10”).Name = “Sheet1!Staff”

It is generally easier, in code, to work with Range objects in this way than to have to generate the string
address of a range, preceded by the equals sign that is required by the RefersTo parameter of the Add
method of the Names collection. For example, if you created an object variable rng and want to apply the
name Data to it, you need to get the Address property of rng and append it to an =:

Names.Add Name:=”Data”, RefersTo:=”=” & rng.Address

The alternative method is:

rng.Name = “Data”

You cannot completely forget about the Add method, however, because it is the only way to create names
that refer to numbers, formulas, and strings.

Special Names
Excel uses some names internally to track certain features. When you apply a print range to a worksheet,
Excel gives that range the name Print_Area as a local name. If you set print titles, Excel creates the
local name Print_Titles. If you select the Data tab on the Ribbon and click the Advanced button in the
Sort & Filter chunk to extract data from a list to a new range, Excel creates the local names Criteria
and Extract.

In older versions of Excel, the name Database was used to name the range containing your data list (or
database). Although it is no longer mandatory to use this name, Database is still recognized by some
Excel features such as Advanced Filter.

If you create a macro that uses the ActiveSheet.ShowDataForm method to edit your
data list, you will find that the macro does not work if the data list does not start in
A1. You can rectify this by applying the name Database to your data list.

128

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 128

You need to be aware that Excel uses these names, and in general, you should avoid using them unless you
want the side effects they can produce. For example, you can remove the print area by deleting the name
Print_Area. The following two lines of code have the same effect if you have defined a print area:

ActiveSheet.PageSetup.PrintArea = “”
ActiveSheet.Names(“Print_Area”).Delete

Excel 2007 also generates special names if you use the Table feature to manage a list of data. By default,
Excel calls the tables Table1, Table2, and so on. These names appear in the Name Manager dialog box but
are not included in the Names collection. They can’t be deleted manually in the Name Manager or in
code that references the Names collection. For more information on the Table feature, see Chapter 6.

To summarize, you need to take care when using the following names:

❑ Criteria

❑ Database

❑ Extract

❑ Print_Area

❑ Print_Titles

❑ Tablen

Storing Values in Names
The use of names to store data items has already been mentioned in Chapter 2, specifically under the
Evaluate method topic. Now it’s time to look at it in a bit more detail.

When you use a name to store numeric or string data, you should not precede the value of the RefersTo
parameter with an equals sign (=). If you do, it will be taken as a formula. The following code stores a
number and a string into StoreNumber and StoreString, respectively:

Dim v As Variant
v = 3.14159
Names.Add Name:=”StoreNumber”, RefersTo:=v
v = “Sales”
Names.Add Name:=”StoreString”, RefersTo:=v

This provides you with a convenient way to store the data you need in your VBA code from one Excel
session to another, so that it does not disappear when you close Excel. When storing strings, you can
store up to 255 characters.

You can retrieve the value in a name using the Evaluate method equivalent, as follows:

v = [StoreNumber]

129

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 129

You can also store formulas into names. The formula must start with an equals sign (=). The following
places the COUNTA function into a name:

Names.Add Name:=”ItemsInA”, RefersTo:=”=COUNTA($A:$A)”

This name can be used in worksheet cell formulas to return a count of the number of items in column A,
as shown in Figure 5-4.

Figure 5-4

Once again, you can use the Evaluate method equivalent to evaluate the name in VBA:

MsgBox [ItemsInA]

Storing Arrays
You can store the values in an array variable in a name just as easily as you can store a number or a label.
The following code creates an array of numbers in aiArray and stores the array values in MyName:

Sub ArrayToName()
Dim aiArray(1 To 200, 1 To 3) As Integer
Dim iRow As Integer
Dim iColumn As Integer

‘Create array and store in name

‘Create array

130

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 130

For iRow = 1 To 200

For iColumn = 1 To 3

aiArray(iRow, iColumn) = iRow + iColumn

Next iColumn

Next iRow

‘Store in name
Names.Add Name:=”MyName”, RefersTo:=aiArray

End Sub

The Evaluate method can be used to assign the values in a name that holds an array to a Variant vari-
able. The following code assigns the contents of MyName, created in ArrayToName, to vArray and dis-
plays the last element in the array:

Sub NameToArray()
Dim vArray As Variant

‘Assign contents of name to variant
vArray = [MyName]

‘Display element of array
MsgBox vArray(200, 3)

End Sub

The array created by assigning a name containing an array to a variant is always one-based, even if you
have an Option Base 0 statement in the declarations section of your module.

Hiding Names
You can hide a name by setting its Visible property to False. You can do this when you create the name:

Names.Add Name:=”StoreNumber”, RefersTo:=v, Visible:=False

You can also hide the name after it has been created:

Names(“StoreNumber”).Visible = False

There is a limit to the size of an array that can be assigned to a name in Excel 97 and
Excel 2000. The maximum number of columns is 256 and the total number of ele-
ments in the array cannot exceed 5,461. In Excel 2002, 2003, and 2007, the size is only
limited by memory.

131

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 131

Now the name cannot be seen by users in the Name Manager dialog box. This is not a highly secure way
to conceal information, because anyone with VBA skills can detect the name. But it is an effective way to
ensure that users are not confused by the presence of strange names.

You should also be aware that if, through the Excel user interface, a user creates a Name object with a
Name property corresponding to your hidden name, the hidden name is destroyed. You can prevent this
by protecting the worksheet.

Despite some limitations, hidden names do provide a nice way to store information in a workbook.

Working with Named Ranges
The spreadsheet in Figure 5-5 contains a data list in B4:D10 that has been given the name Database.
There is also a data input area in B2:D2 that has been given the name Input.

Figure 5-5

If you want to copy the Input data to the bottom of the data list and increase the range referred to by
the name Database to include the new row, you can use the following code:

Sub AddNewData()
Dim lRows As Long

‘Copy data & Extend range of Database by one row

With Range(“Database”)
lRows = .Rows.Count + 1

132

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 132

Range(“Input”).Copy Destination:=.Cells(lRows, 1)
.Resize(lRows).Name = “Database”

End With

End Sub

The output resulting from this code will be the same as Figure 5-5, but with the data Shelley 26 F in cells
B11:D11. The range Database will now refer to B4:D11.

The variable lRows is assigned the count of the number of rows in Database plus 1, to allow for the new
record of data. Input is then copied. The destination of the copy is the B11 cell, which is defined by the
Cells property of Database, being lRows down from the top of Database in column 1 of Database. The
Resize property is applied to Database to generate a reference to a Range object with one more row than
Database, and the Name property of the new Range object is assigned the name Database.

The nice thing about this code is that it is quite independent of the size or location of Database in the
active workbook and the location of Input in the active workbook. Database can have seven rows or
7,000 rows. You can add more columns to Input and Database and the code still works without
change. Input and Database can even be on different worksheets and the code will still work.

Searching for a Name
If you want to test to see if a name exists in a workbook, you can use the following function. It has been
designed to work both as a worksheet function and as a VBA callable function, which makes it a little
more complex than if it were designed for either job alone:

Function IsNameInWorkbook(sName As String) As Boolean
Dim s As String
Dim rng As Range

‘See if name exists in workbook

‘Force recalculation if used as worksheet function
Application.Volatile

‘Ignore errors
On Error Resume Next

‘Try to get reference to cell using function
Set rng = Application.Caller
Err.Clear

If rng Is Nothing Then
‘Function was called by VBA code
s = ActiveWorkbook.Names(sName).Name

Else
‘Function was called by cell
s = rng.Parent.Parent.Names(sName).Name

133

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 133

End If

‘If no error, name exists
If Err.Number = 0 Then IsNameInWorkbook = True

End Function

IsNameInWorkbook has an input parameter sName, which is the required name as a string. The function
has been declared volatile, so it recalculates when it is used as a worksheet function and the referenced
name is added or deleted. The function first determines if it has been called from a worksheet cell by
assigning the Application.Caller property to rng.

If it has been called from a cell, Application.Caller returns a Range object that refers to the cell con-
taining the function. If the function has not been called from a cell, the Set statement causes an error,
which is suppressed by the preceding On Error Resume Next statement. That error, should it have
occurred, is cleared because the function anticipates further errors that should not be masked by the
first error.

Next, the function uses an If test to see if rng is undefined. If so, the call was made from another VBA
routine. In this case, the function attempts to assign the Name property of the Name object in the active
workbook to the dummy variable s. If the name exists, this attempt succeeds and no error is generated.
Otherwise an error does occur, but is once again suppressed by the On Error Resume Next statement.

If the function has been called from a worksheet cell, the Else clause of the If test identifies the work-
book containing rng and attempts to assign the Name property of the required Name object to s. The
parent of rng is the worksheet containing rng, and the parent of that worksheet is the workbook con-
taining rng. Once again, an error will be generated if the name does not exist in the workbook.

Finally, IsNameInWorkbook checks the Number property of the Err object to see if it is zero. If it is, the
return value of the function is set to True because the name does exist. If there is a non-zero error num-
ber, the function is left to return its default value of False because the name does not exist.

You could use IsNameInWorkbook in a spreadsheet cell as follows:

=IF(IsNameInWorkbook(“John”),”John is “,”John is not “)&”an existing name”

You could use the following procedure to ask the user to enter a name and determine its existence:

Sub TestName()

If IsNameInWorkbook(InputBox(“What Name”)) Then
MsgBox “Name exists”

Else
MsgBox “Name does not exist”

End If

End Sub

Note that if you are searching for a local name, you must include its sheet name, in the form
Sheet1!Name, in the previous examples.

134

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 134

If you invoke IsNameInWorkbook as a worksheet function and if the name John is present, you will get
output like that shown in Figure 5-6.

Figure 5-6

Searching for the Name of a Range
The Name property of the Range object returns the name of the range, if the range has a name and the
RefersTo property of the Name object corresponds exactly to the range.

You might be tempted to display the name of a range rng with the following code:

MsgBox rng.Name

This code fails because the Name property of a Range object returns a Name object. The code will display
the default property value of the Name object, which is its RefersTo property. What you want is the
Name property of the Name object, so you must use:

MsgBox rng.Name.Name

This code only works if rng has a name. It will return a run-time error if rng does not have one. You can
use the following code to display the names of the selected cells in the active sheet:

Sub TestNameOfRange()
Dim nmName As Name

‘See if range has a name

‘Ignore errors
On Error Resume Next

‘Try to get name
Set nmName = Selection.Name

‘Display result
If nmName Is Nothing Then

MsgBox “ Selection has no name”
Else

MsgBox nmName.Name
End If

End Sub

135

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 135

If a range has more than one name, the first of the names, in alphabetical order, will be returned.

When this macro is run, the output will look something like Figure 5-7.

Figure 5-7

Determining which Names Overlap a Range
When you want to check the names that have been applied to ranges in a worksheet, it can be handy to
get a list of all the names that are associated with the currently selected cells. You might be interested in
names that completely overlap the selected cells, or names that partly overlap the selected cells. The fol-
lowing code lists all the names that completely overlap the selected cells of the active worksheet:

Sub SelectionEntirelyInNames()
Dim sMessage As String
Dim nmName As Name
Dim rngNameRange As Range
Dim rng As Range

‘List all names that entirely contain
‘the selected cells

‘Ignore errors
On Error Resume Next

‘Look at all names in workbook
For Each nmName In Names

‘Start with nothing & try to assign range
Set rngNameRange = Nothing

136

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 136

Set rngNameRange = nmName.RefersToRange

‘If successful, we have a range reference
If Not rngNameRange Is Nothing Then

‘See if range is in active sheet
If rngNameRange.Parent.Name = ActiveSheet.Name Then

‘See if selection is in range
Set rng = Intersect(Selection, rngNameRange)
If Not rng Is Nothing Then

‘See if range is entirely in selection
If Selection.Address = rng.Address Then

sMessage = sMessage & nmName.Name & vbCr
End If

End If

End If

End If

Next nmName

‘Displaymessage
If sMessage = “” Then

MsgBox “The selection is not entirely in any name”
Else

MsgBox sMessage
End If

End Sub

SelectionEntirelyInNames starts by suppressing errors with On Error Resume Next. It then goes
into a For Each...Next loop that processes all the names in the workbook. It sets rngNameRange to
Nothing to get rid of any range reference left in it from one iteration of the loop to the next. It then tries
to use the Name property of the current Name object as the name of a Range object and assign a reference
to the Range object to rngNameRange. This will fail if the name does not refer to a range, so the rest of
the loop is only carried out if a valid Range object has been assigned to rngNameRange.

The next If test checks that the range that rngNameRange refers to is on the active worksheet. The par-
ent of rngNameRange is the worksheet containing rngNameRange. The inner code is only executed if the
name of the parent worksheet is the same as the name of the active sheet. rng is then assigned to the
intersection (the overlapping cells) of the selected cells and rngNameRange. If there is an overlap and
rng is not Nothing, the innermost If is executed.

This final If checks that the overlapping range in rng is identical to the selected range. If this is the case,
then the selected cells are contained entirely in rngNameRange and the Name property of the current
Name object is added to any names already in sMessage. In addition, a carriage return character is
appended, using the VBA intrinsic constant vbCr, so each name is on a new line in sMessage.

137

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 137

When the For Each...Next loop terminates, the following If tests to see if there is anything in
sMessage. If sMessage is a zero-length string, MsgBox displays an appropriate message to say that no
names were found. Otherwise, the list of found names in sMessage is displayed.

When this code is run in a spreadsheet with three named ranges — Data, Fred, and Mary — you get the
result shown in Figure 5-8 upon running SelectionEntirelyInNames.

Figure 5-8

If you want to find out which names are overlapping the selected cells, regardless of whether they
entirely contain the selected cells, you can remove the second innermost If test, as in the following code:

Sub NamesOverlappingSelection()
Dim sMessage As String
Dim nmName As Name
Dim rngNameRange As Range
Dim rng As Range

‘List all names that overlap
‘the selected cells

‘Ignore errors
On Error Resume Next

‘Look at all names in workbook
For Each nmName In Names

‘Start with nothing & try to assign range
Set rngNameRange = Nothing
Set rngNameRange = Range(nmName.Name)

‘If successful, we have a range reference
If Not rngNameRange Is Nothing Then

‘See if range is in active sheet

138

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 138

If rngNameRange.Parent.Name = ActiveSheet.Name Then

‘See if selection overlaps range
Set rng = Intersect(Selection, rngNameRange)

If Not rng Is Nothing Then

sMessage = sMessage & nmName.Name & vbCr

End If

End If

End If

Next nmName

‘Displaymessage
If sMessage = “” Then

MsgBox “The selection is not entirely in any name”
Else

MsgBox sMessage
End If

End Sub

Note that SelectionEntirelyInNames and NamesOverlappingSelection use different techniques to
assign the range referred to by the name to the object variable rngNameRange. The following statements
are equivalent:

Set rngNameRange = nmName.RefersToRange
Set rngNameRange = Range(nmName.Name)

Summary
This chapter has presented an in-depth discussion of using names in Excel VBA. You have seen how to
do the following:

❑ Use names to keep track of worksheet ranges

❑ Use names to store numeric and string data in a worksheet

❑ Hide names from the user if necessary

❑ Check for the presence of names in workbooks and in ranges

❑ Determine which names completely or partially overlap a selected range

139

Chapter 5: Using Names

08_046432 ch05.qxp 2/16/07 9:55 PM Page 139

08_046432 ch05.qxp 2/16/07 9:55 PM Page 140

Data Lists
This chapter shows you how to set up VBA code to manage data in lists, and code to filter and sort
information in lists. The features examined are:

❑ Sorting

❑ Tables (called Lists in Excel 2003)

❑ AutoFilter

❑ Advanced Filter

❑ Data Forms

As always, you can use the macro recorder to generate some basic code for these operations.
However, the recorded code needs modification to make it useful, and the recorder can even gen-
erate erroneous code in some cases. You will see that dates can be a problem, if not handled prop-
erly, especially in an international setting.

You will also see that there is more than one way to perform some tasks. Because Excel has intro-
duced new objects that manage, filter, and sort data, there has been some duplication of the fea-
tures of older objects. This can be confusing, but it does give you a wide choice of options that you
can tailor to fit your needs.

Structuring the Data
Before you can apply Excel’s list management tools, your data must be set up in a very specific
way. The data must be structured like a database table, with headings at the top of each column,
which are the field names, and the data itself must consist of single rows of information, which are
the equivalent of database records. The top row holding the field names is called the header
record. Figure 6-1 shows a list that holds information on students.

09_046432 ch06.qxp 2/16/07 9:55 PM Page 141

Figure 6-1

Sor ting a Range
To sort the data displayed in Figure 6-1 by Sex, turn on the macro recorder and select D3, as shown in
Figure 6-2. Select the Data tab in the Ribbon and click the AZ button in the top-left corner of the Sort &
Filter group.

You will record code similar to the following:

Range(“D3”).Select
ActiveWorkbook.Worksheets(“Sheet1”).Sort.SortFields.Clear
ActiveWorkbook.Worksheets(“Sheet1”).Sort.SortFields.Add Key:=Range(“D3”), _

SortOn:=SortOnValues, Order:=xlAscending, DataOption:=xlSortNormal
With ActiveWorkbook.Worksheets(“Sheet1”).Sort

.SetRange Range(“B4:D9”)

.Header = xlNo

.MatchCase = False

.Orientation = xlTopToBottom

.SortMethod = xlPinYin

.Apply
End With

Excel should never be considered a fully equipped database application. It is limited
in the amount of data it can handle, and it cannot efficiently handle multiple related
database tables. However, Excel can work with other database applications to pro-
vide you with the data you need, and it has some powerful tools, such as Data Form,
AutoFilter, Advanced Filter, SubTotal, and PivotTables, for analyzing, manipulat-
ing, and presenting that data. Learn about PivotTables in Chapter 7. See how to con-
nect to external data sources in Chapters 20 and 21.

142

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 142

Figure 6-2

This code uses the Sort object introduced in Excel 2007. The Sort object’s parent can be a Worksheet
object, as here, or it can be the AutoFilter object or the ListObject object. You will take a look at the
last two shortly. The QueryTable object can also be the parent of the Sort object. See Chapter 21 for
more details.

The Sort object contains a SortFields collection, where SortField objects can be added to define as
many fields as you need to carry out your sort. In the recorded code, the SortFields collection is
cleared before the single new SortField is added that specifies the D column as the column to be
sorted. The SetRange method is used to specify the data range, which does not include the header
fields, and the Apply method executes the sort. The SortMethod property is only applicable to Asian
languages and can be omitted if you are not using an Asian language. The code can be used pretty much
as it is, with the exception of the selection of D3, which is unnecessary. You could tidy it up as follows:

With ActiveWorkbook.Worksheets(“Sheet1”).Sort
.SortFields.Clear
.SortFields.Add Key:=Range(“D3”), _

SortOn:=SortOnValues, _
Order:=xlAscending, _
DataOption:=xlSortNormal

.SetRange Range(“B4:D9”)

.Header = xlNo

.MatchCase = False

.Orientation = xlTopToBottom

.SortMethod = xlPinYin

.Apply
End With

To specify more sort keys, you use the Add method of the SortFields collection as many times as nec-
essary. The keys need to be added in the order of their significance.

143

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 143

Older Excel Versions
If you record the same sort in earlier versions of Excel, you get code like the following:

Range(“B3:D9”).Sort Key1:=Range(“D3”), Order1:=xlAscending, Header:= _
xlGuess, OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _
DataOption1:=xlSortNormal

This code uses the Sort method of the Range object. The code is much simpler than the code generated
by the Sort object but is also more limited.

You can define as many sort keys as you need by adding DataField objects to the DataFields collec-
tion of the Sort object. The Range object Sort method is limited to three keys, all specified in a single
execution of the Sort method. This limitation can be overcome by performing a series of sorts in the
reverse order of the significance of the keys.

Naturally, this code is still supported in Excel 2007 and will be in the future. If you only need to sort on
three or fewer keys, it gives you a simpler alternative to the Sort object.

Creating a Table
The data in Figure 6-1 can be easily converted to a Table. Select a cell in the data and select the Insert tab
of the Ribbon. Click the Table button in the Tables group to show the dialog box in Figure 6-3.

Figure 6-3

The resulting table is shown in Figure 6-4. It has been assigned the name Table1 by default. You can change
this to something more meaningful in the Properties group on the Table Tools Design tab of the Ribbon.

144

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 144

If you record the creation of the table, you will get code like the following:

ActiveSheet.ListObjects.Add(xlSrcRange, Range(“B3:D9”), , xlYes).Name = _
“Table1”

Converting a range to a table creates a ListObject object. This is the same object introduced in Excel
2003, where the table is called a list. Excel 2007 supports a number of new properties for the
ListObject object, mainly concerned with the table’s appearance.

Tables provide you with a way of formally identifying a data structure, and Excel provides tools and
intelligence to help manage the data and its formatting. Tables also allow you to link to external data.
See Chapter 21 for information on using ListObject objects to link to external data.

Figure 6-4

Sor ting a Table
You can sort the data in the table in the same way as you sort a range, or by clicking one of the drop-
downs beside the field names and selecting one of the sort options. If you record a sort based on the
Name field using the drop-down beside the field name, you will get code like the following:

ActiveWorkbook.Worksheets(“Sheet1”).ListObjects(“Table1”).Sort.SortFields.Clear
ActiveWorkbook.Worksheets(“Sheet1”).ListObjects(“Table1”).Sort.SortFields.Add _

Key:=Range(“Table1[[#All],[Name]]”), SortOn:=SortOnValues, Order:= _
xlAscending, DataOption:=xlSortNormal

With ActiveWorkbook.Worksheets(“Sheet1”).ListObjects(“Table1”).Sort
.SetRange Range(“Table1[#All]”)
.Header = xlYes

145

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 145

.MatchCase = False

.Orientation = xlTopToBottom

.SortMethod = xlPinYin

.Apply
End With

The code for sorting a table is similar to the code for sorting a range. Instead of the Worksheet object
being the parent of the Sort object, the ListObject object is the parent. Notice also that there are new
ways to reference data ranges. The SetRange method uses Range(“Table1[#All]”) to specify all of
the data in the table. The SortField object key is specified using Range(“Table1[[#All],[Name]]”).

AutoFilter
The AutoFilter feature is a very easy way to select data from a list. As you might expect, AutoFilter
works with tables or with any list of data. You can activate AutoFilter by selecting a cell in your data,
selecting the Data tab on the Ribbon, and clicking the Filter button in the Sort & Filter group. Drop-
down menu buttons will appear beside each field name, as shown in Figure 6-5. If you want an exact
match on a field such as Customer, all you need to do is click the drop-down beside the field and check
the required match, as shown in Figure 6-5.

Figure 6-5

146

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 146

If you record this process with a normal range of data, you will get code like the following:

ActiveSheet.Range(“A5:G433”).AutoFilter Field:=2, Criteria1:=”Pradesh”

If you record the same process in a table, you will get code like the following:

ActiveSheet.ListObjects(“Table2”).Range.AutoFilter Field:=2, Criteria1:= _
“Pradesh”

If you select two items, you will get code like the following:

ActiveSheet.ListObjects(“Table2”).Range.AutoFilter Field:=2, Criteria1:= _
“=Kee”, Operator:=xlOr, Criteria2:=”=Pradesh”

If you select more than two items, you will get code like the following:

ActiveSheet.ListObjects(“Table2”).Range.AutoFilter Field:=2, Criteria1:= _
Array(“Kee”, “Pradesh”, “Roberts”), Operator:=xlFilterValues

The following code clears the filter and displays all the data for the field:

ActiveSheet.ListObjects(“Table2”).Range.AutoFilter Field:=2

AutoFilter Object
When you AutoFilter a range that is not in a table, Excel uses an AutoFilter object whose parent is the
Worksheet object. There can only be one AutoFilter object for each worksheet. If you AutoFilter a sec-
ond range in a worksheet, all the settings for the first AutoFilter are lost.

When you AutoFilter a table, the parent of the AutoFilter object is the ListObject object. Because
you can have multiple tables in a worksheet, it is possible to have an AutoFilter operating simultane-
ously in each table.

You don’t create or manipulate an AutoFilter object directly. You use the AutoFilter method of the
Range object. If you examine the previous code, you will see that with a table, the Range property of the
ListObject object is used to reference the range associated with the table and the AutoFilter method of
that Range object is executed.

You can use the AutoFilter object to obtain information about an existing AutoFilter. However, you
will get an error if you reference the AutoFilter object if it is not in use. The AutoFilter object only
exists when the AutoFilter feature is turned on. You can determine whether the Worksheet AutoFilter is
active by using the value of the AutoFilterMode property, which returns a Boolean value:

If ActiveSheet.AutoFilterMode Then

This is a read-only property that can’t be used to switch on the AutoFilter. As you have seen, you do
that with the AutoFilter method of the Range object. To switch off a range AutoFilter, you use the
AutoFilter method of the Range object with no parameters:

Range(“B3:D9”).AutoFilter

147

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 147

This code acts as a toggle. It switches AutoFilter on if it is off, and off if it is on. If you want to ensure
that the worksheet AutoFilter is turned off, you can use code like the following:

If ActiveSheet.AutoFilterMode Then
ActiveSheet.AutoFilter.Range.AutoFilter

End If

You can determine whether a ListObject object AutoFilter is turned on or off by testing its
ShowAutoFilter property. This is a read/write property that can also be used to explicitly turn the
table’s AutoFilter on or off. You can ensure that the AutoFilter is switched off with the following code:

ActiveSheet.ListObjects(“Table1”).ShowAutoFilter = False

Filter Object
There is a Filters collection associated with the AutoFilter object that holds a Filter object for each
field in the AutoFilter. The On property of the Filter object indicates whether it is active. If it is active,
you can discover the values of its properties. The following code returns the value “=Pradesh” after
you have set the filter as shown in Figure 6-5, after converting the data to a table:

With ActiveSheet.ListObjects(1)
If .ShowAutoFilter Then

With .AutoFilter.Filters(2)
If .On Then

MsgBox .Criteria1
End If

End With
End If

End With

The Filter object can only return the properties of a filter. You can’t assign values to the properties.
That can only be done using the AutoFilter method of the Range object.

Date Custom Filter
If you want something a bit more complex, such as a range of dates, you need to do a bit more work. The
following screen shows how you can manually filter the data in a table to show a particular month. Click
the drop-down button beside Date and choose Date Filters. Then select either Custom Filter or Between.
You can then fill in the dialog box as shown in Figure 6-6.

The format you use when you type in dates in the Custom AutoFilter dialog box
depends on your regional settings. You can use a dd/mm/yy format if you work with
UK settings, or a mm/dd/yy format if you work with U.S. settings. Some formats that
are more international, such yyyy-m-d, are also recognized. You can use the calendar
controls in the AutoFilter dialog box to insert your dates in your regional date format.

148

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 148

Figure 6-6

Adding Combo Boxes
You can make filtering even easier for a user by placing controls in the worksheet to run AutoFilter. This
also gives you the opportunity to do far more with the data than filter it. You could copy the filtered data
to another worksheet and generate a report, you could chart the data, or you could delete it. Figure 6-7
shows two ActiveX combo box controls that allow the user to select the month and year required.

Figure 6-7

149

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 149

The combo boxes have the default names of ComboBox1 and ComboBox2. To place list values into the
combo boxes, you can enter the list values into a worksheet column and define the ListFillRange
property of the ComboBox object as something like “=Sheet2!A1:A12”. Alternatively, you can use the
following Workbook_Open event procedure in the ThisWorkbook module of the workbook to populate
the combo boxes when the workbook is opened:

Private Sub Workbook_Open()
Dim vMonths As Variant
Dim vYears As Variant
Dim i As Integer

‘Create date arrays
vMonths = Array(“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, _

“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”)
vYears = Array(2006, 2007)

‘Populate months using AddItem method
For i = LBound(vMonths) To UBound(vMonths)

Sheet1.ComboBox1.AddItem vMonths(i)
Next i

‘Populate years using List property
Sheet1.ComboBox2.List = WorksheetFunction.Transpose(vYears)

End Sub

The AddItem method of the ComboBox object adds the Months array values to the ComboBox1 list. To
show an alternative technique, the worksheet Transpose function is used to convert the Years array
from a row to a column, and the values are assigned to the List property of ComboBox2.

Note that the programmatic name of Sheet1, which you can see in the Project Explorer window or the
Properties window of the VBE, has been used to define the location of the combo boxes. Even though the
name of the worksheet is Sales, the programmatic name is still Sheet1, unless you change it at the top
of the Properties window where it is identified by (Name), rather than Name, as shown in Figure 6-8.

Figure 6-8

150

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 150

In the code module behind the worksheet, the following code is entered:

Private Sub ComboBox1_Click()
If ComboBox2.Value=”” Then Exit Sub
Call FilterDates

End Sub

Private Sub ComboBox2_Click()
If ComboBox1.Value=”” Then Exit Sub
Call FilterDates

End Sub

As long as the other combo box has been assigned a value, when you click an entry in their drop-down
lists, each combo box executes the FilterDates procedure, which is described next. FilterDates can
be in the same module and declared Private if you do not want any other modules to be able to use it,
or it can be in a standard code module if you want to use it as a general utility procedure.

So, how do you construct the FilterDates procedure? As shown in previous chapters, you can use the
macro recorder to get something to start with, and then refine the code to make it more flexible and effi-
cient. If you use the macro recorder to record the process of filtering the dates, you will get code like this:

ActiveSheet.ListObjects(“Table1”).Range.AutoFilter Field:=1, Criteria1:= _
“>=1/01/2007”, Operator:=xlAnd, Criteria2:=”<=31/01/2007”

You might notice that the dates have been translated to the format of the regional settings — in this case
that of Australia, which uses the same format as the UK. The format generated by the recorder is
d/mm/yyyy. Also note that the dates are formatted as text, rather than dates, because the criteria must
include the logical operators.

Date Format Problems
Unfortunately, the previous code does not perform as expected. When you run the recorded macro, the
dates are interpreted by VBA as U.S. dates in the format mm/dd/yyyy. Criteria2 is not understood by
VBA. To make this macro perform properly, you need to convert the dates to a U.S. format. Of course,
you will not have this problem with your recorded code if you work with U.S. date formats in your
regional settings in the first place.

The following FilterDates procedure is executed from the Click event procedures of the combo
boxes, and it computes the start and end dates required for the criteria of the AutoFilter method.
FilterDates has been placed in the same module as the combo box event procedures and declared as
Private, so it does not appear in the Macro dialog box:

Private Sub FilterDates()
Dim iStartMonth As Integer
Dim iStartYear As Integer
Dim dteStartDate As Date

Trying to make your VBA code compatible with dates in all language versions of
Excel is very difficult. See Chapter 25 for more details.

151

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 151

Dim dteEndDate As Date
Dim sStartCriterion As String
Dim sEndCriterion As String

‘Get Date values
iStartMonth = Me.ComboBox1.ListIndex + 1
iStartYear = Me.ComboBox2.Value

‘Calculate date values and format as US Dates
dteStartDate = DateSerial(iStartYear, iStartMonth, 1)
dteEndDate = DateSerial(iStartYear, iStartMonth + 1, 1)
sStartCriterion = “>=” & Format(dteStartDate, “mm/dd/yyyy”)
sEndCriterion = “<” & Format(dteEndDate, “mm/dd/yyyy”)

‘Apply AutoFilter
Me.ListObjects(“Table1”).Range.AutoFilter _

Field:=1, _
Criteria1:=sStartCriterion, _
Operator:=xlAnd, _
Criteria2:=sEndCriterion

End Sub

FilterDates assigns the values selected in the combo boxes to iStartMonth and iStartYear. The Me
keyword has been used to refer to the sheet containing the code, rather than the object name Sheet1.
This makes the code portable, which means it can be used in other sheet modules without worrying
about the name of the sheet.

iStartMonth uses the ListIndex property of ComboBox1 to obtain the month as a number. Because
the ListIndex is zero-based, 1 is added to give the correct month number. The DateSerial function
translates the year and month numbers into a date and assigns the date to dteStartDate. The second
DateSerial function calculates a date that is one month ahead of dteStartDate and assigns it to
dteEndDate.

The Format function is used to turn dteStartDate and dteEndDate back into strings in the U.S. date
format of mm/dd/yyyy. The appropriate logical operators are placed in front, and the resulting strings
are assigned to sStartCriterion and sEndCriterion, respectively. FilterDates finally executes the
AutoFilter method on the table Table1, using the computed criteria.

Getting the Exact Date
Another tricky problem with AutoFilter occurs with dates in all language versions of Excel. The problem
arises when you want to get an exact date, rather than a date within a range of dates. In this case,
AutoFilter matches your date with the formatted appearance of the dates in the worksheet, not the
underlying date values.

Excel holds dates as numeric values equal to the number of days since Jan 1, 1900. For example, Jan 1,
2007 is held as 39,083. When you ask for dates greater than or equal to Jan 1, 2007, Excel looks for date
serial numbers greater than or equal to 39,083. However, when you ask for dates equal to Jan 1, 2007,
Excel does not look for the numeric value of the date. Excel checks for the string value “Jan 1, 2007” as
it appears formatted in the worksheet and as it is returned by the Text property of the Range object.

152

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 152

The following adaptation of FilterDates will handle an exact date match in your list, because
sExactCriterion is assigned the date value as a string, in the format “mmm dd, yyyy”. It obtains the
format from the worksheet using the NumberFormat property of the first cell in the body of the table,
where the date is formatted as mmm dd, yyyy:

Sub FilterExactDate()
Dim iExactMonth As Integer
Dim iExactYear As Integer
Dim dteExactDate As Date
Dim sExactCriterion As String
Dim sDateFormat As String
Dim loMyData as ListObject

‘Get Date values
iExactMonth = Sheet1.ComboBox1.ListIndex + 1
iExactYear = Sheet1.ComboBox2.Value

‘Get Format from Table
Set loMyData = Sheet1.ListObjects(“Table1”)
sDateFormat = loMyData.DataBodyRange(1).NumberFormat
‘Calculate as a date and format as in worksheet
dteExactDate = DateSerial(iExactYear, iExactMonth, 1)

sExactCriterion = Format(dteExactDate, sDateFormat)

‘Filter Table1

loMyData.Range.AutoFilter _
Field:=1, Criteria1:=sExactCriterion

End Sub

The previous code will give all the entries for the first of the month, because 1 is specified as the third
parameter in the DateSerial function. To select any day of the month, a third combo box could be
added to cell A2 and some code added to the ComboBox1_Click event procedure to list the correct
number of days for the month specified in ComboBox1.

Copying the Visible Rows
If you want to make it easy to create a new worksheet containing a copy of the filtered data, you can
place an ActiveX command button at the top of the worksheet and enter the following Click event pro-
cedure in the worksheet module. This procedure copies the visible cells in Table1:

Private Sub CommandButton1_Click()
Dim wksNew As Worksheet
Dim sWksName As String
Dim sMonth As String
Dim sYear As String
Dim wksDummyWks As Worksheet

‘Get Date values
sMonth = Me.ComboBox1.Value
sYear = Me.ComboBox2.Value

‘Check that month has not been copied

153

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 153

On Error Resume Next
sWksName = Format(DateValue(sYear & “-” & sMonth & “-1”), “mmm yyyy”)
Set wksDummyWks = Worksheets(sWksName)
If Err.Number = 0 Then

MsgBox “This data has already been copied”
Exit Sub

End If
On Error GoTo 0

‘Add new worksheet and copy visible cells from Table1
Set wksNew = Worksheets.Add
Me.ListObjects(1).Range.SpecialCells(xlCellTypeVisible).Copy _

Destination:=wksNew.Range(“A1”)
wksNew.Columns(“A:G”).AutoFit

‘Name worksheet
wksNew.Name = sWksName

End Sub

The Click event procedure first calculates a name for the new worksheet in the format mmm yyyy. It then
checks to see if this worksheet already exists by setting a dummy object variable to refer to a worksheet
with the new name. If this does not cause an error, the worksheet already exists and the procedure issues
a message and exits.

If there is no worksheet with the new name, the event procedure adds a new worksheet at the beginning
of the existing worksheets. It copies the visible cells in Table1 to the new sheet and AutoFits the column
widths to accommodate the copied data. The procedure then names the new worksheet.

Finding the Visible Rows
When you use AutoFilter, Excel simply hides the rows that do not match the current filters. If you want
to process just the rows that are visible in your code, you need to look at each row in the list and decide
if it is hidden or not. There is a trick to this. When referring to the Hidden property of a Range object, the
Range object must be an entire row, extending from column A to column XFD, or an entire column,
extending from row 1 to row 1048576. You can’t use the Hidden property with a single cell or a seven-
column row from the list shown in Figure 6-9.

The following code checks each row that is visible on the screen and shades the background of any row
that has an invalid Revenue calculation:

Private Sub CommandButton1_Click()
Dim rngData As Range
Dim rngRow As Range
Dim dNumberSold As Double
Dim dPrice As Double
Dim dRevenue As Double

‘Locate datarows
Set rngData = Sheet1.ListObjects(“Table1”).DataBodyRange

‘Loop through all data rows

154

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 154

For Each rngRow In rngData.Rows

‘Only process visible rows
If rngRow.EntireRow.Hidden = False Then

‘Check calculation
dNumberSold = rngRow.Cells(5).Value
dPrice = rngRow.Cells(6).Value
dRevenue = rngRow.Cells(7).Value

‘If wrong, display error
If Abs(dNumberSold * dPrice - dRevenue) > 0.000001 Then

rngRow.Select
rngRow.Interior.ColorIndex = 3
MsgBox “Error in selected row”

End If

End If

Next rngRow
End Sub

Figure 6-9

The Click event procedure for the command button first defines an object variable rngData referring to
the rows of data in Table1, excluding the Header Row, which is returned by the DataBodyRange prop-
erty of the ListObject object. It then uses a For Each...Next loop to process all the rows in rngData.

155

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 155

The first If test ensures that only rows that are not hidden are processed. The dNumberSold, dPrice,
and dRevenue values for the current row are assigned to variables, and the second If tests that the
dRevenue figure is within a reasonable tolerance of the product of dNumberSold and dPrice.

Because worksheet computations are done with binary representations of numbers to an accuracy of about
15 significant figures, it is not always appropriate to check that two numbers are equal to the last decimal
point, especially if the input figures have come from other worksheet calculations. It is better to see if they
differ by an acceptably small amount. Because the difference can be positive or negative, the Abs function
is used to convert both positive and negative differences to a positive difference before comparison.

If the test shows an unacceptable difference, the row is selected and a message is displayed. The row is
also given a background color of red.

Advanced Filter
A powerful way to filter data from a list is to use Advanced Filter. You can filter the list in place, like
AutoFilter, or you can extract it to a different location. The extract location can be in the same worksheet,
in another worksheet in the same workbook, or in another open workbook. In the following example,
the data for NSW and VIC has been extracted for the first quarter of 2007. The data has been copied from
the workbook containing the data list to a new workbook.

The source data can be in a Table or can be in a normal range. In the following examples, the data is in a
normal range named Database.

When you use Advanced Filter, you specify your criteria in a worksheet range. An example of a Criteria
range is shown in A1:C3 of the screen in Figure 6-10. This worksheet is in a workbook called DataList6
.xlsm. The data list is in DataList5.xlsm, which contains the same data used in the AutoFilter examples.

Figure 6-10

156

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 156

The top row of the Criteria range contains the field names from the list that you want to filter on.
You can have as many rows under the field names as you need. Criteria on different rows are combined
using the OR operator. Criteria across a row are combined using the AND operator. You can also use com-
puted criteria in the form of logical statements that evaluate to True or False. In the case of computed
criteria, the top row of the Criteria range must be empty or contain a label that is not a field name in
the list, such as Calc in this case.

When you create computed criteria, you can refer to the data list field names in your formulas, as you
can see in the Formula bar above the worksheet. The Formula bar shows the contents of C2, which is as
follows:

=AND(Date>=D2,Date>=E2)

The formula in C3 is identical to the formula in C2.

The criteria shown can be thought of as applying this filter:

(State=NSW AND Date>=Jan 1, 2007 AND Date<=Mar 31, 2007) OR _
(State=VIC AND Date>=Jan 1, 2007 AND Date<=Mar 31, 2007)

Because the field names are not workbook names, the formulas evaluate to a #NAME? error.

To facilitate the Advanced Filter, the data list in the DataList5.xlsm workbook has been named
Database. In the DataList6.xlsm workbook, A1:C3 has been named Criteria and A6:G6 has been
named Extract. If you carry out the Advanced Filter manually, selecting the Data tab of the Ribbon and
clicking the Advanced button in the Sort & Filter group, you see the dialog box in Figure 6-11, where you
can enter the names as shown. The List Range entry, which is obscured, is DataList5.xlsm!Database.

Figure 6-11

To automate this process, the command button with the Extract Data caption runs the following Click
event procedure:

Private Sub CommandButton1_Click()
Dim rngData As Range
Dim rngCriteria As Range
Dim rngExtract As Range

‘Define Database, Criteria & Extract Ranges

157

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 157

Set rngData = Workbooks(“DataList5.xlsm”).Worksheets(“Sales”).Range(“Database”)
Set rngCriteria = ThisWorkbook.Worksheets(“Sales”).Range(“Criteria”)
Set rngExtract = ThisWorkbook.Worksheets(“Sales”).Range(“Extract”)

‘Extract data with Advanced Filter
rngData.AdvancedFilter Action:=xlFilterCopy, _

CriteriaRange:=rngCriteria, _
CopyToRange:=rngExtract, _
Unique:=False

End Sub

The event procedure defines three object variables referring to the Database, Criteria, and Extract
ranges. It then runs the AdvancedFilter method of the Database Range object.

Data Form
Excel has a built-in form that you can use to view, find, and edit data in a list. The feature is not available
on the Ribbon, so you need to add it to the Quick Access menu if you want to use it through the user
interface. Right-click the Quick Access menu and choose Customize Quick Access Toolbar to open the
dialog box shown in Figure 6-12. Select the Customization button, if necessary, and from the drop-down
above the left list box, select Commands Not in the Ribbon. Find the Form command and add it to the
Quick Access menu.

Figure 6-12

This feature can be used with a normal range of data or a Table. If you select a single cell in the data, or
select the entire list, and click the Form button, you will see a form like the one in Figure 6-13.

If you record this process, you will get code like the following:

Range(“B2”).Select
ActiveSheet.ShowDataForm

158

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 158

Figure 6-13

If your list starts in A1, and you record selecting the first cell and showing the Data Form, then the
recorded macro works. If your list starts in any cell other than A1, and you record while selecting the
top-left corner and showing the Data Form, the recorded macro will give an error message when you try
to run it. You can overcome this problem by applying the name Database to your list.

Summary
As you have seen, the AutoFilter and Advanced Filter features can be combined with VBA code to pro-
vide flexible ways for users to extract information from data lists. By combining these features with
ActiveX controls, such as combo boxes and command buttons, you can make them readily accessible to
all levels of users. You can use the macro recorder to get an indication of the required methods and adapt
the recorded code to accept input from the ActiveX controls.

If you don’t work entirely with U.S. date and number formats, the Data Form feature
is quite dangerous when displayed by VBA code using the ShowDataForm method.
The Data Form, when invoked by VBA, displays dates and numbers only in U.S.
format. On the other hand, any dates or numbers typed in by a user are interpreted
according to the regional settings in the Windows Control Panel. Therefore, if you
set the date in the British format (dd/mm/yyyy), when you use the Data Form, the
dates become corrupted. See Chapter 25 for more details.

159

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 159

Tables provide a way to formalize data structures and tools to maintain data lists. Sorting and filtering is
facilitated when the data is in a table. The Tables ListObject object makes it easier to generate VBA ref-
erences to your data and to manipulate it programmatically.

However, you need to take care if you work with non-U.S. date formats. You need to bear in mind that
VBA requires you to use U.S. date formats when you compare ranges of dates using AutoFilter. If this
interests you, you should check out Chapter 21, which deals with international programming issues.

Also, when you want to detect which rows have been hidden by AutoFilter, you need to be aware that
the Hidden property of the Range object can only be applied to entire worksheet rows.

Advanced Filter provides the VBA programmer with very powerful filtering in Excel. You can set up
much more complex criteria with Advanced Filter than you can with AutoFilter, and you can copy fil-
tered data to a specified range. You can also use Advanced Filter to copy filtered data from one work-
book to another.

The Data Form feature makes it very easy to set up a data maintenance macro. However, you should
apply the name Database to your data list if the top-left corner of the list is not in the A1 cell.

160

Chapter 6: Data Lists

09_046432 ch06.qxp 2/16/07 9:55 PM Page 160

PivotTables
PivotTables are an extension of the cross tabulation tables used in presenting statistics, and can be
used to summarize complex data in a table format. An example of cross tabulation is a table show-
ing the number of employees in an organization, broken down by age and sex. PivotTables are
more powerful and can show more than two variables, so they could be used to show employees
broken down by age, sex, and alcohol, to quote an old statistician’s joke.

The input data for a can come from an Excel worksheet, a text file, an Access database, or a wide
range of external database applications. PivotTables can handle up to 256 column or row fields, if
you can interpret the results. They can perform many types of standard calculations, such as sum-
ming, counting, and averaging. They can produce subtotals and grand totals.

Data can be grouped as in Excel’s outline feature, and you can hide unwanted rows and columns.
You can also define calculations within the body of the table. PivotTables are also very flexible if
you want to change the layout of the data and add or delete variables. You can create PivotCharts
that are linked to your PivotTable results in such a way that you can manipulate the data layout
from within the chart.

PivotTables are designed so that you can easily generate and manipulate them manually. If you
want to create many of them, or provide a higher level of automation to users, you can tap into the
Excel object model. This chapter examines the following objects:

❑ PivotTables

❑ PivotCaches

❑ PivotFields

❑ PivotItems

❑ PivotCharts

The PivotTable feature has evolved more than most other established Excel features. With each
new version of Excel, PivotTables have been made easier to use and provided with new features.
Some of these capabilities and the code covered in this chapter might not work in older versions
of Excel.

10_046432 ch07.qxp 2/16/07 9:56 PM Page 161

Creating a PivotTable Repor t
PivotTables can accept input data from a spreadsheet, or from an external source such as an Access
database. When using Excel data, the data should be structured as a data list, as explained at the begin-
ning of Chapter 6, although it is also possible to use data from another PivotTable or from multiple con-
solidation ranges. The columns of the list are fields and the rows are records, apart from the top row that
defines the names of the fields.

Take the Table in Figure 7-1, containing data for 2006 and 2007, as your input data. It is not necessary to
have your data in a Table, but the Table provides tools that help maintain and identify the data.

Figure 7-1

As usual in Excel, it is a good idea to have an identifier for your data range that you can use as a refer-
ence in your code. You could define a name for the data range. Alternatively, you can create a Table to
contain the data. In this case the data is placed in Table1. You can then refer to the Table in your code.

You want to summarize NumberSold within the entire time period by Customer and Product. With the
cell pointer in the data list, select the Insert tab of the Ribbon and click the PivotTable button in the
Tables group. You will see the dialog box shown in Figure 7-2, which will show the name of the Table as
the data source.

When you click OK, you will see a screen like that in Figure 7-3. Drag the Customer field to the Row
Labels area, the Product field to the Column Labels area, and the NumberSold field to the Values area, as
shown in Figure 7-3. As you drag the fields, the PivotTable Report will be constructed in the worksheet.

162

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 162

Figure 7-2

Figure 7-3

If you use the macro recorder to create a macro to carry out this operation, it will look similar to the fol-
lowing code:

Sheets.Add
ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= _

“Table1”, Version:=xlPivotTableVersion12).CreatePivotTable _
TableDestination:=”Sheet1!R3C1”, TableName:=”PivotTable1”, _
DefaultVersion:= xlPivotTableVersion12

163

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 163

Sheets(“Sheet1”).Select
With ActiveSheet.PivotTables(“PivotTable1”).PivotFields(“Customer”)

.Orientation = xlRowField

.Position = 1
End With
With ActiveSheet.PivotTables(“PivotTable1”).PivotFields(“Product”)

.Orientation = xlColumnField

.Position = 1
End With
ActiveSheet.PivotTables(“PivotTable1”).AddDataField ActiveSheet.PivotTables(_

“PivotTable1”).PivotFields(“NumberSold”), “Sum of NumberSold”, xlSum

The code creates a new worksheet, which becomes the active sheet. It then uses the Add method of the
PivotCaches collection to create a new PivotCache. PivotCaches are discussed later. It next uses the
CreatePivotTable method of the PivotCache object to create an empty PivotTable in the new work-
sheet, starting in the R3C1 (or A3) cell, and names the PivotTable PivotTable1. The code also uses a
parameter declaring the DefaultVersion. The source range is specified as the Table range.

The PivotTable is set up to start in A3 to leave room for page fields, which are also called Report Filters
in Excel 2007, above the Table. Page fields are discussed later.

The Customer field is defined to be a row field and the Product field to be a column field. The Position
property ranks multiple row fields or column fields, which is not necessary here. Finally, NumberSold is
added as a data field, which means that it appears in the body of the Table where it is to be summed.

As it stands, the recorded code is very inflexible. It adds a new worksheet and assumes that it is named
Sheet1. It applies the name PivotTable1 and then depends on that name in the subsequent code. The
code can be generalized and tidied up as shown:

Sub CreatePivotTable()

Dim wks As Worksheet
Dim pvc As PivotCache
Dim pvt As PivotTable

‘Add new worksheet
Set wks = Worksheets.Add

‘Create PivotCache
Set pvc = ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase, _
SourceData:=Sheet1.ListObjects(“Table1”).Range)

‘Create PivotTable
Set pvt = pvc.CreatePivotTable(TableDestination:=wks.Range(“A3”), _

DefaultVersion:=xlPivotTableVersion12)

‘Define fields in PivotTable
With pvt

With .PivotFields(“Customer”)
.Orientation = xlRowField
.Position = 1

End With

164

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 164

With .PivotFields(“Product”)
.Orientation = xlColumnField
.Position = 1

End With
.AddDataField .PivotFields(“NumberSold”), “Sum of NumberSold”, xlSum

End With

End Sub

The SourceData parameter of the Create method of the PivotCaches collection is very flexible. It
accepts a Range object or a text address as well as a text reference to a Table. You have specified the Range
property of Table1. If you had assigned the name Database to the data, you could use the following:

SourceData:=”Database”)

The TableDestination parameter of the CreatePivotTable method also accepts the Range object
reference you used. If you are not concerned about the name of the PivotTable, you can leave out the
TableName parameter and accept the default name.

PivotCaches
A PivotCache is a buffer, or holding area, where data is stored and accessed as required from a data
source. It acts as a communication channel between the data source and the PivotTable.

In Excel 2007, you can create a PivotCache using the Create method of the PivotCaches collection, as
seen in the recorded code. You have extensive control over what data you draw from the source when you
create a PivotCache. Particularly in conjunction with ADO (ActiveX Data Objects), which is demonstrated
at the end of this chapter, you can achieve high levels of programmatic control over external data sources.
Chapters 20 and 21 show you the great flexibility of ADO and other ways to handle external data sources.
You can use the techniques from those chapters to construct data sources for PivotTables.

You can also use a PivotCache to generate multiple PivotTables from the same data source. This is more
efficient than forcing each PivotTable to maintain its own data source.

When you have created a PivotCache, you can create any number of PivotTables from it using the
CreatePivotTable method of the PivotCache object.

PivotTables Collection
You can use another method to create a PivotTable from a PivotCache, using the Add method of the
PivotTables collection. If you have already created a PivotCache in your workbook and you want to
create a second PivotTable, you can use the following code:

Sub AddTable()
Dim pvc As PivotCache
Dim pvt As PivotTable

‘Access existing PivotCache
Set pvc = ActiveWorkbook.PivotCaches(1)

‘Add new PivotTable to PivotTables collection

165

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 165

Set pvt = ActiveSheet.PivotTables.Add(PivotCache:=pvc, _
TableDestination:=Range(“A3”))

End Sub

There is no particular advantage to using this method compared with the CreatePivotTable method.
It’s just another thread in the rich tapestry of Excel.

PivotFields
The columns in the data source are referred to as fields. When the fields are used in a PivotTable, they
become PivotField objects and belong to the PivotFields collection of the PivotTable object. The
PivotFields collection contains all the fields in the data source and any calculated fields you have
added, not just the fields that are visible in the PivotTable report. Calculated fields are discussed later in
this section.

You can add PivotFields to a report using two different techniques. You can use the AddFields method
of the PivotTable object, or you can assign a value to the Orientation property of the PivotField
object, as shown here:

Sub AddFieldsToTable()
‘Adds new fields to an existing PivotTable

‘Access existing PivotTable
With ActiveSheet.PivotTables(1)

‘Add new State field to rows
.AddFields RowFields:=”State”, AddToTable:=True

‘Add Date as new page field
.PivotFields(“Date”).Orientation = xlPageField

End With

End Sub

If you run this code on the example PivotTable, you will get the result shown in Figure 7-4.

The AddFields method can add multiple row, column, and page fields. These fields replace any exist-
ing fields, unless you set the AddToTable parameter to True, as in the previous example. However,
AddFields can’t be used to add or replace data fields. The following code redefines the layout of the
fields in the existing Table, apart from the data field:

Sub RedefinePivotTable()
‘Reorganize an existing PivotTable
Dim pvt As PivotTable

‘Access existing PivotTable

166

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 166

Set pvt = ActiveSheet.PivotTables(1)

‘Specify arrangement of row, column and page fields
pvt.AddFields RowFields:=Array(“Product”, “Customer”), _

ColumnFields:=”State”, _
PageFields:=”Date”

End Sub

Figure 7-4

Note that you can use the Array function to include more than one field in a field location. The result is
shown in Figure 7-5.

You can use the Orientation and Position properties of the PivotField object to reorganize the
Table. Position defines the hierarchy of fields within the Table, counting from the top level down. The
following code, added to the end of the RedefinePivotTable code, would move the Customer fields
above the Product fields as shown in Figure 7-6, for example:

pvt.PivotFields(“Customer”).Position = 1

167

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 167

Figure 7-5

Figure 7-6

You can use the Function property of the PivotField object to change the way a data field is summa-
rized, and the NumberFormat property to set the appearance of the numbers. The following code, added
to the end of RedefinePivotTable, adds Revenue to the data area, summing it and placing it second to

168

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 168

NumberSold by default. The next lines of code change the position of NumberSold to the second posi-
tion, and change “Sum of NumberSold” to “Count of NumberSold”, which tells you how many sales
transactions occurred:

Sub AddDataField()
Dim pvt As PivotTable

Set pvt = ActiveSheet.PivotTables(1)

‘Add and format new Data field
With pvt.PivotFields(“Revenue”)
.Orientation = xlDataField
.NumberFormat = “0”

End With

‘Edit existing Data field
With pvt.DataFields(“Sum of NumberSold”)
.Position = 2
.Function = xlCount
.NumberFormat = “0”

End With

End Sub

Note that you need to refer to the name of the data field in the same way as it is presented in the
Table —”Sum of NumberSold”. If any further code followed, it would need to now refer to “Count of
NumberSold”. Alternatively, you could refer to the data field by its index number or assign it a name of
your own choosing.

The result of all these code changes is shown in Figure 7-7.

Figure 7-7

169

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 169

CalculatedFields
You can create new fields in a PivotTable by performing calculations on existing fields. For example, you
might want to calculate the weighted average price of each product. You could create a new field called
AveragePrice and define it to be Revenue divided by NumberSold, as in the following code:

Sub CalculateAveragePrice()
Dim pvt As PivotTable

‘Add new Worksheet and PivotTable
Worksheets.Add
Set pvt = ActiveWorkbook.PivotCaches(1).CreatePivotTable(_

TableDestination:=ActiveCell, TableName:=”AveragePrice”)
With pvt

‘Remove AveragePrice if it exists
On Error Resume Next
.PivotFields(“AveragePrice”).Delete
On Error GoTo 0

‘Create new AveragePrice
.CalculatedFields.Add Name:=”AveragePrice”, _

Formula:=”=Revenue/NumberSold”

‘Add Row and Column fields
.AddFields RowFields:=”Customer”, ColumnFields:=”Product”

‘Add AveragePrice as Data field
With .PivotFields(“AveragePrice”)
.Orientation = xlDataField
.NumberFormat = “0.00”

End With

‘Remove grand totals
.ColumnGrand = False
.RowGrand = False

End With

End Sub

CalculateAveragePrice adds a new worksheet and uses the CreatePivotTable method of the pre-
viously created PivotCache to create a new PivotTable in the new worksheet. So you can run this code
repeatedly, it deletes any existing PivotField objects called AveragePrice. The On Error statements
ensure that the code keeps running if AveragePrice does not exist.

The CalculatedFields collection is accessed using the CalculatedFields method of the PivotTable.
The Add method of the CalculatedFields collection is used to add the new field. Note that the new
field is really added to the PivotCache, even though it appears to have been added to the PivotTable.
It is now also available to your first PivotTable, and deleting the new PivotTable would not delete
AveragePrice from the PivotCache. Once the new field exists, you treat it like any other member of
the PivotFields collection. The final lines of code remove the grand totals that appear by default.

170

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 170

The Table in Figure 7-8 results from the changes outlined in the previous paragraph. Because the prices
do not vary in the source data, it is not surprising that the weighted average prices for each product in
the PivotTable do not vary either.

Figure 7-8

For example, say you don’t have Revenue in the source data, and you decide to calculate it by defining a
CalculatedField equal to Price multiplied by NumberSold. This would not give the correct result.
You can’t get Revenue by multiplying the sum of Price by the sum of NumberSold, except in the spe-
cial case where only one record from the source data is represented in each cell of the PivotTable.

PivotItems
Each PivotField object has a PivotItems collection associated with it. You can access the PivotItems
using the PivotItems method of the PivotField object. It is a bit peculiar that this is a method and
not a property, and is in contrast to the HiddenItems property and VisibleItems property of the
PivotField object that return subsets of the PivotItems collection.

The PivotItems collection contains the unique values in a field. For example, the Product field in the
source data has four unique values —”Apples”, “Mangoes”, “Oranges”, and “Pears”, which consti-
tute the PivotItems collection for that field.

Grouping
You can group the items in a field in any way you like. For example, NSW, QLD, and VIC (New South
Wales, Queensland, and Victoria, respectively) could be grouped as EasternStates. This can be very
useful when you have many items in a field. You can also group dates, which have a predefined group
structure including years, quarters, and months.

Take care when creating CalculatedFields. You need to appreciate that the calcu-
lations are performed after the source data has been summed. In this example,
Revenue and NumberSold were summed and one sum was divided by the other
sum. This works fine for calculating a weighted average price and is also suitable
for simple addition or subtraction. Other calculations might not work as you expect.

171

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 171

If you bring the Date field from the source data into the PivotTable as a row field, as shown in Figure 7-9,
you will have nearly 350 rows in the Table because there are that many unique dates.

Figure 7-9

You can group the Date items to get a more meaningful summary. You can do this manually by selecting
a cell in the PivotTable containing a date item, right-clicking the cell, and clicking Group. The dialog box
shown in Figure 7-10 appears, where you can select both Months and Years.

Figure 7-10

172

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 172

When you click OK, you will see the result shown in Figure 7-11.

Figure 7-11

The following code can be used to perform the same grouping operation:

Sub GroupDates()
Dim pvc As PivotCache
Dim pvt As PivotTable
Dim rng As Range

‘Add New Worksheet
Worksheets.Add Before:=Sheets(1)

‘Get reference to existing PivotCache
Set pvc = ActiveWorkbook.PivotCaches(1)

‘Add PivotTable
Set pvt = ActiveSheet.PivotTables.Add(PivotCache:=pvc, _

TableDestination:=Range(“A3”))

‘Define fields in PivotTable
With pvt

.PivotFields(“Date”).Orientation = xlRowField

.PivotFields(“State”).Orientation = xlColumnField

.AddDataField .PivotFields(“NumberSold”), “Sum of NumberSold”, xlSum

‘Locate the first Date

173

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 173

Set rng = .PivotFields(“Date”).DataRange.Cells(1,1)

‘Group all Dates by Month & Year
rng.Group Start:=True, End:=True, _

Periods:=Array(False, False, False, False, True, False, True)

End With

End Sub

The grouping is carried out on the Range object underneath the labels for the field or its items. You need
to select one of the labels containing an item name. If you choose a number of item names, you will
group just those selected items.

GroupDates creates an object variable, rng, referring to the cell containing the first Date item. The
Group method is applied to this cell, using the parameters that apply to dates. The Start and End
parameters define the start date and end date to be included. When they are set to True, all dates are
included. The Periods parameter array corresponds to the choices in the Grouping dialog box, selecting
Months and Years.

The following code ungroups the dates:

Sub UnGroupDates()
Dim rng As Range

‘Get reference to data
Set rng = ActiveSheet.PivotTables(1).PivotFields(“Date”).DataRange

‘Ungroup
rng.Ungroup

End Sub

Note that you have used the DataRange property of the PivotField object to locate the dates. The
DataLabel property, which you could use to locate the dates when grouping them in previous versions
of Excel, does not work in Excel 2007.

You can regroup them with the following code:

Sub ReGroupDates()
Dim rng As Range

‘Get reference to single cell in data
Set rng = ActiveSheet.PivotTables(1).PivotFields(“Date”).DataRange.Cells(1, 1)

‘Group all dates by Month & Year
rng.Group Start:=True, End:=True, _

Periods:=Array(False, False, False, False, True, False, True)

End Sub

174

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 174

The DataRange property has been used to refer to the items to be grouped. You can’t refer to all the cells
in the range, as mentioned previously, so the Cells property is used to refer to the first cell in the range.

Visible Property
You can hide items by setting their Visible property to False. Say you are working with the grouped
dates from the last exercise, and you want to see only Jan 2006 and Jan 2007, as shown in Figure 7-12.

Figure 7-12

You could use the following code:

Sub CompareMonths()
Dim pvt As PivotTable
Dim pvi As PivotItem
Dim sMonth As String

‘Specify month to be visible
sMonth = “Jan”

‘Get reference to PivotTable
Set pvt = ActiveSheet.PivotTables(1)

‘Hide all years except 2006 & 2007
For Each pvi In pvt.PivotFields(“Years”).PivotItems
If pvi.Name <> “2006” And pvi.Name <> “2007” Then
pvi.Visible = False

End If
Next pvi

‘Make sure specified month is visible - can’t hide all data
pvt.PivotFields(“Date”).PivotItems(sMonth).Visible = True

‘Hide all months in Date except specified month
For Each pvi In pvt.PivotFields(“Date”).PivotItems
If pvi.Name <> sMonth Then pvi.Visible = False

Next pvi

End Sub

175

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 175

CompareMonths loops through all the items in the Years and Date fields, setting the Visible property
to False if the item is not one of the required items. The code has been designed to be reusable for com-
paring other months by assigning new values to sMonth. Note that the required month is made visible
before processing the items in the Date field. This is necessary to ensure that the required month is visi-
ble, and also so you don’t try to make all the items hidden at once, which would cause a run-time error.

CalculatedItems
You can add calculated items to a field using the Add method of the CalculatedItems collection. Say
you wanted to add a new product — melons. You estimate that you would sell 50% more melons than
mangoes. This could be added to the Table created by CreatePivotTable using the following code:

Sub AddCalculatedItem()
‘Add a new calculated item to the
‘PivotTable produced by CreatePivotTable

With ActiveSheet.PivotTables(1).PivotFields(“Product”)
.CalculatedItems.Add Name:=”Melons”, Formula:=”=Mangoes*1.5”

End With

End Sub

This would give the result in Figure 7-13.

Figure 7-13

You can remove the CalculatedItem by deleting it from either the CalculatedItems collection or the
PivotItems collection of the PivotField:

Sub DeleteCalculatedItem()
‘Delete an item from the
‘PivotTable produced by CreatePivotTable
‘and AddCalculatedItem

With ActiveSheet.PivotTables(1).PivotFields(“Product”)
.PivotItems(“Melons”).Delete

End With

End Sub

176

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 176

PivotChar ts
PivotCharts were introduced in Excel 2000. They follow all the rules associated with Chart objects, except
that they are linked to a PivotTable object. If you change the layout of a PivotChart, Excel automatically
changes the layout of the linked PivotTable. Conversely, if you change the layout of a PivotTable that is
linked to a PivotChart, Excel automatically changes the layout of the chart.

The following code creates a new PivotChart, based on the PivotTable set up by CreatePivotTable in
the active worksheet:

Sub CreatePivotChart()
‘Add a PivotChart to a PivotTable in the active worksheet

Dim shp As Shape

‘Create the chart in a Shape object
Set shp = ActiveSheet.Shapes.AddChart(xlColumnStacked)

‘Assign the PivotTable data to the chart source
shp.Chart.SetSourceData Source:=ActiveSheet.PivotTables(1).TableRange1, _

PlotBy:=xlColumns

‘Fit the Chart to a range of cells
With Range(“A11:F28”)

shp.Left = .Left
shp.Top = .Top
shp.Width = .Width
shp.Height = .Height

End With

‘Change the layout of the PivotTable & the PivotChart
With shp.Chart.PivotLayout.PivotTable

.PivotFields(“Customer”).Orientation = xlColumnField

.PivotFields(“Product”).Orientation = xlRowField
End With

‘Change PivotChart format
shp.Chart.ChartType = xlCylinderColStacked

End Sub

The code produces the chart in Figure 7-14.

The code creates a new Shape object containing a Chart object using the AddChart method of the
Shapes collection. This Shape object is also a member of the ChartObjects collection, which is
explained in more detail in Chapter 8. It then assigns the PivotTable range to be the data source for the
Chart object using the SetSourceData method of the Chart object.

To change the position of the chart, the Shape object is aligned with a range of cells. To change the
layout of the PivotTable and the PivotChart that is now linked to the PivotTable, the code uses the
PivotLayout property of the Chart object to reference the Chart object’s PivotLayout object that
gives access to the PivotTable object.

177

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 177

Figure 7-14

Formatting changes to the chart can be made through the properties and methods of the Chart object
embedded in the Shape object. See Chapter 8 for more information on manipulating charts.

External Data Sources
Excel is ultimately limited in the quantity of data it can store, and it is very poor at handling multiple
related Tables of data. Therefore, you might want to store your data in an external database application
and draw out the data you need as required. A powerful way to do this is to use ADO (ActiveX Data
Objects), a topic covered in greater depth in Chapter 20.

The following example shows how to connect to an Access database called SalesDB.accdb containing
data similar to that you have been using, but potentially much more comprehensive and complex. To
run the following code, you must create a reference to ADO. To do this, go to the VBE window and click
Tools ➪ References. From the list, find Microsoft ActiveX Data Objects and click in the checkbox beside it.
If you find multiple versions of this library, choose the one with the highest version number.

178

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 178

When you run the code, it creates a PivotCache, creates a new worksheet at the front of the workbook,
and adds a PivotTable that is similar to those you have already created, but the data source will be the
Access database:

Sub PivotTableDataViaADO()
Dim con As ADODB.Connection
Dim rs As ADODB.Recordset
Dim sSQL As String
Dim pvc As PivotCache
Dim pvt As PivotTable

‘Set up connection
Set con = New ADODB.Connection
con.Open “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Data\SalesDB.accdb;”

‘Define SQL statement
sSQL = “Select * From SalesData”

‘Open the recordset
Set rs = New ADODB.Recordset
Set rs.ActiveConnection = con
rs.Open sSQL

‘Create the PivotTable cache
Set pvc = ActiveWorkbook.PivotCaches.Add(SourceType:=xlExternal)
Set pvc.Recordset = rs

‘Create the PivotTable
Worksheets.Add Before:=Sheets(1)
Set pvt = ActiveSheet.PivotTables.Add(PivotCache:=pvc, _

TableDestination:=Range(“A1”))

With pvt
.NullString = “0”
.SmallGrid = False
.AddFields RowFields:=”State”, ColumnFields:=”Product”
.PivotFields(“NumberSold”).Orientation = xlDataField

End With

End Sub

First you create a Connection object linking you to the Access database using the Open method of the
ADO Connection object. You then define a SQL (Structured Query Language) statement that says you
want to select all the data in a Table called SalesData in the Access database. The Table is almost identical
to the one you have been using in Excel, having the same fields and data. See Chapter 20 to get more
information on SQL and the terminology that is used in ADO.

You then assign a reference to a new ADO Recordset object to the object variable rs. The
ActiveConnection property of rs is assigned a reference to the Connection object. The Open method
then populates the recordset with the data in the Access SalesData Table, following the instruction in
the SQL statement.

179

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 179

You then open a new PivotCache, declaring its data source as external by setting the SourceType
parameter to xlExternal, and set its Recordset property equal to the ADO recordset rs. The rest of
the code uses techniques you have already seen to create the PivotTable using the PivotCache.

Chapter 20 goes into much more detail about creating recordsets, and with a much greater explanation
of the techniques used. Armed with the knowledge in that chapter, and knowing how to connect a
recordset to a PivotCache from the previous example, you will be in a position to utilize an enormous
range of data sources.

Summary
You use PivotTables to summarize complex data. This chapter examined various techniques that you can
use to create PivotTables from a data source such as an Excel Table using VBA.

The chapter covered setting up PivotCaches and showed how they relate to PivotTables. You can add
fields to PivotTables as row, column, or data fields. You can calculate fields from other fields, and items
in fields. You can group items. You might do this to summarize dates by years and months, for example.
You can hide items, so you see only the data required.

You can link a PivotChart to a PivotTable so changes in either are synchronized. A PivotLayout object
connects them.

Using ADO, you can link your PivotTables to external data sources.

180

Chapter 7: PivotTables

10_046432 ch07.qxp 2/16/07 9:56 PM Page 180

Charts
In this chapter, you see how you can use the macro recorder to discover what objects, methods,
and properties are required to manipulate charts. You will then improve and extend that code to
make it more flexible and efficient. This chapter is designed to show you how to gain access to
Chart objects in VBA code so that you can start to program the vast number of objects that Excel
charts contain. You can find more information on these objects in Appendix A. Specifically, this
chapter examines:

❑ Creating Chart objects on separate sheets

❑ Creating Chart objects embedded in a worksheet

❑ Editing data series in charts

❑ Defining series with arrays

❑ Defining chart labels

You can create two types of charts in Excel: charts that occupy their own chart sheets and charts
that are embedded in a worksheet. They can be manipulated in code in much the same way. The
only difference is that, whereas the chart sheet is a Chart object in its own right, the chart embed-
ded in a worksheet is contained by a ChartObject object. Each ChartObject on a worksheet is
a member of the worksheet’s ChartObjects collection. Chart sheets are members of the work-
book’s Charts collection.

Each ChartObject is a member of the Shapes collection, as well as a member of the
ChartObjects collection. The Shapes collection provides you with an alternative way to refer
to embedded charts. The macro recorder generates code that uses the Shapes collection rather
than the ChartObjects collection.

11_046432 ch08.qxp 2/16/07 9:56 PM Page 181

Char t Sheets
Select the data in cells A3:D7, as shown in Figure 8-1, and turn on the macro recorder. Right-click the
sheet name tab, which contains the sheet name Sales, and select Insert. In the Insert dialog box, select
Chart and click OK.

Figure 8-1

Figure 8-2 shows the chart that’s created. Don’t turn off the recorder. You will record some adjustments
to the chart.

From the Design tab of the Ribbon, click the Switch Row/Column button in the Data group and then
the Quick Layout Button in the Chart Layouts group, and choose the top-left layout. A Chart title will
appear that you can change to Mangoes. Click in the chart area to force the recorder to add the title
change to its code, and turn off the recorder. The final chart should look like the chart in Figure 8-3.

182

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 182

Figure 8-2

Figure 8-3

183

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 183

The Recorded Macro
The recorded macro should look like the following:

Sheets(“Sales”).Select
ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourceData Source:=Range(“Sales!A3:D7”), PlotBy:= _

xlColumns
ActiveChart.ChartType = xlColumnClustered
Charts.Add
ActiveChart.ChartArea.Select
ActiveChart.PlotBy = xlRows
ActiveChart.ApplyLayout (1)
ActiveChart.ChartTitle.Select
ActiveChart.ChartTitle.Text = “Mangoes”
ActiveChart.ChartArea.Select

Although you inserted a new chart sheet, the recorded macro uses the AddChart method of the Shapes
object to create an embedded chart in the Sales worksheet. (Note that the recorder prefers to refer to a
ChartObject as a Shape object, which is an alternative pointed out at the beginning of this chapter.) It
uses the SetSourceData method to define the ranges plotted by the active chart and sets the chart’s
ChartType property.

The macro then uses the Add method of the Charts collection to create a new chart sheet. At this point,
the embedded chart is used to create the new chart sheet. The PlotBy property changes the orientation
of the chart, and the ApplyLayout method applies the selected format so that a title appears. The Text
property of the ChartTitle object is assigned the string “Mangoes”. Finally, the macro records that you
selected the chart area.

Adding a Chart Sheet Using VBA Code
The recorded code is a bit odd. There is no need to create an embedded chart. You can simply add a
chart sheet and set its properties directly. You can also create an object variable, so that you have a sim-
ple and efficient way of referring to the chart in subsequent code. Rather than limit yourself to the preset
layouts, you can select the chart features you want, such as a title. There is no need to plot by columns
and then plot by rows. The following code incorporates these changes:

Sub AddChartSheet()
Dim cht As Chart

‘Create new chart sheet
Set cht = Charts.Add

With cht

‘Specify source data and orientation
.SetSourceData Source:=Sheets(“Sales”).Range(“A3:D7”), _

PlotBy:=xlRows
.ChartType = xlColumnClustered

‘Add a title and assign it a value

184

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 184

.HasTitle = True

.ChartTitle.Text = “Mangoes”

End With

End Sub

Embedded Char ts
When you create a chart embedded as a ChartObject, it is a good idea to name the ChartObject so
that it can be easily referenced in later code. When you select the chart, you will see its name to the left
of the Formula bar at the top of the screen in the name box.

You can select and change the name of the ChartObject in the name box and press Enter to update it.
The embedded chart in Figure 8-4 was created, dragged to its new location, and had its name changed to
MangoesChart. The name can also be changed in the Layout tab of the Ribbon by clicking the Properties
button.

Figure 8-4

185

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 185

The chart was created, using the Insert tab of the Ribbon, by clicking the Column button and selecting
the top-left chart type from the 2-D Column section of the resulting dialog box. The name was changed
in the name box. The row/column orientation was switched in the Design tab as before. The title was
added by activating the Layout tab of the Ribbon and clicking the Chart Title button in the Labels group
and choosing Centered Overlay Title.

Using the Macro Recorder
If you select cells A3:D7 and turn on the macro recorder before creating the chart in Figure 8-4, you will
get code like the following:

ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourceData Source:=Range(“Sales!A3:D7”), PlotBy:= _

xlColumns
Selection.Name = “MangoesChart”
ActiveChart.ChartType = xlColumnClustered
ActiveChart.PlotBy = xlRows
ActiveChart.SetElement (msoElementChartTitleCenteredOverlay)
ActiveChart.ChartTitle.Text = “Mangoes”
ActiveChart.ChartArea.Select

The recorded macro is similar to the one that created a chart sheet, with some interesting differences.
Whereas most lines refer to the ActiveChart object, the code that names the ChartObject refers to
Selection, which is the Shape or ChartObject containing the Chart object.

The title of the chart is created using the SetElement method. This method has more than 100 constants
with self-explanatory names that you can use to change the appearance of the chart. You can find these
constants listed in the Object Browser.

Adding an Embedded Chart Using VBA Code
The following code creates a Shape object containing the required chart:

Sub AddChart()
Dim shp As Shape

‘Delete any existing ChartObjects
On Error Resume Next
ActiveSheet.ChartObjects.Delete
On Error GoTo 0

‘Create new embedded chart
Set shp = ActiveSheet.Shapes.AddChart

‘Position Shape over range
With Range(“F3:M19”)

shp.Top = .Top
shp.Left = .Left

186

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 186

shp.Height = .Height
shp.Width = .Width

End With

With shp

‘Assign name to Shape containing chart
.Name = “MangoesChart”

With .Chart

‘Specify source data and orientation
.SetSourceData Source:=Sheets(“Sales”).Range(“A3:D7”), _

PlotBy:=xlRows
.ChartType = xlColumnClustered

‘Add a title and assign it a value
.SetElement msoElementChartTitleCenteredOverlay
.ChartTitle.Text = “Mangoes”

End With

End With

End Sub

AddChart first deletes any existing ChartObjects. It then sets the object variable shp to refer to the Shape
object added using the AddChart method. Although the Shape is also a ChartObject, the AddChart
method returns a Shape object. There is no AddChart method for the ChartObjects collection.

AddChart aligns the Shape with F3:M19 by assigning the Top, Left, Width, and Height property val-
ues of the range to the same properties of the Shape, and then applies the name “MangoesChart” to the
Shape. The Chart property of the Shape object is then used to return a reference to the embedded chart
and the properties set, as you have seen previously.

Editing Data Series
The SetSourceData method of the Chart object is the quickest way to define a completely new set of
data for a chart. You can also manipulate individual series using the Series object, which is a member
of the chart’s SeriesCollection object. The following example is designed to show you how to access
individual series.

The code will take the MangoesChart and delete all the series from it, and then replace them with four
new series, one at a time. The new chart will contain product information for a region nominated by the
user. To make it easier to locate each set of product data, names have been assigned to each product
range in the worksheet. For example, A3 has been given the name Mangoes, corresponding to the label
in A3. The final chart will be similar to the chart in Figure 8-5.

187

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 187

Figure 8-5

The following code converts MangoesChart to include the new data (note that the original chart must
still be on the spreadsheet for this to work). Because MangoesToRegion is a fairly long procedure, it is
examined in sections:

Sub MangoesToRegion()
Dim cbo As ChartObject
Dim cht As Chart
Dim scSeries As SeriesCollection
Dim iCount As Integer
Dim rngYAxis As Range
Dim rngXAxis As Range
Dim vProducts As Variant
Dim vRegions As Variant
Dim iRegion As Integer
Dim vAnswer As Variant

‘Set up arrays for Product & Region names
vProducts = Array(“Mangoes”, “Bananas”, “Lychees”, “Rambutan”)
vRegions = Array(“South”, “North”, “East”, “West”)

‘Determine that MangoesChart exists
On Error Resume Next
Set cbo = Worksheets(“Sales”).ChartObjects(“MangoesChart”)
If cbo Is Nothing Then
MsgBox “MangoesChart was not found - procedure aborted”, vbCritical
Exit Sub

End If
On Error GoTo 0

MangoesToRegion first assigns the product names to vProducts and the region names to vRegions. It
then tries to set the cbo object variable by assigning the variable a reference to the ChartObject named
MangoesChart. If this fails, the procedure is aborted. Because it is not the main point of the exercise, this
section of code has been kept very simple:

188

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 188

‘Get Region number
Do ‘While vAnswer < 1 Or vAnswer > 4
vAnswer = InputBox(“Enter Region number (1 to 4)”)
If vAnswer = “” Then Exit Sub
If vAnswer >= 1 And vAnswer <= 4 Then
Exit Do

Else
MsgBox “Region must be 1, 2, 3 or 4”, vbCritical

End If
Loop
iRegion = CInt(vAnswer)

The user is then asked to enter the region number. The Do...Loop will continue until the user clicks
Cancel, clicks OK without entering anything, or enters a number between 1 and 4. If a number between
1 and 4 is entered, the value is converted to an integer value, using the CInt function, and assigned to
iRegion:

‘Set up new chart
Set cht = cbo.Chart
Set scSeries = cht.SeriesCollection
‘Delete all existing chart series
For iCount = scSeries.Count To 1 Step -1
scSeries(iCount).Delete

Next iCount

Next, cht is assigned a reference to the chart in the ChartObject. Then scSeries is assigned a refer-
ence to the SeriesCollection in the chart. The following For...Next loop deletes all the members
of the collection. This is done backwards because deleting the lower number series first automatically
decreases the item numbers of the higher series. In this case there will be no series 3 when you try to
delete it, which will cause a run-time error. Alternatively, you could have deleted series 1 each time
around the loop and the direction of the loop would not have mattered:

‘Add Products for Region
For iCount = LBound(vProducts) To UBound(vProducts)
‘Define chart ranges
Set rngYAxis = Range(vProducts(iCount)).Offset(iRegion, 1).Resize(1, 3)
Set rngXAxis = Range(vProducts(iCount)).Offset(0, 1).Resize(1, 3)

‘Add new series & assign data
With scSeries.NewSeries
.Name = vProducts(iCount)
.Values = rngYAxis
.XValues = “=” & rngXAxis.Address _

(RowAbsolute:=True, _
ColumnAbsolute:=True, _
ReferenceStyle:=xlR1C1, _
External:=True)

End With
Next iCount

189

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 189

The For...Next loop adds a new series to the chart for each product. The loop uses the UBound and
LBound functions to avoid having to know the Option Base setting for the module. The range object
rngYAxis is assigned a reference to the chosen region data within the current product data.

Range(vProducts(i)) refers to the ranges containing the product tables. Each range has been assigned
a name corresponding to the text entries in vProducts(i). iRegion is used as the row offset into the
product data to refer to the correct region data. The column offset is 1 so that the name of the region is
excluded from the data. Resize ensures that the data range has one row and three columns. The range
object rngXAxis is assigned a reference to the month names at the top of the product data table.

Following the With statement, MangoesToRegion uses the NewSeries method to add a new empty
series to the chart. The NewSeries method returns a reference to the new series, which supplies the
With...End With reference that is used by the lines between With and End With. The Name property
of the series, which appears in the legend, is assigned the current product name.

The Values property of the new series is assigned a reference to rngYAxis. The XValues property
could have been assigned a direct reference to rngXAxis in the same way. However, both properties can
also be defined by a formula reference as an external reference in the A1 or R1C1 style. The string value
generated and assigned to the Mangoes series XValues property is:

=[Charts2.xlsm]Sales!R3C2:R3C4

The final section of code is as follows:

‘Define chart title
cht.ChartTitle.Text = vRegions(iRegion + LBound(vRegions) - 1)

‘Give name to chartobject
cbo.Name = “RegionChart”

End Sub

The ChartTitle.Text property is assigned the appropriate string value in the vRegions array, using
the value of iRegion as an index to the array. To avoid having to know the Option Base setting for the
module, LBound(vRegions) - 1 has been used to adjust the index value in iRegion, which ranges
from 1 to 4. If the Option Base setting is 0, this expression returns a value of 1, which adjusts the value
of iRegion such that it ranges from 0 to 3. If the Option Base setting is 1, the expression returns 0,
which does not change the iRegion value so it still has the range of 1 to 4. Another way to handle the
Option Base is to use the following code:

Cht.ChartTitle.Text = vaRegions(iRegion - Array(0,1)(1))

The code finally changes the name of the ChartObject to RegionChart.

Defining Char t Series with Arrays
A chart series can be defined by assigning a VBA array to its Values property. This can come in handy if
you want to generate a chart that is not linked to the original data. The chart can be distributed in a sep-
arate workbook that is independent of the source data.

190

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 190

Figure 8-6 shows a chart of the Mangoes data. You can see the definition of the first data series in the
SERIES function in the Formula bar above the worksheet. The month names and the values on the verti-
cal axis are defined by arrays. The region names have been assigned as text to the series names.

Figure 8-6

The 3D chart can be created using the following code:

Sub MakeArrayChart()
Dim wksSource As Worksheet
Dim rngSource As Range
Dim wkb As Workbook
Dim wks As Worksheet
Dim cht As Chart
Dim seNewSeries As Series
Dim iCount As Integer
Dim vSalesArray As Variant
Dim vMonthArray As Variant

‘Create month array
vMonthArray = Array(“Jan”, “Feb”, “Mar”)

‘Define the data source
Set wksSource = ThisWorkbook.Worksheets(“Sales”)
Set rngSource = wksSource.Range(“Mangoes”)

‘Create a new workbook

191

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 191

Set wkb = Workbooks.Add
Set wks = wkb.Worksheets(1)

‘Add a new chart object and embed it in the worksheet
Set cht = wks.Shapes.AddChart.Chart

MakeArrayChart assigns the month names to vMonthArray. This data could have come from the
worksheet, if required, like the sales data. A reference to the worksheet that is the source of the data is
assigned to wksSource. The Mangoes range is assigned to rngSource. A new workbook is created for
the chart and a reference to it is assigned to wkb. A reference to the first worksheet in the new workbook
is assigned to wks. A new chart is embedded in a Shape belonging to the Shapes collection in wks, and
a reference to the embedded chart is assigned to cht:

With cht

‘Define the chart type
.ChartType = xl3DColumn

For iCount = 1 To 4

‘Create a new series
Set seNewSeries = .SeriesCollection.NewSeries

‘Assign the data as arrays
vSalesArray = WorksheetFunction.Transpose(_

rngSource.Offset(iCount, 1).Resize(1, 3).Value)
seNewSeries.Values = vSalesArray
seNewSeries.XValues = WorksheetFunction.Transpose(vMonthArray)
seNewSeries.Name = “=””” & rngSource.Cells(iCount + 1, 1).Value & “”””

Next iCount

‘Adjust format
.HasLegend = False
.HasTitle = True
.ChartTitle.Text = “Mangoes”

‘Position the ChartObject in B2:I22 and name it
With .Parent

.Top = wks.Range(“B2”).Top

.Left = wks.Range(“B2”).Left

.Width = wks.Range(“B2:I22”).Width

.Height = wks.Range(“B2:I22”).Height

.Name = “ArrayChart”
End With

End With
End Sub

In the With...End With structure, the ChartType property of cht is changed to a 3D column type.
The For...Next loop creates the four new series. Each time around the loop, a new series is created
with the NewSeries method. The region data from the appropriate row is directly assigned to the vari-
ant vSalesArray, and vSalesArray is immediately assigned to the Values property of the new series.

192

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 192

vMonthArray is assigned to the XValues property of the new series. The text in column A of the
Mangoes range is assigned to the Name property of the new series.

The code then removes the chart legend, which is added by default, and sets the chart title. The final
code operates on the Shape, which is the chart’s parent, to place the chart exactly over B2:I22, and names
the chart ArrayChart.

The result is a chart in a new workbook that is quite independent of the original workbook and its data. If
the chart had been copied and pasted into the new workbook, it would still be linked to the original data.

Conver ting a Char t to Use Arrays
You can easily convert an existing chart to use arrays instead of cell references and make it independent
of the original data it was based on. The following code shows how:

Sub ConvertSeriesValuesToArrays()
Dim seSeries As Series
Dim cht As Chart

On Error GoTo Failure

‘Get reference to embedded chart
Set cht = ActiveSheet.ChartObjects(1).Chart

‘Process each series in charts series collection
For Each seSeries In cht.SeriesCollection

‘Convert range references to numeric/string values
seSeries.Values = seSeries.Values
seSeries.XValues = seSeries.XValues
seSeries.Name = seSeries.Name

Next seSeries

Exit Sub

Failure:
MsgBox “Sorry, the data exceeds the array limits””

End Sub

For each series in the chart, the Values, XValues, and Name properties are set equal to themselves.
Although these properties can be assigned range references, they always return an array of values when
they are interrogated. This behavior can be exploited to convert the cell references to arrays.

In previous versions of Excel, the number of characters that can be contained in the SERIES function
arrays is limited to 250 characters, or thereabouts. This limit does not apply to Excel 2007, but the code
sets up an error trap to cover this possibility, should it be used in a previous version.

193

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 193

Determining the Ranges Used in a Char t
The behavior that is beneficial when converting a chart to use arrays is a problem when you need to pro-
grammatically determine the ranges that a chart is based on. If the Values and XValues properties
returned the strings or range objects that you used to define them, the task would be easy.

The only property that contains information on the ranges is the Formula property that returns the for-
mula containing the SERIES function as a string. The formula would be like the following:

=SERIES(“Mangoes”, Sales!B3:D3, Sales!B5:D5, 1)

The XValues are defined by the second parameter and the Values by the third parameter. You need to
locate the commas and extract the text between them as shown in the following code, designed to work
with a chart embedded in the active sheet:

Sub GetRangesFromChart()
Dim seSeries As Series
Dim sSeriesFunction As String
Dim iFirstComma As Integer, iSecondComma As Integer, iThirdComma As Integer
Dim sValueRange As String, sXValueRange As String
Dim rngValueRange As Range, rngXValueRange As Range

On Error GoTo Oops

‘Get the SERIES function from the first series in the chart
Set seSeries = ActiveSheet.ChartObjects(1).Chart.SeriesCollection(1)
sSeriesFunction = seSeries.Formula

‘Locate the commas
iFirstComma = InStr(1, sSeriesFunction, “,”)
iSecondComma = InStr(iFirstComma + 1, sSeriesFunction, “,”)
iThirdComma = InStr(iSecondComma + 1, sSeriesFunction, “,”)

‘Extract the range references as strings
sXValueRange = Mid(sSeriesFunction, iFirstComma + 1, _

iSecondComma - iFirstComma - 1)
sValueRange = Mid(sSeriesFunction, iSecondComma + 1, _

iThirdComma - iSecondComma - 1)

‘Convert the strings to range objects
Set rngXValueRange = Range(sXValueRange)
Set rngValueRange = Range(sValueRange)

‘Color the ranges
rngXValueRange.Interior.ColorIndex = 3
rngValueRange.Interior.ColorIndex = 4

Exit Sub

Oops:
MsgBox “Sorry, an error has occurred” & vbCr & _

“This chart might not contain range references”

End Sub

194

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 194

sSeriesFunction is assigned the formula of the series, which contains the SERIES function as a string.
The positions of the first, second, and third commas are found using the InStr function. The Mid func-
tion is used to extract the range references as strings, and they are converted to Range objects using the
Range property.

The conversion of the strings to Range objects works even when the range references are not on the same
sheet or in the same workbook as the embedded chart, as long as the source data is in an open workbook.

You could then proceed to manipulate the Range objects. You can change cell values in the ranges, for
example, or extend or contract the ranges, once you have programmatic control over them. For illustration
purposes, the code changes the color of the ranges in the worksheet by changing the ColorIndex property.

Char t Labels
In Excel, it is easy to add data labels to a chart as long as the labels are based on the data series values or
X-axis values. These options are available in the Layout tab of the Ribbon under the Data Labels button
in the Labels group.

You can also enter your own text as labels, but this involves a lot of manual work. You would need to
add standard labels to the series, and then individually select each one and replace it with your own
text. Alternatively, you can write a macro to do it for you.

Figure 8-7 shows a chart of sales figures for each month, with the name of the top salesperson for each
month. The labels have been given the text entries from row 4 of the worksheet.

Figure 8-7

195

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 195

Say you have set up a line chart like the one in Figure 8-7, but without the data labels. You can add the
data labels using the following code:

Sub AddDataLabels()
Dim seSales As Series
Dim pts As Points
Dim pt As Point
Dim rngLabels As Range
Dim iPointIndex As Integer

‘Specify cells containing labels
Set rngLabels = Range(“B4:G4”)

‘Get first series from chart
Set seSales = ActiveSheet.ChartObjects(1).Chart.SeriesCollection(1)

‘Enable labels
seSales.HasDataLabels = True

‘Processs each point in Points collection
Set pts = seSales.Points
For Each pt In pts

iPointIndex = iPointIndex + 1

pt.DataLabel.Text = rngLabels.Cells(iPointIndex).Text
pt.DataLabel.Font.Bold = True
pt.DataLabel.Position = xlLabelPositionAbove

Next pt

End Sub

The object variable rngLabels is assigned a reference to B4:G4. seSales is assigned a reference to the first,
and only, series in the embedded chart, and the HasDataLabels property of the series is set to True. The
For Each...Next loop processes each Point object in the Points collection in the data series. For each
point, the code assigns the Text property of the corresponding cell to the Text property of the point’s data
label. The data label is also made bold and the label is positioned above the data point.

Summary
It is easy to create a programmatic reference to a chart on a chart sheet. The Chart object is a member of
the Charts collection of the workbook. To reference a chart embedded in a worksheet, you need to be
aware that the Chart object is contained in a ChartObject object that belongs to the ChartObjects
collection of the worksheet. ChartObject objects also belong to the Shapes collection of the worksheet.

You can move or resize an embedded chart by changing the Top, Left, Width, and Height properties
of the ChartObject. If you already have a reference to the Chart object, you can get a reference to the
ChartObject object through the Parent property of the Chart object.

196

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 196

Individual series in a chart are Series objects, and they belong to the SeriesCollection object of
the chart. The Delete method of the Series object is used to delete a series from a chart. You use the
NewSeries method of the SeriesCollection object to add a new series to a chart.

You can assign a VBA array, rather than the more commonly used Range object, to the Values property
of a Series object. This creates a chart that is independent of worksheet data and can be distributed
without a supporting worksheet.

The Values and XValues properties return data values, not the range references used in a chart. You
can determine the ranges referenced by a chart by examining the SERIES function in the Formula prop-
erty of each series.

The data points in a chart are Point objects and belong to the Points collection of the Series object.
Excel does not provide an easy way to specify cell values as labels on series data points through the user
interface. However, this can be easily done using VBA code.

197

Chapter 8: Charts

11_046432 ch08.qxp 2/16/07 9:56 PM Page 197

11_046432 ch08.qxp 2/16/07 9:56 PM Page 198

Event Procedures
Excel makes it very easy for you to write code that runs when a range of worksheet, chart sheet,
and workbook events occur. Previous chapters have shown you how to highlight the active row
and column of a worksheet by placing code in the Worksheet_SelectionChange event proce-
dure (see Chapter 1). This runs every time the user selects a new range of cells. You have also seen
how to synchronize the worksheets in a workbook using the Worksheet_Deactivate and
Worksheet_Activate events (see Chapter 3).

It is easy to create workbook, chart sheet, and worksheet events, because Excel automatically pro-
vides you with code modules for these objects. However, note that the chart events that are sup-
plied automatically in a chart module apply only to chart sheets, not to embedded charts. If you
want to write event procedures for embedded charts, you can do so, but it takes a bit more knowl-
edge and effort.

Many other high-level events also can be accessed, for the Application object, for example.
These events are covered later on in Chapters 16 and 26. Events associated with controls and forms
are also discussed in their own chapters. This chapter examines in more detail worksheet, chart,
and workbook events and related issues.

Worksheet Events
The following worksheet event procedures are available in the code module behind each worksheet:

❑ Private Sub Worksheet_Activate()

❑ Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As
Boolean)

Event procedures are always associated with a particular object and are contained in
the class module that is associated with that object, such as the ThisWorkbook mod-
ule or the code module behind a worksheet or a UserForm. Don’t try to place an
event procedure in a standard module.

12_046432 ch09.qxp 2/16/07 9:56 PM Page 199

❑ Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As
Boolean)

❑ Private Sub Worksheet_Calculate()

❑ Private Sub Worksheet_Change(ByVal Target As Range)

❑ Private Sub Worksheet_Deactivate()

❑ Private Sub Worksheet_FollowHyperlink(ByVal Target As Hyperlink)

❑ Private Sub Worksheet_PivotTableUpdate(ByVal Target As PivotTable)

❑ Private Sub Worksheet_SelectionChange(ByVal Target As Range)

You should use the drop-down menus at the top of the code module to create the first and last lines of
any procedure you want to use. For example, in a worksheet code module, you can select the
Worksheet object from the left-hand drop-down list. This will generate the following lines of code:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
...
End Sub

The SelectionChange event is the default event for the Worksheet object. If you want a different
event, select the event from the right-hand drop-down list, and delete the preceding lines of code.

As an alternative to using the drop-downs, you can type the first line of the procedure yourself, but by
doing so, it’s easy to make mistakes. The arguments must correspond in number, order, and type with
the arguments specified for each event procedure. You are permitted to use different parameter names if
you wish, but it is better to stick with the standard names to avoid confusion.

Most parameters must be declared with the ByVal keyword, which prevents your code from passing
back changes to the object or item referenced by assigning a new value to the parameter. If the parameter
represents an object, you can change the object’s properties and execute its methods, but you cannot pass
back a change in the object definition by assigning a new object definition to the parameter.

Some event procedures are executed before the associated event occurs and have a Cancel parameter
that is passed by reference. You can assign a value of True to the Cancel parameter to cancel the associ-
ated event. For example, you could prevent a user accessing the worksheet shortcut menu by canceling
the RightClick event in the Worksheet_BeforeRightClick event procedure:

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _
Cancel As Boolean)

Cancel = True
End Sub

Enable Events
It is important to turn off event handling in some event procedures to prevent unwanted infinite recur-
sion. For example, if a worksheet Change event procedure changes the worksheet, it will trigger the
Change event and run itself again. The event procedure will change the worksheet again and trigger
the Change event again, and so on.

200

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 200

If only one event procedure is involved, Excel 2007 will usually detect the recursion and terminate it
after about 100 cycles. If more than one event procedure is involved, the process can continue indefi-
nitely or until you press Esc or Ctrl+Break enough times to stop each process. It is even possible that
Excel 2007 will crash, depending on how much RAM is available and what other code is doing.

For example, there could be a Calculation event procedure active as well as a Change event proce-
dure. If both procedures change a cell that is referenced in a calculation, both events are triggered into an
interactive chain reaction. That is, the first event triggers the second event, which triggers the first event
again, and so on. The following Change event procedure makes sure that it does not cause a chain reac-
tion by turning off event handling while it changes the worksheet. It is important to turn event handling
back on again before the procedure ends:

Private Sub Worksheet_Change(ByVal Target As Range)
Application.EnableEvents = False
Range(“A1”).Value = 100
Application.EnableEvents = True

End Sub

Worksheet Calculate
The Worksheet_Calculate event occurs whenever the worksheet is recalculated. It is usually triggered
when you enter new data into cells that are referenced in formulas in the worksheet. You could use the
Worksheet_Calculate event to warn you, as you enter new data assumptions into a forecast, when
key results go outside their expected range of values. In the Figure 9-1 worksheet, you want to know
when the profit figure in cell N9 exceeds 600 or is lower than 500.

Figure 9-1

The following event procedure runs every time the worksheet recalculates, checks cell N9, which has been
named FinalProfit, and generates messages if the figure goes outside the required band of values:

Private Sub Worksheet_Calculate()
Dim dProfit As Double

‘After recalc access value in FinalProfit cell

Application.EnableEvents = False does not affect events outside the Excel object
model. Events associated with ActiveX controls and user forms, for example, will
continue to occur.

201

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 201

dProfit = Me.Range(“FinalProfit”).Value

‘Display value if outside range 500 to 600
If dProfit > 600 Then

MsgBox “Profit has risen to “ & Format(dProfit, “#,##0.0”), vbExclamation
ElseIf dProfit < 500 Then

MsgBox “Profit has fallen to “ & Format(dProfit, “#,##0.0”), vbCritical

End If

End Sub

Char t Events
The following chart event procedures are available in the code module for each chart object:

❑ Private Sub Chart_Activate()

❑ Private Sub Chart_BeforeDoubleClick(ByVal ElementID As Long, ByVal Arg1 As Long,
ByVal Arg2 As Long, Cancel As Boolean)

❑ Private Sub Chart_BeforeRightClick(Cancel As Boolean)

❑ Private Sub Chart_Calculate()

❑ Private Sub Chart_Deactivate()

❑ Private Sub Chart_MouseDown(ByVal Button As XlMouseButton, ByVal Shift As Long,
ByVal x As Long, ByVal y As Long)

❑ Private Sub Chart_MouseMove(ByVal Button As XlMouseButton, ByVal Shift As Long,
ByVal x As Long, ByVal y As Long)

❑ Private Sub Chart_MouseUp(ByVal Button As XlMouseButton, ByVal Shift As Long,
ByVal x As Long, ByVal y As Long)

❑ Private Sub Chart_Resize()

❑ Private Sub Chart_Select(ByVal ElementID As XlChartItem, ByVal Arg1 As Long,
ByVal Arg2 As Long)

❑ Private Sub Chart_SeriesChange(ByVal SeriesIndex As Long, ByVal PointIndex
As Long)

Before Double Click
Say you wanted to provide users with some shortcuts for formatting a chart. You could provide those
shortcuts by trapping the double-click event and writing your own code to respond to the event.

The following event procedure formats three chart elements when they are double-clicked. If, in the
chart shown in Figure 9-2, you double-click the legend, it is removed.

202

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 202

Figure 9-2

If you double-click the plot area (the area containing the plotted lines), the legend is displayed. If you
double-click a series line with all points selected, it changes the color of the line. If a single point in the
series is selected, the data label at the point is toggled on and off:

Private Sub Chart_BeforeDoubleClick(ByVal ElementID As Long, _
ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)

Dim seSeries As Series

‘Determine which chart element has been double clicked
Select Case ElementID

‘If Legend double clicked - remove it
Case xlLegend

Me.HasLegend = False
Cancel = True

‘If plot area - add legend
Case xlPlotArea

Me.HasLegend = True
Cancel = True

‘If a data series
Case xlSeries

‘Arg1 is the Series index
‘Arg2 is the Point index (-1 if the entire series is selected)
Set seSeries = Me.SeriesCollection(Arg1)

‘If series selected - change line color

203

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 203

If Arg2 = -1 Then
With seSeries.Border

If .ColorIndex = xlColorIndexAutomatic Then
.ColorIndex = 1

Else
.ColorIndex = (.ColorIndex Mod 56) + 1

End If
End With

Else
‘If point selected - toggle data label
With seSeries.Points(Arg2)

.HasDataLabel = Not .HasDataLabel
End With

End If
Cancel = True

End Select

End Sub

The ElementID parameter passes an identifying number to indicate the element that was double-
clicked. You can use intrinsic constants, such as xlLegend, to determine the element. At the end of each
case, Cancel is assigned True so any default double-click event is canceled.

Note the use of the keyword Me to refer to the object associated with the code module. Using Me instead
of Chart1 makes the code portable to other charts. In fact, you can omit the object reference “Me.” and
use “HasLegend =”. In a class module for an object, you can refer to properties of the object without
qualification. However, qualifying the property makes it clear that you have created a property and not
a variable.

If the chart element is a series, Arg1 contains the series index in the SeriesCollection, and if a single
point in the series has been selected, Arg2 contains the point index. Arg2 is -1 if the whole series is
selected.

If the whole series is selected, the event procedure assigns 1 to the color index of the series border, if the
color index is automatic. If the color index is not automatic, it increases the color index by 1. To limit the
choice to 56 colors, the procedure uses the Mod operator, which divides the color index by 56 and gives
the remainder, before adding 1. The only color index value that is affected by this is 56. 56 Mod 56
returns 0, which means that the next color index after 56 is 1.

If a single point is selected in the series, the procedure toggles the data label for the point. If the
HasDataLabel property of the point is True, Not converts it to False. If the HasDataLabel property
of the point is False, Not converts it to True.

When restoring the legend, it would have been more intuitive to double-click the
chart area where the legend is placed. Unfortunately, the initial release of Excel 2007
does not respond to most chart area events. Presumably this will be fixed in a service
release before too long.

204

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 204

Workbook Events
The following workbook event procedures are available:

❑ Private Sub Workbook_Activate()

❑ Private Sub Workbook_AddinInstall()

❑ Private Sub Workbook_AddinUninstall()

❑ Private Sub Workbook_AfterXmlExport(ByVal Map As XmlMap, ByVal Url As String,
ByVal Result As XlXmlExportResult)

❑ Private Sub Workbook_AfterXmlImport(ByVal Map As XmlMap, ByVal IsRefresh As
Boolean, ByVal Result As XlXmlImportResult)

❑ Private Sub Workbook_BeforeClose(Cancel As Boolean)

❑ Private Sub Workbook_BeforePrint(Cancel As Boolean)

❑ Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)

❑ Private Sub Workbook_BeforeXmlExport(ByVal Map As XmlMap, ByVal Url As String,
Cancel As Boolean)

❑ Private Sub Workbook_BeforeXmlImport(ByVal Map As XmlMap, ByVal Url As String,
ByVal IsRefresh As Boolean, Cancel As Boolean)

❑ Private Sub Workbook_Deactivate()

❑ Private Sub Workbook_NewSheet(ByVal Sh As Object)

❑ Private Sub Workbook_Open()

❑ Private Sub Workbook_PivotTableCloseConnection(ByVal Target As PivotTable)

❑ Private Sub Workbook_PivotTableOpenConnection(ByVal Target As PivotTable)

❑ Private Sub Workbook_RowsetComplete(ByVal Description As String, ByVal Sheet As
String, ByVal Success As Boolean)

❑ Private Sub Workbook_SheetActivate(ByVal Sh As Object)

❑ Private Sub Workbook_SheetBeforeDoubleClick(ByVal Sh As Object, ByVal Target As
Range, Cancel As Boolean)

❑ Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, ByVal Target As
Range, Cancel As Boolean)

❑ Private Sub Workbook_SheetCalculate(ByVal Sh As Object)

❑ Private Sub Workbook_SheetChange(ByVal Sh As Object, ByVal Target As Range)

❑ Private Sub Workbook_SheetDeactivate(ByVal Sh As Object)

❑ Private Sub Workbook_SheetFollowHyperlink(ByVal Sh As Object, ByVal Target As
Hyperlink)

❑ Private Sub Workbook_SheetPivotTableUpdate(ByVal Sh As Object, ByVal Target As
PivotTable)

205

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 205

❑ Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, ByVal Target As
Range)

❑ Private Sub Workbook_Sync(ByVal SyncEventType As Office.MsoSyncEventType)

❑ Private Sub Workbook_WindowActivate(ByVal Wn As Window)

❑ Private Sub Workbook_WindowDeactivate(ByVal Wn As Window)

❑ Private Sub Workbook_WindowResize(ByVal Wn As Window)

Some of the workbook event procedures are the same as the worksheet and chart event procedures.
The difference is that when you create these procedures (such as the Change event procedure) in a work-
sheet or chart, it applies to only that sheet. When you create a workbook event procedure (such as the
SheetChange event procedure), it applies to all the sheets in the workbook.

One of the most commonly used workbook event procedures is the Open event procedure. This is used
to initialize the workbook when it opens. You can use it to set the calculation mode, establish screen set-
tings, alter the Ribbon, or enter data into combo boxes or list boxes in the worksheets.

Similarly, the Workbook_BeforeClose event procedure can be used to tidy up when the workbook is
closed. It can restore screen and option settings, for example. It can also be used to prevent a workbook’s
closure by setting Cancel to True. The following event procedure will only allow the workbook to close
if the figure in the cell named FinalProfit is between 500 and 600:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Dim dProfit As Double

dProfit = ThisWorkbook.Worksheets(1).Range(“FinalProfit”).Value
If dProfit < 500 Or dProfit > 600 Then

MsgBox “Profit must be in the range 500 to 600”
Cancel = True

End If
End Sub

Note that if you assign True to Cancel in the workbook BeforeClose event procedure, you also pre-
vent Excel from closing.

Save Changes
If you want to make sure that all changes are saved when the workbook closes, but you don’t want the
user to be prompted to save changes, you can save the workbook in the BeforeClose event procedure.
You can check to see if this is really necessary using the Saved property of the workbook, which will be
False if there are unsaved changes:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
If Not ThisWorkbook.Saved Then

ThisWorkbook.Save
End If

End Sub

206

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 206

If, on the other hand, you want to discard any changes to the workbook, and you don’t want users to
be prompted to save changes in a workbook when they close it, you can set the Saved property of the
workbook to True in the BeforeClose event procedure:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
ThisWorkbook.Saved = True

End Sub

This fools Excel into thinking that any changes have been saved.

Headers and Footers
A common need in Excel is to print information in the page header or footer that either comes from the
worksheet cells or is not available in the standard header and footer options. You might want to insert a
company name that is part of the data in the worksheet and display the full path to the workbook file.

The filename is available as an option in headers and footers in Excel 2007. It can be inserted using the
code &F, as shown in the following code. Data can be accessed from worksheet cells in the usual way.
You can insert this information using the BeforePrint event procedure to ensure it is always up-to-
date in reports. The following procedure puts the text in cell A1 of the worksheet named Profit in the
left footer, clears the center footer, and puts the filename in the right footer. It applies the changes to
every worksheet in the file:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
Dim wks As Worksheet
Dim sFileName As String
Dim sCompanyName As String

‘Set up values & codes for footer
sCompanyName = Worksheets(“Profit”).Range(“A1”).Value
sFileName = “&F” ‘Code generating file name

For Each wks In ThisWorkbook.Worksheets

‘Define footer
With wks.PageSetup

.LeftFooter = sCompanyName

.CenterFooter = “”

.RightFooter = sFileName
End With

Next wks

End Sub

The footer can be seen in Page Layout View, as shown in Figure 9-3.

207

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 207

Figure 9-3

Summary
In this chapter, you have seen some useful examples of how to utilize event procedures to respond to
user actions.

You have been introduced to worksheet, chart, and workbook events, delving a little deeper into the fol-
lowing events:

❑ Worksheet_Calculate

❑ Chart_BeforeDoubleClick

❑ Workbook_BeforeClose

❑ Workbook_BeforePrint

VBA is essentially an event-driven language, so a good knowledge of the events at your disposal can
open up a whole new world of functionality you never knew existed.

To find out more, have a play with the Object Browser, and consult the object model in Appendix A.

208

Chapter 9: Event Procedures

12_046432 ch09.qxp 2/16/07 9:56 PM Page 208

Adding Controls
As discussed in Chapter 1, you can add two different types of controls to Excel worksheets:
ActiveX controls or Form controls. The Form controls originated in Excel 5 and Excel 95 and
provide controls for the dialog sheets used in those versions, as well as controls embedded in a
worksheet or chart. Dialog sheets have been superseded by UserForms since the release of Excel
97, and UserForms utilize the ActiveX controls.

You can create controls by activating the Developer tab of the Ribbon and clicking the Insert but-
ton in the Controls group. This displays the dialog box shown in Figure 10-1.

Figure 10-1

Form and ActiveX Controls
The Form controls and dialog sheets are still supported in Excel. Form controls even have some
advantages over the ActiveX controls. They are less complex than the ActiveX controls. However,
each Form control can only respond to a single event. In most cases, that event is the Click event —
the edit box is an exception, responding to the Change event.

If you want to create controls and define their event procedures in your VBA code, as opposed
to creating them manually, the Form controls are easier to work with. A big advantage over an
ActiveX control is that the event procedure for a Form control can be placed in a standard module,
can have any valid VBA procedure name, and can be created when you write the code for the
application, before the control is created.

13_046432 ch10.qxp 2/16/07 9:57 PM Page 209

You can create the control programmatically, when it is needed, and assign the procedure name to
the OnAction property of the control. You can even assign the same procedure to more than one control.
On the other hand, ActiveX event procedures must be placed in the class module behind the worksheet
or user form in which they are embedded, and must have a procedure name that corresponds with the
name of the control and the name of the event. For example, the click event procedure for a control
named OptionButton1 must be as follows:

Sub OptionButton1_Click()

If you try to create an event procedure for an ActiveX control before the control exists, and you try to ref-
erence that control in your code, you will get compiler errors, so you have to create the event procedure
programmatically. This is not an easy task, as you will see in later sections.

In addition, see Chapter 26 for an example of adding an event procedure programmatically to a
UserForm control.

On the other hand, a procedure that is executed by a Form control does not need to have a special name
and can use the Caller property of the Application object to obtain a reference to the control that exe-
cutes it. The control name does not need to be included in the name of the procedure or in references to
the control, as you will see later in this chapter.

ActiveX Controls
Figure 10-2 shows four types of ActiveX controls embedded in the worksheet. The scrollbar in cells
C3:F3 allows you to set the value in cell B3. The spin button in cell C4 increments the growth percentage
in cell B4. The checkbox in cell B5 increases the tax rate in cell B16 from 30% to 33%, if it is checked.
The option buttons in column I change the cost factor in cell B15, and also change the maximum and
minimum values for the scrollbar.

Figure 10-2

210

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 210

An ActiveX control can be linked to a worksheet cell, using its LinkedCell property, so that the cell
always displays the Value property of the control. None of the ActiveX controls shown in Figure 10-2
use a link cell, although the scrollbar could have been linked because its value is displayed in B3. Each
control uses an event procedure to make its updates. This gives you far more flexibility than a simple
cell link and removes the need to dedicate a worksheet cell to the task.

Scrollbar Control
The scrollbar uses the Change event and the Scroll event to assign the Value property of the scrollbar
to cell B3. The maximum and minimum values of the scrollbar are set by the option buttons (this is dis-
cussed later):

Private Sub ScrollBar1_Change()

‘Assign scrollbar value to B3
Range(“B3”).Value = ScrollBar1.Value

End Sub

The Change event procedure is triggered when the scrollbar value is changed by clicking the scroll
arrows, by clicking above or below the scroll box (or to the left or right if it is aligned horizontally),
or by dragging the scroll box. However, a small glitch occurs immediately after you change the option
buttons. Dragging the scroll box does not trigger the Change event on the first attempt. Utilizing the
Scroll event procedure solves this problem.

The Scroll event causes continuous updating as you drag the scrollbar, so you can see what figure you
are producing as you drag, rather than after you have released the scrollbar. It might not be practical to
use the Scroll event procedure in a very large worksheet in auto-recalculation mode because of the
large number of recalculations it causes.

Spin Button Control
The spin button control uses the SpinDown and SpinUp events to decrease and increase the value in cell B4:

‘Spin down event procedure for spin button
Private Sub SpinButton1_SpinDown()

With Range(“B4”)

‘Decrease value in B4 by .05%. Stop at 0%
.Value = WorksheetFunction.Max(0, .Value - 0.0005)

End With

End Sub

‘Spin up event procedure for spin button

211

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 211

Private Sub SpinButton1_SpinUp()

With Range(“B4”)

‘Increase value in B4 by .05%. Stop at 1%
.Value = WorksheetFunction.Min(0.01, .Value + 0.0005)

End With

End Sub

The Value property of the spin button is ignored. It is not suitable to be used directly as a percentage
figure because it can only be a long integer value. The events are used as triggers to run the code that
operates directly on the value in B4. The growth figure is kept in the range of zero to 1 percent.

Clicking the down side of the spin button runs the SpinDown event procedure, which decreases the
value in cell B4 by 0.05%. The worksheet Max function is used to ensure that the calculated figure does
not become less than zero. The SpinUp event procedure increases the value in cell B4 by 0.05%. It uses
the Min function to ensure that the calculated value does not exceed 1%.

CheckBox Control
The CheckBox control returns a True value when checked, or a False value if it is unchecked. The Click
event procedure that follows uses an If structure to set the value in cell B16:

Private Sub CheckBox1_Click()

If CheckBox1.Value Then

‘If check box ticked, tax rate is 33%
Range(“B16”).Value = 0.33

Else

‘If check box not ticked, tax rate is 30%
Range(“B16”).Value = 0.3

End If

End Sub

Option Button Controls
Each option button has code similar to the following:

Private Sub OptionButton1_Click()
Call Options

End Sub

The processing for all the buttons is carried out in the following procedure, which is in the class module
behind the Profit worksheet that holds the previous event procedures:

212

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 212

Private Sub Options()
Dim dCostFactor As Double
Dim lScrollBarMax As Long
Dim lScrollBarMin As Long

‘Determine which option button is True
Select Case True

‘Mangoes
Case OptionButton1.Value

dCostFactor = 0.63
lScrollBarMin = 50000
lScrollBarMax = 150000

‘Lychees
Case OptionButton2.Value

dCostFactor = 0.74
lScrollBarMin = 25000
lScrollBarMax = 75000

‘Bananas
Case OptionButton3.Value

dCostFactor = 0.57
lScrollBarMin = 10000
lScrollBarMax = 30000

‘Rambutan
Case OptionButton4.Value

dCostFactor = 0.65
lScrollBarMin = 15000
lScrollBarMax = 30000

End Select

‘Apply factors
Range(“B15”).Value = dCostFactor
ScrollBar1.Min = lScrollBarMin
ScrollBar1.Max = lScrollBarMax
ScrollBar1.Value = lScrollBarMax

End Sub

The Select Case structure is used here in an unusual way. Normally you use a variable reference in the
first line of a Select Case and use comparison values in the Case statements. Here, you used the value
True in the Select Case and referenced the option button Value property in the Case statements. This
provides a nice structure for processing a set of option buttons where you know that only one can have a
True value.

Only one option button can be selected and have a value of True in the preceding worksheet, because
they all belong to the same group. As you add option buttons to a worksheet, the GroupName property
of the button is set to the name of the worksheet —Profit, in this case. If you want two sets of unre-
lated option buttons, you need to assign a different GroupName to the second set.

213

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 213

Options uses the Select Case structure to carry out any processing that is different for each option
button. The code following the End Select carries out any processing that is common to all the option
buttons. This approach also works very well when the coding is more complex, and also when the code
is triggered by another control, such as a command button, rather than the option button events.

Forms Controls
Figure 10-3 shows a Form control that is being used to select a product name to be entered in column D.
The control appears over any cell in column D that you double-click. When you select the product, the
product name is entered in the cell “behind” the control, the price of the product is entered in column F
on the same row, and the control disappears.

Figure 10-3

If you hover your cursor over the Form button that creates the control shown in Figure 10-3, the
ScreenTip that pops up describes this control as a ComboBox. However, in the Excel object model, it is
called a DropDown object, and it belongs to the DropDowns collection.

The DropDown object is a hidden member of the Excel object model in Excel 97 and
later versions. You will not find any help screens for this object, and it will not nor-
mally appear in the Object Browser. You can make it visible in the Object Browser if
you right-click in the Object Browser window and select Show Hidden Members
from the shortcut menu. You can learn a lot about the Forms toolbar controls by
using the macro recorder and the Object Browser, but you will need to have access to
Excel 5 or Excel 95 to get full documentation on them.

214

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 214

The DropDown control is created by a procedure called from the following BeforeDoubleClick event
procedure in the SalesData sheet, which has the programmatic name Sheet2:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)
If Not Intersect(Target, Columns(“D”)) Is Nothing Then

Call AddDropDown(Target)
Cancel = True

End If
End Sub

The event procedure checks that Target (the cell that was double-clicked) is in column D. If so, it then runs
the AddDropDown procedure, passing Target as an input argument, and cancels the double-click event.

The following two procedures are in a standard module:

Sub AddDropDown(Target As Range)
Dim ddBox As DropDown
Dim vProducts As Variant
Dim i As Integer

‘Create array of products
vProducts = Array(“Bananas”, “Lychees”, “Mangoes”, “Rambutan”)

‘Add the drop down control in Target cell
With Target

Set ddBox = Sheet2.DropDowns.Add(.Left, .Top, .Width, .Height)
End With

‘Define macro to run and populate list
With ddBox

.OnAction = “EnterProdInfo”
For i = LBound(vProducts) To UBound(vProducts)

.AddItem vProducts(i)
Next i

End With

End Sub

Private Sub EnterProdInfo()
Dim vPrices As Variant

‘Create array of prices
vPrices = Array(15, 12.5, 20, 18)

‘Enter selected item into cell beneath drop down
With Sheet2.DropDowns(Application.Caller)

.TopLeftCell.Value = .List(.ListIndex)

.TopLeftCell.Offset(0, 2).Value = vPrices(.ListIndex + LBound(vPrices) - 1)

‘Delete drop down
.Delete

End With
End Sub

215

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 215

The AddDropDown procedure is not declared Private, because it would not then be possible to call it
from the Sheet2 code module. This would normally be a problem if you wanted to prevent users from
seeing the procedure in the Macro dialog box. However, because it has an input argument, it will not be
shown in the dialog box anyway. Also, it does not matter whether AddDropDown is placed in the Sheet2
module or a standard module. It will operate in either location.

AddDropDown uses the Add method of the DropDowns collection to create a new drop-down. It aligns the
new control exactly with Target, giving it the same Left, Top, Width, and Height properties as the
cell. In the With...End With construction, the procedure defines the OnAction property of the drop-
down to be the EnterProdInfo procedure. This means that EnterProdInfo will be run when an item
is chosen from the drop-down. The For...Next loop uses the AddItem method of the drop-down to
place the list of items in vProducts into the drop-down list.

EnterProdInfo has been declared Private to prevent its appearance in the Macro dialog box.
Although it is private, the drop-down can access it. EnterProdInfo could have been placed in the
Sheet2 code module, but the OnAction property of the drop-down would have to be assigned
Sheet2.EnterProdInfo.

EnterProdInfo loads vPrices with the prices corresponding to the products. It then uses
Application.Caller to return the name of the drop-down control that called the OnAction proce-
dure. It uses this name as an index into the DropDowns collection on Sheet2 to get a reference to the
DropDown object itself. In the With...End With construction, EnterProdInfo uses the ListIndex
property of the DropDown object to get the index number of the item chosen in the drop-down list.

You cannot directly access the name of the chosen item in a DropDown object, unlike an ActiveX
ComboBox object that returns the name in its Value property. The Value property of a drop-down is the
same as the ListIndex, which returns the numeric position of the item in the list. To get the item name
from a drop-down, you use the ListIndex property as a one-based index to the List property of the
drop-down. The List property returns an array of all the items in the list.

The TopLeftCell property of the DropDown object returns a reference to the Range object under the
top-left corner of the DropDown object. EnterProdInfo assigns the item chosen in the list to the Value
property of this Range object. It then assigns the price of the product to the Range object that is offset
two columns to the right of the TopLeftCell Range object.

EnterProdInfo also uses the ListIndex property of the drop-down as an index into the Prices array.
The problem with this is that the drop-down list is always one-based, whereas the Array function list
depends on the Option Base statement in the declarations section of the module. LBound(vPrices) – 1
is used to reduce the ListIndex value by 1 if Option Base 0 is in effect or by 0 if Option Base 1 is in
effect.

You can also use the following code to ensure that the resulting array is zero-based under Option-Base-1:

vPrices = VBA.Array(15, 12.5, 20, 18)

Dynamic ActiveX Controls
As previously stated, it is more difficult to program the ActiveX controls than the Form controls. At the
same time, the ActiveX controls are more powerful, so it is a good idea to know how to program them.

216

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 216

You will see how to construct a combo box that behaves in a similar way to the drop-down in the previ-
ous example. Just to be different, use the BeforeRightClick event to trigger the appearance of a combo
box in the D column of the SalesData worksheet, as follows:

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _
Cancel As Boolean)

Dim ole As OLEObject
Dim ctl As MSForms.ComboBox
Dim lLine As Long
Dim oCodeModule As Object

‘Turn screen updating off
Application.ScreenUpdating = False

‘Determine if the combo box should be built
If Intersect(ActiveCell, Columns(“D”)) Is Nothing Then Exit Sub
On Error Resume Next
Set ole = Me.OLEObjects(“Combo”)
If Not ole Is Nothing Then

Cancel = True
Exit Sub

End If
On Error GoTo 0

‘Add the combo box to the active cell
With ActiveCell

Set ole = Me.OLEObjects.Add(ClassType:=”Forms.ComboBox.1”, _
Link:=False, DisplayAsIcon:=False, Left:=.Left, Top:=.Top, _

Width:=.Width, Height:=.Height)
End With

ole.Name = “Combo”
Set ctl = ole.Object
ctl.Name = “Combo”

With ctl
.AddItem “Bananas”
.AddItem “Lychees”
.AddItem “Mangoes”
.AddItem “Rambutan”

End With

‘Build the event procedure for the combo box click event
Set oCodeModule = ThisWorkbook.VBProject.VBComponents(Me.CodeName).CodeModule
With oCodeModule

lLine = .CreateEventProc(“Click”, “Combo”)
.ReplaceLine lLine + 1, “ ProcessComboClick”

End With
Cancel = True

‘Make sure the Excel window is active
Application.Visible = False
Application.Visible = True

End Sub

217

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 217

First, check to see that the event took place in the D column. Also, check to make sure that there is no
existing combo box in the worksheet, which would mean that the user has created a combo box but has
not yet selected an item from it. This did not matter in the previous example, where the combo boxes
were independent even though they used the same OnAction code. Your ActiveX controls can’t share
the single Click event procedure you are going to create, so you need to ensure that you don’t already
have a control in the worksheet.

Use the name Combo for your ActiveX control. The quickest way to determine if there is already a control
called Combo is to create an object variable referring to it. If this attempt fails, you know that the control
does not exist. The error recovery code is used to ensure that the macro does not display an error message
and stop running if the control does not exist. It would be friendlier to display an explanatory message
before exiting the sub, but that is not the main point of this exercise. Setting Cancel to True suppresses
the normal right-click menu from appearing.

If all is well, add a new combo box in the active cell. You need to know that an ActiveX object is not
added directly onto a worksheet. It is contained in an OLEObject object, in the same way that a chart
embedded in a worksheet is contained in a ChartObject object, as you saw in Chapter 8. The return
value from the Add method of the OLEObjects collection is assigned to ole to make it easy to refer to
the OLEObject object later. The Name property of the OleObject is changed to Combo to make it easy to
identify later.

Next, create an object variable, ctl, referring to the ComboBox object contained in the OleObject, which
is returned by the Object property of the OLEObject. The next line of code assigns the name Combo to
the ComboBox object. This is not necessary in Excel 2007. When you assign a name to the OLEObject, it
is also automatically assigned to the embedded object in these versions. This is not the case in Excel 97,
where the name needs to be explicitly assigned.

Now you need to create the list of items to appear when the ComboBox is clicked. This can be done
using the AddItem method, which needs to be executed for each item in the list.

Now create the Click event procedure code for the combo box. You can’t create the event procedure in
advance. It will cause compile errors if the ActiveX control it refers to does not exist. The methodology
for creating event procedures programmatically is explained in detail in Chapter 26, so check that chap-
ter for full details.

oCodeModule is assigned a reference to the class module behind the worksheet, and the
CreateEventProc method of the code module is used to enter the first and last lines of the
Combo_Click event procedure, with a blank line between. This method returns the line number of the
first line of the procedure, which is assigned to lLine. The ReplaceLine method replaces the blank sec-
ond line of the procedure with a call to a sub procedure named ProcessComboClick, which is listed in
the next code snippet. The code for ProcessComboClick already exists in the worksheet’s code module.

Set Cancel to True to ensure that the popup menu normally associated with a right-click in a cell does
not appear.

Unfortunately, when you add code to a code module as done here, the code module is activated and
the user could be left staring at a screen full of code. By setting the Excel application window’s
Visible property to False and then True, you ensure that the Excel window is active at the end

218

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 218

of the procedure. There will still be some screen flicker, even though screen updating was suppressed
at the start of the macro. It is possible to suppress this flicker by calls to the Windows API (discussed in
Chapter 27).

The Click event procedure code that is created by the preceding code looks like the following:

Private Sub Combo_Click()
ProcessComboClick

End Sub

When the user selects a value in the combo box, the Click event procedure executes and, in turn, exe-
cutes ProcessComboClick. The code for ProcessComboClick, which is a permanent procedure in the
worksheet’s code module, contains the following:

Private Sub ProcessComboClick()
Dim lLine As Long
Dim lCount As Long
Dim oCodeModule As Object

‘Enter the chosen value
With Me.OLEObjects(“Combo”)

.TopLeftCell.Value = .Object.Value

.Delete
End With

‘Delete the combo box click event procedure
Set oCodeModule = _
ThisWorkbook.VBProject.VBComponents(Me.CodeName).CodeModule

With oCodeModule
lLine = .ProcStartLine(“Combo_Click”, 0)
lCount = .ProcCountLines(“Combo_Click”, 0)
.DeleteLines lLine, lCount

End With

End Sub

The combo box is the object contained in the OLEObject named Combo. The preceding code enters the
selected value from the combo box into the cell underneath the combo box, and then deletes the
OLEObject and its contents.

The code then deletes the event procedure. oCodeModule is assigned a reference to the worksheet’s code
module. The ProcStartLine method returns the line number of the Combo_Click event procedure,
including any blank lines or comment lines that precede it. The ProcCountLines method returns the
number of lines in the procedure, including the lines that precede it. The Delete method removes all the
lines in the procedure and the blank lines that precede it.

As you can see, dynamically coding an ActiveX control is quite complex. It is simpler to use a Forms
toolbar control if you don’t really need the extra power of an ActiveX control.

219

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 219

Controls on Char ts
Figure 10-4 shows a chart that contains a button to remove or add the profit series from the chart, which
is based on the Profit Planner figures of the Profit sheet. The control is a Forms toolbar Button
object belonging to the Buttons collection (remember, ActiveX controls cannot be used in charts).

Figure 10-4

The code assigned to the OnAction property of the Button object is as follows:

Sub Button1_Click()
With ActiveChart

If .SeriesCollection.Count = 3 Then
.SeriesCollection(1).Delete

Else
With .SeriesCollection.NewSeries

.Name = Sheet1.Range(“A13”)

.Values = Sheet1.Range(“B13:M13”)

.XValues = Sheet1.Range(“B12:M12”)

.PlotOrder = 1
End With

End If
End With

End Sub

220

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 220

If the SeriesCollection.Count property is 3, the first series is deleted. Otherwise, a new series is
added and the appropriate ranges are assigned to it to show the profit after tax figures. The new series is
added as the last series, which would plot behind the existing series, so the PlotOrder property of the
new series is set to 1 to place it in front of the others.

Summary
This chapter explained some of the differences between ActiveX controls embedded in worksheets and
Form controls embedded in worksheets, and you’ve also seen how to work with them. You have seen
how scrollbars, spin buttons, checkboxes, and option buttons can be used to execute macros that can har-
ness the full power of VBA and that do not need to depend on a link cell.

In addition, this chapter demonstrated how Form controls and ActiveX controls can be created and
manipulated programmatically. ActiveX controls are more difficult to create programmatically, because
they are contained within OLEObjects and you can’t create their event procedures in advance.

221

Chapter 10: Adding Controls

13_046432 ch10.qxp 2/16/07 9:57 PM Page 221

13_046432 ch10.qxp 2/16/07 9:57 PM Page 222

Text Files and File Dialog
Text files provide one way to communicate information between different types of computers.
There is no universal format for the binary files that usually provide the most efficient format for
working within a particular computer system, so text files are often used for this. This chapter
examines how to create text files and how to read them.

Increasingly, XML is becoming the standard way to exchange data across the Internet. XML files
are text files, but in a highly organized format. They are covered in Chapter 12. However, there are
many legacy systems, particularly where mainframe computers are concerned, where text files in a
variety of formats are used.

Excel is capable of importing text files and can save data in .csv (comma separated variables) and
.prn (print) files, as well as other formats. Often these features are not flexible enough to cater to
specific needs. Using VBA, you can produce text files in whatever format you like and read text
files in whatever format is provided.

This chapter also discusses the FileDialog object, which allows you to display the Office dialogs
for opening and saving files and browsing folders.

Opening Text Files
Before you can read or write to a file, you need to open it using the Open statement. When opening
a text file for sequential access, Open has the following options:

Open file [For mode] As [#]filenumber

The mode can be Input, Output, or Append. If you specify Output and there is an existing file
with the same name, it will be overwritten. You can use Append to write to the end of an existing
file. The filenumber must be an integer between 1 and 511. If you are opening more than one file,
you can ensure that each file has a unique file number by using the FreeFile function to return
the next available file number.

14_046432 ch11.qxp 2/16/07 9:57 PM Page 223

Writing to Text Files
You can write to a text file with the Write statement or the Print statement. Write produces a line of
values separated by commas, and puts hash marks (#) around dates and quotes (“) around strings, as
shown in the example that follows. Print produces a line that is suitable to be printed, with the data
arranged in columns with spaces between. You will first see how Write performs and look at Print a
little later.

Say you have a spreadsheet like the one shown in Figure 11-1. You want to create a file containing some
of the data. You can use code like the following:

Sub WriteFile()
Dim dDate As Date
Dim sCustomer As String
Dim sProduct As String
Dim dPrice As Double
Dim sFName As String ‘Path and name of text file
Dim iFNumber As Integer ‘File number
Dim lRow As Long ‘Row number in worksheet

sFName = “C:\VBA_Prog_Ref\Chapter12\JanSales.txt”

‘Get an unused file number
iFNumber = FreeFile

‘Create new file or overwrite existing file
Open sFName For Output As #iFNumber
lRow = 2

Do
‘Read data from worksheet
With Sheet1

dDate = .Cells(lRow, 1)
sCustomer = .Cells(lRow, 2)
sProduct = .Cells(lRow, 4)
dPrice = .Cells(lRow, 6)

End With

‘Write data to file
Write #iFNumber, dDate, sCustomer, sProduct, dPrice

‘Address next row of worksheet
lRow = lRow + 1

‘Loop until an empty cell is found
Loop Until IsEmpty(Sheet1.Cells(lRow, 1))

‘Close the file
Close #iFNumber

End Sub

224

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 224

Figure 11-1

FreeFile is used to get the next available file number, and the file is opened in Output mode so it can
be written to. Use a Do...Loop to process each row of the worksheet until you find an empty cell in
column A. The required data on each row is read into four variables, which are then written to the file.
You must Close the file when you have finished using it, or it might not be completed properly and will
be left open. You can use Notepad to view the file that’s created, as shown in Figure 11-2.

Figure 11-2

225

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 225

Reading Text Files
You can read text files with the Input statement or the Line Input statement. Input expects data like
that produced by Write and reads the data into a list of variables. Line Input reads the whole line of
data as a single string into a single variable. The following code reads the JanSales.txt file and inserts
the data into a worksheet:

Sub ReadFile()
Dim dDate As Date
Dim sCustomer As String
Dim sProduct As String
Dim dPrice As Double
Dim sFName As String ‘Path and name of text file
Dim iFNumber As Integer ‘File number
Dim lRow As Long ‘Row number in worksheet

sFName = “C:\VBA_Prog_Ref\Chapter12\JanSales.txt”

‘Get an unused file number
iFNumber = FreeFile

‘Prepare file for reading
Open sFName For Input As #iFNumber

Sheet2.Cells.Clear
lRow = 2

Do
‘Read data from file
Input #iFNumber, dDate, sCustomer, sProduct, dPrice

‘Write data to worksheet
With Sheet2

.Cells(lRow, 1) = dDate

.Cells(lRow, 2) = sCustomer

.Cells(lRow, 3) = sProduct

.Cells(lRow, 4) = dPrice
End With

‘Address next row of worksheet
lRow = lRow + 1

‘Loop until end of file
Loop Until EOF(iFNumber)

‘Close the file
Close #iFNumber

End Sub

The Do...Loop processes each line in the file until the EOF function detects that the end of file has been
reached. The Input statement reads each line of the file into four variables. It is important to have vari-
ables of the correct type to match the data, or unexpected results can occur.

226

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 226

If you just want to record data for your own purposes or exchange it with users of the same systems,
Write and Input would probably be all you need. Unfortunately, other systems can use formats that are
not quite the same. They can use different separator characters and different delimiter characters, or
none. Some work in fixed-sized fields for different variables. You need to find more flexible ways to pro-
duce these files and read them.

Writing to Text Files Using Print
Print enables you to write text files in any format; you just have to do a bit more work. To see the effect
of using Print instead of Write, change the Write statement in the WriteFile sub as follows:

Print #iFNumber, dDate, sCustomer, sProduct, dPrice

The output looks like that in Figure 11-3.

Figure 11-3

If you want to read data in this format, you can read each line of the file using the Line Input statement.
You then need to have code to parse out the data. Taking a hint from Write, you might want to use a separa-
tor character, but you want to be able to use any character that does not appear in the data. You might also
introduce some flexibility with the characters used to delimit items. The following code shows how you
can assemble your own strings and write them to a file. Code that is specific to WriteFile is highlighted:

Sub WriteStrings()
Dim sLine As String
Dim sFName As String ‘Path and name of text file
Dim iFNumber As Integer ‘File number
Dim lRow As Long ‘Row number in worksheet

sFName = “C:\VBA_Prog_Ref\Chapter12\JanSalesStrings.txt”

‘Get an unused file number

227

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 227

iFNumber = FreeFile

‘Create new file or overwrite existing file
Open sFName For Output As #iFNumber
lRow = 2

Do
‘Read data from worksheet
With Sheet1

sLine = Format(.Cells(lRow, 1), “yyyy-mmm-dd”) & “;”
sLine = sLine & .Cells(lRow, 2) & “;”
sLine = sLine & .Cells(lRow, 4) & “;”
sLine = sLine & Format(.Cells(lRow, 6), “0.00”)

End With

‘Write data to file
Print #iFNumber, sLine

‘Address next row of worksheet
lRow = lRow + 1

‘Loop until an empty cell is found
Loop Until IsEmpty(Sheet1.Cells(lRow, 1))

‘Close the file
Close #iFNumber

End Sub

The code assembles each line of the file in a variable sLine. For data other than strings, it uses the
Format function to convert the data to a string. A semicolon is used as a separator. The Print statement
writes the string to the file. The result is shown in Figure 11-4.

Figure 11-4

228

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 228

Reading Data Strings
To read this data, you need to split the strings to locate the values as shown in the following code. Code
that is specific to ReadFile is highlighted:

Sub ReadStrings()
Dim sLine As String
Dim sFName As String ‘Path and name of text file
Dim iFNumber As Integer ‘File number
Dim lRow As Long ‘Row number in worksheet
Dim lColumn As Long ‘Column number in worksheet
Dim vValues As Variant ‘Hold split values
Dim iCount As Integer ‘Counter

sFName = “C:\VBA_Prog_Ref\Chapter12\JanSalesStrings.txt”

‘Get an unused file number
iFNumber = FreeFile

‘Prepare file for reading
Open sFName For Input As #iFNumber

Sheet2.Cells.Clear

‘First row for data
lRow = 2

Do
‘Read data from file
Line Input #iFNumber, sLine

‘Split values apart into array
vValues = Split(sLine, “;”)

With Sheet2

‘First column for data
lColumn = 1

‘Process each value in array
For iCount = LBound(vValues) To UBound(vValues)

‘Write value to worksheet
.Cells(lRow, lColumn) = vValues(iCount)

‘Increase column count
lColumn = lColumn + 1

Next iCount

End With

‘Address next row of worksheet

229

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 229

lRow = lRow + 1

‘Loop until end of file
Loop Until EOF(iFNumber)

‘Close the file
Close #iFNumber

End Sub

Line Input reads an entire line of the file into sLine. The Split function breaks the text apart using the
delimiter character, creating an array of values in vValues. The For...Next loop processes each value
in the array, writing the value into the worksheet.

Flexible Separators and Delimiters
Now that you have seen the basic techniques in action, you will set up some code that allows you to
choose the separator and delimiter characters to suit the situation. The following code defines them
using constants, which can be varied. The code inserts the delimiters and separators as required:

Sub WriteStringsWithDelimiters()
Dim sLine As String
Dim sFName As String ‘Path and name of text file
Dim iFNumber As Integer ‘File number
Dim lRow As Long ‘Row number in worksheet

Const sVS As String = “;” ‘Variable separator character
Const sTD As String = “””” ‘Text delimiter character
Const sDD As String = “#” ‘Date delimiter character

sFName = “C:\VBA_Prog_Ref\Chapter12\JanSalesStringsDelimited.txt”

‘Get an unused file number
iFNumber = FreeFile

‘Create new file or overwrite existing file
Open sFName For Output As #iFNumber
lRow = 2

Do
‘Read data from worksheet
With Sheet1
sLine = sDD & Format(.Cells(lRow, 1), “yyyy-mmm-dd”) & sDD & sVS
sLine = sLine & sTD & .Cells(lRow, 2) & sTD & sVS
sLine = sLine & sTD & .Cells(lRow, 4) & sTD & sVS
sLine = sLine & Format(.Cells(lRow, 6), “0.00”)

End With

‘Write data to file
Print #iFNumber, sLine

‘Address next row of worksheet

230

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 230

lRow = lRow + 1

‘Loop until an empty cell is found
Loop Until IsEmpty(Sheet1.Cells(lRow, 1))

‘Close the file
Close #iFNumber

End Sub

The file produced by the code is shown in Figure 11-5.

Figure 11-5

The following code is used to read the file. It uses the delimiter characters to decide the data type of each
item and treat it appropriately:

Sub ReadStringsWithDelimiters()
Dim sLine As String
Dim sFName As String ‘Path and name of text file
Dim iFNumber As Integer ‘File number
Dim lRow As Long ‘Row number in worksheet
Dim lColumn As Long ‘Column number in worksheet
Dim vValues As Variant
Dim vValue As Variant
Dim iCount As Integer

Const sVS As String = “;” ‘Variable separator character
Const sTD As String = “””” ‘Text delimiter character
Const sDD As String = “#” ‘Date delimiter character

sFName = “C:\VBA_Prog_Ref\Chapter12\JanSalesStringsDelimited.txt”

‘Get an unused file number

231

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 231

iFNumber = FreeFile

‘Prepare file for reading
Open sFName For Input As #iFNumber

Sheet2.Cells.Clear

‘First row for data
lRow = 2

Do
‘Read data from file
Line Input #iFNumber, sLine

‘Split values apart into array
vValues = Split(sLine, sVS)

‘First column for data
lColumn = 1

‘Process each value in array
For Each vValue In vValues

‘Determine value type using first character
Select Case Left(vValue, 1)

‘String
Case sTD

Sheet2.Cells(lRow, lColumn) = Mid(vValue, 2, Len(vValue) - 2)

‘Date
Case sDD

Sheet2.Cells(lRow, lColumn) = _
DateValue(Mid(vValue, 2, Len(vValue) - 2))

‘Other
Case Else

Sheet2.Cells(lRow, lColumn) = vValue

End Select

lColumn = lColumn + 1
Next vValue
‘Address next row of worksheet
lRow = lRow + 1

‘Loop until end of file
Loop Until EOF(iFNumber)

‘Close the file
Close #iFNumber

End Sub

232

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 232

The For...Next loop of ReadStrings has been replaced by a For Each...Next loop, to show a slightly
different approach. The Select Case structure determines the data type of each item by examining the
first character. For strings and dates, it strips off the delimiters. For dates, it converts the character string
to a VBA date type.

FileDialog
The FileDialog object allows you to display the File ➪ Open and File ➪ Save As dialog boxes using
VBA. Excel 2007 users can also use the GetOpenFileName and GetSaveAsFileName methods of the
Application object to carry out similar tasks. One advantage of FileDialog is that it has one extra
capability that allows you to display a list of directories, rather than files and directories. FileDialog
also has the advantage of being available to all Office applications.

Set up a worksheet to display images and allow the user to choose them through the File ➪ Open dialog
box. Figure 11-6 shows how the application looks.

Figure 11-6

The worksheet contains an Image control created using the ActiveX controls from the Developer tab of
the Ribbon, with the default name of “Image1”. The pictureSizeMode property of the control is set to
zoom so the picture is automatically fitted in the control. The command button above it has been named
cmdGetFile.

233

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 233

The class module behind Sheet1 contains the following event procedure:

Private Sub cmdGetFile_Click()
Dim fd As FileDialog
Dim ffs As FileDialogFilters

On Error GoTo Problem

‘Set up File | Open dialog
Set fd = Application.FileDialog(msoFileDialogOpen)

With fd
‘Clear default filters and create picture filter
Set ffs = .Filters

With ffs
.Clear
.Add “Pictures”, “*.jpg”

End With

‘Allow only one file selection
.AllowMultiSelect = False

‘Show the dialog. Exit if Cancel is pressed
If .Show = False Then Exit Sub

‘Load selected file into Image
Image1.Picture = LoadPicture(.SelectedItems(1))

End With

Exit Sub

Problem:
MsgBox “That was not a valid picture”

End Sub

The FileDialog property of the Application object returns a reference to the Office FileDialogs
object. Use the following msoFileDialogType constants to specify the type of dialog.

msoFileDialog Constants Value

msoFileDialogOpen 1

msoFileDialogSaveAs 2

msoFileDialogFilePicker 3

msoFileDialogFolderPicker 4

234

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 234

FileDialogFilters
Use the Filters property of the FileDialog object to return a reference to the FileDialogFilters
collection for the FileDialog. The filters control the types of files that are displayed. By default, there
are 24 preset filters that the user can select from the drop-down menu at the bottom of the File ➪ Open
dialog box. The Clear method of the FileDialogFilters collection removes the preset filters, and you
add your own filter that shows only .jpg files.

The Show method of the FileDialog object displays the dialog box. When the user clicks the Open but-
ton, the Show method returns a value of True. If the user clicks the Cancel button, the Show method
returns False and you exit from the procedure.

FileDialogSelectedItems
The Show method does not actually open the selected file, but places the filename and path into a
FileDialogSelectedItems collection. As you will see later, it is possible to allow multiple file selec-
tion. In the present example, the user can only select one file. The name of the file is returned from the
first item in the FileDialogSelectedItems collection, which is referred to by the SelectedItems
property of the FileDialog object.

Use the LoadPicture function to assign the file to the Picture property of the Image control.

Dialog Types
There is very little difference among the four possible dialog types, apart from the heading at the top of
the dialog. The file picker and folder picker types show Browse in the title bar, and the others show
File ➪ Open and File ➪ Save As dialogs, as appropriate. All the dialogs show directories and files except
the folder picker dialog, which shows only directories.

Execute Method
As you have seen, the Show method displays the FileDialog, and the items chosen are placed
in the FileDialogSelectedItems object without any attempt to open or save any files. You can
use the Execute method with the File ➪ Open and File ➪ Save As dialogs to carry out the required
Open or Save As operations after the user clicks the Open or Save button, as shown in the
following code:

With Application.FileDialog(xlDialogOpen)

If .Show Then .Execute

End With

235

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 235

MultiSelect
The application in Figure 11-7 has been modified to allow the user to select multiple filenames by hold-
ing down Shift or Ctrl while clicking filenames. The filenames are then loaded into the combo box, called
ComboBox1, at the top of the screen, from which the files can be chosen for viewing.

Figure 11-7

The code has been modified as follows:

Private Sub cmdGetFile_Click()
Dim fd As FileDialog
Dim ffs As FileDialogFilters

Dim vItem

On Error GoTo Problem

‘Set up File | Open dialog
Set fd = Application.FileDialog(msoFileDialogOpen)

With fd

236

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 236

‘Clear default filters and create picture filter
Set ffs = .Filters

With ffs
.Clear
.Add “Pictures”, “*.jpg”

End With

‘Allow multiple file selection
.AllowMultiSelect = True

‘Show the dialog. Exit if Cancel is pressed
If .Show = False Then Exit Sub

‘Load selected files into combo box
ComboBox1.Clear

For Each vItem In .SelectedItems
ComboBox1.AddItem vItem

Next vItem

‘Display first file
ComboBox1.ListIndex = 0

End With

Exit Sub

Problem:
MsgBox “That was not a valid picture”

End Sub

Private Sub ComboBox1_Change()
Image1.Picture = LoadPicture(ComboBox1.Text)

End Sub

You set the AllowMultiSelect property to True. The combo box list is cleared of any previous items,
and you use a For Each...Next loop to add the items in the FileDialogSelectedItems collection to
the combo box list. When you set the combo box ListIndex property to 0, it triggers the Change event
and the event procedure loads the first picture into the image control.

237

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 237

Summary
Although Excel has many facilities for importing and exporting text files, it can’t handle every possible
format. Using VBA, you can import and export text with much greater flexibility.

FileDialog allows you to display the File ➪ Open and File ➪ Save As dialog boxes as well as a direc-
tory browser. It provides more powerful facilities than the GetOpenFileName and GetSaveAsFileName
functions, which are only available in Excel.

FileDialog could be used in conjunction with the text file handling procedures that were presented to
allow users to specify the location of input and output files.

238

Chapter 11: Text Files and File Dialog

14_046432 ch11.qxp 2/16/07 9:57 PM Page 238

Working with XML and the
Open XML File Formats

XML (Extensible Markup Language) functionality has been available in various forms since
Office 2000. It made its debut in the Office suite of applications in 1999 with relatively little fanfare,
waiting there quietly until the release of Office 2003, where it was touted as one of the most signifi-
cant improvements in Excel. Office 2003 came with many new XML capabilities and the promise of
major changes in the way businesses would work with data. In addition to seamless exchange of
data, XML promised easy analysis, dynamic reporting, and the ability to consume data from an
untold number of external sources.

Unfortunately, XML has failed to find a place in the hearts of many Excel programmers. The prob-
lem is that many Excel programmers still look at XML as a solution to a problem that they haven’t
quite encountered yet. This is because much of the functionality offered by XML can be handled
by existing technologies and processes that programmers are already comfortable with. In addition,
most Excel developers don’t live in environments where XML shines the brightest — environments
where data is routinely exchanged between disparate platforms (such as the web). The reality is
that most Excel programmers live in a world where the Office suite of applications and a few SQL
Server databases are as diverse as it gets. The bottom line is that there has never been that one
compelling reason to leave the comfort of existing technologies and processes to go to XML.
That is, not until now.

Why has XML suddenly become so important? Two words: Open XML. With Office 2007,
Microsoft gives XML a leading role by introducing the Open XML file format. These new file for-
mats are XML-based, meaning that each Excel workbook you create in Office 2007 is essentially a
group of XML documents. These XML documents are saved as a collection of parts, compressed
into a Zip container, and given a file extension (for example, .xlsx, .xlsm, .xlam, and so on).

As illogical as Microsoft’s move toward XML may seem, the decision to bet on XML is a fairly
rational one. An XML-based Office will be able to move into an increasing number of environ-
ments as XML becomes a widely adopted standard. An XML-based Office can be integrated with
much wider array of XML-capable software and web-based applications. An XML-based Office
opens up new opportunities for programmers to develop applications that revolve around the
Office suite.

15_046432 ch12.qxp 2/16/07 9:59 PM Page 239

With this move toward XML, Microsoft takes a huge step toward making Excel spreadsheets universal
widgets that can be integrated into almost any application or web-based solution. Within the next few
years, XML-based solutions will start materializing everywhere until XML becomes a part of the Excel
developer’s everyday vernacular.

So as Microsoft pushes us all into a new realm of development, it’s important to start to get a grasp of
the XML technology. In this chapter, you will get a firm understanding of XML as it pertains to both
Excel and the new Open XML file formats. That being said, it’s important to note that the goal of this
chapter is not to make you an expert XML developer. Indeed, the topic of XML is a robust one that can-
not be fully covered in one chapter. The goal of this chapter is to give you a solid understanding of all
the aspects of XML you will need to be familiar with when working with XML in Excel.

The Basics of Using XML Data in Excel
As intimidating as an XML document may seem, it’s really nothing more than a text file that contains
data wrapped in markup (tags that denote structure and meaning). These tags essentially make the text
file machine-readable. The term machine-readable essentially means that any application or web-based
solution designed to read XML files will be able to discern the structure and content of your file.

Because XML is text-based, it is not platform-dependent. That is to say, XML is not dependent on a
specific application for construction, reading, or editing. This versatility promotes application interoper-
ability, collaboration, and data sharing. In addition, because of their text-based nature, XML documents
tend to compress at a higher compression rate than binary files, making them ideal for storing and
archiving data.

Another benefit of XML documents is that they internally describe their own content and structure in
parent/child hierarchies. This allows applications to search and extract data far more efficiently than
standard text files. And because XML documents are intrinsically open, programmers don’t have to
spend valuable time developing processes to work around the ugly internal details of proprietary
components.

This section gives you a solid understanding of the fundamentals of XML. You will also get some context
for XML functionality in Excel by exploring some of the ways Excel allows you to work with XML data
through the user interface.

XML Fundamentals
XML files are made up of several syntactic constructs. Take a moment to explore the fundamental com-
ponents of a standard XML document.

The XML Declaration
The first line of an XML document is called the XML declaration. The following line of code shows an
example of a typical XML declaration:

<?xml version=”1.0”? encoding=”UTF-8” standalone=”Yes”?>

240

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 240

The XML declaration typically contains three parts: a version attribute, and optional encoding and
standalone attributes.

The version attribute tells the processing application that this text file is an XML document. You will
rarely see XML documents that go beyond version 1.0, primarily for two reasons: version 1.0 has been
around since 1998, and changes to XML since version 1.0 have been relatively minor.

The encoding attribute is primarily used to work around character encoding issues. Because XML docu-
ments are inherently Unicode, the encoding attribute is optional if the character encoding used to create
the document is UTF-8, UTF-16, or ASCII. Indeed, you will find that the character encoding is omitted
from many of the XML documents you may encounter.

The standalone attribute tells the processing application whether the document references an external
data source. If the document contains no reference to external data sources, it is deemed to be standalone;
thus the “Yes” value. Because every XML document is inherently standalone, this attribute is optional
for documents that do not reference an external source.

Processing Instructions
As their namesake implies, processing instructions provide explicit instructions to the processing appli-
cation. These can be identified by distinctive tags comprised of left and right angle brackets coupled
with question marks (<?, ?>). These instructions are typically found directly under the XML declaration
and can provide any number of directives. For example, the following processing instruction would
direct the use of Excel to open the given XML document:

<?mso-application progid=”Excel.Sheet”?>

Comments
Comments allow XML developers to enter plain-language explanations or remarks about the contents of
the document. Just as in VBA, where the single quote signifies a comment, XML has its own syntax to
denote a comment. Comments in XML begin with the <!-- characters and end with the --> characters,
as follows:

<!--Document created by Mike Alexander-->

Comments are also useful when you want to disable a particular construct or processing instruction in
the XML document. For instance, imagine your XML document contained a processing instruction that
forced the document to open with Excel. You may want to disable this processing instruction so the doc-
ument opens in Internet Explorer by default. Instead of removing the processing instruction, you can
simply comment it out by wrapping it in a comment as shown here:

<!-- <?mso-application progid=”Excel.Sheet”?> -->

Elements and the Root Element
An element is defined by a start tag (such as <MyData>) and an end tag (such as </MyData>). Any data
you enter between the start and end tags makes up the contents of that element. As you can see in the
following example, the document begins with <MyTable> and ends with </MyTable>; all of the syntax
you see between these tags makes up the content of the MyTable element:

241

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 241

<?xml version=”1.0”?>
<MyTable>

<Customer>
<Quarter>Q1</Quarter>
<Region>North</Region>
<Revenue>25000</Revenue>

</Customer>
</MyTable>

The concept of tags will be a familiar one to those who have worked with HTML. However, unlike HTML,
tags in XML are not predefined. That is to say, the text MyTable has no predefined utility or meaning.
You can change that text to Pork and it would be all the same to the XML document. And herein, you
stumble on the beauty of XML. XML allows you to create custom tags: tags to which you give definition
and purpose. As long as you adhere to a few basic rules, you can create and describe any number of
elements by creating your own custom tags. Here are the basic syntactic rules that must be followed
when creating elements:

❑ Every element must have a start tag, represented by left and right angle brackets (<>), as well
as a corresponding end tag represented by a left angle bracket, forward slash, and right angle
bracket (</>).

❑ Names in XML are case sensitive, so the start and end tags of an element must match in case as
well as in syntax. For example, an element defined by the tags <Data> </data> would cause a
parsing error. XML would look for the end tag for <Data> as well as the start tag for </data>.

❑ You must begin all element names with a letter or an underscore; never a digit. In addition,
names that begin with any permutation of xml are reserved and cannot be used.

The MyTable element is the root element for this particular XML document. The root element (which is
always the topmost element in an XML document) serves as the container for all of the contents within
the document. Every XML document must have one (and only one) root element.

Below the root element, you will see four elements, each one containing its own content. Elements can
contain numbers, text, and even other elements.

Elements are normally framed in a parent/child hierarchy. For instance, in the previous example, the
Customer element is a child o the MyTable root element. Likewise, the MyTable element is the parent
of the Customer element. Following that logic, the Quarter, Region, and Revenue elements are the
children of the Customer element. This parent/child hierarchy allows the XML document to describe
the structure of the data as well as the content. Later in this chapter, you will discover how this
parent/child hierarchy is leveraged to programmatically move around in XML documents.

Attributes
Attributes in XML documents come in two flavors: data attributes and metadata attributes. Data
attributes are used to provide the actual data for an element. For example, the following attributes
(name and age) provide the data for the Pet element:

<Pet name=’Shnuckums’ age=”4”>Dog</Pet>

242

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 242

Notice that the age attribute is wrapped in quotes even though the value itself is a number. This is
because unlike elements, attributes are textual. This means that attributes must be wrapped in either
single or double quotes.

You may also see attributes that exist in an empty element that contains no nested children. In these situ-
ations, you will see the attributes formatted as such:

<name=’Doodoo’ age=”4”/>

Metadata attributes provide descriptive information about the contents of elements. For instance, in the
following example, the Customer element has an attribute called id that provides that Customer with a
unique identifier:

<?xml version=”1.0”?>
<MyTable>

<Customer id=”1”/>
<Quarter>Q1</Quarter>
<Region>North</Region>
<Revenue>25000</Revenue>

</MyTable>

Many new users of XML find the concept of attributes versus elements a bit confusing. After all, most
elements can be easily converted to attributes (or vice versa) and the XML document would parse just
fine. For example, the Customer id attribute could just as easily be presented in an element as such:
<id>1</ id >. There are, however, general rules of thumb that most XML documents seem to adhere to
when it comes to elements versus attributes:

❑ If the content is not an actual data item, but a descriptor of the data (record number, index num-
ber, unique identifier, and so forth), then an attribute is typically used.

❑ Elements are used for any content that consists of multiple values.

❑ If there is a chance that the content will expand in structure to include children, then elements
are typically used.

Namespaces
The idea behind namespaces is simple. Because XML lets developers create and name their own ele-
ments and attributes, there is a possibility that a particular name could be used in different contexts.
For instance, an XML document may use the name ID to describe both a customer ID and an invoice ID.
Namespaces associate overlapping identifiers with Uniform Resource Identifiers (URI), allowing appli-
cations that process XML documents to make a distinction between similar names.

A URI is typically made up of a URL and a relative descriptor. For instance, the following line of code
defines a namespace. As you can imagine, xmlns stands for XML namespace:

xmlns=”http://www.datapigtechnologies.com/customers”

243

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 243

The fact that URLs are used to define namespaces leads many to believe that namespaces point to some
sort of online source. The fact is that URLs are only used to provide some semblance of ownership to
anyone reading the XML file. The goal of a namespace is merely to create a unique string. So you could
technically use something like xmlns=”arbitrary_namespace”, although it wouldn’t be very useful in
identifying ownership or utility.

As you can imagine, using a URL can lead to some fairly long namespace strings. Most XML developers
get around this problem by creating namespace prefixes. A prefix is nothing more than an alias for the
namespace. For instance, the following namespace uses the prefix dpc. Then the dpc prefix is applied to
an attribute:

Xmlns:dpc=”http://www.datapigtechnologies.com/customers”

<Invoice dpc:id=”201”>

In most XML documents, the first namespace is considered to be the default namespace for the document.
That is to say, the names in the document that are not explicitly associated with other namespaces will be
associated with this catch-all namespace.

You will notice that in the example illustrated in the following listing, the namespace is placed directly
into the root element. Any namespace declared within an element is automatically applied to all child
elements. You may be wondering why a namespace would be needed in a document where there are no
duplicate names. Many XML documents contain a default namespace to avoid overlapping names with
other XML documents that may be consumed in the same process or application:

<?xml version=”1.0”?>
<Customer xmlns=”http://www.datapigtechnologies.com/customers”>

<Quarter>Q1</Quarter>
<Region>North</Region>
<Revenue>25000</Revenue>

</Customer>

Now take a look at an example of namespaces in action. In this XML document, you are using the name
id to describe both the invoice ID and the customer ID. As you can see, you have applied three names-
paces; one namespace is the default for the document, one is a prefixed namespace used for the orders
ID, and one is used directly in the id element:

<?xml version=”1.0” encoding=”UTF-8”?>
<Order xmlns=”http://www.datapigtechnologies.com”
xmlns:O=”http://www.datapigtechnologies.com/orders”>
<Invoice O:id=”1-A-234”>

<Customer>Zalex Corp</Customer>
<id xmlns=”http://www.datapigtechnologies.com/customers”>21112</id>
<Amount>1000</Amount>

</Invoice>

</Order>

244

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 244

The first namespace is considered to be the default namespace for the document. The next namespace
uses the letter O as a prefix. The invoice ID is then qualified with the association of the O prefix. Finally,
the last namespace declaration can be found within the i element.

Viewing and Editing an XML Document
Double-clicking a standard XML document will typically open it in Internet Explorer. When XML docu-
ments are presented through a browser, they are read-only. To edit XML documents, you must open
them with either a text editor such as Notepad or an XML editor.

It’s generally a good idea to open any new XML documents you encounter with Internet Explorer so
they can be checked with Internet Explorer’s built-in XML parser. Internet Explorer 5 and above has a
built-in DLL that can read XML documents and check for well-formedness. This is akin to the VBA com-
piling your code and checking for syntax errors. If the XML document you are trying to open is not well
formed, the parser will throw an error message. The idea here is that if Internet Explorer cannot open
your XML file, you will not be able to use it in Excel.

Just for the record, a well-formed document has the following characteristics:

❑ There is one root element encapsulating all content in the XML document.

❑ All element tags have a start tag and a matching end tag, as in <element></element>.

❑ None of the element tags have mismatched cases (such as <Element></element>).

❑ All child elements are closed before their parents. For instance, <Parent><Child></Parent>
</Child> would cause a parsing error because the child element is closed after the parent ele-
ment has been closed. The correct sequence would be <Parent><Child></Child></Parent>.

❑ All attributes have one value wrapped in either single or double quotes.

Once your XML document has been validated by Internet Explorer, opening with no parsing errors, it is
ready to be used.

Every version of Internet Explorer from Internet Explorer 5 on has its version of the
built-in MSXML.DDL parser. The MSXML.DLL comes with its own object model
called the Document Object Model (DOM). Later, you will learn how to leverage
this object model to read and edit data from XML files.

Although you can use simple text editors, you will find that an XML editor struc-
tures your XML documents into reader-friendly trees that make finding and editing
content much easier. You can find both free and commercial XML editors online.
XML Marker and XML Cook Top are both excellent free editors.

245

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 245

Consuming XML Data Directly
Once you have a well-formed XML document, you can start using the data it contains. One of the sim-
plest ways to use an XML document is to open it directly from Excel. To help demonstrate this, open
EmployeeSales.xml, shown here. This XML document contains data revolving around the invoices
filed by the employee in an organization:

<?xml version=”1.0”?>
<EmployeeSales>

<Employee>
<Empid>2312</Empid>
<FirstName>Mike</FirstName>
<LastName>Alexander</LastName>
<InvoiceNumber>100</InvoiceNumber>
<InvoiceAmount>2300</InvoiceAmount>

</Employee>

<Employee>
<Empid>24601</Empid>
<FirstName>Stephen</FirstName>
<LastName>Bullen</LastName>
<InvoiceNumber>200</InvoiceNumber>
<InvoiceAmount>3211</InvoiceAmount>

</Employee>

</EmployeeSales>

Start Excel, select File ➪ Open, and then open the XML document titled EmployeeSales.xml. You will
immediately see the Open XML dialog box, shown here in Figure 12-1.

Figure 12-1

Select As an XML table and click the OK button. This will activate the dialog box, shown here in
Figure 12-2, where Excel tells you that it could not find a schema for your XML document so it will
create one for you.

You can find the sample files used in the various walkthroughs for this chapter at
www.wrox.com, in this chapter’s XMLSampleFiles folder.

246

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 246

Figure 12-2

Because the EmployeeSales.xml file does not have an associated schema file (XSD), Excel will infer a
schema from your XML document. This means Excel essentially creates an internal schema that will dic-
tate the rules for the document.

Once you click the OK button, Excel will create a new workbook and populate it with your XML data
table. At this point, you should see the same table shown in Figure 12-3.

Figure 12-3

Excel automatically creates an XML list, mapping a range of cells to the elements in the source XML doc-
ument. These cells are linked back to the XML document and can be refreshed with the latest data by
right-clicking inside the XML list and selecting XML ➪ Refresh XML Data.

You can also refresh using the Refresh Data button, found in the XML Group under
the Developer tab of the Ribbon.

In XML terms, the word schema refers to an XML Schema Description (XSD).
An XSD is a file typically associated with an XML file in order to provide rules
for the document. XSD files dictate the layout and sequencing for the data in an
XML document, as well as the data types and default values for each element and
attribute.

The topic of XSD is a subject that is worthy of its own book. This chapter is, alas,
focused on areas outside the scope of XSD, so XSD is not covered in detail here.
Although there are plenty of books that cover this subject, a visit to www.w3shcools.
com/schema will get you off on the right foot. This site will give you a solid (and free)
start on learning more about XSD.

247

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 247

To test this out, save your Excel file and close it. Now edit the EmployeeSales.xml file to add a new
employee record, as demonstrated here:

<?xml version=”1.0”?>
<EmployeeSales>

<Employee>
<Empid>2312</Empid>
<FirstName>Mike</FirstName>
<LastName>Alexander</LastName>
<InvoiceNumber>100</InvoiceNumber>
<InvoiceAmount>2300</InvoiceAmount>

</Employee>

<Employee>
<Empid>24601</Empid>
<FirstName>Stephen</FirstName>
<LastName>Bullen</LastName>
<InvoiceNumber>200</InvoiceNumber>
<InvoiceAmount>3211</InvoiceAmount>

</Employee>

<Employee>
<Empid>1132</Empid>
<FirstName>Rob</FirstName>
<LastName>Bovey</LastName>
<InvoiceNumber>300</InvoiceNumber>
<InvoiceAmount>4211</InvoiceAmount>

</Employee>

</EmployeeSales>

Once you save your edits in the XML document, return to the Excel file and refresh the XML map.
As you can see in Figure 12-4, the newly added employee will be included in the mapped range.

Figure 12-4

Take a moment to think about how this functionality could be useful to you as an Excel programmer.
Once your XML data is mapped to a range of cells, it can be used just as other data in Excel. For instance,
you can use XML data as variables in formulas, as feeds for charts, and as the source data for pivot tables.
Imagine building an Excel-based reporting system where all data that feeds your pivot tables and charts
links back to XML files on a network server. You can imagine that those XML files could be updated on a
nightly basis, while your client’s workbooks could be designed to automatically refresh on open. Later
in this chapter, you will discover how you can leverage VBA to create XML documents and automate
many of the actions you have taken here thus far.

248

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 248

Creating and Managing Your Own XML Maps
Although it is convenient to let Excel handle the mapping of XML data to your spreadsheet, creating your
own XML maps gives you a bit more flexibility and control over how your data is used. In particular,
creating your own XML maps allows you to write back to your XML document, selectively map elements
individually, and integrate data from multiple XML documents. In this section, you walk through a sce-
nario where creating a custom XML map will help you build a simple data entry template for employee
invoices. As you go through this example, keep in mind that this is one of many possible scenarios that
benefit from a custom XML mapping.

Creating Your Own XML Schema Description
One of the requirements for the data entry template is that it needs to be able to edit and add content
in an XML document. To meet this requirement, you will have to provide Excel with an XML Schema
Description (XSD). Although you could try to create your own XSD from scratch, there is enough com-
plexity around developing XSD files to make that option a rather unappealing one. Instead, you can
leverage Excel to create an XSD for you.

First, create a simple XML document using a simple text or XML editor. The goal here is to enter the ele-
ments that make up the data points you need to capture. In this example, you want to capture a set of
five data points: employee ID, first name, last name, invoice number, and invoice amount. In that light,
create the simple XML document shown here:

<?xml version=”1.0”?>
<EmployeeSales>

<Employee>
<Empid>999</Empid>
<FirstName>Text</FirstName>
<LastName>Text</LastName>
<InvoiceNumber>999</InvoiceNumber>
<InvoiceAmount>999</InvoiceAmount>

</Employee>

<Employee></Employee>
</EmployeeSales>

Note that fake data is placed into the elements. This will allow Excel to identify the data type for each
element when it infers a schema. You will also note the inclusion of an empty Employee element.
This will ensure that the Employee element is tagged as a repeating element in Excel’s schema. Why do
you need this particular element to repeat? The data entry template will need to accept multiple entries
at the employee level; a repeating employee element will satisfy this requirement. Be sure to save your
file as an XML document.

Keep in mind that when Excel infers a schema for you, the source XML document is
automatically rendered read-only. In this context, the term read-only means that you
cannot make changes to the source XML document via the XML map created in Excel.
This prevents your users from editing or adding data in the source XML document.

249

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 249

Next, open the XML document from Excel, allowing Excel to infer its own schema. Once the XML docu-
ment has been mapped, open the XML Source task pane to inspect the XML map. To do so, select the
Developer tab in the Ribbon, and then select XML Source. This will activate the XML Source task pane,
shown in Figure 12-5, where you will see the elements that make up your XML document.

Figure 12-5

250

Chapter 12: Working with XML and the Open XML File Formats

XML Map Properties
It’s important to note that your XML map has certain properties that can be adjusted to
suit your needs. To access the properties dialog box, simply right-click anywhere inside
the XML list and select XML ➪ XML Map Properties. Again, later in this chapter, you
will discover how you adjust these properties dynamically via VBA.

❑ Name: The name property specifies the name of the XML map.

❑ Validate data against schema for import and export: When selected, this prop-
erty will direct Excel to validate any data entered into the XML map against its
corresponding schema, ensuring that the data conforms to the rules specified in
the schema before importing or exporting.

❑ Save data source definition in workbook: When selected, this property ensures
that your XML map is linked to the source XML document, thus allowing the
document to be refreshed. Deselecting this property will make the XML map
static.

❑ Adjust column width: When selected, Excel will automatically adjust the
width of columns to fit the mapped XML data.

❑ Preserve column filter: When selected, Excel preserves the sorting and filter-
ing applied to the XML list when refreshing the XML map.

❑ Preserve number formatting: When selected, Excel preserves the formatting
applied to numbers in the XML list when refreshing the XML map.

❑ Overwrite existing data with new data: When selected, existing data in the
XML list will be overwritten when the XML map is refreshed.

❑ Append new data to existing XML lists: When selected, any new data from
the source XML document will be added to the bottom of the existing data in
the XML list when the XML map is refreshed.

15_046432 ch12.qxp 2/16/07 9:59 PM Page 250

Excel has successfully created a schema for the data structure you specified via the XML document.
Your goal now is to get that schema out of Excel and into an XSD file. Unfortunately, there is no way to
extract the inferred schema via the user interface. You will have to use a bit of VBA to get to the schema.
Start a new module and enter the following code:

Sub GetSchema()

Dim MySchema As String

‘Get the schema
MySchema = ActiveWorkbook.XmlMaps(“EmployeeSales_Map”).Schemas(1).XML

‘Create and fill an xsd file with your schema
Open “C:\MySchema.xsd” For Output As #1
Print #1, MySchema
Close #1

End Sub

In this code, you first use the XmlMaps collection to identify the XML map and schema you are targeting.
As you can see, the target schema is the primary schema for the XML map named “EmployeeSales_Map”
in the active workbook. Next, you create empty text file and save it as “C:\MySchema.xsd”. Finally, you
output your schema to the newly created XSD file. Your reward for creating and running this code is an
XSD file that took very little effort to create.

Creating Your Own XML Map
With your newly created XSD in hand, you can create your XML-based data entry template. Start by
opening a new Excel workbook and activating the XML Source task pane by selecting XML Source in the
Developer tab. Next, click the XML Maps button to activate the XML Maps dialog box, shown here in
Figure 12-6.

Figure 12-6

Notice that this particular XML map is named EmployeeSales_Map. Every XML map
must have a name. When Excel infers a schema for you, it automatically assigns a
name made up of the root element name and _Map. You can change this name by
adjusting the Name property in the XML Map Properties dialog box. It is generally
good practice to use the assigned name when referencing an XML map via VBA.

251

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 251

Here, you will click the Add button to link to the MySchema.xsd you created in the C:\ drive. Once your
XSD is referenced, click OK to create the map. When your XML map is created, the XML Source will show
you the elements that are available for use in your spreadsheet.

At this point, you can drag the Employee parent element to your spreadsheet to create a data entry
table. From here, you can add a little formatting to achieve a particular look and feel. Now here comes
the impressive bit. Enter some data into the template, as demonstrated here in Figure 12-7.

Figure 12-7

Now you need to export the data entered into your template as an XML document by right-clicking any-
where inside the mapped range and selecting XML ➪ Export. This will open a dialog box where you will
be asked to specify a name and location for the XML export. Once the document is exported, you can
open it to see that your data has indeed been output into the XML structure specified by your custom
schema. Figure 12-8 demonstrates the output for the data entered in Figure 12-7.

Figure 12-8

Keep in mind that you are not limited to one XML mapping. You can map multiple
XML documents and schemas. Simply activate the XML Maps dialog box and add
another link to an XML document or schema.

252

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 252

You can imagine how automating the export functionality would allow a user to send entered data to a
specified location with the click of a button. Once the data is in an XML document, any procedure or
application that can process the XML document will be able to consume the data.

As mentioned at the beginning of this section, the scenario you just walked through is just one of count-
less ways you can choose to implement your own XML maps. You are encouraged to take some time to
think about your data processes in terms of XML.

Using VBA to Program XML Processes
The functionality gained by using XML technologies has less to do with actual XML documents than the
processes you build to leverage their benefits. Although many of the tasks involved in these XML-based
processes can be done manually through Excel’s UI, the very nature of XML functionality lends itself to
automation. This section contains examples demonstrating how VBA can help you program many of the
common tasks associated with an XML-based process.

Programming XML Maps
Fortunately, Excel exposes a robust set of objects, properties, and methods that make it possible for many
of the tasks associated with mapping to XML data to be accomplished via VBA. Here, you will perform
many of the tasks you performed in the last section programmatically.

Open an XML Document Directly into a List
Through the user interface, you can open an XML document directly from Excel, automatically creating
an XML list that is mapped to the elements in the source XML document. This functionality can be repli-
cated via code by using the OpenXML method of the Workbooks collection. This method returns a work-
book object with the XML data mapped to your spreadsheet:

Sub ImportXMLtoList()
Dim strTargetFile As String

‘Inhibit schema warning
Application.DisplayAlerts = False

‘Select target XML document
strTargetFile = ThisWorkbook.Path & “\EmployeeSales.xml”

‘Use the OpenXML method to open the target file
Workbooks.OpenXML Filename:=strTargetFile, LoadOption:=xlXmlLoadImportToList

‘Turn alerts back on
Application.DisplayAlerts = True

End Sub

253

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 253

First you inhibit the schema warning (where Excel tells you it will infer a schema for you) by setting the
DisplayAlerts property to False. This prevents user confusion when custom-made schemas are not
involved in your automated XML processes. You then assign the target XML document to a variable,
allowing for some flexibility when incorporating this code into a larger process. Next, you pass the target
filename to the OpenXML expression and include the xlXmlLoadImportToList variant, telling Excel to
import the XML data directly into a list object. Finally, you set the DisplayAlerts property back to True.

Programmatically Changing XML Map Properties
Once an XML map exists, there may be cause to change a few of its properties programmatically. In the
following code snippet, you pass the name of your map the XMLMaps collection, and then adjust each
available property. These properties coincide with those discussed in the section called “Consuming
XML Data Directly”:

Sub ChangeXmlMapProperties()
With ActiveWorkbook.XmlMaps(“EmployeeSales_Map”)

‘Change map name
.Name = “New_Name”

‘XML schema definition validation
.ShowImportExportValidationErrors = False

‘Data source property
.SaveDataSourceDefinition = True

‘Data formatting and layout properties
.AdjustColumnWidth = True
.PreserveColumnFilter = True
.PreserveNumberFormatting = True

‘Overwrite or Append data
‘False Overwrites while True Appends

.AppendOnImport = False

End With

‘This example references the XML map by index number
ThisWorkbook.XmlMaps(1).Name = “EmployeeSales_Map”

End Sub

Refresh Your XML Data
Once your XML map has been created, you can refresh it by using the following code. Here, you are
using the Refresh method to update the data binding for a specified XML map:

Sub RefreshXML()
ThisWorkbook.XmlMaps(“EmployeeSales_Map”).DataBinding.Refresh

End Sub

254

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 254

Turn Your XML Lists into Hard Data
In the context of XML lists, hard data means that the data residing in the list object is no longer mapped to
the XML schema you are using. You may often find that once the needed XML data is in your spreadsheet,
there is no need for the data to be refreshed. In these situations, you can simply delete the XML map to
disconnect the cells in your spreadsheet from the schema. To do so, use the Delete method, as demon-
strated here:

Sub RemoveMap()
ThisWorkbook.XmlMaps(“EmployeeSales_Map”).Delete

End Sub

Creating Your Own XSD
For many Excel developers, creating a custom XML schema from scratch is simply out of the question.
In the last section, you discovered that instead of developing an XML schema from scratch, you could
leverage Excel to help you create and output a schema. The good news is that even this task can be auto-
mated, as demonstrated here:

Sub Create_XSD()
Dim StrMyXml As String, MyMap As XmlMap
Dim StrMySchema As String

‘Fill a string with your template XML
StrMyXml = “<EmployeeSales>”
StrMyXml = StrMyXml & “<Employee>”
StrMyXml = StrMyXml & “<Empid>999</Empid>”
StrMyXml = StrMyXml & “<FirstName>Text</FirstName>”
StrMyXml = StrMyXml & “<LastName>Text</LastName>”
StrMyXml = StrMyXml & “<InvoiceNumber>999</InvoiceNumber>”
StrMyXml = StrMyXml & “<InvoiceAmount>999</InvoiceAmount>”
StrMyXml = StrMyXml & “</Employee>”
StrMyXml = StrMyXml & “<Employee></Employee>”
StrMyXml = StrMyXml & “</EmployeeSales>”

‘Use your XML string to add an XML map
Application.DisplayAlerts = False
Set MyMap = ThisWorkbook.XmlMaps.Add(StrMyXml)
Application.DisplayAlerts = True

‘Get the schema
StrMySchema = ThisWorkbook.XmlMaps(1).Schemas(1).XML

‘Create and fill an xsd file with your schema
Open “C:\StrMySchema.xsd” For Output As #1
Print #1, StrMySchema
Close #1

End Sub

255

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 255

First, declare a string called MyXML, and then assign to it the elements that will make up the content and
parent/child hierarchy of the XML document. What you’re looking for here is structure: a format that
makes the XML easy to read and manage within the VBE. The first line starts the string. Each subsequent
line is concatenated to the previous line. By the last line, the MyXml variable contains the entire XML string.

Next, pass your newly created XML string to the Add method of the XmlMaps collection. Notice that
again, the DisplayAlerts property is set to False to inhibit any schema warning messages. From here,
you can use the newly created XML map’s index number to identify and pass the inferred schema to a
string variable. Finally, create an empty XSD and output your schema file.

Creating a Custom XML List
When you create your own XML lists, you gain the ability to control what information is included in
your schema, which elements are mapped to the spreadsheet, and where the XML data is mapped. The
following code demonstrates how to create a custom XML list, allowing you to manage each aspect of
the mapping process; from the schema, you use to the location of the XML list:

Sub CreateXMLList()
Dim oMyMap As XmlMap
Dim strXPath As String
Dim oMyList As ListObject
Dim oMyNewColumn As ListColumn

‘Add a schema map
ThisWorkbook.XmlMaps.Add (ThisWorkbook.Path & “\Myschema.xsd”)

‘ Idenfity the target schema map.
Set oMyMap = ThisWorkbook.XmlMaps(“EmployeeSales_Map”)

‘ Create a new list in A1.
Range(“A1”).Select
Set oMyList = ActiveSheet.ListObjects.Add

‘Find the first element to map.
strXPath = “/EmployeeSales/Employee/Empid”
‘ Map the element.
oMyList.ListColumns(1).XPath.SetValue oMyMap, strXPath

‘ Add a column to the list.
Set oMyNewColumn = oMyList.ListColumns.Add
‘ find the next element to map.
strXPath = “/EmployeeSales/Employee/InvoiceNumber”
‘ Map the element.
oMyNewColumn.XPath.SetValue oMyMap, strXPath

‘ Add a column to the list.
Set oMyNewColumn = oMyList.ListColumns.Add
‘ find the next element to map.
strXPath = “/EmployeeSales/Employee/InvoiceAmount”

256

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 256

‘ Map the element.
oMyNewColumn.XPath.SetValue oMyMap, strXPath

‘Give the columns logical names
oMyList.ListColumns(1).Name = “EmployeeId”
oMyList.ListColumns(2).Name = “Invoice Number”
oMyList.ListColumns(3).Name = “Invoice Amount”

End Sub

Take a moment to analyze what you are doing here.

You are using the Add method of the XmlMaps collection to map a custom-made schema. You then spec-
ify the XML map you are using. In this scenario, the map is the first map in the spreadsheet, thus the
index (1) is used. Next, you create a new worksheet and then add a list object to cell B5. This list object
will contain the range of cells that will be mapped back to your schema. At this point, the list object you
added only has one column.

There is a lot going on here. The net result of this line of code is that the Empid element is mapped to the
first column in your XML list. This is accomplished by using the SetValue method of the XPath object.
The XPath object is used to connect a range or list column to an XML schema that has been mapped to a
workbook. The SetValue expression requires two variables: an XML map and an XPath string. The XML
map (represented here by the MyMap object variable) identifies the source schema to connect to, and the
XPath string tells Excel which elements in the source schema to employ.

Add subsequent columns to the list object, and then use XPath.Setvalue to map the new columns to
the InvoiceNumber and InvoiceAmount, respectively. Finally, you give each column in the XML list a
logical name.

Importing Data into an Existing XML Map
As you may have guessed, the Import method imports data from an XML file into an XML list or cells
that have been mapped to a particular XML map. This method is particularly useful when building auto-
mated XML-based reporting processes where data is programmatically imported from XML documents
in shared locations. In the example shown here, the code imports data from the EmployeeSales.xml
file to the specified XML map:

Sub ImportXmlFromFile()
ThisWorkbook.XmlMaps(“EmployeeSales_Map”).Import _

(ThisWorkbook.Path & “\EmployeeSales.xml”)

End Sub

Don’t be too concerned if you do not yet understand the XPath expression you see in
the previous code. You will take a more detailed look at XPath in the next section of
this chapter.

257

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 257

Exporting to an XML File
Similar to the Import method, the Export method allows for the exporting of data from an XML list or
range of cells into an XML document. As you can see in the following code, the data is exported to a
URL of your choice. Although the URL shown here points to a local location, the export URL can be on a
network drive or web server. This method comes in handy when integrating data inputs from various
users into a standardized data-gathering exercise:

Sub ExportToXmlFile()
ActiveWorkbook.XmlMaps(“EmployeeSales_Map”).Export _
URL:=ThisWorkbook.Path & “\Exported.xml”

End Sub

Leveraging DOM and XPath to Manipulate XML Files
The Document Object Model (DOM) is a programming interface that exposes the contents of an XML docu-
ment, allowing you to access and manipulate the data within. DOM is based on the Microsoft XML Parser
(MSXML) that comes with Internet Explorer. Every version of Internet Explorer from Internet Explorer 5 on
has its version of the built-in MSXML.DDL. The concept behind DOM is reasonably simple. After MSXML
parses an XML document, the contents of the XML document are placed in data containers that can be navi-
gated and surveyed by other applications. DOM exposes its own set of properties, methods, and parameters
that allow any application that supports DOM to program against these parsed XML documents.

This section explores both DOM and XPath; discovering these two interfaces allows you to explore, modify,
and manipulate XML documents. As with all XML technologies, both DOM and XPath are rich in scope
and complexity. In that light, you only touch the surface of these technologies. However, after this section,
you will be armed with enough information to explore and code against the Open XML file formats.

258

Chapter 12: Working with XML and the Open XML File Formats

XML Events
The Workbook object provides a few XML events that allow you to define and manage
what happens before and after import and export procedures:

❑ BeforeXMLImport: This event is typically used to trap XML data before it is
imported, allowing for data and environment evaluations.

❑ AfterXMLImport: This event is typically used to perform some post-processing
operations after XML data has been imported.

❑ BeforeXMLExport: This event is typically used to trap XML data before it is
exported, allowing for data and environment evaluations.

❑ AfterXMLExport: This event is typically used to perform some post-processing
operations after XML data has been exported.

These events are also exposed through the Application object in the following
forms: WorkbookBeforeXMLImport, WorkbookBeforeXMLExport,
WorkbookAfterXMLImport, and WorkbookAfterXMLExport.

15_046432 ch12.qxp 2/16/07 9:59 PM Page 258

Loading XML into a DOM Document
Before you can do anything with DOM, you will have to set a reference to the MSXML object library.
To do so, open the Visual Basic Editor and select Tools ➪ References. In the References dialog box, select
the latest version of Microsoft XML, as demonstrated in Figure 12-9.

Figure 12-9

Once your reference is set, take a look at the code shown here. In this procedure, you are loading an
XML file into a DOMDocument object. The DOMDocument object is the top-level container for the parsed
XML file, serving as the parent for all nodes in the XML file’s node structure. To programmatically
explore and manipulate XML documents, they must first be exposed through the DOMDocument object.

You will notice that there are four different versions of MSXML shown in Figure 12-9.
A fifth version (Microsoft XML, v6.0) may be available to you if you have installed
SQL Server 2005. You generally want to set your reference to the latest version avail-
able. However, if you are building XML-based solutions that will be distributed to
other users, you will want to take into account the version of Internet Explorer your
users have installed. If there is a good chance that some of your users are using
Internet Explorer 5.0, you will want to set the reference to Microsoft XML, v3.0.

In any case, the differences between the various versions, for the most part, will
not impact most of the tasks you as an Excel developer will need to accomplish.
For instance, you can be confident that the rest of the procedures in this chapter would
run fine with Microsoft XML, v3.0. If you have a burning need to find out what are
the exact differences between the various versions of MSXML, you can find out here:
http://windowssdk.msdn.microsoft.com/en-us/library/ms753751.aspx.

259

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 259

Sub Load_ReadXMLDoc()
Dim oMyDoc As DOMDocument

‘Create an instance of the DOMDocument
Set oMyDoc = New DOMDocument

‘Disable asynchronous loading
oMyDoc.async = False

‘Load XML information from a file
oMyDoc.Load (ThisWorkbook.Path & “\SalesByRegion.xml”)

‘Use the DOMDocument object’s XML property to retrieve the raw data
Debug.Print oMyDoc.XML

‘Cleanup
Set oMyDoc = Nothing

End Sub

First, instantiate a DOMDocument object, assigning it to the MyDoc variable. Next, disable asynchronous
loading. Asynchronous loading is a process that MSXML uses by default to load documents in stages,
allowing for cancellation and feedback during load. You generally will want to disable asynchronous
loading to ensure that the document loads in its entirety before a result is returned.

Use the Load method to load the chosen XML document into the DOMDocument object. This essentially
takes a snapshot of the XML document and loads an in-memory version of the XML document that you
can explore and modify via VBA. In this example, you retrieve the raw XML data from the document
and output it to the Immediate window. After you are done with any DOMDocument, you should always
release it from memory.

Using DOM with ADO to Convert Excel Data to XML
A useful aspect of a DOMDocument object is that it can serve as the container for any hierarchical XML
structure. This allows you to load any valid XML construct into a DOMDocument object. Coincidentally,
ADO has an XML persistence constant that enables any recordset to persist in an XML stream.

To help demonstrate this, open the Programming XML.xlsm file, found in the XMLSampleFiles folder
in this chapter’s download page at www.wrox.com. In this file, you will find the following procedure.
This procedure loads an Excel range (in this case range A1:D43) into an ADO recordset, and then saves
the recordset into the DOMDocument object, which is then output to an XML file:

ADO (ActiveX Data Objects) is a data access technology that is installed with
Microsoft Data Access Components, and it’s covered in detail in Chapter 20.

To use the procedure demonstrated here, you will need to first set a reference to
Microsoft ActiveX Data Access 2.6 Library (any later version is also valid).

260

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 260

Sub Convert_Excel_Data_to_XML()

Dim oMyconnection As Connection
Dim oMyrecordset As Recordset
Dim oMyXML As DOMDocument
Dim oMyWorkbook As String

Set oMyconnection = New Connection
Set oMyrecordset = New Recordset
Set oMyXML = New DOMDocument

‘Identify the workbook you are referencing
oMyWorkbook = Application.ThisWorkbook.FullName

‘Open connection to the workbook
oMyconnection.Open “Provider=Microsoft.Jet.OLEDB.4.0;” & _

“Data Source=” & oMyWorkbook & “;” & _
“Extended Properties=excel 8.0;” & _
“Persist Security Info=False”

‘Load the selected range into the recordset
oMyrecordset.Open “Select * from [Sheet1$A1:D43]”, oMyconnection, adOpenStatic

‘Load the recordset into the DOM Document
oMyrecordset.Save oMyXML, adPersistXML

‘Save DOM Document to an xml file
oMyXML.Save (ThisWorkbook.Path & “\Output.xml”)

‘Clean up
oMyrecordset.Close
Set oMyconnection = Nothing
Set oMyrecordset = Nothing
Set oMyXML = Nothing

End Sub

Once the procedure is run, you will find the output XML file in the same directory as the Programming
XML.xlsm file. When you open the output XML documents, you will notice that it does not look like the
ones you have experienced here so far. This is because ADO produces attribute-based XML. An attribute-
based XML document is almost exclusively made up of attribute nodes and is self-describing — they
contain metadata that describes both the structure of the recordset and the data inside the recordset.

An XML file generated by ADO typically contains one root element and two child nodes: Schema and
Data. The Schema node contains information about the recordset structure: field names, data type, field
length, position, and so on. The Data node contains the actual data. Although attribute-based documents
are difficult for humans to read, they are well formed and pose no problem for Excel.

When mapping an ADO-produced XML document, the XML Source pane will look similar to Figure 12-10.
Remember to map the Data node to your spreadsheet.

261

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 261

Figure 12-10

Traversing and Modifying XML Files with DOM and XPath
You’ll remember from the start of this chapter that the construct of XML ensures that a parent/child
hierarchy exists between all elements and attributes within an XML document. This gives XML docu-
ments an inherent logical structure that allows each construct in the document to be parsed into nodes.

XPath is a language that allows you to locate the component parts in an XML document by specifying a
path to each node in the tree. With XPath, you can build an expression called a location path. A location
path is similar to the file path you use to locate a file on your PC, starting at a given location, stepping
through each directory in the file tree until you reach the file you want.

You compose your Xpath expression with location steps, evaluating the nodes at each step until all the
location steps have been evaluated. The final step results in a node set that can be extracted, modified,
deleted, and so on.

Take a moment to go through a few examples where combining DOM and XPath allows you to find,
extract, and edit the data in a DOMDocument.

Return all Employee IDs
The first thing you will notice in the following example is that in addition to declaring a DOMDocument
object, you are also declaring IXMLDOMNode and IXMLDOMNodeList. The IXMLDOMNode object is used to
hold and pass a single node, whereas the IXMLDOMNodeList object is used to hold and pass a collection
of nodes.

In this procedure, your goal is to return all Employee IDs contained in the chosen XML document. First,
load the document in a DOMDocument object, as demonstrated in the previous section. Next, pass an
Xpath expression to the SelectNodes method of the DOMDocument:

“/EmployeeSales/Employee/Empid”

Keep in mind that the concepts presented here are key to your ability to program
against the XML parts that make up your Excel file. Each one of the examples
demonstrated here is employed later in this chapter when programming the Open
XML file formats.

262

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 262

This expression steps through each element node in the document until it reaches the Empid element.
As you can see, the XPath starts with the forward slash (/). A single forward slash establishes the root
element of the document as the starting point for the location steps in the XPath expression. Each single
forward slash from there steps through the hierarchy of elements until the one you need (the Empid) is
reached. Once the destination path is reached, the SelectNodes method executes the query, trapping
each element node in the xmlnodes object variable. It then iterates through xmlnodes to retrieve each
single element node and output it:

Sub FindNode()
Dim oXmlDoc As DOMDocument
Dim oXmlNode As IXMLDOMNode
Dim oXmlNodes As IXMLDOMNodeList

‘Load your XML Document into a DOM Document
Set oXmlDoc = New DOMDocument
oXmlDoc.async = False
oXmlDoc.Load (ThisWorkbook.Path & “\EmployeeSales.xml”)

‘Find and select the all EMPID nodes in the document
Set oXmlNodes = oXmlDoc.SelectNodes(“/EmployeeSales/Employee/Empid”)

‘Iterate through the nodes and output each Empid
For Each oXmlNode In oXmlNodes
Debug.Print oXmlNode.Text
Next

End Sub

Return all Nodes for Any Employee with an Invoice Amount over $3000
In this procedure, the goal is to return all the element nodes for any employees who have an invoice
over $3,000:

“//Employee[InvoiceAmount>3000]”

Notice in this expression the use of the double forward slashes (//). The double forward slash is an
abbreviated syntax that can be used in any expression to jump directly to the desired node. This allows
programmers to avoid the redundancy of declaring each step in the node hierarchy. In this example,
you are selecting all Employee elements in the document that meet a specific criterion. You can pass a
criterion through XPath by using a predicate placed in brackets ([]), as shown in previous procedure.
Here, you are limiting the employees that are returned to only those whose InvoiceAmount element
node has a value greater than 3000:

Sub FindNode()
Dim oXmlDoc As DOMDocument
Dim oXmlNode As IXMLDOMNode
Dim oXmlNodes As IXMLDOMNodeList

‘Load your XML Document into a DOM Document
Set oXmlDoc = New DOMDocument
oXmlDoc.async = False
oXmlDoc.Load (ThisWorkbook.Path & “\EmployeeSales.xml”)

‘Find and select the all Employee that meet the criteria

263

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 263

Set oXmlNodes = oXmlDoc.SelectNodes(“//Employee[InvoiceAmount>3000]”)

‘Iterate through the nodes and output each Employee
For Each oXmlNode In oXmlNodes
Debug.Print oXmlNode.Text
Next

End Sub

Trap the Node that Contains the FirstName Mike
This procedure uses the same concepts to trap the node that contains the FirstName Mike. Note that
you are using the SelectSingleNode method to trap and return one specific node. Other things to
notice here are the use of the predicate text() followed by the criterion wrapped in single quotes, not
double quotes. Because the IXMLDOMNode object does not hold a collection of nodes, there is no need to
iterate through the nodes; you can simply output the node:

Sub FindNode()
Dim oXmlDoc As DOMDocument
Dim oXmlNode As IXMLDOMNode

Set oXmlDoc = New DOMDocument
oXmlDoc.async = False
oXmlDoc.Load (ThisWorkbook.Path & “\EmployeeSales.xml”)

Set oXmlNode = oXmlDoc.SelectSingleNode(“//FirstName[text()=’Mike’]”)
Debug.Print oXmlNode.XML

End Sub

Find and Edit the Node that Contains the FirstName Mike
In this procedure, you go a step further and actually change the text of the returned node. Because you
are working with an in-memory version of the XML document, you must use the Save method of the
DOMDocument to save changes back to the XML document:

Sub ChangeNode()
Dim oXmlDoc As DOMDocument
Dim oXmlNode As IXMLDOMNode

‘Create a test copy of the EmployeeSales.xml file
FileCopy ThisWorkbook.Path & “\EmployeeSales.xml”, _
ThisWorkbook.Path & “\EmployeeSalesTest.xml”

‘Load your XML Document into a DOM Document
Set oXmlDoc = New DOMDocument
oXmlDoc.async = False

oXmlDoc.Load (ThisWorkbook.Path & “\EmployeeSalesTest.xml”)

‘Find and select the all Employee that meet the criteria
Set oXmlNode = oXmlDoc.SelectSingleNode(“//FirstName[text()=’Mike’]”)

‘Edit the text and save back to the XML document
oXmlNode.Text = “Michael”
oXmlDoc.Save ThisWorkbook.Path & “\EmployeeSalesTest.xml”

End Sub

264

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 264

Find and Delete all Nodes for the Employee Bullen
In this example, first find the nodes where the employee’s last name is Bullen. Once the correct set of
nodes has been identified, iterate through the collection to remove each node. Here’s how it works.
Use each node as a starting point to find its parent by using the parentnode property. For instance,
xmlnode.parentnode will return the parent of the xmlnode in focus. Once the parent is identified, use
the RemoveChild method to remove the given xmlnode. After iterating through all the nodes in the col-
lection, save the changes back to the XML document:

Sub DeleteNode()
Dim oXmlDoc As DOMDocument
Dim oXmlNode As IXMLDOMNode
Dim oXmlNodes As IXMLDOMNodeList

‘Load your XML Document into a DOM Document
Set oXmlDoc = New DOMDocument
oXmlDoc.async = False
oXmlDoc.Load (ThisWorkbook.Path & “\EmployeeSalesTest.xml”)

‘Find and select the all Employee that meet the criteria
Set oXmlNodes = oXmlDoc.SelectNodes(“//Employee[LastName=’Bullen’]”)

‘Find and select the all Employee that meet the criteria
For Each oXmlNode In oXmlNodes
oXmlNode.parentnode.RemoveChild oXmlNode
Next
oXmlDoc.Save ThisWorkbook.Path & “\EmployeeSalesTest.xml”

End Sub

Using VBA to Program Open XML Files
You may be wondering why anyone would try to manipulate an Excel file by programming its XML
parts. After all, doesn’t Excel have a perfectly good object model? Well, there are a few benefits to be
gained by programming against the Open XML files directly:

❑ Encoding text files is always faster: Remember that when you are programming against the
Open XML files, you are essentially working with text files. Because there is very little overhead
involved in programming XML files, your procedures will run more efficiently and far faster
than they would using Excel’s object model.

❑ Find it, change it, get out: Efficient relationship management, indexing, and shared files make it
easy to find the exact component you need to manipulate. For instance, changing one string in the
Sharedstring.xml file will apply that change to every instance of that string in your workbook.
Changing a connection to external data is as easy as editing text within the connections.xml.
Removing macros from a workbook is as easy as deleting the VBA project in the Excel container
and updating the .rels XML file. With the Excel object model, you must negotiate over various
objects, methods, and properties to make any change in the workbook.

❑ Working with multiple workbooks: When you need to make changes to dozens of files at one
time, you typically apply some automation to instantiate a new instance of Excel to make the
needed changes to that workbook. You then save that workbook and commence to open the

265

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 265

next one to apply the same changes. With the Open XML files, there is no need to call Excel at
all. You simply unpack the compressed container, edit the XML files, and repack. This not only
simplifies the updating of multiple workbooks, but it speeds up the process considerably.

In this section, you get a glimpse of these benefits by walking through some examples of how you can
use the techniques you have learned thus far to program Excel via its XML parts.

Programming Open XML Files with VBA
In this section, you will encounter three examples demonstrating how to automate the manipulation of
the Open XML files. But first, let’s take a look at how to unzip and zip your Excel containers via VBA.

Programmatically Unzipping an Excel Container
The unzip procedure is little more than a series of simple steps that duplicate the manual act of copying
files out of an Excel container and saving them into a destination folder.

First, load the name of your target Excel file to the TargetFile variable. The NewFileName is defined as
the TargetFile string concatenated with the .zip extension. Next, use these variables in a FileCopy
statement, essentially copying the target Excel file and saving it with a .zip file extension. This converts
the target Excel file to a temporary .zip file while keeping the target file intact. Then create a destination
folder and copy each of the XML parts located in the temporary .zip file into the destination folder. Once
all XML parts have been copied, delete the temporary .zip file:

Sub UnzipPackage()

Dim o As Object
Dim TargetFile, NewFileName, DestinationFolder, ofile

‘Define the source file path and the path for the new file
TargetFile = ThisWorkbook.Path & “\SalesByPeriod.xlsx”
NewFileName = TargetFile & “.zip”

‘Create the temp zip File
FileCopy TargetFile, NewFileName

‘Define a destination folder path and Make the destination folder
DestinationFolder = “C:\MyUnzipped”

On Error Resume Next
MkDir (DestinationFolder)

‘Copy each file to the destination folder
Set o = CreateObject(“Shell.Application”)

For Each ofile In o.Namespace(NewFileName).items

There are probably dozens of different methods and utilities that can be used to pro-
grammatically zip and unzip a compressed file. The procedures demonstrated here
leverage the built-in file compression functionality within Windows XP. If you do not
have Windows XP, you can use any one of dozens of compression software packages
that provide command line and shell utilities for managing zip files. To find one,
simply enter “Zip Command Line” in your favorite search engine.

266

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 266

o.Namespace(DestinationFolder).CopyHere (ofile)
Next ofile

‘Clean up
Kill NewFileName
Set o = Nothing

End Sub

Programmatically Zipping an Excel Container
In the ZipPackage procedure demonstrated here, you are creating an empty .zip file and then filling it
with the contents of a source directory. Notice that you are using the Sleep API function here. This lets
you pause Excel for a specified number of milliseconds. Pausing Excel allows each file to be completely
compressed and saved before moving on the next file. In this procedure, you are making Excel sleep for
500 milliseconds each time you copy a file to the .zip container:

Public Declare Sub Sleep Lib “kernel32” (ByVal dwMilliseconds As Long)

Sub ZipPackage()
Dim ZipFile, TargetFolder, NewFileName, ofile
Dim o As Object

‘Create Empty Zip Package
ZipFile = “C:\UpdatedFile.zip”
Open ZipFile For Output As #1
Print #1, Chr$(80) & Chr$(75) & Chr$(5) & Chr$(6) & String(18, 0)
Close #1

‘Indentify Folder with Source Files
TargetFolder = “C:\MyUnzipped”

‘Check for empty folder
If Len(Dir$(TargetFolder & “*.*”)) < 1 Then

MsgBox “There are no files in your target folder”
Kill ZipFile
Exit Sub

End If

‘Copy each file to the zip file
On Error Resume Next
Set o = CreateObject(“Shell.Application”)
For Each ofile In o.Namespace(TargetFolder).items

o.Namespace(ZipFile).CopyHere (ofile)
Sleep 500

Next ofile

‘Rename the container to change the file extension to xlsx
Name ZipFile As Replace$(ZipFile, “.zip”, “.xlsx”)

‘Clean up
Kill ZipFile
Set o = Nothing

End Sub

267

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 267

Edit the sharedStrings XML File to Implement Mass Updates to Text
As mentioned before, the sharedStringsXML part holds all of the strings used in the Excel file. These
strings are referenced via the shared index number by each sheet in the container to apply them to the
correct cell. One nifty trick is to change a string in the sharedStrings file and watch that change take
effect in your Excel file.

For example, in the SalesByPeriod.xlsx sample file, certain records are tagged with the market South
America. Suppose you wanted to change all instances of South America to Latin America. All you would
have to do is open the sharedStrings file, find South America, and change it to Latin America. After
repackaging the Excel file, you will see that every instance of South America has been changed to Latin
America. Although you could make this change manually, imagine doing this for dozens of files.

The good news is that you can automate this process using MSXML DOM and XPath. The procedure
shown here demonstrates how:

Sub Change_SharedString_File()
Dim oXmlDoc As DOMDocument
Dim oXmlNode As IXMLDOMNode

‘Run the Unzip procedure
Call UnzipPackage

‘Create an instance of the DOMDocument and load XML file
Set oXmlDoc = New DOMDocument
oXmlDoc.async = False
oXmlDoc.Load (“C:\MyUnzipped\xl\sharedstrings.xml”)

‘Pass Xpath to find the text that needs to be changed
Set oXmlNode = oXmlDoc.SelectSingleNode(“//t[text()=’South America’]”)

‘Make sure text exists
If oXmlNode Is Nothing Then

Exit Sub
End If

‘Change the text and save your changes
oXmlNode.Text = “Latin America”
oXmlDoc.Save “C:\MyUnzipped\xl\sharedstrings.xml”

‘Run the Zip procedure
Call ZipPackage

‘Ready message
MsgBox “Find your updated file here:” & vbCrLf & “C:\UpdatedFile.xlsx”
Set oXmlNode = Nothing
Set oXmlDoc = Nothing

End Sub

To understand what is going on here, evaluate this code in steps:

268

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 268

1. Run the UnzipPackage procedure you created previously.

2. Create an instance of the DOMDocument object and load the sharedstrings.xml file.

3. Use an XPath expression to find the t node that contains the text ‘South America’.

4. Check to make sure the text exists; if it doesn’t, exit the procedure.

5. Edit the text to “Latin America” and save the change back to the sharedstrings.xml file.

6. Repackage the Excel file using the ZipPackage procedure created previously.

7. Clean up and output a message.

After running the procedure, open the C:\UpdatedFile.xlsx file to see that all of the records that were
tagged as South America are now tagged Latin America.

Unprotect a Worksheet via Open XML Manipulation
It may seem rather amazing that all you have to do to unprotect a worksheet is delete the
sheetProtection element in that sheet’s XML part. That’s right; simply removing the sheetProtection
element from the XML part negates all protections placed on that sheet. The following procedure
demonstrates how to unprotect a worksheet by manipulating its XML part; here you will unprotect
Sheet1 in the SalesByPeriod.xlsx sample file:

Sub RemovePasswordProtection()
Dim oXmlDoc As DOMDocument
Dim oxmlNode As IXMLDOMNode

‘Run the Unzip procedure
Call UnzipPackage

‘Create an instance of the DOMDocument and load XML file
Set oXmlDoc = New DOMDocument
oXmlDoc.async = False
oXmlDoc.Load (“C:\MyUnzipped\xl\worksheets\sheet1.xml”)

‘Find and remove the sheetprotection element
Set oxmlNode = oXmlDoc.SelectSingleNode(“//sheetProtection”)
oxmlNode.parentnode.RemoveChild oxmlNode

‘Save Changes
oXmlDoc.Save “C:\MyUnzipped\xl\worksheets\sheet1.xml”

‘Run the Zip procedure
Call ZipPackage

‘Ready message and clean up
MsgBox “Find your updated file here:” & vbCrLf & “C:\UpdatedFile.xlsx”
Set oxmlNode = Nothing
Set oXmlDoc = Nothing

End Sub

269

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 269

In this procedure, you:

1. Run the UnzipPackage procedure created previously.

2. Create an instance of the DOMDocument object and load the sharedstrings.xml file.

3. Use an XPath expression to find the sheetProtection node and then remove the node.

4. Save the change back to the sheet’s XML file.

5. Repackage the Excel file using the ZipPackage procedure created previously.

6. Clean up and output a message.

Once your procedure has run its course, open the C:\UpdatedFile.xlsx file to see that Sheet1 is now
unprotected.

Updating Connection Strings
A particularly useful trick is to use the techniques in this chapter to change the connection strings to the
external data sources in your files. For example, the sample file SalesByPeriod.xlsx contains an exter-
nal data source that comes from the Facility Services Access database in the same directory. If you were
to move the database, the connection to the external data source would be severed. Suppose you had
dozens of files that were linked to a data source that moved or was renamed. You would have dozens of
files that would have severed links that would need to be fixed.

In this walkthrough, you update the connection strings in an Excel file by coding against the workbook’s
connections.xml file. To prepare for this walkthrough, create a new directory on your C:\ drive and
call it NewLocation. Next, move the Facility Services Access database found in the sample folder for this
chapter to your newly created directory.

Next, run the code you see here:

Sub Change_ConnectionString()
Dim oxmlDoc As DOMDocument
Dim oxmlNode As IXMLDOMNode
Dim StrOldLocation As String
Dim StrNewLocation As String

‘Define the old and new location paths
StrOldLocation = “C:\VBA Reference\SampleFiles\Facility Services.accdb”
StrNewLocation = “C:\StrNewLocation\Facility Services.accdb”

‘Run the Unzip procedure
Call UnzipPackage

‘Create an instance of the DOMDocument and load XML file
Set oxmlDoc = New DOMDocument
oxmlDoc.async = False
oxmlDoc.Load (“C:\MyUnzipped\xl\connections.xml”)

‘Pass Xpath to find the SourceFile attribute

270

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 270

Set oxmlNode = oxmlDoc.SelectSingleNode(“/connections/connection/@sourceFile”)

‘Replace the old string with new string and save changes
oxmlNode.Text = Replace$(oxmlNode.Text, StrOldLocation, StrNewLocation)
oxmlDoc.Save (“C:\MyUnzipped\xl\connections.xml”)

‘Pass Xpath to find the connection string attribute
Set oxmlNode =
oxmlDoc.SelectSingleNode(“/connections/connection/dbPr/@connection”)

‘Replace the old string with new string and save changes
oxmlNode.Text = Replace$(oxmlNode.Text, StrOldLocation, StrNewLocation)
oxmlDoc.Save (“C:\MyUnzipped\xl\connections.xml”)

‘Run the Zip procedure
Call ZipPackage

‘Ready message
MsgBox “Find your updated file here:” & vbCrLf & “C:\UpdatedFile.xlsx”
Set oxmlNode = Nothing
Set oxmlDoc = Nothing

End Sub

Here are the steps involved in this procedure:

1. Store the old and new location paths in strings for later use.

2. Run the UnzipPackage procedure.

3. Create an instance of the DOMDocument object and load the connections.xml file.

4. Use an XPath expression to locate and trap the sourcefile attribute for the connection element.

5. Use the Replace expression to find any part of the attribute’s text containing the old
location path and replace that path with the new location path. Then save the change to the
connections.xml file.

6. Use an XPath expression to locate and trap the connection attribute for the dbPR element.

7. Use the Replace expression to find any part of the attribute’s text containing the old
location path and replace that path with the new location path. Then save the change to the
connections.xml file.

8. Repackage the Excel file using the ZipPackage procedure created previously.

9. Clean up and output a message.

The at symbol (@) is the abbreviated syntax for attribute. Placing @ directly in front
of a location step in an XPath expression identifies that step as an attribute node.

271

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 271

After running the procedure, open the C:\UpdatedFile.xlsx file and refresh the employee table
located on Sheet2.

Summary
This chapter brought you closer to understanding XML and seeing the potential impact that XML, if
adopted, could have on your Excel processes and procedures. Can you continue to work with Excel
without using XML? Sure you can. But XML is not the paperless office. XML will not go away anytime
soon. It is fast becoming an industry standard that is used in an increasing number of environments.
The new Open XML file formats promote interoperability, exposing new opportunities for Excel pro-
grammers to integrate with and expand to platforms that were previously out of scope. Congratulations,
you have taken your first steps toward being able to develop the next generation of Excel solutions.

272

Chapter 12: Working with XML and the Open XML File Formats

15_046432 ch12.qxp 2/16/07 9:59 PM Page 272

UserForms
UserForms are essentially user-defined dialog boxes. You can use them to display information
and to allow the user to input new data or modify the displayed data. The MsgBox and InputBox
functions provide simple tools to display messages and get input data, respectively, but UserForms
take you to a new dimension. With these, you can implement nearly all the features that you are
accustomed to seeing in normal Windows dialog boxes.

You create a UserForm in the VBE window using Insert ➪ UserForm. You add controls from the
Toolbox in the same way that you add controls to a worksheet. If the Toolbox is not visible, use
View ➪ Toolbox.

UserForms can contain Labels, TextBoxes, ListBoxes, ComboBoxes, CommandButtons, and many
other ActiveX controls. You have complete control over the placement of controls and can use as
many controls as you need. Naturally, each control can respond to a wide variety of events.

Displaying a UserForm
To load a UserForm called UserForm1 into memory, without making it visible, you use the Load
statement:

Load UserForm1

You can remove UserForm1 from memory using the Unload statement:

Unload UserForm1

To make UserForm1 visible, use the Show method of the UserForm object:

UserForm1.Show

16_046432 ch13.qxp 2/16/07 9:59 PM Page 273

If you show a UserForm that has not been loaded, it will be automatically loaded. You can use the Hide
method to remove a UserForm from the screen without removing it from memory:

UserForm1.Hide

Figure 13-1 shows a simple UserForm in action that will be developed over the course of this chapter.
It has been designed to allow you to see the current values in cells B2:B6 and to make changes to those
values. It is linked directly to the cells in the worksheet, which makes it very easy to set up with a mini-
mum of VBA code.

Figure 13-1

The ActiveX command button in the worksheet, with the caption Show Dialog, contains the following
event procedure:

Private Sub cmdShowUserForm_Click()
frmPersonal.Show

End Sub

The UserForm is modal by default. This means that the UserForm retains the focus until it is unloaded
or hidden. The user cannot activate the worksheet or click Ribbon buttons until the UserForm is closed.

Modeless UserForms, which do allow the user to perform other tasks while they are visible, are discussed
later in this chapter.

274

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 274

Creating a UserForm
Figure 13-2 shows the UserForm in the VBE window.

Figure 13-2

The name of the UserForm was changed from the default name UserForm1 to frmPersonal. You do
this in the first entry, (Name), in the Properties window. The Caption property is changed to Personal
Data. The controls were added from the Toolbox.

There are two TextBox controls at the top of the form for name and age data. There are two option but-
tons (also known as radio buttons) for Male and Female, which are inside a frame control.

There is also a CheckBox for Married, a ListBox for Department, and a CommandButton for OK.

When you want to have a frame around other controls, you must insert the frame
first, and then insert the controls into the frame.

275

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 275

The name of the first TextBox was changed to txtName, and the ControlSource property of txtName
was entered as Sheet1!B2. The name of the second TextBox was changed to txtAge, and the
ControlSource property of txtAge was entered as Sheet1!B3. Similar changes were made to the
other main controls. The changes are summarized in the following table.

Control Name ControlSource

TextBox txtName Sheet1!B2

TextBox txtAge Sheet1!B3

OptionButton optMale Sheet1!C4

OptionButton optFemale Sheet1!D4

CheckBox chkMarried Sheet1!B5

ListBox 1stDepartment Sheet1!B6

CommandButton cmdOK

When you assign a ControlSource property to a worksheet cell, the cell and the control are linked in
both directions. Any change to the control affects the cell, and any change to the cell affects the control.

The descriptive titles on the form to the left of the TextBoxes and above the ListBox show that the
departments are Label controls. The Caption properties of the Label controls were changed to Name,
Age, and Department. The Caption property of the frame around the OptionButton controls was
changed to Sex, and the Caption properties of the option buttons were changed to Male and Female.
The Caption property of the CheckBox was changed to Married.

The Male and Female option buttons can’t be linked to B4. It is not appropriate to display the values of
these controls directly, so the following IF function in cell B4 converts the True or False value in cell C4
to the required Male or Female result:

=IF(C4=TRUE,”Male”,”Female”)

Although you only need to set cell C4 to get the required result, you need to link both option buttons to
separate cells if you want the buttons to display properly when the UserForm is shown.

The RowSource property of lstDepartment was entered as Sheet1!A11:A18. It is good practice to cre-
ate names for the linked cells and use those names in the ControlSource, rather than the cell references
used here, but this extra step has been omitted to simplify this example.

It is a good idea to give your UserForms and controls descriptive names that identify
what type of object they are and what their purpose is. The lowercase three-character
prefix identifies the object type. For example, you use frm for a UserForm, scb for a
scrollbar, and txt for a TextBox. The capitalized words that follow identify the con-
trol’s purpose. This makes it much easier to write and maintain the VBA code that
manipulates these objects.

276

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 276

The following Click event procedure was created for the button in the code module behind the
UserForm:

Private Sub cmdOK_Click()
Unload Me

End Sub

Me is a shortcut keyword that refers to the UserForm object containing the code. Me can be used in any
class module to refer to the object the class module represents. If you want to access the control values
later in your VBA code, you must use the Hide method, which leaves the UserForm in memory.
Otherwise, the Unload statement removes the UserForm from memory and the control values are lost.
You will see examples that use Hide shortly.

Clicking the x in the top-right corner of the UserForm will also dismiss the UserForm. This unloads the
UserForm so that it is removed from memory. You will see how to prevent this later.

Directly Accessing Controls in UserForms
Linking UserForm controls to cells is not always the best way to work. You can gain more flexibility by
directly accessing the data in the UserForm. Figure 13-3 shows a revised version of the previous exam-
ple. You want to display essentially the same UserForm, but you want to store the resulting data as
shown. Sex will be stored as a single-letter code, M or F. The Department name will be stored as a two-
character code.

Figure 13-3

277

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 277

A Cancel button has been added to the UserForm so that any changes made to the controls while the
UserForm is being shown can be discarded if the user wishes, rather than being automatically applied
to the worksheet. The module behind frmPersonal now contains the following code:

Option Explicit
Public Cancelled As Boolean

Private Sub cmdCancel_Click()
Cancelled = True
Me.Hide

End Sub

Private Sub cmdOK_Click()
Cancelled = False
Me.Hide

End Sub

The Public variable Cancelled will provide a way to detect that the Cancel button has been clicked.
If the OK button is clicked, Cancelled is assigned the value False. If the Cancel button is clicked,
Cancelled is assigned a value of True. Both buttons hide frmPersonal so it remains in memory.
The following event procedure has also been added to the module behind frmPersonal:

Private Sub UserForm_Initialize()
Dim vDepartment As Variant
Dim vDeptCode As Variant
Dim saDeptList() As String
Dim i As Integer

‘Department name array
vDepartment = VBA.Array(“Administration”, _

“Computer Resources”, _
“Distribution”, _
“Human Resources”, _
“Manufacturing”, _
“Marketing”, _
“R&D”, _
“Sales”)

‘Department code array
vDeptCode = VBA.Array(“AD”, _

“CR”, _
“DS”, _
“HR”, _
“MF”, _
“MK”, _
“RD”, _
“SL”)

‘Assign array values to string array
ReDim saDeptList(0 To UBound(vDepartment), 0 To 1)

For i = 0 To UBound(vDepartment)
saDeptList(i, 0) = vDeptCode(i)
saDeptList(i, 1) = vDepartment(i)

278

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 278

Next i

‘Assign string array to list box
lstDepartment.List = saDeptList

End Sub

The UserForm_Initialize event is triggered when the UserForm is loaded into memory. It does not
occur when the form has been hidden and is shown again. It is used here to load lstDepartment with
two columns of data. The first column contains the department codes, and the second contains the
department names to be displayed.

vDepartment and vDeptCode are assigned arrays in the usual way using the Array function, except
that VBA.Array has been used to ensure that the arrays are zero-based. saDeptList is a dynamic array,
and ReDim is used to dimension it to the same number of rows as in vDepartment and two columns,
once again zero-based.

The For...Next loop assigns the department codes and names to the two columns of saDeptList.
saDeptList is then assigned directly to the List property of lstDepartment. If you prefer, you can
maintain a table of departments and codes in a worksheet range and set the ListBox control’s
RowSource property equal to the range you saw in the first example in this chapter.

When you have a multi-column ListBox, you need to specify which column contains the data that will
appear in a link cell and be returned in the control’s Value property. This column is referred to as the
bound column. The BoundColumn property of lstDepartment has been set to 1. This property is
one-based, so the bound column is the department code. The ColumnCount property has been set to 2,
because there are two columns of data in the list.

However, you only want to see the department names in the ListBox, so you want to hide the first col-
umn. You can do that by setting the column width of the first column to 0. To do this, you only need to
enter a single 0 in the ColumnWidths property, rather than, for example, 0;40. Entering a single 0 sets the
first column to a width of 0 and leaves the second column to fill the ListBox width.

The following code has been placed in the module behind Sheet1:

Private Sub cmdShowUserForm_Click()
Dim rngData As Range
Dim vData As Variant

‘First block of code

‘Get current data values
Set rngData = Range(“Database”).Rows(2)
vData = rngData.Value

With frmPersonal
‘Load data into controls
.txtName.Value = vData(1, 1)
.txtAge.Value = vData(1, 2)
Select Case vData(1, 3)
Case “F”

.optFemale.Value = True

279

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 279

Case “M”
.optMale.Value = True

End Select
.chkMarried.Value = vData(1, 4)
.lstDepartment.Value = vData(1, 5)

‘Second block of code

‘Display UserForm
.Show

‘Third block of code

‘Continue if Cancel not clicked
If Not .Cancelled Then

‘Assemble data in vData
vData(1, 1) = .txtName
vData(1, 2) = .txtAge
Select Case True
Case .optFemale.Value

vData(1, 3) = “F”
Case .optMale.Value

vData(1, 3) = “M”
End Select
vData(1, 4) = .chkMarried.Value
vData(1, 5) = .lstDepartment.Value

‘Transfer data to worksheet
rngData.Value = vData

End If

End With

Unload frmPersonal

End Sub

The code is in three blocks after the initial declaration statements. The first block loads the data from the
worksheet into frmPersonal. The second block (only two lines) displays frmPersonal, then checks to
see if the Cancel button is clicked. The third block copies the data in frmPersonal back to the worksheet.

At the start of the first block, rngData is assigned a reference to cells A2:E2. The range A1:E2 has been
given the name Database, so Range(“Database”).Rows(2) refers to the required data range. The values
in rngData are then assigned directly to the variant vData. This creates a two-dimensional, one-based
array of values having one row and five columns. It is much more efficient to access the worksheet data
in this way, rather than to access each cell individually.

Most of the remaining code is within the With... End With structure, which makes it possible to
use shorter and more efficient references to the controls, properties, and methods associated with
frmPersonal. The first reference to frmPersonal also causes frmPersonal to be loaded into memory,
although it remains hidden at this point.

280

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 280

The Value properties of the controls on frmPersonal are then assigned the values in vData. The option
buttons are an exception, because the M and F code values need to be translated to True values as appro-
priate. It is only necessary to set one of the option buttons to True, because the other will automatically
be set to False. You can group option buttons by assigning them the same value in their GroupName
property, or by placing them in the same frame. The option buttons here do not have a value in their
GroupName property. They are considered to be in the same group because they are in the same frame.

The Show method displays frmPersonal. Control then passes to frmPersonal until it is hidden, which
occurs when the user clicks OK or Cancel, or the x at the top of the UserForm. The user can also press
Esc to activate the Cancel button because it has had its Cancel property set to True. The user can also
press Enter to activate the OK button, as long as the Cancel button does not have the focus, because the
OK button’s Default property has been set to True.

When frmPersonal is hidden, the cmdShowUserForm_Click event procedure regains control, and
checks to see if the Cancel button was clicked. It does this by examining the value of the Public variable
Cancelled on frmPersonal.

If Cancelled is False, the procedure loads the values of the controls back into vData, translating the
option button settings back into an F or M value, and the values in vData are directly assigned back to
the worksheet. The final step is to unload frmPersonal from memory.

Stopping the Close Button
One problem with the previous code is that, if the user clicks the x, which is the Close button at the top
of frmPersonal, the event procedure does not exit. Instead, it transfers any changes back to the work-
sheet. This is because the default value for Cancelled is False. Normally, clicking the x would also
unload the form and the code would fail when it tries to access the controls on the form. However, in
this case the With...End With structure keeps frmPersonal in scope, and frmPersonal is not
unloaded until after the End With statement.

There are a number of simple ways in which the preceding problem could be corrected, but the follow-
ing method gives you total control over that little x. You can use the QueryClose event of the UserForm
object to discover what is closing the UserForm and cancel the event if necessary. Adding the following
code to the frmPersonal module blocks the Close button exit:

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then

MsgBox “Please use only the OK or Cancel buttons”, vbCritical
Cancel = True

End If
End Sub

The code modules behind UserForms (as well as those behind sheets and workbooks)
are class modules. When you define a Public variable in a class module, the variable
behaves as a property of the object associated with the class module. See Chapter 16
for more details.

281

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 281

The QueryClose event can be triggered in four ways. You can determine what caused the event by
using the following intrinsic constants to test the CloseMode parameter.

Constant Value Reason for the Event

vbFormControlMenu 0 The user clicked the x in the Control menu on the UserForm.

vbFormCode 1 The Unload statement was used to remove the UserForm from
memory.

vbAppWindows 2 Windows is shutting down.

vbAppTaskManager 3 The application is being closed by the Windows Task Manager.

Maintaining a Data List
The code you have developed can now be extended to maintain a data list without too much extra
effort. However, the last example takes a different approach. This time you will build all the code into
frmPersonal, apart from the code behind the command button in the worksheet that shows the
UserForm. The code behind this button now becomes the following:

Private Sub cmdShowUserForm_Click()
frmPersonal.Show

End Sub

It is really much easier to maintain a data list in a proper database application, such as Microsoft
Access, but it can be done in Excel without too much trouble if your requirements are fairly simple.

If you are going to manage more than one row of data, you need to be able to add new rows, delete
existing rows, and navigate through the rows. frmPersonal needs some extra controls, as shown in
Figure 13-4.

Figure 13-4

282

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 282

The scrollbar is a handy way to navigate through many records quickly. It also makes it easy to get to the
last or first record. It can also be used to go to the next or previous record. For variety, buttons to go to
the next and previous records are included as well. The New Record button adds a record to the end of
the data list and initializes some of the values in the new record. The Delete button deletes the record
that is currently showing in frmPersonal.

The code in frmPersonal is discussed next. It is important to note first that the following module-level
variables have been declared in the (declarations) section at the top of the frmPersonal code module:

Dim mrngData As Range
Dim mvData As Variant

These variables are used in exactly the same way as they were used in the previous example, except that
the row referred to can vary. The object variable mrngData is always set to the current row of data in the
named range Database, which currently refers to A1:E18 in the worksheet shown in Figure 13-4.
mvData always holds the values from mrngData as a VBA array.

The code from the command button event procedure in the previous example has been converted to two
utility procedures that reside in frmPersonal’s code module:

Private Sub LoadRecord()
‘Copy values in mrngData from worksheet to mvData array
mvData = mrngData.Value

‘Assign array values to frmPersonal controls
txtName.Value = mvData(1, 1)
txtAge.Value = mvData(1, 2)

Select Case mvData(1, 3)
Case “F”

optFemale.Value = True
Case “M”

optMale.Value = True
End Select

chkMarried.Value = mvData(1, 4)
lstDepartment.Value = mvData(1, 5)

End Sub

Private Sub SaveRecord()
‘Copy values from frmPersonal controls to Data array
mvData(1, 1) = txtName.Value
mvData(1, 2) = txtAge.Value

Select Case True
Case optFemale.Value

mvData(1, 3) = “F”
Case optMale.Value

mvData(1, 3) = “M”

283

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 283

End Select

mvData(1, 4) = chkMarried.Value
mvData(1, 5) = lstDepartment.Value

‘Assign Data array values to current record in Database
mrngData.Value = mvData

End Sub

Because the code is in the frmPersonal module, there is no need to refer to frmPersonal when refer-
ring to a control, so all controls are directly addressed in the code.

LoadRecord and SaveRecord are the only procedures tailored to the data list structure and the controls.
As long as the data list has the name Database, none of the other code in frmPersonal needs to change
if you decide to add more fields to the data list or remove fields. It also means that you can readily apply
the same code to a completely different data list. All you have to do is redesign the UserForm controls
and update LoadRecord and SaveRecord.

The key navigation device in frmPersonal is the scrollbar, which has been named scbNavigator. It is
used by the other buttons when a change of record is required, as well as being available to the user
directly. The Value property of scbNavigator corresponds to the row number in the range named
Database.

The minimum value of scbNavigator is fixed permanently at 2, because the first record is the second
row in Database, so you need to set the Min property of the scrollbar in the Properties window. The max-
imum value is altered as needed by the other event procedures in frmPersonal so it always corresponds
to the last row in Database:

Private Sub scbNavigator_Change()

‘When Scrollbar value changes, save current record and load
‘record number corresponding to scrollbar value
Call SaveRecord

Set mrngData = Range(“Database”).Rows(scbNavigator.Value)

Call LoadRecord

End Sub

When the user changes the scbNavigator.Value property (or when it is changed by other event proce-
dures), the Change event fires and saves the current record in frmPersonal, redefines mrngData to be
the row in Database corresponding to the new value of scbNavigator.Value, and loads the data from
that row into frmPersonal.

The UserForm_Initialize event procedure has been updated from the previous exercise to set the
correct starting values for scbNavigator:

284

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 284

Private Sub UserForm_Initialize()
Dim vDepartment As Variant
Dim vDeptCode As Variant
Dim saDeptList() As String
Dim i As Integer

vDepartment = VBA.Array(“Administration”, _
“Computer Resources”, _
“Distribution”, _
“Human Resources”, _
“Manufacturing”, _
“Marketing”, _
“R&D”, _
“Sales”, _
“None”)

vDeptCode = VBA.Array(“AD”, _
“CR”, _
“DS”, _
“HR”, _
“MF”, _
“MK”, _
“RD”, _
“SL”, _
“NA”)

ReDim saDeptList(0 To UBound(vDepartment), 0 To 1)

For i = 0 To UBound(vDepartment)
saDeptList(i, 0) = vDeptCode(i)
saDeptList(i, 1) = vDepartment(i)

Next i

lstDepartment.List = saDeptList

‘Load 1st record in Database and initialize scrollbar
With Range(“Database”)

Set mrngData = .Rows(2)
Call LoadRecord
scbNavigator.Value = 2
scbNavigator.Max = .Rows.Count

End With

End Sub

After initializing the lstDepartment.List property, the code initializes mrngData to refer to the sec-
ond row of Database, row two being the first row of data under the field names on row one, and loads
the data from that row into frmPersonal. It then initializes the Value property of scbNavigator to 2
and sets the Max property of scbNavigator to the number of rows in Database. If the user changes the
scrollbar, he can navigate to any row from row two through the last row in Database.

285

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 285

The buttons captioned Next Record and Previous Record have been named cmdNext and cmdPrevious.
The Click event procedure for cmdNext is as follows:

Private Sub cmdNext_Click()

With Range(“Database”)
If mrngData.Row < .Rows(.Rows.Count).Row Then

‘Load next record only if not on last record
scbNavigator.Value = scbNavigator.Value + 1
‘Note: Setting sbNavigator.Value runs its Change event procedure

End If
End With

End Sub

The If test checks that the current row number in Database is less than the last row number in Database,
to ensure that you don’t try to go beyond the data. If there is room to move, the value of scbNavigator
is increased by one. This change triggers the Change event procedure for scbNavigator, which saves
the current data, resets mrngData, and loads the next row’s data.

The code for cmdPrevious is similar to cmdNext, except that there is no need for the With...End With
because you don’t need to keep repeating the reference to Range(“Database”):

Private Sub cmdPrevious_Click()

If mrngData.Row > Range(“Database”).Rows(2).Row Then
‘Load previous record if not on first record
scbNavigator.Value = scbNavigator.Value - 1
‘Note: Setting scbNavigator.Value runs its Change event procedure

End If

End Sub

The check ensures that you don’t try to move to row numbers lower than the second row in Database.
This, and the cmdNext check, could have also been carried out using the Value, Max, and Min properties
of scbNavigator, but the method used in cmdNext_Click shows you how to determine the row num-
ber of the last row in a named range, which is a technique that it is very useful to know. It is important to
carry out these checks, because trying to set the scbNavigator.Value property outside the Min to Max
range causes a run-time error.

The code for cmdDelete is as follows:

Private Sub cmdDelete_Click()
‘Deletes current record in frmPersonal

If Range(“Database”).Rows.Count = 2 Then
‘Don’t delete if only one record left
MsgBox “You cannot delete every record”, vbCritical
Exit Sub

ElseIf mrngData.Row = Range(“Database”).Rows(2).Row Then
‘If on 1st record, move down one record and delete 1st record
Set mrngData = mrngData.Offset(1)
mrngData.Offset(-1).Delete shift:=xlUp

286

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 286

Call LoadRecord
Else

‘If on other than 1st record, move to previous record before delete
scbNavigator.Value = scbNavigator.Value - 1
‘Note: Setting scbNavigator.Value runs its Change event procedure
mrngData.Offset(1).Delete shift:=xlUp

End If

scbNavigator.Max = scbNavigator.Max - 1

End Sub

This procedure carries out the following actions:

1. It aborts if you try to delete the last remaining record in Database.

2. If you delete the first record, mrngData is assigned a reference to the second record.
ScbNavigator.Value is not reset, because row 2 becomes row 1, once the original
row 1 is deleted. LoadRecord is called to load the data in mrngData into the UserForm.

3. If you delete a record that is not the first one, scbNavigator.Value is reduced by 1.
This causes the previous record to be loaded into the UserForm.

4. At the end, the count of the number of rows in Database, held in scbNavigator.Max, is
decreased by 1.

The code for cmdNew is as follows:

Private Sub cmdNew_Click()
‘Add new record at bottom of database

Dim iRowCount As Integer

With Range(“Database”)
‘Add extra row to name Database
iRowCount = .Rows.Count + 1
.Resize(iRowCount).Name = “Database”
scbNavigator.Max = iRowCount
scbNavigator.Value = iRowCount
‘Note: Setting scbNavigator.Value runs its Change event procedure

End With

‘Set default values
optMale.Value = True
chkMarried = False
lstDepartment.Value = “NA”

End Sub

This event procedure defines iRowCount to be one higher than the current number of rows in Database.
It then generates a reference to a range with one more row than Database and redefines the name
Database to refer to the larger range. It then assigns iRowCount to both the Max property of
scbNavigator and the Value property of scbNavigator. Setting the Value property fires the Change
event procedure for scbNavigator, which makes the new empty row the current row and loads the
empty values into frmPersonal. Default values are then applied to some of the frmPersonal controls.

287

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 287

The only remaining code in frmPersonal is for the cmdOK_Click and cmdCancel_Click events, as
follows:

Private Sub cmdOK_Click()
‘Save Current Record and unload frmPersonal

Call SaveRecord
Unload Me

End Sub

Private Sub cmdCancel_Click()
‘Unload frmPersonal without saving current record

Unload Me

End Sub

Both buttons unload frmPersonal. Only the OK button saves any changes to the current record in the
UserForm.

Modeless UserForms
The modal UserForms you have dealt with so far do not allow the user to change the focus away from
the UserForm while it is being displayed. You cannot activate a worksheet, menu, or toolbar, for exam-
ple, until the UserForm has been hidden or unloaded from memory. If you have a procedure that uses
the Show method to display a modal UserForm, that procedure cannot execute the code that follows the
Show method until the UserForm is hidden or unloaded.

A modeless UserForm does allow the user to activate worksheets, menus, and toolbars. It floats in the
foreground until it is hidden or unloaded. The procedure that uses the Show method to display a
modeless UserForm will immediately continue to execute the code that follows the Show method.
frmPersonal, from the previous example that maintains a data list, can easily be displayed modeless.
All you need to do is change the code that displays it, as follows:

Private Sub CommandButton1_Click()

frmPersonal.Show vbModeless

End Sub

When the UserForm is modeless, you can carry on with other work while it is visible. You can even copy
and paste data from TextBoxes on the UserForm to worksheet cells.

Progress Indicator
One feature that has been lacking in Excel is a good progress indicator that lets you show how much
work has been done, and remains to be done, while a lengthy task is carried out in the background.
You can display a message on the status bar using Application.StatusBar, as discussed in Chapter 2,
but this message is not very obvious.

288

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 288

You can set up a good progress indicator very easily using a modeless UserForm. Figure 13-5 shows a
simple progress bar indicator that moves from left to right to give a graphic indication of progress.

Figure 13-5

The progress indicator is a normal UserForm with two Label controls, one on top of the other, which
have been given contrasting background colors. The Caption properties of both labels are blank.

This UserForm has been given the name frmProgress. The longer label is named lblFixed, because it
extends over almost all the width of the UserForm and never changes. The shorter label, which is on top of
the fixed label, is named lblIndicate. Initially, it is given a width of 0, and its width is gradually increased
until it equals the width of the fixed label. The UserForm module contains the following procedure:

Public Sub Progress(dPerCent As Double)

‘Change width of indicator label
lblIndicate.Width = dPerCent * lblFixed.Width

‘Allow Operating system to update screen
DoEvents

End Sub

When you execute Progress, you pass a number between 0 and 1 as the input argument dPerCent.
Progress sets the width of lblIndicate to dPerCent times the width of lblFixed. The DoEvents
statement instructs the operating system to update the UserForm.

The operating system gives priority to the running macro and holds back on updating the modeless
UserForm. DoEvents tells the operating system to stop the macro and complete any pending events.
This technique often corrects problems with screen updating, or where background tasks need to be com-
pleted before a macro can continue processing. In this case you can alternatively use Refresh.

The progress indicator can be used with a procedure like the following, which counts how many cells
contain errors within a range:

Sub TakesAWhile()
Dim rng As Range
Dim lErrorCount As Long

For Each rng In Range(Cells(1, 1), Cells(4000, 250))
If IsError(rng.Value) Then lErrorCount = lErrorCount + 1

Next rng

MsgBox “Error count = “ & lErrorCount

End Sub

289

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 289

To incorporate the progress indicator, you can add the following code to the procedure:

Sub TakesAWhile()
‘Routine to demonstrate progress indicator

Dim rng As Range
Dim lErrorCount As Long
Dim lCount As Long
Dim lRows As Long
Dim lColumns As Long
Dim lTotalIterations As Long
Dim lInterval As Long

‘Adjust these numbers to adjust duration of demonstration
lRows = 4000
lColumns = 250

‘Show the progress indicator UserForm
frmProgress.Show vbModeless

‘Calculate interval needed for 100 progress updates
lTotalIterations = lRows * lColumns
lInterval = lTotalIterations / 100

For Each rng In Range(Cells(1, 1), Cells(lRows, lColumns))
If IsError(rng.Value) Then lErrorCount = lErrorCount + 1

‘Each lInterval, update the indicator
If lCount Mod lInterval = 0 Then

frmProgress.Progress lCount / lTotalIterations

End If

lCount = lCount + 1

Next rng

Unload frmProgress
MsgBox “Error count = “ & lErrorCount

End Sub

The changes include showing frmProgress as a modeless UserForm at the start. lTotalIterations is
the number of times the loop will be repeated. lInterval is the number of iterations between each
update of the indicator. Here it is calculated so as to give 100 updates. Within the For Each...Next
loop, the variable lCount is used to count the loops. lCount Mod lInterval has a value of 0 when
lCount is 0 and every multiple of lInterval loops, so frmProgress is updated 100 times, with the
Progress input parameter varying from 0 to .99 in steps of .01.

When a class module (such as the module behind a UserForm) contains a public procedure, you can exe-
cute the procedure as a method of the object represented by the class module.

290

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 290

The time taken by the macro will vary according to your processor. For demonstration purposes, you
can alter the time taken by the procedure by changing the values of lRows and lColumns.

Variable UserForm Name
All the examples of UserForms have referred to the UserForm by its programmatic name (such as
frmProgress). There can be situations where you need to run a number of different forms with the
same code, or you don’t know the programmatic name of the UserForm before the code is executed.
In these cases, you need to be able to assign the UserForm name to a variable and use the variable as an
argument. The following code allows you to do this:

FormName = “frmPersonal”
VBA.UserForms.Add(FormName).Show

Summary
This chapter introduced the topic of UserForms. You have seen how to:

❑ Directly link controls on a form to a worksheet

❑ Use VBA code to access UserForm controls and copy data between the form and a worksheet

❑ Prevent closure of a UserForm by modifying the code executed when the x button is clicked

❑ Set up a form to maintain a data list and the difference between modal and modeless UserForms

❑ Construct a progress indicator using a modeless UserForm

291

Chapter 13: UserForms

16_046432 ch13.qxp 2/16/07 9:59 PM Page 291

16_046432 ch13.qxp 2/16/07 9:59 PM Page 292

RibbonX
One of the biggest changes in Office 2007 is, of course, the Ribbon. Early in the design of the
Ribbon, Microsoft realized that there had to be a way for it to be customized by developers and
(to a certain extent) end users. That realization led to RibbonX, the Ribbon’s programmability
mechanism. This chapter provides an introduction to RibbonX and explains how you can cus-
tomize the Ribbon, both for yourself and within your applications.

Overview
In previous versions of Office, you created menus and toolbars by using VBA to manipulate the
objects that make up the CommandBars object model (see Chapter 15). The code to do that for a
non-trivial application often extended to hundreds and sometimes thousands of lines of VBA that
proved hard to maintain when menus were added, removed, or rearranged. For some time, best
practice has been to use a table-driven approach to building menus, in which the menus and
toolbars were defined by filling in a table on a worksheet and a dedicated (and reusable) VBA
procedure interpreted the table to create the menus and toolbars. Even when using a table-driven
approach, you still needed quite a bit of custom VBA to ensure that specific menus were visible
only when their workbook was active, and had to be extremely careful about removing customiza-
tions when the workbook was closed.

When designing the programmability model for the Ribbon, Microsoft started with the current
best practices, identified the remaining pain points, and removed them. It took the resultant archi-
tecture on a world tour of key clients and other interested parties, listened to all their issues, and
modified the RibbonX design to resolve most of the issues that were encountered. The result is an
entirely new paradigm for the Excel developer, in which:

❑ The customizations are defined at design-time, rather than coded individually. Instead of
using a table in a worksheet (which would only be available in Excel), they’re defined
using XML and stored as a custom part in the XML file formats (for all the Office applica-
tions that have the Ribbon).

17_046432 ch14.qxp 2/16/07 9:59 PM Page 293

❑ When the workbook is opened, Excel automatically reads the XML part and applies the cus-
tomizations to the Ribbon.

❑ If a standard workbook is used, its Ribbon customizations are only applied and visible when
that workbook is active.

❑ If an add-in workbook is used, its Ribbon customizations are always applied and available.

❑ Whenever a workbook is closed, its Ribbon customizations are automatically removed.

❑ Even though the customizations are defined at design-time, most of the controls’ attributes can
be modified at run time, using VBA (such as enabled, visible, label, and so on).

❑ A few of the controls can be totally dynamic — so their structure as well as their attributes can
be defined at run time, using VBA.

❑ All the built-in controls are available for our use and can be overridden, executed, and queried
for their images, caption, and so forth.

Prerequisites
If you intend to spend more than ten minutes investigating RibbonX, there are a few key downloads
you’ll need and web sites you’ll need to know:

❑ The official RibbonX site is at http://msdn.microsoft.com/office/tool/ribbon.

❑ The Office 2007 Custom UI Editor is available from http://openxmldeveloper.org/
articles/CustomUIeditor.aspx.

❑ There are two invaluable files available on the MSDN web site. The first contains a list of the
names of all Excel’s built-in tabs, groups, and controls; the second is an Excel add-in that adds a
gallery of all the available built-in images that can be used for your custom controls.

❑ If you want to get into the guts of RibbonX, the customui.xsd schema is also available on
MSDN. This is the official schema used to validate your customizations, and it details exactly
which controls have which attributes and contents.

❑ To be informed of any errors in your RibbonX XML, check the box at Office Menu ➪ Excel
Options ➪ Advanced ➪ Show add-in user interface errors.

Adding the Customizations
Adding RibbonX customizations to a workbook requires just two steps:

1. Create the XML to define the required customization.

2. Insert the XML into the workbook’s file (which must be using one of the XML file formats).

294

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 294

The first step is the subject of the remainder of this chapter. You can add the XML part to the workbook
by hand or programmatically, using the techniques shown in Chapter 12. The following changes need to
be made:

❑ Add the XML file to the workbook’s zipped structure. By convention, it has the name
/customUI/customUI.xml, though any other name can be used. It’s a good idea to put the
XML part into its own folder, because you may need to store button images in there as well.

❑ Edit the root rels file to include a reference to the new XML part, such as:

❑ <Relationship Type=”http://schemas.microsoft.com/office/2006/

relationships/ui/extensibility” Target=”/customUI/customUI.xml”

Id=”rID5” />

❑ The important thing to get right is the relationship Type attribute, because that is what
Excel looks for to see if the relationship is for a RibbonX customization. Note that
because this is XML, it is case-sensitive, so it’s critical to get the correct capitalization.

These changes are easily made by hand using the Office 2007 Custom UI Editor utility, available to
download from http://openxmldeveloper.org/articles/CustomUIeditor.aspx.

XML Structure
One of the main criticisms of the Ribbon is that all the controls are grouped according to related func-
tionality, so the text formatting controls are in the Font group on the Home tab, and the formula auditing
tools are all in the Formula Auditing group on the Formulas tab. Yes, it’s logical when viewed from a
functional perspective, but totally illogical if you view the Ribbon from a process perspective. For exam-
ple, it’s quite common for an Excel user to be asked to look at a workbook created by someone else.
When faced with such a challenge, most people work their way through the file, tracing formula
precedents and dependents, checking defined names, applying different formatting to the cells they
identify, adding comments, and regularly switching between the original and a working copy of the file.
Unfortunately, every one of those actions is found on a different tab of the Ribbon.

In previous versions of Excel, you could bring all these actions together by creating a custom toolbar and
adding the required buttons to it; when you finished auditing the workbook, you’d close the toolbar and
forget about it until you were next asked to look at someone else’s file.

In Office 2007, the concept of custom toolbars has been dropped. Instead, you can define some RibbonX
XML to create a custom tab containing all the built-in groups and/or controls you need for your audit-
ing, then add that XML to an otherwise empty add-in workbook. Now when you’re asked to audit a
workbook, you can load the Auditing add-in and have all the controls you need conveniently located on
one tab; when you’re finished, you can unload the add-in to remove the custom tab. No VBA required.

Start by creating a new workbook. Click Office Menu ➪ Prepare ➪ Properties to give it a Title and
Comment (shown in the Add-ins dialog) and save it as Auditing.xlam (using the Excel Add-in .xlam
file type in the Save As dialog).

295

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 295

Now start the Office 2007 Custom UI Editor, use it to open the Auditing.xlam file, enter the following
XML, and click Save to add the XML to the file. Note that everything in the XML file is case-sensitive, so
be careful to get the capitalization correct:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>
<tabs>
<tab id=”rxAuditing” label=”Auditing” >
<group id=”rxAuditMisc” label=”Miscellaneous” >
<control idMso=”Copy” />
<control idMso=”PasteMenu” />
<separator id=”rxAuditMiscSeparator1”/>
<control idMso=”NameManager” />
<control idMso=”ViewFreezePanesGallery” />
<control idMso=”WindowSwitchWindowsMenuExcel” />

</group>
<group idMso=”GroupFormulaAuditing” />
<group idMso=”GroupFont” />
<group idMso=”GroupNumber” />

</tab>
</tabs>

</ribbon>
</customUI>

Back in Excel, navigate to the Add-ins dialog (Office Menu ➪ Excel Options ➪ Add-Ins ➪ Manage: Excel
Add-Ins ➪ Go) and load the Auditing.xlam add-in. When you OK out of the dialog, you should see an
extra Auditing tab on the Ribbon containing the groups and controls defined in the XML, as depicted in
Figure 14-1.

Figure 14-1

The following paragraphs work through each line of the XML definition and relate it to the resultant
changes to the Ribbon.

The <customUI ... > element is the root container for the XML, and the namespace identifies it as a
RibbonX document.

The <ribbon> element is a container for all changes related to the visible Ribbon. The <customUI>
element could also contain a <commands> element that you could use to repurpose built-in controls
(see later in this chapter).

296

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 296

The <tabs> element is a container for all changes related to existing or new tabs on the Ribbon.
The <ribbon> element could also contain <officeMenu>, <qat>, and/or <contextualTabs>
elements to control the corresponding parts of the Ribbon. Note that you don’t have <miniToolbar> or
<statusBar> elements, and indeed, those are off limits to RibbonX.

The <tab id=”rxAuditing” label=”Auditing”> element is where customizations really begin, by
creating the custom tab. Every item you include in your customizations has to have at least an ID. There
are three types of ID attributes: id, idMso, and idQ, specifying a custom item, a built-in item, or an item
shared across multiple files, respectively. In this case, you’re creating a custom tab, so you use the id
attribute and give it a unique name. It’s a good idea to use a standard prefix for all your custom items, to
easily distinguish between them and the built-in names. I tend to use rx to indicate it’s a RibbonX item,
which also helps to further distinguish it from other types of controls when you refer to it in VBA.

The <group id=”rxAuditMisc” label=”Miscellaneous”> element creates the first of the groups and
opens the definition of its contents. Groups are displayed on the tab in the same order they’re defined in
the RibbonX file, and they display controls below each other for three rows, then across — again, in the
order they’re defined.

The <control idMso=”Copy”/> element adds the built-in Copy button to the custom group. The generic
control element type can be used for all built-in controls regardless of their actual type, and the idMso
ID type provides the actual control name. As mentioned earlier, the names of all Excel’s controls are
listed in the ExcelRibbonControls.xls file available from MSDN.

The <control idMso=”PasteMenu”/> element adds the standard Paste split button/drop-down.

The <separator id=”rxAuditMiscSeparator1”/> element adds a vertical separator to the group,
and starts a second column of controls. Note that even though it’s a “do nothing” visual element, it still
has to have a unique custom ID.

The next three elements add the built-in Name Manager, Freeze Panes, and Switch Windows controls to
the custom group.

The </group> line completes the definition of the first group.

The <group idMso=”GroupFormulaAuditing”/> element adds the entire built-in Formula Auditing
group to the custom tab, again using the idMso and the correct name to identify it as built-in.

The <group idMso=”GroupFont”/> and <group idMso=”GroupNumber”/> elements add the built-in
Font and Number Format groups.

The </tab> line completes the definition of your custom tab, and the remaining lines close out the con-
tainers for the tabs, ribbon, and customUI elements.

Using this technique, you can create multiple add-ins that only contain RibbonX definitions, each one
creating custom tabs that bring together different sets of built-in controls, appropriate for different high-
level tasks. If you do so, you’ll probably want to add the Add-ins dialog to your QAT — it’s listed as
Add-Ins in the All commands section of the QAT Customization dialog.

297

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 297

Although it’s easy to add entire built-in groups to your tabs, you’ll usually get better results by creating
custom groups and adding specific controls to them. There are a number of different container controls
you can include, to provide layout control or to create custom drop-down menus of built-in controls,
and a number of display attributes you can set to control their appearance. For example, you could
include a custom <box> element and use the showLabel attribute to show the standard Sort buttons
as a horizontal set of icons above the Copy menu you have already:

<group id=”rxAuditMisc” label=”Miscellaneous” >
<box id=”rxSortBox”>
<control idMso=”SortAscendingExcel” showLabel=”false”/>
<control idMso=”SortDescendingExcel” showLabel=”false”/>
<control idMso=”SortDialog” showLabel=”false”/>

</box>
<control idMso=”Copy” />

A full list of the available control types and their attributes is included later in the chapter.

Including the <box> element results in the group shown in Figure 14-2.

Figure 14-2

RibbonX and VBA
As well as having the ability to create custom tabs and groups containing built-in controls, Microsoft has
provided the ability to add many types of custom controls to the Ribbon, and to hook their actions and
most of their attributes to VBA procedures and functions. This is done using a mechanism known as a
callback. A callback means simply that, as part of a RibbonX definition, you provide the name of a proce-
dure to run when the control is clicked, changed, and so on. It’s exactly the same as you’ve been doing
for years with Application.OnKey, CommandBarButton.OnAction, and so forth. The main difference
in RibbonX is that it passes a number of parameters to the function being called, so the function signature
must be declared correctly for the call to work. Again, that is no different than how you’ve been coding
UserForm control event procedures (other than the function signature usually being written for you).

Callbacks are also used when you need to be able to change a control’s attributes at run time. Rather
than defining a specific value for the attribute in the XML, provide the name of a procedure that Excel
should call whenever it needs to know the attribute’s value; it’s up to that procedure to work out (and
remember) what the value should be and return it to Excel. For example, rather than including the
label=”Miscellaneous” attribute in your earlier custom group, you could have specified a getLabel
callback:

<group id=”rxAuditMisc” getLabel=”rxAuditMisc_getLabel” >

298

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 298

When the tab is first displayed, Excel will call the rxAuditMisc_getLabel VBA procedure (in a standard
module), which should provide the text for Excel to use. If you want to change that text sometime later, you
can’t just update an object’s property; RibbonX does not have an object model. Instead, there’s an interface
to tell Excel that the information provided in an earlier callback is no longer valid; when Excel next needs
to display the group or control, it will call the procedure again to get the new value. Most attributes of
most controls can be set dynamically in this way. All the available callbacks and their function signatures
are detailed later in the chapter, but first, have a look at all the available types of custom controls you can
add to the Ribbon and all the attributes you can set to modify their appearance and behavior.

Control Types
Previous versions of Office had a relatively limited set of control types that could be added to the menus
or toolbars. Office 2007 allows you to add much more than a simple button or popup menu, and
includes control types for almost every display mechanism that can be found in Excel’s built-in Ribbons.
The table on the following pages lists all the available control types, with a brief description and exam-
ple picture of a built-in control of each type.

Basic Controls
The following table lists all the basic controls that you can add to custom groups or that can be contained
in other control types.

Control Type Description Example from
Excel’s Ribbon

<control .../> The generic control type is used when-
ever you want to add a built-in control
to a custom group.

<labelControl .../> A labelControl is a textual element
and has no actions. It’s typically used
to provide headers to columns of
related buttons.

<button .../> The most common control, a button
is a single clickable item, having an
image and/or caption.

<toggleButton .../> A toggle-button is a clickable item that
toggles between pressed and not pressed
with each click. It is most often used in
groups to switch an attribute between
multiple possible states, where only one
of the group can be “down” at any time.

<checkbox .../> A clickable control that toggles between
on and off, often used to control whether
or not a UI element is visible.

Table continued on following page

299

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 299

Control Type Description Example from
Excel’s Ribbon

<editBox .../> A control that can be typed into.

<gallery .../> A drop-down control that drops to show
a grid of other controls. The gallery can
contain many different types of controls
within the grid, and is one of the most
flexible RibbonX controls.

<dynamicMenu .../> A popup menu, whose content is pro-
vided at run time, using a callback.

<separator .../> A vertical bar used to provide visual
separation of controls in a group

<menuSeparator .../> A horizontal bar within a popup menu,
providing a title for a group of related
menu items. If no title is provided,
displays as a thin horizontal line.

<item .../> An item in the drop-down list of
a comboBox or dropDown.

<dialogBoxLauncher .../> Adds a Launcher button to the
bottom-right corner of a group.

Container Controls
The following table lists all the container controls you can add to custom groups. By nesting container
controls within other containers, you can create hierarchical structures.

<dropDown ...> Can contain <item> A control that provides
contents or <button> controls. a drop-down list of items

</dropDown> to select between, such as
the Width dropDown.

<comboBox ...> Can contain only A control that can be typed
contents <item> controls. into, but also provides a

</comboBox> drop-down list to pick
from. The contents of the
drop-down are provided
as a set of item elements.

300

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 300

<menu ...> Can contain <control>, A popup menu, whose
contents <button>, constituent items are

</menu> <toggleButton>, defined in the RibbonX
<checkbox>, file. Menus may contain
<gallery>, buttons or other menus,
<dynamicMenu>, allowing you to create
<menuSeparator>, hierarchical menu
<menu> and/or structures.
<splitButton>
controls

<splitButton ...> Must have the struc- A combined button or
<button .../> ture show here, toggle-button and menu.
<menu ...> though could contain Clicking the button part
menu contents either a <button> or usually performs a default

</menu> a <toggleButton> action, and clicking the
</splitButton> control. drop-down arrow shows a

list of related alternatives.

<box ...> Can contain any The box control has no
contents other control type. visual display, but is used
</box> to control the layout of

other buttons, such as in
your Auditing group.

<buttonGroup ...> Can contain A container control that
contents <control>, displays its content con-
</buttonGroup> <button>, trols as a related group,

<toggleButton>, with a border and breaks
<gallery>, <menu>, between the controls.
<dynamicMenu> and/
or <splitButton>
controls.

Control Attributes
All of the control types have numerous attributes you can use to modify their appearance. All the avail-
able attributes are listed in the following table in alphabetical order, with their allowed values and the
controls that they can be used with.

Attribute Description Allowed Values Applies To

boxStyle Whether a box control arranges horizontal, vertical box
icons horizontally (the default)
or vertically

columns The number of columns in a 1 to 1024 columns gallery
gallery

Table continued on following page

301

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 301

Attribute Description Allowed Values Applies To

description A long description of a control, 1 to 4096 characters button, toggleButton,
shown in menus when the splitButton, checkBox,
menu’s itemSize is set to large menu, dynamicMenu,

gallery

Enabled Whether a control is enabled true, false All controls

Id A custom control ID 1 to 1024 characters All controls

idMso A built-in control ID 1 to 1024 characters All controls

idQ A qualified control (see later) 1 to 1024 characters tab, group or menu

Image The name of a custom image 1 to 1024 characters All controls that
within the workbook file have an image

imageMso The name of a built-in control, 1 to 1024 characters All controls that
whose image should be used have an image

invalidate Whether to fire the content- true, false combobox, gallery,
ContentOnDrop related callbacks whenever a dynamicMenu

control is dropped

itemHeight The height of a gallery item, 1 to 4096 gallery
in pixels

itemSize The size of items in a menu; normal, large menu
large items show their descrip-

tions as well as their labels

itemWidth The width of a gallery item, in 1 to 4096 gallery
pixels

keytip The shortcut key combination 1 to 3 characters All controls, tab and
used to access the control group

label The control’s caption 1 to 1024 characters All controls, tab and
group

maxLength The maximum length of textual 1 to 1024 editBox, comboBox
input

rows The number of rows in a gallery 1 to 1024 rows gallery

screentip The small tip that shows when 1 to 1024 characters All controls
the mouse hovers over a control

showImage Whether a control’s image is true, false All controls that have
displayed an image

showItemImage Whether images are displayed true, false comboBox, dropDown,
for drop-down items gallery

showItemLabel Whether labels are displayed true, false comboBox, dropDown,
for drop-down items gallery

302

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 302

Attribute Description Allowed Values Applies To

showLabel Whether a control’s label is true, false All controls
displayed

size The size of a control: normal- normal, large All controls
size takes up one row; large-size
takes up three rows

sizeString A representative string used to 1 to 1024 characters editBox, comboBox,
set the width of a control dropDown

supertip The large tip that shows when 1 to 1024 characters All controls
the mouse hovers over a control

tag Arbitrary text 1 to 1024 characters All controls

title The text for a menu’s title 1 to 1024 characters menu, menuSeparator

visible Whether a control is visible true, false All controls, tab and
group

Control Callbacks
Most RibbonX customization can be defined at design-time and can thereby be included directly within
the XML file. If, however, there are some attributes that need to be set at startup or can change at run
time, you can use the equivalent get attribute to provide the name of a callback function. When Excel
starts, it calls the function and the function provides the value of the attribute. Unlike the OnAction calls
you’re used to, Excel does not automatically scope the callback to the workbook containing the RibbonX
definition; if multiple workbooks contain a procedure with the same callback name, there is no guaran-
tee which one will be called!

For example, the following line was originally included in the XML to hard code the group label:

<group id=”rxAuditMisc” label=”Miscellaneous”>

To use a callback instead, add the following VBA procedure to the Auditing.xlam workbook to provide
the label at run time. The VBA procedure’s parameters must match those that RibbonX expects to provide.
Most of them pass in a reference to the RibbonX control and a ByRef parameter for the return value:

Sub rxAuditMisc_getLabel(ByRef Control As IRibbonControl, _
ByRef ReturnValue As Variant)

ReturnValue = “Miscellaneous - “ & Format(Date, “dddd”)
End Sub

Save the add-in, unload it, and use the Custom UI Editor to change the RibbonX XML to use the
getLabel attribute, calling the procedure you just added:

<group id=”rxAuditMisc” getLabel=”rxAuditMisc_getLabel”>

303

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 303

If you reload the add-in and click the Auditing tab, the first group should now include the day of the
week in its name.

The Control reference passed into the callback is an extremely simple object, having only three read-only
properties and no methods:

❑ id— The control’s id attribute

❑ tag— The control’s tag attribute, if defined in the XML

❑ context— Not used in Excel

The id property can be used to distinguish between controls if you specify a common callback name for
multiple controls. For example, in a multilingual application, you could include getLabel=”rxGetLabel”
in the definition for all controls and read the appropriate text from a language lookup table, matching on
the control ID:

Sub rxGetLabel(ByRef Control As IRibbonControl, _
ByRef ReturnValue As Variant)

ReturnValue = Application.WorksheetFunction.VLookup(Control.ID, _
shtLanguages.Range(“rngLabels”), glLanguageID, False)

End Sub

In addition to the get equivalents of all the design-time attributes, the following control callbacks are
available only at run time.

Callback Used By Description

getContent dynamicMenu Provides the XML for the menu’s content.

getPressed toggleButton, Specifies whether or not the control is
checkBox pressed/ticked.

getItemCount comboBox, dropdown, Specifies how many items there are in a list
gallery populated at run time.

getItemID, getItemLabel, comboBox, dropdown, Called once for each item, to provide the
getItemImage, gallery attributes for that item.
getItemScreentip,
getItemSupertip

getSelectedItemID dropdown, gallery Specifies which is the selected item, by pro-
viding the item’s ID.

getSelectedItemIndex dropdown, gallery Specifies which is the selected item, by pro-
viding the item’s index in the list.

getText comboBox, editBox Provides the text shown in the control

onAction button, toggleButton, Called when the control is clicked. Note that
checkBox, dropdown, the signatures are different depending on the
gallery control (see the following table).

onChange editBox, comboBox Called when the text of the control has changed.

304

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 304

The following tables show the function signatures for all the available control callbacks. If you use the
Office 2007 Custom UI Editor, it can generate the correct callback signatures for any callbacks included
in the XML, ready for you to paste into your VBA project.

Callback getContent, getDescription, getEnabled, getImage, getItemCount,
getItemHeight, getItemWidth, getKeytip, getLabel, getPressed, getSize,
getScreentip, getSelectedItemID, getSelectedItemIndex, getShowImage,
getShowLabel, getSupertip, getText, getTitle, getVisible

Signature Sub ProcName(ByRef Control As IRibbonControl, _
ByRef ReturnValue As Variant)

Callback getItemID, getItemImage, getItemLabel, getItemScreentip, getItemSupertip

Signature Sub ProcName(ByRef Control As IRibbonControl,
ByRef Index As Integer, _ _
ByRef ReturnValue As Variant)

Callback onAction for a button control

Signature Sub ProcName(ByRef Control As IRibbonControl)

Callback onAction for a checkBox and toggleButton control

Signature Sub ProcName(ByRef Control As IRibbonControl,
ByRef Pressed As Boolean)

Callback onAction for a dropDown and gallery control

Signature Sub ProcName(ByRef Control As IRibbonControl,
ByRef SelectedID As String, _
ByRef SelectedIndex As Integer)

Callback onChange for an editBox or comboBox

Signature Sub ProcName(ByRef Control As IRibbonControl, _
ByRef Text As String)

Managing Control Images
Most of the control types can have an associated image. The choice of image and display style is con-
trolled by the imageMso, image, getImage, showImage, getShowImage, showItemImage,
getShowItemImage, size, and getSize attributes.

The imageMso attribute is used when you want to use one of the built-in icons for a custom control. The
value of the attribute must be the name of the built-in control, which can be found by downloading the
Office2007IconsGallery.xlsm file from the MSDN web site. That file adds a set of galleries to
Excel’s Developer tab that together show all of the 2,586 available images. For example, you can show
a button with a smiley face using the XML:

<button id=”rxButtonSmiley” imageMso=”HappyFace”/>

305

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 305

The image attribute is used when you want to provide custom images for your controls. Those images
are usually contained inside the workbook file. The Ribbon drawing engine is designed to work best
with full-color (24-bit) images that also have an alpha channel to control each pixel’s transparency.
The best graphics format to use for custom images is therefore the Portable Network Graphics (.png)
format, as that supports an alpha channel and results in relatively small file sizes.

The Office 2007 Custom UI Editor can be used to add custom images to workbook files — just click the
Insert Icons button and select the file to add. The Editor will show the icon in a pane on the right-hand
side and give it a default ID. The ID can be changed by right-clicking the icon and is then used in the
image attribute for the control:

<button id=”rxButtonCustom” image=”MyPNG”/>

Within the file, the editor stores all the images in a separate customUI\images folder and creates a
customUI.xml.rels file in a customUI_rels folder to relate the IDs used in the XML to the image files:

<Relationships
xmlns=”http://schemas.openxmlformats.org/package/2006/relationships”>
<Relationship

Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/image”
Target=”images/myCustomImage.png” Id=”MyPNG”/>
</Relationships>

If there are likely to be a large number of workbooks all using the same custom images, it may be more
efficient to store them all on a network drive, rather than copy them within each workbook file, and load
them at run time. You can do this with the loadImage callback of the customUI element:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
loadImage=”rxcustomUI_loadImage”>

...
<button id=”rxButtonCustom” image=”Custom1.bmp”>

...

</customUI>

And some VBA code to load the images and provide them as an IPicture object:

Sub rxcustomUI_loadImage(imageID as String, ByRef returnedVal)
Set returnedVal = LoadPicture(“X:\Images\” & imageID)

End Sub

When Excel loads the workbook, it calls the loadImage callback for every image attribute it finds that
doesn’t point to an image contained within the file, passing the value of the image attribute as the
imageID. The returnedVal parameter must be set to either a standard IPicture image object or the
name of a built-in control. The code uses the standard LoadPicture function to load the image from the
network share as the correct object type. Unfortunately, LoadPicture does not handle the .png file for-
mat, so if you want to load .png files using this technique, you have to use Windows API calls into the
GDI+ libraries. That is beyond the scope of this chapter, but a drop-in module is available for download
from www.wrox.com, providing a LoadPictureGDI function that handles .png files.

306

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 306

The getImage callback is used if you want to change a custom control’s image while your application is
running. An example is the splitButton control used to apply cell borders; when an item is selected
from the menu part of the button (for example, double-bottom border), the button image (and behavior)
is updated to match the selected item. This is achieved by assigning an onAction callback to all the
menu items, which records the appropriate image in a module-level variable and marks the button as
needing to be refreshed (see later for details). When Excel next needs to display the button, it calls the
getImage callback again, which returns the new image from the module-level variable.

The showImage attribute and getShowImage callback can be true or false, and they control whether
or not a control’s image is displayed.

The showItemImage attribute and getShowItemImage callback can be true or false and control
whether or not an image is displayed for a dropDown, comboBox, or gallery item.

The size attribute and getSize callback can be normal or large. The normal size takes up one row of
the Ribbon (with the caption beside the icon), and the large size takes up all three rows (with the caption
below the icon).

Other RibbonX Elements, Attributes,
and Callbacks

Though most of the elements, attributes, and callbacks in RibbonX are used to set properties of controls,
there are a few more you need to understand to fully use the Ribbon.

If you omit the XML elements that define the controls, the full RibbonX structure is shown as follows,
where the ellipses (. . .) indicate one or more optional attributes. These elements and their attributes are
described in the sections that follow:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
... >

<commands>
<command ... />

</commands>
<ribbon ... >
<officeMenu>

Any control type that can be in a menu
</officeMenu>
<qat>
<sharedControls>
<control>, <button> or <separator> control types

</sharedControls>
<documentControls>
<control>, <button> or <separator> control types

</documentControls>
</qat>
<tabs>

307

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 307

<tab ... >
<group ... >
All control types

</group>
</tab>

</tabs>
<contextualTabs>
<tabSet idMso=”TabSetChartTools”>
<tab ... >
<group ... >
All control types

</group>
</tab>

</tabSet>
</contextualTabs>

</ribbon>
</customUI>

Sharing Controls among Multiple Workbooks
When you create custom tabs, groups, and controls using the id attribute, you always get a brand new tab,
group, or control created for you — even if one already exists with the same ID or label. This is usually
beneficial, because it prevents multiple add-ins accidentally changing each other’s items. Occasionally,
though, you may want to share those items among many add-ins or workbooks. For example, you
might have an add-in that creates a basic tab, group, and menu structure, and many individual
workbooks that should add items to that structure. This is achieved by using the idQ attribute to pro-
vide qualified IDs — IDs associated with a specific namespace. The namespace is provided within the
customUI element and just needs to be a unique string. It is typically given an alias (Q in this case) to
make the XML easier to read:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
xmlns:Q=”Excel 2007 VBA Prog Ref”>

Any elements you want to share between workbooks are then defined using the idQ attribute and
including the namespace alias within the ID:

<ribbon>
<tabs>
<tab idQ=”Q:rxShared” label=”Shared Tab”>
<group id=”Group1” label=”Group Not Shared”>

Any workbooks using the same namespace string to qualify controls with the same ID will share those
controls rather than getting their own copies. In this example, any workbooks that included a name-
space of xmls:Q=”Excel 2007 VBA Prog Ref” and a qualified tab ID of idQ=”Q:rxShared” would all
use the same tab for their controls. However, because you’ve used an unqualified ID for the group, that
would not be shared between the workbooks. The ability to use qualified IDs in this way applies to all
the container-type controls, so an add-in could create a complex menu structure using qualified IDs
for all the tabs, groups, and menus, and individual workbooks could add their customizations to the
shared menus.

308

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 308

Updating Controls at Run Time
Callbacks aren’t just used to get controls’ attributes when the workbook is loaded; you can also use them
to change the attribute values at any time. This is done by using a special interface (IRibbonUI) to mark
a control as invalid. The next time Excel needs to display the control, all its callbacks will be called again
to get the latest values.

You tell Excel to give you an IRibbon interface by adding the onLoad callback to the customUI element:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
xmlns:Q=”Excel 2007 VBA Prog Ref”
onLoad=”rxcustomUI_onLoad”>

The signature for the onLoad callback includes an IRibbon parameter, which is stored in a module-level
variable for later use:

Dim moRibbon As IRibbonUI

Sub rxcustomUI_onLoad(ribbon as IRibbonUI)
Set moRibbon = ribbon

End Sub

The IRibbonUI interface has only two methods:

❑ The InvalidateControl(“ControlID”) method marks an individual control as invalid, and
hence should be refreshed when it’s next displayed. In general, it is best to only invalidate those
controls that are necessary.

❑ The Invalidate method marks your entire Ribbon customization as invalid, so every callback
for every control is called again. This might be used if you provide a choice of UI language and
use getLabel for every control; when the user changes their language choice, every control can
be invalidated, and thereby updated to show the new text.

As an example, the following XML creates a splitButton with Up, Goto, and Down menus, using
built-in images, with callbacks defined such that you can change the button’s image and action to repeat
the last selected menu (just like the Border splitButton). Create a new workbook, save it as an add-in,
and use the Custom UI Editor to add the XML:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
onLoad=”rxcustomUI_onLoad”>

<ribbon>
<tabs>
<tab id=”rxExcelVBA” label=”VBA Prog Ref”>
<group id=”rxDemo” label=”Demo”>
<splitButton id=”rxSplit” size=”large”>
<button id=”rxButton” getImage=”rxButton_getImage”

onAction=”rxButton_onAction”/>
<menu id=”rxMenu”>
<button id=”rxMenuOutlineMoveUp” label=”Up”

imageMso=”OutlineMoveUp”
onAction=”rxMenu_onAction”/>

<button id=”rxMenuGoTo” label=”Goto”
imageMso=”GoTo”
onAction=”rxMenu_onAction”/>

309

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 309

<button id=”rxMenuOutlineMoveDown” label=”Down”
imageMso=”OutlineMoveDown”
onAction=”rxMenu_onAction”/>

</menu>
</splitButton>

</group>
</tab>

</tabs>
</ribbon>

</customUI>

Now open the add-in (ignoring any errors) and add the following VBA code to a standard module, to
implement all the callbacks defined in the XML:

‘Variable to invalidate controls
Dim moRibbon As IRibbonUI

‘Variable to store current splitButton style,
‘which is the same as the image name
Dim msSplitStyle As String

‘Callback for customUI.onLoad
Sub rxcustomUI_onLoad(ribbon As IRibbonUI)

Set moRibbon = ribbon
End Sub

‘Callback for rxButton getImage
Sub rxButton_getImage(control As IRibbonControl, ByRef returnedVal)

‘Default the style to GoTo
If msSplitStyle = “” Then msSplitStyle = “GoTo”

‘Return the built-in image name
returnedVal = msSplitStyle

End Sub

‘Callback for rxButton onAction
Sub rxButton_onAction(control As IRibbonControl)

DoSplitAction msSplitStyle
End Sub

‘Callback for all rxMenu onActions
Sub rxMenu_onAction(control As IRibbonControl)

‘Get the style from the control ID
msSplitStyle = Mid$(control.ID, 7)

‘Tell the ribbon that the button needs to be refreshed
moRibbon.InvalidateControl “rxButton”

‘Do the appropriate action
DoSplitAction msSplitStyle

End Sub

‘Do the action

310

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 310

Private Sub DoSplitAction(ByVal sStyle As String)

Select Case sStyle
Case “OutlineMoveUp”: MsgBox “Up”
Case “GoTo”: MsgBox “Goto”
Case “OutlineMoveDown”: MsgBox “Down”
End Select

End Sub

Save, close, and reopen the file. You should now have a tab called VBA Prog Ref with a single large split
button, whose image and action changes to match the menu selected (see Figure 14-3).

Figure 14-3

Hooking Built-In Controls
Whereas most of RibbonX concentrates on customizing the visual appearance of the Ribbon, the
commands and command elements provide a mechanism for overriding any built-in menu, to modify its
enabled state or to intercept any button clicks. To achieve that, you can include the following XML to,
say, override the Print button so you can set up some formatting:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<commands>
<command idMso=”FilePrint” onAction=”rxPrint_onAction” />

</commands>
</customUI>

The command element can only have an enabled attribute or getEnabled and/or onAction callbacks.
You could, for example, disable a control by including enabled=”false”, or use a getEnabled callback
to determine whether or not to enable the control depending on the state of the application. The onAction
callback is used to intercept the default behavior, allowing you to do some preprocessing and optionally
cancel the action:

‘Callback for Print onAction, with ability to cancel
Sub rxPrint_onAction(control as IRibbonControl, ByRef cancelDefault)

If CDbl(Time) > 0.5 Then
Msgbox “Printing can only be done in the morning!”
cancelDefault = True

End If
End Sub

311

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 311

Unfortunately, overriding Ribbon controls in this way only affects the user actually clicking the control
or using the Alt+Key shortcuts to trigger the control; it does not intercept the many operations that can
be achieved using the function keys and Ctrl+Key combinations (such as Ctrl+P in this case).

If two add-ins attempt to override the same control, the last-loaded add-in wins. For these two reasons,
the ability to override a built-in control should be used with extreme caution.

RibbonX in Dictator Applications
Most dictator-style Excel applications typically start by removing all Excel’s menus and as many other
UI elements as possible, so as to present a locked-down interface to the user. To do this for the Ribbon,
use the startFromScratch attribute of the ribbon element to give a minimal Office Menu with New,
Open, Save As, Recent Files, and Excel Options:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon startFromScratch=”true”>
</ribbon>

</customUI>

Obviously, you’d then include lots more XML to build custom tabs, groups, and so on!

Customizing the Office Menu
The Office Menu is treated as a special case within the RibbonX definitions, in that it’s an element in its own
right (rather than, say, being a special tab). You can add controls to it through the officeMenu element:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>
<officeMenu>
<button id=”rxOMBtn” label=”Office Menu” onAction=”rxOMBtn_onAction” />

</officeMenu>
</ribbon>

</customUI>

You can also add buttons to the built-in items on the Office Menus, such as the Send menu, by nesting
the appropriate control IDs. Note that to do this, you have to use the correct control type, rather than the
generic control element:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>
<officeMenu>
<menu idMso=”FileSendMenu”>
<button id=”rxSend” label=”Send Menu” onAction=”rxSend_onAction” />

</menu>
</officeMenu>

</ribbon>
</customUI>

312

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 312

Customizing the QAT
The Office 2007 design philosophy is that the QAT belongs to the user and applications should never
add their controls directly to it. If the users consider your feature to be useful, they’ll put it on the QAT
and Excel will automatically handle the interaction.

In certain scenarios it would be highly beneficial to be able to add controls to the QAT — such as a user
creating add-ins similar to the Auditing add-in presented at the start of this chapter, but by moving
groups of controls on and off the QAT rather than adding custom tabs. Unfortunately, Microsoft chose
to disable this capability, and restricted QAT customization to Dictator Applications that also set
startFromScratch=”true”.

The QAT has two sections — one for controls shared across all open documents, and one for controls that
should only appear on the QAT when this document has the focus. You can add built-in controls using
the generic <control> type, <button> controls, and separators to either of the two areas:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon startFromScratch=”true”>
<qat>
<sharedControls>
<control>,<button> or <separator> types

</sharedControls>
<documentControls>
<control>,<button> or <separator> types

</documentControls>
</qat>

</ribbon>
</customUI>

Controlling Tabs, Tab Sets, and Groups
The <tabs>, <tab>, <contextualTabs>, <tabSet>, and <group> elements are all used to provide the
structure to the Ribbon. You’ve been using tabs and groups all the way through this chapter; the tabSet
element provides access to the built-in sets of contextual tabs. For example, when a chart is selected,
Excel displays a Chart Tools set of three contextual tabs. You could add a custom group to the Chart
Tools Design tab with the following XML:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>
<contextualTabs>
<tabSet idMso=”TabSetChartTools”>
<tab idMso=”TabChartToolsDesign”>
<group id=”MyChartGroup”>
<!-- All control types -->

</group>
</tab>

</tabSet>
</contextualTabs>

</ribbon>
</customUI>

313

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 313

Microsoft has placed a few restrictions on what you can do with tabs, contextual tabs, and groups,
including:

❑ You can’t create your own contextual tabSet, but can only refer to built-in ones

❑ You can add custom tabs to a tab set, and custom groups to a built-in tab

❑ You can’t add controls to built-in groups

❑ You can add built-in groups to different tabs (either built-in or custom)

❑ You can make a built-in tab or group invisible

❑ You can move a tab or group to be before or after another one

These are all achieved by setting appropriate attributes on the <tab> and <group> elements, such as:

❑ visible=”false” to hide the tab or group

❑ insertAfterMso=”TabData” to move or add the tab or group after a built-in tab or group

❑ insertBeforeMso=”GroupZoom” to move or add the tab or group before a built-in tab or group

❑ insertAfterQ=”Q:SharedTab” to move or add the tab or group after a qualified custom tab
or group

❑ insertBeforeQ=”Q:SharedGroup” to move or add the tab or group in front of a qualified cus-
tom tab or group

Dynamic Controls
The Ribbon is designed to be a static structure of tabs, groups, and controls; while you’re working with
Excel, all the controls in the Ribbon stay in the same place and have the same structure, size, and actions.
The only parts of the Ribbon that could be considered dynamic are the contextual tabs, the Window list,
and the File MRU — and even then, it’s only the visibility of the contextual tabs that changes; their struc-
ture remains constant.

This philosophy is reflected in the design of RibbonX, with the restriction that your XML customization
has to be defined up front and hard coded into your document files; you do not have a mechanism in
VBA for providing the XML at run time. Indeed, if you agree with the philosophy, you wouldn’t need to
provide the XML at run time, because the getLabel, getImage, and other callbacks would be sufficient
for any localization requirements.

There are, however, times when the philosophy breaks down — the Window menu is a built-in example.
There might also be problems when migrating CommandBar code to use the Ribbon, if that code changed the
command bar structures as workbooks were opened or closed, or worksheets were added and removed.

Fortunately, Microsoft recognized the requirement for a certain amount of dynamism in our UIs and
provided four controls whose contents can be provided at run time. They are the comboBox, dropDown,
gallery, and dynamicMenu controls. The content is provided using a set of callbacks, called when the
controls are first displayed and when they’re explicitly marked as invalid. They also have the extremely

314

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 314

useful invalidateContentOnDrop attribute, which if true ensures the callbacks get called every time,
just before the control is dropped down.

dropDown, comboBox, and gallery
These controls are essentially three styles of drop-down controls, where the gallery drops to show a 2D
grid of images and/or labels. The dropDown and comboBox controls can be static, by including their
content as <item> controls in the XML. You can populate all three controls at run time by using their
getItemCount, getItemID, getItemLabel, getItemImage, getItemScreentip, or getItemSupertip
callbacks. At a minimum, you have to use getItemCount to provide the number of items in the list. The
remaining getItem callbacks will be called once for each item, with the item index passed in. You are
required to provide an ID for each item with getItemID, and will typically provide an image or a label
with getItemImage or getItemLabel, respectively. The dropDown and comboBox controls usually look
best with images and labels, while the gallery is designed to look best as a grid of images. In all cases,
the onAction callback of the dropDown or gallery provides both the selected item’s ID and its index as
parameters (but not the comboBox, which only has an onChange callback to provide the text).

dynamicMenu
The dynamicMenu is a unique control in RibbonX, because it is the only one whose content’s structure
can be changed at run time. The dropDown, comboBox, and gallery are essentially flat lists; the
dynamicMenu can contain a full control hierarchy of both custom and built-in controls — including other
dynamicMenus. This control was created to satisfy the specific requirement for dynamic content that
changes radically as workbooks are opened, closed, and changed.

Imagine a workbook containing multiple sheets of different types (for example, raw data, intermediate
calculations, summaries, and reports), and each sheet requiring a different set of menus. You might
define it statically using the following menu definition (where extra attributes and callbacks such as
Image and onAction have been omitted for clarity):

<menu id=”rxSheetOperations” label=”Sheet Operations”>
<menu id=”rxData1Menu” label=”Data Sheet 1”>

<button id=”rxData1Refresh” label=”Refresh Sheet 1 data”/>
</menu>
<menu id=”rxData2Menu” label=”Data Sheet 2”>

<button id=”rxData2Refresh” label=”Refresh Sheet 2 data”/>
</menu>
<menu id=”rxCalcMenu” label=”Calculation Sheet”>

<button id=”rxCalcRecalc” label=”Recalculate”/>
</menu>
<menu id=”rxReport1Menu” label=”Report Sheet 1”>

<button id=”rxReport1Show” label=”Show Report Sheet”/>
<button id=”rxReport1Print” label=”Print Report Sheet”/>

</menu>
<menu id=”rxReport2Menu” label=”Report Sheet 2”>

<button id=”rxReport1Show” label=”Show Report Sheet”/>
<button id=”rxReport1Print” label=”Print Report Sheet”/>

</menu>
</menu>

315

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 315

The problem is that you don’t know at design-time how many sheets of each type there might be in the
final workbook, or in what order they’ll be shown. The dynamicMenu’s getContent callback provides
the mechanism through which you can use VBA to create the preceding XML at run time (by examining
the workbook directly). Within the XML definition, you include a single entry for the dynamicMenu:

<dynamicMenu id=”rxSheetOperations” label=”Sheet Operations”
getContent=”rxSheetOperations_getContent”>

The rxSheetOperations_getContent procedure builds the XML definition for the contained controls
and returns it, wrapped in a containing <menu> element:

Sub rxSheetOperations_getContent(ByRef control As IRibbonControl, _
ByRef returnedVal)

Dim sXML As String
Dim wks As Worksheet

‘Start with a container <menu> element
sXML = “<menu xmlns=””http://schemas.microsoft.com/office/2006/01/customui””>”

For Each wks In ThisWorkbook.Worksheets
‘TODO: Add the control definitions for each sheet to the sXML string

Next

‘End by closing the container <menu> element
sXML = sXML & “</menu>”

‘Return the full XML to the dynamicMenu
returnedVal = sXML

End Sub

CommandBar Extensions for the Ribbon
With the design of RibbonX based around XML and callbacks instead of an object model, it is the respon-
sibility of the customizing application to maintain the state information for all its controls. That raises the
question of how to query that state information — without an object, you have nothing to read the prop-
erties from! Fortunately, the CommandBars object has been extended with GetEnabledMso, GetImageMso,
GetLabelMso, GetPressedMso, GetScreenTipMso, GetSuperTipMso, and GetVisibleMso properties
to expose all the state information for the built-in controls. In each case, you pass in the name of the
built-in control. These functions are likely to be most useful to add-in writers who want to include con-
trol images on their UserForms or ensure that they’re using the correct control labels when directing
users to click a Ribbon control. Note that you don’t have a GetTextMso to return the text of a dropDown,
comboBox, or editBox, nor can you call these functions with the ID of a custom control to query other
add-ins’ customizations.

As well as being able to retrieve the state information, you can also click any built-in control using the new
ComandBars.ExecuteMso method. This is extremely useful for triggering those actions that don’t have
an object model equivalent — such as putting the user in drawing mode to draw a text box on a sheet:

Application.CommandBars.ExecuteMso “TextBoxInsertExcel”

316

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 316

RibbonX Limitations
The first version of any new technology can never hope to be perfect for everyone. To their great credit, the
RibbonX team at Microsoft implemented a huge number of the suggestions that were submitted during
the Office 2007 Beta testing (within the limits imposed on them by the overall Ribbon design) and have
done an amazing job of making RibbonX as feature-rich, well-rounded, and stable as it is. The remaining
major limitations are, in our view and in no particular order, as follows:

❑ There is no way for VBA to provide the full XML at run time. It would have been nice to see a
standard GetCustomUI event added to the Workbook object, or a CreateCustomUI method
added to the CommandBars object.

❑ The only way to remove a workbook’s customizations is to close the workbook. A better alterna-
tive might have been a RemoveCustomUI method added to the CommandBars object.

❑ The getImage callback can be fed either an idMso name or an IPicture object to provide a
built-in or custom image. You should also be able to provide an internal relationship ID to use a
custom image contained in the workbook file.

❑ There are a number of controls on Excel’s Ribbon that can’t be created using RibbonX — such as
the Page Layout Scale spinner, the galleries that display directly in the Ribbon area, and the list
boxes from the Filter popup.

❑ You cannot create custom contextual tab sets. It would be beneficial to be able to define your
own contexts (for example, inside a P&L report) and display appropriate context-sensitive tabs.

❑ The only way to activate a tab is to use SendKeys; there should be an ActivateMso method to
select rather than execute a control — or perhaps using ExecuteMso on a tab name should acti-
vate it.

❑ You can’t modify the Mini Toolbar or the status bar.

❑ You cannot add custom ActiveX controls to the Ribbon (though you can now create Task Panes
with them).

❑ You cannot modify the built-in groups — though that’s as much a Ribbon design issue as a
RibbonX one.

❑ You can’t read the text of built-in dropDown, comboBox, or editBox controls, identify the cur-
rently active tab, group, or control, or identify the selected item from a gallery; indeed, missing
are all the getItem equivalents to those properties that were added to the CommandBars object.

❑ There is no way to execute an item from a comboBox, dropdown, or gallery. ExecuteMso
should take an optional ItemID or ItemIndex parameter.

❑ Every RibbonX container item, from the root customUI element to a deeply nested menu,
should support having its contents set dynamically, using a getContent callback.

❑ Both the RibbonX XML and any images in the file should be exposed through the Workbook
object’s CustomXMLParts collection, so they can be easily read or updated with VBA.

❑ There is no way for a custom group to fit in with the resize/collapse behavior of the built-in
groups. You should be able to determine how large a custom group is, and how much spare
space there is on a tab — thereby allowing you to change what you display to make the best use
of the available space.

317

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 317

Summary
In RibbonX, Microsoft has done an extremely good job of exposing the capabilities of the Office 2007
Ribbon for developers to use.

You can easily create custom tabs, groups, menus, buttons, toggle buttons, drop-downs, galleries, check-
boxes, and dynamic menus to add your application’s features to the Ribbon.

You have a comprehensive and cohesive set of attributes that can be applied to all control types, and
(nearly) every attribute has an equivalent getAttribute callback.

Using those controls and attributes, you can create an entirely new style of interface for your applications —
significantly better than previous versions’ CommandBars.

Though very good, RibbonX is still a v1.0 technology, and you might encounter a number of limitations
when trying to push its limits.

318

Chapter 14: RibbonX

17_046432 ch14.qxp 2/16/07 9:59 PM Page 318

Command Bars
The CommandBars collection is an object contained in the Office Object Model, documented in
Appendix C. It contains all the menus, toolbars, and shortcut popup menus that are already built
into Excel and the other Office applications, as well as any of those objects that you create yourself.
You access command bars through the CommandBars property of the Application object.

Command bars were first introduced into Office in Office 97. Excel 5 and 95 supported menu bars
and toolbars as separate object types. Shortcut menus, or popups, such as those that appear when
you right-click a worksheet cell, were a special type of menu bar. In Excel 97 and later versions,
command bar is a generic term that includes menu bars, toolbars, and shortcut menus.

Excel 2007 has made a giant leap forward and replaced menus and toolbars with the Ribbon to
provide access to commands. Only the popup type command bars are included in the standard
Excel 2007 user interface. However, Excel 2007 still maintains all the old command bars internally
and still allows you to create your own command bars, although the way menus and toolbars are
exposed is different compared with previous versions. User-defined menus and toolbars now
appear in the Add-Ins tab of the Ribbon.

The Visual Basic Editor window in Excel 2007 still has the menu and toolbar interface it has always
supported. You can manipulate the VBE command bars using the same techniques that are out-
lined in this chapter. See Chapter 26 for more information.

Command bars contain items that are called controls. When clicked, some controls execute opera-
tions, such as copy. Until this chapter gets down to the nuts and bolts, these types of controls will
be referred to as commands. There are other controls, such as File, that produce an additional list of
controls when clicked. These controls are referred to as menus. You can create new controls, or you
can use the built-in controls that come with Excel.

This chapter shows you how to create and manipulate these useful tools. It takes a look at how
command bars were used in Excel 2003 and then shows how to use them in Excel 2007.

18_046432 ch15.qxp 2/16/07 10:00 PM Page 319

Toolbars, Menu Bars, and Popups
Figure 15-1 shows the standard Worksheet menu bar at the top of the Excel window in Excel 2003.

Figure 15-1

The Worksheet menu bar contains menus, such as File and Edit. When you click a menu, you see
another list containing commands and menus:

❑ Cut and Copy are examples of commands in the Edit menu.

❑ Clear is an example of a menu contained within the Edit menu.

Figure 15-2 shows the Standard toolbar in Excel 2003.

Figure 15-2

Toolbars contain controls that can be clicked to execute Excel commands. For example, the button with
the scissors icon carries out a cut. Toolbars can also contain other types of controls, such as the zoom
combo box (two from the end of the Standard toolbar in Figure 15-2) that allows you to select or type in
a zoom factor, displayed as a percentage. Some toolbars contain buttons that display menus.

Figure 15-3 shows the shortcut menu that appears when you right-click a worksheet cell in Excel 2003.

This shortcut menu contains commands, such as Paste, and menus, such as Delete, for those operations
appropriate to the selected context, in this case a worksheet cell.

320

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 320

Figure 15-3

To summarize, a command bar can be any one of three types. It can be a menu, toolbar, or shortcut popup
menu. When you create a command bar using VBA, you specify which of the three types it will be, using
the appropriate parameters of the Add method of the CommandBars collection. You will see examples of
this later in the chapter. You can find out what type an existing command bar is by testing its Type prop-
erty, which will return a numeric value equal to the value of one of the following intrinsic constants.

Constant CommandBar Type

msoBarTypeNormal Toolbar

msoBarTypeMenuBar Menu bar

msoBarTypePopup Shortcut menu

Controls on command bars also have a Type property similar to the msoXXX constants shown in the pre-
ceding table. The control that is used most frequently has a Type property of msoControlButton, which
represents a command such as the Copy command on the Edit menu of the Worksheet menu bar, or a
command button on a toolbar, such as the Cut button on the Standard toolbar. This type of control runs a
macro or a built-in Excel action when it is clicked.

The second most common control has a Type property of msoControlPopup. This represents a menu on
a menu bar, such as the Edit menu on the Worksheet menu bar, or a menu contained in another a menu,
such as the Clear submenu on the Edit menu on the Worksheet menu bar. This type of control contains
its own Controls collection, to which you can add further controls.

321

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 321

Controls have an Id property. For built-in controls, the Id property determines the internal action carried
out by the control. When you set up a custom control, you assign the name of a macro to its OnAction
property to make it execute that macro when it is clicked. Custom controls have an Id property of 1.

Many built-in menu items and most built-in toolbar controls have a graphic image associated with them.
The image is defined by the FaceId property. The Id and FaceId properties of built-in commands nor-
mally have the same numeric value. You can assign the built-in FaceId values to your own controls, if
you know what numeric value to use. You can determine these values using VBA, as you will see in the
next example.

Excel’s Built-in Command Bars
Before launching into creating your own command bars, it will help to understand how the built-in com-
mand bars are structured. You can use the following code to list the existing command bars and any that
you have added yourself. It lists the name of each command bar in column A and the names of the con-
trols in the command bars Controls collection in column B, as shown in Figure 15-4. The code does not
attempt to display lower-level controls that belong to controls such as the File menu on the Worksheet
menu bar, so the procedure has been named ListFirstLevelControls.

Figure 15-4

322

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 322

The macro also shows the control’s Id property value, in all cases, and its image and its FaceId prop-
erty value when such an image exists. Although you can no longer display the built-in command bars,
you can use the controls and images they contain in your own command bars.

If you are testing this code, it should be placed in a standard code module, not in a class module.
Don’t put the code in the ThisWorkbook module or a class module behind a worksheet. You should
also include the IsEmptyWorksheet function listed further down.

Here is the code to list the first-level controls:

Sub ListFirstLevelControls()
Dim ctl As CommandBarControl
Dim cbr As CommandBar
Dim iRow As Integer

If Not IsEmptyWorksheet(ActiveSheet) Then Exit Sub

‘Ignore errors and freeze screen
On Error Resume Next
Application.ScreenUpdating = False

‘Enter headings
Cells(1, 1).Value = “CommandBar”
Cells(1, 2).Value = “Control”
Cells(1, 3).Value = “FaceID”
Cells(1, 4).Value = “ID”
Cells(1, 1).Resize(1, 4).Font.Bold = True

‘Start at row 2
iRow = 2

‘Loop through all commandbars
For Each cbr In CommandBars

Application.StatusBar = “Processing Bar “ & cbr.Name
Cells(iRow, 1).Value = cbr.Name
iRow = iRow + 1

‘Loop through controls on commandbar
For Each ctl In cbr.Controls

Cells(iRow, 2).Value = ctl.Caption

‘Try to get image
ctl.CopyFace
If Err.Number = 0 Then

ActiveSheet.Paste Cells(iRow, 3)
Cells(iRow, 3).Value = ctl.FaceId

Make sure you are in an empty worksheet when you run this macro and the follow-
ing two examples. They contain tests to make sure they will not overwrite any data
in the active sheet.

323

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 323

End If

Cells(iRow, 4).Value = ctl.ID
Err.Clear

iRow = iRow + 1

Next ctl

Next cbr

Range(“A:D”).EntireColumn.AutoFit

Application.StatusBar = False

End Sub

ListFirstLevelControls first checks that the active sheet is an empty worksheet, using the
IsEmptyWorksheet function that is shown in the following code. It then uses On Error Resume
Next to avoid run-time errors when it tries to access control images that do not exist. In the outer
For Each...Next loop, it assigns a reference to each command bar to cbr, shows the Name property
of the command bar on the status bar so you can track what it is doing, and places the Name in the
A column of the current row, defined by iRow.

The inner For Each...Next loop processes all the controls on cbr, placing the Caption property of
each control in column B. It then attempts to use the CopyFace method of the control to copy the con-
trol’s image to the clipboard. If this does not create an error, it pastes the image to column C and places
the value of the FaceId property in the same cell. It places the ID property of the control in column D.
It clears any errors, increments iRow by one, and processes the next control.

The IsEmptyWorksheet function, shown next, checks that the input parameter object sht is a
worksheet. If so, it checks that the count of entries in the used range is 0. If both checks succeed, it
returns True. Otherwise, it issues a warning message and the default return value, which is False, is
returned:

Function IsEmptyWorksheet(sht As Object) As Boolean

‘If sht is a worksheet, count the non empty cells
If TypeName(sht) = “Worksheet” Then

If WorksheetFunction.CountA(sht.UsedRange) = 0 Then

IsEmptyWorksheet = True

This example, and the two following, can take a long time to complete. You can
watch the progress of the code on the status bar. If you only want to see part of the
output, press Ctrl+Break after a minute or so to interrupt the macro, click Debug,
and then choose Run ➪ Reset.

324

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 324

Exit Function

End If

End If

MsgBox “Please make sure that an empty worksheet is active”

End Function

Controls at All Levels
Figure 15-5 and the following code take the previous procedure to greater levels of detail. All controls
are examined to see what controls are contained within them. Where possible, the contained controls are
listed. Some controls, such as those containing graphics, can’t be listed in greater detail. The information
on sub-controls is indented across the worksheet. The code is capable of reporting to as many levels as
there are, but Excel 2007 does not have controls beyond the fourth level.

Figure 15-5

Here is the code to list controls at all levels:

Sub ListAllControls()
Dim cbr As CommandBar
Dim rng As Range

325

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 325

Dim ctl As CommandBarControl

‘Test for empty worksheet and freeze screen
If Not IsEmptyWorksheet(ActiveSheet) Then Exit Sub
Application.ScreenUpdating = False

‘Start in A1 cell
Set rng = Range(“A1”)

‘Loop through all commandbars
For Each cbr In Application.CommandBars

Application.StatusBar = “Processing Bar “ & cbr.Name

‘List name of bar
rng.Value = cbr.Name

‘Loop through controls on bar
For Each ctl In cbr.Controls

‘Call ListControls function
Set rng = rng.Offset(ListControls(ctl, rng))

Next ctl

Next cbr

‘Fit columns to data
Range(“A:J”).EntireColumn.AutoFit

Application.StatusBar = False

End Sub

ListAllControls loops through the CommandBars collection, using rng to keep track of the current
A column cell of the worksheet it is writing to. It posts the name of the current command bar in a mes-
sage on the status bar, so you can tell where it is up to, and also enters the name of the command bar at
the current rng location in the worksheet. It then loops through all the controls on the current command
bar, executing the ListControls function, which is shown in the next code snippet.

In Chapter 26, you will need to get listings of the VBE command bars. You can easily accomplish this by
changing the following line:

For Each cBar in Application.CommandBars

To:

For Each cBar in Application.VBE.CommandBars

ListControls is responsible for listing the details of each control it is passed and the details of any con-
trols under that control, starting at the current rng location in the worksheet. When it has performed its
tasks, ListControls returns a value equal to the number of lines that it has used for its list. Offset is
used to compute the new rng cell location for the start of the next command bar’s listing:

326

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 326

Function ListControls(ctl As CommandBarControl, rng As Range) As Long
Dim lOffset As Long ‘Tracks current row relative to rng
Dim ctlSub As CommandBarControl ‘Control contained in ctl

‘Ignore Errors
On Error Resume Next

‘Start in rng cell
lOffset = 0

‘List control name and type
rng.Offset(lOffset, 1).Value = ctl.Caption
rng.Offset(lOffset, 2).Value = ctl.Type

‘Attempt to copy control face. If error, don’t paste
ctl.CopyFace
If Err.Number = 0 Then

ActiveSheet.Paste rng.Offset(lOffset, 3)
rng.Offset(lOffset, 3).Value = ctl.FaceId

End If
Err.Clear

‘Check Control Type
Select Case ctl.Type

Case 1, 2, 4, 6, 7, 13, 18
‘Do nothing for these control types

Case Else
‘Call function recursively if current control contains other controls
For Each ctlSub In ctl.Controls

lOffset = lOffset + _
ListControls(ctlSub, rng.Offset(lOffset, 2))

Next ctlSub

lOffset = lOffset - 1

End Select

ListControls = lOffset + 1

End Function

ListControls is a recursive function, and it runs itself to process as many levels of controls as it finds.
It uses lOffset to keep track of the rows it writes to, relative to the starting cell rng. It uses very similar
code to ListFirstLevelControls, but records the control type as well as the caption, icon, and face
ID. Most of the control types are:

❑ 1 —msoControlButton

❑ 10 —msoControlPopup

327

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 327

However, you will see other types in the list as well:

❑ 2 —msoControlEdit

❑ 4 —msoControlComboBox

❑ 6 —msoControlSplitDropdown

❑ 7 —msoControlOCXDropdown

❑ 13 —msoControlSplitButtonPopup

❑ 18 —msoControlGrid

The Select Case construct is used to avoid trying to list the sub-controls where this is not possible.

When ListControls finds a control with sub-controls it can list, it calls itself with a rng starting point
that is offset from its current rng by lOffset lines down and two columns across. ListControls keeps
calling itself as often as necessary to climb down into every level of sub-control, and then it climbs back
to continue with the higher levels. Each time it is called, it returns the number of lines it has written to,
relative to rng.

FaceIds
The following code gives you a table of the built-in button faces, as shown in Figure 15-6. There are more
than 15,000 faces in Office 2007. Note that many FaceId values represent blank images, and that the
same images appear repeatedly as the numbers increase.

Figure 15-6

328

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 328

Here is the code to list all the FaceIds:

Sub ListAllFaces()
Dim iFaceId As Integer ‘Tracks current FaceId
Dim iColumn As Integer ‘Tracks current column in worksheet
Dim iRow As Integer ‘Tracks current row in worksheet
Dim ctl As CommandBarControl
Dim cbr As CommandBar

If Not IsEmptyWorksheet(ActiveSheet) Then Exit Sub

‘Ignore errors and freeze screen
On Error GoTo Recover
Application.ScreenUpdating = False

‘Create temporary command bar with single control button
‘to hold control button face to be copied to worksheet
Set cbr = CommandBars.Add(Position:=msoBarFloating, _

MenuBar:=False, _
temporary:=True)

Set ctl = cbr.Controls.Add(Type:=msoControlButton, _
temporary:=True)

iRow = 1

Do

For iColumn = 1 To 10
iFaceId = iFaceId + 1
Application.StatusBar = “FaceID = “ & iFaceId
‘Set control button to current FaceId
ctl.FaceId = iFaceId
‘Attempt to copy Face image to worksheet
ctl.CopyFace
ActiveSheet.Paste Cells(iRow, iColumn + 1)
Cells(iRow, iColumn).Value = iFaceId

Next iColumn
iRow = iRow + 1

Loop

Recover:
If Err.Number = 1004 Then Resume Next

Application.StatusBar = False
cbr.Delete

End Sub

Note that when you run this macro, your computer may well freeze for a while. The
CPU has to do a lot of hard work! You can follow the macro’s progress by watching
the status bar.

329

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 329

ListAllFaces creates a temporary toolbar, cbr, using the Add method of the CommandBars collection.
The toolbar is declared:

❑ Temporary, which means that it will be deleted when you exit Excel, if it has not already been
deleted

❑ Floating, rather than docked at an edge of the screen or a popup

❑ Not to be a menu bar, which means that cbBar will be a toolbar

A temporary control is added to cbr, using the Add method of the Controls collection for the com-
mand bar, and assigned to ctl.

The Do...Loop continues looping until there are no more valid FaceId values. The Do...Loop increments
iRow, which represents the row numbers in the worksheet. On every row, iColumn is incremented from
1 to 10. j represents the columns of the worksheet. The value of iRow is increased by 1 for every itera-
tion of the code in the For...Next loop. iFaceId represents the FaceId. The FaceId property of ctl is
assigned the value of iFaceId, and the resulting image is copied to the worksheet.

Some button images are blank and some are missing. The blank images are copied without error, but the
missing images cause an error number 1004. When an error occurs, the code branches to the error trap at
Recover:. If the error number is 1004, the code resumes executing at the statement after the one that
caused the error, leaving an empty slot for the button image. Eventually the code gets to the last FaceId
in Office. This causes error number –2147467259. At this point the code clears the status bar, removes the
temporary command bar, and exits.

Creating New Menus
In versions of Office prior to Office 2007, you can add a new menu to the built-in command bars. The
code is still valid in Office 2007, but produces a different result. The new menu is displayed in the Add-
Ins tab of the Ribbon, as shown in Figure 15-7.

The code to create this menu is as follows:

Public Sub AddCustomMenu()
Dim cbr As CommandBar
Dim ctlMenu As CommandBarControl

‘Add new menu control
Set cbr = Application.CommandBars(“Worksheet Menu Bar”)
Set ctlMenu = cbr.Controls.Add(Type:=msoControlPopup)

‘Add controls to new menu control

The information you have gathered with the last three exercises is not documented
in any easily obtainable form by Microsoft. It is a valuable guide to the built-in but-
ton faces at your disposal. There is an add-in application, CBList.xla, available
with the code that accompanies this book that makes it easy to generate these lists.

330

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 330

With ctlMenu
.Caption = “Custom”

With .Controls.Add(Type:=msoControlButton)
.Caption = “Show Data Form”
.OnAction = “ShowDataForm”

End With

With .Controls.Add(Type:=msoControlButton)
.Caption = “Print Data List”
.OnAction = “PrintDataList”

End With

With .Controls.Add(Type:=msoControlButton)
.Caption = “Sort Names Ascending”
.BeginGroup = True
.OnAction = “SortList”
.Parameter = “Asc”

End With

With .Controls.Add(Type:=msoControlButton)
.Caption = “Sort Names Descending”
.OnAction = “SortList”
.Parameter = “Dsc”

End With

‘ With .Controls.Add(Type:=msoControlButton)
‘ .Caption = “Show Products”
‘ .OnAction = “‘ShowProduct “”Apple””, 3, 4’”
‘ End With

End With

End Sub

Figure 15-7

331

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 331

AddCustomMenu creates an object variable cbr referencing the Worksheet menu bar, and uses the Add
method of the menu bar’s Controls collection to add the new menu. The Type property is declared
msoControlPopup so that other controls can be attached to the menu. The Caption property of the new
menu is assigned Custom.

The Add method of the new menu’s Controls collection is then used to add four commands to the
menu. They are all of type msoControlButton so they can each run a macro. Each is given an appro-
priate Caption property. The OnAction property of each command is assigned the name of the macro
it is to run. The first of the sort menu items has its BeginGroup property set to True. This places the
dividing line above it to mark it as the beginning of a different group. Both sort commands are assigned
the same OnAction macro, but also have their Parameter properties assigned text strings that distin-
guish them.

The Parameter property is a holder for a character string. You can use it for any purpose. Here it is used
to hold the strings “Asc”, for ascending, and “Dsc”, for descending. As you will see in the next section,
the SortList procedure will access the strings to determine the sort order required.

The OnAction Macros
The macro assigned to the OnAction property of the Show Data Form menu item is as follows:

Private Sub ShowDataForm()

frmPersonal.Show

End Sub

It displays exactly the same data form as in Chapter 13. The macro assigned to the Print Data List menu
item is as follows:

Private Sub PrintDataList()

Range(“Database”).PrintPreview

End Sub

PrintDataList shows a print preview of the list, from which the user can elect to print the list.

The macro assigned to the Sort menu items is as follows:

Private Sub SortList()
Dim lAscDsc As Long

Select Case CommandBars.ActionControl.Parameter

Case “Asc”
lAscDsc = xlAscending

Case “Dsc”

332

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 332

lAscDsc = xlDescending

End Select

Range(“Database”).Sort Key1:=Range(“A2”), Order1:=lAscDsc, Header:=xlYes

End Sub

SortList uses the ActionControl property of the CommandBars collection to get a reference to the
command bar control that caused SortList to execute. This is similar to Application.Caller, used in
user-defined functions to determine the Range object that executed the function.

Knowing the control object that called it, SortList can examine the control’s Parameter property to
get further information. If the Parameter value is “Asc”, SortList assigns an ascending sort. If the
Parameter value is “Dsc”, it assigns a descending sort. Controls also have a Tag property that can be
used, in exactly the same way as the Parameter property, to hold another character string. You can
use the Tag property as an alternative to the Parameter property, or you can use it to hold supplemen-
tary data.

Passing Parameter Values
The previous example used the Parameter property of the control on the menu to store information to
be passed to the OnAction macro, and pointed out that you can also use the Tag property. If you have
more than two items of information to pass, it is more convenient to use a macro procedure that has
input parameters.

Say you wanted to pass three items of data, such as a product name and its cost and selling price.
The macro might look like the following:

Sub ShowProduct(sName As String, dCost As Double, dPrice As Double)

MsgBox “Product: “ & sName & vbCr & _
“Cost: “ & Format(dCost, “$0.00”) & vbCr & _
“Price: “ & Format(dPrice, “$0.00”)

End Sub

To execute this macro from a command bar control, you need to assign something like the following
code to the OnAction property of the control:

‘ShowProduct “Apple”, 3, 4’

The entire expression is enclosed in single quotes. Any string parameter values within the expression are
enclosed in double quotes. To define this as the OnAction property of a control referred to by an object
variable, ctl, for example, you need to use the following code:

ctl.OnAction = “‘ShowProduct “”Apple””, 3, 4’”

333

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 333

The mix of single and double quotes is tricky to get right. The entire string is enclosed in double quotes,
and any internal double quotes need to be shown twice.

Deleting a Menu
Built-in and custom controls can be deleted using the control’s Delete method. The following macro
deletes the Custom menu:

Public Sub RemoveCustomMenu()
Dim cbr As CommandBar

On Error Resume Next

Set cbr = CommandBars(“Worksheet Menu Bar”)
cbr.Controls(“Custom”).Delete

End Sub

On Error is used in case the menu has already been deleted.

The following event procedures should be added to the ThisWorkbook module to add the Custom
menu when the workbook is opened, and delete it when the workbook is closed:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

Call RemoveCustomMenu

End Sub

Private Sub Workbook_Open()

Call AddCustomMenu

End Sub

It is important to recognize that command bar changes are permanent. If you do not
remove the Custom menu in this example, it will stay in the Excel Worksheet menu
bar during the current session and future sessions. Trying to use this menu with
another workbook active could cause unexpected results.

You can use a built-in command bar’s Reset method to make the entire command
bar revert to its default layout and commands. This is not a good idea if users have
other workbooks or add-ins that alter the setup, because all their work will be lost.

334

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 334

Creating a Toolbar
In previous versions of Office, you could manually create a simple toolbar with buttons and drop-
downs. Now you can only do this using VBA code. The more complex controls, such as those of type
msoControlEdit, msoControlDropdown, and msoControlComboBox, have always required VBA
code. As with the new menu created earlier, Excel 2007 displays the new toolbar in the Add-Ins tab of
the Ribbon. The toolbar in Figure 15-8 contains three controls.

The first is of type msoControlButton and displays the user form for the data list.

Figure 15-8

The second control is of type msoControlPopup and displays two controls of type msoControlButton,
as shown in Figure 15-9.

Figure 15-9

335

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 335

The third control is of type msoControlDropdown and applies an AutoFilter on Department, as shown
in Figure 15-10.

Figure 15-10

The following code creates the toolbar:

Public Sub CreateToolbar()
‘Get rid of any existing toolbar called Manage Data

On Error Resume Next
CommandBars(“Manage Data”).Delete
On Error GoTo 0

‘Create new toolbar
With CommandBars.Add(Name:=”Manage Data”)

With .Controls.Add(Type:=msoControlButton)
.OnAction = “ShowDataForm”
.FaceId = 264
.TooltipText = “Show Data Form”

End With

With .Controls.Add(Type:=msoControlPopup)
.Caption = “Sort”
.TooltipText = “Sort Ascending or Descending”

With .Controls.Add(Type:=msoControlButton)
.Caption = “Sort Ascending”
.FaceId = 210
.OnAction = “SortList”
.Parameter = “Asc”

End With

With .Controls.Add(Type:=msoControlButton)
.Caption = “Sort Descending”
.FaceId = 211
.OnAction = “SortList”
.Parameter = “Dsc”

336

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 336

End With

End With

With .Controls.Add(Type:=msoControlDropdown)
.AddItem “(All)”
.AddItem “AD”
.AddItem “CR”
.AddItem “DS”
.AddItem “HR”
.AddItem “MF”
.AddItem “MK”
.AddItem “RD”
.AddItem “SL”
.OnAction = “FilterDepartment”
.TooltipText = “Select Department”

End With

.Visible = True

End With

End Sub

The toolbar itself is very simple to create. CreateToolbar uses the Add method of the CommandBars
collection and accepts all the default parameter values, apart from the Name property. The first control
button is created in much the same way as a menu item, using the Add method of the Controls collection.
It is assigned an OnAction macro, a FaceId, and a ToolTip.

The second control is created as type msoControlPopup. It is given the Caption of Sort and a ToolTip.
It is then assigned two controls of its own, of type msoControlButton. They are assigned the SortList
macro and Parameter values, as well as FaceIds and captions.

Finally, the control of type msoControlDropdown is added. Its drop-down list is populated with depart-
ment codes and its OnAction macro is FilterDepartment. It is also given a ToolTip. The last action is
to set the toolbar’s Visible property to True to display it.

The FilterDepartment macro follows:

Sub FilterDepartment()
Dim sDept As String

With CommandBars.ActionControl
sDept = .List(.ListIndex)

End With

If sDept = “(All)” Then
Range(“Database”).Parent.AutoFilterMode = False

Else
Range(“Database”).AutoFilter Field:=5, Criteria1:=sDept

End If

End Sub

337

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 337

A drop-down control has a List property that is an array of its list values and a ListIndex property
that is the index number of the current list value. The ActionControl property of the CommandBar
object, which refers to the currently active control, is a quick way to reference the control and access the
List and ListIndex properties to get the department code required. The code is then used to perform
the appropriate AutoFilter operation. If the (All) option is chosen, the AutoFilterMode property of the
worksheet that is the parent of the Database Range object is set to False, removing the AutoFilter
drop-downs and showing any hidden rows.

It is a good idea to run CreateToolbar from the Workbook_Open event procedure, and to delete the
toolbar in the Workbook_BeforeClose event procedure. The toolbar will remain permanently in Excel
if it is not deleted, and will give unexpected results if its buttons are pressed when other workbooks are
active. If you do refer to command bars directly in workbook event procedures, you need to qualify the
reference with Application:

Application.CommandBars(“Manage Data”).Delete

Popup Menus
Excel’s built-in shortcut menus are included in the command bar listing created by the macro
ListFirstLevelControls, which you saw earlier in this chapter. The following modified version of
this macro shows only the command bars of type msoBarTypePopup, as shown in Figure 15-11.

Figure 15-11

338

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 338

The code to display the popups is shown here:

Sub ListPopups()
Dim ctl As CommandBarControl
Dim cbr As CommandBar
Dim iRow As Integer

If Not IsEmptyWorksheet(ActiveSheet) Then Exit Sub

‘Ignore errors and freeze screen
On Error Resume Next
Application.ScreenUpdating = False

‘Enter headings
Cells(1, 1).Value = “CommandBar”
Cells(1, 2).Value = “Control”
Cells(1, 3).Value = “FaceId”
Cells(1, 4).Value = “ID”
Cells(1, 1).Resize(1, 4).Font.Bold = True

‘Set row to 2
iRow = 2

‘Loop through all commandbars
For Each cbr In CommandBars

Application.StatusBar = “Processing Bar “ & cbr.Name

‘Only list popups
If cbr.Type = msoBarTypePopup Then

Cells(iRow, 1).Value = cbr.Name
iRow = iRow + 1

‘Loop through controls on popup commandbar
For Each ctl In cbr.Controls

Cells(iRow, 2).Value = ctl.Caption
ctl.CopyFace
If Err.Number = 0 Then

ActiveSheet.Paste Cells(iRow, 3)
Cells(iRow, 3).Value = ctl.FaceId

End If

Cells(iRow, 4).Value = ctl.ID

Err.Clear

iRow = iRow + 1

Next ctl

End If

339

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 339

Next cbr

Range(“A:B”).EntireColumn.AutoFit

Application.StatusBar = False

End Sub

The listing is identical to ListFirstLevelControls, apart from the introduction of a block If structure
that processes only command bars of type msoBarTypePopup. If you look at the listing produced by
ListPopups, you will find you can identify the common shortcut menus. For example, there are com-
mand bars named Cell, Row, and Column that correspond to the shortcut menus that pop up when you
right-click a worksheet cell, row number, or column letter.

You might be confused about the fact that the Cell, Row, and Column command bars are listed twice.
The first set is for a worksheet in Normal view. The second set is for a worksheet in Page Break Preview.

Having identified the shortcut menus, you can tailor them to your own needs using VBA code. For
example, Figure 15-12 shows a modified Cell command bar that includes an option to Clear All.

The Clear All control was added using the following code:

Public Sub AddShortCut()
Dim cbr As CommandBar
Dim ctl As CommandBarControl
Dim lIndex As Long

Set cbr = CommandBars(“Cell”)

lIndex = cbr.Controls(“Clear Contents”).Index
Set ctl = cbr.Controls.Add(Type:=msoControlButton, _

ID:=1964, Before:=lIndex)
ctl.Caption = “Clear &All”

End Sub

AddShortCut starts by assigning a reference to the Cell command bar to cbr.

If you want to refer to the Cell command bar that is shown in Page Break view in Excel 2007, you can use
its Index property:

Set cbBar = CommandBars(39)

Another tricky one is the Workbook tabs command bar. This is not the shortcut that
you get when you click an individual worksheet tab. It is the shortcut for the work-
book navigation buttons to the left of the worksheet tabs. The shortcut for the tabs
is the Ply command bar.

340

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 340

Figure 15-12

You need to take care here, if you want code compatible with other versions of Office. In Excel 2003, the
Index property of the Cell command bar in Page Break view is 32, in Excel 2000 it is 26, and in Excel 97
it is 24.

AddShortCut records the Index property of the Clear Contents control in lIndex, so that it can add
the new control before the Clear Contents control. AddShortCut uses the Add method of the Controls
collection to add the new control to cbBar, specifying the ID property of the built-in Edit ➪ Clear ➪

All menu item on the Worksheet menu bar.

The Add method of the Controls collection allows you to specify the Id property of a built-in command.
The listing from ListAllControls allows you to determine that the Id property, which is the same
as the FaceId property, of the Edit ➪ Clear ➪ All menu item is 1964.

The built-in Caption property for the newly added control is All, so AddShortCut changes the Caption
to be more descriptive.

You can safely leave the modified Cell command bar in your CommandBars collection. It is not tied to
any workbook and does not depend on having access to macros in a specific workbook.

341

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 341

Showing Popup Command Bars
If you want to display a shortcut menu without having to right-click a cell, or chart, you can create code
to display the shortcut in a number of ways. For example, you might like to display the shortcut Cell
command bar from the keyboard, using Ctrl+Shift+C. You can do this using the following code:

Sub SetShortCut()

Application.OnKey “^+c”, “ShowCellShortCut”

End Sub

Private Sub ShowCellShortCut()

CommandBars(“Cell”).ShowPopup x:=0, y:=0

End Sub

ShowCellShortCut uses the ShowPopup method to display the Cell shortcut menu at the top-left corner
of the screen. The parameters are the x and y screen coordinates for the top-left corner of the menu.

You can also create a popup menu from scratch. The popup in Figure 15-13 appears when you right-click
inside the range named Database. Outside the range, the normal Cell popup menu appears.

Figure 15-13

The following code created the popup menu:

342

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 342

Sub MakePopup()
‘Get rid of any existing toolbar called Data Popup

On Error Resume Next
CommandBars(“Data Popup”).Delete
On Error GoTo 0

‘Add new popup commandbar
With CommandBars.Add(Name:=”Data Popup”, Position:=msoBarPopup)

‘Add controls
With .Controls.Add(Type:=msoControlButton)

.OnAction = “ShowDataForm”

.FaceId = 264

.Caption = “Data Form”

.TooltipText = “Show Data Form”
End With

With .Controls.Add(Type:=msoControlButton)
.Caption = “Sort Ascending”
.FaceId = 210
.OnAction = “SortList”
.Parameter = “Asc”

End With

With .Controls.Add(Type:=msoControlButton)
.Caption = “Sort Descending”
.FaceId = 211
.OnAction = “SortList”
.Parameter = “Dsc”

End With

End With

End Sub

The code is similar to the code that created the custom menu and toolbar in previous examples. The dif-
ference is that, when the popup is created by the Add method of the CommandBars collection, the
Position parameter is set to msoBarPopup. The Name property here is set to Data Popup.

You can display the popup with the following BeforeRightClick event procedure in the code module
behind the worksheet that displays the Database range:

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _
Cancel As Boolean)

If Not Intersect(Range(“Database”), Target) Is Nothing Then
CommandBars(“Data Popup”).ShowPopup
Cancel = True

End If

End Sub

343

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 343

When you right-click the worksheet, the event procedure checks to see if Target is within Database.
If so, it displays Data Popup and cancels the right-click event. Otherwise the normal Cell shortcut menu
appears.

Table-Driven Command Bar Creation
Very few professional Excel developers write code to add their menu items and toolbars one-by-one.
Most use a table-driven approach, whereby they fill out a table with information about the items they
want to add, then have a routine that generates all the items based on this table. This makes it much eas-
ier to define and modify the design of your command bars.

Say you want to create the Custom menu, which you set up earlier in this chapter, using this new
method. The first thing that is needed is a table for the menu information. Insert a new worksheet,
change its name to MenuTable, and fill out the sheet as shown in Figure 15-14 and Figure 15-15.
The worksheet named Data contains the employee database, and DataLists will be used later to define a
list of departments.

Figure 15-14

Figure 15-15

The columns of the MenuTable are:

Column Title Description

A App / VBE Either App to add items to Excel’s menus or VBE to add them to the
VBE. The code to handle VBE entries is provided in Chapter 26.

B CommandBar The name of the top-level command bar to add the menu to. Get
these names from the listings generated earlier in this chapter.

C Sub Control ID The ID number of a built-in popup bar to add menu to. For example,
30002 is the ID of the File popup menu.

344

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 344

Column Title Description

D Type The type of control to add: 1 for a normal button, 10 for a popup,
and so on. These correspond to the msoControl... types listed in
the Object Browser.

E Caption The text to use for the menu item.

F Position The position in the command bar to add the menu item. Leave this
blank to add the menu to the end of the bar.

G Begin Group True or False to specify whether to place a separator line before the
item.

H BuiltIn ID If you’re adding a built-in menu item, this is the ID of that menu.
Use 1 for all custom menu items.

I Procedure The name of the procedure to run when a custom menu item is
clicked.

J FaceId The ID number of the built-in tool face to use for the menu. This can
also be the name of a picture in the worksheet to use for the button
face. 18 is the number for the standard New icon.

K ToolTip The text of the popup ToolTip to show for the button.

L Parameter The string to be assigned to the Parameter property of the button.

M DataList Only used with controls that have drop-down lists, such as type
msoControlDropdown (type 3). It contains the name of a range of
cells in the worksheet called DataLists that contains items to be
added to the drop-down list.

N+ Popup1–n If you add your own popup menus, this is the caption of the custom
popup to add further menu items to. You can include as many levels
of popup as you like by simply adding more columns — the code
will detect the extra columns.

Because the MenuTable sheet will be referred to a number of times in code, it is a good idea to give it a
meaningful “code name,” such as wksMenuTable. To do this, locate and select the sheet in the Project
Explorer in the VBE, and change its name in the Properties window. It should now be shown as
wksMenuTable (MenuTable) in the Project Explorer. Using the code name allows you to refer directly
to that sheet as an object, so the following two lines are equivalent:

Debug.Print ThisWorkbook.Worksheets(“MenuTable”).Name
Debug.Print wksMenuTable.Name

The DataLists sheet needs to be renamed as wksDataLists in the same way.

345

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 345

The code to create the menu from this table is shown next. The code should be copied into a new module
called modSetupBars.

At the top of the module, a number of constants are declared, which correspond to each column of the
menu table, and you will use these throughout your code. If the menu table structure changes, all you
need to do is renumber these constants — you don’t need to search through the code:

‘Constants for the columns in the commandbar creation table
Const miTABLE_APP_VBE As Integer = 1
Const miTABLE_COMMANDBAR_NAME As Integer = 2
Const miTABLE_CONTROL_ID As Integer = 3
Const miTABLE_CONTROL_TYPE As Integer = 4
Const miTABLE_CONTROL_CAPTION As Integer = 5
Const miTABLE_CONTROL_POSITION As Integer = 6
Const miTABLE_CONTROL_GROUP As Integer = 7
Const miTABLE_CONTROL_BUILTIN As Integer = 8
Const miTABLE_CONTROL_PROC As Integer = 9
Const miTABLE_CONTROL_FACEID As Integer = 10
Const miTABLE_CONTROL_TOOLTIP As Integer = 11
Const miTABLE_CONTROL_PARAMETER As Integer = 12
Const miTABLE_CONTROL_DATALIST As Integer = 13
Const miTABLE_POPUP_START As Integer = 14

‘Constant to determine whether commandbars are temporary or permanent
‘If you set this to False, users will not loose any additional controls
‘that they add to your custom commandbars
Const mbTEMPORARY As Boolean = False

‘The following Application ID is used to identify our menus, making it easy to
‘remove them
Const psAppID As String = “TableDrivenCommandBars”

The mbTEMPORARY constant allows you to make the menu changes temporary or permanent. psAppID
provides an identifying string that will be assigned to the Tag property of your added controls, which
makes it easy to find and remove them.

The routine to actually set up the menus is called from the workbook’s Auto_Open procedure or
Workbook_Open event procedure:

‘ Subroutine: SetUpMenus
‘
‘ Purpose: Adds the commandbars defined in the wksMenuTable worksheet’

Sub SetUpMenus()
Dim rngRow As Range
Dim cbrAllBars As CommandBars
Dim cbrBar As CommandBar
Dim ctlButton As CommandBarControl
Dim iBuiltInID As Integer, iPopUpCol As Integer, vData As Variant
Dim rng As Range

On Error Resume Next ‘Just ignore errors in the table definition

‘Remove all of our menus before adding them.

346

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 346

‘This ensures we don’t get any duplicated menus
RemoveMenus

‘Loop through each row of our menu generation table
For Each rngRow In wksMenuTable.Cells(1).CurrentRegion.Rows

‘Ignore the header row
If rngRow.Row > 1 Then

‘Read the row into an array of the cells’ values
vData = rngRow.Value

Set cbrBar = Nothing

A single routine can be used to add menu items to both the Excel and VBE menus. The only difference is
the CommandBars collection that is used — Excel’s or the VBE’s. This code does not contain all the ele-
ments necessary to add VBE menus. The additional requirements are discussed in Chapter 26:

‘Get the collection of all command bars, either in the VBE or Excel
If vData(1, miTABLE_APP_VBE) = “VBE” Then

Set cbrAllBars = Application.VBE.CommandBars
Else

Set cbrAllBars = Application.CommandBars
End If

‘Try to find the commandbar we want
Set cbrBar = cbrAllBars.Item(vData(1, miTABLE_COMMANDBAR_NAME))

‘Did we find it - if not, we must be adding one!
If cbrBar Is Nothing Then

Set cbrBar = cbrAllBars.Add(_
Name:=vData(1, miTABLE_COMMANDBAR_NAME), temporary:=mbTEMPORARY)

End If

If you want to look for a built-in popup menu to add your control to, you can recursively search for it in
the CommandBars collection. For example, if you want to add a menu item to the Cell shortcut under the
Filter menu, you can enter the ID of the Filter menu (31402) in the Sub Control ID column of the table.
Alternatively, you can enter one or more control name entries in the PopUp columns of the table.
Entering Filter under PopUp1 accomplishes the same result as placing 31402 under Sub Control ID.
The first method is convenient when adding controls to the built-in menus. The alternative method is
necessary to add items to the menus you create yourself:

‘If set, locate the built-in popup menu bar (by ID) to add our control to.
‘e.g. Worksheet Menu Bar > Edit
If Not IsEmpty(vData(1, miTABLE_CONTROL_ID)) Then

Set cbrBar = cbrBar.FindControl(ID:=vData(1, miTABLE_CONTROL_ID), _
Recursive:=True).CommandBar

End If

‘Loop through the PopUp name columns to navigate down the menu structure
For iPopUpCol = miTABLE_POPUP_START To UBound(vData, 2)

‘If set, navigate down the menu structure to the next popup menu
If Not IsEmpty(vData(1, iPopUpCol)) Then

Set cbrBar = cbrBar.Controls(vData(1, iPopUpCol)).CommandBar
End If

Next

347

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 347

If you are adding an existing Excel control, you can specify its Id property value in the BuiltIn ID col-
umn. If you want the control to run your own procedure, you specify the name of the procedure in the
Procedure column:

‘Get the ID number if we’re adding a built-in control
iBuiltInID = vData(1, miTABLE_CONTROL_BUILTIN)

‘If it’s empty, set it to 1, indicating a custom control
If iBuiltInID = 0 Then iBuiltInID = 1

‘Now add our control to the command bar
If IsEmpty(vData(1, miTABLE_CONTROL_POSITION)) Or _

vData(1, miTABLE_CONTROL_POSITION) > cbrBar.Controls.Count Then
Set ctlButton = cbrBar.Controls.Add(Type:=vData(1,

miTABLE_CONTROL_TYPE), _
ID:=iBuiltInID,

temporary:=mbTEMPORARY)
Else

Set ctlButton = cbrBar.Controls.Add(Type:=vData(1,
miTABLE_CONTROL_TYPE), _

ID:=iBuiltInID,
temporary:=mbTEMPORARY, _

Before:=vData(1,
miTABLE_CONTROL_POSITION))

End If

‘Set the rest of button’s properties
With ctlButton

.Caption = vData(1, miTABLE_CONTROL_CAPTION)

.BeginGroup = vData(1, miTABLE_CONTROL_GROUP)

.TooltipText = vData(1, miTABLE_CONTROL_TOOLTIP)

You can either use one of the standard Office tool faces, by supplying the numeric FaceId, or provide
your own picture to use. To use your own picture, just give the name of the Picture object in the FaceId
column of the menu table:

‘The FaceID can be empty for a blank button, the number of a standard
‘button face, or the name of a picture object on the sheet, which
‘contains the picture to use.
If Not IsEmpty(vData(1, miTABLE_CONTROL_FACEID)) Then

If IsNumeric(vData(1, miTABLE_CONTROL_FACEID)) Then
‘A numeric face ID, so use it
.FaceId = vData(1, miTABLE_CONTROL_FACEID)

Else
‘A textual face ID, so copy the picture to the button
wksMenuTable.Shapes(vData(1, miTABLE_CONTROL_FACEID)).CopyPicture
.PasteFace

End If
End If

It is a good idea to set a property for all your menu items that identifies them as yours. If you use the
Tag property to do this, you can use the FindControl method of the CommandBars object to locate all of
your menu items, without having to remember exactly where you added them. This is done in the
RemoveMenus procedure later in the module:

348

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 348

‘Set the button’s tag to identify it as one we created.
‘This way, we can still find it if the user moves or renames it
.Tag = psAppID

‘Set the control’s OnAction property.
‘Surround the workbook name with quote marks,
‘in case the name includes spaces
If Not IsEmpty(vData(1, miTABLE_CONTROL_PROC)) Then
.OnAction = “‘“ & ThisWorkbook.Name & “‘!” & vData(1, _

miTABLE_CONTROL_PROC)
End If

If your procedure expects to find information in the control’s Parameter property, you enter that infor-
mation under the Parameter column of the table:

‘Assign Parameter property value, if specified
If Not IsEmpty(vData(1, miTABLE_CONTROL_PARAMETER)) Then
.Parameter = vData(1, miTABLE_CONTROL_PARAMETER)

End If

For a drop-down control or combo box, you enter a list of values in the DataLists worksheet and assign a
name to the list. You enter the name in the DataList column of the table:

‘Assign data list to ComboBox
If Not IsEmpty(vData(1, miTABLE_CONTROL_DATALIST)) Then
For Each rng In wksDataLists.Range(vData(1, _

miTABLE_CONTROL_DATALIST))
.AddItem rng.Value

Next rng
End If

End With
End If

Next rngRow
End Sub

When the application workbook is closed, you need to run some code to remove your menus. Some
developers just use CommandBars.Reset, but this removes all other customizations from the command
bars as well as their own. It is much better to locate all the menu items and command bars that were cre-
ated for your application and delete them. This takes two routines. The first removes all the menus from
a specific CommandBars collection, by searching by its Tag value:

Private Sub RemoveMenusFromBars(cbrBars As CommandBars)
Dim ctl As CommandBarControl

‘Ignore errors while deleting our menu items
On Error Resume Next

‘Using the application or VBE CommandBars ...
With cbrBars

‘Find a CommandBarControl with our tag
Set ctl = .FindControl(Tag:=psAppID)

‘Loop until we didn’t find one

349

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 349

Do Until ctl Is Nothing
‘Delete the one we found
ctl.Delete

‘Find the next one
Set ctl = .FindControl(Tag:=psAppID)

Loop
End With

End Sub

The second removal routine calls the first to remove the menu items from the Excel command bars and
the VBE command bars, and removes any custom bars that might have been created, as long as the user
has not added his or her own controls to them:

Sub RemoveMenus()
Dim cbrBar As CommandBar, rngRow As Range, sBarName As String

‘Ignore errors while deleting our menu items and commandbars
On Error Resume Next

‘Delete our menu items from the Excel and VBE commandbars
RemoveMenusFromBars Application.CommandBars
RemoveMenusFromBars Application.VBE.CommandBars

‘Loop through each row of our menu generation table
For Each rngRow In wksMenuTable.Cells(1).CurrentRegion.Rows

‘Ignore the header row
If rngRow.Row > 1 Then

sBarName = rngRow.Cells(1, miTABLE_COMMANDBAR_NAME)

Set cbrBar = Nothing
‘Find the command bar, either in the VBE or Excel
If rngRow.Cells(1, miTABLE_APP_VBE) = “VBE” Then

Set cbrBar = Application.VBE.CommandBars(sBarName)
Else

Set cbrBar = Application.CommandBars(sBarName)
End If
‘If we found it, delete it if it is not a built-in bar
If Not cbrBar Is Nothing Then

If Not cbrBar.BuiltIn Then
‘Only delete blank command bars - in case user
‘or other applications added menu items to the
‘same custom bar
If cbrBar.Controls.Count = 0 Then cbrBar.Delete

End If
End If

End If
Next

End Sub

350

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 350

You should run the SetUpMenus procedure from the Auto_Open procedure or the Workbook_Open
event procedure, and run the RemoveMenus procedure from the Auto_Close procedure or the
Workbook_BeforeClose event procedure.

You now have a complete template, which can be used as the basis for any Excel application (or just in a
normal workbook where you want to modify the menu structure).

See Chapter 26 for the extra code needed to create a template that can be used with Excel and the VBE.

The first table entry shown in Figure 15-14 and Figure 15-15 adds a new popup menu to the Worksheet
menu bar called Custom. The second entry adds a menu item called Show Data Form to the Custom
menu, as shown in Figure 15-16.

Figure 15-16

You can expand the table to add more items to the custom menu and create new command bars and con-
trols, as shown in Figure 15-17 and Figure 15-18.

Figure 15-17

351

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 351

Figure 15-18

The following procedures will automate the running of the code as the workbook is opened and closed:

‘ Subroutine: Auto_Open
‘ Purpose: Adds our menus and menuitems to the application
Sub Auto_Open()

SetUpMenus
CommandBars(“Manage Data”).Visible = True

End Sub

‘ Subroutine: Auto_Close
‘ Purpose: Removes our menus and menu items from the application
Sub Auto_Close()

RemoveMenus
End Sub

The data in rows 2 through 6 of the MenuTable table create the Custom menu shown in Figure 15-19,
which is identical to the Custom menu created earlier in this chapter, apart from some added icons.

Rows 7 through 11 create a Manage Data toolbar identical to the one created earlier. The data required
for the drop-down list of departments is in the DataLists worksheet, as shown here. The highlighted
range has been given the name Departments, as shown in Figure 15-20.

Row 12 of the table creates a Clear All entry in the popup menu that appears when you right-click a
worksheet cell.

Although the code presented here allows you to add items to existing shortcut menus, it is not capable
of creating a new popup shortcut menu. However, you could easily add an extra column that allows you
to specify this, as long as you adapt the code accordingly. The technique is flexible enough to accommo-
date whatever options you need.

352

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 352

Figure 15-19

Figure 15-20

353

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 353

Summary
In this chapter, you have seen how the Excel command bars are structured and learned how to create:

❑ Lists of the built-in control images with their Id and FaceId properties

❑ An entire list of the FaceIds available

❑ A complete list of popup menu items

You have also seen how to create your own command bars and how to add controls to your command
bars. The differences between the three types of command bars — that is, toolbars, menu bars, and
popup menus — have been described, and methods of creating them programmatically have been
presented.

Finally, you have seen how you can create a table to define the changes you want to make to a command
bar structure while your application is open. This approach simplifies the task of customizing menus
and makes it very easy to make changes.

354

Chapter 15: Command Bars

18_046432 ch15.qxp 2/16/07 10:00 PM Page 354

Class Modules
Class modules are used in VBA to create your own customized objects. Most VBA users will never
have to create their own objects because Excel already provides all of the objects they need.
However, there are occasions when class modules can be very useful. You can use them to:

❑ Respond to application events; you can write code that is executed whenever any open
workbook is saved or printed, for example

❑ Respond to embedded chart events

❑ Set up a single event procedure that can be used by a number of ActiveX controls, such as
text boxes in a UserForm

❑ Encapsulate Windows API code so it is easy to use

❑ Encapsulate standard VBA procedures in a form that is easy to transport into other
workbooks

In this chapter, you create some simple (if not terribly useful) objects, to get the idea of how class
modules work. Then you apply the principles to some more useful examples. You are already
familiar with Excel’s built-in objects, such as the Worksheet object, and you know that objects
often belong to collections such as the Worksheets collection. You also know that objects have
properties and methods, such as the Name property and the Copy method of the Worksheet object.

Using a class module, you can create your own “blueprint” for a new object, such as an Employee
object. You can define properties and methods for the object, such as a Rate property that records
the employee’s current rate of pay, and a Training method that consumes resources and increases
the employee’s skills. You can also create a new collection for the object, such as the Employees
collection. The class module is a plan for the objects you want to create. From it you can create
instances of your object. For example, Mary, Jack, and Anne could be instances of an Employee
object, all belonging to the Employees collection.

You might not be aware of it, but you have been using some class modules already. The modules
behind worksheets, charts, workbooks, and UserForms are class modules. However, they are special
types of class modules that behave a little differently from those you create yourself. They are
designed specifically to support the object with which they are associated, they give you access to the
event procedures for that object, and they cannot be deleted without deleting the associated object.

19_046432 ch16.qxp 2/16/07 10:01 PM Page 355

Creating Your Own Objects
Proceed with creating the Employee object just discussed. You want to store the employee’s name, hours
worked per week, and rate of pay. From this information, you want to calculate the employee’s weekly
pay. You can create an Employee object with three properties to hold the required data and a method
that calculates the weekly pay.

To do this, you create a class module named CEmployee, as shown in the top right of Figure 16-1.

Figure 16-1

The class module declares three public variables —Name, HoursPerWeek, and Rate— which are the
properties of the Employee object. There is also one public function, WeeklyPay. Recall that any public
function or sub procedure in the class module behaves as a method of the object. A function is a method
that can generate a return value. A sub is a method that does not return a value.

The code in the standard module modExamples (at the bottom right of Figure 16-1) generates an Employee
object from the CEmployee blueprint. The module declares clsEmployee as a CEmployee type.
The EmployeePay sub procedure uses the Set statement to assign a new instance of CEmployee to
clsEmployee; that is, Set creates the new object.

The sub then assigns values to the three properties of the object, before generating the message that
appears in the message box shown in Figure 16-2. To form the message, it accesses the Name property of
the Employee object and executes the WeeklyPay method of the Employee object.

356

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 356

Figure 16-2

An alternative way of setting up the standard code module, when you only need to create a single
instance of the object variable, is as follows:

Dim Employee As New CEmployee

Sub EmployeePay()
Employee.Name = “Mary”
Employee.Rate = 15
Employee.HoursPerWeek = 35
MsgBox Employee.Name & “ earns $” & Employee.WeeklyPay & “/wk”

End Sub

Here, the keyword New is used on the declaration line. In this case, the Employee object is automatically
created when it is first referenced in the code.

Proper ty Procedures
If your properties are defined by public variables, they are read/write properties. They can be directly
accessed and can be directly assigned new values, as you have seen in the previous section. If you want
to perform checks or calculations on properties, you use the Property Let and Property Get proce-
dures to define the properties in your class module, instead of using public variables.

Property Get procedures allow the class module to control the way in which properties are accessed.
Property Let procedures allow the class module to control the way in which properties can be assigned
values. You can also use Property Set procedures. They are similar to Property Let procedures, but they
process objects instead of values.

For example, say you want to break up the employee hours into normal time and overtime, where the
value of overtime is anything over 35 hours. You want to have an HoursPerWeek property, which
includes both normal and overtime hours that can be read and can be assigned new values. You want
the class module to split the hours into normal and overtime, and set up two properties, NormalHours
and OverTimeHours, that can be read but cannot be directly assigned new values. You can set up the
following code in the CEmployee class module:

Public Name As String
Public Rate As Double

Private dNormalHrs As Double
Private dOverTimeHrs As Double

‘Return weekly pay

357

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 357

Public Function WeeklyPay() As Double
WeeklyPay = dNormalHrs * Rate + dOverTimeHrs * Rate * 1.5

End Function

‘Convert input hours to normal and overtime
Property Let HoursPerWeek(dHours As Double)

dNormalHrs = WorksheetFunction.Min(35, dHours)
dOverTimeHrs = WorksheetFunction.Max(0, dHours - 35)

End Property

‘Return total hours per week
Property Get HoursPerWeek() As Double

HoursPerWeek = dNormalHrs + dOverTimeHrs
End Property

‘Return normal hours
Property Get NormalHours() As Double

NormalHours = dNormalHrs
End Property

‘Return overtime hours
Property Get OverTimeHours() As Double

OverTimeHours = dOverTimeHrs
End Property

HoursPerWeek is no longer declared as a variable in the declarations section. Instead, two new private
variables have been added —dNormalHrs and dOverTimeHrs. HoursPerWeek is now defined by a
Property Let procedure, which processes the input when you assign a value to the HoursPerWeek
property. It breaks the hours into normal time and overtime. The Property Get procedure for
HoursPerWeek returns the sum of normal and overtime hours when you access the property value.

NormalHours and OverTimeHours are defined only by Property Get procedures that return the values
in the Private variables, dNormalHrs and dOverTimeHrs, respectively. This makes the properties
NormalHours and OverTimeHours read-only. There is no way they can be assigned values except
through the HoursPerWeek property.

The WeeklyPay function has been updated to calculate pay as normal hours at the standard rate and
overtime hours at 1.5 times the standard rate. You can change the standard module code as follows to
generate the message shown in Figure 16-3:

Sub EmployeePay()
Dim clsEmployee As CEmployee

‘Create instance of CEmployee
Set clsEmployee = New CEmployee

‘Define properties
clsEmployee.Name = “Mary”
clsEmployee.Rate = 15
clsEmployee.HoursPerWeek = 45

‘Display properties

358

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 358

MsgBox clsEmployee.Name & “ earns $” _
& clsEmployee.WeeklyPay & “/wk” _
& “ including “ & clsEmployee.OverTimeHours _
& “ hrs overtime”

End Sub

Figure 16-3

Creating Collections
Now that you have an Employee object, you will want to have many Employee objects, and what better
way is there to organize them but in a collection? VBA has a Collection object that you can use as fol-
lows, in a standard module:

‘Collection to hold Employee objects
Dim mcolEmployees As New Collection

Sub AddEmployees()
Dim clsEmployee As CEmployee
Dim lCount As Long

‘Ensure collection is empty
For lCount = 1 To mcolEmployees.Count

mcolEmployees.Remove 1
Next lCount

‘Define Employee
Set clsEmployee = New CEmployee
clsEmployee.Name = “Mary”
clsEmployee.Rate = 15
clsEmployee.HoursPerWeek = 45

‘Add Employee to collection
mcolEmployees.Add clsEmployee, clsEmployee.Name

‘Define Employee
Set clsEmployee = New CEmployee
clsEmployee.Name = “Jack”
clsEmployee.Rate = 14
clsEmployee.HoursPerWeek = 35

‘Add Employee to collection

359

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 359

mcolEmployees.Add clsEmployee, clsEmployee.Name

‘Display data from collection
MsgBox “Number of Employees = “ & mcolEmployees.Count
MsgBox “mcolEmployees(2).Name = “ & mcolEmployees(2).Name
MsgBox “mcolEmployees(“”Jack””).Rate = “ & mcolEmployees(“Jack”).Rate

‘Process all Employees
For Each clsEmployee In mcolEmployees

MsgBox clsEmployee.Name & “ earns $” & clsEmployee.WeeklyPay
Next clsEmployee

End Sub

At the top of the standard module, you declare mcolEmployees to be a new collection. The
AddEmployees procedure uses the Remove method of the collection in the For...Next loop to remove
any existing objects. It keeps removing the first object in the collection, because as soon as you remove it,
the second object automatically becomes the first object, and so on — hence the .Remove 1 statement.
This step is normally not necessary, because the collection is initialized empty. It is only here to demon-
strate the Remove method, and also to allow you to run the procedure more than once without doubling
up the items in the collection.

AddEmployees creates the first employee, Mary, and uses the Add method of the collection to place the
Mary object in the collection. The first parameter of the Add method is a reference to the object itself. The
second parameter, which is optional, is an identifying key that can be used to reference the object later.
In this case you have used the Employee object’s Name property as the key. The same procedure is used
with Jack.

The MsgBox statements illustrate that you can reference the collection in the same ways as you can refer-
ence Excel’s built-in collections. For instance, the Employees collection has a Count property. You can
reference a member of the collection by position or by key, if you have entered a key value.

Class Module Collection
You can also set up your collection in a class module. There are advantages and disadvantages to doing
this. The advantages are that you get much more control over interaction with the collection, you can
prevent direct access to the collection, and the code is encapsulated into a single module that makes it
more transportable and easier to maintain. The disadvantages are that it takes more work to set up the
collection, and you lose some of the shortcut ways to reference members of the collection and the collec-
tion itself.

If you supply a key value for each member of the collection, the keys must be
unique. You will get a run-time error when you attempt to add a new member to the
collection with a key value that is already in use. Using a person’s name as the key is
not recommended, because different people can have the same name. Use a unique
identifier, such as a Social Security number.

360

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 360

The following shows the contents of a class module CEmployees:

‘Collection to hold Employee instances
Private mcolEmployees As New Collection

‘Method to add emloyees to collection
Public Function Add(clsEmployee As CEmployee)

mcolEmployees.Add clsEmployee, clsEmployee.Name

End Function

‘Return Count property
Public Property Get Count() As Long

Count = mcolEmployees.Count

End Property

‘Return collection
Public Property Get Items() As Collection

Set Items = mcolEmployees

End Property

‘Return a member of the collection
Public Property Get Item(vItem As Variant) As CEmployee

Set Item = mcolEmployees(vItem)

End Property

‘Remove a member of the collection
Public Sub Remove(vItem As Variant)

mcolEmployees.Remove vItem

End Sub

When the collection is in its own class module, you can no longer directly use the collection’s four meth-
ods (Add, Count, Item, and Remove) in your standard module. You need to set up your own methods
and properties in the class module, even if you have no intention of modifying the collection’s methods.
On the other hand, you have control over what you choose to implement and what you choose to mod-
ify, as well as what you present as a method and what you present as a property.

In CEmployees, Function Add, Sub Remove, Property Get Item, and Property Get Count pass on
most of the functionality of the collection’s methods. There is one new feature in the Property Get
Items procedure. Whereas Property Get Item passes back a reference to a single member of the collec-
tion, Property Get Items passes back a reference to the entire collection. This is to provide the capabil-
ity to use the collection in a For Each...Next loop.

361

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 361

The standard module code is now as follows:

Option Explicit
Sub AddEmployees()

Dim clsEmployees As CEmployees
Dim clsEmployee As CEmployee
Dim lCount As Long
Dim vNames As Variant
Dim vRates As Variant
Dim vHours As Variant
Dim sText As String

‘Input data
vNames = Array(“Mary”, “Jack”, “Anne”, “Harry”)
vRates = Array(15, 14, 20, 17)
vHours = Array(45, 35, 40, 40)

‘Initialize collection
Set clsEmployees = New CEmployees

‘Define and add employees to collection
For lCount = LBound(vNames) To UBound(vNames)

Set clsEmployee = New CEmployee
clsEmployee.Name = vNames(lCount)
clsEmployee.Rate = vRates(lCount)
clsEmployee.HoursPerWeek = vHours(lCount)
clsEmployees.Add clsEmployee
Set clsEmployee = Nothing

Next lCount

‘Display data from collection
MsgBox “Number of Employees = “ & clsEmployees.Count
MsgBox “Employees.Item(2).Name = “ & clsEmployees.Item(2).Name
MsgBox “Employees.Item(“”Jack””).Rate = “ & clsEmployees.Item(“Jack”).Rate

For Each clsEmployee In clsEmployees.Items
sText = sText & clsEmployee.Name & “ earns $” & _

clsEmployee.WeeklyPay & vbCrLf
Next clsEmployee

MsgBox sText

End Sub

clsEmployees is declared to be of type CEmployees. The code that follows defines three arrays as a
convenient way to make it clear which data is being used. After initializing the Employees collection,
you create the Employee instances and add them to the collection. As one small convenience, you no
longer need to specify the key value when using the Add method of the Employees collection. The Add
method code in clsEmployees does this for you.

362

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 362

The second, third, and fourth MsgBox statements show the new properties needed to reference the col-
lection and its members. You need to use the Item property to reference a member and the Items prop-
erty to reference the whole collection.

Encapsulation
Class modules allow you to encapsulate code and data in such a way that it becomes very easy to use,
very easy to share, and much easier to maintain.

You hide the code that does the work from the user, who only needs to know what sort of object the class
module represents, and what properties and methods are associated with the object. This is particularly
useful when it is necessary to make calls to the Windows API (application programming interface) to
perform tasks that are not possible in normal VBA. This topic is presented in Chapter 27, where you can
see examples that encapsulate very complex code and create very usable objects.

Class modules provide a mechanism for encapsulating code that you can use in other workbooks or share
with other programmers to reduce development time. You can easily copy a class module to another work-
book. In the Project Explorer window, it is as straightforward as dragging the class module between the
projects.

You can also export the code in the class module to a file by right-clicking the module in the Project
Explorer and choosing Export File to create a text file that can be copied to another PC. The file can then
be imported into another workbook by right-clicking its project in the Project Explorer and choosing
Import File.

So far, this chapter has examined class modules from a general programming perspective. You will now
see how to use class modules to gain more control over Excel.

Trapping Application Events
You can use a class module to trap application events. Most of these events are the same as the work-
book events, but they apply to all open workbooks, not just the particular workbook that contains the
event procedures. For example, in a workbook there is a BeforePrint event that is triggered when you
start to print anything in that workbook. At the application level, there is a WorkbookBeforePrint
event that is triggered when any open workbook starts to print.

To see what application events are available, you first insert a class module into your project. The class
module can have any valid module name. The one shown in Figure 16-4 has been named CAppEvents.
You then type in the following variable declaration at the top of the module:

Public WithEvents xlApp As Application

The object variable name, xlApp, can be any valid variable name, as long as you use it consistently in
code that refers to the class module, as a property of the class. The WithEvents keyword causes the
events associated with the application object to be exposed. You can now choose xlApp from the drop-
down at the top left of the module and then use the drop-down at the top right to see the event list, as
shown in Figure 16-4.

363

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 363

Figure 16-4

Choose the WorkbookBeforePrint event and extend the event procedure presented in Chapter 9, using
the following code in CAppEvents:

Private Sub xlApp_WorkbookBeforePrint(ByVal Wbk As Workbook, _
Cancel As Boolean)

Dim wks As Worksheet
Dim sFullFileName As String
Dim sCompanyName As String

With Wbk

‘Define footer data
sCompanyName = “Execuplan Consulting”
sFullFileName = .FullName

‘Process each worksheet
For Each wks In .Worksheets

With wks.PageSetup
.LeftFooter = sCompanyName
.CenterFooter = “”
.RightFooter = sFullFileName

End With
Next wks

End With

End Sub

364

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 364

Unlike sheet and workbook class modules, the event procedures you place in your own class modules
do not automatically function. You need to create an instance of your class module and assign the
Application object to the xlApp property of the new object. The following code must be set up in a
standard module:

Public xlApplication As CAppEvents

Sub TrapApplicationEvents()
‘Create instance of class module
Set xlApplication = New CAppEvents

‘Assign the Excel Application object to the xlApp property
Set xlApplication.xlApp = Application

End Sub

All you need to do now is execute the TrapApplicationEvents procedure. The WorkbookBeforePrint
event procedure will then run when you use any Print or Preview commands, until you close the work-
book containing the event procedure.

It is possible to terminate application event trapping during the current session. Any action that resets
module-level variables and public variables will terminate application event processing, because the
class module instance will be destroyed. Actions that can cause this include editing code in the VBE and
executing the End statement in VBA code.

If you want to enable application event processing for all Excel sessions, you can place your class mod-
ule and standard module code in Personal.xlsb and execute TrapApplicationEvents in the
Workbook_Open event procedure. You can even transfer the code in TrapApplicationEvents to the
Workbook_Open event procedure. However, you must keep the Public declaration of xlApplication
in a standard module.

To illustrate, you can place the following code in the declarations section of a standard module:

Public xlApplication As CAppEvents

You can place the following event procedure in the ThisWorkbook module:

Private Sub Workbook_Open()
Set xlApplication = New CAppEvents
Set xlApplication.xlApp = Application

End Sub

Embedded Char t Events
If you want to trap events for a chart embedded in a worksheet, you use a process similar to the process
for trapping application events. First, insert a new class module into your project, or you could use the
same class module that you used for the application events. You place the following declaration at the
top of the class module:

Public WithEvents cht As Chart

365

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 365

Set up the same BeforeDoubleClick event procedure used in Chapter 10. The class module should be
as follows:

Public WithEvents cht As Chart

Private Sub cht_BeforeDoubleClick(ByVal ElementID As Long, _
ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)

Dim se As Series

‘Determine what part of chart was double clicked
Select Case ElementID

‘If legend, remove it
Case xlLegend

ActiveChart.HasLegend = False
Cancel = True

‘If chart area, display legend
Case xlChartArea

ActiveChart.HasLegend = True
Cancel = True

‘If series, determine which series
Case xlSeries

‘Arg1 is the Series index
‘Arg2 is the point index (-1 if the entire series is selected)
Set se = ActiveChart.SeriesCollection(Arg1)
If Arg2 = -1 Then

‘Whole series selected
With se.Border

If .ColorIndex = xlColorIndexAutomatic Then
.ColorIndex = 1

Else
.ColorIndex = (.ColorIndex Mod 56) + 1

End If
End With

Else

‘Data point selected
With se.Points(Arg2)

.HasDataLabel = Not .HasDataLabel
End With

End If

‘Cancel double click
Cancel = True

End Select

End Sub

366

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 366

This code allows you to double-click the chart legend to make it disappear, or double-click in the chart
area to make it reappear. If you double-click a series line, it changes color. If you select a point in a series
by clicking it, and then double-click it, it will toggle the data label on and off for that point.

Say your chart is contained in a ChartObject that is the only ChartObject in a worksheet called
Mangoes, as shown in Figure 16-5, and you have named your class module CChartEvents. In your
standard module, you enter the following:

Public chtMangoes As CChartEvents

Sub InitializeChartEvents()

‘Create instance of CChartEvents
Set chtMangoes = New CChartEvents

‘Assign reference to chart to cht property
Set chtMangoes.cht = ThisWorkbook.Worksheets(“Mangoes”).ChartObjects(1).Chart

End Sub

Figure 16-5

After executing InitializeChartEvents, you can double-click the series, points, and legend to run
the BeforeDoubleClick event procedure.

367

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 367

A Collection of UserForm Controls
When you have a number of the same type of control on a form, you often write almost identical event
procedures for each one. For example, say you want to be able to double-click the label to the left of each
of the TextBox in the UserForm in Figure 16-6 to clear the TextBox and set the focus to the TextBox. You
would normally write four almost identical event procedures, one for each label control.

Figure 16-6

Using a class module, you can write a single generic event procedure to apply to all the label controls, or
just those that need the procedure. The label controls and TextBox in the UserForm have been given cor-
responding names, as follows:

Label TextBox

lblBananas txtBananas

lblLychees txtLychees

lblMangoes txtMangoes

lblRambutan txtRambutan

The following code is entered in a class module CControlEvents:

Public WithEvents lbl As MSForms.Label
Public frm As UserForm

Private Sub lbl_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
Dim sProduct As String
Dim sTextBoxName As String

‘Get product name from label caption
sProduct = lbl.Caption

‘Construct name of associated text box
sTextBoxName = “txt” & sProduct

‘Assign zero length string and set focus
With frm.Controls(sTextBoxName)

.Text = “”

368

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 368

.SetFocus
End With

End Sub

lbl is declared with events as a UserForm label. frm is declared to be a UserForm. The generic
DblClick event procedure for lbl gets the product name from the Caption property of the label, and
converts this to the TextBox name by appending “txt” in front of the product name.

The With...End With structure identifies the TextBox object by using the TextBox name as an index into
the Controls collection of the UserForm. It sets the Text property of the TextBox to a zero-length string
and uses the SetFocus method to place the cursor in the TextBox.

The following code is entered into the class module behind the UserForm:

Dim mcolLabels As New Collection

Private Sub UserForm_Initialize()
Dim ctl As MSForms.Control
Dim clsEvents As CControlEvents

‘Loop through all controls on userform
For Each ctl In Me.Controls

‘Only process labels
If TypeOf ctl Is MSForms.Label Then

‘Instantiate class module and assign properties
Set clsEvents = New CControlEvents
Set clsEvents.lbl = ctl
Set clsEvents.frm = Me

‘Add instance to collection
mcolLabels.Add clsEvents

End If

Next ctl

End Sub

mcolLabels is declared as a new collection to hold the objects that will be created from the
CControlEvents class module. In the UserForm Initialize event procedure, the label controls are
associated with instances of CControlEvents.

The For Each...Next loop processes all the controls on the form. When it identifies a control that is a
label, using the TypeOf keyword to identify the control type, it creates a new instance of CControlEvents
and assigns it to clsEvents. The lbl property of the new object is assigned a reference to the control, and
the frm property is assigned a reference to the UserForm. The new object is then added to the mcolLabels
collection.

When the UserForm is loaded into memory, the Initialize event runs and connects the label controls
to instances of the class module event procedure. Double-clicking any label clears the TextBox to the
right and sets the focus to that TextBox, ready for new data to be typed in.

369

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 369

Referencing Classes Across Projects
When you want to run macros in another workbook, you can use Tools ➪ References in the VBE window
to create a reference to the other workbook’s VBA project. The reference appears as a special entry in the
Project Explorer, as shown in Figure 16-7.

ClassReferences.xlsm has a reference to ClassUserFormControls.xlsm, which contains the
UserForm from the previous example. The reference allows you to run procedures in standard modules
in ClassUserFormControls.xlsm from standard modules in ClassReferences.xlsm. However,
the reference does not allow you to create instances of class modules or UserForms in the referenced
workbook.

Figure 16-7

You need to be aware that some events associated with some controls are not made
available in a class module using With Events. For example, the most useful events
exposed by UserForm text boxes are BeforeUpdate, AfterUpdate, Enter, and Exit.
None of these is available in a class module. You can only handle these events in the
class module associated with the UserForm.

370

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 370

There is a way to get around this. You can indirectly access a UserForm in the referenced workbook if that
workbook has a function that returns a reference to the UserForm. There is an example of this type of func-
tion in the top-right corner of Figure 16-7. PassUserForm, in ClassUserFormControls.xlsm, is a func-
tion that assigns a new instance of frmFruitPrices to its return value. In ClassReferences.xlsm, mfrm
is declared as a generic Object type. ShowUserform assigns the return value of PassUserForm to mfrm.
mfrm can then be used to show the UserForm and access its control values, as long as the UserForm is hid-
den, not unloaded.

Summary
Class modules are used to create blueprints for new objects, such as the Employee object presented in
this chapter:

❑ Function and Sub procedures are used in the class module to create methods for the object.

❑ Public variables declare the properties for the object.

❑ However, if you need to take programmatic control when a property is assigned a value, you
can define the property using a Property Let procedure.

❑ In addition, Property Get procedures allow you to control access to property values.

To use the code in your class module, you create one or more instances of your object. For example, you
can create Mary and Jack as instances of an Employee object. You can further customize your objects by
creating your own collection, where you add all the instances of your object.

Class modules are not used to create objects to the same extent in Excel VBA as they are used in a stan-
dalone programming language such as Visual Basic. This is because Excel already contains the objects
that most Excel programmers want to use. However, Excel programmers can use class modules to:

❑ Trap application-level events, such as the WorkbookBeforePrint event that allows you to con-
trol the printing of all open workbooks

❑ Trap events in embedded charts

❑ Write a single event procedure that can be used by many instances of a particular object, such as
a TextBox control on a UserForm

❑ Encapsulate difficult code and make it easier to use

❑ Encapsulate code so you can share the code among different projects and users

See Chapter 27 for examples of encapsulation of API code.

When you create a reference to another workbook, you should make sure that the
VBA Project in the referenced workbook has a unique name. By default, it will be
named VBA Project. Click Tools ➪ VBA Project Properties and enter a new project
name.

371

Chapter 16: Class Modules

19_046432 ch16.qxp 2/16/07 10:01 PM Page 371

19_046432 ch16.qxp 2/16/07 10:01 PM Page 372

Add-ins
If you want to make your workbook invisible to the user in the Excel window, you can turn it into
an Add-in file. An Add-in can be loaded into memory using Open under the Microsoft Office but-
ton, but it generally makes more sense to access it via the Add-Ins dialog box, which is covered
later in this chapter. Either way, the file does not appear in the Excel Application window, but the
macros it contains can be executed from the user interface. Any user-defined functions it contains
can be used in worksheet calculations. The Add-ins macros can be attached to menu commands
and toolbar buttons, and the Add-in can communicate with the user through UserForms and VBA
functions such as InputBox and MsgBox.

It is widely believed that an Add-in is a compiled version of a workbook. In programming, compi-
lation involves translating the human-readable programming code into machine language. This is
not the case with an Excel Add-in. In fact, all that happens is that the workbook is hidden from the
user interface. The Add-in’s worksheets and charts can no longer be seen by anyone. Its code mod-
ules can still be viewed, as normal, in the VBE window and remain complete with comments as
well as code.

However, it is possible to create a compiled version of an Add-in. This is referred to as a COM
(Component Object Model) Add-in. COM Add-ins are discussed separately in Chapter 18.

This chapter has taken the CommandBars2.xlsm file used in Chapter 15, saved it as AddIn.xlsm
prior to converting it to Addin.xlam, and adapted the code to make it suitable for an Add-in. The
code on popup menus has been removed because it is not relevant.

In previous versions of Excel, it is not necessary to give an Add-in filename any spe-
cial extension. In Excel 2007, however, it is necessary to give an Add-in filename
an .xlam extension. It is a good idea to do so, in any case, because it identifies the
file as an Add-in and ensures that the Add-in icon appears against the file in the
Windows File Manager. The conversion of a workbook file to an Add-in file is cov-
ered later in this chapter.

20_046432 ch17.qxp 2/16/07 10:01 PM Page 373

Hiding the Code
You cannot stop users from seeing a standard workbook’s name, or an Add-in’s name, in the Project
Explorer window. However, you can stop users from expanding the workbook’s name, or Add-in’s
name, to view the component modules and user forms and the code they contain.

You prevent access to your code by putting a password on the VBA project. Select the project and use
Tools ➪ <ProjectName> Properties (where <ProjectName> is the name of your particular project), or
right-click the project in the Project Explorer window and click <ProjectName> Properties, to see the
screen shown in Figure 17-1.

Figure 17-1

After you have entered the password and confirmed it, click OK and save the file. To see the effect, close
and reopen the file. The file has been password-protected and cannot be expanded unless you supply
the password. You are prompted for the password when you try to expand the project.

It is a common misconception that Excel’s passwords cannot be broken. There are programs available
that can decipher file, workbook, and worksheet passwords, as well as the VBA project passwords for all
versions of Excel. Since the introduction of Excel 97, the workbook file password has proven a difficult
nut to crack if it contains more than just a few characters. Unfortunately, this password is useless to
developers who want users to be able to open their files and actually use them.

Creating an Add-in
Converting a workbook to an Add-in is a trivial exercise, on the face of it. Make sure that a worksheet
is active in your workbook, click the Microsoft Office button, select Save As, scroll down the drop-
down labeled Save as type:, and choose Excel Add-In (*.xlam). Excel will automatically position you

374

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 374

in a special Add-ins folder, although there is no requirement that you use it. The advantage of this
method is that you do not overwrite the original .xlsm file, and you create a file with the .xlam exten-
sion that distinguishes it as an Add-in to the operating system.

An easier way to create an Add-in is to change the IsAddin property of ThisWorkbook to True in the
Properties window, as shown in Figure 17-2.

Figure 17-2

The disadvantage of this method is that you change the original .xlsm file to an Add-in, but its .xlsm
extension remains unchanged and, when you open the file later, Excel 2007 objects to the mismatch
between the file type and the extension. You need to change the file extension to .xlam manually, using
the Windows Explorer.

Closing Add-ins
If you have just converted a workbook to an Add-in by changing its IsAddin property and saving it, or
you have loaded the Add-in using Open, there is no obvious way to close the file from the menus with-
out closing Excel. One way to close the Add-in is to go to the Immediate window and type in code that
uses the Close method, treating the Add-in as a member of the Workbooks collection:

Workbooks(“AddIn.xlsm”).Close

Add-ins do not have an Index property value in the Workbooks collection and are not included in the
Count property of the Workbooks collection, but they can be addressed by name as members of the
Workbooks collection.

Note that you must have a worksheet active when using Save As to create an Add-in.
Otherwise, you will not find the .xlam type offered as an option.

375

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 375

Another method you can use to close an Add-in is to click the filename in the Recent Documents list
while holding down Shift. You may get a message about overwriting the copy in memory (depending on
whether or not it has changed), and then you will get a message about not being able to open an Add-in
for editing (a hangover from previous versions). Click OK and the Add-in will be removed from memory.

Code Changes
In most cases, you need to make some changes to the VBA code that was written for a standard work-
book to make it suitable for an Add-in. This is particularly true if you reference data within your Add-in
workbook. Most Excel programmers write code that assumes that the workbook is the active workbook
and that the worksheet is the active sheet. Nothing is active in an Add-in, so your code must explicitly
reference the Add-in workbook and worksheet. For example, in Chapters 13 and 15, the code assumed
that it was dealing with the active workbook, using statements like the following:

With Range(“Database”)
Set rngData = .Rows(2)
Call LoadRecord
scbNavigator.Value = 2
scbNavigator.Max = .Rows.Count

End With

This code only works if the worksheet containing the name Database is active. In your Add-in code,
you need to include a reference to the workbook and worksheet. You could say:

With Workbooks(“Addins.xlsm”).Sheets(“Data”).Range(“Database”)

A more useful way to refer to the workbook containing the code is to use the ThisWorkbook property of
the Application object that refers to the workbook containing the code. This makes the code much
more flexible; you can save the workbook under any filename and the code still works:

With ThisWorkbook.Sheets(“Data”).Range(“Database”)

You can also use the object name for the sheet that you see in the Project Explorer:

With Sheet1.Range(“Database”)

If you want to be able to ignore the sheet name to allow the name Database to exist on any sheet, you
can use the following construction:

With ThisWorkbook.Names(“Database”).RefersToRange

You can edit both the workbook’s programmatic name and the sheet’s programmatic
name in the Properties window. If you change the sheet’s programmatic name, you
must also change your code. If you change the workbook’s programmatic name, you
can use the new name if you wish, but ThisWorkbook remains a valid reference,
because it is a property of the Application object and a member of <globals>.

376

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 376

Saving Changes
Another potential problem with an Add-in that contains data is that changes to the data will not be saved
automatically at the end of an Excel session. For example, Addin.xlam allows users to edit the data in the
range Database, so it is essential to save those changes before the Add-in is closed. One of the nice things
about Add-ins is that users are never bothered with prompts about saving changes. Therefore, you need to
ensure that data is saved by setting up a procedure in your VBA code. One way to do this is to add the fol-
lowing code to the Workbook_BeforeClose event procedure, or the Auto_Close procedure:

If Not ThisWorkbook.Saved Then ThisWorkbook.Save

Interface Changes
You need to bear in mind that the Add-in’s sheets will not be visible and you will not see the names of
the Add-in’s macros in the Macro dialog box. You need to create menus, toolbars, or command buttons
in other workbooks to execute your macros. Luckily, you have already built a menu and toolbar interface
in your CommandBars2.xlsm application, which has been converted to the AddIn.xlam application.

It is also a good idea to make all your code as robust as possible. You should allow for abnormal events
such as system crashes that could affect your code. The CommandBars2.xlsm application adds a menu
and a toolbar to Excel when it is opened. Before doing this, CommandBars2.xlsm deletes any previously
created versions of these command bars, which is a very good practice. It is possible that previous ver-
sions could exist following a system crash, for example.

Finally, CommandBars2.xlsm made the data list visible on the screen, so the results of an AutoFilter
were obvious. The data list is not visible when it is in an Add-in, so you need another way to show the
results of a filter. The Next and Previous buttons on the user form frmPersonal have been adapted to
show only the filtered data. The Add-in user interface appears as shown in Figure 17-3.

Figure 17-3

377

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 377

The captions on the Next and Previous buttons have been changed to Next in Dept and Previous in
Dept. The code in the Click event procedure of the two buttons has been rewritten (from that in
Chapter 15) to show only the rows in the data that are not hidden by the AutoFilter:

Private Sub cmdNext_Click()
Dim lBottomRow As Long
Dim lCheckRow As Long

With ThisWorkbook.Names(“Database”).RefersToRange
‘Determine last row to check
lBottomRow = .Rows(.Rows.Count).Row + 1
‘Start looking at row below current row
lCheckRow = rngData.Row + 1
‘Look for first row down that is not hidden
Do Until lCheckRow = lBottomRow
If .Parent.Rows(lCheckRow).Hidden = False Then
Exit Do

Else
lCheckRow = lCheckRow + 1

End If
Loop
‘If we found a visible row within the data, display it
If lCheckRow <> lBottomRow Then
scbNavigator.Value = lCheckRow + .Row - 1

End If
End With

End Sub

When you search down through the data to find a row that is not hidden, you need to take into account
that there might not be one. The first visible row will then be the row after the last row of data, so you
need to search that far. The first row to check is the row after the current row, which is the one you are
viewing. The code in the Do...Loop increments the check row until you either find a visible row or
reach the bottom row. If you have found the bottom row, do nothing. Otherwise, change the scrollbar
value to the found rows location in the database, which runs the scrollbar event procedure to show the
data that was found:

Private Sub cmdPrevious_Click()
Dim lTopRow As Long
Dim lCheckRow As Long

With ThisWorkbook.Names(“Database”).RefersToRange
‘The top row to check is the database header row
lTopRow = .Row
‘Start looking at row above current row
lCheckRow = rngData.Row - 1
‘Look for first row up that is not hidden
Do Until lCheckRow = lTopRow
If .Parent.Rows(lCheckRow).Hidden = False Then
Exit Do

Else
lCheckRow = lCheckRow - 1

End If
Loop

378

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 378

‘If we found a visible row within the data, display it
If lCheckRow <> lTopRow Then
scbNavigator.Value = lCheckRow + .Row - 1

End If
End With

End Sub

Searching up through the data to find a row that is not hidden is a similar task to searching down. Set
the top row to be checked to the header record in the database, because it might be the only unhidden
row above the current row.

The operating procedure for these buttons may not be clear initially to users, so an explanatory screen
will be included that appears when the Add-in is installed, as you will see later.

Installing an Add-in
An Add-in can be opened from the Office Open menu, as has been mentioned. However, you get better
control over an Add-in if you install it using the Add-Ins dialog box. Click the Microsoft Office button
and click Excel Options at the bottom of the dialog box. Click Add-Ins, which displays the dialog box
depicted in Figure 17-4.

Figure 17-4

Select Excel Add-ins in the Manage drop-down and click Go to display the dialog box illustrated in
Figure 17-5.

The Company Data List Add-in is the Addin.xlam file. If it does not already appear in the list, you can
click the Browse button to locate it.

379

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 379

Figure 17-5

The friendly title and description are provided by filling in the workbook’s Properties. If you have
already converted the workbook to an Add-in, you can set its IsAddin property to False to make the
workbook visible in the Excel window, click the Microsoft Office button, and then choose Prepare ➪

Properties to display the dialog box shown in Figure 17-6.

Figure 17-6

380

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 380

The Title and Comments boxes supply the information for the Add-Ins dialog box. When you have
added the required information, you can set the IsAddin property back to True and save the file.

If you change the Add-in workbook properties after adding it to the Add-Ins dialog box, the friendly text
will not appear. You need to remove the Add-in from the list and add it back again. The removal process
is covered later.

Once the Add-in is visible in the Add-Ins dialog box, you can install and uninstall the Add-in by check-
ing and unchecking the checkbox beside the Add-in’s description. When it is installed, it is loaded into
memory and becomes visible in the VBE window, and will be automatically loaded in future Excel ses-
sions. When it is uninstalled, it is removed from memory and is no longer visible in the VBE window,
and will no longer be loaded in future Excel sessions.

AddinInstall Event
Two special events are triggered when you install and uninstall an Add-in. The following code, in the
ThisWorkbook module, shows how to display a user form when the Add-in is installed:

Private Sub Workbook_AddinInstall()
frmInstall.Show

End Sub

The user form displays the information shown in Figure 17-7 for the user.

Figure 17-7

The other event is the AddinUninstall event.

Removing an Add-in from the Add-ins List
There is no easy way to remove an Add-in from the Add-Ins dialog box. One way you can do this is
to move the Add-in file from its current folder using the Windows Explorer, before opening Excel. An

381

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 381

alternative is to change the Add-in’s filename before opening Excel. The message shown in Figure 17-8
will appear when you open Excel.

Figure 17-8

Open the Add-Ins dialog box and click the checkbox against the Add-in’s entry. You will get the message
depicted in Figure 17-9.

Figure 17-9

Click Yes and the Add-in will be deleted from the list.

Summary
You can provide users with all the power of VBA customization, without cluttering the Excel screen with
a workbook, by creating an Add-in. Workbook files can be easily converted to Add-in files using Save
As, or by changing the workbook’s IsAddin property to True. It is usually necessary to make some
changes to the code when converting a workbook to an Add-in, to be able to refer to its hidden objects.

Once a file is an Add-in, it is no longer visible in the Excel window — its sheets still exist and can be used
by the Add-in, but they are not displayed. You can still see the Add-in file in the Project Explorer in the
VBE window. However, a password can be applied to lock the VBA project and prevent users from
viewing or editing the project’s modules and UserForms, just as you can lock the VBA project of a nor-
mal workbook.

An Add-in application can be accessed by users through menu commands, toolbar controls, or controls
embedded in workbooks, though you cannot use popup menus. It can obtain and display information
through functions such as MsgBox and InputBox and through UserForms. A workbook-based applica-
tion usually needs some redesign in this area before it can be converted to an Add-in application.

Although Add-in files can be opened in the same way as workbooks, they work best when added to the
Add-ins listed in the Add-Ins dialog box. Once added, they can be installed and uninstalled using the
same dialog box. If they are installed, they will open automatically in every Excel session.

382

Chapter 17: Add-ins

20_046432 ch17.qxp 2/16/07 10:01 PM Page 382

Automation Add-Ins
and COM Add-Ins

With the release of Office 2000, Microsoft introduced a new concept for creating custom Add-Ins
for all the Office applications. Instead of creating application-specific Add-Ins (xlam in Excel, dotm
in Word, and so on), you can create DLLs using Visual Basic, C++, or .NET that all the Office appli-
cations can use. Because these DLLs conform to Microsoft’s Component Object Model, they are
known as COM Add-Ins. The second half of this chapter explains how to create and implement
your own COM Add-Ins.

In Excel 2002, Microsoft extended the concept and simplified the implementation of the COM
Add-In mechanism, so their functions could be used in the same way as worksheet functions and
VBA user-defined functions. These Add-Ins are known as Automation Add-Ins.

In Excel 2007, Microsoft has further extended COM Add-Ins to support application-level cus-
tomization of the Ribbon and the creation of custom task panes.

Automation Add-Ins
Automation Add-Ins are COM DLLs (ActiveX DLLs) that have a creatable class and a public func-
tion in the creatable class. For example, when Excel can do the following with your class, you can
then call FunctionName from the worksheet:

Dim oAutoAddin As Object

Set oAutoAddin = CreateObject(“TheProgID”)
TheResult = CallByName(oAutoAddin, “FunctionName”, _

VbMethod, param1, param2, ...)

In other words, your function must satisfy the following conditions:

❑ The class must be publicly creatable (that is, have an Instancing property of Multi-Use
or Global-Multi-Use).

❑ The procedure must be a Function (as opposed to a Sub or Property procedure).

21_046432 ch18.qxp 2/16/07 10:01 PM Page 383

A Simple Add-In — Sequence
For the Excel VBA developer, the easiest way to create Automation Add-Ins is still to use Visual Basic 6.
This is because it uses the same syntax as VBA, and most Excel user-defined functions can be converted
to Automation Add-Ins by simply copying the code to a VB6 class. Although it is possible to create
Automation Add-Ins using .NET, there are a number of hoops to jump through, and creating Add-Ins
with .NET is outside the scope of this book.

In this example, you create a simple Automation Add-In using VB6. It will contain a single function to
provide a sequence of numbers as an array (which is often used in array formulas).

Start VB6 and create a new ActiveX DLL project. Rename the project Excel2007ProgRef and rename
the class Simple in the Properties window. Set the class’s Instancing property to 5–MultiUse (this
should be the default setting). By setting this property, you’re making the class publicly creatable (that is,
Excel can create instances of this class when or if you tell it to).

Type the following code into the Simple class, to calculate and return a sequence of numbers:

‘***
‘*
‘* FUNCTION NAME: Sequence
‘*
‘* DESCRIPTION: Returns a sequence of numbers, often used in array formulas.
‘*
‘* PARAMETERS: Items The number of elements in the sequence
‘* Start The starting value for the sequence, default = 1
‘* Step The step value in the sequence, default = 1
‘*
‘***
Public Function Sequence(Items As Long, Optional Start As Double = 1, _

Optional Step As Double = 1) As Variant

Dim vaResult As Variant
Dim i As Long
Dim dValue As Double

‘ Validate entries
If Items < 1 Then

Sequence = CVErr(2015) ‘#Value
Exit Function

End If

‘ Create an array for the series
ReDim vaResult(1 To Items)

‘ Get the initial value
dValue = Start

‘ Calculate all the values, populating the array
For i = 1 To Items

vaResult(i) = dValue

384

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 384

dValue = dValue + Step
Next

‘ Return the array
Sequence = vaResult

End Function

By defining the function to be Public, Excel will be able to see it and you’ll be able to call it from the
worksheet. Save the project, then use File ➪ Make Excel2007ProgRef.dll to create the DLL — you’ve just
created an Automation Add-In.

Registering Automation Add-Ins with Excel
Before you can use the Sequence function in a worksheet, you need to tell Excel about the DLL. Micro-
soft has extended the Add-Ins paradigm to include Automation Add-Ins, making their usage extremely
similar to normal Excel xla or xlam Add-Ins. The main difference is that instead of a filename,
Automation Add-Ins use the class’s ProgID, which is the Visual Basic Project name, a period, then the
class name. In this example, the ProgID of the Simple class is Excel2007ProgRef.Simple.

Through the Excel User Interface
To load an Automation Add-In through Excel’s dialog, do the following:

1. Click Office Menu ➪ Excel Options ➪ Add-Ins to show the Add-Ins options.

2. Select Excel Add-Ins in the Manage drop-down and click the Go button to show the Add-Ins
dialog.

3. Click the Automation button to show the Automation Add-Ins dialog.

4. Select the entry for Excel2007ProgRef.Simple in the list, and click OK to return to the
Add-Ins dialog.

You should see that the Automation Add-In is now included in the list of known Add-Ins and you can
load or unload it by checking or unchecking the checkbox — just like any other Add-In.

Using VBA
Automation Add-Ins are loaded in the same way as normal xla Add-Ins, but using the ProgID instead
of the filename, as in the following code:

Sub InstallAutomationAddIn()
AddIns.Add Filename:=”Excel2007ProgRef.Simple”
AddIns(“Excel2007ProgRef.Simple”).Installed = True

End Sub

In the Registry
If you are creating an installation routine for your Add-In, you may want to write directly to the registry
in order to set the Automation Add-In as installed. To do so, you need to create the following registry
entry (which will already exist if you’ve used the previous technique).

385

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 385

In the registry key:

HKEY_CURRENT_USER\Software\Microsoft\Office\12.0\Excel\Options

Create the string value:

Name = the first unused item in the series: Open, Open1, Open2, Open3, Open4, Open5
etc.
Value = /A “Excel2007ProgRef.Simple”

If you want to add the Automation Add-In to the list shown in the Add-Ins dialog, but not have it
installed, create the following registry key instead:

HKEY_CURRENT_USER\Software\Microsoft\Office\12.0\Excel\Add-In Manager

In this registry key, create an empty string value with the Name = Excel2007ProgRef.Simple.

Using Automation Add-Ins
Like normal xlam Add-Ins, the functions contained in Automation Add-Ins can be used both in the
worksheet and within VBA routines.

In the Worksheet
Once installed, you can simply type the name of the function directly into the worksheet. To test it, start
Excel 2007, install the Add-In as shown in the previous section, select a horizontal range of 5 cells, type
the function =Sequence(5,10,2), and enter the function as an array formula by pressing Shift+Ctrl+
Enter. You should see a sequence of numbers, as shown in Figure 18-1.

Figure 18-1

If the function name in the Automation Add-In conflicts with a built-in Excel function or a function
defined in a normal Excel Add-In, Excel will use the first one that it finds in the order of preference:

1. Built-in function

2. Function in xla or xlam Add-In

3. Function in Automation Add-In

To force Excel to use the function from the Automation Add-In, prefix the function name by the Add-In’s
ProgID when typing it in, as in:

=Excel2007ProgRef.Simple.Sequence(5,10,2)

386

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 386

As soon as you enter the function, Excel will remove the ProgID, but will still use it to reference the func-
tion correctly. This will probably cause some confusion if you subsequently edit the function, because
you must remember to re-enter the ProgID each time (or Excel will think it is the built-in function).

In VBA
There are a number of alternatives for using the function in VBA. Because the DLL is a simple ActiveX
DLL, you can create your own instance of it and use the function directly. This will work regardless of
whether it is installed as an Add-In, as long as you have a reference to the Excel2007ProgRef library:

Private Sub CommandButton1_Click()

‘ Assumes a reference has been created to the Excel2007ProgRef library,
‘ using Tools | References
Dim oSimple As Excel2007ProgRef.Simple
Dim vaSequence As Variant

‘ Create our own instance of the class
Set oSimple = New Excel2007ProgRef.Simple

‘ Get the sequence
vaSequence = oSimple.Sequence(5, 10, 2)

‘ Write the sequence to the sheet
ActiveCell.Resize(1, 5) = vaSequence

End Sub

If you know that the Add-In is installed, you can use the instance that Excel has created, by using
Application.Evaluate:

Private Sub CommandButton1_Click()

Dim vaSequence As Variant

‘Use Application.Evaluate – which doesn’t require a reference to the DLL
vaSequence = _

Application.Evaluate(“Excel2007ProgRef.Simple.Sequence(5,10,2)”)

‘Or the shorthand:
‘vaSequence = [Excel2007ProgRef.Simple.Sequence(5,10,2)]

‘Write the sequence to the sheet
ActiveCell.Resize(1, 5) = vaSequence

End Sub

When using Application.Evaluate, the full ProgID is only needed if there is a risk that the function
name conflicts with a built-in function, or one in a loaded xla or xlam Add-In (or workbook), so the fol-
lowing works equally well:

vaSequence = Application.Evaluate(“Sequence(5,10,2)”)

It is generally safer and more robust to use the first method — creating and using your own instance of
the class.

387

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 387

Introducing the IDTExtensibility2 Interface
The simple Add-In shown in the previous section is simple for one reason — it’s self-contained and doesn’t
need to use Excel at all. In most real-world examples, you will want to use the Excel Application object
in a number of ways:

❑ Use Application.Caller to identify the range that the function was called from

❑ Use Application.Volatile to mark an Automation Add-In function as volatile, and hence
that Excel should call the function every time it recalculates the worksheet

❑ Use Excel’s built-in functions within your Add-In

To use the Excel Application object within your Automation Add-In, you need to get (or be given) a
reference to it, which you can store in a private variable within your Add-In class. This is achieved by
implementing a specific interface within your Add-In class.

An interface is simply a predefined and fixed set of sub procedures, functions, and properties. Implementing
an interface means that you are including all those predefined sub procedures, functions, and properties
within your class. By doing this you are providing fixed, known, and predictable entry points through
which Excel can call into your class.

When Excel loads an Automation Add-In, it checks to see if the Add-In has implemented an interface
called IDTExtensibility2. If that interface has been implemented, Excel calls the OnConnection
method defined in the interface, passing a reference to itself (that is, to the Excel Application object). In
VBA terms, Excel is doing something like the following (don’t type this in):

Dim oIDT2 As IDTExtensibility2
Dim oAutoAddIn As Object

‘ Create an instance of the Automation Add-In
Set oAutoAddIn = CreateObject(“Excel2007ProgRef.Simple”)

‘ Does it implement the special interface?
If TypeOf oAutoAddIn Is IDTExtensibility2 Then

‘ Yes it does, so get a reference to that
‘ interface within the Add-In class
Set oIDT2 = oAutoAddIn

‘ And call the interface’s OnConnection method,
‘ passing the Application
oIDT2.OnConnection Me

End If

Within the Add-In’s class, you can respond to the call to OnConnection by storing the reference to the
Application object in a class-level variable, and using it in the Add-In’s functions.

The IDTExtensibility2 interface has five methods, each called at specific points in Excel’s lifetime,
though only two are used by Automation Add-Ins (the others are used by COM Add-Ins and are dis-
cussed later in the chapter). OnConnection has already been mentioned; the other method used here is
OnDisconnection. Even though they are not used, you have to include code for every routine defined
in the interface, as shown a bit later.

388

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 388

The first task in implementing an interface is to create a reference to the library in which the interface is
defined. In this case, the IDTExtensibility2 interface is defined in the Microsoft Add-In Designer
library.

Open the Excel2007ProgRef project in Visual Basic, select Project ➪ References, and put a check mark
next to the Microsoft Add-In Designer item. Because you’re interacting with Excel, you also need a refer-
ence to the Excel object library, so find the entry for Microsoft Excel 12.0 Object Library and check that
one too. Now select Project ➪ Excel2007ProgRef Properties and select the Component tab. Choose Binary
Compatibility and select the file Excel2007ProgRef.dll that you created in the previous section
(which might already be selected). This ensures that VB updates the current DLL registry entries rather
than creating new ones each time you recompile.

Then add a new class module to the project, call it Complex, set its Instancing property to 5-
MultiUse, and copy in the following code to implement the IDTExtensibility2 interface and
respond to Excel calling its entry points:

‘ Implement the IDTExtensibility2 interface, so Excel can call into the class
Implements IDTExtensibility2

‘ Declare a private reference to the Excel application
Private moXL As Excel.Application

‘ Called by Excel when the class is loaded, passing a reference to the
‘ Excel object
Private Sub IDTExtensibility2_OnConnection(ByVal Application As Object, _

ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode, _
ByVal AddInInst As Object, custom() As Variant)

‘ Set a reference to the Excel application, for use in the functions
Set moXL = Application

End Sub

‘ Called by Excel when the class is unloaded, so destroy the reference
‘ to Excel
Private Sub IDTExtensibility2_OnDisconnection(_

ByVal RemoveMode As AddInDesignerObjects.ext_DisconnectMode, _
custom() As Variant)

Set moXL = Nothing
End Sub

‘ Not used by Automation Add-Ins, but have to be included in the class to
‘ implement the interface
Private Sub IDTExtensibility2_OnAddInsUpdate(custom() As Variant)

‘ Have a comment to stop VB removing the routine when doing its tidy-up
End Sub

‘ Not used by Automation Add-Ins, but have to be included in the class to
‘ implement the interface
Private Sub IDTExtensibility2_OnBeginShutdown(custom() As Variant)

‘ Have a comment to stop VB removing the routine when doing its tidy-up

389

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 389

End Sub

‘ Not used by Automation Add-Ins, but have to be included in the class to
‘ implement the interface
Private Sub IDTExtensibility2_OnStartupComplete(custom() As Variant)

‘ Have a comment to stop VB removing the routine when doing its tidy-up
End Sub

A Complex Add-In — RandUnique
Now that you have a reference to the Excel Application object, you can use it in a more complex func-
tion. The RandUnique function shown next returns a random set of integers between two limits, without
any duplicates in the set. It uses the Excel Application object in two ways:

❑ It uses Application.Caller to identify the range containing the function, and hence the size
and shape of the array to create and return.

❑ It uses Application.Volatile to ensure the function is recalculated each time Excel calculates
the sheet.

The routine works by doing the following:

❑ It creates an array of all the integers between the given limits, with a random number associated
with each item.

❑ It sorts the array by the random number, effectively putting the array into a random order.

❑ It reads the first n items from the jumbled-up array to fill the required range.

The function has also been written to take an optional Items parameter, enabling it to be called from VBA
as well as from the worksheet. If the Items parameter is provided, the function returns a 2D array (1, n) of
unique integers. If the Items parameter is not provided, the function uses Application.Caller to iden-
tify the size of array to create. Because you’re using VB’s random number generator, it’s a good idea to add
a Randomize statement in the initial OnConnection call to ensure that you get different numbers each time
(type in the shaded rows):

‘ Called by Excel when the class is loaded, passing a reference to the
‘ Excel object
Private Sub IDTExtensibility2_OnConnection(ByVal Application As Object, _

ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode, _
ByVal AddInInst As Object, custom() As Variant)

‘ Set a reference to the Excel application, for use in the functions
Set moXL = Application

‘ Initialize the VB random number generator
Randomize

End Sub

‘***
‘*
‘* FUNCTION NAME: RandUnique
‘*

390

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 390

‘* DESCRIPTION: Returns an array of random integers between two limits,
‘* without duplication
‘*
‘* PARAMETERS: Min The lower limit for the random numbers
‘* Max The upper limit for the random numbers
‘*
‘***
Public Function RandUnique(Min As Long, Max As Long, _

Optional Items As Long) As Variant

Dim oRng As Range
Dim vaValues() As Double, vaResult() As Double
Dim iItems As Long, i As Long, iValue As Long
Dim iRows As Long, iCols As Long, iRow As Long, iCol As Long

‘ Tell Excel that this function is volatile, and should be called
‘ every time the sheet is recalculated
moXL.Volatile

‘ If we’ve been given the number of items required, use it...
If Items > 0 Then

iRows = 1
iCols = Items

Else
‘... Otherwise get the range of cells that this function is in
‘ (as an array formula)
Set oRng = moXL.Caller

iRows = oRng.Rows.Count
iCols = oRng.Columns.Count

End If

‘ How many cells in the range
iItems = iRows * iCols

‘ We can’t generate a unique set of numbers if there are more
‘ cells to fill than there are numbers to choose from,
‘ so return an error value in that case
If iItems > (Max - Min + 1) Then

RandUnique = CVErr(xlErrValue)
Exit Function

End If

‘ Fill an array with all the possible numbers to choose from,
‘ and a column of random numbers to sort on
ReDim vaValues(Min To Max, 1 To 2)
For i = Min To Max

vaValues(i, 1) = i
vaValues(i, 2) = Rnd()

Next

‘ Sort by the array by the column of random numbers,
‘ jumbling up the array

391

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 391

Sort2DVert vaValues, 2, “A”

‘ Dimension an array to be the same size as the range we’re called from
ReDim vaResult(1 To iRows, 1 To iCols)

‘ Start the counter at the beginning of the jumbled array
iValue = Min

‘ Fill the result array from the jumbled array of all values
For iRow = 1 To iRows

For iCol = 1 To iCols
vaResult(iRow, iCol) = vaValues(iValue, 1)
iValue = iValue + 1

Next
Next

‘ Return the result
RandUnique = vaResult

End Function

A QuickSort Routine
The RandUnique function uses a standard QuickSort algorithm to sort the array, reproduced next. This
is one of the fastest sorting algorithms and uses a recursive divide-and-conquer approach to sorting:

❑ Choose one of the numbers in the array (usually the middle one).

❑ Group all the numbers less than it at the top of the array, and all the numbers greater than it at
the bottom.

❑ Repeat for the top half of the array, then for the bottom half.

‘***
‘*
‘* FUNCTION NAME: SORT ARRAY - 2D Vertically
‘*
‘* DESCRIPTION: Sorts the passed array into required order, using the
‘* given key. The array must be a 2D array of any size.
‘*
‘* PARAMETERS: avArray The 2D array of values to sort
‘* iKey The column to sort by
‘* sOrder A-Ascending, D-Descending
‘* iLow1 The first item to sort between
‘* iHigh1 The last item to sort between
‘*
‘***
Private Sub Sort2DVert(avArray As Variant, iKey As Integer, _

sOrder As String, Optional iLow1, Optional iHigh1)

Dim iLow2 As Integer, iHigh2 As Integer, i As Integer
Dim vItem1, vItem2 As Variant

On Error GoTo PtrExit

If IsMissing(iLow1) Then iLow1 = LBound(avArray)

392

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 392

If IsMissing(iHigh1) Then iHigh1 = UBound(avArray)

‘ Set new extremes to old extremes
iLow2 = iLow1
iHigh2 = iHigh1

‘ Get value of array item in middle of new extremes
vItem1 = avArray((iLow1 + iHigh1) \ 2, iKey)

‘ Loop for all the items in the array between the extremes
Do While iLow2 < iHigh2

If sOrder = “A” Then
‘ Find the first item that is greater than the mid-point item
Do While avArray(iLow2, iKey) < vItem1 And iLow2 < iHigh1

iLow2 = iLow2 + 1
Loop

‘ Find the last item that is less than the mid-point item
Do While avArray(iHigh2, iKey) > vItem1 And iHigh2 > iLow1

iHigh2 = iHigh2 - 1
Loop

Else
‘ Find the first item that is less than the mid-point item
Do While avArray(iLow2, iKey) > vItem1 And iLow2 < iHigh1

iLow2 = iLow2 + 1
Loop

‘ Find the last item that is greater than the mid-point item
Do While avArray(iHigh2, iKey) < vItem1 And iHigh2 > iLow1

iHigh2 = iHigh2 - 1
Loop

End If

‘ If the two items are in the wrong order, swap the rows
If iLow2 < iHigh2 Then

For i = LBound(avArray, 2) To UBound(avArray, 2)
vItem2 = avArray(iLow2, i)
avArray(iLow2, i) = avArray(iHigh2, i)
avArray(iHigh2, i) = vItem2

Next
End If

‘ If the pointers are not together, advance to the next item
If iLow2 <= iHigh2 Then

iLow2 = iLow2 + 1
iHigh2 = iHigh2 - 1

End If
Loop

‘ Recurse to sort the lower half of the extremes
If iHigh2 > iLow1 Then Sort2DVert avArray, iKey, sOrder, iLow1, iHigh2

‘ Recurse to sort the upper half of the extremes

393

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 393

If iLow2 < iHigh1 Then Sort2DVert avArray, iKey, sOrder, iLow2, iHigh1

PtrExit:

End Sub

You must now save and recompile your project by using File ➪ Make Excel2007ProgRef.dll to create the
updated DLL.

The complex Add-In is used in the same way as the simple Sequence function shown previously. The only
difference is that you have to tell Excel to load the Excel2007ProgRef.Complex Add-In, by clicking Office
Menu ➪ Excel Options ➪ Add-Ins ➪ Manage: Excel Add-Ins ➪ Automation Add-Ins and selecting it from
the list. When entered as an array formula, the RandUnique function looks something like Figure 18-2.

Figure 18-2

COM Add-Ins
Whereas Automation Add-Ins enable you to create your own worksheet functions, COM Add-Ins pro-
vide a way to extend the user interface of Excel and all the other Office applications. They have a num-
ber of advantages over normal xla or xlam Add-Ins, including:

❑ They’re much faster to open.

❑ They’re less obtrusive (not showing up in the VBE Project Explorer).

❑ They’re more secure (being compiled DLLs).

❑ They’re not specific to a single application — the same mechanism works with all the Office
applications and the VBE itself (and any other application that uses VBA 6), allowing you to cre-
ate a single Add-In that can extend all the Office applications.

Due to a bug in some versions of VB, you may be presented with an error message
stating that there is a sharing violation with the file you are trying to replace. If this
occurs, try closing VB (making sure you have saved your project) and then reopen-
ing it. You will also get an error if the Add-In is currently loaded in an Excel session,
so you’ll need to close your Excel session(s) before rebuilding the Add-In.

394

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 394

The IDTExtensibility2 Interface (Continued)
The previous section introduced the IDTExtensibility2 interface, where you used the OnConnection
and OnDisconnection methods to obtain a reference to the Excel Application. The remaining methods
defined in the interface can be used by COM Add-Ins to respond to specific events in Excel’s lifetime.
The methods are outlined in the following table.

Method Occurs Typical Usage

OnConnection When the COM Add-In Store a reference to the Excel
is loaded by Excel. application, add menu items to

Excel’s CommandBars, and set up
event hooks.

OnStartupComplete After Excel has finished Show a startup dialog (such as
loading all Add-Ins and those in Access and PowerPoint)
initial files. or change behavior depending on

whether other Add-Ins are loaded.

OnAddInsUpdate Whenever any other If the COM Add-In depends on
COM Add-Ins are another Add-In being loaded, this
loaded or unloaded. Add-In can unload itself.

OnBeginShutdown When Excel starts its Stop the shutdown in certain
shutdown process. circumstances or perform any

pre-shutdown tidy-up routines.

OnDisconnection When the COM Add-In Save settings. If unloaded by the
is unloaded, either by user, delete any CommandBar
the user or by Excel items that were created at
shutting down. connection.

Most COM Add-Ins use only the OnConnection method (to add their menu items) and
OnDisconnection method (to remove them), though code has to exist in the class module for all
five methods to correctly implement the interface.

Registering a COM Add-In with Excel
For Automation Add-Ins, you told Excel that the Add-In exists by selecting it in the Automation Add-Ins
dialog (resulting in some entries being written to the registry). You tell Excel that a COM Add-In exists
by writing specific keys and values to specific places in the registry. When Excel starts, it looks in those
keys to see which COM Add-Ins exist, then checks the values in those keys to see how to display them in
the COM Add-Ins list, whether or not to load them, and so on. The keys for COM Add-Ins targeted to
Excel are:

❑ Registered for the current user:

HKEY_CURRENT_USER\Software\Microsoft\Office\Excel\Addins\AddInProgID

❑ Registered for all users:

HKEY_USERS\.DEFAULT\Software\Microsoft\Office\Excel\Addins\AddInProgID

395

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 395

❑ Registered for the machine:

HKEY_LOCAL_MACHINE\Software\Microsoft\Office\Excel\Addins\AddInProgID

The values are as follows.

Name Type Use

FriendlyName String The name shown in the COM Add-Ins list.

Description String The description shown in the COM Add-Ins dialog.

LoadBehavior Number Whether it is unloaded, loaded at startup, or
demand-loaded.

SatelliteDllName Number The name of a resource DLL that contains localized
names and descriptions. If used, the name and
description will be #Num, where Num is the
numeric resource ID in the Satellite DLL. Most of the
standard Office Add-Ins use this technique for their
localization.

CommandLineSafe String Whether the DLL could be called from the command
line (not applicable to Office COM Add-Ins).

Once registered correctly, the COM Add-In will show up in Excel’s COM Add-Ins dialog, where it can
be loaded and unloaded like any other Add-In. You can find the COM Add-Ins dialog by clicking Office
Menu ➪ Excel Options ➪ Add-Ins ➪ Manage: COM Add-Ins ➪ Go.

The COM Add-In Designer
Microsoft has provided a COM Add-In Designer class to assist in the creation and registration of COM
Add-Ins. It provides the following benefits:

❑ Implements the IDTExtensibility2 interface, exposing the methods as events that you can either
hook or ignore. You don’t, therefore, have to include code for unused interface methods in your
class module.

❑ Provides a form to fill in to provide the values for the registry entries used to register the COM
Add-In, and to select which application to target.

❑ When compiled, it adds code to the standard DllRegisterServer entry point in the DLL that
writes all the registry entries for you when the DLL is registered on the system (though only for
the Current User key). This greatly simplifies installation, because you can install the Add-In by
running the following command: RegSvr32ºc:\MyPath\MyComAddIn.DLL.

By way of an example, you’ll create a COM Add-In that provides a Wizard for entering the RandUnique
Automation Add-In function created in the previous section. You will continue to use Visual Basic,
building on the Excel2007ProgRef DLL from the previous section.

Open the Excel2007ProgRef project in Visual Basic. Add a new Add-In class to the project by clicking
Project ➪ Add Addin Class (if that menu item doesn’t exist, click Project ➪ Components ➪ Designers and

396

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 396

check the Addin Class entry). This adds a new Designer class and gives it the name AddInDesigner1.
Using the Properties window, change the name to COMAddIn and set the Public property to True
(ignoring any warnings). Fill in the Designer form as follows:

Add-In Display Name Excel 2007 Prog Ref Wizards

Addin Description Displays a Wizard dialog for entering the Sequence and
RandUnique Automation Addin functions, documented in the
Excel 2007 VBA Programmers Reference

Application Microsoft Excel

Application Version Microsoft Excel 12.0

Initial Load Behavior Startup

Linking to Excel
Click View ➪ Code to get to the Designer’s code module, and copy in the following code to hook into the
IDTExtensibility2 interface and link the COM Add-In to Excel by storing a reference to the Excel
Application object, passed to the Add-In in the OnConnection method:

Dim WithEvents moXL As Excel.Application

‘ The IDTExtensibility2_OnConnection method is handled by the Designer,
‘ and exposed to us through the AddInInstance_OnConnection method
Private Sub AddInInstance_OnConnection(_

ByVal Application As Object, _
ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode, _
ByVal AddInInst As Object, custom() As Variant)

Set moXL = Application
MsgBox “Connected”

End Sub

‘ The IDTExtensibility2_OnDisconnection method is handled by the Designer,
‘ and exposed to us through the AddInInstance_OnDisconnection method
Private Sub AddInInstance_OnDisconnection(_

ByVal RemoveMode As AddInDesignerObjects.ext_DisconnectMode, _
custom() As Variant)

Set moXL = Nothing
MsgBox “Disconnected”

End Sub

The Designer only creates registry entries for the current user. If you wish to install
the Add-In for all users on the machine, you will need to add your own registry
entries in the Advanced tab of the Designer form, as documented in Microsoft
KnowledgeBase article Q290868 at http://support.microsoft.com/kb/q290868/.

397

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 397

Save the project and make the Add-In DLL by clicking File ➪ Make Excel2007ProgRef.dll, and then open
Excel 2007 (note that you will not be able to subsequently rebuild the DLL if it is being accessed by Excel
at the time). As Excel opens, you’ll see a Connected message pop up as the Add-In is connected, and a
Disconnected message when Excel is closed. You will also get these messages if you load or unload the
Add-In using the COM Add-Ins dialog.

Responding to Excel’s Events
The Designer code module is a type of class module that allows you to declare a variable WithEvents,
to hook into their events. In the previous code, you hooked into the Excel Application events, enabling
the COM Add-In to respond to the users opening or closing workbooks, changing data in cells, and so
on, in the same way you can in a normal Excel Add-In. See Chapters 8 and 16 for more information
about these events.

Adding CommandBar Controls
Prior to Excel 2007, you used the CommandBars objects to create all menus and toolbars. In Excel 2007,
the Ribbon replaced the top-level menus and toolbars, but you still use the CommandBars objects for the
popup menus. This example COM Add-In adds two menu items to the cell’s right-click popup menu to
show Wizard forms to assist in the entry of Automation Add-In formulas. Using the Ribbon with COM
Add-Ins is explained later in the chapter.

Once you have a reference to the Excel Application object, you can add buttons to command bars in
the same way as described in Chapter 15. The only difference is how the code responds to a button being
clicked.

When adding a CommandBarButton from within Excel, set its OnAction property to be the name of the
VBA procedure to run when the button is clicked.

When adding a CommandBarButton from outside Excel (from within a COM Add-In), hook the button’s
Click event using a variable declared WithEvents inside the Add-In.

To use CommandBarButtons, you need a reference to the Office object library, so click Project ➪ References
and check the Microsoft Office 12.0 Object Library.

Delete any code that may already exist in the Designer’s code module (such as the example code added
in the previous section), and replace it with the following. This defines the class-level variables you’ll be
using to store the reference to the Excel Application object, and to hook the CommandBarButton’s
events:

Dim WithEvents moXL As Excel.Application
Dim WithEvents moBtn As Office.CommandBarButton

Const msAddInTag As String = “Excel2007ProgRefTag”

When you hook a command bar button’s events using the WithEvents keyword, the variable (moBtn) is
associated with the Tag property of the button it’s set to reference. All buttons that share the same Tag
will cause the Click event to fire. In this way, you can handle the click events for all your buttons

398

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 398

using a single WithEvents variable, by ensuring they all have the same Tag. You can distinguish
between buttons by giving them each a unique Parameter property as you create them in the
OnConnection method, which should be copied into the Designer’s code module:

‘ The IDTExtensibility2_OnConnection method is handled by the Designer,
‘ and exposed to us through the Add-InInstance_OnConnection method
Private Sub AddInInstance_OnConnection(_

ByVal Application As Object, _
ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode, _
ByVal AddInInst As Object, custom() As Variant)

Dim oToolsBar As CommandBar, oBtn As CommandBarButton

Set moXL = Application

‘ Get a reference to the cell right-click menus
Set oToolsBar = moXL.CommandBars(“Cell”)

‘ If our controls don’t exist on the menu bar, add them

‘ Handle errors in-line (such as the button not existing)
On Error Resume Next

‘ Check for, and add, the ‘Sequence Wizard’ button
Set oBtn = oToolsBar.Controls(“Sequence Wizard”)
If oBtn Is Nothing Then

Set oBtn = oToolsBar.Controls.Add(_
msoControlButton, ,”SequenceWiz”, , True)

With oBtn
.Caption = “Sequence Wizard”
.Style = msoButtonCaption
.Tag = msAddInTag

End With
End If

‘ Check for, and add, the ‘RandUnique Wizard’ button
Set oBtn = Nothing
Set oBtn = oToolsBar.Controls(“RandUnique Wizard”)
If oBtn Is Nothing Then

Set oBtn = oToolsBar.Controls.Add(_
msoControlButton, , “RandUniqueWiz”, , True)

With oBtn
.Caption = “RandUnique Wizard”
.Style = msoButtonCaption
.Tag = msAddInTag

End With
End If

‘ Set the WithEvents object to hook these buttons. All buttons
‘ that share the same Tag property will fire the moBtn_Click event
Set moBtn = oBtn

End Sub

399

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 399

Although you set the Temporary parameter to True when adding the controls, it is good practice to
delete them when the Add-In is unloaded, using the OnDisconnection event:

‘ The IDTExtensibility2_OnDisconnection method is handled by the Designer,
‘ and exposed to us through the AddInInstance_OnDisconnection method
Private Sub AddInInstance_OnDisconnection(_

ByVal RemoveMode As AddInDesignerObjects.ext_DisconnectMode, _
custom() As Variant)

Dim oCtl As CommandBarControl

‘ Find and remove the buttons
For Each oCtl In moXL.CommandBars.FindControls(Tag:=msAddInTag)

oCtl.Delete
Next

Set moBtn = Nothing
Set moXL = Nothing

End Sub

In the Click event, you check the Parameter property of the button that was clicked and show the
appropriate form. For this example, just add two blank forms to the project, giving them the names
frmSequenceWiz and frmRandUniqueWiz:

‘ The moBtn_Click event is fired when any of our commandbar buttons are
‘ clicked. This is because the event handler is associated with the Tag
‘ property of the button, not the button itself. Hence, all buttons that
‘ have the same Tag will fire this event.
Private Sub moBtn_Click(ByVal Ctrl As Office.CommandBarButton, _

CancelDefault As Boolean)

‘ Check that a cell range is selected
If TypeOf moXL.Selection Is Range Then

‘ Run the appropriate form, depending on the control’s Parameter
Select Case Ctrl.Parameter

Case “SequenceWiz”
frmSequenceWiz.Show vbModal

Case “RandUniqueWiz”
frmRandUniqueWiz.Show vbModal

End Select
Else

‘ Display an error message if a range is not selected
MsgBox “A range must be selected to run the Wizard.”, vbOKOnly, _

“Excel 2007 Prog Ref Wizards”
End If

End Sub

400

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 400

Save the project and use File ➪ Make Excel2007ProgRef.dll to create the DLL, which also adds the reg-
istry entries for Excel to see it. Start Excel 2007, right-click a cell, and click the Sequence Wizard menu to
show the Wizard form.

Using a COM Add-In from VBA
It is possible (though unfortunately quite rare) for the creator of a COM Add-In to provide program-
matic access to the Add-In from VBA. This would be done either to:

❑ Expose the Add-In’s functionality for use through code

❑ Provide a mechanism for controlling or customizing the Add-In

It is achieved by setting the Add-In instance’s Object property to reference the COM Add-In class
(or a separate class within the Add-In), and then exposing the required functionality using Public prop-
erties and methods, just like any other class. This example provides yet another way of getting to the
Sequence and RandUnique functions.

Add the following lines to the bottom of the AddInInstance_OnConnection routine, to provide a ref-
erence to the Add-In class using the Add-In’s Object property:

‘ Set the Add-In instance’s Object property to be this class, providing
‘ access to the Com Add-In’s object model from within VBA. Note that we
‘ don’t use Set here!
AddInInst.Object = Me

And add the following code to the bottom of the Designer’s class module, to create and return new
instances of our Simple and Complex classes:

‘ Property to return a reference to our Simple class, providing access
‘ from VBA:
‘vaSeq = Application.ComAddIns(“Excel2007ProgRef.ComAddIn”).Object _
‘ .SimpleFuncs.Sequence(...)
Public Property Get SimpleFuncs() As Simple

Set SimpleFuncs = New Simple
End Property

‘ Property to return a reference to our Complex class, providing access
‘ from VBA:
‘vaRU = Application.ComAddIns(“Excel2007ProgRef.ComAddIn”).Object _
‘ .ComplexFuncs.RandUnique(...)
Public Property Get ComplexFuncs() As Complex

Set ComplexFuncs = New Complex
End Property

From within Excel, you can then use the following code to access the Sequence function, going through
the COM Add-In and its Object property:

Private Sub CommandButton1_Click()

Dim vaSequence As Variant

‘ Get the sequence using the COM Add-In

401

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 401

vaSequence = Application.ComAddIns(“Excel2007ProgRef.ComAddIn”) _
.Object.SimpleFuncs.Sequence(5, 10, 2)

‘ Write the sequence to the sheet
ActiveCell.Resize(1, 5) = vaSequence

End Sub

The key point about using this method is that you are accessing the same instance of the class that Excel
is using for the Add-In, allowing you to manipulate, query, or control that Add-In from VBA. For more
complex COM Add-Ins, the same method can be used to provide access to a full object model for con-
trolling the Add-In.

Adding Ribbon Controls
Chapter 14 explained how VBA applications can modify the Ribbon by creating custom tabs, groups,
or controls. This was done by creating a text file containing the XML for the custom UI definition and
adding it to the XML workbook file. When Excel loads the workbook, it sees the custom part and pro-
cesses it, creating custom controls. As designed, this allows you to create document-level RibbonX cus-
tomizations, but that chapter demonstrated how to achieve application-level customizations by simply
using a standard Excel XML Add-In (.xlam). The “official” approach to application-level UI customiza-
tions is to use a COM Add-In.

Obviously, COM Add-Ins don’t have an XML workbook that Excel can check for any custom UI XML.
Instead, each time Excel 2007 loads a COM Add-In, it checks to see if the Add-In implements another
specific interface, IRibbonExtensibility. If that interface is found, Excel calls its GetCustomUI func-
tion and the Add-In returns the custom UI XML as text. After that point, the behavior of a COM Add-In
is exactly the same as the VBA code shown in Chapter 14, except that all the callbacks must exist in the
same class that implements the IRibbonExtensibility interface. To demonstrate this concept, this
section creates a simple COM Add-In that uses RibbonX to add a menu to Excel’s View tab. Start by cre-
ating a new VB6 Add-In project and performing the following steps to configure it correctly:

1. Remove the default form.

2. Delete all the code from the Designer Connect class.

3. Edit the Designer to give it a meaningful name and description, targeting Excel 12.0 and loading
at startup.

4. Change the project name from MyAddIn to XLVBARibbonX.

5. Click Project ➪ References and uncheck the reference to the Visual Basic 6.0 Extensibility library.

6. Check that the project references the Microsoft Excel 12.0 Object Library and the Microsoft
Office 12.0 Object Library (which contains the definition of the IRibbonExtensibility inter-
face), adding them if they’re missing.

7. Copy the following code into the Connect class (which can also be found in the XLVBARibbonX
folder in the code download for this chapter):

‘Implement an interface to tell Excel we’re doing things with RibbonX
Implements IRibbonExtensibility

‘Store a reference to the ribbon, so we can invalidate controls when needed

402

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 402

Dim moRibbon As IRibbonUI

‘Called by Excel at startup. Provide the custom UI.
Private Function IRibbonExtensibility_GetCustomUI(ByVal RibbonID As String) _

As String
Dim sXML As String

‘Build the XML for the custom UI
‘Here, we’re Adding a simple button to the middle of Excel’s View tab
‘Typically, this would be read from a resource file
sXML = “”
sXML = sXML & “<customUI “ & _

“xmlns=””http://schemas.microsoft.com/office/2006/01/customui”” “ & _
“onLoad=””CustomUI_OnLoad””>”

sXML = sXML & “ <ribbon>”
sXML = sXML & “ <tabs>”
sXML = sXML & “ <tab idMso=””TabView””>”
sXML = sXML & “ <group id=””XLVBAView”” “
sXML = sXML & “ insertAfterMso=””GroupViewShowHide”” “
sXML = sXML & “ label=””VBA Prog Ref””>”
sXML = sXML & “ <button id=””CTPTest”” label=””A Test”” “
sXML = sXML & “ imageMso=””DateAndTimeInsert”” size=””large”” “
sXML = sXML & “ onAction=””CTPTest_Click””/>”
sXML = sXML & “ </group>”
sXML = sXML & “ </tab>”
sXML = sXML & “ </tabs>”
sXML = sXML & “ </ribbon>”
sXML = sXML & “</customUI>”

IRibbonExtensibility_GetCustomUI = sXML
End Function

‘Called by Excel to provide the Ribbon object,
‘which is used to invalidate controls, forcing a refresh.
Public Sub CustomUI_OnLoad(ribbon As IRibbonUI)

Set moRibbon = ribbon
End Sub

‘Show a message when the button is clicked
Public Sub CTPTest_Click(control As IRibbonControl)

MsgBox “Clicked me!”
End Sub

Compile the DLL, start Excel 2007, click the View tab, and click the Date Picker button in the middle of
the tab. You should get the Clicked me! message box.

Note that the GetCustomUI function is only called once in the life of the COM Add-In, at startup. That
means you have only the one opportunity to provide your custom UI XML. Although you can change
the visibility of controls, in practice that means you are extremely limited in the degree to which you can
change your UI in response to changes within Excel (such as opening or closing workbooks). This is a
serious deficiency of the COM Add-In RibbonX extensibility model. Instead of being asked to provide
CustomUI XML at startup, Excel should provide a reference to a class factory the Add-In could use to
create or modify UI customizations at any time during its life. As you’ll see later in this chapter, that
design is used for custom task panes and it works extremely well.

403

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 403

Creating Custom Task Panes
When task panes were introduced in Office XP, developers were soon eager to use them for their own con-
tent. In Office 2007, Microsoft has answered that request by adding the ability for COM Add-Ins to create
custom task panes (CTPs), using custom ActiveX controls to define their content. Just like RibbonX,
the COM Add-In tells Excel that it contains a custom task pane by implementing another interface,
ICustomTaskPaneConsumer. A COM Add-In, therefore, needs to do the following to create a CTP:

❑ Implement the ICustomTaskPaneConsumer interface, which contains a single method,
CTPFactoryAvailable.

❑ The CTPFactoryAvailable procedure is passed a reference to Excel’s CTP factory class, which
the Add-In stores in a module-level variable.

❑ Design a custom ActiveX control to provide the content of the CTP.

❑ Create, show, and hide the CTP in response to a user trigger.

From a VBA developer’s perspective, the restriction that you can only use ActiveX controls to provide
the CTP content is a rather nasty one, because you can’t create ActiveX controls using VBA. There are,
however, two ways to get around that. The first is to realize that there are a number of readily available
ActiveX controls that you can drop into a CTP, such as the Web Browser control. All you need is a simple
COM Add-In that exposes the capability to create new CTPs to VBA, then use VBA code to create a CTP
containing a Web Browser control and automate the Web Browser control to show an HTML page. To
create the COM Add-In, follow the steps listed in the “Adding Ribbon Controls” section, give the project
the name OACTPVBA, and copy in the following code to implement the ICustomTaskPaneConsumer
interface and expose CTP creation to VBA:

‘Tell Excel that we’re working with custom task panes
Implements ICustomTaskPaneConsumer

‘Store a reference to Excel’s CTP factory class
Dim moCTPFactory As ICTPFactory

‘Expose the functions in this class to VBA
Private Sub AddInInstance_OnConnection(ByVal Application As Object, _

ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode, _
ByVal AddInInst As Object, custom() As Variant)

AddInInst.object = Me
End Sub

‘Called by Excel when the Add-In is loaded,
‘providing a factory object that we use to
‘create custom task panes.
Private Sub ICustomTaskPaneConsumer_CTPFactoryAvailable(_

ByVal CTPFactoryInst As Office.ICTPFactory)
‘Store a reference to the factory object, for use when required
Set moCTPFactory = CTPFactoryInst

End Sub

‘Expose CTP-creation to VBA, e.g. to create a web browser task pane:
‘Dim moCTP As CustomTaskPane
‘Set moCTP = Application.ComAddIns(“OACTPVBA.Connect”).Object

404

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 404

‘ .CreateTaskPane(“Internet Explorer”,”Shell.Explorer.2”)
Public Function CreateTaskPane(ByVal sTitle As String, _

ByVal sProgID As String) As Office.CustomTaskPane

On Error Resume Next
Set CreateTaskPane = moCTPFactory.CreateCTP(sProgID, sTitle)

End Function

Compile the DLL, start Excel, and use the following VBA code in a standard module to show Google in a
custom task pane:

‘Keep a reference to the CTP, so we can show/hide it
Dim moCTP As CustomTaskPane

Sub ShowGoogleCTP()

‘Create the CTP containing a Web Browser control
Set moCTP = Application.COMAddIns(“OACTPVBA.Connect”).Object _

.CreateTaskPane(“Internet Explorer”, “Shell.Explorer.2”)

‘Show the CTP
moCTP.Visible = True

‘Navigate to Google
moCTP.ContentControl.navigate “http://www.google.com”

End Sub

It’s enlightening to compare the way in which CTPs have been implemented to the RibbonX mechanism.
For CTPs, when the COM Add-In starts up, Excel passes a factory class into the CTPFactoryAvailable
method, which is stored in a module-level variable. You can then use the factory class to create new
instances of custom task panes at any time you like. In turn, that allows you to very easily expose the
new CTP functionality to VBA. In contrast, the RibbonX design requires you to specify all customization
as soon as the COM Add-In starts, so you can only create one customization snippet and can neither
expose the RibbonX features to VBA nor create dynamic interfaces that respond to the changing Excel
environment.

Showing VBA UserForms as Task Panes
While CTPs are a very useful addition to Excel VBA, you’re either limited by the set of generally avail-
able ActiveX controls or you need to learn how to create your own ActiveX controls. Although this is
beyond the scope of this book, it is actually quite easy to do, using either VB6 or .NET.

There is, however, a third possibility, which is for someone to create a custom ActiveX control that can in
turn host a normal VBA UserForm — and we’ve done exactly that! The OACTPUserformHost is a single
ocx file containing both a COM Add-In and an ActiveX control, and it’s available as one of the download
files for this chapter from www.wrox.com.

Load the COM Add-In by using the Add... button on the COM Add-Ins dialog (Office Menu ➪ Excel
Options ➪ Add-Ins ➪ Manage: COM Add-Ins ➪ Go), choosing Files of Type: All Files, and navigating to
the OACTPUserformHost.ocx file.

405

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 405

You can show a standard VBA UserForm as a task pane by including the following code within the
UserForm’s code module. You’ll first need to add a Project reference to the OACTPUserformHost library,
listed as Custom Task Pane Userform Host in the Project References dialog. If not in the list, it can be
added by clicking the Browse button, choosing Files of Type: ActiveX Controls, and navigating to the
OACTPUserformHost.ocx file.

‘A WithEvents object variable to refer to the Custom Task Pane Userform Host
‘object. Requires a reference to OACTPUserformHost.OCX, listed as
‘“Custom Task Pane Userform Host” in the Project References dialog
Dim WithEvents moCTP As CTPUserformHost

‘ Public method to show a VBA userform in a custom
‘ task pane. Typical usage is:
‘
‘ UserformName.ShowAsTaskPane
‘
Public Sub ShowAsTaskPane()

If moCTP Is Nothing Then
‘Create a task pane with the required title
Set moCTP = Application.COMAddIns(“OACTPUserformHost.Connect”).Object _

.CreateUserformTaskPaneHost(Me, “Hello World”)

With moCTP
‘Set the task pane’s properties

‘(default = msoCTPDockPositionRestrictNone)
.DockPositionRestrict = msoCTPDockPositionRestrictNone

‘(default = msoCTPDockPositionRight)
.DockPosition = msoCTPDockPositionRight

‘Tell the task pane whether to handle the userform’s resizing
‘(default = False)
.HandleResizing = True

End With
End If

‘Make the task pane visible
moCTP.Visible = True

End Sub

‘Close the CTP when the form is unloaded
Private Sub UserForm_Terminate()

On Error Resume Next
moCTP.Visible = False
Set moCTP = Nothing

End Sub

A call to Userform.ShowAsTaskPane uses the OACTPUserformHost COM Add-In to create a custom
task pane hosting the UserForm, which is then initialized and displayed. As well as acting as a host for
the UserForm, the COM Add-In also handles the form’s resizing, using the technique for resizable forms
shown in Chapter 27.

406

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 406

Putting it all Together
By adding extra interfaces that a COM Add-In can choose to implement, Microsoft has created an easily
extensible architecture that works across all the Office applications and across multiple development
platforms — commonly VB6 and .NET. A feature-rich COM Add-In can implement all three interfaces
(IDTExtensibility2, IRibbonExtensibility, and ICustomTaskPaneConsumer) to deliver its func-
tionality. The sample XLVBADatePicker COM Add-In does this to create a custom task pane that con-
tains the standard Month View control, with a RibbonX toggle button to control its visibility. To make it
all work seamlessly, it handles the following events:

❑ When the toggle button is clicked, the task pane is shown or hidden.

❑ When the user closes the task pane, the toggle button is restored.

❑ When a date is selected in the task pane, the value is put into the active cell.

❑ When a cell containing a date is selected, the task pane shows that date in the calendar.

You can find the complete code for the COM Add-In at www.wrox.com, in the XLVBADatePicker folder
in the sample downloads for this chapter.

Linking to Multiple Office Applications
The start of this chapter mentioned that one of the fundamental advantages of COM Add-Ins over xla
or xlam Add-Ins is that the same DLL can target multiple Office applications. All you need to do to
achieve this is to add a new Add-In Designer class for each application you want to target, in exactly
the same way you added the Designer to target Excel previously in the chapter. Of course, you still
have to handle the idiosyncrasies of each application separately.

In the following simple example, you make the Sequence function available through the COM Add-Ins
collection in Access and use it to populate a list box on a form.

Start by opening the Excel2007ProgRef project and adding a new Add-In class to the project. In the
Properties window, change its name to AccessAddIn, set its Public property to True (ignoring any
warnings), and complete the Designer’s form as follows:

Add-In Display Name Excel 2007 Prog Ref Sequence

Addin Description Example to expose the Sequence function through Access’ COM
Addins.

Application Microsoft Access

Application Version Microsoft Access 12.0

Initial Load Behavior Startup

Click View ➪ Code and copy the following into the Designer’s code module:

‘ Simple COM Add-In to provide the Sequence function to MS Access,
‘ through Access’ COMAdd-Ins collection

Private Sub Add-InInstance_OnConnection(ByVal Application As Object, _

407

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 407

ByVal ConnectMode As Add-InDesignerObjects.ext_ConnectMode, _
ByVal Add-InInst As Object, custom() As Variant)

‘ Set the Add-In instance’s Object property to be this class,
‘ providing access to the Com Add-In’s object model from within VBA.
‘ Note that we don’t use Set here!
Add-InInst.object = Me

End Sub

‘ Property to return a reference to our Simple class, providing access
‘ from VBA:
‘vaSeq = Application.ComAdd-Ins(“Excel2007ProgRef.ComAdd-In”).Object _
‘ .SimpleFuncs.Sequence(...)
Public Property Get SimpleFuncs() As Simple

Set SimpleFuncs = New Simple
End Property

Save the project and use File ➪ Make Excel2007ProgRef.dll to build the DLL. Start Access 2007 with a
blank database, create a new form, add a list box, and copy the following code into the form’s code
module:

Private Sub Form_Load()

Dim vaSequence As Variant
Dim i As Integer

‘ Use the COMAdd-In to get the sequence
vaSequence = Application.COMAddIns(“Excel2007ProgRef.AccessAddIn”) _

.Object.SimpleFuncs.Sequence(5, 10, 2)

‘ Add the sequence to the list box
List0.RowSourceType = “Value list”
For i = LBound(vaSequence) To UBound(vaSequence)

List0.AddItem vaSequence(i)
Next

End Sub

Save the form and run it to show the COM Add-In at work (see Figure 18-3).

Figure 18-3

408

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 408

Summary
In Excel 2007, Microsoft has provided a number of ways to extend Excel using Add-Ins written in Visual
Basic, or any other language that can produce Component Object Model (COM) DLLs, including .NET:

❑ With Automation Add-Ins, you can add new functions for use in Excel worksheets and VBA
routines.

❑ The performance of Automation and COM Add-Ins is typically much faster than their VBA
equivalents.

❑ With COM Add-Ins, you can add new menu items and respond to Excel’s events. You can also
use these to create Add-Ins that work across multiple Office applications and the VBE.

❑ The COM Add-In can provide programmatic access to the behavior of the Add-In, such as
enabling or disabling its actions, or using its functions.

❑ In Excel 2007, COM Add-Ins can be used for application-level customization of the Ribbon or to
create custom task panes.

❑ The Custom Task Pane extensibility model can be used to create multiple CTPs within a single
COM Add-In and expose the CTP-creation features to VBA.

❑ The RibbonX extensibility model forces you to declare your UI customizations as soon as the
COM Add-In is loaded, preventing you from exposing RibbonX to VBA or creating highly
dynamic interfaces.

409

Chapter 18: Automation Add-Ins and COM Add-Ins

21_046432 ch18.qxp 2/16/07 10:01 PM Page 409

21_046432 ch18.qxp 2/16/07 10:01 PM Page 410

Interacting with Other
Office Applications

The Office application programs Excel, Word, PowerPoint, Outlook, and Access all use the same
VBA language. Once you understand VBA syntax in Excel, you know how to use VBA in all the
other applications. Where these applications differ is in their object models.

One of the really nice things about the common VBA language is that all the Office applications
are able to expose their objects to each other, and you can program interaction between all of the
applications from any one of them. To work with Word objects from Excel, for example, you only
need to establish a link to Word, and then you have access to its objects as if you were program-
ming with VBA in Word itself.

This chapter explains how to create the link in a number of different ways, and presents some sim-
ple examples of programming the other application. In all cases, the code is written in Excel VBA,
but it could easily be modified for any other Office application. The code is equally applicable to
products outside Office that support the VBA language. These include other Microsoft products
such as Visual Basic and SQL Server. There is also a growing list of non-Microsoft products that
can be programmed in the same way.

Establishing the Connection
Once you have made a connection with an Office application, its objects are exposed for automa-
tion through a type library. There are two ways to establish such a connection: late binding and
early binding. In either case, you establish the connection by creating an object variable that refers
to the target application, or a specific object in the target application. You can then proceed to use
the properties and methods of the object referred to by the object variable.

In late binding, you create an object that refers to the Office application before you make a link
to the Office application’s type library. In earlier versions of the Office applications, it was neces-
sary to use late binding, and you will still see it used because it has some advantages over early

22_046432 ch19.qxp 2/16/07 10:02 PM Page 411

binding. One advantage is that you can write code that can detect the presence or absence of the
required type library on the PC running your code, and link to different versions of applications based
on decisions made as the code executes.

Late binding is very useful when you have to run an application under different versions of Office.
Office happily upgrades an application’s early bound links when those links are to an earlier version.
Unfortunately, the opposite is not true. An application linked to a later version of Office than the version
it is running under gives errors. The problem is compounded if users can save the changes to the links in
applications on a network. Because late binding does not create the links until execution time, the links
are always to the version it is running under.

The disadvantage of late binding is that the type library for the target application is not accessed when
you are writing your code. Therefore, you get no help information regarding the application, you cannot
reference the intrinsic constants in the application, and when the code is compiled, the references to the
target application may not be correct, because they cannot be checked. The links are only fully resolved
when you try to execute the code, and this takes time. It is also possible that coding errors may be
detected at this point that cause your program to fail.

Early binding is supported by all the Office applications, from Office 97 onward. Code that uses early
binding executes faster than code using late binding, because the target application’s type library is pre-
sent when you write your code. Therefore, more syntax and type checking can be performed, and more
linkage details can be established, before the code executes.

It is also easier to write code for early binding because you can see the objects, methods, and properties
of the target application in the Object Browser, and as you write your code, you will see automatic tips
appear, such as a list of related properties and methods after you type an object reference. You can also
use the intrinsic constants defined in the target application.

Late Binding
The following code creates an entry in the Outlook calendar. The code uses the late binding technique:

Sub MakeOutlookAppointment()
‘Example of Outlook automation using late binding
‘Creates an appointment in Outlook

Dim olApp As Object ‘Reference to Outlook
Dim olAppointment As Object ‘Reference to Outlook Appointment
Dim olNameSpace As Object ‘Reference to Outlook NameSpace
Dim olFolder As Object ‘Dummy reference to initialize Outlook
Const olAppointmentItem = 1 ‘Outlook intrinsic constants not available
Const olFolderInbox = 6 ‘Outlook intrinsic constants not available

‘Create link to Outlook

In the following examples that involve Outlook, you could be interrupted by your
virus scanning software when accessing Outlook, because the scanner could identify
your actions as possible virus activity.

412

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 412

Set olApp = CreateObject(“Outlook.Application”)
Set olNameSpace = olApp.GetNamespace(“MAPI”)
Set olFolder = olNameSpace.GetDefaultFolder(olFolderInbox)
Set olAppointment = olApp.CreateItem(olAppointmentItem)

‘Set details of appointment
With olAppointment

.Subject = “Discuss Whitefield Contract”

.Start = DateSerial(2007, 2, 26) + TimeSerial(9, 30, 0)

.End = DateSerial(2007, 2, 26) + TimeSerial(11, 30, 0)

.ReminderPlaySound = True

.Save
End With

‘Release object variable
Set olApp = Nothing

End Sub

The basic technique in programming another application is to create an object variable referring to
that application. The object variable in this case is olApp. You then use olApp (as you would use the
Application object in Excel) to refer to objects in the external application’s object model. In this case,
the CreateItem method of Outlook’s Application object is used to create a reference to a new
AppointmentItem object.

You have also created references to the NameSpace object and the Inbox folder. This is not because you
want to use these objects. It is a way of initializing Outlook that has been found to be effective. If you
don’t do this, errors can occur.

Because Outlook’s intrinsic constants are not available in late binding, you need to define your own con-
stants, such as olAppointmentItem here, or substitute the value of the constant as the parameter value.
You go on to use the properties and methods of the Appointment object in the With...End With struc-
ture. Note the times have been defined using the DateSerial and TimeSerial functions to avoid ambi-
guity or problems in an international context. See Chapter 25 for more details on international issues.

By declaring olApp and olAppointment as the generic Object type, you force VBA to use late binding.
VBA cannot resolve all the links to Outlook until it executes the CreateObject function.

The CreateObject input argument defines the application name and class of object to be created.
Outlook is the name of the application and Application is the class. Many applications allow you to
create objects at different levels in the object model. For example, Excel allows you to create WorkSheet
or Chart objects from other applications, using Excel.WorkSheet or Excel.Chart as the input param-
eter of the CreateObject function.

It is good programming practice to close the external application when you are finished with it and set
the object variable to Nothing. This releases the memory used by the link and the application.

If you run this macro, nothing will happen in Excel at all. However, open up Outlook, and in the
Calendar you will find that the appointment has been added for the morning of February 26, as shown
in Figure 19-1.

413

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 413

Figure 19-1

Early Binding
If you want to use early binding, you need to establish a reference to the type library of the external
application in your VBA project. You do this from the VBE by clicking Tools ➪ References, which dis-
plays the dialog box shown in Figure 19-2.

Figure 19-2

414

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 414

You create a reference by checking the box next to the object library. Once you have a reference to an
application, you can declare your object variables as the correct type. For example, you could declare
olEntry as an AddressEntry type, as follows:

Dim olEntry As AddressEntry

VBA will search through the type libraries, in the order shown from the top down, to find references to
object types. If the same object type is present in more than one library, it will use the first one found.
You can select a library and click the Priority buttons to move it up or down the list to change the order
in which libraries are searched. There is no need to depend on priority, however. You can always qualify
an object by preceding it with the name of the main object in the library. For example, instead of using
AddressEntry, use Outlook.AddressEntry.

The following example uses early binding. It lists all the names of the entries in the Outlook Contacts
folder, placing them in column A of the active worksheet. Make sure that you have created a reference to
the Outlook object library before you try to execute it, or you will get the error “User-defined type not
defined”:

Sub DisplayOutlookContactNames()
‘Example of Outlook automation using early binding
‘Lists all the Contact names from Outlook in the A column
‘of the active sheet
Dim olApp As Outlook.Application
Dim olNameSpace As Outlook.NameSpace
Dim olFolder As Outlook.Folder
Dim olAddresslist As AddressList
Dim olEntry As AddressEntry
Dim i As Long

‘Create link to Outlook Contacts folder
Set olApp = New Outlook.Application
Set olNameSpace = olApp.GetNamespace(“MAPI”)
Set olFolder = olNameSpace.GetDefaultFolder(olFolderInbox)
Set olAddresslist = olNameSpace.AddressLists(“Contacts”)
For Each olEntry In olAddresslist.AddressEntries

i = i + 1
‘Enter contacts in A column of active sheet
Cells(i, 1).Value = olEntry.Name

Next

‘Release object variable
Set olApp = Nothing

End Sub

Here, you directly declare olApp to be an Outlook.Application type. The other Dim statements also
declare object variables of the type you need. If the same object name is used in more than one object
library, you can precede the object name by the name of the application, rather than depend on the priority
of the type libraries. You did this with Outlook.NameSpace to illustrate the point. The New keyword is
used when assigning a reference to Outlook.Application to olApp to create a new instance of Outlook.

415

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 415

The fact that you declare the variable types correctly makes VBA use early binding. You could use the
CreateObject function to create the olApp object variable, instead of the New keyword, without affect-
ing the early binding. However, it is more efficient to use New.

Opening a Document in Word
If you want to open a file created in another Office application, you can use the GetObject function to
directly open the file. However, it is just as easy to open an instance of the application and open the file
from the application. Another use of GetObject is examined shortly.

The following code copies a range in Excel to the clipboard. It then starts a new instance of Word, opens
an existing Word document, and pastes the range to the end of the document. Because the code uses
early binding, make sure you establish a reference to the Word object library:

Sub CopyTableToWordDocument()
‘Example of Word automation using early binding
‘Copies range from workbook and appends it to existing Word document
Dim wdApp As Word.Application

‘Copy A1:B6 in Table sheet
ThisWorkbook.Sheets(“Table”).Range(“A1:B6”).Copy

‘Establish link to Word
Set wdApp = New Word.Application
With wdApp

‘Open Word document
.Documents.Open Filename:=”C:\VBA_Prog_Ref\Chapter19\Table.docx”
With .Selection

‘Go to end of document and insert paragraph
.EndKey Unit:=wdStory
.TypeParagraph
‘Paste table
.Paste

End With
.ActiveDocument.Save
‘Exit Word
.Quit

End With
‘Release object variable
Set wdApp = Nothing

End Sub

If you are not familiar with the Word object model, you can use the Word macro
recorder to discover which objects, properties, and methods you need to use to per-
form a Word task that you can do manually.

416

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 416

The New keyword creates a new instance of Word, even if Word is already open. The Open method of the
Documents collection is used to open the existing file. The code then selects the end of the document,
enters a new empty paragraph, and pastes the range. The document is then saved and the new instance
of Word is closed.

Accessing an Active Word Document
Say you are working in Excel, creating a table. You also have Word open with a document active, into
which you want to paste the table you are creating. You can copy the table from Excel to the document
using the following code. There is no need to establish a reference to Word if you declare wdApp as an
Object type, because VBA will use late binding. On the other hand, you can establish a reference to
Word, declare wdApp as a Word.Application type, and VBA will use early binding. In this example,
you are using early binding:

Sub CopyTableToOpenWordDocument()
‘Example of Word automation using late binding
‘Copies range from workbook and appends it to
‘ a currently open Word document

Dim wdApp As Word.Application

‘Copy Range A1:B6 on sheet named Table
ThisWorkbook.Sheets(“Table”).Range(“A1:B6”).Copy

‘Establish link to open instance of Word
Set wdApp = GetObject(, “Word.Application”)
With wdApp.Selection

‘Go to end of document and insert paragraph
.EndKey Unit:=wdStory
.TypeParagraph
‘Paste table
.Paste

End With
‘Release object variable
Set wdApp = Nothing

End Sub

The GetObject function has two input parameters, both of which are optional. The first parameter can
be used to specify a file to be opened. The second can be used to specify the application program to
open. If you do not specify the first parameter, GetObject assumes you want to access a currently open
instance of Word. If you specify a zero-length string as the first parameter, GetObject assumes you
want to open a new instance of Word.

You can use GetObject with no first parameter, as in the previous code, to access a current instance of
Word that is in memory. However, if there is no current instance of Word running, GetObject with no
first parameter causes a run-time error.

417

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 417

Creating a New Word Document
Say you want to use a current instance of Word if one exists, or if there is no current instance, you want
to create one. In either case, you want to open a new document and paste the table into it. The following
code shows how to do this. Again, you are using early binding:

Sub CopyTableToAnyWordDocument()
‘Example of Word automation using early binding
‘Copies range from workbook and pastes it in
‘a new Word document, in a active instance of
‘Word, if there is one.
‘If not, opens new instance of Word

Dim wdApp As Word.Application

‘Copy Range A1:B6 on sheet named Table
ThisWorkbook.Sheets(“Table”).Range(“A1:B6”).Copy

On Error Resume Next
‘Try to establish link to open instance of Word
Set wdApp = GetObject(, “Word.Application”)

‘If this fails, open Word
If wdApp Is Nothing Then
Set wdApp = GetObject(“”, “Word.Application”)

End If
On Error GoTo 0

With wdApp
‘Add new document
.Documents.Add
‘Make Word visible
.Visible = True

End With

With wdApp.Selection
‘Go to end of document and insert paragraph
.EndKey Unit:=wdStory
.TypeParagraph
‘Paste table
.Paste

End With
‘Release object variable
Set wdApp = Nothing

End Sub

If there is no current instance of Word, using GetObject with no first argument causes a run-time error,
and the code then uses GetObject with a zero-length string as the first argument, which opens a new
instance of Word, and then creates a new document. The code also makes the new instance of Word visi-
ble, unlike the previous examples, where the work was done behind the scenes without showing the
Word window. The table is then pasted at the end of the Word document. At the end of the procedure,
the object variable wdApp is released, but the Word window is accessible on the screen so that you can
view the result.

418

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 418

Access and ADO
If you want to copy data from Access to Excel, you can establish a reference to the Access object library
and use the Access object model. However, this is overkill because you don’t really need most of the
functionality in Access. You can also use ADO (ActiveX Data Objects), which is Microsoft’s technology
for programmatic access to relational databases, and many other forms of data storage. For a compre-
hensive treatment of ADO, see Chapter 20.

Figure 19-3 shows an Access table named SalesData that is in an Access database file SalesDB.accdb.

Figure 19-3

The following code uses ADO to open a recordset based on the Sales table. It uses early binding, so a ref-
erence to the ADO object library is required. You will need to create a reference to Microsoft ActiveX Data
Objects. If you find multiple versions of this library, choose the one with the highest version number:

Sub GetSalesDataViaADO()
‘Example of ADO automation using early binding
‘Copies Sales table from Access database to new worksheet

Dim con As ADODB.Connection
Dim rsSales As ADODB.Recordset
Dim i As Integer
Dim wks As Worksheet
Dim iCount As Integer

‘Establish connection to database
Set con = New ADODB.Connection
con.Open “Provider=Microsoft.ACE.OLEDB.12.0;” & _

419

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 419

“Data Source=C:\VBA_Prog_Ref\Chapter19\SalesDB.accdb”

‘Open recordset based on Sales Table
Set rsSales = New ADODB.Recordset
Set rsSales.ActiveConnection = con
rsSales.Open “Select * From SalesData”

‘Add new worksheet to active workbook
Set wks = Worksheets.Add

iCount = rsSales.Fields.Count
‘Enter field names across row 1
For i = 0 To iCount - 1

wks.Cells(1, i + 1).Value = rsSales.Fields(i).Name
Next

‘Copy entire recordset data to worksheet, starting in A2
wks.Range(“A2”).CopyFromRecordset rsSales

‘Format worksheet dates in A column
wks.Columns(“B”).NumberFormat = “mmm dd, yyyy”
‘Bold row 1 and fit columns to largest entry
With wks.Range(“A1”).Resize(1, iCount)

.Font.Bold = True

.EntireColumn.AutoFit
End With

‘Release object variables
Set rsSales = Nothing
Set con = Nothing

End Sub

The code creates a connection to the database and a recordset based on the SalesData table. A new
worksheet is added to the Excel workbook, and the field names in rsSales are assigned to the first row
of the new worksheet. The code uses the CopyFromRecordSet method of the Range object to copy the
records in rsSales to the worksheet, starting in cell A2. CopyFromRecordSet is a very fast way to copy
the data, compared to a looping procedure that copies record by record.

Access, Excel, and, Outlook
As another example of integrating different Office applications, you will extract some data from Access,
chart it using Excel, and e-mail the chart using Outlook. The code has been set up as four procedures.
The first procedure is a sub procedure named EmailChart that establishes the operating parameters
and executes the other three procedures. Note that the code uses early binding, and you need to create
references to the ADO and Outlook object libraries:

Sub EmailChart()
‘Gets data from Access using SQL statement
‘Creates chart and emails chart file to recipient

Dim sSQL As String

420

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 420

Dim rngData As Excel.Range
Dim sFileName As String
Dim sRecipient As String

sSQL = “SELECT Product, Sum(Revenue)”
sSQL = sSQL & “ FROM SalesData”
sSQL = sSQL & “ WHERE Date >= #1/1/2006# and Date<#1/1/2007#”
sSQL = sSQL & “ GROUP BY Product;”

sFileName = “C:\VBA_Prog_Ref\Chapter19\Chart.xlsx”
‘ Replace the made up email address with a valid one (perhaps your own)
sRecipient = “somebody@foobar.com”

Set rngData = rngSalesData(sSQL)
ChartData rngData, sFileName
SendEmail sRecipient, sFileName

End Sub

sSQL is used to hold a string that is a SQL (Structured Query Language) command. SQL is covered in
more detail in Chapter 20. In this case, the SQL specifies that you want to select the unique product
names and the sum of the revenues for each product from your Access database SalesData table for
all dates in the year 2006. sFileName defines the path and filename that will be used to hold the chart
workbook. sRecipient holds the e-mail address of the person you are sending the chart to.

The code then executes the rngSalesData function that is listed as follows. The function accepts the
SQL statement as an input parameter and returns a reference to the range containing the extracted data,
which is assigned to rngData. The ChartData sub procedure is then executed, passing in the data
range, as well as the path and filename for the chart workbook. Finally, the SendEMail sub procedure is
executed, passing in the recipient’s e-mail address and the location of the chart workbook to be attached
to the e-mail:

Function rngSalesData(sSQL As String) As Excel.Range
‘Function to extract data from database using
‘SQL statement in sSQL
‘Returns a reference to the range containing
‘the data

Dim con As ADODB.Connection
Dim rsSales As ADODB.Recordset

‘Establish connection to database
Set con = New ADODB.Connection
con.Open “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\VBA_Prog_Ref\Chapter19\SalesDB.accdb”

‘Open recordset based on Sales Table
Set rsSales = New ADODB.Recordset
Set rsSales.ActiveConnection = con
rsSales.Open sSQL

‘Clear sheet and bring in new data

421

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 421

With Worksheets(“Data”)
.Cells.Clear

With .Range(“A1”)
‘Copy entire recordset data to worksheet, starting in A1
.CopyFromRecordset rsSales
‘Return reference to data range
Set rngSalesData = .CurrentRegion

End With
End With

‘Release object variables
Set rsSales = Nothing
Set con = Nothing

End Function

The rngSalesData function is similar to the GetSalesDataViaADO sub procedure presented earlier.
Instead of getting the entire SalesData table from the database, it uses SQL to be more selective. It
clears the worksheet named Data and copies the selected data to a range starting in A1. It does not add
the field names to the worksheet, just the product names and total revenue. It uses the CurrentRegion
property to obtain a reference to all the extracted data and assigns the reference to the return value of the
function:

Sub ChartData(rngData As Range, sFileName As String)
‘Procedure to create chart based on data in rngData
‘Binds data to chart as arrays
‘Saves chart to path and file in sFileName

‘Create new workbook
With Workbooks.Add

‘Create new chart sheet
With .Charts.Add

‘Create new data series and assign data
With .SeriesCollection.NewSeries

.XValues = rngData.Columns(1).Value

.Values = rngData.Columns(2).Value
End With

‘Format chart
.HasLegend = False
.HasTitle = True
.ChartTitle.Text = “Year 2006 Revenue”

End With

‘Save workbook and close it
Application.DisplayAlerts = False
.SaveAs sFileName
Application.DisplayAlerts = True

422

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 422

.Close

End With

End Sub

ChartData has input parameters to define the range containing the data to be charted and the destina-
tion for the file it creates. It creates a new workbook and adds a chart sheet to it. It creates a new series in
the chart and assigns the values from the data range as arrays to the axes of the series. DisplayAlerts
is set to False to prevent a warning if it overwrites an old file of the same name.

The following SendEmail sub sends the chart workbook as an attachment to an e-mail:

Sub SendEmail(sRecipient As String, sAttachment As String)
‘Send email to sRecipient
‘Attaching file in sAttachment

Dim olApp As Object
Dim olNameSpace As Object
Dim olFolder As Object
Dim olMail As Object

Set olApp = CreateObject(“Outlook.Application”)
Set olNameSpace = olApp.GetNamespace(“MAPI”)
‘Might be necessary to Logon
‘olNameSpace.Logon “UserName”, “Password”
Set olFolder = olNameSpace.GetDefaultFolder(6)
Set olMail = olApp.CreateItem(0)
With olMail

.Subject = “Year 2006 Revenue Chart”

.Recipients.Add sRecipient

.Body = “Workbook with chart attached”

.Attachments.Add sAttachment

.Send
End With

End Sub

SendEMail has input parameters for the e-mail address of the recipient and the filename of the attach-
ment for the e-mail. If your Outlook configuration requires you to log on, you will need to uncomment
the lines that get a reference to the Namespace and supply the username and password. A new mail item
is created, using the CreateItem method. Text is added for the subject line and the body of the e-mail,
and the recipient and attachment are specified. The Send method sends the e-mail.

Better than Mail Merge
Using VBA, it is possible to emulate a Word mail merge. Mail merge is not capable of producing vari-
able-length tables within a document, but you can do this using VBA. The following techniques and
code show how.

423

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 423

Say you run an educational institution that provides courses to students, who are agents providing a
specific service to the community. You have an Access database containing information on your students
and the courses they attend. You want to produce a letter to go to each student, containing a summary of
the courses they have attended.

The tAgents table holds information on the students, as shown in Figure 19-4.

Figure 19-4

The tCourses table holds information on the available courses, as shown in Figure 19-5.

Figure 19-5

The tCoursesAttended table holds information on the dates on which students attended courses, as
shown in Figure 19-6.

Figure 19-6

There is also a query named qCoursesAttended, shown in Figure 19-7, that joins the tCoursesAttended
table and the tCourses table to provide the details you need for the mail merge letter.

424

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 424

Figure 19-7

In Word, you have prepared a template letter, as shown in Figure 19-8.

Figure 19-8

425

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 425

The items in angle brackets are actually field codes, as shown in Figure 19-9. You can toggle all the field
codes in a document between the two views by using Alt+F9. Use Shift+F9 to toggle field codes you
have selected. The field codes refer to document variables. You are going to assign values to these docu-
ment variables using VBA. There is also a bookmark named CourseTable that has been inserted in the
first line of the table. Its size and position are not relevant, as long as it is somewhere in the table. It
serves as a way of identifying which table you are filling with data. The techniques used here will allow
you to fill multiple tables in the one document.

Figure 19-9

The code that extracts the information from the database and fills in the letters is as follows:

Sub CreateLetters()
Dim wdApp As Word.Application
Dim doc As Word.Document
Dim tbl As Word.Table
Dim wrgCopyRange As Word.Range
Dim wrgDestinationRange As Word.Range
Dim lPos As Long
Dim con As ADODB.Connection
Dim rs1 As ADODB.Recordset
Dim rs2 As ADODB.Recordset
Dim fld As ADODB.Field

426

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 426

Dim sFolder As String

sFolder = ThisWorkbook.Path
Set con = New ADODB.Connection
con.Open “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=” & sFolder & “\MailMerge.accdb;”
Set rs1 = New ADODB.Recordset
rs1.Open “Select * FROM [tAgents];”, con

The first part of the code is very similar to that already seen. The coding determines the path to the
database by finding the location of the Excel workbook file containing the code, and assumes that the
database is in the same location. It creates a recordset containing all the information for each student
from tAgents. A new instance of Word is opened and made visible so you can watch the action:

Set wdApp = New Word.Application
wdApp.Visible = True ‘deleting this line will improve performance

‘Loop through all the agents
Do Until rs1.EOF

‘Open copy of document
Set doc = wdApp.Documents.Add(Template:=sFolder & “\Letter.docx”)

‘Assign field values to document variables
For Each fld In rs1.Fields

If IsNull(fld.Value) Then
doc.Variables(fld.Name) = “ “

Else
doc.Variables(fld.Name) = fld.Value

End If
Next fld

It is better not to make Word visible, because the code will run faster if Word remains hidden. You then
loop through all the agents in the database, opening a copy of the form letter for each one. Once again, it
is assumed that the template letter is in the same folder as the Excel workbook. For each agent, the code
loops through all the fields in the current record of the recordset and feeds the data into the document
variables with the same names. This covers all the data outside the table. Null values are converted to a
single blank space. Word document variables can’t hold a null or a zero-length string. Now locate the
table in the document using the bookmark it contains:

‘Locate the table containing the bookmark “CourseTable”
Set tbl = doc.Bookmarks(“CourseTable”).Range.Tables(1)
‘Second row of table is to be copied
Set wrgCopyRange = tbl.Rows(2).Range

‘Create recordset with data for current agent’s table
Set rs2 = New ADODB.Recordset
rs2.Open “Select * FROM [qCoursesAttended] WHERE AgentID=” & _

rs1!AgentID & “;”, con

‘Loop through the table records for current agent
Do Until rs2.EOF

For Each fld In rs2.Fields

427

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 427

If IsNull(fld.Value) Then
doc.Variables(fld.Name) = “ “

Else
doc.Variables(fld.Name) = fld.Value

End If
Next fld

Next, create an object variable wrgCopyRange that refers to the second row of the table, which you want
to copy to the end of the table for each row of data. To get the appropriate data, open a second recordset
that selects all the data for the current student and feeds the first record of that data into the document
variables in the table. The second row of the table is then copied and pasted to the end of the table:

‘Copy second row to end of table and lock the current field
‘values in the copy
wrgCopyRange.Copy

lPos = tbl.Range.End
Set wrgDestinationRange = doc.Range(lPos, lPos)
wrgDestinationRange.Paste
wrgDestinationRange.Fields.Update
wrgDestinationRange.Fields.Unlink

rs2.MoveNext
Loop

The field codes in the copied row are updated with the latest values of the document variables and then
unlinked from the variables, which converts them to plain text. The copy process is repeated for all the
records in the current recordset. Next, the second row of the table, containing the field codes, is deleted,
leaving only the table data:

‘Delete the second row of the table and lock all
‘variable values in document
tbl.Rows(2).Delete
doc.Fields.Update
doc.Fields.Unlink

rs1.MoveNext
Loop

End Sub

The fields in the remainder of the document are then updated and unlinked. The code then loops back to
create the letter for the next student. You could print each letter and close it before looping back to the
next letter, or it could be copied to a new document to form a continuous document with all the letters,
as in Word mail merge. In this example, the letters are left as separate documents for viewing.

Readable Document Variables
Figure 19-8 displays each document variable using text that represents the name of the corresponding
Access field name in angle brackets. When you enter references to document variables in field codes in a
document, the variables have no value and do not display any text. You can assign text values to the docu-
ment variables to make the document more readable and easier to edit, by running the following code:

428

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 428

Sub AddVariables()
Dim sFolder As String
Dim con As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim fld As ADODB.Field
Dim wdApp As Word.Application
Dim doc As Word.Document

‘Open instance of Word and make it visible
Set wdApp = New Word.Application
wdApp.Visible = True

‘Get directory of this file
sFolder = ThisWorkbook.Path

‘Open the template letter in same directory
Set doc = wdApp.Documents.Open(Filename:=sFolder & “\Letter.docx”)

With doc

‘Connect to database in same directory
con.Open “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=” & sFolder & “\MailMerge.accdb;”

‘Open agents table
rs.Open “tAgents”, con

‘Define document variables with name identical to field name
‘and value equal to <field name>
For Each fld In rs.Fields

.Variables(fld.Name) = “<” & fld.Name & “>”
Next fld

rs.Close

‘Repeat operation for courses attended query
rs.Open “qCoursesAttended”, con

For Each fld In rs.Fields
.Variables(fld.Name) = “<” & fld.Name & “>”

Next fld

.Fields.Update

End With

End Sub

The only substantial difference in this code, compared with CreateLetters, is that you open the docu-
ment to edit it using the Open method instead of using the Add method to create a copy of the document.
When creating the document variables, you assign them values that consist of the field names in angle
brackets.

429

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 429

Summary
To automate the objects in another application, you create an object variable referring to the target appli-
cation or an object in the application. You can use early binding or late binding to establish the link
between VBA and the other application’s objects. Early binding requires that you establish a reference to
the target application’s type library, and you must declare any object variables that refer to the target
objects using their correct type. If you declare the object variables as the generic Object type, VBA uses
late binding.

Early binding produces code that executes faster than late binding, and you can get information on the
target application’s objects using the Object Browser and the shortcut tips that automatically appear as
you type your code. Syntax and type checking is also performed as you code, so you are less likely to get
errors when the code executes than with late binding, where these checks cannot be done until the code
is run.

You must use the CreateObject or GetObject function to create an object variable reference to the tar-
get application when using late binding. You can use the same functions when early binding, but it is
more efficient to use the New keyword. However, if you want to test for an open instance of another
application at run time, GetObject can be usefully employed with early binding.

The techniques presented in this chapter allow you to create powerful programs that seamlessly tap
into the unique abilities of different products. The user remains in a familiar environment such as Excel,
while the code ranges across any product that has a type library and exposes its objects to VBA.

You need to be aware that virus writers can use the information presented here to wreak havoc on
unprotected systems. Make sure that your system is adequately covered.

430

Chapter 19: Interacting with Other Office Applications

22_046432 ch19.qxp 2/16/07 10:02 PM Page 430

Data Access with ADO
ActiveX Data Objects, or ADO for short, is Microsoft’s technology of choice for performing client-
server data access between any data consumer (the client) and any data source (the server). There
are other data-access technologies you may have heard of in relation to Excel, including DAO
and ODBC. However, these are not covered in this chapter because Microsoft intends for ADO to
supercede these older technologies, and for the most part this has occurred.

ADO is a vast topic, easily the subject of its own book. This chapter necessarily presents only a
small subset of ADO, covering the topics and situations that I’ve run across most frequently in my
career as an Excel programmer. This chapter focuses on ADO 2.5. This version of ADO ships
natively with Windows 2000 or Office 2000 and higher, so you can assume it will be present on any
computer you distribute your application to.

An Introduction to Structured
Query Language (SQL)

It’s impossible to get very far into a discussion of data access without running into SQL, the query-
ing language used to communicate with all databases commonly in use today. SQL is a standards-
based language that has as many variations as there are databases. This chapter uses constructs
compliant with the latest SQL standard, SQL-92, wherever possible.

There are four fundamental operations supported by SQL:

❑ SELECT— Used to retrieve data from a data source

❑ INSERT— Used to add new records to a data source

❑ UPDATE— Used to modify existing records in a data source

❑ DELETE— Used to remove records from a data source

The terms record and field are commonly used when describing data. The data sources you’ll be
concerned with in this chapter can all be thought of as being stored in a two-dimensional grid. A
record represents a single row in that grid. A field represents a column in the grid. The intersection

23_046432 ch20.qxp 2/16/07 10:02 PM Page 431

of a record and a field is a specific value. A resultset is the term used to describe the set of data returned
by a SQL SELECT statement.

Use the Customers table from Microsoft’s Northwind sample database, as shown in Figure 20-1, to illus-
trate the SQL syntax examples. Northwind must be installed with Access 2007 in order to follow many
of the examples in this chapter.

Figure 20-1

The SELECT Statement
The SELECT statement is by far the most commonly used statement in SQL. This is the statement that
allows you to retrieve data from a data source. The following clauses of the SELECT statement are used
in this chapter. Only the SELECT and FROM clauses are required to constitute a valid SQL statement:

SELECT [DISTINCT] column1, column2, ...
FROM table_name
[WHERE restriction_condition]
[ORDER BY column_name [ASC|DESC]]

The SELECT clause tells the data source what fields you wish to return. The field names in the SELECT
clause are called the SELECT list. The FROM clause tells the data source which table the records should be
retrieved from. For instance, a simple example statement could look like this:

SELECT Company, [First Name], [Last Name]
FROM Customers

You will notice that SQL keywords such as SELECT and UPDATE are shown in upper-
case. This is considered good SQL programming practice. When viewing complex
SQL statements, having SQL keywords in uppercase makes it significantly easier to
distinguish between those keywords and their operands. The subsections of a SQL
statement are called clauses. In all SQL statements, some clauses are required and
others are optional. When describing the syntax of SQL statements, optional clauses
and keywords will be surrounded by square brackets.

432

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 432

This statement will notify the data source that you want to retrieve all of the values for the Company,
First Name, and Last Name fields from the Customers table.

The SELECT statement also provides a shorthand method for indicating that you want to retrieve all
fields from the specified table. This involves using a single asterisk as the SELECT list:

SELECT *
FROM Customers

This SQL statement will return all fields and all records from the Customers table. It’s generally not con-
sidered a good practice to use * in the SELECT list, because it leaves your code vulnerable to changes in
field names or the order of fields in the table. It can also be very resource intensive with large tables,
because all columns and rows will be returned whether or not they are actually needed by the client.
However, there are times when it is a useful and time-saving shortcut.

Say that you want to see a list of countries where you have at least one customer located. Simply per-
forming the following query would return one record for every customer in your table:

SELECT [Country/Region]
FROM Customers

This resultset would contain many duplicate country names. The optional DISTINCT keyword allows
you to return only unique values in your query:

SELECT DISTINCT [Country/Region]
FROM Customers

If you only want to see the list of customers located in the U.S., you can use the WHERE clause to restrict
the results to only those customers:

SELECT Company, [First Name], [Last Name]
FROM Customers
WHERE [Country/Region] = ‘USA’

Note that the string literal USA must be surrounded by single quotes. This is also true of dates. Numeric
expressions do not require any surrounding characters.

Finally, suppose you would like to have your USA customer list sorted by Company. This can be accom-
plished using the ORDER BY clause:

SELECT Company, [First Name], [Last Name]
FROM Customers
WHERE Country = ‘USA’
ORDER BY Company

Note that the First Name and Last Name fields in the SQL statement are surrounded
by square brackets. This is required for any field or table name that contains spaces
or non-alphanumeric characters.

433

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 433

The ORDER BY clause will order fields in ascending order by default. If instead you wanted to sort a field
in descending order, you could use the optional DESC specifier immediately after the name of the col-
umn whose sort order you wanted to modify.

The INSERT Statement
The INSERT statement allows you to add new records to a table. The basic syntax of the INSERT state-
ment is the following:

INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...)

Use of the INSERT statement is very simple. You provide the name of the table and its columns that
you’ll be inserting data into, and then provide a list of values to be inserted. You must provide a value in
the VALUES clause for each column named in the INSERT clause, and the values must appear in the same
order as the column names they correspond to. Here’s an example showing how to insert a new record
into the Customers table:

INSERT INTO Customers (Company, [First Name], [Last Name], [Country/Region])
VALUES (‘New Company’, ‘Rob’, ‘Bovey’, ‘USA’)

Note that as with the WHERE clause of the SELECT statement, all of the string literals in the VALUES clause
are surrounded by single quotes. This is the rule throughout SQL.

If you have provided values for every field in the table in your VALUES clause, the field list in the
INSERT clause can be omitted. For example, if the four preceding fields were the only fields in the
Customers table, you could simply use:

INSERT INTO Customers
VALUES (‘New Company’, ‘Rob’, ‘Bovey’, ‘USA’)

The UPDATE Statement
The UPDATE statement allows you to modify the values in one or more fields of an existing record or
records in a table. The basic syntax of the UPDATE statement is the following:

UPDATE table_name
SET column1 = value1, column2 = value2, ...
[WHERE restriction_condition]

Even though the WHERE clause of the UPDATE statement is optional, you must take care to specify it
unless you are sure that you don’t need it. Executing an UPDATE statement without a WHERE clause will
modify the specified field(s) of every record in the specified table. Say, for example, you executed the fol-
lowing statement:

UPDATE Customers
SET [Country/Region] = ‘USA’

434

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 434

Every record in the Customers table would have its Country field modified to contain the value USA.
There are some cases where this mass update capability is useful, but it can also be very dangerous,
because there is no way to undo the update if you execute it by mistake.

The more common use of the UPDATE statement is to modify the value of a specific record, identified by
the use of the WHERE clause. Before examining an example of this usage, you need to understand a very
important aspect of database design called the primary key. The primary key is a field or group of fields
in a database table whose values can be used to uniquely identify each record in that table. There is no
way to identify a specific record in a table that does not have a primary key. Without that capability, you
cannot perform an update on a specific record.

The primary key in this sample Customers table is the ID field. Each customer record in the Customers
table has a unique value for ID. In other words, a specific ID value occurs in one, and only one, customer
record in the table.

Say that the First Name and Last Name fields have changed for the customer “Company A”, whose ID
is 1. You could perform an UPDATE to record those changes in the following manner:

UPDATE Customers
SET [First Name] = ‘First’, [Last Name] = ‘Last’
WHERE ID = 1

Because you used the primary key field to specify a single record in the Customers table, only this
record will be updated.

The DELETE Statement
The DELETE statement allows you to remove one or more records from a table. The basic syntax of the
DELETE statement is the following:

DELETE FROM table_name
[WHERE restriction_condition]

As with the UPDATE statement, notice that the WHERE clause is optional. This is probably more dangerous
in the case of the DELETE statement, however, because executing a DELETE statement without a WHERE
clause will delete every single record in the specified table. Once again, there is no way to undo this, so be
very careful. You should always include a WHERE clause in your DELETE statements unless you have
some very specific reason for wanting to remove all records from a table.

Assume that, for some reason, an entry was made into the Customers table with the ID value of 30 by
mistake (maybe they were a supplier rather than a customer). To remove this record from the
Customers table, you would use the following DELETE statement:

DELETE FROM Customers
WHERE ID = 30

Once again, because you used the record’s primary key in the WHERE clause, only that specific record will
be affected by the DELETE statement.

435

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 435

An Overview of ADO
ADO is Microsoft’s universal data-access technology. Universal means that ADO is designed to allow
access to any kind of data source imaginable, from a SQL Server database to the Windows Active
Directory to a text file saved on your local hard disk, and even to non-Microsoft products such as Oracle.
All these things and many more can be accessed by ADO.

ADO doesn’t actually access a data source directly. Instead, ADO is a data consumer that receives its
data from a lower-level technology called OLE DB. OLE DB cannot be accessed directly using VBA, so
ADO was designed to provide an interface that allows you to do so. ADO receives data from OLE DB
providers. Most OLE DB providers are specific to a single type of data source. Each is designed to provide
a common interface to whatever data its source may contain. One of the greatest strengths of ADO is
that, regardless of the data source you are accessing, you use essentially the same set of commands.
There’s no need to learn different technologies or methods to access different data sources.

Microsoft also provides an OLE DB provider for ODBC. This general-purpose provider allows ADO to
access any data source that understands ODBC, even if a specific OLE DB data provider is not available
for that data source. Figure 20-2 shows the communication path between ADO and a data source.

Figure 20-2

Unlike the deep, complex object models of the data access technologies that preceded it, the ADO object
model is very flat and simple to understand. It achieves this simplicity without losing any of its power to
access and manipulate data.

ADO consists of five top-level objects, all of which can be created independently. This chapter covers the
Connection object, the Command object, and the Recordset object. ADO also exposes a Record object
(not to be confused with the Recordset object), as well as a Stream object. These objects are not com-
monly used in Excel applications, so they are not covered in this chapter.

In addition to the five top-level objects, ADO contains four collections. That’s it. Five objects and four
collections are all you need to master to gain the power of ADO at your fingertips. Figure 20-3 shows the
ADO object model.

The next three sections provide an introduction to each of the top-level ADO objects that you’ll use in
this chapter. These sections provide general information that will be applicable whenever you are using
ADO. Specific examples of how to use ADO to accomplish a number of the most common data access
tasks you’ll encounter in Excel VBA are covered in the sections that follow.

436

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 436

Figure 20-3

This is not intended to be an exhaustive reference to ADO. I will only be covering those items whose use
will be demonstrated in this chapter, or those I consider particularly important to point out. ADO fre-
quently gives you the flexibility to make the same setting in multiple ways, as both an object property
and an argument to a method, for instance. In these cases, I will usually only cover the method I intend
to demonstrate in the example sections.

The Connection Object
The Connection object is what provides the pipeline between your application and the data source
you want to access. Like the other top-level ADO objects, the Connection object is extremely flexible.
In some cases, this may be the only object you need to use. Simple commands can easily be executed
directly through a Connection object. In other cases, you may not need to create a Connection object at
all. The Command and Recordset objects can create a Connection object automatically if they need one.

Constructing and tearing down a data source connection can be a time-consuming process. If you will be
executing multiple SQL statements over the course of your application, you should create a publicly
scoped Connection object variable and use it for each query. This allows you to take advantage of con-
nection pooling.

Connection pooling is a feature provided by ADO that will preserve and reuse connections to the data
source rather than creating new connections for each query, which would be a waste of resources.
Connections can be reused for different queries as long as their connection strings are identical. This is
typically the case in Excel applications, so I recommend taking advantage of it.

Connection Object Properties
This section examines the important Connection object properties.

437

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 437

The ConnectionString Property
This property is used to provide ADO, and the OLE DB provider you are using, with the information
required to connect to the data source. The connection string consists of a semicolon-delimited series of
arguments in the form of “name=value;” pairs.

For the purposes of this chapter, the only ADO argument used is the Provider argument. The Provider
argument tells ADO which OLE DB provider to use. All other arguments in connection strings presented in
this chapter will be specific to the OLE DB provider being used. ADO will pass these arguments directly
through to the provider. The following sample code demonstrates how to create a connection string to the
Northwind database using the Access 2007 OLE DB provider:

objConn.ConnectionString = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Northwind 2007.accdb”

The only argument specific to ADO in the connection string is the Provider argument. All other argu-
ments are passed directly through to the specified OLE DB provider. If a different provider were being
used, the arguments would be different as well. You will see this when you begin to connect to various
data sources in the example sections. The Provider argument to the connection string is optional. If no
provider is specified, ADO uses the OLE DB provider for ODBC by default.

The ConnectionTimeout Property
This property specifies how many seconds ADO will wait for a connection to complete before canceling
the attempt and raising an error. The default value is 15 seconds. If you have a situation where connec-
tions normally take a long time to complete, you can increase this number so ADO doesn’t terminate the
connection attempt prematurely. The following code sample changes the timeout value on the connec-
tion to 30 seconds:

objConn.ConnectionTimeout = 30

The State Property
The State property allows you to determine whether a connection is open, closed, connecting, or execut-
ing a command. The value will be a bit mask containing one or more of the following ObjectStateEnum
constants:

❑ adStateClosed— The connection is closed

❑ adStateOpen— The connection is open

❑ adStateConnecting— The object is in the process of making a connection

❑ adStateExecuting— The connection is executing a command

If you attempt to close a Connection object that is already closed, you will cause an error. You can pre-
vent this from occurring by testing the state of the Connection object before closing it:

If CBool(objConn.State And adStateOpen) Then objConn.Close

438

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 438

Connection Object Methods
This section examines the Connection object’s more important methods, all of which have self-explana-
tory names.

The Open Method
This method opens a connection to the data source, and has the following syntax:

connection.Open ConnectionString, UserID, Password, Options

The ConnectionString argument serves the same purpose as the ConnectionString property dis-
cussed in the previous section. ADO allows you to set this property in advance or pass it in at the time
you open the connection. The UserID and Password arguments can be passed separately from the con-
nection string if you wish.

The Options argument is particularly interesting. This argument allows you to make your connection
asynchronously. That is, you can tell your Connection object to go off and open the connection in the
background while your code continues to run. You do this by setting the Options argument to the
ConnectOptionEnum value adAsyncConnect. The following code sample demonstrates making an
asynchronous connection:

objConn.Open Options:=adAsyncConnect

This is especially useful in situations where you have lengthy connection times, because it allows you to
connect without freezing your application during the connection process.

The Execute Method
This method executes the command text provided to its CommandText argument. The Execute method
has the following syntax for an action query (one that does not return a resultset):

connection.Execute CommandText, [RecordsAffected], [Options]

And for a select query:

Set Recordset = connection.Execute(CommandText, _
[RecordsAffected], [Options])

The CommandText argument can contain any executable string recognized by the OLE DB provider.
However, it will most commonly contain a SQL statement. The optional RecordsAffected argument is
a return value that tells you how many records the CommandText operation has affected. It’s a good idea
to check this value against the number of records that you expected to be affected, so you can detect
potential errors in your command text.

The Options argument is crucial to optimizing the execution efficiency of your command. Therefore,
you should always use it even though it’s nominally optional. The Options argument allows you to
relay two different types of information to your OLE DB provider: what type of command is contained
in the CommandText argument, and how the provider should execute the contents of the CommandText
argument.

439

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 439

To execute the CommandText, the OLE DB provider must know what type of command it contains. If
you don’t specify the type, the provider will have to determine that information for itself. This will slow
down the execution of your query. You can avoid this by specifying the CommandText type using one of
the following CommandTypeEnum values:

❑ adCmdText— The CommandText is a raw SQL string.

❑ adCmdTable— The CommandText is the name of a table. This sends an internally generated
SQL statement to the provider that looks something like “SELECT * FROM table_name”.

❑ adCmdStoredProc— The CommandText is the name of a stored procedure (stored procedures
are covered in the section “Using ADO with Microsoft SQL Server”).

❑ adCmdTableDirect— The CommandText is the name of a table. However, unlike adCmdTable,
this option does not generate a SQL statement and therefore returns the contents of the table
more efficiently. Use this option if your provider supports it.

You can provide specific execution instructions to the provider by including one or more of the
ExecuteOptionEnum constants:

❑ adAsyncExecute— Tells the provider to execute the command asynchronously, which returns
execution to your code immediately.

❑ adExecuteNoRecords— Tells the provider not to construct a Recordset object. ADO will
always construct a recordset in response to a command, even if your CommandText argument is
not a row-returning query. To avoid the overhead required to create an unnecessary recordset,
use this value in the Options argument whenever you execute a non-row-returning query.

The CommandTypeEnum and ExecuteOptionEnum values are bit masks that can be combined together in
the Options argument using the logical Or operator. For example, to execute a plain text SQL command
and tell ADO not to construct a Recordset object, you would use the following syntax:

szSQL = “DELETE FROM Customers WHERE CustomerID = ‘XXXX’”
objConn.Execute szSQL, lNumAffected, adCmdText Or adExecuteNoRecords
If lNumAffected <> 1 Then MsgBox “Error executing SQL statement.”

The Close Method
This method closes the connection to the data source. Simply closing the connection does not destroy
the Connection object. To destroy the Connection object and free its memory, you need to set the
Connection object variable to Nothing. For example, to ensure that a Connection object variable is
closed and removed from memory, you would execute the following code:

If CBool(objConn.State And adStateOpen) Then objConn.Close
Set objConn = Nothing

Connection Object Events
Connection object events must be trapped by creating a WithEvents Connection object variable in a
class module. Trapping these events is necessary whenever you are using a Connection object asyn-
chronously, because these events are what notify your application that the Connection object has com-
pleted its task.

440

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 440

Covering asynchronous connections is beyond the scope of this chapter. However, they are important
enough to deserve mention so you can pursue them further if you like. The two most commonly used
Connection events are:

❑ ConnectComplete— Triggered when an asynchronous connection has been completed. You
can examine the arguments passed to this event to determine if the connection was successful
or not.

❑ ExecuteComplete— Triggered when an asynchronous command has finished executing.

Connection Object Collections
The Connection object has two collections, Errors and Properties.

Errors Collection
This collection contains a set of Error objects, each of which represents an OLE DB provider-specific
error (ADO itself generates run-time errors). The Errors collection can contain not only errors, but also
warnings and even messages (generated by the T-SQL PRINT statement, for instance). The Errors col-
lection is very helpful in providing extra detail when something in your ADO code has malfunctioned.
When debugging ADO problems, you can dump the contents of the Errors collection to the Immediate
window with the following code:

For Each objError In objConn.Errors
Debug.Print objError.Description

Next objError

The Properties Collection
This collection contains provider-specific, or extended properties, for the Connection object. Some
providers add important settings that you will want to be aware of. Extended properties are beyond the
scope of this chapter.

The Recordset Object
Just as the most commonly used SQL statement is the SELECT statement, the most commonly used ADO
object is the Recordset object. The Recordset object serves as a container for the records and fields
returned from a SELECT statement executed against a data source.

Recordset Object Properties
The examination of the Recordset object begins with a look at its important properties.

The ActiveConnection Property
Prior to opening the Recordset object, you can use the ActiveConnection property to assign an exist-
ing Connection object to the Recordset or a connection string for the recordset to use to connect to the
database. If you assign a connection string, the recordset will create a Connection object for itself. Once
the recordset has been opened, this property returns an object reference to the Connection object being
used by the recordset.

441

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 441

The following code assigns a Connection object to the ActiveConnection property:

Set rsData.ActiveConnection = objConn

The following code assigns a connection string to the ActiveConnection property:

rsData.ActiveConnection = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Northwind 2007.accdb”

The BOF and EOF Properties
These properties indicate whether the record pointer of the Recordset object is positioned before the
first record in the recordset (BOF, or beginning of file) or after the last record in the recordset (EOF, or end
of file). If the recordset is empty, both BOF and EOF will be True. The following code example demon-
strates using these properties to determine if there is data in a recordset:

If Not rsData.EOF Then
‘ The Recordset contains data.

Else
‘ The Recordset is empty.

End If

Note that there is a difference between an empty recordset and a closed recordset. If you execute a query
that returns no data, ADO will present you with a perfectly valid open recordset, but one that contains
no data. Therefore, you should always verify that a recordset contains data using the previous method
prior to any attempt to access that data. Attempting to access data from an empty recordset will cause a
run-time error.

The CursorLocation Property
This property allows you to specify whether the server-side cursor engine or the client-side cursor
engine manages the records in the recordset. A cursor is the underlying object that manages the data in
the recordset. Certain operations require the cursor engine to be on one side or the other. This is explored
in more detail in the examples section.

This property must be set before the recordset is opened. If you do not specify a cursor location, the
default is server-side. You can set this property to one of the two CursorLocationEnum values, either
adUseClient or adUseServer. The following code sample demonstrates setting the cursor location to
client-side:

rsData.CursorLocation = adUseClient

The Filter Property
This property allows you to filter an open recordset so that only records that meet the specified condi-
tion are visible. The records that cannot be seen are not deleted, removed, or changed in any way, but are
simply hidden from normal recordset operations. This property can be set to a string that specifies the
filter you want to place on the records, or to one of the FilterGroupEnum constants.

You can set multiple filters, and the records exposed by the filtered recordset will be only those records
that meet all of the conditions. To remove the filter from the recordset, set the Filter property to an

442

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 442

empty string or the adFilterNone constant. The following code sample demonstrates filtering a record-
set so that it displays only company names that begin with the letter B. Note that the use of wildcards is
supported in a filter string:

rsData.Filter = “Company LIKE ‘B*’”

You can use the logical AND, OR, and NOT operators to set additional Filter property values:

rsData.Filter = “Company LIKE ‘B*’ AND [Country/Region] = ‘USA’”

The State Property
This is the same as the State property discussed in the section on the Connection object.

Recordset Object Methods
This section examines only five of the Recordset object’s methods, because they are the ones that you
are most likely to use.

The Open Method
This method opens the Recordset object and retrieves the data specified by the Source argument. The
Open method has the following syntax:

recordset.Open Source, ActiveConnection, CursorType, LockType, Options

The Source argument tells the recordset what data it should retrieve. This is most commonly a SQL
string or the name of a stored procedure, but can also be the name of a table or a Command object.

The ActiveConnection argument can be a connection string or a Connection object that identifies
the connection to be used. If you assign a connection string to the ActiveConnection argument, the
recordset will create a Connection object for itself.

The CursorType argument specifies the type of cursor to use when opening the recordset. This is set
using one of the CursorTypeEnum values. This chapter uses only the adOpenForwardOnly and
adOpenStatic cursor types. The first type will be used for normal queries, and using it means that the
recordset can be navigated in only one direction, from beginning to end, which is the fastest method for
accessing data. Note that the data in a forward-only recordset cannot be modified. The second type will
be used for disconnected recordsets and allows complete navigation. If you do not specify a cursor type,
adOpenForwardOnly is the default.

The LockType argument specifies what type of locks the provider should place on the underlying data
source when opening the recordset. This is set using one of the LockTypeEnum values. This chapter uses
only the following two lock types, corresponding to normal and disconnected recordsets, respectively:
adLockReadOnly and adLockBatchOptimistic.

The Options argument here is the same as the Options argument covered in the Connection object’s
Execute method earlier in the chapter. It is used to tell the provider how to interpret and execute the
contents of the Source argument.

443

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 443

The Close Method
This method closes the Recordset object. This does not free any memory used by the recordset. To free
up the memory used by the Recordset object, you must set the Recordset object variable to Nothing.

The Move Methods
When a recordset is first opened, the current record pointer is positioned on the first record in the record-
set. The Move methods are used to navigate through the records in an open recordset. They do this by
repositioning the Recordset object’s current record pointer. The following Move methods are used in
this chapter:

❑ MoveFirst— Positions the current record pointer on the first record of the recordset.

❑ MoveNext— Positions the current record pointer to the next record in the recordset.

The following code sample demonstrates common recordset navigation handling:

‘ Verify that the Recordset contains data.
If Not rsData.EOF Then

‘ Loop until we reach the end of the Recordset.
Do While Not rsData.EOF

‘ Perform some action on the current record’s data.
Debug.Print rsData.Fields(0).Value
‘ Move to the next record.
rsData.MoveNext

Loop
Else

MsgBox “Error, no records returned.”, vbCritical
End If

Pay particular attention to the use of the MoveNext method within the Do While loop. Omitting this is a
very common error and will lead to an endless loop condition in your code. The very first line of code
that you should place in the Do While loop is the call to MoveNext.

The NextRecordset Method
Some providers allow you to execute commands that return multiple recordsets. The NextRecordset
method is used to move through these recordsets. The NextRecordset method clears the current
recordset from the Recordset object, loads the next recordset into the Recordset object, and sets the
current record pointer to the first record in that recordset. If the NextRecordset method is called and
there are no more recordsets to retrieve, the Recordset object is set to Nothing. The following code
sample demonstrates the use of the NextRecordset method:

‘ Verify that the Recordset contains more data.
Do While Not rsData Is Nothing

‘ Loop the records in the current recordset.
Do While Not rsData.EOF

‘ Perform some action on the current record’s data.
Debug.Print rsData.Fields(0).Value
‘ Move to the next record.
rsData.MoveNext

Loop

444

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 444

‘ Return the next recordset
Set rsData = rsData.NextRecordset

Loop

Recordset Object Events
Recordset object events must be trapped by creating a WithEvents Recordset object variable in a class
module. Trapping these events is necessary whenever you are using a Recordset object asynchronously,
because these events are what notify your application that the Recordset object has completed its task.

Covering asynchronous recordset usage is beyond the scope of this chapter; however, the topic is impor-
tant enough to deserve mention so that you can pursue it further if you like. The two most commonly
used Recordset object events are:

❑ FetchComplete— This event is fired after all of the records have been retrieved when opening
an asynchronous recordset.

❑ FetchProgress— The provider fires this event periodically to report the number of records
retrieved so far during an asynchronous open operation. It is typically used to provide a visual
progress indicator to the user.

Recordset Object Collections
Finish your look at the Recordset object by examining its collections.

The Fields Collection
The Fields collection contains the values, and information about those values, from the current
record in a Recordset object. In Excel, the Fields collection is most commonly used to return the col-
umn names of each field in the recordset, prior to accessing the contents of the recordset using the
CopyFromRecordset method of the Range object. The following example demonstrates how to read
the field names from the Fields collection of a Recordset object:

With Sheet1.Range(“A1”)
For Each objField In rsData.Fields

.Offset(0, lOffset).Value = objField.Name
lOffset = lOffset + 1

Next objField
End With

The Properties Collection
This collection contains provider-specific or extended properties for the Recordset object. Some
providers add important settings — called extended properties — that you will want to be aware of. The
most important extended properties of each provider are covered in that provider’s section.

The Command Object
The Command object is most commonly used for executing action queries. Action queries are queries that
perform some action on the data source and do not return a resultset. Action queries include INSERT,
UPDATE, and DELETE statements.

445

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 445

Command Object Properties
Begin by looking at the three most important Command object properties.

The ActiveConnection Property
This property is identical to the ActiveConnection property discussed in the section on the Recordset
object.

The CommandText Property
This property is used to set the command that will be executed by the data provider. This property will
normally be a SQL string or the name of a stored procedure. As you will see in the section on SQL Server,
you must use the CommandText property along with the Parameters collection to take advantage of
return values and output parameters in SQL Server stored procedures.

The CommandType Property
The CommandType property is identical to the Options argument to the Connection object’s Execute
method, covered earlier in the chapter. It is used to tell the provider how to interpret and execute the
Command object’s CommandText.

Command Object Methods
Only two of the Command object’s methods are examined, because they are the most commonly used.

The CreateParameter Method
This method is used to manually create Parameter objects that can then be added to the Command
object’s Parameters collection. The CreateParameter object has the following syntax:

Set Parameter = command.CreateParameter([Name], [Type], [Direction], _
[Size], [Value])

Name is the name of the parameter object. You can use this name to reference the Parameter object
through the Command object’s Parameters collection. When working with SQL Server, the name of a
Parameter should be the same as the name of the stored procedure argument that it corresponds to.

Type indicates the data type of the parameter. It is specified as one of the DataTypeEnum constants.
There are several dozen possible data types, so I will not go into them in any detail here. You will see a
few of them in the examples section. The rest can be located in the ADO help file.

Direction is a ParameterDirectionEnum value that indicates whether the parameter will be used to
pass data to an input argument, receive data from an output argument, or accept a return value from a
stored procedure. Direction can be one of the following values:

❑ adParamInput— The parameter represents an input argument

❑ adParamInputOutput— The parameter represents an input/output argument

❑ adParamOutput— The parameter represents an output argument

❑ adParamReturnValue— The parameter represents a return value

446

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 446

Size is used to specify the size of Parameter in bytes, and is dependent on Parameter’s data type.

Value is used to provide an initial value for the Parameter.

The following code sample demonstrates how you can use the CreateParameter method in conjunc-
tion with the Parameters collection Append method to create a Parameter and append it to the
Parameters collection with one line of code:

objCmd.Parameters.Append _
objCmd.CreateParameter(“MyParam”, adInteger, adParamInput, 0)

The Execute Method
This method executes the text contained in the Command object’s CommandText property. The Execute
method has the following syntax for an action query (one that does not return a resultset):

command.Execute [RecordsAffected], [Parameters], [Options]

And for a select query:

Set Recordset = command.Execute([RecordsAffected], [Parameters], [Options])

The RecordsAffected and Options arguments are identical to the corresponding arguments for the
Connection object’s Execute method, described in the “Connection Object Methods” section. If you are
executing a SQL statement that requires one or more parameters to be passed, you can supply an array
of values to the Parameters argument, one for each parameter required.

Command Object Collections
The final section before delving into ADO in Excel covers the Command object’s two collections.

The Parameters Collection
This collection contains all of the Parameter objects associated with the Command object. Parameters are
used to pass arguments to SQL statements and stored procedures, as well as to receive output and return
values from stored procedures.

The Properties Collection
This collection contains provider-specific or extended properties for the Command object. Some providers
add important settings that you will want to be aware of. The most important extended properties of
each provider are covered in the provider-specific discussions later in the chapter.

Using ADO in Microsoft Excel Applications
Here’s where it all comes together. This section combines the understanding of Excel programming that
you’ve gained from previous chapters with the SQL and ADO techniques discussed so far in this chap-
ter. Excel applications frequently require data from outside sources. The most common of these sources
are Access and SQL Server databases. However, I’ve created applications that required source data from
mainframe text file dumps and even Excel workbooks. As you’ll see, ADO makes acquiring data from
these various data sources easy.

447

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 447

To run the code examples shown in the sections that follow, you must set a reference from your Excel
project to the ADO 2.5 Object Library. To do this, bring up the References dialog by selecting the Tools ➪

References menu item from within the VBE. Scroll down until you locate the entry labeled Microsoft
ActiveX Data Objects 2.5 Library. Place a check mark beside this entry and click OK (see Figure 20-4).

Figure 20-4

Note that it’s perfectly normal to have multiple versions of the ADO object library available.

Using ADO with Microsoft Access
Because Excel applications that utilize data from Microsoft Access tend to have less complicated data
access requirements than those using SQL Server, Access is used to introduce the basics of ADO.

Connecting to Microsoft Access
ADO connects to Microsoft Access databases through the use of the Microsoft Office 12 Access Database
Engine OLE DB Provider. To connect to a Microsoft Access database, you simply specify this provider in
the ADO connection string and then include any additional provider-specific arguments required. The
following is a summary of the connection string arguments you will most frequently use when connect-
ing to an Access database:

❑ Provider=Microsoft.ACE.OLEDB.12.0 (required)

❑ Data Source=[full path and filename to the Access database] (required)

In this section you’ll utilize the Northwind database. This is a sample database pro-
vided with Microsoft Access 2007. If you don’t have this database available, you will
need to install it to run the example code.

448

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 448

❑ Mode=mode (optional) — The three most commonly used settings for this property are:

❑ adModeShareDenyNone— Opens the database and allows complete shared access to
other users. This is the default setting if the Mode argument is not specified.

❑ adModeShareDenyWrite— Opens the database and allows other users read access but
prevents write access.

❑ adModeShareExclusive— Opens the database in exclusive mode, which prevents
any other users from connecting to the database.

❑ User ID=username (optional) — The username to use when connecting to the database. If the
database requires a username and it is not supplied, the connection will fail.

❑ Password=password (optional) — If a password is required to connect to the database, this
argument is used to supply it. Again, the connection will fail if it is required and not supplied,
or is incorrect.

The following example shows a connection string that uses all of these arguments:

Public Const gsCONNECTION As String = _
“Provider= Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Northwind 2007.accdb;” & _
“Mode=Share Exclusive;” & _
“User ID=Admin;” & _
“Password=password”

Retrieving Data from Microsoft Access Using a Plain Text Query
The following procedure demonstrates how to retrieve data from a Microsoft Access database using a
plain text (sometimes referred to as ad hoc) query and place it on an Excel worksheet:

Public Sub PlainTextQuery()

Dim rsData As ADODB.Recordset
Dim sConnect As String
Dim sSQL As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”

‘ Create the SQL Statement.
sSQL = “SELECT Company, [First Name] + ‘ ‘ + [Last Name] “ & _

“FROM Customers “ & _
“WHERE [Country/Region] = ‘USA’ “ & _
“ORDER BY Company;”

‘ Create the Recordset object and run the query.
Set rsData = New ADODB.Recordset
rsData.Open sSQL, sConnect, adOpenForwardOnly, _

adLockReadOnly, adCmdText

‘ Make sure we got records back

449

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 449

If Not rsData.EOF Then
‘ Dump the contents of the recordset onto the worksheet.
Sheet1.Range(“A2”).CopyFromRecordset rsData
‘ Close the Recordset object.
rsData.Close
‘ Add headers to the worksheet.
With Sheet1.Range(“A1:B1”)

.Value = Array(“Company”, “Contact Name”)

.Font.Bold = True
End With
‘ Fit the column widths to the data.
Sheet1.UsedRange.EntireColumn.AutoFit

Else
‘ Close the Recordset object.
rsData.Close
MsgBox “Error: No records returned.”, vbCritical

End If

‘ Destroy the Recordset object.
Set rsData = Nothing

End Sub

There are a number of things to note about this procedure:

❑ The only ADO object used was the Recordset object. As mentioned at the beginning of the
ADO section, all of the top-level ADO objects can be created and used independently. If you
were going to perform multiple queries over the course of your application, you would have
created a separate, publicly scoped Connection object to take advantage of ADO’s connection-
pooling feature.

❑ The syntax of the Recordset.Open method has been optimized for maximum performance.
You’ve told the provider what type of command is in the Source argument (adCmdText, a plain
text query), and you’ve opened a forward-only, read-only, server-side cursor (server-side is the
default if the Recordset.CursorLocation property is not specified). This type of cursor is
often referred to as a firehose cursor, because it’s the fastest way to retrieve data from a database.

❑ You do not make any modifications to the destination worksheet until you are sure you have
successfully retrieved data from the database. This avoids having to undo anything if the
query fails.

❑ You dump the data onto the destination worksheet and close the recordset as quickly as possi-
ble. In most data-access situations, you will be dealing with a multi-user environment, where
multiple users can access the database simultaneously. Getting in and out of the database as
quickly as possible is critical to preventing contention problems, or situations in which two
users attempt to perform mutually incompatible actions on the same piece of data at the same
time.

❑ Note the use of the CopyFromRecordset method of the Excel Range object. This is by far the
fastest method for moving data out of a recordset and onto a worksheet. As you’ll see, it doesn’t
fit every data-access situation, but it’s the method of choice in any situation where its use is pos-
sible. Note that the CopyFromRecordset method does not copy the field names, only data.

450

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 450

Retrieving Data from Microsoft Access Using a Stored Query
Microsoft Access allows you to create and store SQL queries in the database. You can retrieve data from
these stored queries just as easily as you can use a plain text SQL statement. The following procedure
demonstrates this:

Public Sub SavedQuery()

Dim objField As ADODB.Field
Dim rsData As ADODB.Recordset
Dim lOffset As Long
Dim sConnect As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”

‘ Create the Recordset object and run the query.
Set rsData = New ADODB.Recordset
rsData.Open “[Product Sales By Category]”, sConnect, _

adOpenForwardOnly, adLockReadOnly, adCmdTable

‘ Make sure we got records back
If Not rsData.EOF Then

‘ Add headers to the worksheet.
With Sheet1.Range(“A1”)

For Each objField In rsData.Fields
.Offset(0, lOffset).Value = objField.Name
lOffset = lOffset + 1

Next objField
.Resize(1, rsData.Fields.Count).Font.Bold = True

End With
‘ Dump the contents of the recordset onto the worksheet.
Sheet1.Range(“A2”).CopyFromRecordset rsData
‘ Close the Recordset object.
rsData.Close
‘ Fit the column widths to the data.
Sheet1.UsedRange.EntireColumn.AutoFit

Else
‘ Close the Recordset object.
rsData.Close
MsgBox “Error: No records returned.”, vbCritical

End If

‘ Destroy the Recordset object.
Set rsData = Nothing

End Sub

There are two important points to note about this procedure:

❑ Examine the differences between the Recordset.Open method used in this procedure and the
one used in the plain text query. In this case, rather than providing a SQL string, you specified
the name of the stored query you wanted to execute. You also told the provider that the type of

451

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 451

query being executed was a table query. The Access OLE DB provider treats stored queries and
queries of entire database tables in the same manner.

❑ Because you did not create the SQL statement yourself, you did not know the names of the
fields you were retrieving, or even how many fields there were. Therefore, to create the correct
set of headers for each column in the destination worksheet, you needed to loop the Fields
collection of the Recordset object and determine this information dynamically. To accomplish
this, the recordset had to be open, so you added the fields to the worksheet prior to closing the
recordset.

Inserting, Updating, and Deleting Records
with Plain Text SQL in Microsoft Access

Executing plain text INSERT, UPDATE, and DELETE statements uses virtually identical methodology.
Therefore, you’ll examine these action queries by inserting a new record, updating that record, and then
deleting it, all within the same procedure. This, of course, is not normally something you would do. You
can take this generic procedure, however, and create a single-purpose insert, update, or delete procedure
by simply removing the sections that you don’t need.

Use the Shippers table from the Northwind database in the next procedure. The first few columns of
this table are shown in Figure 20-5.

Figure 20-5

Notice that the last row in the ID column contains the value (New). This isn’t really a value; rather, it’s a
prompt that alerts you to the fact that values for the ID column are automatically generated by the
Access database. This column is the primary key for the Shippers table, and AutoNumber fields are a
common method used to generate the unique value required for the primary key. You don’t (and can’t)
set or change the value of an AutoNumber field. If you need to maintain a reference to a new record that
you’ve inserted into the table, you’ll need to retrieve the value that was assigned to that record by the
AutoNumber field. You’ll see how this is done in the example that follows:

Public Sub InsertUpdateDelete()

Dim objCommand As ADODB.Command
Dim rsData As ADODB.Recordset
Dim lRecordsAffected As Long
Dim lKey As Long

452

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 452

Dim sConnect As String

On Error GoTo ErrorHandler

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb;” & _
“Mode=Share Exclusive”

‘ Create the Command object we’ll use for all three queries.
Set objCommand = New ADODB.Command
objCommand.ActiveConnection = sConnect

‘’’’’ INSERT a new record into the database ‘’’’’’’’’’’’’’’’’’’
‘ Load the SQL string into the Command object.
objCommand.CommandText = “INSERT INTO Shippers” & _

“(Company, [Business Phone]) “ & _
“VALUES(‘Air Carriers’, ‘(205) 555-1212’);”

‘ Execute the SQL statement.
objCommand.Execute RecordsAffected:=lRecordsAffected, _

Options:=adCmdText Or adExecuteNoRecords
‘ Check for errors. Only one record should have been affected.
If lRecordsAffected <> 1 Then Err.Raise _

Number:=vbObjectError + 1024, _
Description:=”Error executing INSERT statement.”

‘ Retrieve the primary key generated for our new record.
objCommand.CommandText = “SELECT @@IDENTITY;”
Set rsData = objCommand.Execute(Options:=adCmdText)
‘ Check for errors. The recordset should contain data.
If rsData.EOF Then Err.Raise _

Number:=vbObjectError + 1024, _
Description:=”Error retrieving primary key value.”

‘ Store the primary key value for later use.
lKey = rsData.Fields(0).Value
rsData.Close

‘’’’’ UPDATE the record we just created ‘’’’’’’’’’’’’’’’’’’
‘ Load the SQL string into the Command object.
objCommand.CommandText = “UPDATE Shippers “ & _

“SET [Business Phone]=’(206) 546-0086’ “ & _
“WHERE ID=” & CStr(lKey) & “;”

‘ Execute the SQL statement.
objCommand.Execute RecordsAffected:=lRecordsAffected, _

Options:=adCmdText Or adExecuteNoRecords
‘ Check for errors. Only one record should have been affected.
If lRecordsAffected <> 1 Then Err.Raise _

Number:=vbObjectError + 1024, _
Description:=”Error executing UPDATE statement.”

‘’’’’ DELETE our record from the database ‘’’’’’’’’’’’’’’’’’’
‘ Load the SQL string into the Command object.
objCommand.CommandText = “DELETE FROM Shippers “ & _

“WHERE ID = “ & CStr(lKey) & “;”
‘ Execute the SQL statement.
objCommand.Execute RecordsAffected:=lRecordsAffected, _

453

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 453

Options:=adCmdText Or adExecuteNoRecords
‘ Check for errors. Only one record should have been affected.
If lRecordsAffected <> 1 Then Err.Raise _

Number:=vbObjectError + 1024, _
Description:=”Error executing DELETE statement.”

ErrorExit:

‘ Destroy our ADO objects.
Set objCommand = Nothing
Set rsData = Nothing

Exit Sub

ErrorHandler:
MsgBox Err.Description, vbCritical
Resume ErrorExit

End Sub

Quickly review what you’ve done in this procedure. First you inserted a new record into the Shippers
table. Then you retrieved the primary key that had been assigned to that new record by the database
(more on this in a moment). Next you used the primary key of your new record to locate it and modify
the telephone number in its Business Phone field. Finally, you used the primary key of the record to
locate it and delete it from the database.

Important things to note about this procedure:

❑ You used the same ADO Command object throughout the procedure. All that was required to
execute different commands was to load new SQL statements into the Command.CommandText
property.

❑ The process of preparing and executing the command and then checking for errors upon com-
pletion was identical for all three types of action query.

❑ After inserting a new record in the first part of the procedure, you needed to retrieve the pri-
mary key value that had been assigned to that record by the ID AutoNumber field. You did this
by querying the value of the @@IDENTITY system variable. This is a variable maintained by
the Access database that holds the value of the most recently assigned AutoNumber field. In
most cases, you must be sure to query this value immediately after performing the insert. The
@@IDENTITY variable is a database-wide variable, so your primary key value will be overwrit-
ten if any other user performs a similar insert before you query it. You prevented the possibility
of this occurring in this example by opening the database in exclusive mode (note the Mode
argument in the connection string).

Using ADO with Microsoft SQL Server
The previous section on Microsoft Access covered the basics of performing the various types of queries
in ADO. Because ADO is designed to present a common gateway to different data sources, there isn’t a
lot of difference in these basic operations whether your database is in Access or in SQL Server. Therefore,
after a brief introduction to the few important differences that arise when using ADO with SQL Server,
this section covers more advanced topics, including stored procedures, multiple recordsets, and discon-
nected recordsets.

454

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 454

Connecting to Microsoft SQL Server
To connect to a Microsoft SQL Server database, you simply specify the OLE DB provider for SQL Server
in the ADO connection string, and then include any additional provider-specific arguments required.
The following is a summary of the connection string arguments you will most frequently use when con-
necting to a SQL Server database:

❑ Provider=SQLOLEDB;

❑ Data Source=server name;— This will typically be the NetBIOS name of the computer that
SQL Server is installed on. If SQL Server is installed as a named instance, the server name will
have the following syntax: NetBIOS Name\SQL Server Instance Name.

❑ Initial Catalog=database name;— Unlike Access, one instance of SQL Server can contain
many databases. This argument will contain the name of the database you want to connect to.

❑ User ID=username;— The username for SQL Server authentication.

❑ Password=password;— The password for SQL Server authentication.

❑ Network Library=netlib;— By default, the SQL Server OLE DB provider will attempt to use
named pipes network protocol to connect to SQL Server. This is required for using Windows inte-
grated security (explained later). There are many instances, however, where it is not possible to
use named pipes. These include accessing SQL Server from a Windows 9x operating system and
accessing SQL Server over the Internet. In these cases, the preferred protocol for connecting to
SQL Server is TCP/IP. This can be specified on each machine by using the SQL Server Client
Network Utility, or you can simply use the Network Library connection string argument to
specify the name of the TCP/IP network library, which is dbmssocn.

❑ Integrated Security=SSPI;— This connection string argument specifies that you want to
use Windows integrated security rather than SQL Server authentication. The User ID and
Password arguments will be ignored if this argument is present.

A Note About SQL Server Security

SQL Server can be set to use three types of security: SQL Server authentication,
Windows integrated security, and mixed mode. SQL Server authentication means
that separate user accounts must be added to SQL Server, and each user must supply
a SQL Server username and password to connect.

This type of security is most commonly used when SQL Server must be accessed
from outside the network. With Windows integrated security, SQL Server recognizes
the same usernames and passwords that are used to log in to the Windows network.
Mixed mode simply means you can use either one of the two.

The examples in this section use the SQL Server version of the Northwind sample
database. This database is similar to the Access 2007 version of Northwind used pre-
viously, but there will be some differences in the names and data types of various
fields.

455

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 455

Following are examples of two different SQL Server connection strings. The first example shows a con-
nection string that uses SQL Server authentication and the TCP/IP connection protocol. The second
example shows a connection string that uses Windows integrated security:

Public Const gsCONNECTION As String = _
“Provider=SQLOLEDB;” & _
“Data Source=ComputerName\SQLServerName;” & _
“Initial Catalog=Northwind;” & _
“User ID=User;Password=password;” & _
“Network Library=dbmssocn”

Public Const gsCONNECTION As String = _
“Provider=SQLOLEDB;” & _
“Data Source=ComputerName\SQLServerName;” & _
“Initial Catalog=Northwind;” & _
“Integrated Security=SSPI”

Microsoft SQL Server Stored Procedures
The syntax for executing plain text (or ad hoc) queries against SQL Server is identical to that which you
used in the example for Access. The only difference is the contents of the connection string. When pro-
gramming with SQL Server, however, it is more common to call SQL Server stored procedures.

Stored procedures are simply precompiled SQL statements that can be accessed by name from the
database. They are much like VBA procedures in that they can accept arguments and return values. An
example of a simple stored procedure that queries the Customers table is shown here:

CREATE PROC spGetCustomerNames
@Country nvarchar(24)

AS
SELECT CustomerID,

CompanyName,
ContactName

FROM Customers
WHERE Country = @Country
ORDER BY CompanyName

This stored procedure takes one argument, @Country, and returns a recordset containing the values for
the fields specified in the SELECT list for customers whose country matches the value passed to the
@Country argument.

ADO provides a very quick and simple way to execute stored procedures using the Connection object.
ADO treats all stored procedures in the currently connected database as dynamic methods of the
Connection object. You can call a stored procedure exactly like any other Connection object method,
passing any arguments to the stored procedure as method arguments, and optionally passing a
Recordset object as the last argument if the stored procedure returns a recordset.

This method is best used for “one-off” procedures rather than those you will execute multiple times,
because it isn’t the most efficient method. However, it is significantly easier to code. The following
example demonstrates executing the previous stored procedure as a method of the Connection object:

456

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 456

Public Sub ExecuteStoredProcAsMethod()

Dim objConn As ADODB.Connection
Dim rsData As ADODB.Recordset
Dim sConnect As String

‘ Create the connection string.
sConnect = “Provider=SQLOLEDB;Data Source=P2800\P2800;” & _

“Initial Catalog=Northwind;Integrated Security=SSPI”

‘ Create the Connection and Recordset objects.
Set objConn = New ADODB.Connection
Set rsData = New ADODB.Recordset

‘ Open the connection and execute the stored procedure.
objConn.Open sConnect
objConn.spGetCustomerNames “UK”, rsData

‘ Make sure we got records back
If Not rsData.EOF Then

‘ Dump the contents of the recordset onto the worksheet.
Sheet1.Range(“A1”).CopyFromRecordset rsData
‘ Close the recordset
rsData.Close
‘ Fit the column widths to the data.
Sheet1.UsedRange.EntireColumn.AutoFit

Else
MsgBox “Error: No records returned.”, vbCritical

End If

‘ Clean up our ADO objects.
If CBool(objConn.State And adStateOpen) Then objConn.Close
Set objConn = Nothing
Set rsData = Nothing

End Sub

In this procedure, you executed the spGetCustomerNames stored procedure and passed it the value
“UK” for its @Country argument. This populated the rsData recordset with all of the customers located
in the UK. Note that the Connection object must be opened before the dynamic methods are populated,
and that you must instantiate the Recordset object prior to passing it as an argument.

The most efficient way to handle stored procedures that will be executed multiple times is to prepare
a publicly scoped Command object to represent them. The Connection will be stored in the Command
object’s ActiveConnection property, the stored procedure’s name will be stored in the Command
object’s CommandText property, and any arguments to the stored procedure will be used to populate
the Command object’s Parameters collection.

Once this Command object has been created, it can be executed as many times as you like over the course
of your application, without incurring the overhead required to perform the tasks just described with
each execution.

457

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 457

For this example, create a simple stored procedure that you can use to insert new records into the
Shippers table:

CREATE PROC spInsertShippers
@CompanyName nvarchar(40),
@Phone nvarchar(24)

AS
INSERT INTO Shippers(CompanyName, Phone)
VALUES(@CompanyName, @Phone)
RETURN @@IDENTITY

As you can see, the stored procedure has two arguments, @CompanyName and @Phone, which are used to
collect the values to insert into those respective fields in the Shippers table. Similar to the ID field in the
Access version of the Northwind database, the ShipperID field in the SQL Server version of Northwind
is populated automatically by the database any time a new record is inserted. You retrieve this automati-
cally assigned value in a similar fashion, through the use of SQL Server’s @@IDENTITY system function.
In this case, however, you won’t have to make a separate query to retrieve the Shipper ID value because
it will be returned to you by the stored procedure.

To present a more realistic application scenario, the following example uses publicly scoped Connection
and Command objects, procedures to create and destroy the connection, a procedure to prepare the Command
object for use, and a procedure that demonstrates how to use the Command object:

Public Const gszCONNECTION As String = _
“Provider=SQLOLEDB;Data Source=P2800\P2800;” & _
“Initial Catalog=Northwind;Integrated Security=SSPI”

Public gobjCmd As ADODB.Command
Public gobjConn As ADODB.Connection

Private Sub CreateConnection()
‘ Create the Connection object.
Set gobjConn = New ADODB.Connection
gobjConn.Open gszCONNECTION

End Sub

Private Sub DestroyConnection()
‘ Check to see if connection is still open before attempting to close it.
If CBool(gobjConn.State And adStateOpen) Then gobjConn.Close
Set gobjConn = Nothing

End Sub

Private Sub PrepareCommandObject()

‘ Create the Command object.
Set gobjCmd = New ADODB.Command
Set gobjCmd.ActiveConnection = gobjConn
gobjCmd.CommandText = “spInsertShippers”
gobjCmd.CommandType = adCmdStoredProc

‘ Load the parameters collection. The first parameter
‘ is always the stored procedure return value.
gobjCmd.Parameters.Append _

458

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 458

gobjCmd.CreateParameter(“@RETURN_VALUE”, adInteger, _
adParamReturnValue, 0)

gobjCmd.Parameters.Append _
gobjCmd.CreateParameter(“@CompanyName”, adVarWChar, _

adParamInput, 40)
gobjCmd.Parameters.Append _

gobjCmd.CreateParameter(“@Phone”, adVarWChar, _
adParamInput, 24)

End Sub

Public Sub UseCommandObject()

Dim lKeyValue As Long
Dim lNumAffected As Long

On Error GoTo ErrorHandler

‘ Create the Connection and the reusable Command object.
CreateConnection
PrepareCommandObject

‘ Set the values of the input parameters.
gobjCmd.Parameters(“@CompanyName”).Value = “Air Carriers”
gobjCmd.Parameters(“@Phone”).Value = “(206) 555-1212”

‘ Execute the Command object and check for errors.
gobjCmd.Execute Recordsaffected:=lNumAffected, _

Options:=adExecuteNoRecords
If lNumAffected <> 1 Then Err.Raise Number:=vbObjectError + 1024, _

Description:=”Error executing Command object.”

‘ Retrieve the primary key value for the new record.
lKeyValue = gobjCmd.Parameters(“@RETURN_VALUE”).Value
Debug.Print “The key value of the new record is: “ & CStr(lKeyValue)

ErrorExit:

‘ Destroy the Command and Connection objects.
Set gobjCmd = Nothing
DestroyConnection

Exit Sub

ErrorHandler:
MsgBox Err.Description, vbCritical
Resume ErrorExit

End Sub

A few things to note about the mini application:

❑ In a normal application, you would not create and destroy the Connection and Command objects
in the UseCommandObject procedure. These objects are intended for reuse and therefore typically
would be created when your application first started and destroyed just before it ended.

459

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 459

❑ When constructing and using the Command object’s Parameters collection, keep in mind that
the first parameter is always reserved for the stored procedure return value, even if the stored
procedure doesn’t have a return value.

❑ Even though you didn’t make any particular use of the Shipper ID value returned from the stored
procedure for the new record, in a normal application this value would be very important. The
CompanyName and Phone fields are for human consumption; the primary key value is how the
database identifies the record. For example, in the Northwind database, the Shipper ID is a
required field for entering new records into the Orders table. Therefore, if you planned on add-
ing an order that was going to use the new shipper, you would have to know the Shipper ID.

Multiple Recordsets
The SQL Server OLE DB provider is an example of a provider that allows you to execute a SQL state-
ment that returns multiple recordsets. This feature comes in very handy when you need to populate
multiple controls on a form with lookup-table information from the database. You can combine all of the
lookup-table SELECT queries into a single stored procedure and then loop through the individual record-
sets, assigning their contents to the corresponding controls.

For example, if you needed to create a user interface for entering information into the Orders table, you
would need information from several related tables, including Customers and Shippers, as shown in
Figure 20-6.

Figure 20-6

Create an abbreviated example of a stored procedure that returns the lookup information from these two
tables, and then use the result to populate drop-downs on a UserForm:

CREATE PROC spGetLookupValues
AS

-- Customers lookup table info.
SELECT CustomerID,

CompanyName
FROM Customers

-- Shippers lookup table info.
SELECT ShipperID,

CompanyName
FROM Shippers

Note that this stored procedure contains two separate SELECT statements. These will populate two inde-
pendent recordsets when the stored procedure is executed using ADO. The double dashes that you see
at the beginning of the lines above each SELECT statement are T-SQL comment prefixes.

460

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 460

The following procedure is an example of a UserForm_Initialize event that populates drop-downs
on the UserForm with the results of the spGetLookupValues stored procedure. For the purpose of this
example, assume that the public Connection object gobjConn used in the previous example is still open
and available for use:

Private Sub UserForm_Initialize()

Dim rsData As ADODB.Recordset

‘ Create and open the Recordset object.
Set rsData = New ADODB.Recordset
rsData.Open “spGetLookupValues”, gobjConn, _

adOpenForwardOnly, adLockReadOnly, adCmdStoredProc

‘ The first recordset contains the customer list.
Do While Not rsData.EOF

‘ Load the dropdown with the recordset values.
ddCustomers.AddItem rsData.Fields(1).Value
rsData.MoveNext

Loop
Set rsData = rsData.NextRecordset

‘ The second recordset contains the shippers list.
Do While Not rsData.EOF

‘ Load the dropdown with the recordset values.
ddShippers.AddItem rsData.Fields(1).Value
rsData.MoveNext

Loop
Set rsData = rsData.NextRecordset

‘ No need to clean up the Recordset object at this point,
‘ it will be closed and set to nothing after the last
‘ call to the NextRecordset method.

End Sub

One thing to note about the method demonstrated here is that it requires prior knowledge of the number
and order of recordsets returned by the call to the stored procedure. Also left out is any handling of the
primary key values associated with the lookup table descriptions. In a real-world application, you
would need to maintain these keys (I prefer using a hidden column in a multi-column drop-down for
this purpose) so you could retrieve the primary key value that corresponded to the user’s selection in
each drop-down.

Disconnected Recordsets
The “Retrieving Data from Microsoft Access Using a Plain Text Query” section mentioned that getting in
and out of the database as quickly as possible was an important goal. However, the Recordset object is
a powerful tool that you would often like to hold onto and use without locking other users out of the
database. The solution to this problem is the ADO disconnected recordset feature.

A disconnected recordset is a Recordset object whose connection to its data source has been severed,
but that can still remain open. The result is a fully functional Recordset object that does not hold any
locks in the database from which it was queried. Disconnected recordsets can remain open as long as

461

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 461

you need them, they can be reconnected to and resynchronized with the data source, and they can even
be persisted to disk for later retrieval. A few of these capabilities are examined in the following example.

Imagine you wanted to implement a feature that would allow users to view any group of customers
they chose. Running a query against the database each time the user specified a different criterion would
be an inefficient way to accomplish this. A much better alternative would be to query the complete set of
customers from the database and hold them in a disconnected recordset. You could then use the Filter
property of the Recordset object to quickly extract the set of customers that your user requested.

The following example shows all of the elements required to create a disconnected recordset. Again,
assume the availability of the public gobjConn Connection object:

Public grsData As ADODB.Recordset

Public Sub CreateDisconnectedRecordset ()

Dim szSQL As String

‘ Create the SQL Statement.
szSQL = “SELECT CustomerID, CompanyName, ContactName, Country “ & _

“FROM Customers”

‘ Steps to creating a disconnected recordset:
‘ 1) Create the Recordset object.
Set grsData = New ADODB.Recordset
‘ 2) Set the cursor location to client side.
grsData.CursorLocation = adUseClient
‘ 3) Set the cursor type to static.
grsData.CursorType = adOpenStatic
‘ 4) Set the lock type to batch optimistic.
grsData.LockType = adLockBatchOptimistic
‘ 5) Open the recordset.
grsData.Open szSQL, gobjConn, , , adCmdText
‘ 6) Set the Recordset’s Connection object to Nothing.
Set grsData.ActiveConnection = Nothing

‘ grsData is now a disconnected recordset.
Sheet1.Range(“A1”).CopyFromRecordset grsData

End Sub

Note that the Recordset object variable in the preceding example is declared with public scope. If you
were to declare the Recordset object variable at the procedure level, VBA would automatically destroy
it when the procedure ended and it would no longer be available for use.

Six crucial steps are required to successfully create a disconnected recordset. It’s possible to combine sev-
eral of them into one step during the Recordset.Open method, and it’s more efficient to do so, but they
are separated here for the sake of clarity:

❑ You must create a new, empty Recordset object to start with.

❑ You must set the cursor location to client-side. Because the recordset will be disconnected from
the server, the cursor cannot be managed there. Note that this setting must be made before you
open the recordset. It is not possible to change the cursor location once the recordset is open.

462

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 462

❑ The ADO client-side cursor engine supports only one type of cursor, the static cursor, so this is
what the CursorType property must be set to.

❑ ADO has a lock type specifically designed for disconnected recordsets called Batch Optimistic.
The Batch Optimistic lock type makes it possible to reconnect the disconnected recordset to the
database and update the database with records that have been modified while the recordset was
disconnected. This operation is beyond the scope of this chapter, so note that the Batch Optimistic
lock type is required in order to create a disconnected recordset.

❑ Opening the recordset is the next step. This example used a plain text SQL query. This is not a
requirement. You can create a disconnected recordset from almost any source that can be used to
create a standard recordset. The client-side cursor engine lacks a few capabilities, however; mul-
tiple recordsets are one example.

❑ The final step is disconnecting the recordset from the data source. This is accomplished by set-
ting the recordset’s Connection object to Nothing. If you recall from the “Recordset Object
Properties” section, the Connection object associated with a Recordset object is accessed
through the Recordset.ActiveConnection property. Setting this property to Nothing severs
the connection between the recordset and the data source.

Now that you have a disconnected recordset to work with, what kinds of things can you do with it? Just
about any operation the Recordset object allows. Say that the user wanted to see a list of customers
located in Germany, sorted by alphabetical order. This is how you’d accomplish that task:

‘ Set the Recordset filter to display only records
‘ whose Country field is Germany.
grsData.Filter = “Country = ‘Germany’”
‘ Sort the records by CompanyName.
grsData.Sort = “CompanyName”
‘ Load the processed data onto Sheet1
Sheet1.Range(“A1”).CopyFromRecordset grsData

If you are working in a busy multi-user environment, the data in your disconnected recordset may become
out-of-date during the course of your application due to other users inserting, updating, and deleting
records. You can solve this problem by requerying the recordset. As demonstrated by the following exam-
ple, this is a simple matter of reconnecting to the data source, executing the Recordset.Requery method,
then disconnecting from the data source:

‘ Reconnect to the data source.
Set grsData.ActiveConnection = gobjConn
‘ Rerun the Recordset object’s underlying query,
grsData.Requery Options:=adCmdText
‘ Disconnect from the data source.
Set grsData.ActiveConnection = Nothing

Using ADO with Non-Standard Data Sources
This section describes how you can use ADO to access data from two common non-standard data sources
(data sources that are not strictly considered databases), Excel workbooks, and text files. Although the idea
may seem somewhat counterintuitive, ADO is often the best choice for retrieving data from workbooks
and text files because it eliminates the often lengthy process of opening them in Excel. Using ADO also
allows you to take advantage of the power of SQL to do exactly what you want in the process.

463

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 463

Querying Microsoft Excel Workbooks
When using ADO to access data from Excel 2007 workbooks, you use the same OLE DB provider that
you used earlier in this chapter to access data from Microsoft Access 2007. In addition to Access, this
provider also supports most ISAM data sources (data sources that are laid out in a tabular, row and col-
umn format). You will use the Sales.xlsx workbook, shown in Figure 20-7, as the data source for the
Excel examples.

Figure 20-7

When using ADO to work with Excel, the workbook file takes the place of the database, while work-
sheets within the workbook, as well as named ranges, serve as tables. Compare a connection string used
to connect to an Access database with a connection string used to connect to an Excel workbook.

Connection string to an Access database:

sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Northwind 2007.accdb;”

Connection string to an Excel workbook:

sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Sales.xlsx;” & _
“Extended Properties=Excel 12.0;”

Note that the same provider is used, and that the full path and filename of the Excel workbook takes the
place of the full path and filename of the Access database. The only difference is that you must specify
the type name of the data source you want to connect to in the Extended Properties argument. When
connecting to Excel 2007, you set the Extended Properties argument to Excel 12.0. For versions of
Excel earlier than 2007, you set the Extended Properties argument to Excel 8.0.

You query data from an Excel worksheet using a plain text SQL statement exactly like you would query
a database table. However, the format of the table name is different for Excel queries. You can specify the
table that you want to query from an Excel workbook in one of four different ways:

464

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 464

❑ Worksheet Name Alone — When using the name of a specific worksheet as the table name in
your SQL statement, the worksheet name must be suffixed with a $ character and surrounded
with square brackets. For example, [Sheet1$] is a valid worksheet table name. If the worksheet
name contains spaces or non-alphanumeric characters, you must surround it with single quotes.
An example of this is [‘My Sheet$’].

❑ Worksheet-level Range Name — You can use a worksheet-level range name as a table name in
your SQL statement. Simply prefix the range name with the worksheet name it belongs to, using
the formatting conventions just described. An example of this would be
[Sheet1$SheetLevelName].

❑ Specific Range Address — You can specify the table in your SQL statement as a specific range
address on the target worksheet. The syntax for this method is identical to that for a worksheet-
level range name: [Sheet1$A1:E20].

❑ Workbook-level Range Name — You can also use a workbook-level range name as the table in
your SQL statement. In this case there is no special formatting required. You simply use the
name directly, without brackets.

Although your sample workbook contains only one worksheet, this is not a requirement. The target
workbook can contain as many worksheets and named ranges as you wish. You simply need to know
which one to use in your query. The following procedure demonstrates all four table-specifying methods
just discussed:

Public Sub QueryWorksheet()

Dim rsData As ADODB.Recordset
Dim sConnect As String
Dim sSQL As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Sales.xlsx;” & _
“Extended Properties=Excel 12.0;”

‘ Query based on the worksheet name.
‘sSQL = “SELECT * FROM [Sales$]”
‘ Query based on a sheet-level range name.
‘sSQL = “SELECT * FROM [Sales$SheetLevelName];”
‘ Query based on a specific range address.
‘sSQL = “SELECT * FROM [Sales$A1:E89];”
‘ Query based on a book-level range name.
sSQL = “SELECT * FROM BookLevelName;”

Set rsData = New ADODB.Recordset
rsData.Open sSQL, sConnect, adOpenForwardOnly, _

adLockReadOnly, adCmdText

‘ Check to make sure we received data.
If Not rsData.EOF Then

Sheet1.Range(“A1”).CopyFromRecordset rsData
Else

MsgBox “No records returned.”, vbCritical

465

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 465

End If

‘ Clean up our Recordset object.
rsData.Close
Set rsData = Nothing

End Sub

By default, the OLE DB provider for Microsoft Jet assumes that the first row in the table you specify with
your SQL statement contains the field names for the data. If this is the case, you can perform more com-
plex SQL queries, making use of the WHERE and ORDER BY clauses. If the first row of your data table does
not contain field names, however, you must inform the provider of this fact or you will lose the first row
of data. The way to accomplish this is by providing an additional setting, HDR=No, to the Extended
Properties argument of the connection string:

sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\Sales.xlsx;” & _
“Extended Properties=””Excel 12.0;HDR=No””;”

Note that when you pass multiple settings to the Extended Properties argument, the entire setting
string must be surrounded with double quotes and the individual settings must be delimited with semi-
colons. If your data table does not include column headers, you will be limited to SELECT queries.

Inserting and Updating Records in Microsoft Excel Workbooks
ADO can do more than just query data from an Excel workbook. You can also insert and update records
in the workbook, just as you would with any other data source. Deleting records, however, is not sup-
ported. Updating records, although possible, is somewhat problematic when an Excel workbook is the
data source, because Excel-based data tables rarely have anything that can be used as a primary key to
uniquely identify a specific record. Therefore, you must specify the values of enough fields to uniquely
identify the record concerned in the WHERE clause of your SQL statement when performing an update. If
more than one record meets WHERE clause criteria, all such records will be updated.

Inserting is significantly less troublesome. All you do is construct a SQL statement that specifies values
for each of the fields, and then execute it. Note once again that your data table must have column head-
ers in order for it to be possible to execute action queries against it. The following example demonstrates
how to insert a new record into the sales worksheet data table:

Public Sub WorksheetInsert()

Dim objConn As ADODB.Connection
Dim sConnect As String
Dim sSQL As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Sales.xlsx;” & _
“Extended Properties=Excel 12.0;”

‘ Create the SQL statement.
sSQL = “INSERT INTO [Sales$] “ & _

466

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 466

“VALUES(‘VA’, ‘On-Line’, ‘Computers’, ‘Mid’, 30);”

‘ Create and open the Connection object.
Set objConn = New ADODB.Connection
objConn.Open sConnect

‘ Execute the insert statement.
objConn.Execute sSQL, , adCmdText Or adExecuteNoRecords

‘ Close and destroy the Connection object.
objConn.Close
Set objConn = Nothing

End Sub

Note that if you use ADO to insert a new record into an Excel worksheet, and you use a range name as
the table in the INSERT statement, that range name will not be extended to include the new record.
Therefore, you should only use ADO to insert records into worksheets in situations where the worksheet
name can be used as the table in the INSERT statement.

Querying Text Files
The last data access technique to discuss in this chapter is querying text files using ADO. The need to
query text files doesn’t come up as often as some of the other situations addressed in this chapter.
However, when you’re faced with an extremely large text file, the result of a mainframe database data
dump, for example, ADO can be a lifesaver.

Not only will it allow you to rapidly load large amounts of data into Excel, but using the power of SQL
to limit the size of the resultset can also enable you to work with data from a text file that is simply too
large to be opened directly in Excel. For the discussion on text file data access, use a comma-delimited
text file, Sales.csv, whose contents are identical to the Sales.xlsx workbook used in the Excel exam-
ples in the previous section. The following example demonstrates how to construct a connection string
to access a text file:

szConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _
“Data Source=C:\Files\;” & _
“Extended Properties=Text;”

Note that in the case of text files, the Data Source argument is set to the directory that contains the text
file. Do not include the name of the file in this argument. Once again, the provider is informed of the for-
mat to be queried by using the Extended Properties argument. In this case, you simply set this argu-
ment to the value “Text”.

Querying a text file is virtually identical to querying an Excel workbook. The main difference is how the
table name is specified in the SQL statement. When querying a text file, the filename itself is used as the
table name in the query. This has the added benefit of allowing you to work with multiple text files in a
single directory without having to modify your connection string.

As with Excel, you are limited to SELECT queries if the first row of your text file does not contain field
names. You must also add the HDR=No setting to the Extended Properties argument if this is the case,
in order to avoid losing the first row of data. The example text file has field names in the first row, and

467

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 467

you should assume that you need to limit the number of records you bring into Excel by adding a
restriction in the form of a WHERE clause to your query. The following procedure demonstrates this:

Public Sub QueryTextFile()

Dim rsData As ADODB.Recordset
Dim sConnect As String
Dim sSQL As String

‘ Create the connection string.
sConnect = “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\;” & _
“Extended Properties=Text;”

‘ Create the SQL statement.
sSQL = “SELECT * FROM Sales.csv WHERE Type=’Art’;”

Set rsData = New ADODB.Recordset
rsData.Open sSQL, sConnect, adOpenForwardOnly, _

adLockReadOnly, adCmdText

‘ Check to make sure we received data.
If Not rsData.EOF Then

‘ Dump the returned data onto Sheet1.
Sheet1.Range(“A1”).CopyFromRecordset rsData

Else
MsgBox “No records returned.”, vbCritical

End If

‘ Clean up our Recordset object.
rsData.Close
Set rsData = Nothing

End Sub

Summary
Many years ago you could concentrate on understanding Excel, and that would have been enough to get
by. Today, however, it is becoming increasingly difficult to avoid coordinating your Excel activities with
a back-end data source of some kind. This chapter provided you with a solid introduction to using SQL
and ADO to access various data sources. Due to space constraints, this chapter could only scratch the
surface of possibilities in each section. So if data access is or might become a significant part of your
development effort, you are strongly recommended to obtain and read more specialized books on the
subject.

The next chapter continues to look at managing external data with Excel by examining some of the built-
in features provided by Excel for this purpose.

468

Chapter 20: Data Access with ADO

23_046432 ch20.qxp 2/16/07 10:02 PM Page 468

Managing External Data
Chapter 20 discussed how to access data with essentially unlimited flexibility using ADO. Excel
also provides some built-in data management features, primarily through the QueryTable,
ListObject, and WorkbookConnection objects. Excel’s built-in data management features have
less flexibility than custom ADO programming. For example, you can only use these features to
retrieve data, not modify it. But they are simpler and offer a number of useful capabilities right out
of the box. This chapter examines some of Excel’s built-in data management capabilities.

The External Data User Interface
The built-in data management features in Excel 2007 are accessed from two groups on the Data tab
of the Ribbon in the Excel 2007 user interface. The Get External Data and Manage Connections
groups are shown in Figure 21-1.

Figure 21-1

The controls on the Get External Data group are used to create new connections from your work-
book to various data sources, and the controls on the Manage Connections group are used to man-
age data connections that already exist in your workbook.

24_046432 ch21.qxp 2/16/07 10:03 PM Page 469

Get External Data
The controls in the Get External Data group allow you to retrieve external data directly from various
data sources or use predefined queries stored in various data connection files. The three buttons along
the left side of the Get External Data group provide quick access for retrieving Microsoft Access data,
data from the web, and data from text files, respectively. The From Other Sources button provides you
with a drop-down list of all the other options available for retrieving data from external data sources, as
shown in Figure 21-2.

Figure 21-2

This chapter is concerned with the external data features that create a QueryTable object in the back-
ground. These features include Web Queries and all queries performed on data sources that return
uncomplicated tabular data, including text files and relational databases like Access and SQL Server.

The Existing Connections button displays the Existing Connections dialog, shown in Figure 21-3. This
dialog displays a list of connections that currently exist in the workbook, as well as a list of stored data
connection files that you can use to retrieve external data.

The controls in the Get External Data group will be disabled if you have selected a cell within the range
of an existing external data connection. If these controls are disabled, try selecting an unused cell outside
of any existing data tables.

470

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 470

Figure 21-3

Manage Connections
The controls on the Manage Connections group allow you to manipulate the individual connections in
your workbook, as well as providing a central location for viewing and managing all connections in the
currently active workbook. The buttons in this group that operate on a specific connection will be dis-
abled until you select a cell within the range assigned to a connection. With a cell in a connection range
selected, the Manage Connections group will look similar to Figure 21-4.

Figure 21-4

The most interesting control on the Manage Connections group is the new Connections button. This dis-
plays a dialog that lists all of the external data connections in the currently active workbook and allows
you to see where they are used, as well as view and manipulate their properties. The Workbook
Connections dialog is shown in Figure 21-5.

471

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 471

Figure 21-5

The Properties and Refresh buttons on this dialog expose exactly the same features as those shown on
the Refresh All button in Figure 21-4.

The QueryTable and ListObject
When you use the Get External Data feature to create Web Queries or retrieve tabular data, you are creat-
ing a QueryTable to manage that data. This QueryTable can exist alone, or it can be associated with a
ListObject (the ListObject is also covered in Chapter 6). Retrieving data using Web Queries or text
files from the user interface will create a standalone QueryTable. Retrieving data from relational
databases like Access or SQL Server will create a ListObject whose data source is a QueryTable.
When you create your own QueryTable objects using VBA, you are free to create them either way. Both
methods are demonstrated in this section.

A QueryTable from a Relational Database
As a first introduction to the QueryTable object, create a simple QueryTable based on a table from the
Access 2007 Northwind database used in Chapter 20. The code to create the QueryTable is as follows:

This section utilizes the Northwind database, a sample database provided with
Microsoft Access 2007. If you don’t have this database available, you will need to
install it to run the example code.

472

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 472

Sub CreateSimpleQueryTable()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”
Set rngDestination = Sheet1.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = Sheet1.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.CommandText = “Customers”
qryTable.CommandType = xlCmdTable
qryTable.Refresh

End Sub

There are three steps involved in creating a QueryTable:

1. Define the connection string and destination range. If the connection string used here looks
familiar, that’s no coincidence. It’s almost exactly the same connection string used to create an
ADO connection to the Northwind 2007 Access database in Chapter 20. This is because both
ADO and QueryTables use the same underlying OLE DB drivers to connect to relational
databases. The only difference in this case is that the first item in the connection string must
specify what type of connection string it is (in this case OLEDB). This is because a QueryTable
can be based on several different connection types, so you need to tell it which type you’re
using. The destination range is a reference to the cell on the destination worksheet that you
want to be the top-left cell in the resulting QueryTable.

2. Create the QueryTable object. This is a simple matter of calling the QueryTables.Add method,
passing it the connection string and destination range defined in step 1, and assigning the result
to a QueryTable object variable that will be used for further manipulation of the QueryTable.

3. Populate the QueryTable object. After step 2, the QueryTable exists, it knows what its data
source is, and it knows where on the destination worksheet it will be located. However, it
doesn’t know what data to display. Remedy this by using the CommandText and CommandType
properties of the QueryTable object to tell it to display the contents of the Customers table.
Actual retrieval of data is accomplished by calling the QueryTable.Refresh method.

A section of the QueryTable created in the previous example is shown in Figure 21-6.

Figure 21-6

473

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 473

A QueryTable that displays data from a relational database may need to be updated periodically — for
example, in cases where other users may have added new records that need to be displayed. You can
update the QueryTable data at any time by calling the QueryTable.Refresh method. The QueryTable
will also perform this operation for you automatically, if you tell it to do so by adding the following line
of code:

‘ Populate the QueryTable.
qryTable.CommandText = “Customers”
qryTable.CommandType = xlCmdTable
qryTable.RefreshPeriod = 30
qryTable.Refresh

This line of code tells the QueryTable to refresh itself automatically every 30 minutes, and it will
continue to do so every 30 minutes for as long as the workbook is open. The value assigned to the
QueryTable.RefreshPeriod property is persisted, so even after you close and reopen the workbook
containing the QueryTable, it will continue to refresh automatically at the interval you’ve specified.
The refresh period is specified in minutes, with valid values being 1 through 32,767. Setting the
QueryTable.RefreshPeriod property to 0 disables automatic refreshing. This is also the default
value if you don’t specify this property.

You can think of a QueryTable as a container for whatever data you want to put in it. Just like you can
refresh the QueryTable at any time to update it with the latest data from the data source, you can also
change the data displayed by the QueryTable at any time by simply changing its CommandText and
CommandType properties and calling its Refresh method:

With Sheet1.QueryTables(1)
.CommandText = “SELECT [First Name], [Last Name] FROM Customers”
.CommandType = xlCmdSql
.Refresh

End With

This code changes the QueryTable from displaying the entire Customers table to deriving its data from
a SQL statement that retrieves just the first and last names of each customer. See Chapter 20 for an intro-
duction to SQL if you aren’t familiar with it. As soon as this code is executed, the results displayed by
the QueryTable will change accordingly, as shown in Figure 21-7.

Figure 21-7

By default, a QueryTable will perform what is called a background query. This means that as soon as the
query specified by the QueryTable has been submitted, VBA will return control of Excel back to the user.
This may be a good choice if the QueryTable performs a long-running query and you don’t want to
require the user to sit and wait for it to finish. It may also be a bad choice if something critical in your appli-
cation depends on the result of the query, and it therefore must be completed before your code continues.

474

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 474

In this case you may want to turn off background querying by setting the QueryTable.BackgroundQuery
property to False:

‘ Populate the QueryTable.
qryTable.CommandText = “Customers”
qryTable.CommandType = xlCmdTable
qryTable.RefreshPeriod = 30
qryTable.BackgroundQuery = False
qryTable.Refresh

The QueryTable.Refresh method also has a BackgroundQuery argument that can be set to False
to accomplish the same thing without requiring an additional line of code. The difference is that the
QueryTable.BackgroundQuery property is persistent and applies to all future refreshes, whereas the
BackgroundQuery argument to the QueryTable.Refresh method must be specified each time you
refresh the QueryTable or it will simply default to True.

A Query Table Associated with a ListObject
Standalone QueryTables are good for retrieving data that will be used for background or display pur-
poses only. If you want the user to be able to interact with the data after it has been retrieved, a better
option is to create a QueryTable associated with a ListObject. This creates a table in the Excel user
interface with all of the built-in ease-of-manipulation features that users need to work with the data.

The code for creating a QueryTable associated with a ListObject is very similar to the code for creat-
ing a QueryTable alone. In fact, the preceding QueryTable example can be modified to use a
ListObject by changing a single line of code:

Sub CreateQueryTableWithList()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”
Set rngDestination = Sheet2.Range(“A1”)

‘ Create the ListObject and get a reference to its QueryTable.
Set qryTable = Sheet2.ListObjects.Add(SourceType:=xlSrcExternal, _

Source:=strConnection, Destination:=rngDestination).QueryTable

‘ Populate the QueryTable.

Note that there is some overlap between the QueryTable and ListObject proper-
ties and methods. For example, both the QueryTable and ListObject have a
Refresh method that updates their data. When there is duplication, which object’s
property or method you decide to use is a matter of preference. Because this chapter
focuses on QueryTables, the QueryTable properties and methods are used wher-
ever there is duplication between the two object models.

475

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 475

qryTable.CommandText = “Customers”
qryTable.CommandType = xlCmdTable
qryTable.Refresh False

End Sub

The process for creating a standalone QueryTable and the process for creating a QueryTable associated
with a ListObject are fundamentally the same, the only difference being that you use the arguments of
the ListObjects.Add method to specify the connection string and destination. Because a ListObject
can have a number of additional data sources besides the external data used in this example, you also
need to specify what type of data source your connection string represents, using the SourceType argu-
ment of the ListObjects.Add method. See Chapter 6 for more details on ListObjects.

A portion of the table created by the previous code is shown in Figure 21-8.

Figure 21-8

Any time a ListObject is created from an external data source, either using VBA or through the Excel
UI, an associated QueryTable object is created. You can use this QueryTable to manipulate the source
data for any ListObject in a workbook.

QueryTables and Parameter Queries
It is often useful to base your QueryTable on a parameter query rather than a fixed SQL statement. This
allows you to determine which subset of the data you display, and even allows you to provide your
users with the ability to modify the parameters when the QueryTable is refreshed.

One notable quirk of parameter queries is that QueryTables will not support them if you use the OLE
DB provider used in the previous two sections. Instead, you must switch to the ODBC driver. This is a
simple matter of changing the first argument of the connection string from OLEDB to ODBC and provid-
ing ODBC connection information:

Sub CreateQueryTableWithParameters()

Dim qryTable As QueryTable
Dim rngDestination As Range

Note that a QueryTable associated with a ListObject is not part of the Worksheet
.QueryTables collection. It can only be accessed through the ListObject.QueryTable
property of its associated ListObject. If you are using VBA to examine worksheets
for the existence of query tables, you will need to look for them both directly in the
QueryTables collection and indirectly in the ListObjects collection.

476

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 476

Dim strConnection As String
Dim strSQL As String

‘ Define the connection string and destination range.
strConnection = “ODBC;DSN=MS Access Database;” & _

“DBQ=C:\Files\Northwind 2007.accdb;”
Set rngDestination = Sheet3.Range(“A1”)

‘ Create a parameter query.
strSQL = “SELECT [Product Name], [List Price], [Quantity Per Unit]” & _

“ FROM Products” & _
“ WHERE Category = ?;” ‘ This is the parameter.

‘ Create the QueryTable.
Set qryTable = Sheet3.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.CommandText = strSQL
qryTable.CommandType = xlCmdSql
qryTable.Refresh False

End Sub

In this example, you set the CommandText property of the QueryTable to a SQL statement that selects
the Product Name, List Price, and Quantity Per Unit from the Products table of the Northwind 2007
database. The WHERE clause of the SQL statement contains a parameter. A parameter is created by plac-
ing a question mark character (?) where an actual value would normally go. A SQL statement may con-
tain one or more parameters at any point where a value from the database would normally go. You
cannot use parameters for table names, column names, or SQL keywords.

When this code is executed, VBA automatically recognizes that the SQL contains a parameter, and it will
prompt you to enter a value for the parameter by displaying the dialog box shown in Figure 21-9.

Figure 21-9

For each parameter in the CommandText property of the QueryTable, VBA creates a Parameter object
that it adds to the QueryTable.Parameters collection. You can gain some additional control over how
parameters are handled by creating these Parameter objects and adding them to the Parameters col-
lection yourself.

You create parameters using the QueryTable.Parameters.Add method. This method adds a
Parameter object to the QueryTable and returns a reference to it. You can then use that reference to
modify the behavior of the Parameter object. The next example uses this capability to prepopulate the

477

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 477

parameter with an initial value when the QueryTable is first created, and then to have it prompt the
user for a new value each time the QueryTable is refreshed after that.

Sub CreateQueryTableWithParameters()

Dim objParam As Parameter
Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String
Dim strSQL As String

‘ Define the connection string and destination range.
strConnection = “ODBC;DSN=MS Access Database;” & _

“DBQ=C:\Files\Northwind 2007.accdb;”
Set rngDestination = Sheet3.Range(“A1”)

‘ Create a parameter query.
strSQL = “SELECT [Product Name], [List Price], [Quantity Per Unit]” & _

“ FROM Products” & _
“ WHERE Category = ?;” ‘ This is the parameter.

‘ Create the QueryTable.
Set qryTable = Sheet3.QueryTables.Add(strConnection, rngDestination)

‘ Create the parameter and give it an initial value.
Set objParam = qryTable.Parameters.Add(“Select Category”, _

xlParamTypeVarChar)
objParam.SetParam xlConstant, “Beverages”

‘ Populate the QueryTable.
qryTable.CommandText = strSQL
qryTable.CommandType = xlCmdSql
qryTable.Refresh False

‘ Configure the parameter to prompt the user for a
‘ new value the next time the QueryTable is refreshed.
objParam.SetParam xlPrompt, “Select Category”

End Sub

You can also configure a Parameter to retrieve its value from a cell on the worksheet, and to automati-
cally refresh the QueryTable whenever the value in that cell changes. This allows you to, for example,
provide the users with a data validation list of choices for the parameter, rather than forcing them to
remember all the potentially valid values. This feature is also very useful when your query requires mul-
tiple parameters. Rather than having to contend with a prompt dialog for every parameter, the user can
simply make the appropriate entries in the cells that specify the parameters.

If you create your own Parameter objects, they must be created in the same order
that the corresponding parameters appear in the SQL statement.

478

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 478

If you replace the final line of code in the preceding procedure with the following two lines of code, the
Parameter will retrieve its value from cell F1 and refresh the QueryTable automatically whenever the
value in cell F1 changes:

‘ Configure the parameter to retrieve its value from cell F1
‘ and refresh the QueryTable whenever that value changes.
objParam.SetParam xlRange, Sheet3.Range(“F1”)
objParam.RefreshOnChange = True

In the previous examples, you used all three options provided by the Parameter.SetParam method.
The first argument of the SetParam method specifies the option to be used, and the second argument
provides additional data for that option. The three SetParam options are as follows:

❑ xlConstant— Tells the parameter to use the value specified by the second argument. The sec-
ond argument can be anything that returns a value of the correct data type for the parameter,
including a variable, a cell reference, or a hard-coded value.

❑ xlPrompt— Tells the parameter to prompt the user for its value. The second argument is the
prompt string that will appear in the dialog box.

❑ xlRange— Tells the parameter to retrieve its value from the cell specified by the second argu-
ment. The second argument must be a valid Range object.

QueryTables from Web Queries
QueryTables are not limited to retrieving data from traditional databases. They can also retrieve data
from web sites. Creating a QueryTable based on a web site is known as performing a Web Query. A
simple example of a QueryTable based on a Web Query follows. It pulls in the most recent data on
major U.S. financial indexes from the Wall Street Journal web site:

Sub CreateWebQuery()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “URL;http://online.wsj.com/public/page/” & _

“markets.html?mod=hpp_us_indexes”
Set rngDestination = Sheet4.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = Sheet4.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.WebSelectionType = xlSpecifiedTables
qryTable.WebTables = “19”
qryTable.WebFormatting = xlWebFormattingAll
qryTable.Refresh False

End Sub

479

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 479

Note the similarity between this code and the code used to create a QueryTable from a relational
database. The differences are the content of the connection string and a different set of properties that
must be set prior to refreshing the QueryTable.

You inform the QueryTable that it will be performing a Web Query by specifying URL as the first argu-
ment in the connection string. The rest of the connection string is a URL that specifies the web page from
which you want to retrieve the data.

You could retrieve an entire web page with your Web Query, but this is rarely what you want to do.
Most web pages are structured as a group of HTML tables nested and arranged to produce the visual
layout you see in your browser. The Web Querying functionality of the QueryTable object lets you take
advantage of this fact by allowing you to specify just the table or tables on the web site that you want to
retrieve.

This is accomplished by setting the WebSelectionType property to xlSpecifiedTables and then
listing the index numbers of the tables you want to retrieve in the WebTables property. If you want to
retrieve more than one table, simply separate the list of index numbers with commas. There is no tried
and true method for determining which table index number holds the data you want. The easiest way to
determine this value is to start with code similar to that shown earlier, and increment the WebTables
property beginning with the number 1 until you locate the index that corresponds to the data you want.
A section of the result of the Web Query is shown in Figure 21-10.

Figure 21-10

You have three formatting options for the results returned by the Web Query, controlled by the value of
the WebFormatting property:

❑ xlWebFormattingAll— Imports the HTML format of the results exactly as they appear on the
source web page, including functioning hyperlinks.

❑ xlWebFormattingRTF— Imports the data with the HTML formatting converted to rich-text
format. This will produce results similar to xlWebFormattingAll, but without hyperlinks or
merged cells.

❑ xlWebFormattingNone— Imports the data as plain text.

Although the ability to specify a table index gives you significant flexibility in a
Web Query, it also makes your code vulnerable to design changes on the target web
site that might cause a change in the table index number of the table you want to
retrieve.

480

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 480

You will note the obvious thick gray bars separating the rows of data in Figure 21-10. These appear
because that is how the table was structured on the source web page. You will often get artifacts like this
when performing web queries. You can simply hide these rows and they will remain hidden, even when
the QueryTable is refreshed. Just don’t forget to unhide any rows and/or columns you’ve hidden if you
do something that changes the structure of the Web Query such that the data you want to display ends
up hidden.

Some web sites provide parameterized URLs specifically designed for use in web queries. The Yahoo
Finance web site is one example. It provides a URL to which you can append a comma-delimited list of
stock symbols to retrieve the information for. The following example creates a parameterized Web Query
procedure that wraps this Yahoo Finance URL. Just call this procedure and pass it a comma-delimited
list of stock ticker symbols, and it will return a table with the latest data for those symbols. You can pass
as few or as many symbols as you like:

Sub ParameterizedWebQuery(strQuoteList As String, wksSheet As Worksheet)

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “URL;http://finance.yahoo.com/q/cq?d=v1&s=” & strQuoteList
Set rngDestination = wksSheet.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = wksSheet.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.WebSelectionType = xlSpecifiedTables
qryTable.WebTables = “9”
qryTable.WebFormatting = xlWebFormattingNone
qryTable.Refresh False

End Sub

Sub CallParameterizedWebQuery()
ParameterizedWebQuery “MSFT, DELL, IBM”, Sheet6

End Sub

In this example, you call the parameterized Web Query procedure, pass it the stock symbols for
Microsoft, Dell, and IBM, and tell it to place the resulting QueryTable on Sheet6. The results of this Web
Query are shown in Figure 21-11.

Figure 21-11

481

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 481

In a real-world application, you would typically let the user specify the list of stock symbols — for exam-
ple, by allowing them to pick the symbols from a list in a UserForm or allowing them to enter the sym-
bols on a worksheet. You would then read the selected symbols, create a comma-delimited list from
them, and pass this list to the ParameterizedWebQuery procedure.

Like all QueryTables, you can modify the data displayed by a QueryTable based on a Web Query
at any time. Unlike QueryTables based on relational databases, however, you cannot modify the
CommandText property of a QueryTable based on a Web Query. In fact, attempting to do so will render
the QueryTable inoperable.

Instead, you change the data displayed in a QueryTable based on a Web Query by modifying its
Connection property. The new connection string must be in exactly the same format as a connection
string used to create a Web Query initially, and if the table index you want to retrieve is different from
the current WebTables property value, you will have to update that property as well prior to refreshing
the QueryTable.

A QueryTable from a Text File
You can also use a QueryTable to extract data from a text file. The advantage of using a QueryTable as
opposed to the Workbooks.OpenText method is that the text file data can be loaded directly into the
workbook you specify, as opposed to being opened in a new workbook.

This example uses the same Sales.csv source file used in the ADO text file example in Chapter 20. The
code to load data from this text file using a QueryTable is as follows:

Sub QueryTableFromTextFile()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “TEXT;C:\Files\Sales.csv”
Set rngDestination = Sheet6.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = Sheet6.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.TextFileStartRow = 1
qryTable.TextFileParseType = xlDelimited
qryTable.TextFileCommaDelimiter = True

There is no tried and true method for determining how to structure the URL used in
a Web Query. If the format is not documented on the web site (and it rarely will be),
you can use the macro recorder and experiment with the site directly in the web
browser to determine the appropriate format for the Web Query URL. This is how
both of the URLs in the previous examples were created.

482

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 482

qryTable.TextFileTextQualifier = xlTextQualifierNone
qryTable.TextFileColumnDataTypes = Array(2, 2, 2, 2, 1)
qryTable.Refresh False

End Sub

You inform the QueryTable that it will be extracting data from a text file by specifying TEXT as the first
argument in the connection string. The second argument of the connection string is the full path and file-
name of the text file.

The QueryTable object has a series of text file-specific properties that allow you to control how the text
file data is loaded. The following list describes the five of these properties that are most commonly used:

❑ TextFileStartRow— This property tells the query table which row of the text file to start with
when it loads the data. A text file may have one or more initial rows that are not part of the data
set. You can use this property to skip these initial rows by specifying some number greater than
1. A value of 1 tells the QueryTable to import the entire text file.

❑ TextFileParseType— This property tells the QueryTable whether the columns of data
in the text file are separated by some delimiting character (xlDelimited) or are fixed width
(xlFixedWidth). The value of this property will determine which additional properties you spec-
ify. Your text file is comma-delimited, so the options for a delimited text file are discussed next. If
your text file has fixed-width columns, you would also set the TextFileFixedColumnWidths
property to an array of column width values, one for each column in your text file.

❑ TextFileCommaDelimiter— When loading a delimited text file, you need to tell the
QueryTable what delimiter to look for. You’re loading a comma-delimited text file, so you set
the TextFileCommaDelimiter property to True. The following additional properties are avail-
able to specify other delimiters: TextFileTabDelimiter, TextFileSemicolonDelimiter,
TextFileSpaceDelimiter, and TextFileOtherDelimiter.

❑ TextFileTextQualifier— You will often encounter text files where values in text data
type fields are surrounded by single or double quotes. This property is used to inform the
QueryTable if this is the case, and if so, which of these characters it should treat as a qualifier
and ignore when loading the data. The options are xlTextQualifierSingleQuote,
xlTextQualifierDoubleQuote, and xlTextQualifierNone. You use the last option
because your text file does not use any text field qualifiers.

❑ TextFileColumnDataTypes— This property is used to tell the QueryTable how to interpret
each column of data in the text file. The property takes an array of integer values, one for each
column in the text file, that specify what type of data is contained in those columns. For uncom-
plicated text and numeric data, you can normally pass the value 1 for every column. This tells
the QueryTable to automatically determine what type of data is being loaded. If the text file
contains data that may be misinterpreted, you can use this property to tell the QueryTable
what type of data is contained in each column. A value of 2 means the column contains text
data. A value of 9 tells the QueryTable to skip the column entirely. The additional seven allow-
able numeric values are used to handle various arrangements of date data types. See the VBA
help for more details on these.

483

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 483

Creating and Using Connection Files
The information used to create query tables can be stored to a file on disk, called a connection file, and
reused. Connection files provide several advantages when used in conjunction with QueryTables. They
allow you to create a variety of query tables, store them to disk, and distribute them with your applica-
tions. Users can also use connection files directly by selecting them from the Existing Connections dialog
on the Data tab of the Ribbon. Finally, if some detail of the data source changes — for example, the server
name where a relational database is located, you can simply edit the connection file to reflect the new
information and redistribute it. QueryTables based on the connection file will then be updated auto-
matically with the new information.

Unfortunately, connection files do not present a very consistent story. There are more than half a dozen
potential file types available, and most of them can be used for multiple types of source data. Each of the
three data sources covered in this chapter (databases, web queries, and text files) requires a different
type of connection file. This section focuses on Office Data Connect (.odc) and Web Query (.iqy) files.
Office Data Connect files store connection information for databases, and Web Query files store connec-
tion information for web queries.

Connection files are simply text files with a file extension that identifies their type and contents, format-
ted according to what that type of connection requires. Connection files can be stored and used from any
accessible directory on a computer, but connection files that you want to be visible automatically in the
Get External Data ➪ Existing Connections list in the Excel user interface must be located in one of the fol-
lowing places:

❑ The C:\...\My Documents\My Data Sources\ folder under the profile of the currently
logged-in user.

❑ The C:\Program Files\Common Files\ODBC\Data Sources\ folder.

❑ The C:\Program Files\Microsoft Office\Office12\Queries\ folder.

❑ A custom location that has been defined by your network administrator through the use of
Office policy settings.

Office Data Connect Files
An Office Data Connect (ODC) file contains XML data that specifies all of the information required to re-
create an external connection to a database. See Chapter 12 for an introduction to XML if you aren’t
familiar with it. Although an ODC file contains XML data, it is not a well-formed XML file, so if you
need to edit its contents, you may find it easier to use a text editor as opposed to an XML editor.

You can save the connection information for a QueryTable or ListObject to an ODC file by using the
SaveAsODC method. The following line of code demonstrates how to save an ODC file that represents
the first QueryTable created earlier in this chapter:

Sheet1.QueryTables(1).SaveAsODC “C:\Files\CustomersTable.odc”

ODC files can only be saved from QueryTables of ListObjects that were created
through OLEDB. Because utilizing parameter queries requires the use of ODBC, you
cannot save an ODC file for a QueryTable or ListObject that utilizes a parameter
query.

484

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 484

Upon opening the CustomersTable.odc file in a text editor, you will see a lot of content, most of which
is beyond the scope of this chapter. All the data you would potentially need to edit is contained within
the two XML elements located near the top of the file. An abbreviated version of these two elements is as
follows:

<xml id=docprops>
<o:DocumentProperties.....>
<o:Name>Connection</o:Name>
</o:DocumentProperties>
</xml>
<xml id=msodc>
<odc:OfficeDataConnection.....>
<odc:Connection odc:Type=”OLEDB”>
<odc:ConnectionString>
Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Files\Northwind 2007.accdb;...
</odc:ConnectionString>
<odc:CommandType>Table</odc:CommandType>
<odc:CommandText>Customers</odc:CommandText>
</odc:Connection>
</odc:OfficeDataConnection>
</xml>

The first XML element, called the docprops element, contains the name that will be displayed to the
user in the Existing Connections dialog. This is automatically given the same name as the connection
from which the ODC file was derived. Because you did not explicitly name your connection when you
created it, VBA gave it the default name Connection. This is what you see stored in the Name element
within the XML docprops element. You can simply edit this value to give the ODC file a more meaning-
ful description.

The second XML element, called the msodc element, contains the connection string, command text, and
command type used to create the QueryTable. The connection string that you see in the preceding
example shows just the arguments you specified when you created the original QueryTable. If you
open the ODC file yourself, you will see more than a dozen additional connection string arguments.
These are simply the default values that OLEDB uses for any arguments you haven’t specified.

Again, however, a connection string is simply plain text, so if you needed to modify the path
to the database for all users of your application, you could simply type a new path into the
ConnectionString element, save the file, and distribute it to everyone using your application.
Any QueryTables built from the connection file would automatically update themselves with the
new information.

To use the CustomersTable.odc file, you need to attach it to your QueryTable in the following manner:

qryTable.SourceConnectionFile = “C:\Files\CustomersTable.odc”
qryTable.RobustConnect = xlAlways

Be sure the QueryTable to which you are attaching the ODC file is the same QueryTable from which it
was created. Once you have done this, the QueryTable will use the information contained in the speci-
fied ODC file to obtain its connection information whenever it needs to be refreshed.

485

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 485

Web Query Files
Web Query (IQY) files are far simpler and easier to understand than ODC files. The process of generat-
ing an IQY file from an existing Web Query is a bit convoluted. There’s no automated method of creating
them like there is with ODC files. Creating an IQY file from an existing Web Query requires the follow-
ing steps:

1. Open the Workbook Connections dialog using the Data ➪ Manage Connections ➪ Connections
button.

2. In the Workbook Connections dialog, select the connection that corresponds to your Web Query
and click the Properties button. This will display the Connection Properties dialog.

3. In the Connection Properties dialog, select the Definition tab and click the Edit Query button.
This will display the Edit Web Query dialog.

4. You will see a toolbar across the top of the Edit Web Query dialog. The second button from the
left on this toolbar is the Save Query button. Click this button and you will be prompted by a
Save Workspace dialog to save your Web Query as an IQY file.

If you perform these steps on the connection for the Wall Street Journal Web Query created in the previ-
ous section, an IQY file with the following contents will be generated:

WEB
1
http://online.wsj.com/public/page/markets.html?mod=hpp_us_indexes

Selection=19
Formatting=All
PreFormattedTextToColumns=False
ConsecutiveDelimitersAsOne=False
SingleBlockTextImport=False
DisableDateRecognition=False
DisableRedirections=True

Only three entries in this file are important for your purposes. These are the URL, Selection, and
Formatting entries. In fact, you could delete everything in the IQY file other than these three entries
and the query would perform exactly as expected.

The URL is self-explanatory. It’s the same URL used in the connection string when you originally created
the Web Query. The Selection line specifies what the query should retrieve. This will be either the
string value EntirePage or a number indicating the specific table you wish to retrieve. In this case the
number 19 was generated, because that is the index number of the table specified when the Web Query
was created.

It would be nice if you could simply create a new QueryTable using the ODC file as
the data source in the first place. However, because the Connection argument of the
QueryTables.Add method is required and does not accept an ODC file as its value,
you must create the QueryTable initially in the manner shown in the previous sec-
tion, and then attach the QueryTable to the ODC file afterward.

486

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 486

The Formatting line specifies how the query should be formatted on the worksheet. Its potential values
are All, RTF, or None, which correspond to the similarly named settings for the WebFormatting argu-
ment described in the previous section.

In addition to simplicity, IQY files have one additional advantage over ODC files for VBA programmers:
you can create a new QueryTable directly from an IQY file using VBA. You could re-create the Wall
Street Journal QueryTable example using the preceding IQY file in the following manner:

Sub CreateWebQueryFromIQY()

Dim qryTable As QueryTable
Dim rngDestination As Range
Dim strConnection As String

‘ Define the connection string and destination range.
strConnection = “FINDER;C:\Files\Wall Street Journal Query.iqy”
Set rngDestination = Sheet7.Range(“A1”)

‘ Create the QueryTable.
Set qryTable = Sheet7.QueryTables.Add(strConnection, rngDestination)

‘ Populate the QueryTable.
qryTable.Refresh False

End Sub

When creating a QueryTable from an IQY file, you pass FINDER as the first argument to the connection
string and the full path and filename of the IQY file as the second argument. Notice that you don’t need
to set any additional properties of the QueryTable after creating it and prior to refreshing it. This is
because all this information is contained in the IQY file.

The WorkbookConnection Object and the
Connections Collection

New to Excel 2007 is an object and collection designed to manage all external data connections in a
workbook. Each time you create any one of the built-in objects that Excel uses to manage external data,
including QueryTables, ListObjects, and PivotCaches, you are also creating a new instance of a
WorkbookConnection object. All of the WorkbookConnection objects in a given workbook are con-
tained in the Workbook.Connections collection for that workbook.

You can also create a standalone WorkbookConnection object, one that is not associated with any exter-
nal data container. The eventual intent for this feature is to allow you to create query tables, list objects,
and all other external data containers using a WorkbookConnection object as the data source. However,
as of Excel 2007, this feature has only been implemented for PivotCache objects. See Chapter 7 for more
details on PivotCache objects.

487

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 487

You can create a new WorkbookConnection object using the Add or AddFromFile methods of the
Workbook.Connections collection. The following example creates a new WorkbookConnection using
the Add method:

Sub CreateNewConnection()

Dim objWBConnect As WorkbookConnection

Set objWBConnect = ThisWorkbook.Connections.Add(_
Name:=”New Connection”, _
Description:=”My New Connection Demo”, _
ConnectionString:=”OLEDB;Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Data Source=C:\Files\Northwind 2007.accdb”, _
CommandText:=”SELECT [First Name], [Last Name] FROM Customers”, _
lCmdtype:=xlCmdSql)

End Sub

After a WorkbookConnection object has been created, it is persisted when the workbook is saved. It
will then be available any time the workbook is open, so there is no need to re-create it.

You can also use the Workbook.Connections collection to iterate through all the WorkbookConnection
objects in a workbook and examine or modify their properties. The next example populates a worksheet
with a list of all WorkbookConnection objects in the current workbook, and their type and their connec-
tion string if applicable:

Sub ExamineWorkbookConnections()

Dim lOffset As Long
Dim objWBConnect As WorkbookConnection

Sheet8.UsedRange.Clear
With Sheet8.Range(“A1:C1”)

.Value = Array(“Connection Name”, “Connection Type”, “Connection String”)

.EntireColumn.AutoFit
End With

For Each objWBConnect In ThisWorkbook.Connections
lOffset = lOffset + 1
Sheet8.Range(“A1”).Offset(lOffset, 0).Value = objWBConnect.Name
Sheet8.Range(“A1”).Offset(lOffset, 1).Value = objWBConnect.Type
If objWBConnect.Type = xlConnectionTypeODBC Then

Sheet8.Range(“A1”).Offset(lOffset, 2).Value = _
objWBConnect.ODBCConnection.Connection

ElseIf objWBConnect.Type = xlConnectionTypeOLEDB Then
Sheet8.Range(“A1”).Offset(lOffset, 2).Value = _

objWBConnect.OLEDBConnection.Connection
Else

Sheet8.Range(“A1”).Offset(lOffset, 2).Value = “Not Applicable”
End If

Next objWBConnect

End Sub

488

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 488

Note that WorkbookConnection objects based on ODBC and OLE DB have additional child connection
objects, the ODBCConnection object and OLEDBConnection object. These objects maintain the connec-
tion information required by ODBC and OLE DB.

External Data Security Settings
When you open an Excel 2007 workbook that contains connections to external data, you will encounter a
security prompt like the one displayed in Figure 21-12.

Figure 21-12

You can enable your external connections by clicking the Enable Content button and choosing the option
to enable the content. If you don’t do this, any automatic refreshing of your QueryTables, ListObject,
or other data containers attached to external data will be disabled without further warning. If you
attempt to manually refresh any of the data in your workbook, you will be prompted by another secu-
rity warning, shown in Figure 21-13.

Figure 21-13

If you click OK in this dialog, all of your external data connections will be enabled. If you click Cancel,
all of your external data connections will remain disabled and the refresh will not take place.

You can avoid these security issues by placing your file in a trusted location, or by selecting the Enable
All Data Connections option in the Trust Center ➪ External Content section. Trusted locations are
beyond the scope of this chapter, but you can enable all data connections in all workbooks you open in
Excel 2007 using the following steps:

1. Click the Microsoft Office Button, and then click the Excel Options button. This will open the
Excel Options dialog.

2. In the Excel Options dialog, select Trust Center from the list on the left side.

3. Next, click the Trust Center Settings button on the right side of the Excel Options dialog. This
will open the Trust Center dialog.

4. In the Trust Center dialog, select External Content from the list on the left side.

489

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 489

You should now see at the dialog as it appears in Figure 21-14.

Figure 21-14

If you select the Enable all Data Connections option from the Security Settings for Data Connections sec-
tion on the left side of the dialog, your external connections will be enabled automatically. Note that this
setting can only be made manually; there’s no way to use VBA to dynamically enable content on a user’s
computer. Also, if you’re working on a corporate network, your network administrator may set security
policies that do not allow you to make this change at all.

Summary
This chapter examined the built-in features Excel provides for dealing with external data, as exposed
through the QueryTable object. It showed how to use query tables to retrieve data from relational
databases, web sites, and text files. The chapter examined how connection files allow you to persist
QueryTable connection information to an easily modified and distributed text file, and you took a brief
look at the two new objects used to manage connection information in Excel 2007: the Workbook
.Connections collection and the WorkbookConnection object.

490

Chapter 21: Managing External Data

24_046432 ch21.qxp 2/16/07 10:03 PM Page 490

The Trust Center and
Document Security

Document security issues have become inescapable for Excel VBA developers. Even if you intend
to develop macros only for use on your own computer, you still need to understand at least a few
document security settings in order for them to run properly. This chapter covers the security set-
tings in the Trust Center, as well as automating the removal of personal information from Excel
workbooks.

The Trust Center
The Trust Center is the new user interface for all settings related to document security in Office
2007. Many of these settings have been with Office for a long time and were simply relocated to
the Trust Center user interface. There are also some new and enhanced document security features
in Office 2007. Many of the Trust Center settings are specific to Excel, but some settings will affect
all Office applications.

The Trust Center user interface is buried a bit deeply within the Excel user interface. You access the
Trust Center dialog in the following manner:

1. Click the Microsoft Office Button and then click the Excel Options button. This will open
the Excel Options dialog.

2. In the Excel Options dialog, select Trust Center from the list on the left side.

3. Next, click the Trust Center Settings button on the right side of the Excel Options dialog.
This will open the Trust Center dialog, shown in Figure 22-1.

The Trust Center organizes all Excel 2007 document security options under eight categories. The
following sections review the settings contained in each of these categories.

25_046432 ch22.qxp 2/16/07 10:03 PM Page 491

Figure 22-1

Trusted Publishers
The Trusted Publishers category, shown in Figure 22-1, lists the digital certificates the user has chosen to
trust. A digital certificate is a software signature that can be used to “sign” an Excel add-in or other type of
application. The certificate ensures that the application actually originates from where it claims to, and that
it has not been tampered with since it was signed. Digital certificates are also called digital signatures.

Digital certificates must be obtained from a certification authority such as VeriSign (www.verisign.com).
They are relatively expensive, costing approximately $500 per year to maintain as of this writing. Because
of this, the use of digital certificates is rare in Excel VBA development and is not covered in detail in this
chapter.

Trusted Locations
Trusted locations are a new concept in Office 2007. A trusted location is a folder on your computer or on
your network that has been designated as containing only safe documents. Excel workbooks, add-ins,
and other Office documents that are placed in a trusted location will not be subject to any security
restrictions. The Trusted Locations category is shown in Figure 22-2.

The Trusted Locations list shows two types of trusted locations. User Locations are trusted locations that
are either added by the user or trusted by default. All Office 2007 template and startup folders, as well
as the Office library folder, are trusted locations by default. Additional trusted folders can be added by
the user. Policy Locations are trusted locations that have been defined by the network administrator for
all users.

You can add new trusted locations using the Add New Location button. This button displays the dialog
shown in Figure 22-3.

The Browse button is used to select a folder to trust. You can choose to trust all subfolders of the selected
folder by placing a check mark in the Subfolders of this location Are Also Trusted checkbox. You can also
add a description to the trusted location that will be displayed when this location is selected in the
Trusted Locations list.

492

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 492

Figure 22-2

Figure 22-3

You cannot trust the root folder (for example, C:\) of any disk on your computer. By default, you cannot
designate a network folder as a trusted location. If you want to trust a network folder, you must place a
check mark in the Allow Trusted Locations on My Network checkbox shown at the bottom of Figure 22-2.

Selecting a location from the Trusted Locations list and clicking the Remove button will remove that
folder from the list and prevent it from being a trusted location. Selecting a location from the Trusted
Locations list and clicking the Modify button will redisplay the dialog shown in Figure 22-3 and allow
you to make modifications to the selected location. These two buttons are disabled if no location is cur-
rently selected in the Trusted Locations list.

You can disable the trusted locations feature entirely by placing a check mark in the Disable All Trusted
Locations checkbox shown at the bottom of Figure 22-2. If this option is selected, no folders of any type
will be implicitly trusted, and only documents from trusted publishers will bypass security settings.

493

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 493

Add-ins
The Add-ins category, shown in Figure 22-4, contains some of the settings that control whether or not
Excel 2007 trusts the code contained in Excel add-ins. The key word here is “some,” because even if none
of the settings in this category are selected, there are overlapping settings in other categories covered
later in this chapter that can prevent an Excel add-in from running. However, an incorrect setting in the
Add-ins category can prevent any Excel add-in from functioning properly, so it is important to under-
stand the settings in this category in order to rule out problems with them when you are troubleshooting
problems with your Excel applications.

Figure 22-4

The Add-ins category contains the following settings:

❑ Require Application Add-ins to be signed by Trusted Publisher — If this checkbox is checked,
only add-ins signed by a trusted publisher, as described in the “Trusted Publishers” section,
will be allowed to run. This setting overrides the fact that an add-in may be located in a trusted
folder. If this setting has been selected and you attempt to load an add-in that has not been
signed by a trusted publisher, the add-in will be opened but its code will not run. You will
receive a notification in the message bar that the add-in was disabled. The message bar will be
covered in the Message Bar category later in this chapter.

❑ Disable notification for unsigned add-ins (code will remain disabled) — This setting is only
enabled when the preceding checkbox has been checked. If this setting is selected, add-ins not
signed by trusted publishers will be disabled without any notification.

❑ Disable all Application Add-ins (may impair functionality) — If this checkbox is checked, all Excel
add-ins will be disabled without notification. This setting overrides all other Trust Center security
settings, including trusted publishers, trusted locations, and macro settings (covered later in this
chapter). If this setting is selected, the other two settings in this category will be disabled.

Note that if you modify any of the settings in this category, you must close and restart Excel for the
changes to take effect.

494

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 494

ActiveX Settings
The ActiveX Settings category contains settings that control how Excel treats ActiveX controls embedded
in documents. The most common example of ActiveX controls embedded in an Excel worksheet are
Excel VBA applications that have used ActiveX controls from the Controls group in the Developer tab of
the Ribbon, as shown in Figure 22-5.

Figure 22-5

Keep in mind that the ActiveX Settings category applies only to ActiveX controls embedded in work-
sheets. It has no effect on ActiveX controls on UserForms in a VBA project. The settings contained in the
ActiveX Settings category are shown in Figure 22-6.

Figure 22-6

495

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 495

Note that the settings in this category will apply to all Office applications, not just Excel. The settings in the
ActiveX control category are also overridden by the Trusted Locations settings. That is, if a workbook is
located in a trusted folder, the settings in the ActiveX category will not apply to it. The one exception to this
is an ActiveX control that has a kill bit set for it in the registry. This can occur if a particular ActiveX control
is known to be malicious. ActiveX controls with a kill bit set will not run under any circumstances.

ActiveX Settings can be a bit confusing, because their effect can vary depending on the specific type of
controls a document contains. There are two types of ActiveX controls:

❑ SFI — Safe for initialization

❑ UFI — Unsafe for initialization

How a control is configured to be SFI or UFI is a detail that is beyond the scope of this discussion, and
there is no simple way to determine whether a given ActiveX control is considered SFI or UFI. Just
remember that all ActiveX controls from the Controls group in the Developer tab of the Ribbon are SFI,
whereas other ActiveX controls may be either. For example, the Frame and MultiPage controls that
appear in the Control Toolbox in the Visual Basic Editor are both UFI controls. In general, UFI controls
are subject to more security restrictions than SFI controls.

The following list describes the settings in the ActiveX Settings category and explains their effect on
ActiveX controls embedded in Excel worksheets. The descriptions assume the Excel workbook contain-
ing the ActiveX control is not located in a trusted folder:

❑ Disable all controls without notification — All ActiveX controls in all workbooks will be dis-
abled. You will not be notified that the controls have been disabled.

❑ Prompt me before enabling Unsafe for Initialization controls with additional restrictions and
Safe for Initialization (SFI) controls with minimal restrictions — If all ActiveX controls in the
workbook are SFI controls, then all controls are loaded normally. If the workbook contains at
least one UFI control, all controls are disabled and a Message Bar notification is displayed. If
you use the Message Bar to enable content, SFI controls are loaded normally, but UFI controls
are loaded without any persisted values. This means that enabling ActiveX controls with this
option selected will cause you to lose all customizations you have made to any UFI controls in
the workbook.

❑ Prompt me before enabling all controls with minimal restrictions — This is the default option. If
all ActiveX controls in the workbook are SFI controls, then all controls are loaded normally. If
the workbook contains at least one UFI control, all ActiveX controls are disabled and a Message
Bar notification is displayed. If you use the Message Bar to enable content, all controls are
loaded normally.

❑ Enable all controls without restrictions and without prompting (not recommended, potentially
dangerous controls can run) — All ActiveX controls in all workbooks are allowed to run, with
no notification that they are present.

❑ Safe mode (Helps limit the control’s access to your computer) — Applies only to SFI controls.
Some SFI controls have more extensive (and possibly more dangerous) capabilities when loaded
in unsafe mode than when loaded in safe mode. Selecting this checkbox causes Excel to always
load SFI controls in safe mode. UFI controls by definition are always in unsafe mode, so you
must use the options just described to control how they are managed. This setting is disabled
and unavailable if you’ve selected the Disable All Controls without Notification option.

496

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 496

Macro Settings
The Macro Settings category contains settings that control how Excel responds to workbooks and add-
ins that contain macros. These settings do not apply to workbooks or add-ins that have been opened
from a trusted location. See the “Trusted Locations” section for more details. Unlike ActiveX Settings,
changes to Macro Settings only affect Excel. The settings contained in the Macro Settings category are
shown in Figure 22-7.

Figure 22-7

The following list describes the settings in the Macro Settings category and explains their effect on work-
books and add-ins that contain macros. Note that changes to these settings will not affect currently open
workbooks. You will need to close and reopen any currently open workbook in order for the new set-
tings to take effect.

❑ Disable all macros without notification — If this option is selected, all macros in all workbooks
and add-ins are disabled without Message Bar notification (see the following “Message Bar”
section for more information on the Message Bar). Note that you will still be able to view and
edit macros in workbooks opened with this setting selected, but you will not be able to run
those macros.

❑ Disable all macros with notification — If this option is selected, you will be presented with a secu-
rity alert dialog, shown in Figure 22-8, each time you open a workbook or add-in that contains
macros. Using the security alert dialog, you can choose to enable or disable macros on an individ-
ual basis for each file you open. This is the default option for the Macro Settings category.

❑ Disable all macros except digitally signed macros — This option operates exactly like the Disable
All Macros without Notification option on workbooks containing VBA code that have not been
digitally signed. If a workbook containing VBA code has been digitally signed by a trusted pub-
lisher, the workbook is opened with macros enabled. If a workbook containing VBA code has
been digitally signed but you have not yet trusted the signer, you are presented with a security
alert dialog, similar to the one shown in Figure 22-8, that allows you to either enable or disable
the VBA code in the signed workbook. For more information on trusted publishers, see the
“Trusted Publishers” section.

497

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 497

❑ Enable all macros (not recommended, potentially dangerous code can run) — If this option is
selected, all macros in all workbooks and add-ins will be enabled and you will not be notified
when you open a workbook or add-in that contains VBA code.

❑ Trust access to the VBA project object model — Some VBA programs are designed to operate on
the VBA project of a workbook or add-in. These programs are usually tools designed for use by
VBA programmers. This checkbox must be checked in order for tools of this nature to function.
This checkbox is unchecked by default, and VBA code is not allowed to access the VBA project
of any workbook or add-in.

Figure 22-8

Message Bar
The Message Bar is a new feature in Office 2007. It alerts you to various document security-related
actions taken by Office and allows you to decide what to do about them. The difference between the
Message Bar and the dialog-based alerts from previous versions of Office that it replaced is that the
Message Bar is not modal and therefore does not interfere with your use of the application. You can
respond to the Message Bar immediately or choose to ignore it while you continue to work. If you ignore
the Message Bar alert, the security action it is warning you about will remain in effect by default until
you choose otherwise.

For example, in the Add-ins category, discussed previously, there is a setting that allows you to Require
Application Add-ins to be Signed by Trusted Publisher. If you choose this setting and attempt to open an
unsigned add-in, you will receive the Message Bar notification shown in Figure 22-9.

Figure 22-9

498

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 498

The Message Bar notifies you that macros have been disabled in the unsigned add-in. The Message Bar
will remain visible, but will not interfere with your use of Excel until you click the Options button and
direct Excel to leave the unsigned add-in disabled or enable its macros.

The Message Bar category contains settings that control the display of the Message Bar, as well as a set-
ting related to Trust Center activity logging. The settings contained in the Message Bar category are
shown in Figure 22-10.

Figure 22-10

Note that the settings in the Message Bar category apply to all Office applications, not just Excel. The fol-
lowing list describes each of the settings in the Message Bar category:

❑ Show the Message Bar in all applications when content has been blocked — This is the default
option. It directs the Trust Center to display a Message Bar notification when it has blocked
some content in your document, as specified by your current security settings.

❑ Never show information about blocked content — Selecting this option will turn off the Message
Bar. The Trust Center will continue to block everything specified by your security settings, but it
will not notify you that it has done so. If something is not functioning in your application and
no Message Bar notification is being displayed, check to see if this option has been selected.

❑ Enable Trust Center logging — Place a check mark in this box if you want the Trust Center to
record all security-related activities in a log file. The log file will be named XLTCD.LOG and will
be located in the directory C:\Documents and Settings\<username>\Local Settings\
Application Data\Microsoft\Office\TCDiag.

External Content
The External Content category controls how Excel updates content external to a workbook. There are two
types of external content regulated by the External Content category settings. The first is content from
databases and other non-Excel sources, which are usually accessed through PivotTables, ListObjects, and
QueryTables. The second are external Excel workbooks, which are most commonly linked to from work-
sheet formulas. The two types of content are controlled by separate groups of settings under the External
Content category. These settings are shown in Figure 22-11.

499

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 499

Figure 22-11

❑ Security settings for Data Connections — These options apply to external connections to non-
Excel data sources.

❑ Enable all Data Connections (not recommended) — If this option is selected, you will
not receive any warning when opening a workbook that contains connections to
external data. All external data connection features, including automatic data refresh-
ing of data, will be enabled.

❑ Prompt user about Data Connections — If this option is selected, you will receive a
Message Bar notification when opening a workbook that contains connections to
external data. All external data connection features will be disabled until you click the
Options button on the Message Bar and choose to enable the connections. This is the
default option for this section.

❑ Disable all Data Connections — If this option is selected, all external data connection
features will be disabled automatically, with no Message Bar notification.

❑ Security settings for Workbook Links — These options apply to links to other Excel workbooks.

❑ Enable automatic update for all Workbook Links (not recommended) — If this option
is selected, all links to external Excel workbooks will be updated automatically, and
you will not receive any Message Bar notification.

❑ Prompt user on automatic update for Workbook Links — If this option is selected, you
will receive a Message Bar notification when opening a workbook that contains links
to external workbooks. The links will not be updated unless you click the Options
button on the Message Bar and choose to enable the links.

❑ Disable automatic update of Workbook Links — If this option is selected, all links to
external Excel workbooks will be disabled, with no Message Bar notification given.

500

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 500

Privacy Options
The Privacy Options category is a catchall category for a number of settings loosely related to privacy
and/or security that didn’t fit into any of the other Trust Center categories. The settings in the Privacy
Options category are shown in Figure 22-12.

Figure 22-12

The settings in the Privacy Options category have no use in or effect on VBA programs, so they are not
covered in this section. What are covered in this section are the new RemoveDocumentInformation
method and DocumentInspectors collection. Because the Excel user interface corresponding to these
new VBA capabilities is located in the Privacy Options category, it is examined here briefly.

The Document Inspector is a new feature of Office that allows you to search all the places in your docu-
ment where items of personal information might be stored and then remove those items. In the Trust
Center, if you click the Document Inspector button, the dialog in Figure 22-13 will be displayed.

You can choose which areas of your workbook you want to inspect and then click the Inspect button to
begin the process. The Document Inspector will analyze your workbook and produce a report of its find-
ings, using the dialog shown in Figure 22-14.

If the Document Inspector locates data in any of the places you directed it to analyze, it will give you the
option to remove that data. When using the Document Inspector, keep in mind that it is not smart. It
cannot tell the difference between data critical to your document and unwanted personal information.
The Document Inspector simply removes all data from the specified place if you click the Remove All
button.

501

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 501

Figure 22-13

Figure 22-14

502

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 502

You can probably see that, from the perspective of an Excel developer, the Document Inspector looks like
a very dangerous thing. If a user has unfettered access to your application workbook and that workbook
contains critical information in hidden rows, columns, or worksheets, the Document Inspector can easily
strip that data out, leaving the workbook crippled.

Fortunately, there is a simple way to prevent the Document Inspector from destroying your workbook. If
there are any protected worksheets in a workbook, it will prevent the Document Inspector from running
on the workbook. Therefore, to protect your workbooks from the Document Inspector, make sure they
contain at least one protected worksheet. This worksheet doesn’t need to contain any critical data, and it
can even be hidden from the user.

Automating Document Inspection
The new document inspection capabilities in Excel 2007 can also be a good thing. In previous versions of
Office, it was very easy to release sensitive information accidentally hidden in a workbook with other
data intended for release.

The Document Inspector, covered in the previous section, provides a manual method to remove this
type of information. If you are faced with processing a large number of workbooks, however, you need
an automated solution. This solution is provided by the new RemoveDocumentInformation method
and DocumentInspectors collection of the Workbook object in Excel 2007. These two features some-
what arbitrarily divide the Document Inspector sections into two groups with different capabilities for
each, as described in the following sections.

The RemoveDocumentInformation Method
The RemoveDocumentInformation method is a method of the Workbook object that provides a VBA
interface to the features exposed by the Comments and Annotations and Document Properties and
Personal Information sections of the Document Inspector user interface. This method provides very
granular control over how the specific pieces of information that fall into these two sections are handled.

The RemoveDocumentInformation method takes a single argument that specifies the type of informa-
tion you want to remove from the workbook. If you want to remove more than one type of information,
you can call the method multiple times with different arguments each time. There is also an argument
that will remove all types of information covered by this method. This is the xlRDIAll argument shown
in the list that follows.

The following list shows the complete list of arguments to the RemoveDocumentInformation method:

❑ xlRDIAll

❑ xlRDIComment

❑ xlRDIContentType

Note that like the Document Inspector user interface, the RemoveDocument
Information method, and the DocumentInspectors collection can only operate on
open workbooks with all worksheets unprotected.

503

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 503

❑ xlRDIDefinedNameComments

❑ xlRDIDocumentManagementPolicy

❑ xlRDIDocumentProperties

❑ xlRDIDocumentServerProperties

❑ xlRDIDocumentWorkspace

❑ xlRDIEmailHeader

❑ xlRDIInactiveDataConnections

❑ xlRDIInkAnnotations

❑ xlRDIlPublishInfo

❑ xlRDIRemovePersonalInformation

❑ xlRDIPrinterPath

❑ xlRDIRoutingSlip

❑ xlRDIScenarioComments

❑ xlRDISendForReview

The type of information affected by most of these arguments is easy to determine based on the argument
name. If you wanted to remove document properties, you would obviously use the
xlRDIDocumentProperties argument, for example.

The following sample code shows how you would loop through all .xlsx format workbooks in the
C:\Files folder, and use the RemoveDocumentProperties method to remove all cell comments and
document properties from those workbooks:

Sub RemoveComments()

Dim strPath As String
Dim strFileName As String
Dim wkbBook As Workbook

Application.ScreenUpdating = False

strPath = “C:\Files\”
strFileName = Dir$(strPath & “*.xlsx”)

Do While Len(strFileName) > 0
Set wkbBook = Workbooks.Open(strPath & strFileName)
wkbBook.RemoveDocumentInformation xlRDIComments
wkbBook.RemoveDocumentInformation xlRDIDocumentProperties
wkbBook.Save
wkbBook.Close False
strFileName = Dir$()

Loop

Application.ScreenUpdating = True

End Sub

504

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 504

Attempting to invoke the RemoveDocumentInformation method of a workbook that contains any pro-
tected worksheets will cause a VBA run-time error, so be sure all worksheets in the documents you want
to process are unprotected.

The DocumentInspectors Collection
The DocumentInspectors collection of the Workbook object contains a group of DocumentInspector
objects that provide a VBA interface to the features exposed by the last five sections of the Document
Inspector user interface. These features and their corresponding index numbers in the
DocumentInspectors collection are shown here:

❑ 1 — Custom XML Data

❑ 2 — Headers and Footers

❑ 3 — Hidden Rows and Columns

❑ 4 — Hidden Worksheets

❑ 5 — Invisible Content

Individual DocumentInspector objects can only be accessed by index number from the
DocumentInspectors collection, or by iterating the entire collection with a For...Each loop.

There are a number of differences between capabilities of the RemoveDocumentInformation method
and the DocumentInspector object. These differences are summarized as follows:

❑ The DocumentInspector object has an Inspect method that can be used to passively determine
whether a workbook contains any information that would be removed by the object, without
actually doing so.

❑ Using the Fix method of the DocumentInspector object to remove affected information is an
all-or-nothing process. For example, if you choose to remove headers and footers using the
DocumentInspector object designed for that purpose, all headers and footers in all worksheets
in the workbook will be removed. There is no way to limit the removal to headers or footers
alone.

❑ If the Fix method of the DocumentInspector object fails as a result of the workbook contain-
ing protected worksheets, or for any other reason, it will simply return an error code and
description of the problem rather than causing a VBA run-time error.

The following sample code shows how you would loop through all .xlsx format workbooks in the
C:\Files folder and use a DocumentInspector object to remove all hidden rows and columns from
those workbooks. If the DocumentInspector object is unable to perform its task on a workbook, the
code will display a message box with the reason for the failure:

Sub RemoveHiddenRowsAndColumns()

Dim objDI As DocumentInspector
Dim uStatus As MsoDocInspectorStatus
Dim strResult As String
Dim strPath As String

505

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 505

Dim strFileName As String
Dim wkbBook As Workbook

Application.ScreenUpdating = False

strPath = “C:\Files\”
strFileName = Dir$(strPath & “*.xlsx”)

Do While Len(strFileName) > 0

Set wkbBook = Workbooks.Open(strPath & strFileName)
Set objDI = wkbBook.DocumentInspectors(3)

objDI.Fix uStatus, strResult
If uStatus = msoDocInspectorStatusError Then

‘ If the Fix method could not complete, display the error.
MsgBox wkbBook.Name & “: “ & strResult, vbExclamation

Else
‘ Otherwise save the changes made to the workbook.
wkbBook.Save

End If

wkbBook.Close False
strFileName = Dir$()

Loop

Application.ScreenUpdating = True

End Sub

As demonstrated in this code sample, the two arguments to the DocumentInspector.Fix method are
actually return values. After the method has attempted to run, these arguments tell you what happened
and why.

Summary
All things considered, from a security standpoint Excel 2007 has become much less friendly to VBA code
than previous versions of Excel. The good news is that all of the settings that control how Excel responds
to VBA code have been gathered in one location, the new Trust Center. When you are having problems
getting your VBA applications to run, you will need an excellent understanding of the settings in the
Trust Center to distinguish between bugs in your code and problems caused by Excel security features.

If you or your company needs to send workbooks to someone who may try to extract personal informa-
tion from them, the RemoveDocumentInformation method and the DocumentInspector object can
help you ensure that your workbooks don’t contain any such information.

506

Chapter 22: The Trust Center and Document Security

25_046432 ch22.qxp 2/16/07 10:03 PM Page 506

Browsing OLAP Data
Sources with Excel

The dominant database type in most organizations is the OLTP (On-line Transaction Processing)
database. Indeed, most of you are probably working with some form of an OLTP database as you
read this. The main characteristics of this type of database are: they typically contain many tables,
each table usually contains multiple relationships with other tables, and records within any given
table can be routinely added, deleted, or updated.

Although OLTP databases are effective in gathering and managing data, they typically don’t make
for effective data sources for reporting, for three main reasons:

❑ Complexity: The large number of tables and relationships that can exist in an OLTP
database can leave you wondering exactly which tables to join and how the tables relate
to each other.

❑ Volume: OLTP databases normally contain individual records. Lots of them. To create any
number of aggregate reports and views, you would have to run views that group, aggre-
gate, and sort records on the fly. The sheer volume of data in the database could very well
inundate you with painfully slow reporting.

❑ Consistency: By its very nature, the records in a transactional database are ever-changing.
Building a reporting solution on top of this type of database will inevitably lead to incon-
sistent results from month to month, or even from day to day.

Some organizations avoid these woes by building their reporting solutions on top of OLAP (On-
Line Analytical Processing) databases. OLAP databases are data islands that are isolated from the
hustle and bustle of transactional databases. An OLAP database can help alleviate these problems
in the following ways:

26_046432 ch23.qxp 2/16/07 10:04 PM Page 507

❑ Structured Data: In an OLAP database, all of the relationships between the various data points
have been predefined and stored in what are known as cubes. These cubes contain the hierarchi-
cal structures that allow for the easy navigation of available data dimensions and measures.
With this configuration, you no longer have to create joins yourself or try to guess how one data
table relates to another. All of that complexity is taken care of behind the scenes, leaving you
free to develop the reports you need.

❑ Predefined Aggregations: The data in an OLAP database is not only organized, but it is aggre-
gated. This means that grouping, sorting, and aggregations are all predefined in OLAP
databases. In addition, OLAP databases make heavy use of indexes, a technique that allows a
database to search for records more efficiently. All of this amounts to reporting solutions that are
optimized to provided the reports you need as fast as possible.

❑ Consistent Results: OLAP databases only contain snapshots of data. That is to say, the data in
an OLAP database is typically historical data that is read-only, stored solely for reporting pur-
poses. New data is typically appended to the OLAP database on a regular basis, but the existing
data is rarely edited or deleted. This allows you to retrieve consistent results when building
your reporting solutions.

Excel has some effective built-in tools that allow for the exploration and reporting of data from OLAP
databases. In this chapter, you will discover some of the ways you can browse the OLAP data sources in
your organization via Excel and VBA.

Analyzing OLAP Data via Pivot Tables
Every so often, you will run into some functionality where the user interface provided in Excel is the
most effective way to perform a task. The process of browsing an OLAP data source is just such a task.
In Excel, the most effective way to browse an OLAP data source is indeed through a pivot table. This
section walks through the process of connecting to and browsing an OLAP data source via a pivot table.

Connecting to an OLAP Data Source
The process of connecting to an OLAP data source is similar to that of any other external data source. In
the Data tab, select the From Other Data Sources option and choose From Analysis Services, as demon-
strated in Figure 23-1.

You cannot create an OLAP database using Excel. OLAP databases are typically cre-
ated with SQL Server Analysis Services. If your organization does not utilize OLAP
datbases, you may want to speak with your SQL Server DBA to discuss the possib-
lity of some OLAP reporting solutions.

508

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 508

Figure 23-1

From here, you will be taken through the Data Connection Wizard, where you will provide all the infor-
mation necessary to connect to the appropriate cube. Once you have gone through the entire dialog for
the Data Connection Wizard, you will be presented with the options illustrated in Figure 23-2. Select the
option of viewing the data in a PivotTable Report.

Figure 23-2

Clicking the OK button will create a pivot table whose pivot cache is connected to the OLAP data source
to which you just connected. You are now ready to browse your OLAP data source.

The examples in this chapter use the Analysis Services Tutorial cube that comes
with SQL Server Analysis Services 2005. To follow along using this sample data
source, simply load the Analysis Services Tutorial OLAP cube found in the support-
ing files for SQL Server Analysis Services 2005.

509

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 509

Browsing the OLAP Data Source
The PivotTable Field List for a pivot table connected to an OLAP data source will look somewhat differ-
ent from that of a standard pivot table. The PivotTable Field List for an OLAP pivot table will represent
the structure of the OLAP cube you are connected to.

To effectively browse an OLAP cube, you need to understand the components that make up the struc-
ture of a cube. Figure 23-3 illustrates the basic structure of a typical OLAP cube.

Figure 23-3

❑ Dimension: A dimension is a high-level classification of data that contains items that are used
as criteria by which measures can be sliced. An example of a dimension would be a Product
dimension. A single OLAP cube can have multiple dimensions.

❑ Hierarchy: A hierarchy is the predefined aggregation of levels within a particular dimension.
Hierarchies allow a user to work with multiple levels without a previous knowledge of the par-
ent-child relationships between the levels.

❑ Level: A level is a category of aggregation within a hierarchy. For dimensions with multiple lay-
ers of information, each layer is a level.

❑ Member: A member is an individual data item within a dimension. Members are typically refer-
enced in a structured fashion through the hierarchy and level. In the example shown in Figure
23-3, the members you see belong to the Product Name level. The other levels have their own
members that are not shown here.

❑ Measures Dimension: The measures dimension contains the aggregated data that can be sliced
by any of the dimensions, hierarchies, levels, and members in the cube.

Once you understand how the data in an OLAP cube is structured, the structure represented in the
PivotTable Field List starts to make sense. You will see Measures (represented by the sigma icon),
Dimensions (represented by a table icon), Hierarchies, and Levels. You will find that you can navigate
through the OLAP cube with ease using your pivot table’s field list.

In Figure 23-4, you will see that the Internet Sales-Sales Amount measure has been added, and that mea-
sure is sliced by the Product Categories hierarchy found in the Product dimension.

510

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 510

Figure 23-4

With just a few steps, you’ve built a pivot table report that allows you to drill into the levels of the pre-
defined Product Categories hierarchy, as demonstrated in Figure 23-5.

Figure 23-5

You can imagine a reporting solution that consists entirely of pivot table reports on top of an OLAP
cube. This would allow your users to have a robust data source at their fingertips without leaving the
familiar Excel environment. And because the data contained in the OLAP pivot tables does not reside in
a pivot cache on the local machine, your reporting solutions are inherently streamlined and efficient.
Furthermore, because the reporting solution is designed in Excel with Excel pivot tables, you would be
able to enhance your reporting solution using the PivotTable VBA techniques covered in Chapter 7.

Note that the layout of your resulting pivot table may look slightly different based
on the default report layout. Your layout options are tabular, compact, or outline.

511

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 511

Understanding the MDX behind OLAP-based
Pivot Tables

You may not know it, but when you are using a pivot table with an OLAP cube, you are sending the
OLAP server MDX (Multidimensional Expression) queries. MDX is an expression language that is used
to return data from multidimensional data sources (such as OLAP cubes).

To see the MDX query behind your OLAP-based pivot table, simply run the following procedure, which
uses the MDX property of the PivotTable object:

Sub GetMDX()
MsgBox ActiveSheet.PivotTables(“PivotTable1”).MDX
End Sub

512

Chapter 23: Browsing OLAP Data Sources with Excel

Limitations of OLAP-based PivotTables
For the most part, pivot tables that are based on OLAP data sources look, feel, and act
like a standard pivot table. However, you must remember that an OLAP data source is
ultimately controlled by the Database Administrator responsible for maintaining the
Analysis Services server. That control encompasses every aspect of the OLAP cube’s
behavior, from the dimensions and measures included in the cube to the ability to drill
into the details of a dimension. You, as the consumer of the OLAP data source, have
limited control over how the OLAP cube ultimately looks and feels.

This limited control translates into some limitations to the actions you can take with
your OLAP-based pivot tables. You should take these limitations into account before
moving forward with an OLAP-based reporting solution.

When your PivotTable report is based on an OLAP data source:

❑ You cannot create a calculated field.

❑ You cannot create a calculated item.

❑ The page field settings are not available.

❑ You cannot change the function used to summarize a data field.

❑ The Show Pages command is disabled.

❑ The Show items with no data option is disabled.

❑ Any changes made to field names will be lost when you remove the field
from the pivot table.

❑ The Subtotal hidden page items setting is disabled.

❑ The Background query option is not available.

❑ The Optimize memory checkbox in the PivotTable Options dialog box is
disabled.

26_046432 ch23.qxp 2/16/07 10:04 PM Page 512

You will get a message box that looks similar to the one shown in Figure 23-6.

Figure 23-6

What you see in the resulting message box is the actual MDX query that was used to fill the pivot table
with which you are working. Because the pivot table is refreshed or changed, subsequent MDX queries
are passed to the OLAP database. The results of the query are sent back to Excel and displayed through
the pivot table. This is how you are able to work with OLAP data without a local copy of a pivot cache.

Don’t be fooled by the seeming complexity of this MDX statement. Excel tends to play it safe by throw-
ing in superfluous syntax. Later you will learn how to decipher Excel’s MDX. In the meantime, take a
moment to cover the fundamentals of MDX. A basic understanding of MDX is not only beneficial when
working with OLAP data sources, but necessary to use the techniques outlined later in this chapter.

The Basics of MDX
Those of you who are familiar with SQL will have relatively little trouble picking up the basic concepts
of MDX. As you look at the general syntax for an MDX statement, you will see the familiar SELECT and
FROM clauses:

SELECT {member selection} ON COLUMNS,
{member selection} ON ROWS

FROM [cube name]

A member selection can be any combination of dimensions or members. These selections are given an
axis designation. In MDX, a member selection can actually be placed in any one of up to 64 axes. To keep
things simple, look at the most common axes: columns and rows. When a member selection is placed On
Columns, that member selection will be column-oriented. Place a member selection On Rows, and that
selection will be row-oriented. Finally, the cube name identifies the name of the cube with which you are
working.

MDX is a robust topic that is rich in scope and complexity. In that light, this chapter
only touches on the fundamentals of MDX. If, after reading this chapter, you have a
desire to learn more about MDX, consider picking up MDX Solutions, an excellent
guide to MDX that is both easy to understand and comprehensive.

513

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 513

Take a look at the following MDX query. Here you are requesting Internet sales and tax amounts as
columns, and the product category as rows. As you can see in the FROM clause, this data is coming from
the Analysis Services Tutorial cube.

SELECT {[Measures].[Internet Sales-Sales Amount],
[Measures].[Internet Sales-Tax Amount]} ON COLUMNS,
{[Product].[Product Categories].[Category].Members} ON ROWS

FROM [Analysis Services Tutorial]

You will note that you are identifying the member selections by explicitly walking through the cube
structure that gets you to that member. For instance, the query selects the Category members using
[Product].[Product Categories].[Category].Members. This expression explicitly walks through
the Product dimension, the Product Categories hierarchy, and the Category level, and finally ends with
the members of the Category level. Refer back to Figure 23-3 to get a graphical view of how the cube
structure works.

Notice that the resulting dataset, shown in Figure 23-7, is in a cross tab structure. This is the power of
MDX and OLAP cubes. With MDX, you can create any number of datasets that are structured in any
number of ways. Although this type of result could be achieved via a SQL statement, it would not be as
straightforward and as easy as an MDX query.

Figure 23-7

You can also limit the results of your MDX query by slicing your selections using a WHERE clause. This
works similarly to a WHERE clause in a SQL statement. The following MDX query limits the results to
sales for the United States only. The resulting dataset is shown in Figure 23-8.

SELECT {[Date].[Calendar Quarter].Members} ON COLUMNS,
{[Product].[Product Categories].[Category].Members} ON ROWS

FROM [Analysis Services Tutorial]
WHERE ([Customer].[Country-Region].[United States],

[Measures].[Internet Sales-Sales Amount])

Figure 23-8

514

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 514

Deciphering Excel’s MDX Queries
In the next section of this chapter, you discover how you can pass your own MDX queries to an OLAP
server using ADO and a little VBA in order to retrieve a flat dataset. One of the benefits of being able to see
the MDX query behind an OLAP-based pivot table is that you can see how the MDX for a particular view
should be set up. This gives you a kind of built-in MDX tutor that you can leverage when you need it.

Create an MDX Log
You can set up an MDX log that documents every MDX query that is passed to the OLAP server.
The procedure shown here does just that. As you can see, this procedure is entered into the
PivotTableUpdate event of the worksheet. This ensures that each time there is a change in the pivot
table, the MDX query is captured. You then simply trap the MDX query in a string variable and append
it to a text file:

Private Sub Worksheet_PivotTableUpdate(ByVal Target As PivotTable)
Dim StrMDX As String

‘Trap the MDX statement
StrMDX = ActiveSheet.PivotTables(“PivotTable1”).MDX

‘Append the MDX to a specified text file
Open “C:\MDX_Log.txt” For Append As #1
Print #1, StrMDX & Chr(13) & Chr(10)
Close #1

End Sub

After looking at a few of the MDX queries that Excel outputs, you will soon realize that the way Excel
uses MDX is different from the way you would. There are two reasons for this. First, Excel adds some
syntax that it feels is necessary to make the MDX query run properly. This is analogous to the way that
Excel records macros; it errs on the side of creating more syntax than is actually necessary in order to
play it safe. Second, Excel imposes automatic rules when building its MDX queries.

You may be wondering why the Internet Sales Amount measure is included in the
WHERE clause of the previous MDX query. In every OLAP cube, one measure is des-
ignated as the default measure. If an MDX query is passed without explicitly asking
for a particular measure, the default measure is returned. The default measure is
typically designated by the adminstrator of your Analysis Services database.

To get the exact measure you are looking for, you must explicitly call for it in your
MDX query. The most common way a measure is passed in an MDX query is
through the WHERE clause. For instance:

SELECT {[Customer].[Country-Region].Members} ON COLUMNS
{[Product].[Product Categories].[Category].Members} ON ROWS

FROM [Analysis Services Tutorial]
WHERE ([Measures].[Internet Sales-Sales Amount])

515

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 515

In the following example, the text in bold is the syntax that is actually needed to run this MDX query.
The rest is syntax Excel uses as safeguards and rules to ensure that the query runs the way Excel expects
it to run.

SELECT NON EMPTY Hierarchize({DrilldownLevel({[Product].[Product
Categories].Members [All Products]})}) DIMENSION PROPERTIES
PARENT_UNIQUE_NAME ON COLUMNS FROM [Analysis Services Tutorial] WHERE
({[Measures].[Internet Sales-Sales Amount]}) CELL PROPERTIES VALUE,
FORMAT_STRING, LANGUAGE, BACK_COLOR, FORE_COLOR, FONT_FLAGS

The following sections outline some of the most common syntactical expressions you will find in Excel-
generated MDX queries that can be safely eliminated.

NON EMPTY
By default, Excel will inhibit the display of any members that are empty. It does this by using the NON
EMPTY keyword. You don’t need this keyword unless you are looking for only nonempty members.

Hierarchize
The Hierarchize function sorts all members in hierarchical order. Most OLAP cubes are sorted prop-
erly by default, so you do not need to include this in your MDX statements. Excel plays it safe by
employing this function.

DrilldownLevel
By default, Excel will always pull the ALL level of any hierarchy and then drill down to the needed level
by employing the DrilldownLevel function. This function drills downs one level below the specified
level.

Various Server-Side Settings
Excel will automatically call for all of the server-side settings. These settings allow the OLAP administra-
tors to push down formatting, language, and other properties to the consumers of their OLAP data.
When using MDX queries via VBA, you will rarely need these settings. You can, for the most part, ignore
any of the formatting-related keywords such as CELL PROPERTIES VALUE, FORMAT_STRING, LANGUAGE,
BACK_COLOR, FORE_COLOR, FONT_FLAGS, and DIMENSION PROPERTIES PARENT_UNIQUE_NAME.

You can force Excel to include empty members by adjusting the Display properties
of the pivot table. To do so, right-click the pivot table and select Table Options ➪

Display. Then place a check in Show Items with No Data on Rows and Show Items
with No Data on Columns. Any subsequent MDX queries will not include the NON
EMPTY keyword. You can also change these settings by using the DisplayEmptyRow
and DisplayEmptyColumn properties of the PivotTable object:

ActiveSheet.PivotTables(“PivotTable1”).DisplayEmptyRow = True
ActiveSheet.PivotTables(“PivotTable1”).DisplayEmptyColumn = True

516

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 516

With some practice, you will be able to spot the necessary MDX that you can leverage in building your
own queries. From the sample MDX created earlier in this section, you can whittle the MDX down to the
following query that can be used in VBA to retrieve OLAP data:

SELECT {[Product].[Product Categories].Members} ON COLUMNS
FROM [Analysis Services Tutorial]
WHERE ({[Measures].[Internet Sales-Sales Amount]})

Browsing OLAP Data Sources
without Pivot Tables

At the start of this chapter, you saw that pivot tables were the most effective way to browse and analyze
cube data. So why would you want to browse an OLAP data source without a pivot table? The reason is
that you can do some interesting things with your OLAP data sources by using procedures outside of
the pivot table environment. In this section, you discover a few techniques that allow you to extend your
OLAP experience past pivot tables.

Using ADO to Return Flattened Recordsets
You may find that you don’t necessarily need to create pivot table processes for your reporting. You may
only need to get a few tabular datasets from your OLAP data sources. You can automate the creation of
flattened datasets by using a combination of MDX and ADO. Once you understand the basics of MDX
queries, you can use them just as you would SQL statements.

The following example first sets and opens a connection to the OLAP server by using the MSOLAP
provider. The Data Source is the name of the Analysis Services server, and the Initial Catalog is the name
of the database you are querying.

Next, you define the MDX query and execute the query into a recordset. You then enumerate through
the recordset to output the column headings. The column headings from an OLAP data source do not
come out very clean, so take some time to clean up most of the special characters and other strange nam-
ing conventions. Finally, use the CopyFromRecordset method to display the data:

Sub Return_Flat_Recordset()
Dim ObjConnection As New ADODB.Connection
Dim ObjRecordset As New ADODB.Recordset
Dim ObjWorkSheet As Object
Dim StrCellValue As String
Dim StrMDX As String
Dim c As Integer

You would logically think that if an OLAP-based pivot table uses MDX queries to
retrieve data, then you would be able to feed a pivot table with custom MDX
queries. Unfortunately, that is not the case. There is currently no way to make a
pivot table accept custom MDX queries as arguments for its data.

517

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 517

Dim i As Integer

‘Set and open a connection to the OLAP Server
ObjConnection.Open “Provider=MSOLAP;Data Source=D4SBY981;Initial

Catalog=AdventureWorks;”

‘Create the MDX query
StrMDX = “SELECT” & _

“{[Customer].[Country-Region].Members} ON COLUMNS,” & _
“{[Product].[Product Categories].[SubCategory].Members} ON ROWS”& _
“FROM [Analysis Services Tutorial] “ & _
“WHERE ([Measures].[Internet Sales-Sales Amount])”

‘Execute the MDX query and open in a recordset
ObjRecordset.Open StrMDX, ObjConnection

‘Create fresh worksheet
Set ObjWorkSheet = Worksheets.Add
ObjWorkSheet.Activate

‘Enumerate through the fields in the recordset and add column headings to the
spreadsheet

c = 1
For i = 0 To ObjRecordset.Fields.Count - 1
ActiveSheet.Cells(1, c).Value = ObjRecordset.Fields(i).Name

‘Take a moment to clean up column headings
StrCellValue = ActiveSheet.Cells(1, c).Value
StrCellValue = Replace(StrCellValue, “[“, “ “)
StrCellValue = Replace(StrCellValue, “]”, “ “)
StrCellValue = Replace(StrCellValue, “.”, “ “)
StrCellValue = Replace(StrCellValue, “&”, “ “)
StrCellValue = Replace(StrCellValue, “MEMBER_CAPTION”, “”)
ActiveSheet.Cells(1, c).Value = StrCellValue

c = c + 1
Next i

‘Start at first row of the recordset and output the dataset
ObjRecordset.MoveFirst
ObjWorkSheet.Cells(2, 1).CopyFromRecordset ObjRecordset

‘Clean up
ObjRecordset.Close
ObjConnection.Close

End Sub

Using ADO MD to Get Cube Schema Information
Some of the most useful information you can have when starting to work with an OLAP data source is
information about the data source itself. How many cubes are on the server? How many dimensions are
in each cube? What are the levels available? Answers to these types of questions can help you get

518

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 518

acquainted with your OLAP cubes, allowing you to fully understand how the data is organized and
structured. These answers can most easily be gained through the use of ADO MD (Microsoft ActiveX
Data Objects Multidimensional).

ADO MD allows you to access both data and metadata from an OLAP or multidimensional data
provider. Although ADO and ADO MD are related, they have separate object models. Figure 23-9 illus-
trates the ADO MD object model.

Figure 23-9

Notice that there are two main branches that stem from the Connection object: the Catalog and Cellset
branches. The Catalog branch is used to query the metadata or structure of the OLAP data source, and
the Cellset branch is used to query the data in the data source.

To get information about the cube schema, you will utilize the Catalog object. You will note that the
object hierarchy in the Catalog branch looks very similar to the hierarchy typically found in an OLAP
data source. Note how the Catalog/CubeDef/Dimension/Hierarchy/Level/Member structure within
the object model can be related to the Database/Cube/Dimension/Hierarchy/Level/Member in an
actual OLAP server. This helps when you start thinking about the schema information you need.

Creating an Inventory of Dimensions,
Hierarchies, and Levels

The procedure shown in this section allows you to create an inventory of the major structures in a partic-
ular OLAP cube. This type of inventory allows you to quickly gain familiarity with the new OLAP cubes
and allows you see the hierarchical structure of the cube in way that is not limited to the PivotTable
Field List.

To use the ADO MD object model, you must add a reference to the Microsoft
ActiveX Data Objects (Multidimensional) reference library.

519

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 519

In this procedure, first instantiate an ADO MD Catalog Object, and then establish a connection to the
data source using this object. Once you have a connection to a valid ADO MD Catalog, you have access
to all of the other objects within that catalog. In this case you specifically need the CubeDef, Dimension,
Hierarchy, and Level objects. Identify the cube you are querying, and then you enumerate through the
cube in a structured fashion, logging the name of each Dimension, Hierarchy, and Level into a text
file. This procedure is just one of many ways you can choose to utilize the ADO MD Catalog object to
retrieve schema information for your OLAP cubes:

Sub Create_Cube_Inventory()
Dim ObjCatalog As New ADOMD.Catalog
Dim ObjCube As ADOMD.CubeDef
Dim ObjDimension As ADOMD.Dimension
Dim ObjHierarchy As ADOMD.Hierarchy
Dim ObjLevel As ADOMD.Level
Dim StrConnection As String

‘Create connection string
StrConnection = “Provider=MSOLAP;Data Source=D4SBY981;” & _
“Initial Catalog=AdventureWorks;”

‘Point catalog object to the data source using your connection string
ObjCatalog.ActiveConnection = StrConnection

‘Indentify the cube you are working with
Set ObjCube = ObjCatalog.CubeDefs(“Analysis Services Tutorial”)

‘Create an empty text file
Open “C:\CubeInventory.txt” For Append As #1

‘Enumerate through each dimension, hierarchy and level and log them into the text
file

For Each ObjDimension In ObjCube.Dimensions
Print #1, Chr(13) & Chr(10)
Print #1, “Dimension: “ & ObjDimension.Name
Print #1, “************************************”

For Each ObjHierarchy In ObjDimension.Hierarchies
Print #1, “ Hierarchy Name: “ & ObjHierarchy.Name

For Each ObjLevel In ObjHierarchy.Levels
Print #1, “ Level: “ & ObjLevel.Name

Next ObjLevel

Next ObjHierarchy

Next ObjDimension

‘Clean up
Close #1
Set ObjCatalog = Nothing

End Sub

520

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 520

Creating Offline Cubes
Offline cubes are files that locally store portions of the source data found in an OLAP data source for
browsing while disconnected from the network. These types of cubes are useful when you need to dis-
tribute reporting solutions to clients that do not have access to your network, or clients for whom net-
work access is extremely slow. This section explores the various ways to create Offline cubes.

Creating an Offline Cube Manually
To create an offline cube by hand, start with an OLAP-based pivot table. Place your cursor anywhere
inside the pivot table, and then go up to the Options tab in the Ribbon and select OLAP Tools ➪ Offline
OLAP. This will activate the Offline OLAP Settings dialog box, where you will select Create Offline
Data File.

From here, you will step through a wizard that allows you to select the dimensions, levels, and measures
you want to make available in the offline cube. Keep in mind that your selections through this wizard
will determine the data that will be available to you while disconnected from the server. The last screen
of the offline cube wizard allows you to select the location and name of your cube file.

Once the process is complete, your reward will be a .cub file that can be used as the data source for your
pivot table reports. You can either double-click the cube file or open the cube file from Excel.

Using the CreateCubeFile Method
If you are in need of something a bit more automated, you can use the CreateCubeFile method. This
method creates a cube file from a PivotTable report that is connected to an OLAP data source:

Sub CreateCubeFile()
ActiveSheet.PivotTables(“PivotTable1”).CreateCubeFile File:=”C:\CustomCubeFile.cub”
End Sub

The benefit of using this method is that the data in the offline cube file will consist of the exact data that
existed in the pivot table at the time you executed the procedure. For example, if your pivot table con-
tains a page field that is filtered to show data for only the United States, then the offline cube that is cre-
ated by the CreateCubeFile method will contain data only for the United States. This is because the
CreateCubeFile method essentially runs the MDX query behind the pivot table and outputs the results
to a local .cub file. So if you have the need to create several offline cubes, each containing a different set
of data, you can simply automate the rearranging of the data fields with the pivot table (using the VBA
techniques covered in Chapter 7), and then employ the CreatCubeFile method.

Any attempt to refresh an offline cube file will cause the cube file to try to connect
to the original OLAP data source. The idea is that you can use the data within the
cube file while you are disconnected from the network, and you can refresh the cube
file while a data connection is available.

521

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 521

Creating an Offline Cube Using ADO MD and VBA
With a combination of ADO MD and VBA, there is no need to create an OLAP-based pivot table in order
to generate offline cube files. You can simply utilize the CREATE GLOBAL CUBE MDX statement.

The CREATE GLOBAL CUBE statement is a bit like an action query, telling the MDX to perform a particular
task with the results that are retrieved. That task, in this case, is to output the results of the MDX query
into a .cub file.

The basic structure of a CREATE GLOBAL CUBE statement is relatively simple:

CREATE GLOBAL CUBE [Name_Given_To_Cube]
STORAGE ‘C:\Location.cub’
FROM [Source Cube]
(MEASURES, DIMENSIONS)

First, you specify a name for your offline cube. Next, you use the STORAGE clause to specify the name
and location of the .cub file that will be output. Then use the FROM clause to identify the source cube.
Finally, you list all of the Measures and Dimensions you would like to be included in the .cub file.

The example demonstrated here will create an offline cube called MyCustomCube.cub. It will contain
Internet Sales Amount measures for the Customer and Product Dimensions, including all hierarchies
and levels beneath the selected dimensions:

CREATE GLOBAL CUBE [MyCustomCube
STORAGE ‘C:\MyCustomCube.cub’
FROM [Analysis Services Tutorial]
(MEASURE [Analysis Services Tutorial].[Internet Sales-Sales Amount],
DIMENSION [Analysis Services Tutorial].[Customer],
DIMENSION [Analysis Services Tutorial].[Product])

To utilize this statement via VBA, you would execute the query through an ADO MD Cellset, as demon-
strated in the following procedure:

Public Sub Create_Local_Cube()
Dim ObjCatalog As New ADOMD.Catalog
Dim ObjCellset As New ADOMD.Cellset
Dim StrConnection As String
Dim StrMDX As String

‘Create connection string
StrConnection = “Provider=MSOLAP;Data Source=D4SBY981;” & _

Note that you may get a security warning when trying to open a cube file. This is a
normal security feature that Excel employs in order to protect you from malicious
datasets. Simply click the Enable button on the Security notice to allow connection
to the cube file.

522

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 522

“Initial Catalog=AdventureWorks;”

‘Create the MDX Query
StrMDX = “CREATE GLOBAL CUBE [MyCustomCube]” & _

“STORAGE ‘C:\MyCustomCube.cub’ “ & _
“FROM [Analysis Services Tutorial] “ & _
“(“ & _
“MEASURE [Analysis Services Tutorial].[Internet Sales-Sales Amount], “ & _
“DIMENSION [Analysis Services Tutorial].[Customer], “ & _
“DIMENSION [Analysis Services Tutorial].[Product]” & _
“)”

‘Feed the cellset object your MDX Query
ObjCellset.Source = StrMDX

‘Point catalog and cellset objects to the data source using your connection string
ObjCatalog.ActiveConnection = StrConnection
ObjCellset.ActiveConnection = StrConnection

‘Open Cellset and fill the local cube
ObjCellset.Open

‘Clean up
Set ObjCatalog = Nothing
Set ObjCellset = Nothing

End Sub

Summary
Excel pivot tables are extremely powerful OLAP browsers. They allow you to analyze impossible
amounts of data in a familiar environment, the most powerful analytical tool in Excel. Reporting solu-
tions built on OLAP data sources are easy to build with pivot tables, and are typically more efficient than
those that are built using transactional databases. OLAP-based pivot tables run on MDX queries. It’s
worth your time to understand MDX and find creative ways to use the MDX behind pivot tables to
improve your processes. ADO MD offers some automated ways to do things that are difficult to do
using the pivot table interface in Excel. ADO MD allows you to investigate your OLAP cube’s schema,
as well as automate the creation of offline OLAP cubes.

523

Chapter 23: Browsing OLAP Data Sources with Excel

26_046432 ch23.qxp 2/16/07 10:04 PM Page 523

26_046432 ch23.qxp 2/16/07 10:04 PM Page 524

Excel and the Internet
Until a few years ago, a typical Excel-based application was almost entirely contained within Excel
itself; the only external interaction would be with the user, from whom you obtained data and to
whom you presented results. If you needed to store data, you’d use separate workbooks and try to
mimic a relational database as best you could.

As data access technologies developed, from ODBC drivers through DAO to the current versions
of ADO (documented in Chapter 20), it became more commonplace to store data in external
databases and retrieve data from (and update data in) other systems across the network. It is now
quite common to see Excel used as a front-end querying and analysis tool for large corporate
databases, using QueryTables and PivotTables to retrieve the data. The data available to Excel
applications was, however, limited to what was available across the company network, and to
those databases you could get permission to access.

Starting with the release of Office 97, Microsoft has slowly extended Excel’s reach to include the
Internet and associated technologies, either by adding native functionality directly to Excel (such
as Web Queries), or by ensuring that Excel developers can easily use standard external objects
(such as the Internet Transfer Control, the Web Browser control, and the MSXML parser) and
including those objects within the Office installation.

In Excel 2007, you have sufficient functionality to think outside of the pure Excel/ADO environ-
ment in terms of obtaining data, publishing results, monitoring applications, and sharing data
with many disparate systems across the Internet.

This chapter introduces the functionality available in Excel 2007 and demonstrates how to use
some of it to exploit the Internet within your applications. A complete discussion of all of Excel’s
Internet-related functionality is beyond the scope of this book.

Note that throughout this chapter, the term Internet is used in its broadest sense,
covering both internal and external networks. The chapter assumes a basic under-
standing of the Internet and how it works. The examples use a web server running
on a local PC. However, these techniques are equally applicable to applications run-
ning on a remote server.

27_046432 ch24.qxp 2/16/07 10:04 PM Page 525

What Can the Internet Do for You?
In a nutshell, the Internet is all about sharing information.

It’s about publishing information to unknown consumers, using standard formats and protocols to
enable them to access the information you provide in a consistent, reliable, and secure manner.

It’s about making that information available globally, both inside and outside the organization’s net-
works, while maintaining control over security and access to potentially sensitive information.

It’s about retrieving the information that other individuals or organizations provide, from multiple dis-
parate sources, to use as inputs to your application.

It’s about sharing information between producers and consumers, suppliers and customers, using stan-
dard formats for that exchange.

It’s about looking outside of the classic Excel application, and adding value to that application by shar-
ing its results with a wider audience than simply the user sitting at the PC.

It’s about using Excel as a key component of a larger business process that may span multiple organizations.

Using the Internet for Storing Workbooks
The simplest way of sharing information is to store workbooks on a web server. Though Excel 97 intro-
duced the ability to download workbooks from web sites, Excel 2000 and 2007 extended that to allow
you to save workbooks as well. They do this by using the FrontPage Server Extensions, which must be
running on the server. To open and save a workbook from or to a web site, use the URL instead of the
filename:

Sub OpenFromWebSiteAndSaveBack()

Dim oBk As Workbook

‘Open a workbook from a web site
Set oBk = Workbooks.Open(“http://www.MySite.com/book1.xlsx”)

‘Save the workbook to the web site with a new name
oBk.SaveAs “http://www.MySite.com/Book2.xlsx”

End Sub

If the server requires you to log on, you have the option of letting Excel prompt for the ID and password
each time (as in the preceding example), or include the ID and password as part of the URL:

Sub OpenFromSecureWebSiteAndSaveBack()

Dim oBk As Workbook

‘Open a workbook from a web site

526

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 526

Set oBk = Workbooks.Open(“http://UserID:Pwd@www.MySite.com/book1.xlsx”)

‘Save the workbook to the web site with a new name
oBk.SaveAs “http://UserID:Pwd@www.MySite.com/Book2.xlsx”

End Sub

The URLs can, of course, also be used in Excel’s Office Menu ➪ Open and Save As dialogs.

Using the Internet as a Data Source
The classic Excel application has two sources of data — databases on the network, and the user. If an
item of data was not available in a database, the user was required to type it in and maintain it. To
enable this, the application had to include a number of sheets and dialogs to store the information and
provide a mechanism for the data entry.

A typical example of this would be maintaining exchange rate information in a financial model; it is usu-
ally the user’s responsibility to obtain the latest rates and type them into the model. You can add value
to the application by automating the retrieval of up-to-date exchange rate information from one of many
web sites.

The following sections demonstrate different techniques for retrieving information from the web, using
the USD exchange rates available from www.x-rates.com/d/USD/table.html (see Figure 24-1) as an
example.

Figure 24-1

527

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 527

Opening Web Pages as Workbooks
The simplest solution is to open the entire web page as if it were a workbook, then scan the sheet for the
required information, such the USD/GBP exchange rate:

Sub OpenUSDRatesPage()

Dim oBk As Workbook
Dim oRng As Range

‘Open the rates pages as a workbook
Set oBk = Workbooks.Open(“http://www.x-rates.com/d/USD/table.html”)

‘Find the British Pounds entry
Set oRng = oBk.Worksheets(1).Cells.Find(“British Pound”)

‘Read off the exchange rate
MsgBox “The USD/GBP exchange rate is “ & oRng.Offset(0, 1).Value

End Sub

The problem with using this approach is that you have to load the entire web page (including graphics,
banners, and so on), which may have much more information than you want. The irrelevant data can
greatly slow down the speed of data retrieval.

Using Web Queries
Web Queries were introduced in Excel 97 and have been enhanced in each subsequent version of Excel.
They enable you to retrieve a single table of information from a web page, with options to automatically
refresh the data each time the workbook is opened, or at frequent intervals.

One of the problems with Web Queries is that Excel uses the thousands and decimal separators specified
in the Windows Regional Settings when attempting to recognize numbers in the page. If the exchange
rate web page were retrieved in many European countries, the period would be treated as a thousands
separator, not a decimal separator, resulting in exchange rates that are many times too large. In Excel
2002, Microsoft added three properties to the Application object to temporarily override the settings
used when recognizing numbers:

❑ Application.DecimalSeparator— The character to use for the decimal separator

❑ Application.ThousandsSeparator— The same for the thousands separator

❑ Application.UseSystemSeparators— Whether to use the Windows separators or Excel’s

Using these properties, you can set Excel’s separators to match those on the web page, perform the
query, and then set them back again. Web Queries could not be used reliably in versions prior to Excel
2002 in countries that used non-U.S. decimal and thousands separators. If you want to use the Web
Query’s automatic refreshing options, you have to set these separators in the BeforeRefresh event, and
set them back in the AfterRefresh event. This requires advanced VBA techniques, using class modules
to trap events, as discussed in Chapter 16.

528

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 528

In this case, you can retrieve just the table of exchange rates, using the following code to create and
execute a new Web Query. In practice, it’s easiest to use the macro recorder to ensure the selections are
correct:

‘Retrieve USD exchange rates using a Web Query
Sub GetRatesWithWebQuery()

Dim oBk As Workbook
Dim oQT As QueryTable

‘Store the current settings of Excel’s number formatting
Dim sDecimal As String
Dim sThousand As String
Dim bUseSystem As Boolean

‘Create a new workbook
Set oBk = Workbooks.Add

‘Create a query table to download USD rates
With oBk.Worksheets(1)

Set oQT = .QueryTables.Add(_
Connection:=”URL;http://www.x-rates.com/d/USD/table.html”, _
Destination:=.Range(“A1”))

End With

‘Set the QueryTable’s properties
With oQT

.Name = “USD”

‘State that we’re selecting a specific table
.WebSelectionType = xlSpecifiedTables

‘Import the 14th table on the page
.WebTables = “14”

‘Ignore the web page’s formatting
.WebFormatting = xlWebFormattingNone

‘Do not try to recognize dates
.WebDisableDateRecognition = True

‘Don’t automatically refresh the query each time the file is opened
.RefreshOnFileOpen = False

‘Waiting for the query to complete before continuing
.BackgroundQuery = True

‘Save the query data with the workbook
.SaveData = True

‘Adjust column widths to autofit new data

529

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 529

.AdjustColumnWidth = True
End With

With Application
‘Remember Excel’s current number format settings
sDecimal = .DecimalSeparator
sThousand = .ThousandsSeparator
bUseSystem = .UseSystemSeparators

‘Set Excel’s separators to match those of the web site
.DecimalSeparator = “.”
.ThousandsSeparator = “,”
.UseSystemSeparators = True

‘Ignore any errors raised by the query failing
On Error Resume Next

‘Perform the query, waiting for it to complete
oQT.Refresh BackgroundQuery:=False

‘Reset Excel’s number format settings
.DecimalSeparator = sDecimal
.ThousandsSeparator = sThousand
.UseSystemSeparators = bUseSystem

End With

End Sub

The .WebTables = “14” line in this example tells Excel that you want the 14th table on the page.
Literally, this is the 14th occurrence of a <TABLE> tag in the source HTML for the page.

Parsing Web Pages for Specific Information
Web Queries are an excellent way of retrieving tables of information from web pages, but they are a little
cumbersome if you are only interested in one or two items of information and are extremely susceptible
to minor changes in the web page layout (such as adding an extra <table> tag at the top of the page).
Another way is to read the page using a hidden instance of Internet Explorer, search within the page for
the required information (using either the HTML or plain text representations), and then return the
result. The following code requires a reference to the Microsoft Internet Controls object library:

Sub GetUSDtoGBPRateUsingIE()

Dim oIE As SHDocVw.InternetExplorer
Dim sPage As String
Dim iGBP As Long, iDec As Long
Dim iStart As Long, iEnd As Long
Dim dRate As Double

‘Create a new (hidden) instance of IE
Set oIE = New SHDocVw.InternetExplorer

‘Open the web page

530

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 530

oIE.Navigate “http://www.x-rates.com/d/USD/table.html”

‘Wait for the page to complete loading
Do Until oIE.readyState = READYSTATE_COMPLETE

DoEvents
Loop

‘Retrieve the text of the web page into a variable
sPage = oIE.Document.body.InnerText

‘**
‘ Brazilian Real 2.1397 0.467355
‘ British Pound 0.524934 1.905
‘ Canadian Dollar 1.1056 0.904486
‘**

‘To find the exchange rate, we have to find the entry for British
‘Pounds, then work forwards to find the exchange rate

‘Find the entry for British Pounds in the web page text.
iGBP = InStr(1, sPage, “British Pound”)

‘Find the next decimal, which will be in the middle of the
‘exchange rate number
iDec = InStr(iGBP, sPage, “.”)

‘Find the start and end of the number
iStart = InStrRev(sPage, “ “, iDec) + 1
iEnd = InStr(iDec, sPage, “ “)

‘Evaluate the number, knowing that it’s in US format
dRate = Val(Mid$(sPage, iStart, iEnd - iStart))

‘Display the rate
MsgBox “The USD/GBP exchange rate is “ & dRate

End Sub

The most appropriate method to use will depend on the precise circumstances, and how much data is
required. For single items, it is probably easier to use the last approach. For more than a few items, it will
be easier to use a Web Query to read the page or table into a workbook, and then find the required items
on the sheet.

Using the Internet to Publish Results
A web server can be used as a repository of information, storing your application’s results and present-
ing them to a wider audience than can be achieved with printed reports. By presenting results as web
pages, the reader of those pages can easily use the results as sources of data for their own analysis, and
easily pass those results to other interested parties.

531

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 531

Setting Up a Web Server
For all the examples from now on, you will require write access to a web server. Because later examples
use Active Server Pages (ASP), here you will use Microsoft’s IIS 5.0. Open IIS, and right-click the Default
Web Site node. Select Properties and click the Home Directory tab. You will be presented with various
configuration options for the default web site. Make sure that the Read and Write checkboxes are
selected (see Figure 24-2) and click OK.

Figure 24-2

Notice the Local Path: box. This is where the root of your web server is located. By default, it is
C:\inetpub\wwwroot\. Any web pages placed in this directory are published at the URL http://
localhost/PageName.html.

Saving Worksheets as Web Pages
The easiest way to present results as a web page is to create a template workbook that has all the format-
ting and links that you’d like to show. When your application produces its results, it is then a simple task
to copy the relevant numbers to the template, then save the template direct to the web server (assuming
the server is configured to allow this — if not, you may have to save the HTML file to a network location):

Sub PublishResultsToWeb()

Dim oBk As Workbook
Dim oSht As Worksheet

‘Create a new copy of the Web Template workbook

532

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 532

Set oBk = Workbooks.Add(“c:\mydir\WebTemplate.xlsx”)

‘Get the first sheet in the workbook
Set oSht = oBk.Worksheets(1)

‘Populate the results
oSht.Range(“Profits”).Value = Workbooks(“Results.xlsx”) _

.Worksheets(“Financials”).Range(“Profits”).Value

‘Save as a web page, direct to the server
oSht.SaveAs “http://localhost/ResultsJuly2001.htm”, xlHtml

‘Close the workbook
oBk.Close False

End Sub

Prior to Excel 2007, the resulting HTML was horrible to modify, because it contained a large amount of
extraneous information that could be used to “round-trip” a worksheet through the HTML format.
Round-tripping through HTML never worked well, always lost data or formatting, and was almost
never used. With the introduction of the XML file formats in Excel 2007, the requirement to round-trip
through HTML no longer exists, and the Save to HTML feature has been redesigned as a simple publish-
ing mechanism — resulting in much cleaner HTML.

Creating Interactive Web Pages
The previous example saved a static rendition of the worksheet in HTML format to the web server. In
Excel 2000, Microsoft introduced the Office Web Components to create interactive web pages. When sav-
ing a worksheet in interactive form, the worksheet was converted to a set of objects collectively known
as the Office Web Components. In Excel 2007, the Office Web Components have been dropped and
replaced by a dedicated server-side Excel component. Known as Excel Services, the component runs on
top of the SharePoint architecture and is able to open Excel workbooks, update data, perform calcula-
tions, and render the results as plain HTML for display in a SharePoint portal. Unfortunately, Excel
Services is beyond the scope of this book.

Using the Internet as a Communication
Channel

Retrieving data from web pages and publishing results as web pages is in many ways a passive use of
the Internet; the web server is being used primarily as a storage medium. Web servers are also able to
host applications, with which you can interact in a more dynamic manner. The server application acts as
a single point of contact for all the client workbooks, to perform the following functions:

❑ A centralized data store

❑ Collation of data from multiple clients

❑ Presentation of that data back to other clients

533

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 533

❑ Workflow management

❑ Calculation engines

As an example, consider a timesheet reporting system, where each member of staff has an Excel work-
book to enter their time on a daily basis. At the end of each month, they connect to the Internet and send
their timesheets to an application running on a web server. That application stores the submitted data in
a central database. Some time later, a manager connects to the server and is sent the submitted hours for
her staff. She checks the numbers and authorizes payment, sending her authorization code back to the
server. The payroll department retrieves the authorized timesheet data from the same web server
directly into its accounting system and processes the payments.

In this business process, Excel is used for the front-end client, providing a rich and powerful user inter-
face, yet it only fulfils a specific part of the overall process. The server application maintains the data
(the completed timesheets) and presents it in whichever format is appropriate for the specific part of the
process.

By using the Internet and standard data formats for this two-way communication, you can easily inte-
grate Excel clients with completely separate systems, as in the payroll system in the example, and allow
the business process to operate outside of the corporate network.

Communicating with a Web Server
Within a corporate network, nearly all data transfer takes place using proprietary binary formats, rang-
ing from transferring files to performing remote database queries. Due primarily to security considera-
tions, communication across the Internet has evolved to use textual formats, such as HTML and more
recently XML. XML is covered in detail in Chapter 12.

To be able to communicate with an application running on a web server, you need to be able to pass
information to, and receive information from, that application.

In Excel 2007, the Workbook object’s FollowHyperlink method can be used to communicate with a
web server. There a few problems with using this, including:

❑ If an error occurs during the connection, Excel will freeze.

❑ Any data returned from the hyperlink is automatically displayed as a new workbook.

❑ You have very little control over the communication.

A much more flexible alternative is provided by the Microsoft Internet Transfer Control, msinet.ocx.
This ActiveX control, often referred to as the ITC, is an easy-to-use wrapper for the wininet.dll file,
which provides low-level Internet-related services for the Windows platform.

Sending Data from the Client to the Server Application
Two mechanisms can be used to send information to a web server. You can either include the informa-
tion as part of the URL string or send it as a separate section of the HTTP request.

534

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 534

URL Encoding
Parameters can be included within the URL string by appending them to the end of the URL, with a
question mark (?) between the URL and the first parameter and an ampersand (&) between each
parameter:

http://www.MySite.com/MyPage.asp?param1=value1¶m2=value2¶m2=value3

This has the advantage that the parameters form part of the URL and hence can be stored in the user’s
Favorites list or typed directly into the browser. It has the disadvantage that there is a limit to the total
length of a URL (2,083 characters in Internet Explorer), restricting the amount of information than can be
passed in this way.

POSTing Data
Whenever a request for a web page is sent to a web server, the request contains a large amount of infor-
mation in various header records. This includes things like the client application type and version, the
communication protocol and version, and user IDs and passwords. It also contains a POST field that can
be used to send information to the server application.

Because there is virtually no limit to the amount of data that can be put in a POST field, it is the preferred
way of transferring information to the server, and is the method used in most applications.

Most web page forms use the POST mechanism to send the completed form to the server for processing.
Excel can mimic the web-based form by sending the same data to the same server in the same POST for-
mat, with the result being sent back as the new web page. The names of the parameters can be found by
examining the source of the real web page form. The form controls will be surrounded by a pair of
<form> and </form> tags, and each control within the form has a name attribute; those names are used
as the parameter names when the form’s data is sent to the server:

Sub SendDataUsingPOST()

Dim oInet As Inet
Dim lContent As Long
Dim sData As String
Dim sHeader As String
Dim sResult As String

‘Create a new instance of the Internet Transfer Control
Set oInet = New Inet

‘Build the POST string with the data to submit
sData = “Param1=Value1” & “&” & _

“Param2=Value2” & “&” & _
“Param3=Value3”

‘Spaces must be replaced with + signs
sData = Replace(sData, “ “, “+”)

‘Tell the POST that we’re sending an encoded parameter list
sHeader = “Content-Type: application/x-www-form-urlencoded”

‘Send the error information to the server

535

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 535

oInet.AccessType = icDirect
oInet.Execute “http://www.mysite.com/mypage.asp”, “POST”, _

sData, sHeader

‘Wait for the server to complete its work
Do While oInet.StillExecuting

DoEvents
Loop

‘Retrieve the returned text
lContent = oInet.GetHeader(“content-length”)
sResult = oInet.GetChunk(lContent + 100)

End Sub

In this example, you’re simply sending a simple list of name/value pairs to the server. If you need to
send more complex data, you can send it as XML by providing the XML in the sData variable, with a
header set to “Content-Type: text/xml”.

Summary
In Excel 2007, Microsoft has enabled the Excel developer to use the Internet as an integral part of an
application solution in the following ways:

❑ Workbooks can be opened from and saved to web servers running the FrontPage Server
Extensions.

❑ Excel can open HTML pages as though they were workbooks.

❑ Web Queries can be used to extract tables of data from web pages.

❑ The Internet Explorer object library can be automated to retrieve individual items of data from a
web page, without the overhead of using a workbook.

❑ Excel workbooks can be saved as content-rich web pages, using either HTML or XML.

❑ The ability to publish interactive web pages using the Office Web Components has been
removed from Excel 2007 and replaced with the Excel Services server-side component.

❑ The Microsoft Internet Transfer Control can be used to exchange data between Excel applica-
tions and web servers, using either a simple parameter list or more structured XML.

Together, these tools enable you to develop new types of business solutions, where Excel is one key part
of a larger business process that may span multiple organizations and geographical locations.

536

Chapter 24: Excel and the Internet

27_046432 ch24.qxp 2/16/07 10:04 PM Page 536

International Issues
If you think that your application may be used internationally, it has to work with any choice of
Windows Regional Setting, on any language version of Windows, and with any language choice
for the Excel user interface.

If you are very lucky, all your potential users will have exactly the same settings as your develop-
ment machine and you won’t need to worry about international issues. However, a more likely
scenario is that you will not even know who all your users are going to be, let alone where in the
world they will live or the settings they will use.

Any bugs in your application that arise from the disregarding or ignoring of international issues
will not occur on your development machine unless you explicitly test for them. However, they
will be found immediately by your clients.

The combination of Regional Settings and Excel language is called the user’s locale, and the aim of
this chapter is to show you how to write locale-independent VBA applications. To do this, we
include an explanation of the features in Excel that deal with locale-related issues, and highlight
areas within Excel where locale support is absent or limited. Workarounds are provided for most of
these limitations, but some are so problematic that the only solution is to not use the feature at all.

The rules provided in this chapter should be included in your coding standards and used by you
and your colleagues. It is easy to write locale-independent code from scratch; it is much more diffi-
cult to make existing code compatible with the many different locales in the world today.

Changing Windows Regional Settings and
the Office 2007 UI Language

Throughout this chapter, the potential errors will be demonstrated by using the three locales out-
lined in the following table.

28_046432 ch25.qxp 2/16/07 10:04 PM Page 537

Setting U.S. UK Norway

Decimal Separator . . ,

Thousand Separator , , .

Date Order mm/dd/yyyy dd/mm/yyyy dd.mm.yyyy

Date Separator / / .

Example Number: 1234.56 1,234.56 1,234.56 1.234,56

Example Date: February 10, 2007 02/10/2007 10/02/2007 10.02.2007

Windows and Excel Language English English Norwegian

Text for Boolean True True True Sann

The regional settings are changed using the Regional Settings applet (Regional Options in Windows
2000) in Windows Control Panel, and the Office 2007 language is changed using the Microsoft Office
2007 Language Settings program. Unfortunately, the only way to change the Windows language is to
install a new version from scratch.

When testing your application, it is a very good idea to use some fictional regional settings, such as hav-
ing a hash mark (#) for the thousands separator, an exclamation point (!) for the decimal separator, and
a year/month/day date order. It is then very easy to determine if your application is using your settings
or some internal default. For completeness, you should also have a machine in your office with a differ-
ent language version of Windows from the one you normally use.

Responding to Regional Settings and the
Windows Language

This section explains how to write applications that work with different regional settings and Windows
language versions, which should be considered the absolute minimum requirement.

Identifying the User’s Regional Settings and Windows
Language

Everything you need to know about your user’s Windows Regional Settings and Windows language
version is found in the Application.International property. The online help lists all of the items
that can be accessed, though you are unlikely to use more than a few of them. The most notable are:

❑ XlCountryCode: The language version of Excel (or of the currently active Office language)

❑ XlCountrySetting: The Windows regional settings location

❑ XlDateOrder: The choice of month-day-year, day-month-year, or year-month-day order to dis-
play dates

538

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 538

Note that there is no constant that enables you to identify which language version of Windows is
installed (but you can get that information from the Windows API if required).

Windows Regional Settings is abbreviated to WRS in the rest of this chapter, and is also described as
local settings.

VBA Conversion Functions from an International
Perspective

The online help files explain the use of VBA’s conversion functions in terms of converting between dif-
ferent data types. This section explains their behavior when converting to and from strings in different
locales.

Implicit Conversion
This is the most common form of type conversion used in VBA code and forces the VBA interpreter to
convert the data using whichever format it thinks is most appropriate. A typical example of this code is:

Dim dtMyDate As Date
dtMyDate = DateValue(“Jan 1, 2007”)
MsgBox “This first day of this year is “ & dtMyDate

When converting a number to a string in Office 2007, VBA uses the WRS to supply either a date string in
the user’s ShortDate format, the number formatted according to the WRS, or the text for True or False
in the WRS language. This is fine, if you want the output as a locally formatted string. If, however, your
code assumes you’ve got a U.S.-formatted string, it will fail. Of course, if you develop using U.S. for-
mats, you won’t notice the difference (though your client will).

There is a much bigger problem with using implicit conversion if you are writing code for multiple ver-
sions of Excel. In previous versions, the number formats used in the conversion were those appropriate
for the Excel language being used at run time (buried within the Excel object library), which might be
different from both U.S. and local formats, and were not affected by changing the WRS.

Be very careful with the data types returned from, and used by, Excel and VBA functions. For example,
Application.GetOpenFilename returns a Variant containing the Boolean value False if the user
cancels, or a string containing the text of the selected file. If you store this result in a String variable, the
Boolean False will be converted to a string in the user’s WRS language, and it may not equal the string
“False” that you may be comparing it to.

To avoid these problems, use the Object Browser to check the function’s return type and parameter types,
and then make sure to match them, or explicitly convert them to your variable’s data type. Applying this
recommendation gives you (at least) three solutions to using Application.GetOpenFilename.

Typical code running in Norway:

Dim stFile As String
stFile = Application.GetOpenFilename()
If stFile = “False” Then

...

539

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 539

If the user cancels, GetOpenFilename returns a variable containing the Boolean value False. Excel con-
verts it to a string to put in your variable, using the Windows language. In Norway, the string will con-
tain “Usann”. If this is compared to the string “False”, it doesn’t match, so the program thinks it is a
valid filename and subsequently crashes.

Solution 1:

Dim vaFile As Variant
vaFile = Application.GetOpenFileName()
If vaFile = False Then ‘Compare using the same data types

...

Solution 2:

Dim vaFile As Variant
vaFile = Application.GetOpenFileName()
If CStr(vaFile) = “False” Then ‘Explicit conversion with CStr() always

‘gives a US Boolean string
...

Solution 3:

Dim vaFile As Variant
vaFile = Application.GetOpenFileName()
If TypeName(vaFile) = “Boolean” Then ‘Got a Boolean, so must have

‘cancelled
...

Note that in all three cases, the key point is that you are matching the data type returned by
GetOpenFilename (a Variant) with your variable. If you use the MultiSelect:=True parameter
within the GetOpenFileName function, the last of the preceding solutions should be used. This is
because the vaFile variable will contain an array of filenames, or the Boolean False. Attempting to
compare an array with False, or trying to convert it to a string, will result in a run-time error.

Date Literals
When coding in VBA, you can write dates using a format of #01/01/2007#, which is obviously January
1, 2007. But what is #02/01/2007#? Is it January 2 or February 1? It’s actually February 1, 2007. This is
because when coding in Excel, you do so in American English, regardless of any other settings you may
have, and hence you must use U.S.-formatted date literals (mm/dd/yyyy format). If other formats are
typed in (such as #yyyy–mm–dd#), Excel will convert them to the #mm/dd/yyyy# order.

What happens if you happen to be Norwegian or British and try typing in your local date format (which
you will do at some time, usually near a deadline)? If you type in a Norwegian-formatted date literal,
#02.01.2007#, you get a syntax error, which at least alerts you to the mistake you made. However, if
you type in dates in a UK format (dd/mm/yyyy format) things get a little more interesting. VBA recog-
nizes the date and so doesn’t give an error, but “sees” that you have the day and month the wrong way
around; it swaps them for you. So, typing in dates from January 10, 2007 to January 15, 2007 results in:

540

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 540

You Typed VBA Shows Meaning

10/1/2007 10/1/2007 October 1, 2007

11/1/2007 11/1/2007 November 1, 2007

12/1/2007 12/1/2007 December 1, 2007

13/1/2007 1/13/2007 January 13, 2007

14/1/2007 1/14/2007 January 14, 2007

15/1/2007 1/15/2007 January 15, 2007

If these literals are sprinkled through your code, you will not notice the errors.

It is much safer to avoid using date literals and use the VBA functions DateSerial(Year, Month, Day)
or DateValue(DateString), where DateString is a non-ambiguous string such as “January 1, 2007”.
Both of these functions return the corresponding Date number.

The IsNumeric and IsDate Functions
These two functions test if a string can be evaluated as a number or date according to the WRS and
Windows language version. You should always use these functions before trying to convert a string to
another data type. There are no IsBoolean functions to check if a string is a U.S.-formatted number or
date. Note that IsNumeric does not recognize a percent sign (%) character on the end of a number, and
IsDate does not recognize days of the week. IsDate is also extremely generous in its recognition; if
there’s any possible way that a string could represent a date, it will return True.

The CStr Function
This is the function most used by VBA in implicit data type conversions. It converts a Variant to a
String, formatted according to the WRS. When converting a Date type, the ShortDate format is used,
as defined in the WRS. Note that when converting Booleans, the resulting text is the English “True” or
“False” and is not dependent on any Windows settings. Compare this with the implicit conversion of
Booleans, whereby MsgBox “I am “ & True results in the True being displayed in the WRS language
(“I am Sann” in Norwegian Regional Settings).

The CDbl, CSng, CLng, CInt, CByte, CCur, and CDec Functions
All of these can convert a string representation of a number into a numeric data type (as well as convert-
ing different numeric data types into each other). The string must be formatted according to WRS. These
functions do not recognize date strings or percent sign (%) characters.

The CDate and DateValue Functions
These methods can convert a string to a Date data type (CDate can also convert other data types to the
Date type). The string must be formatted according to WRS and use the Windows language for month
names. It does not recognize the names for the days of the week, giving a Type Mismatch error. If the
year is not specified in the string, it uses the current year.

541

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 541

The CBool
CBool converts a string (or a number) to a Boolean value. Contrary to all the other Cxxx conversion
functions, the string must be the English “True” or “False”.

The Format Function
The Format function converts a number or date to a string, using a number format supplied in code. The
number format must use U.S. symbols (m, d, s, and so on), but results in a string formatted according to
WRS (with the correct decimal, thousands, and date separators) and the WRS language (for the weekday
and month names). For example, the following code will result in Friday 05/01/2007 in the UK, but
Fredag 05.01.2007 when used with Norwegian settings:

MsgBox Format(DateSerial(2007, 1, 5), “dddd dd/mm/yyyy”)

If you omit the number format string, it behaves in exactly the same way as the CStr function (even
though online help says it behaves like Str), including the strange handling of Boolean values, where
Format(True) always results in the English “True”. Note that it does not change the date order
returned to agree with the WRS, so your code has to determine the date order in use before creating the
number format string, using Application.International(xlDateOrder). If the preceding code is
run in the U.S., it returns the same as in the UK — Friday 05/01/2007 — but your users will interpret that
to mean May 1, not the correct January 5.

The FormatCurrency, FormatDateTime, FormatNumber, and
FormatPercent Functions

These functions added in Excel 2000 provide the same functionality as the Format function, but use
parameters to define the specific resulting format instead of a custom format string. They correspond to
standard options in Excel’s Number Format dialog, whereas the Format function corresponds to the
Custom option. They have the same international behavior as the Format function from the previous
section.

The Str Function
The Str function converts a number, date, or Boolean to a U.S.-formatted string, regardless of the WRS,
Windows language, or Office language version. When converting a positive number, it adds a space on
the left. When converting a decimal fraction, it does not add a leading zero. The following custom func-
tion is an extension of Str, which removes the leading space and adds the zero.

The sNumToUS Function
This function converts a number, date, or Boolean variable to a U.S.-formatted string. There is an addi-
tional parameter that can be used to return a string using Excel’s DATE function, which would typically
be used when constructing .Formula strings:

Function sNumToUS(vValue As Variant, Optional bUseDATEFunction) As String

Dim sTmp As String

‘Don’t accept strings or arrays as input
If TypeName(vValue) = “String” Then Exit Function

542

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 542

If Right(TypeName(vValue), 2) = “()” Then Exit Function

If IsMissing(bUseDATEFunction) Then bUseDATEFunction = False

‘Do we want it returned as Excel’s DATE function
‘(which we can’t do with strings)?
If bUseDATEFunction Then

‘We do, so build the Excel DATE() function string
sTmp = “DATE(“ & Year(vValue) & “,” & Month(vValue) & “,” & _

Day(vValue) & “)”
Else

‘Is it a date type?
If TypeName(vValue) = “Date” Then

sTmp = Format(vValue, “mm””/””dd””/””yyyy”)
Else

‘Convert number to string in US format and remove leading space
sTmp = Trim(Str(vValue))

‘If we have fractions, we don’t get a leading zero, so add one.
If Left(sTmp, 1) = “.” Then sTmp = “0” & sTmp
If Left(sTmp, 2) = “-.” Then sTmp = “-0” & Mid(sTmp, 2)

End If
End If

‘Return the US formatted string
sNumToUS = sTmp

End Function

vValue is a variant containing the number to convert, which can be:

❑ A number to be converted to a string with U.S. formats

❑ A date to be converted to a string in mm/dd/yyyy format

❑ A Boolean converted to the strings “True” or “False”

bUseDATEFunction is an optional Boolean for handling dates. When it is set to False, sNumToUS
returns a date string in mm/dd/yyyy format. When it is set to True, sNumToUS returns a date as
DATE(yyyy,mm,dd).

The Val Function
This is the most commonly used function to convert from strings to numbers. It actually only converts a
U.S.-formatted numerical string to a number. All the other string-to-number conversion functions try to
convert the entire string to a number and raise an error if they can’t. Val, however, works from left to
right until it finds a character that it doesn’t recognize as part of a number. Many characters typically
found in numbers, such as dollar signs ($) and commas, are enough to stop it from recognizing the num-
ber. Val does not recognize U.S.-formatted date strings.

Val also has the dubious distinction of being the only one of VBA’s conversion functions to take a spe-
cific data type for its input. Whereas all the others use Variants, Val accepts only a string. This means
that anything you pass to Val is converted to a string (implicitly, therefore according to the WRS and
Windows language) before being evaluated according to U.S. formats.

543

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 543

In the following table, myDate is a Date variable containing February 10, 2007 and myDbl is a Double
containing 1.234.

Expression U.S. UK Norway

Val(myDate) 2 10 10.02 (or 10.2)

Val(myDbl) 1.234 1.234 1

Val(True) 0 (=False) 0 (=False) 0 (=False)

Val(“SomeText”) 0 0 0

Val(“6 My St.”) 6 6 6

For clarity of comparison, the results are all displayed using U.S./UK number formats, though
Val(myDate) would appear as 10,02 with Norwegian settings.

Application.Evaluate
Though not normally considered to be a conversion function, Application.Evaluate is the only way
to convert a U.S.-formatted date string to a date number. The following two functions, IsDateUS and
DateValueUS, are wrapper functions that use this method.

The IsDateUS Function
The built-in IsDate function validates a string against the Windows Regional Settings. This function
provides you with a way to check if a string contains a U.S.-formatted date:

Function IsDateUS(sDate As String) As Boolean

IsDateUS = Not IsError(Application.Evaluate(“DATEVALUE(“”” & _
sDate & “””)”))

End Function

sDate is a string containing a U.S.-formatted date. IsDateUS returns True if the string contains a valid
U.S. date, and False if not.

The DateValueUS Function
The VBA DateValue function converts a string formatted according to the Windows Regional Settings
to a Date type. This function converts a string containing a U.S.-formatted date to a Date type. If the
string cannot be recognized as a U.S.-formatted date, it returns an Error value that can be tested for,
using the IsError function:

The use of Val can have unwanted side effects (otherwise known as bugs), which
are very difficult to detect in code that is running fine on your own machine, but
which would fail on another machine with different WRS.

544

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 544

Function DateValueUS(sDate As String) As Variant

DateValueUS = Application.Evaluate(“DATEVALUE(“”” & sDate & “””)”)

End Function

sDate is a string containing a U.S.-formatted date. DateValueUS returns the date value of the given
string, in a Variant (because it may contain an error value if sDate is not a valid date string).

Interacting with Excel
VBA and Excel are two different programs that have had very different upbringings. VBA speaks
American. Excel also speaks American. However, Excel can also speak in its users’ language if they have
the appropriate Windows settings and Office language pack installed. On the other hand, VBA knows
only a little about Windows settings, and even less about Office 2007 language packs. So, either you can
do some awkward coding to teach VBA how to speak to Excel in the user’s language, or you can just let
them converse in American. I very much recommend the latter.

Unfortunately, most of the newer features in Excel are not multilingual. Some only speak American, and
others only speak in the user’s language. You can use the American-only features if you understand
their limitations; the others are best avoided. All of them are documented later in the chapter.

Sending Data to Excel
By far the best way to get numbers, dates, Booleans, and strings into Excel cells is to do so in their native
format. Hence, the following code works perfectly, regardless of locale:

Sub SendToExcel()
Dim dtDate As Date, dNumber As Double, bBool As Boolean, _

stString As String

dtDate = DateSerial(2007, 2, 13)
dNumber = 1234.567
bBool = True
stString = “Hello World”

Range(“A1”).Value = dtDate
Range(“A2”).Value = dNumber
Range(“A3”).Value = bBool
Range(“A4”).Value = stString

End Sub

There is a boundary layer between VBA and Excel. When VBA passes a variable through the boundary,
Excel does its best to interpret it according to its own rules. If the VBA and Excel data types are mutually
compatible, the variable passes straight through unhindered.

The problems start when Excel forces you to pass it numbers, dates, or Booleans within strings, or when
you choose to do so yourself. The answer to the latter situation is easy — don’t do it. Whenever you have
a string representation of some other data type, if it is possible, always explicitly convert it to the data
type you want Excel to store before passing it to Excel.

545

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 545

Excel requires string input in the following circumstances:

❑ Setting the formula for a cell, chart series, conditional format, data validation rule, or pivot table
calculated field

❑ Specifying the RefersTo formula for a defined name

❑ Specifying AutoFilter criteria

❑ Passing a formula to ExecuteExcel4Macro

❑ Setting the number format of a cell, style, chart axis, or pivot table field

❑ Setting the number format in the VBA Format function

In these cases, you have to ensure that the string that VBA sends to Excel is in U.S.-formatted text — you
must use English language formulas and U.S. regional settings. If the string is built within the code, you
must be very careful to explicitly convert all your variables to U.S.-formatted strings.

Take this simple example:

Sub SetLimit(dLimit As Double)
ActiveCell.Formula = “=IF(A1<” & dLimit & “,1,0)”

End Sub

You are setting a cell’s formula based on a parameter supplied by another routine. Note that the formula
is being constructed in the code and you are using U.S. language and regional settings (that is, using the
English IF and a comma for the list separator). When used with different values for dLimit in different
locales, you get the results shown in the following table.

dLimit U.S. UK Norway

100 Works fine Works fine Works fine

100.23 Works fine Works fine Run-time error 1004

It fails when run in Norway with any non-integer value for dLimit. This is because you are implicitly
converting the variable to a string, which you’ll recall uses the Windows Regional Settings number for-
mats. The resulting string that you’re passing to Excel is:

=IF(A1<100,23,1,0)

This fails because the IF function does not have four parameters. If you change the function to read:

Sub SetLimit(dLimit As Double)
ActiveCell.Formula = “=IF(A1<” & Str(dLimit) & “,1,0)”

End Sub

The function will work correctly, because Str forces a conversion to a U.S.-formatted string.

546

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 546

If you try the same routine with a Date instead of a Double, you come across another problem. The text
that is passed to Excel (for example, for February 13, 2007) is:

=IF(A1<02/13/2007,1,0)

While this is a valid formula, Excel interprets the date as a set of divisions, so the formula is equivalent to:

=IF(A1<0.000077,1,0)

This is unlikely to ever be true. To avoid this, you have to convert the Date data type to a Double, and
from that to a string:

Sub SetDateLimit(dtLimit As Date)
ActiveCell.Formula = “=IF(A1<” & Str(CDbl(dtLimit)) & “,1,0)”

End Sub

The function is then the correct (but less readable):

=IF(A1<36935,1,0)

To maintain readability, you should convert dates to Excel’s DATE function, to give:

=IF(A1<DATE(2007,2,13),1,0)

This is also achieved by the sNumToUS function presented earlier in this chapter, when the
bUseDateFunction parameter is set to True:

Sub SetDateLimit(dLimit As Date)
ActiveCell.Formula = “=IF(A1<” & sNumToUS(dLimit, True) & “,1,0)”

End Sub

If you call the revised SetLimit procedure with a value of 100.23 and look at the cell that the formula
was put into, you’ll see that Excel has converted the U.S. string into the local language and regional set-
tings. In Norway, for example, the cell actually shows:

=HVIS(A1<100,23;1;0)

This translation also applies to number formats. Whenever you set a number format within VBA, you
can give Excel a format string that uses U.S. characters (d for day, m for month, and y for year). When
applied to the cell (or style or chart axis), or used in the Format function, Excel translates these charac-
ters to the local versions. For example, the following code results in a number format of dd/mm/åååå
when you check it in the Number Format dialog in Norwegian Windows:

ActiveCell.NumberFormat = “dd/mm/yyyy”

This capability of Excel to translate U.S. strings into the local language and formats makes it easy for
developers to create locale-independent applications. All you have to do is code in American and ensure
that you explicitly convert your variables to U.S.-formatted strings before passing them to Excel.

547

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 547

Reading Data from Excel
When reading a cell’s value, using its Value property, the data type that Excel provides to VBA is deter-
mined by a combination of the cell’s value and its formatting. For example, the number 3000 could reach
VBA as a Double, a Currency, or a Date (March 18, 1908). The only international issue of concern here
is if the cell’s value is read directly into a string variable — the conversion will then be done implicitly,
and you may not get what you expect (particularly if the cell contains a Boolean value).

As is the case when sending data to Excel, the translation between U.S. and local functions and formats
occurs when reading data from Excel. This means that a cell’s .Formula or .NumberFormat property is
given in English, and with U.S. number and date formatting, regardless of the user’s choice of language
or regional settings.

Although for most applications it is much simpler to read and write using U.S. formulas and formats,
you will sometimes need to read exactly what the user is seeing (in their choice of language and regional
settings). This is done by using the xxxLocal versions of many properties, which return (and interpret)
strings according to the user’s settings. They are typically used when displaying a formula or number
format on a UserForm, and are discussed in the following section.

The Rules for Working with Excel
❑ Pass values to Excel in their natural format if possible (don’t convert dates, numbers, or

Booleans to strings if you don’t have to). If you have strings, convert them yourself before pass-
ing them to Excel.

❑ When you have to convert numbers and dates to strings for passing to Excel (such as in criteria
for AutoFilter or Formula strings), always explicitly convert the data to a U.S.-formatted string,
using Trim(Str(MyNumber)), or the sNumToUS function shown previously, for all number and
date types. Excel will then use it correctly and convert it to the local number and date formats.

❑ Avoid using Date literals (such as #1/3/2007#) in your code. It is better to use the VBA
DateSerial or Excel DATE functions, which are not ambiguous.

❑ If possible, use the date number instead of a string representation of a date. Numbers are much
less prone to ambiguity (though not immune).

❑ When writing formulas in code to be put into a cell (using the .Formula property), create the
string using English functions. Excel will translate them to the local Office language for you.

❑ When setting number formats or using the Format function, use U.S. formatting characters —
for example, ActiveCell.NumberFormat = “dd mmm yyyy”. Excel will translate these to the
local number format for you.

❑ When reading information from a worksheet, using .Formula, .NumberFormat, and so forth,
Excel will supply it using English formulas and U.S. format codes, regardless of the local Excel
language.

548

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 548

Interacting with Users
The golden rule when displaying data to your users, or getting data from them, is to always respect their
choice of Windows Regional Settings and Office UI Language. They should not be forced to enter num-
bers, dates, formulas, or number formats according to U.S. settings, just because it’s easier for you to
develop.

Paper Sizes
One of the most annoying things for users is discovering that their printer does not recognize the paper
sizes used in your templates. If you use templates for your reports, you should always change the paper
size to the user’s default size. This can easily be determined by creating a new workbook and reading off
the paper size from the PageSetup object.

Excel 2002 added the Application.MapPaperSize property to automatically switch between the
equivalent common paper sizes of different countries (for example, between Letter in the U.S. and A4 in
the UK). If this is property is set to True, Excel should take care of paper sizes for you.

Displaying Data
Excel does a very good job of displaying worksheets according to the user’s selection of regional settings
and language. When displaying data in UserForms or dialog sheets, however, you have to do all the for-
matting yourself.

As discussed previously, Excel converts numbers and dates to strings according to the WRS by default.
This means that you can write code like the following and be safe in the knowledge that Excel will dis-
play it correctly:

tbNumber.Text = dNumber

There are two problems with this approach:

❑ Dates will get the default ShortDate format, which may not include four digits for the year,
and will not include a time component. To force a four-digit year and include a time, use the
sFormatDate function shown later in this chapter. It may be better, though, to use a less
ambiguous date format on UserForms, such as the “mmm dd, yyyy” format used throughout
this book.

❑ Versions of Excel prior to Excel 97 did not use the Windows Regional Settings for their default
formats. If you are creating applications for use in older versions of Excel, you can’t rely on the
correct behavior.

The solution is simple — just use the Format function. This tells VBA to convert the number to a locally
formatted string and works in all versions of Excel:

tbNumber.Text = Format(dNumber)

549

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 549

Interpreting Data
Your users will want to type in dates and numbers according to their choice of regional settings, and
your code must validate those entries accordingly and maybe display meaningful error messages back
to the user. This means that you have to use the Cxxx conversion functions, and the IsNumeric and
IsDate validation functions.

Unfortunately, these functions all have their problems (such as not recognizing the % sign at the end of a
number), which require some working around. An easy solution is to use the bWinToNum and
bWinToDate functions shown at the end of this chapter to perform the validation, conversion, and error
prompting for you. The validation code for a UserForm will typically be done in the OK button’s Click
event, and will be something like this:

Private Sub bnOK_Click()
Dim dResult As Double

‘Validate the number or display an error
If bWinToNum(tbNumber.Text, dResult, True) Then

‘It was valid, so store the number
Sheet1.Range(“A1”).Value = dResult

Else
‘An error, so set the focus back and quit the routine
tbNumber.SetFocus
Exit Sub

End If

‘All OK and stored, so hide the userform
Me.Hide

End Sub

The xxxLocal Properties
Up until now, you have had to interact with Excel using English-language functions and the default U.S.
formats. Presented now is an alternative situation, where your code interacts with the user in his or her
own language using the appropriate regional settings. How, then, can your program take something
typed in by the user (such as a number format or formula) and send it straight to Excel, or display an
Excel formula in a message box in the user’s own language?

Microsoft has anticipated this requirement and has provided us with local versions of most of the func-
tions we need. They have the same names as their U.S. equivalents, with the word “Local” on the end
(such as FormulaLocal, NumberFormatLocal, and so on). When you use these functions, Excel does
not perform any language or format coercion for you. The text you read and write is exactly how it
appears to the user. Nearly all of the older functions that return strings, or have string arguments, have
local equivalents; newer objects do not. The following table lists all of the xxxLocal properties and the
objects to which they apply.

550

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 550

Use and return locally
Return strings according formatted strings, and in
to U.S. number and date the language used for the

Applies to formats and English text Office UI (or Windows version)
Number/string conversion Str Cstr

Number/string conversion Val CDbl, and so on

Name, Style, CommandBar .Name .NameLocal

Range, Chart Series .Formula .FormulaLocal

Range, Chart Series .FormulaR1C1 .FormulaR1C1Local

Range, Style, Chart Data .NumberFormat .NumberFormatLocal
Label, Chart Axes Label

Range .Address .AddressLocal

Range .AddressR1C1 .AddressR1C1Local

Defined Name .RefersTo .RefersToLocal

Defined Name .RefersToR1C1 .RefertToR1C1Local

Defined Name .Category .CategoryLocal

The Rules for Working with Your Users
❑ When converting a number or date to a text string for displaying to your users, or setting it as

the .Caption or .Text property of a control, explicitly convert numbers and dates to text
according to the WRS, using Format(myNum), or CStr(MyNum).

❑ When converting dates to strings, Excel does not rearrange the date part order, so
Format(MyDate, “dd/mm/yyyy”) will always give a DMY date order (but will show the cor-
rect date separator). Use Application.International(xlDateOrder) to determine the cor-
rect date order — as used in the sFormatDate function shown at the end of this chapter — or
use one of the standard date formats (for example, ShortDate).

❑ If possible, use locale-independent date formats, such as Format(MyDate, “mmm dd, yyyy”).
Excel will display month names according to the user’s WRS language.

❑ When evaluating date or number strings that have been entered by the user, use CDate or CDbl
to convert the string to a date or number. These will use the WRS to interpret the string. Note
that CDbl does not handle the percent sign (%) character if the user has put one at the end of the
number.

❑ Always validate numbers and dates entered by the user before trying to convert them. See the
bWinToNum and bWinToDate functions at the end of this chapter for examples.

❑ When displaying information about Excel objects, use the xxxLocal properties (where they
exist) to display it in your user’s language and formats.

❑ Use the xxxLocal properties when setting the properties of Excel objects with text provided by
the user (which you must assume is in their native language and format).

551

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 551

Excel 2007’s International Options
In the Office Menu ➪ Excel Options dialog, the Advanced section contains Editing Options that allow the
user to specify the characters that Excel uses for the thousands and decimal separators, overriding the
Windows Regional Settings. These options can be read and changed in code, using
Application.ThousandsSeparator, Application.DecimalSeparator, and
Application.UseSystemSeparators.

Using these properties you could, for example, print, save (as text), or publish a workbook using local
number formats, change the separators being used, print, save (as text), or publish another version for a
different target country, and then change them back to their original settings. It is a great pity, though,
that Microsoft didn’t add the ability to override the rest of the Windows Regional Settings attributes
(such as date order, date separator, whether to use (10) or -10, and so on), and it’s an omission that
makes this feature virtually useless in practice.

One problem with using this feature is that it does not change the number format strings used in the
=TEXT worksheet function., So as soon as the option is changed (either in code or through the UI), all
cells that use the =TEXT function will no longer be formatted correctly. See later in this chapter for a
workaround.

There is a big problem with this feature, in that while these options affect all of Excel’s xxxLocal prop-
erties and functions (including the Application.International settings), they are ignored by VBA.

A couple examples highlight the scale of the problem:

❑ The VBA Format function — used almost every time a number is displayed to the user —
ignores these options, resulting in text formatted according to the Windows Regional Settings,
not those used by Excel.

❑ If the user types numbers into your UserForms or InputBoxes using the override separators,
they will not be recognized as numbers by IsNumeric, CDbl, and so on, resulting in
TypeMismatch errors.

The only way to work around this problem is to perform your own switching between WRS and
Override separators before displaying numbers to the users, and immediately after receiving numbers
from them, using the following two functions:

Function WRSToOverride(ByVal sNumber As String) As String

Dim sWRS As String, sWRSThousand As String, sWRSDecimal As String
Dim sXLThousand As String, sXLDecimal As String

‘Only do for Excel 2002 and greater
If Val(Application.Version) >= 10 Then

‘Only do if the user is not using System Separators
If Not Application.UseSystemSeparators Then

‘Get the separators used by the Windows Regional Settings
sWRS = Format(1000, “#,##0.00”)
sWRSThousand = Mid(sWRS, 2, 1)

552

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 552

sWRSDecimal = Mid(sWRS, 6, 1)

‘Get the override separators used by Excel
sXLThousand = Application.ThousandsSeparator
sXLDecimal = Application.DecimalSeparator

‘Swap from WRS’ to Excel’s separators
sNumber = Replace(sNumber, sWRSThousand, vbTab)
sNumber = Replace(sNumber, sWRSDecimal, sXLDecimal)
sNumber = Replace(sNumber, vbTab, sXLThousand)

End If
End If

‘Return the converted string
WRSToOverride = sNumber

End Function

WRSToOverride converts between WRS and Excel’s number formats, and returns a string using Excel’s
Override formatting. sNumber is a string containing a WRS-formatted number:

Function OverrideToWRS(ByVal sNumber As String) As String

Dim sWRS As String, sWRSThousand As String, sWRSDecimal As String
Dim sXLThousand As String, sXLDecimal As String

‘Only do for Excel 2002 and greater
If Val(Application.Version) >= 10 Then

‘Only do if the user is not using System Separators
If Not Application.UseSystemSeparators Then

‘Get the separators used by the Windows Regional Settings
sWRS = Format$(1000, “#,##0.00”)
sWRSThousand = Mid$(sWRS, 2, 1)
sWRSDecimal = Mid$(sWRS, 6, 1)

‘Get the override separators used by Excel
sXLThousand = Application.ThousandsSeparator
sXLDecimal = Application.DecimalSeparator

‘Swap from Excel’s to WRS’ separators
sNumber = Replace(sNumber, sXLThousand, vbTab)
sNumber = Replace(sNumber, sXLDecimal, sWRSDecimal)
sNumber = Replace(sNumber, vbTab, sWRSThousand)

End If
End If

‘Return the comverted string
OverrideToWRS = sNumber

End Function

553

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 553

OverrideToWRS converts between WRS and Excel’s number formats, and returns the string using WRS’
formatting. sNumber is a string containing an Excel Override formatted number.

The final problem is that when you are interacting with users, you should be doing so using the number
formats that they are familiar with. By adding the ability to override the Windows Regional Settings,
Excel is introducing a third set of separators for you, and your users, to contend with. You are therefore
completely reliant on the users remembering that override separators have been set, and that they may
not be the separators that the users are used to seeing (that is, according to the WRS).

I strongly recommend that your application checks if Application.UseSystemSeparators is False
and displays a warning message to the user, suggesting that it be turned on, so number formatting is set
using Control Panel rather than Excel’s overrides:

If Not Application.UseSystemSeparators Then
MsgBox “Please set the required number formatting using Control Panel”
Application.UseSystemSeparators = True

End If

Features That Don’t Play by the Rules
The xxxLocal functions discussed in the previous section were all introduced during the original move
from XLM functions to VBA in Excel 5.0. They cover most of the more common functions that a devel-
oper is likely to use. There were, however, a number of significant omissions in the original conversion,
and new features have been added to Excel since then, with almost complete disregard for international
issues.

This section guides you through the maze of inconsistency, poor design, and omission that you’ll find
hidden within the following Excel 2007 features. This table shows the methods, properties, and functions
in Excel that are sensitive to the user’s locale, but that do not behave according to the rules stated in pre-
vious sections.

Applies to U.S. Version Local Version

Opening a text file OpenText OpenText

Saving as a text file SaveAs SaveAs

Application .ShowDataForm .ShowDataForm

Worksheet, Range .Paste, .PasteSpecial

PivotTable calculated fields and items .Formula

Conditional formats .Formula

QueryTables (Web Queries) .Refresh

Worksheet functions =TEXT

554

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 554

Applies to U.S. Version Local Version

Range .Value, .Formula

Range .FormulaArray

Range .AutoFilter .AutoFilter

Range .AdvancedFilter

Application .Evaluate

Application .ConvertFormula

Application .ExecuteExcel4Macro

Fortunately, workarounds are available for most of these issues. There are a few, however, that should be
completely avoided.

The OpenText Function
Workbooks.OpenText is the VBA equivalent of opening a text file in Excel by using Office Menu ➪

Open. It opens the text file, parses it to identify numbers, dates, Booleans, and strings, and stores the
results in worksheet cells. Of relevance to this chapter is the method Excel uses to parse the data file (and
how it has changed over the past few versions).

In Excel 5, the text file was parsed according to your Windows Regional Settings when opened from the
user interface, but according to U.S. formats when opened in code. In Excel 97, this was changed to
always use these settings from both the UI and code. Unfortunately, this meant that there was no way to
open a U.S.-formatted text file with any confidence that the resulting numbers were correct. Since Excel
5, you have been able to specify the date order to be recognized, on a column-by-column basis, which
works very well for numeric dates (for example, 01/02/2007).

Excel 2000 introduced the Advanced button on the Text Import Wizard, and the associated
DecimalSeparator and ThousandsSeparator parameters of the OpenText method. These parameters
allow you to specify the separators that Excel should use to identify numbers, and they are welcome addi-
tions. It is slightly disappointing to see that you cannot specify the general date order in the same way:

Workbooks.OpenText filename:=”DATA.TXT”, _
dataType:=xlDelimited, tab:=True, _
DecimalSeparator:=”,”, ThousandsSeparator:=”.”

While Microsoft is to be congratulated for fixing the number format problems in Excel 2000, further con-
gratulations are due for fixing the problem of month and day names in Excel 2002, and for providing a
much tidier alternative for distinguishing between U.S.-formatted and locally formatted text files.

Prior to Excel 2002, the OpenText method would only recognize month and day names according to the
Windows Regional Settings, and date orders had to be specified for every date field that wasn’t in MDY
order. In Excel 2002, the OpenText method was given a Local parameter, with which you can specify
whether the text file being imported uses U.S. English formatting throughout, or whether it uses locally
formatted dates, numbers, and so on:

555

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 555

❑ If Local:=True, Excel will recognize numbers, dates, and month and day names according to
the Windows Regional Settings (and the Override DecimalSeparator and
ThousandsSeparator separators, if set).

❑ If Local:=False, Excel will recognize numbers, dates, and month and day names according to
standard U.S. English settings.

In either case, the extra parameters of DecimalSeparator, ThousandsSeparator, and FieldInfo can
be used to further refine the specification (overriding the Local parameter’s defaults).

The SaveAs Function
Workbook.SaveAs is the VBA equivalent of saving a text file in Excel by using Office Menu ➪ Save As
and choosing a format of Text.

In all versions of Excel prior to Excel 2002, this resulted in a U.S.-formatted text file, with a DMY date
order, English month and day names, and so on.

In Excel 2002, the SaveAs method was given the same Local parameter described in the OpenText
method in the previous section, resulting in a U.S.-formatted or locally formatted text file, as appropri-
ate. Note that if a cell has been given a locale-specific date format (that is, the number format begins
with a locale specifier, such as [$-814] for Norwegian), that formatting will be retained in the text file,
regardless of whether it is saved in U.S. or local format:

ActiveWorkbook.SaveAs “Data.Txt”, xlText, local:=True

The ShowDataForm Sub Procedure
Using ActiveSheet.ShowDataForm means exposing yourself to one of the most dangerous of Excel’s
international issues. ShowDataForm is the VBA equivalent of the pre-2007 Data ➪ Form menu item
(which is not available by default in the Excel 2007 Ribbon, but can be added to the QAT by selecting the
Form command from the All Commands list). It displays a standard dialog that allows the user to enter
and change data in an Excel list or database. When run from Excel, the dates and numbers are displayed
according to the WRS, and changes made by the user are interpreted according to the WRS, which fully
complies with the user interaction rules stated previously.

When used in code, ActiveSheet.ShowDataForm displays dates and numbers according to U.S. for-
mats but interprets them according to WRS. Hence, if you have a date of February 10, 2007, shown
in the worksheet in the dd/mm/yyyy order of 10/02/2007, Excel will display it on the data form as
2/10/2007. If you change this to the 11th (2/11/2007), Excel will store November 2, 2007 in the sheet.
Similarly, if you are using Norwegian number formats, a number of 1-decimal-234 will be displayed on
the form as 1.234. Change that to read 1.235 and Excel stores 1235, one thousand times too big.

Because this is a rarely used feature, our suggestion is to leave it buried in the Ribbon command well
and write your own data-entry UserForm.

556

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 556

Pasting Text
When pasting text from other applications into Excel, it is parsed according to the WRS. There is no way
to tell Excel the number and date formats and language to recognize. The only workaround is to use a
DataObject to retrieve the text from the clipboard, parse it yourself in VBA, then write the result to the
sheet. For clarity, the following example assumes that the clipboard contains a single U.S.-formatted
number and that it should be enhanced to check for U.S.-formatted dates as well:

Sub ParsePastedNumber()

Dim oDO As DataObject
Dim sText As String

‘Create a new data object
Set oDO = New DataObject

‘Read the contents of the clipboard into the DataObject
oDO.GetFromClipboard

‘Get the text from the DataObject
sText = oDO.GetText

‘If we know the text is in a US format,
‘use Val() to convert it to a number
ActiveCell.Value = Val(sText)

End Sub

PivotTable Calculated Fields and Items, and Conditional
Format and Data Validation Formulas

If you are used to using the .Formula property of a range or chart series, you’ll know that it returns and
accepts formula strings that use English functions and U.S. number formats. There is an equivalent
.FormulaLocal property that returns and accepts formula strings as they appear on the sheet (using the
Office UI language and WRS number formats).

PivotTable calculated fields and items and conditional formats also have a .Formula property, but for
these objects, it returns and accepts formula strings as they appear to the user — that is, it behaves in the
same way as the .FormulaLocal property of a Range object. This means that to set the formula for one
of these objects, you need to construct it in the Office UI language, and according to the WRS.

A workaround for this is to use the cell’s own .Formula and .FormulaLocal properties to convert
between the formats, as shown in the following ConvertFormulaLocale function.

This function converts a formula string between U.S. and local formats and languages:

Function ConvertFormulaLocale(sFormula As String, bUSToLocal As Boolean) _
As String

On Error GoTo ERR_BAD_FORMULA

‘Use a cell that is likely to be empty!

557

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 557

‘This should be changed to suit your own situation
With ThisWorkbook.Worksheets(1).Range(“IU1”)

If bUSToLocal Then
.Formula = sFormula
ConvertFormulaLocale = .FormulaLocal

Else
.FormulaLocal = sFormula
ConvertFormulaLocale = .Formula

End If

.ClearContents
End With

ERR_BAD_FORMULA:

End Function

sFormula is the text of the formula to convert from, and bUSToLocal should be set to True to convert
U.S. to local, and False to convert local to U.S.

Web Queries
Although the concept behind Web Queries is an excellent one, they have been implemented with com-
plete disregard for international issues. When the text of the web page is parsed by Excel, all the num-
bers and dates are interpreted according to your Windows Regional Settings. This means that if a
European web page is opened in the U.S., or a U.S. page is opened in Europe, it is likely that the num-
bers will be wrong. For example, if the web page contains the text 1.1, it will appear as January 1 on a
computer running Norwegian Windows.

The WebDisableDateRecognition option for the QueryTable can be used to prevent numbers from
being recognized as dates. Setting Excel’s override number and decimal separators can ensure that num-
bers are recognized correctly, if the web page is displayed in a known format.

Web Queries must be used with great care in a multinational application, using the following approach:

❑ Set Application.UseSystemSeparators to False.

❑ Set Application.DecimalSeparator and Application.ThousandsSeparator to those
used on the web page.

❑ Perform the query, ensuring WebDisableDateRecognition is set to True.

❑ Reset Application.DecimalSeparator, Application.ThousandsSeparator, and
Application.UseSystemSeparators to their original values.

=TEXT() Worksheet Function
The =TEXT() worksheet function converts a number to a string, according to a specified format. The for-
mat string has to use formatting characters defined by the Windows Regional Settings (or Excel’s
International Options override). Hence, if you use =TEXT(NOW(),”dd/mm/yyyy”), you will get
01/02/yyyy on Norwegian Windows, because Excel will only recognize å as the Norwegian number-
format character used for years. Excel does not translate the number-format characters when it opens the

558

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 558

file on a different platform. The easiest way to work around this is to include a range of formatted cells
within your workbook, and some VBA code that writes their number format to the cell when the workbook
is opened. Any =TEXT() functions in the sheet can then refer to those cells for their formatting codes.

The Range.Value, Range.Formula, and
Range.FormulaArray Proper ties

These three properties of a range break the rules by not having local equivalents. The strings passed to
(and returned by) them are in U.S. format. Use the ConvertFormulaLocale function shown previously
to convert between U.S. and local versions of formulas.

The Range.AutoFilter Method
The AutoFilter method of a Range object is a very curious beast. You are forced to pass it strings for its
filter criteria, and hence you must be aware of its string handling behavior. The criteria string consists of
an operator (=, >, <, >=, and so on) followed by a value. If no operator is specified, the equals operator
(=) is assumed.

The key issue is that when using the equals operator, AutoFilter performs a textual match, whereas
using any other operator results in a match by value. This gives you problems when trying to locate
exact matches for dates and numbers. If you use equals, Excel matches on the text that is displayed in
the cell — that is, the formatted number. Because the text displayed in a cell will change with different
regional settings and Windows language versions, it is impossible for you to create a criteria string that
will locate an exact match in all locales.

There is a workaround for this problem. When using any of the other filter criteria, Excel plays by the
rules and interprets the criteria string according to U.S. formats. Hence, a search criterion of
“>=02/01/2007” will find all dates on or after February 1, 2007, in all locales. You can use this to match
an exact date by using two AutoFilter criteria. The following code will give an exact match on
February 1, 2007 and will work in any locale:

Range(“A1:D200”).AutoFilter 2, “>=02/01/2007”, xlAnd, “<=02/01/2007”

The Range.AdvancedFilter Method
The AdvancedFilter method does play by the rules, but in a way that may be undesirable. The criteria
used for filtering are entered on the worksheet in the criteria range. In a similar way to AutoFilter, the
criteria string includes an operator and a value. Note that when using the equals operator,
AdvancedFilter correctly matches by value and hence differs from AutoFilter in this respect.

Because this is entirely within the Excel domain, the string must be formatted according to the Windows
Regional Settings to work, which poses a problem when matching on dates and numbers. An advanced
filter search criterion of “>1.234” will find all numbers greater than 1.234 in the U.S., but all numbers
greater than 1234 when run in Norway. A criterion of “>02/03/2007” will find all dates after February 3
in the U.S., but after March 2 in Europe.

559

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 559

The only workarounds are to populate the criteria strings from code, before running the AdvancedFilter
method, or to use a calculated criteria string, using the =TEXT trick mentioned previously. Instead of a crite-
rion of “>=02/03/2007”, to find all dates on or after February 3, 2007, you could use this formula:

=”>=”&TEXT(DATE(2007,2,3),DateFormat)

Here, DateFormat is a reference to a cell that has been set to a local date format. If the date is an integer
(does not contain a time component), you could also just use the criteria string “>=39116”, and hope
that the user realizes that 39116 is actually February 3, 2007.

The Application.Evaluate,
Application.Conver tFormula, and
Application.ExecuteExcel4Macro Functions

These functions all play by the rules, in that you must use U.S.-formatted strings. They do not, however,
have local equivalents. To evaluate a formula that the user may have typed into a UserForm (or convert
it from using relative to absolute cell ranges), you need to convert it to U.S. format before passing it to
Application.Evaluate or Application.ConvertFormula.

The Application.ExecuteExcel4Macro function is used to execute XLM-style functions. One of the
most common uses of it is to call the XLM PAGE.SETUP function, which is much faster than the VBA
equivalent. This takes many parameters, including strings, numbers, and Booleans. Be very careful to
explicitly convert all these parameters to U.S.-formatted strings, and avoid the temptation to shorten the
code by omitting the Str around each one.

Responding to Office 2007 Language Settings
One major advance, starting with the release of Office 2000, is that there is a single set of executables,
with a set of plug-in language packs (whereas in prior versions, each language was a different exe-
cutable, with its own set of bugs). This makes it very easy for users of Office to have their own choice of
language for the user interface, help files, and so on. In fact, if a number of people share the same com-
puter, each person can run the Office applications in a different language.

As a developer of Excel applications, you must respect the user’s language selection and do as much as
you can to present your own user interface in their choice of language.

Where Does the Text Come From?
The following sections outline the three factors that together determine the text seen by the Office user.

Regional Settings Location
The Regional Settings location is chosen on the first tab (called Regional Settings) of the Control Panel’s
Regional Settings applet, and it defines:

560

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 560

❑ The day and month names shown in Excel cells for long date formats

❑ The day and month names returned by the VBA Format function

❑ The month names recognized by the VBA CDate function and when typing dates into Excel
directly

❑ The month names recognized by the Text Import Wizard and the VBA OpenText method (when
the Local parameter is True)

❑ The number format characters used in the =TEXT worksheet function

❑ The text resulting from the implicit conversion of Boolean values to strings, such as:
“I am “ & True

Office UI Language Settings
The Office User Interface language can be selected by using the Microsoft Office Language Settings
applet, installed with Office 2007, and it defines:

❑ The text displayed on Excel’s menus and dialog boxes

❑ The text for the standard buttons on Excel’s message boxes

❑ The text for Excel’s built-in worksheet functions

❑ The text displayed in Excel’s cells for Boolean values

❑ The text for Boolean values recognized by the Text Import Wizard, the VBA OpenText method,
and when typing directly into Excel

❑ The default names for worksheets in a new workbook

❑ The local names for command bars

Language Version of Windows
By this, I mean the basic language version of Windows itself. This choice defines the text for the standard
buttons in the VBA MsgBox function (when using the vbMsgBoxStyles constants). Hence, whereas the
text of the buttons on Excel’s built-in messages responds to the Office UI language, the text of the but-
tons on your own messages responds to the Windows language. Note that the only way to discover the
Windows language is with a Windows API call.

Some things in Office 2007 are 100% (U.S.) English and don’t respond to any changes in Windows lan-
guage, regional settings, or Office UI language:

❑ The text resulting from the explicit conversion of Boolean values to strings — that is, all of
Str(True), CStr(True), and Format(True) result in “True”. Hence, the only way to convert
a Boolean variable to the same string that Excel displays for it is to enter it into a cell and then
read the cell’s .FormulaLocal property.

❑ The text of Boolean strings recognized by CBool.

561

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 561

Identifying the Office UI Language Settings
The first step in creating a multilingual application is to identify the user’s settings. You can identify
the language chosen in Windows Regional Settings by using Application.International
(xlCountrySetting), which returns a number that corresponds approximately to the country codes
used by the telephone system (1 is the USA, 44 is the UK, 47 is Norway, and so forth).

You can also use Application.International(xlCountryCode) to retrieve the user interface lan-
guage using the same numbering system. This method has worked well in previous versions of Excel,
where there were only 30 or so languages from which to choose your copy of Office.

Beginning with Office 2000, things have changed a little. By moving all the language configuration into
separate language packs, Microsoft can support many more languages with relative ease. If you use the
Object Browser to look at the msoLanguageID constants defined in the Office object library, you’ll see
that there are more than 180 languages and dialects listed.

You can use the following code to find out the exact Office UI language, and then decide whether you
can display your application in that language or a similar language, or revert to a default language (as
shown in the following section):

lLanguageID = Application.LanguageSettings.LanguageID(msoLanguageIDUI)

Creating a Multilingual Application
When developing a multilingual application, you have to balance a number of factors, including:

❑ The time and cost spent developing, translating, and testing the translated application

❑ The increased sales from having a translated version

❑ Improved ease of use, and hence reduced support costs

❑ The requirement for multilingual support

❑ Should you create language-specific versions, or use add-on language packs?

You also have to decide how much of the application to translate, and which languages to support:

❑ Translate nothing

❑ Translate only the packaging and promotional documentation

❑ Enable the code to work in a multilingual environment (month names and so on)

❑ Translate the user interface (menus, dialogs, screens, and messages)

❑ Translate the help files, examples, and tutorials

❑ Customize the application for each location (for example, to use local data feeds)

❑ Support left-to-right languages only

❑ Support right-to-left languages (and hence redesign your UserForms)

❑ Support Double-Byte-Character-Set languages (for example, Japanese)

562

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 562

The decision of how far to go will depend to a large extent on your users, your budget, and the availabil-
ity of translators.

A Suggested Approach
It is doubtful that creating a single Excel application to support all 180-plus Office languages will make
economic sense, but the time spent making your application support a few of the more common lan-
guages will often be a wise investment. This will, of course, depend on your users, and whether support
for a new language is preferable to new features.

The approach that I take is to write the application to support multiple languages, and to provide users
with the ability to switch between the installed languages or conform to their choice of Office UI
Language. I develop the application in English, and then have it translated into one or two other lan-
guages depending on my target users. I will only translate it into other languages if there is sufficient
demand.

How to Store String Resources
When creating multilingual applications, you cannot hard code any text strings that will be displayed to
the user; you must look them up in a string resource. The easiest form of string resource is a simple work-
sheet table. Give all your text items a unique identifier and store them in a worksheet, one row per iden-
tifier and one column for each supported language. You can then look up the ID and return the string in
the appropriate language using a simple VLOOKUP function.

You will need to do the same for all your menu items, worksheet contents, and UserForm controls. The
following code is a simple example, which assumes you have a worksheet called shLanguage that con-
tains a lookup table that has been given a name of rgTranslation. It also assumes you have a public
variable to identify which column to read the text from. The variable typically would be set in an
Options type screen.

Note that the code shown here is not particularly fast and is shown as an example. A faster (and more
complex) routine would read the entire column of IDs and selected language texts into two static VBA
arrays, then work from those, only reading in a new array when the language selection was changed:

Public iLanguageCol As Integer

Sub Test()
iLanguageCol = 2
MsgBox GetText(1001)

End Sub

‘ lTextID – The string ID to look up
Function GetText(lTextID As Long) As String

Dim vaTest As Variant
Static rgLangTable As Range

‘Set an object to point to the string resource table (once)
If rgLangTable Is Nothing Then

Set rgLangTable = ThisWorkbook.Worksheets(“shLanguage”) _
.Range(“rgTranslation”)

563

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 563

End If

‘If the language choice is not set, assume the first language in our table
If iLanguageCol < 2 Then iLanguageCol = 2

‘Try to locate and read off the required text
vaTest = Application.VLookup(lTextID, rgLangTable, iLanguageCol)

‘If we got some text, return it
If Not IsError(vaTest) Then GetText = vaTest

End Function

Many of your messages will be constructed at run time. For example, you may have code to check that a
number is within certain boundaries:

If iValue <= iMin Or iValue >= iMax Then
MsgBox “The number must be greater than “ & CStr(iMin) & _

“ and less than “ & CStr(iMax) & “.”
End If

This would mean that you have to store two text strings with different IDs in your resource sheet, which
is both inefficient and much harder to translate. In the example given, you probably would not have a
separate translation string for the full stop. Hence, the maximum value would always come at the end of
the sentence, which may not be appropriate for many languages. A better approach is to store the com-
bined string with placeholders for the two numbers, and substitute the numbers at run time (using the
custom ReplaceHolders function, shown at the end of the chapter):

If iValue < iMin Or iValue > iMax Then
MsgBox ReplaceHolders(_

“The number must be greater than %0 and less than %1.”, _
CStr(iMin), CStr(iMax))

End If

The translator (who may not understand your program) can construct a correct sentence, inserting the
values at the appropriate points.

Working in a Multilingual Environment
These sections provide some tips on how to work in a multilingual environment.

Allow Extra Space
In general, most other languages use longer words than the English equivalents. When designing your
UserForms and worksheets, you must allow extra room for the non-English text to fit in the controls and
cells. A good rule of thumb is to make your controls 1.5 times the width of the English text.

Using Excel’s Objects
The names that Excel gives to its objects when they are created often depend on the user’s choice of
Office UI Language. For example, when creating a blank workbook using Workbooks.Add, it will not
always be called BookN, and the first worksheet in it will not always be called Sheet1. With the German
UI, for example, they are called MappeN and Tabelle1, respectively. Instead of referring to these objects

564

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 564

by name, you should create an object reference as they are created, then use that object elsewhere in
your code:

Dim Wkb As Workbook, Wks As Worksheet

Set Wbk = Workbooks.Add
Set Wks = Wkb.Worksheets(1)

Using SendKeys
In the best of cases, the use of SendKeys should be avoided if at all possible. It is most often used to send
key combinations to Excel to activate a menu item or navigate a dialog box. It works by matching the
menu item or dialog control accelerator keys, in the same way that you can use Alt+key combinations to
navigate Excel using the keyboard. When used in a non-English version of Excel, it is highly unlikely
that the key combinations in the SendKeys string will match up with the menus and dialogs, having
potentially disastrous results.

Using RibbonX
Chapter 14 explained how you can customize the Ribbon by storing a RibbonX XML stream in your
workbooks. You have the choice of either specifying the control captions directly in the XML (using the
label attribute) or using a getLabel or similar callback to specify them at run time. In a multilingual
environment, you have to use the callbacks for all captions, ToolTips, and so forth, so you can provide
the appropriate string for the chosen language.

The Rules for Developing a Multilingual Application
❑ Decide early in the analysis phase the level of multilingual support that you are going to pro-

vide, then stick to it.

❑ Do not include any text strings within your code. Always look them up in a table.

❑ Never construct sentences by concatenating separate text strings, because the foreign language
version is unlikely to use the same word order. Instead, use placeholders in your text and
replace the placeholder at run time.

❑ When constructing UserForms, always make the controls bigger than you need for the English
text; most other languages use longer words.

❑ Do not try to guess the name that Excel gives to objects that you create in code. For example,
when creating a new workbook, the first sheet will not always be “Sheet1”.

❑ Do not use SendKeys.

Some Helpful Functions
In addition to some of the custom functions already presented, such as IsDateUS, here are some more
functions that are very useful when creating multinational applications. Note that the code has been
written to be compatible with all versions of Excel, from 5.0 to 2007, and hence avoids the use of newer
VBA constructs (such as giving optional parameters specific data types).

565

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 565

The bWinToNum Function
This function checks if a string contains a number formatted according to the Windows Regional
Settings and converts it to a Double. The function returns True or False to indicate the success of the
validation, and optionally displays an error message to the user. It is best used as a wrapper function
when validating numbers entered by a user, as shown in the “Interacting with Users” section.

Note that if the user has used Excel’s International Options to override the WRS decimal and thousands
separators, the OverrideToWRS function must be used to ensure you send a WRS-formatted string to
this function:

Function bWinToNum(ByVal sWinString As String, _
ByRef dResult As Double, _
Optional bShowMsg) As Boolean

Dim dFrac As Double

‘ Take a copy of the string to play with
sWinString = Trim(sWinString)
dFrac = 1

If IsMissing(bShowMsg) Then bShowMsg = True
If sWinString = “-” Then sWinString = “0”
If sWinString = “” Then sWinString = “0”

‘ Check for percentage, strip it out and remember to divide by 100
If InStr(1, sWinString, “%”) > 0 Then

dFrac = dFrac / 100
sWinString = Application.Substitute(sWinString, “%”, “”)

End If
‘ Are we left with a number string in windows format?
If IsNumeric(sWinString) Then

‘ If so, convert it to a number and return success
dResult = CDbl(sWinString) * dFrac
bWinToNum = True

Else
‘ If not, display a message, return zero and failure
If bShowMsg Then MsgBox “This entry was not recognized as a number,” _

& Chr(10) & “according to your Windows Regional Settings.”, vbOKOnly
dResult = 0
bWinToNum = False

End If

End Function

sWinString is the string to be converted, and dResult is the converted number, set to 0 if the number
is not valid or empty. bShowMsg is optional and should be set to True (or missing) to show an error mes-
sage, or False to suppress the error message.

The bWinToDate Function
This provides the same functionality as bWinToNum, but for dates instead of numbers:

566

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 566

Function bWinToDate(ByVal sWinString As String, _
ByRef dResult As Double, _
Optional bShowMsg) As Boolean

If IsMissing(bShowMsg) Then bShowMsg = True

If sWinString = “” Then
‘ An empty string gives a valid date of zero
dResult = 0
bWinToDate = True

ElseIf IsDate(sWinString) Then
‘ We got a proper date, so convert it to a Double
‘ (i.e. the internal date number)
dResult = CDbl(CDate(sWinString))
bWinToDate = True

Else
‘ If not, display a message, return zero and failure
If bShowMsg Then MsgBox “This entry was not recognized as a date,” & _

Chr(10) & “according to your Windows Regional Settings.”, vbOKOnly
dResult = 0
bWinToDate = False

End If

End Function

sWinString is the string to be converted. dResult is the converted number, set to 0 if the number is not
valid, or empty. bShowMsg is optional and should be set to True (or missing) to show an error message,
or False to suppress the error message.

The sFormatDate Function
This function formats a date according to the Windows Regional Settings, using a four-digit year, and
optionally including a time string in the result:

Function sFormatDate(dDate As Date, Optional bTimeReq) As String

Dim sDate As String

‘Default bTimeReq to False if not supplied
If IsMissing(bTimeReq) Then bTimeReq = False

Select Case Application.International(xlDateOrder)
Case 0 ‘month-day-year

sDate = Format$(dDate, “mm/dd/yyyy”)
Case 1 ‘day-month-year

sDate = Format$(dDate, “dd/mm/yyyy”)
Case 2 ‘year-month-day

sDate = Format$(dDate, “yyyy/mm/dd”)

567

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 567

End Select

If bTimeReq Then sDate = sDate & “ “ & Format$(dDate, “hh:mm:ss”)

sFormatDate = sDate

End Function

dDate is the Excel date number, and bTimeReq is an optional argument that should be set to True to
include the time string in the result.

The ReplaceHolders Function
This function replaces the placeholders in a string with values provided to it:

Function ReplaceHolders(ByVal sString As String, ParamArray avReplace()) As String

Dim i As Integer

‘Work backwards, so we don’t replace %10 with our %1 text
For i = UBound(avReplace) To LBound(avReplace) Step -1

sString = Application.Substitute(sString, “%” & i, _
avReplace(i - LBound(avReplace)))

Next

ReplaceHolders = sString

End Function

sString is the text to replace the placeholders in, and avReplace is a list of items to replace the
placeholders.

Summary
It is possible to create an Excel application that will work on every installation of Excel in the world and
support all 180-plus Office languages, but it is unlikely to be economically viable.

If you have a limited set of users and you are able to dictate their language and Windows Regional
Settings, you can create your application without worrying about international issues. Even if this is the
case, you should get into the habit of creating locale-independent code. The requirement for locale-inde-
pendence should be included in your analysis, design, and coding standards. It is much, much easier
and cheaper to write locale-independent code at the onset than to rework an existing application.

At a minimum, your application should work regardless of the users’ choice of Windows Regional
Settings or Windows or Office UI Language, or whether they have set non-standard thousands and deci-
mal separators using Office Menu ➪ Excel Options ➪ Advanced. You should be able to achieve this by
following the rules listed in this chapter.

568

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 568

The following Excel features don’t play by the rules and have to be treated very carefully:

❑ OpenText

❑ SaveAs to a text file

❑ ShowDataForm

❑ Pasting text from other applications

❑ The .Formula property in all its guises

❑ <range>.Value

❑ <range>.FormulaArray

❑ <range>.AutoFilter

❑ <range>.AdvancedFilter

❑ The =TEXT() worksheet function

❑ Application.Evaluate

❑ Application.ConvertFormula

❑ Application.ExecuteExcel4Macro

❑ Web Queries

You may have to avoid some features in Excel completely:

❑ SendKeys

❑ Using True and False in imported text files

569

Chapter 25: International Issues

28_046432 ch25.qxp 2/16/07 10:04 PM Page 569

28_046432 ch25.qxp 2/16/07 10:04 PM Page 570

Programming the VBE
Up until now, the book has focused on writing VBA procedures to automate Excel. While writing
the code, you have been working in the Visual Basic Editor (VBE), otherwise known as the Visual
Basic Integrated Design Environment (VBIDE).

An object library is provided with Office 2007 that is shown as Microsoft Visual Basic for Applications
Extensibility 5.3 in the VBE’s Tools ➪ References list. The objects in this library and their methods,
properties, and events enable you to:

❑ Programmatically create, delete, and modify the code, UserForms, and references in your
own and other workbooks

❑ Program the VBE itself to create useful Add-ins to assist you in your development efforts
and automate many of your development tasks

The only responsible way to start this chapter is with a warning. Macro viruses work by using the
methods shown in this chapter to modify the target file’s code, thus infecting it. To prevent this,
Microsoft has made it possible to disable access to all workbooks’ VBProjects. By default the access
is disabled, so none of the code in this chapter will work. To enable access to the VBProjects, place a
check mark next to the Trust Access to the VBA Project Object Model checkbox in Excel 2007’s Office
Menu ➪ Excel Options ➪ Trust Center ➪ Trust Center Settings ➪ Macro Settings dialog.

This chapter explains how to write code to automate the VBE by walking you through the devel-
opment of an Excel-related VBE Toolkit to speed up your application development. You will then
add a few utilities to the toolkit that demonstrate how to programmatically manipulate code,
UserForms, and references. For simplicity, most of the code examples in this chapter have not been
provided with error handling. You can find the completed toolkit Add-in at www.wrox.com.

There have been no significant changes to the Visual Basic for Applications
Extensibility library between Office 2000 and Office 2007, so all the examples in
this chapter apply equally to all versions.

29_046432 ch26.qxp 2/16/07 10:05 PM Page 571

Identifying VBE Objects in Code
All the objects that form the VBE, and their properties and methods, are contained in their own object
library. You need to create a reference to this library before you can use the objects; do this by switching to
the VBE, selecting the menu item Tools ➪ References, checking the Microsoft Visual Basic for Applications
Extensibility 5.3 library, and clicking OK (see Figure 26-1).

Figure 26-1

In code, this library is referred to as the VBIDE object library.

The full VBIDE object model is documented in Appendix B. The more important objects are summarized
in the next sections.

The VBE Object
The top-level object of the Visual Basic Editor is known as the VBE object and is itself a property of the
Excel Application object. Hence, to create an object variable to refer to the VBE, you need code similar
to this:

Dim oVBE As VBIDE.VBE
Set oVBE = Application.VBE

The VBProject Object
This object is the container for all the programming aspects of a workbook, including UserForms, stan-
dard modules, class modules, and the code behind each worksheet and the workbook itself. Each
VBProject corresponds to one of the top-level items in the Project Explorer. A specific VBProject object
can be located either by iterating through the VBE’s VBProjects collection or through the VBProject
property of a workbook.

572

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 572

To find the VBProject that corresponds to the workbook Book1.xlsm, the following code can be used:

Dim oVBP As VBIDE.VBProject
Set oVBP = Workbooks(“Book1.xlsm”).VBProject

When creating Add-ins for the VBIDE itself, you often need to know which project is currently high-
lighted in the Project Explorer. This is given by the ActiveVBProject property of the VBE:

Dim obVBP As VBIDE.VBProject
Set obVBP = Application.VBE.ActiveVBProject

Note that the ActiveVBProject is the project that the user is editing within the VBE. It is not related in
any way to the ActiveWorkbook given by Excel. In fact, with the Developer Editions of Office 2000 and
Office XP, it was possible to create self-contained VB Projects that are not part of an Excel workbook.
That capability should still be available if you upgraded from one of those versions.

The VBComponent Object
The UserForms, standard modules, class modules, and code modules behind the worksheets and work-
book are all VBComponent objects. Each VBComponent object corresponds to one of the lower-level items
in the Project Explorer tree. A specific VBComponent can be located through the VBComponents collection
of a VBProject. Hence, to find the VBComponent that represents the UserForm1 form in Book1.xls,
code like this can be used:

Dim oVBC As VBIDE.VBComponent
Set oVBC = Workbooks(“Book1.xlsm”).VBProject.VBComponents(“UserForm1”)

The name of the VBComponent that contains the code behind the workbook, worksheets, and charts is
given by the CodeName property of the related Excel object (the workbook, worksheet, or chart object).
Hence, to find the VBComponent for the code behind the workbook (where code can be written to hook
into workbook events), this code can be used:

Dim oVBC As VBIDE.VBComponent

With Workbooks(“Book1.xlsm”)
Set oVBC = .VBProject.VBComponents(.CodeName)

End With

And for a specific worksheet:

Dim oVBC As VBIDE.VBComponent

With Workbooks(“Book1.xlsm”)
Set oVBC = .VBProject.VBComponents(.Worksheets(“Sheet1”).CodeName)

End With

Note that the name of the workbook’s VBComponent is usually ThisWorkbook in the Project Explorer.
Do not be tempted to rely on this name. If your user has chosen a different language for the Office User
Interface, it will be different. The name can also be easily changed by the user in the VBE. For this reason,
do not use code like this:

573

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 573

Dim oVBC As VBIDE.VBComponent

With Workbooks(“Book1.xlsm”)
Set oVBC = .VBProject.VBComponents(“ThisWorkbook”)

End With

When developing Add-ins for the VBE, you often need to know the VBComponent that the user is edit-
ing (the one highlighted in the Project Explorer). This is given by the SelectedVBComponent property
of the VBE:

Dim oVBC As VBIDE.VBComponent
Set oVBC = Application.VBE.SelectedVBComponent

Each VBComponent has a Properties collection, corresponding approximately to the list shown in the
Properties window of the VBE when a VBComponent is selected in the Project Explorer. One of these is
the Name property, shown in the following test routine:

Sub ShowNames()
With Application.VBE.SelectedVBComponent

Debug.Print .Name & “: “ & .Properties(“Name”)
End With

End Sub

For most VBComponent objects, the text returned by .Name and .Properties(“Name”) is the same.
However, for the VBComponent objects that contain the code behind workbooks, worksheets, and charts, the
.Properties collection includes all the properties of the native Excel object, so .Properties(“Name”)
gives the name of the workbook, worksheet, or chart. You can use this to find the Excel object that corre-
sponds to the item that the user is working on in the VBE, or the Excel workbook that corresponds to the
ActiveVBProject. The code for doing this is shown later in this chapter.

The CodeModule Object
All of the VBA code for a VBComponent is contained within its CodeModule object. Through this object,
you can programmatically read, add, change, and delete lines of code. There is only one CodeModule for
each VBComponent. In the Office VBE, every type of VBComponent has a CodeModule.

The CodePane Object
This object provides access to the user’s view of a CodeModule. Through this object, you can identify
such items as the section of a CodeModule that is visible on the screen and the text that the user has
selected. You can identify which CodePane is currently being edited by using the VBE’s
ActiveCodePane property:

Dim oCP As VBIDE.CodePane
Set oCP = Application.VBE.ActiveCodePane

The Designer Object
Some VBComponents (such as UserForms) present both code and a graphical interface to the developer.
Whereas the code is accessed through the CodeModule and CodePane objects, the Designer object gives

574

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 574

you access to the graphical part. In the standard versions of Office, UserForms are the only components
with a graphical interface for you to control. However, the Developer Editions included in Office 2000
and XP included a number of other items (such as the Data Connection Designer) that have graphical
interfaces; these too are exposed to us through the Designer object and may be available in Office 2007
if you upgraded from one of those earlier versions.

These are the main objects that you’ll be using throughout the rest of this chapter, as you create the VBE
Toolkit Add-in.

Star ting Up
There is very little difference in Excel 2007 between a normal workbook and an Add-in. The code and
UserForms can be modified in the same manner, and they both offer the same level of protection (locking
the Project from view). The two advantages of using an Add-in to hold your tools are that it is invisible
within the Excel User Interface, and that it can be loaded using Excel’s Add-ins dialog (Office Menu ➪

Excel Options ➪ Add-Ins ➪ Manage: Excel Add-Ins ➪ Go). This chapter uses the term Add-in to mean a
container for tools that you’re adding to Excel or the VBE. In fact, during the development of the Add-in,
you will actually keep the file as a standard workbook, only converting it to an Add-in at the end.

Most Add-ins have a common structure, and the one you develop in this chapter will be no exception:

❑ A startup module to trap the opening and closing of the Add-in

❑ Some code to add the custom menu items to the command bars on opening and remove them
on closing

❑ For the VBE, a class module to handle the menu items’ Click events

❑ Some code to perform the menus’ actions

Start with a new workbook and delete all of the worksheets, apart from the first. Press Alt+F11 to switch
to the VBE, and find your workbook in the Project Explorer. Select the VBProject entry for it. In the
Properties window, change the project’s name to aaVBETools2007. The name starts with the prefix aa,
so it always appears at the top of the Project Explorer, nicely out of the way of any other projects you
may be developing.

Double-click the ThisWorkbook VBComponent to bring up its code pane and type in the following code:

Option Explicit

Dim moMenuHandler As CMenuHandler

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: Workbook_Open
‘
‘ Purpose: Create a new instance of the menu-handling class.
‘ The class’s Initialize event sets up the menus.
‘
Private Sub Workbook_Open()

Set moMenuHandler = Nothing
Set moMenuHandler = New CMenuHandler

End Sub

575

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 575

This code is run when the workbook is opened, and it just creates a new instance of a class module
(which you’ll create next) and stores a reference to it in a module-level variable. Using this technique,
the Class_Initialize event is run when the workbook is opened. The class is kept alive while the
workbook is open and is only destroyed (with Class_Terminate called) when the workbook is
actually closed — crucially, after the user has been given the opportunity to cancel the close (whereas
the Workbook_BeforeClose event is called before the user’s opportunity to cancel the close).

Adding Menu Items to the VBE
The VBE uses the CommandBar object model rather than the Ribbon, so the procedure for adding menus
to the VBE is almost the same as that documented in Chapter 15 for creating popup toolbars. There is
one major difference, which is how to run your routine when the menu item is clicked. When adding
menu items to Excel’s popup toolbars, you set the OnAction property of the CommandBarButton to the
name of the procedure to run. In the VBE, the CommandBarButton still has an OnAction property, but it
is ignored.

Instead, Microsoft added the Click event to the CommandBarButton (and the Change event to the
CommandBarComboBox). To use these events, you have to use a class module containing a variable of the cor-
rect type declared WithEvents. So add a class module to the project, give it the name of CMenuHandler,
and type in the following code:

Option Explicit

‘A variable to hook the click event for all our menus.
Private WithEvents mbtnEvents As Office.CommandBarButton

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: mbtnEvents_Click
‘
‘ Purpose: Handle the click event of all our menus, by running the procedure
‘ stored in the button’s OnAction property
‘
Private Sub mbtnEvents_Click(ByVal Ctrl As Office.CommandBarButton, _

CancelDefault As Boolean)

On Error Resume Next ‘In case the routine is wrong/doesn’t exist

‘Run the routine given by the commandbar control’s OnAction property
Application.Run Ctrl.OnAction

‘We handled it OK
CancelDefault = True

End Sub

The key things to note here are:

❑ A variable, mBtnEvents, is declared to receive the Click event for the menu items.

❑ The Click event is raised by the object referred to by the mBtnEvents variable (the only one
exposed by it).

576

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 576

❑ The Click event passes the Ctrl object (the menu item or toolbar button) that was clicked.

❑ The code runs the routine specified in the control’s OnAction property. The code is simulating
the behavior that occurs when adding menu items to Excel’s popup toolbars.

To use this procedure, set the mbtnEvents variable to refer to one of your custom menu items. The
CommandBars event model is designed in such a way that when setting the reference, you’re also creat-
ing an association between the mbtnEvents variable and the menu’s Tag property. This means that all
menu items that share the same Tag property will also raise Click events against that variable. You can
now add as many menus as you like, and all their Click events will be handled by that one procedure
(as long as you give them all the same Tag property).

Now that you can respond to menus being clicked, all you need to do to build the Add-in is add some
custom menus and the procedures to be called from the Click event. The easiest place to create your
menus is from within the Class_Initialize event of the CMenuHandler class, which is called when
the class is created in the Workbook_Open procedure. You can also include code to tidy up after yourself,
by removing the custom menus in the Class_Terminate event. Because you’ll be adding lots of menus
in this chapter, it makes sense to factor out the menu-creation code into a separate procedure. The entire
CMenuHandler class is shown here:

Option Explicit

‘A variable to hook the click event for all our menus.
Private WithEvents mbtnEvents As Office.CommandBarButton

‘A unique tag to identify our menus
Private Const msTAG As String = “Excel2007VBEWorkbookTools”

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: Class_Initialize
‘
‘ Purpose: Called when the class is created in the Workbook_Open event,
‘ this procedure creates the menus for the Add-In
‘
Private Sub Class_Initialize()

‘Just in case some of our menus got left behind, remove any previous remnants
DeleteMenus

‘We’ll add our menus here, later in the chapter

‘Associate our event-hook variable with any one of our menus.
On Error Resume Next ‘In case we don’t find any
Set mbtnEvents = Application.VBE.CommandBars.FindControl(_

Type:=msoControlButton, Tag:=msTAG)

End Sub

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: DeleteMenus
‘
‘ Purpose: Find all the menus with our unique Tag and delete them

577

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 577

‘
Private Sub DeleteMenus()

Dim oCtl As CommandBarControl
On Error Resume Next
For Each oCtl In Application.VBE.CommandBars.FindControls(Tag:=msTAG)

oCtl.Delete
Next

End Sub

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: AddMenu
‘
‘ Purpose: Add a menu to a menu bar, storing the procedure to run
‘ in the control’s OnAction
‘
Private Sub AddMenu(ByRef oBar As CommandBar, ByVal sCaption As String, _

ByVal sProcedure As String, _
Optional ByVal lPosition As Long, _
Optional ByVal lFaceID As Long, _
Optional ByVal lStyle As MsoButtonStyle = msoButtonCaption, _
Optional ByVal sTooltip As String)

Dim oBtn As CommandBarButton

‘If we were given a position, add it there. If not, add it at the end
If lPosition > 0 Then

Set oBtn = oBar.Controls.Add(msoControlButton, , , lPosition, True)
Else

Set oBtn = oBar.Controls.Add(msoControlButton, , , , True)
End If

With oBtn
.Tag = msTAG
.Caption = sCaption
.FaceId = lFaceID
.Style = lStyle
.TooltipText = sTooltip
.OnAction = “‘“ & ThisWorkbook.Name & “‘!” & sProcedure

End With

End Sub

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: mbtnEvents_Click
‘
‘ Purpose: Handle the click event of all our menus, by running the procedure
‘ stored in the button’s OnAction property
‘
Private Sub mbtnEvents_Click(ByVal Ctrl As Office.CommandBarButton, _

CancelDefault As Boolean)

On Error Resume Next ‘In case the routine is wrong/doesn’t exist

578

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 578

‘Run the routine given by the commandbar control’s OnAction property
Application.Run Ctrl.OnAction

‘We handled it OK
CancelDefault = True

End Sub

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: Class_Terminate
‘
‘ Purpose: Remove our menus when the class is destroyed,
‘ i.e. as the workbook is unloaded
‘
Private Sub Class_Terminate()

DeleteMenus
End Sub

Throughout the rest of this chapter, you’ll be creating menus by adding code in Class_Initialize to
call the AddMenu procedure, passing in the command bar for the menu to be added to and the properties
for the menu.

The names for each of the top-level CommandBars in the VBE are shown in the following table. Note that
Excel should always recognize these names, regardless of the user’s choice of language for the Office User
Interface (apart from a few rare exceptions, such as the Dutch menus, in which case you’ll get a run-time
error). The same is not true for the menu items placed on these toolbars. The only language-independent
way to locate specific built-in menu items is to use their ID numbers. A routine to list the ID numbers of
built-in menu items is provided in Chapter 15.

Name Description

Menu Bar The normal VBE menu bar

Standard The normal VBE toolbar

Edit The VBE edit toolbar, containing useful code-editing tools

Debug The VBE debug toolbar, containing typical debugging tools

UserForm The VBE UserForm toolbar, containing useful form-editing tools

MSForms The popup menu for a UserForm (shown when you right-click the
UserForm background)

MSForms Control The popup menu for a normal control on a UserForm

MSForms Control The popup menu that appears when you right-click a group of
Group controls on a UserForm

MSForms MPC The popup menu for the Multi-Page control

MSForms Palette The popup menu that appears when you right-click a tool in the
Control Toolbox

Table continued on following page

579

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 579

Name Description

MSForms Toolbox The popup menu that appears when you right-click one of the tabs at
the top of the Control Toolbox

MSForms DragDrop The popup menu that appears when you use the right mouse button to
drag a control between tabs in the Control Toolbox, or onto a UserForm

Code Window The popup menu for a code window

Code Window (Break) The popup menu for a code window, when in Break (debug) mode

Watch Window The popup menu for the Watch window

Immediate Window The popup menu for the Immediate window

Locals Window The popup menu for the Locals window

Project Window The popup menu for the Project Explorer

Project Window (Break) The popup menu for the Project Explorer, when in Break mode

Object Browser The popup menu for the Object Browser

Property Browser The popup menu for the Properties window

Docked Window The popup menu that appears when you right-click the title bar of a
docked window

Working with Workbooks
The ability to save a workbook from the VBE is built into Office 2007, but for a full complement of file oper-
ations, you need to add routines to create, open, and close workbooks and display the standard workbook
properties form. Adding a Most Recently Used list to the VBE is left as an exercise for the reader.

Start with the simple code to create a new workbook, and then test the Add-in to prove that all the setup
you’ve done so far works as expected. Then add code to the CMenuHandler Class_Initialize proce-
dure to create the menus. Here you’re adding a menu item to the File menu and a button to the Standard
toolbar:

Private Sub Class_Initialize()

‘Just in case some of our menus got left behind, remove any previous remnants
DeleteMenus

‘Create the menus
AddMenu Application.VBE.CommandBars(“File”), “&New Workbook”, _

“FileNewBook”, 1, 18, msoButtonIconAndCaption, “Create new workbook”

AddMenu Application.VBE.CommandBars(“Standard”), “&New Workbook”, _
“FileNewBook”, 3, 18, msoButtonIcon, “Create new workbook”

580

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 580

‘Associate our event-hook variable with any one of our menus.
On Error Resume Next ‘In case we don’t find any
Set mbtnEvents = Application.VBE.CommandBars.FindControl(_

Type:=msoControlButton, Tag:=msTAG)

End Sub

Add a new module called modMenuFile and copy in the following code. The rest of the file-related rou-
tines will be added to this module later:

Option Explicit

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: FileNewBook
‘
‘ Purpose: Create a new workbook
‘

Sub FileNewBook()
‘Just ignore any errors
On Error Resume Next

‘Create a new workbook
Application.Workbooks.Add

‘Refresh the VBE display
With Application.VBE.MainWindow

.Visible = False

.Visible = True
End With

End Sub

This just adds a new blank workbook and refreshes the VBE display. Note that the VBE Project Explorer
does not always update correctly when workbooks are added and removed through code. The easiest
way to refresh the VBE display is to hide and then reshow the main VBE window.

First, check that the Add-in compiles, using the Debug ➪ Compile menu. If any compile errors are high-
lighted, check your code against the previous three listings. To run the Add-in, place the cursor within
the Workbook_Open procedure and press F5 to run it. If all goes well, a new menu item will be added to
the VBE File menu and a standard New icon will appear on the VBE toolbar, just to the left of the Save
icon, as shown in Figures 26-2 and 26-3.

When you click the button, a new workbook will be created in Excel and you will see its VBProject
added to the Project Explorer. Congratulations, you have programmed the VBE.

581

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 581

Figure 26-2

Figure 26-3

By the end of this chapter, you’ll have functionality within the VBE to:

❑ Create a new workbook

❑ Open an existing workbook

❑ Save a workbook (this is built into the VBE)

❑ Close a workbook

❑ Display a workbook’s Properties dialog

For the Open routine, another menu item will be added to the File menu, and another standard button
will be added to the toolbar. For the Close and Properties routines, an item will once again be added
to the File menu, but it will also be added to the Project Explorer popup menu, allowing you to close a
VBProject by right-clicking it in the Project Explorer. The following additions to the Class_Initialize
procedure will achieve this:

AddMenu Application.VBE.CommandBars(“File”), “&Open Workbook”, _
“FileOpenBook”, 2, 23, msoButtonIconAndCaption, “Open a workbook”

AddMenu Application.VBE.CommandBars(“Standard”), “&Open Workbook”, _
“FileOpenBook”, 4, 23, msoButtonIcon, “Open a workbook”

AddMenu Application.VBE.CommandBars(“File”), “Close &Workbook”, _
“FileCloseBook”, 3, , , _
“Close the workbook containing the active project”

AddMenu Application.VBE.CommandBars(“Project Window”), “Close &Workbook”, _
“FileCloseBook”, , , , _

582

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 582

“Close the workbook containing the active project”

AddMenu Application.VBE.CommandBars(“File”), “Workbook Proper&ties”, _
“FileBookProps”, 4, , , “Workbook Properties”

AddMenu Application.VBE.CommandBars(“Project Window”), “Workbook Proper&ties”, _
“FileBookProps”, , , , “Workbook Properties”

Note that the Close menu does not have a standard image, so the lFaceID parameter has been left out, and
because you haven’t specified a position, it is added to the bottom of the Project Explorer popup menu.

When opening a workbook in Excel, you can hold down the Shift key to prevent any macros from run-
ning. To accurately simulate that functionality, a test should be made to see if the Shift key is held down
when the menu button is clicked, and to turn off any events if this is the case. Unfortunately, if the user
holds down the Shift key when a workbook is opened in the VBE, the routine will stop dead (see Microsoft
KnowledgeBase article Q175223 for the gory details at http://support.microsoft.com/kb/q175223/,
which lists it as a bug in Excel 97, but it’s still there in Excel 2007). Two workarounds are to use the Ctrl
key for the same effect or wait until the Shift key is released before opening the workbook. The problem
with waiting for the Shift key to be released is that the users will usually keep the key pressed until they
see the file opened, so waiting for it to be released will just appear as though Excel has crashed.

You’ll need a module in your Add-in for common utility functions, so add a standard module called
modCommon, with the following code that uses Windows API calls to check the state of the Shift key:

Option Explicit

‘The Add-In title is shown on various message boxes
Public Const psAddinTitle As String = “Excel 2007 VBA Prog Ref VBE Tools”

‘Windows API call to see if the Shift, Ctrl and/or Alt keys are pressed
Private Declare Function GetAsyncKeyState Lib “user32” (_

ByVal vKey As Long) As Integer
‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: fnGetShiftCtrlAlt
‘
‘ Purpose: Uses a Windows API call to detect if the shift, ctrl and/or
‘ alt keys are pressed
‘

Function fnGetShiftCtrlAlt() As Integer
Dim iKeys As Integer

Const VK_SHIFT As Long = &H10
Const VK_CONTROL As Long = &H11
Const VK_ALT As Long = &H12

‘Check to see if the Shift, Ctrl and Alt keys are pressed
If GetAsyncKeyState(VK_SHIFT) <> 0 Then iKeys = iKeys + 1
If GetAsyncKeyState(VK_CONTROL) <> 0 Then iKeys = iKeys + 2
If GetAsyncKeyState(VK_ALT) <> 0 Then iKeys = iKeys + 4

fnGetShiftCtrlAlt = iKeys
End Function

583

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 583

The Public Declare Function line tells VBA about a function that’s available in Windows to return
whether the Shift, Ctrl, or Alt keys are held down — see Chapter 27 for more information about these
types of calls. For the Open routine, Excel’s GetOpenFilename method will be used to retrieve the name
of a file, and then open it. If the user holds down the Ctrl key, the application events will be turned off,
so the user can open the workbook without triggering any other code — within either the workbook
being opened or Excel’s application-level WorkbookOpen event. If the user is not holding down the Ctrl
key, an attempt is made to run any Auto_Open routines in the workbook.

Add the following routine to the modMenuFile module:

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: FileOpenBook
‘
‘ Purpose: Opens an existing workbook
‘

Sub FileOpenBook()
Dim vFile As Variant, bCtrl As Boolean
Dim Wbk As Workbook

‘Use our error handler to display a message if something goes wrong
On Error GoTo ERR_HANDLER

‘Check if the Ctrl key is held down (1=Shift, 2=Ctrl, 4=Alt)
bCtrl = (fnGetShiftCtrlAlt And 2) = 2

‘Hide Excel, so the Open dialog appears in the VBE
Application.Visible = False

‘Get the filename to open (or False if cancelled)
vFile = Application.GetOpenFilename

‘Make Excel visible again
Application.Visible = True

‘If the user didn’t cancel, open the workbook, adding it to Excel’s MRU
If Not (vFile = False) Then
If bCtrl Then
‘If the user held the Ctrl key down, we should disable events and
‘not update links
Application.EnableEvents = False

Set Wbk = Workbooks.Open(Filename:=vFile, updatelinks:=0, AddToMru:=True)

‘Enable events again
Application.EnableEvents = True

Else
‘Shift not held down, so open the book normally and run Auto_Open
Set Wbk = Workbooks.Open(Filename:=vFile, AddToMru:=True)

Wbk.RunAutoMacros xlAutoOpen
End If

End If

584

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 584

‘Refresh the VBE display
With Application.VBE.MainWindow
.Visible = False
.Visible = True

End With

‘No error, so Exit routine
Exit Sub

ERR_HANDLER:

‘Display the error message (in the VBE Window) and end the routine.
Application.Visible = False

MsgBox “An Error has occurred.” & vbCrLf & _
Err.Number & “: “ & Err.Description, vbOKOnly, psAddinTitle

Application.Visible = True
End Sub

Whenever a dialog is used that would normally be shown in the Excel window (including the built-in
dialogs, any UserForms, and even MsgBox and InputBox calls), Excel automatically switches to its own
window to show the dialog. When developing applications for the VBE, however, you really want the
dialog to appear within the VBE window, not Excel’s. The easiest way to achieve this effect is to hide the
Excel window before showing the dialog, and then unhide it afterward.

The Close routine presents a new challenge. You are adding a Close Workbook menu item to the popup
menu for the Project Explorer, and hence you need to determine which VBProject was clicked. The
ActiveVBProject property of the VBE provides this, but a way is needed to get from the VBProject
object to the workbook containing it. The method for doing this was described in the “Identifying VBE
Objects in Code” section at the start of this chapter, and the code is shown in the following listing. Add it
to the modCommon module, because it will be used in most of your functions:

Function fnActiveProjectBook() As Workbook
Dim oVBP As VBIDE.VBProject, oVBC As VBIDE.VBComponent
Dim sName As String

‘Get the VBProject that is active in the VBE
Set oVBP = Application.VBE.ActiveVBProject

On Error Resume Next

‘Try just reading the file name directly from the project
sName = oVBP.Filename

‘If any errors occur (e.g. the project is locked),
‘assume we can’t find the workbook
On Error GoTo ERR_CANT_FIND_WORKBOOK

If sName <> “” Then

‘Strip off the path
If InStrRev(sName, “\”) <> 0 Then

585

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 585

sName = Mid(sName, InStrRev(sName, “\”) + 1)

‘If it’s the name of a workbook, we found it! (it could be the name of a
‘VBE project)
If fnIsWorkbook(sName) Then
Set fnActiveProjectBook = Workbooks(sName)
Exit Function

End If
End If

Else
‘Loop through all the VB Components in the project.
‘The ‘ThisWorbook’ component exposes the name of the workbook, but the
‘component may not be called “ThisWorkbook”!

For Each oVBC In oVBP.VBComponents
‘Only need to check Document types (i.e. Excel objects)
If oVBC.Type = vbext_ct_Document Then

‘Get the underlying name of the component
sName = oVBC.Properties(“Name”)

‘Is it the name of an open workbook
If fnIsWorkbook(sName) Then

‘Yes it is, but is it the correct one?
If Workbooks(sName).VBProject Is oVBP Then

‘We found it!
Set fnActiveProjectBook = Workbooks(sName)
Exit Function

End If
End If

End If
Next

End If

PTR_CANT_FIND:

‘We didn’t find the workbook, so display an error message in the VBE
Application.Visible = False
MsgBox “Unable to identify the workbook for this project.”, vbOKOnly, _

psAddinTitle
Application.Visible = True

Set fnActiveProjectBook = Nothing
Exit Function

ERR_CANT_FIND_WORKBOOK:

‘We had an error, so we can’t find the workbook.
‘Continue with the clean-up code.
Resume PTR_CANT_FIND

End Function

586

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 586

Function fnIsWorkbook(sBook As String) As Boolean

‘Use inline error handling to check for a workbook
On Error Resume Next
fnIsWorkbook = Len(Workbooks(sBook).Name) > 0

End Function

Now that you can identify which workbook corresponds to a VB Project, you can add the procedure to
close a workbook in the modMenuFile module:

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: FileCloseBook
‘
‘ Purpose: Closes the workbook containing the active VB Project
‘
Sub FileCloseBook()
Dim Wbk As Workbook, bCtrl As Boolean

‘Use our error handler to display a message if something goes wrong
On Error GoTo ERR_HANDLER

‘Try to get the workbook containing the active VB Project
Set Wbk = fnActiveProjectBook

‘If we didn’t find it, just quit
If Wbk Is Nothing Then Exit Sub

‘Check if the Ctrl key is held down (1=Shift, 2=Ctrl, 4=Alt)
bCtrl = (fnGetShiftCtrlAlt And 2) = 2

If bCtrl Then
‘Ctrl key is held down, so disable events and don’t run Auto_Close
‘Disable events, so we don’t run anything in the workbook being closed
Application.EnableEvents = False

‘Close the workbook - Excel will ask to save changes etc.
Wbk.Close

‘Enable events again
Application.EnableEvents = True

Else
‘Normal close so run any Auto_Close macros and close the workbook
Wbk.RunAutoMacros xlAutoClose
Wbk.Close

End If

‘Exit procedure, bypass error handling routine
Exit Sub

ERR_HANDLER:

‘Display the error message (in the VBE Window) and end the routine.
Application.Visible = False

587

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 587

MsgBox “An Error has occurred.” & vbCrLf & _
Err.Number & “: “ & Err.Description, vbOKOnly, psAddinTitle

Application.Visible = True
End Sub

The last workbook-related tool to be defined displays the File Properties dialog for the active VB
Project’s workbook. One of the main uses for the workbook properties is to provide the information
shown in the Add-Ins dialog. The list box shows the Add-in’s title from its Properties dialog, and the
description shown when an Add-in is selected is obtained from its Comments box.

Excel’s built-in Properties dialog can be used for this, but you cannot tell it which workbook to show the
properties for — the active workbook is used. Therefore, any Add-ins need to be temporarily converted
to normal workbooks and “unhidden” if they are hidden. After showing the Properties dialog, the work-
books must be converted back to Add-ins. The following code does that, and should also be put in the
modMenuFile module:

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: FileBookProps
‘
‘ Purpose: Displays the workbook properties dialog for the active VB Project
‘
Sub FileBookProps()
Dim Wbk As Workbook, bAddin As Boolean, bVis As Boolean

‘Just ignore any errors
On Error Resume Next

‘Try to get the workbook containing the active VB Project
Set Wbk = fnActiveProjectBook

‘If we didn’t find it, just quit
If Wbk Is Nothing Then Exit Sub

‘Hide the Excel window, so the dialog seems to appear within the VBE environment
Application.Visible = False

‘Using the workbook...
With Wbk
‘If it is an addin, convert it to a normal workbook temporarily
bAddin = .IsAddin
.IsAddin = False

‘Make sure its window is visible
bVis = .Windows(1).Visible
.Windows(1).Visible = True

‘Display the Workbook Properties dialog
Application.Dialogs(xlDialogProperties).Show

‘Restore the workbook’s visibility and addin Status
.Windows(1).Visible = bVis
.IsAddin = bAddin

588

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 588

End With

‘Make Excel visible again
Application.Visible = True

End Sub

To test the Add-in so far, just rerun the Workbook_Open routine to re-create the menu items, and then
check that each item works as intended.

Working with Code
So far in this chapter, you have been working at a fairly high level in the VBIDE and Excel object models
(limiting yourself to the VBProject and Workbook objects) to add typical file operations to the Visual
Basic environment. You now have the ability to create new workbooks (and hence their VB Projects),
open existing workbooks, change a workbook’s properties, and save and close workbooks from within
the VBE.

This section plunges to the lowest level of the VBE object model and explains how to work with the
user’s code. It shows how to detect the line of code the user is editing (and even identify the selected
characters within that line), and get information about the procedure, module, and project containing
that line of code. Adding and changing code is left until the next section, where you’ll be creating a
UserForm, adding some buttons to it, and adding code to handle the buttons’ events.

To demonstrate how to identify the code that the user is working on, right-click access will be added to
provide a print routine, with individual buttons to print the current selection, current procedure, mod-
ule, or project. First add some code in CMenuHandler Class_Initialize to create a cascading menu to
the Code Window popup menu, and then add four menu items to the cascading menu, each of which
has its own face ID:

With Application.VBE.CommandBars(“Code Window”).Controls.Add(msoControlPopup, _
before:=4, temporary:=True)

.Caption = “P&rint”

.Tag = msTAG

AddMenu .CommandBar, “&Selected Text”, “CodePrintSel”, , 3518, _
msoButtonIconAndCaption, “Print selected text”

AddMenu .CommandBar, “&Procedure”, “CodePrintProc”, , 2564, _
msoButtonIconAndCaption, “Print current procedure”

AddMenu .CommandBar, “&Module”, “CodePrintMod”, , 472, _
msoButtonIconAndCaption, “Print current module”

AddMenu .CommandBar, “Pro&ject”, “CodePrintProj”, , 2557, _
msoButtonIconAndCaption, “Print all modules in the project”

End With

Attempting to close the Add-in itself using the menu might cause the computer to
lock up.

589

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 589

The result is shown in Figure 26-4.

Figure 26-4

The code for the four printing routines will be placed into their own module, so add a new module to
the project called modMenuCode.

Unfortunately, the VBIDE object model does not include a Print method for any of its objects. To provide
right-click printing, there are three options:

❑ Show the VBE’s Print dialog and operate it using SendKeys.

❑ Copy the code to a worksheet range and print it from there.

❑ Copy the code to a private instance of Word, reformat to show the Excel reserved words and so
on in their correct colors, and then print it from Word.

For the sake of simplicity, the first option will be implemented. The main problem that this presents is
how to select the Selected Text, Module, or Project option buttons on the Print dialog, using SendKeys,
especially as the Selected Text option is only enabled when some text is actually selected.

The answer is to identify if any text is selected, then send the appropriate number of down arrow keys
to the dialog to select either the Module or Project options. If you could rely on your users only ever
having an English user interface language, you could send Alt+M or Alt+J keystrokes — sending down
arrows works with any choice of user interface language.

The code for the Selected Text menu item is the simplest and is presented in the following listing. All
that is required is to identify if the user has actually selected anything and, if so, to send some keystrokes
to the Print dialog to print it:

590

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 590

Option Explicit

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: CodePrintSel
‘
‘ Purpose: Print the current selection
‘
Sub CodePrintSel()
Dim lStartLine As Long, lStartCol As Long, lEndLine As Long, lEndCol As Long

‘Get the current selected text
Application.VBE.ActiveCodePane.GetSelection lStartLine, lStartCol, _

lEndLine, lEndCol

‘If there’s something selected, print it
If lStartLine <> lEndLine Or lStartCol <> lEndCol Then
Application.SendKeys “{ENTER}”
Application.VBE.CommandBars.FindControl(ID:=4).Execute

End If
End Sub

The main items to note are:

❑ The ActiveCodePane property of the VBE is being used to identify which module the user is
editing.

❑ The variables sent to the GetSelection method are sent ByRef and actually get filled by the
method. After the call to GetSelection, they contain the start and ending line numbers and
start and ending columns of the currently selected text.

❑ A simple Enter keystroke is sent to the keyboard buffer, then the VBE Print dialog is immedi-
ately shown by running the File ➪ Print menu item (ID = 4) directly. By default (if some text is
selected), when the VBE Print dialog is shown the Selected Text option is selected, so this does
not need to be changed.

To print the current module and project, very similar code can be used. The only difference is that it
checks whether any text is selected (that is, if the Selected Text option in the Print dialog is enabled) and
then sends a number of down keystrokes to the dialog to select the correct option. Both of these routines
can be added to the modMenuCode module:

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: CodePrintMod
‘
‘ Purpose: Print the current module
‘
Sub CodePrintMod()

It should be noted that while no method in the Excel object model changes the value
of the variables passed to it, this technique is quite common in the VBIDE object
model and is getting more common in Windows applications generally.

591

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 591

Dim lStartLine As Long, lStartCol As Long, lEndLine As Long, lEndCol As Long

‘Get the current selection
Application.VBE.ActiveCodePane.GetSelection lStartLine, lStartCol, _

lEndLine, lEndCol

If lStartLine <> lEndLine Or lStartCol <> lEndCol Then
‘If there’s something selected, make sure the ‘Module’ item is selected
Application.SendKeys “{DOWN}{ENTER}”

Else
‘If there’s nothing selected, the ‘Module’ item is selected by default
Application.SendKeys “{ENTER}”

End If

Application.VBE.CommandBars.FindControl(ID:=4).Execute
End Sub

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: CodePrintProj
‘
‘ Purpose: Print the current project

Sub CodePrintProj()
Dim lStartLine As Long, lStartCol As Long, lEndLine As Long, lEndCol As Long

‘Get the current selection
Application.VBE.ActiveCodePane.GetSelection lStartLine, lStartCol, _

lEndLine, lEndCol

‘Make sure the ‘Project’ item is selected
If lStartLine <> lEndLine Or lStartCol <> lEndCol Then
Application.SendKeys “{DOWN}{DOWN}{ENTER}”

Else
Application.SendKeys “{DOWN}{ENTER}”

End If

Application.VBE.CommandBars.FindControl(ID:=4).Execute
End Sub

The code to print the current procedure is slightly more complex, because the Print dialog does not have
a Current Procedure option. The steps you need to perform are as follows:

1. Identify and store away the user’s current selection.

2. Identify the procedure (or declaration lines) containing the user’s selection.

3. Expand the selection to encompass the full procedure (or all the declaration lines).

4. Show the Print dialog to print this expanded selection.

5. Restore the user’s original selections.

Doing this on some PCs raises an interesting issue — the final step of restoring the user’s original selection
sometimes gets run before the Print dialog has been shown. This is presumably because the printing is

592

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 592

done on a separate thread of execution, and Excel 2007 is having a concurrency problem. The easy fix is to
include a DoEvents statement immediately after showing the Print dialog, to let the print routine carry
out its task. This will also yield control to the operating system, allowing it to process any pending or
queued events. The code to print the current procedure should be added to the modMenuCode module:

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: CodePrintProc
‘
‘ Purpose: Print the current procedure

Sub CodePrintProc()
Dim lStartLine As Long, lStartCol As Long, lEndLine As Long, lEndCol As Long
Dim lProcType As Long, sProcName As String, lProcStart As Long, lProcEnd As Long

With Application.VBE.ActiveCodePane
‘Get the current selection, so we know what to print and can restore it later
.GetSelection lStartLine, lStartCol, lEndLine, lEndCol

With .CodeModule
If lStartLine <= .CountOfDeclarationLines Then
‘We’re in the declarations section
lProcStart = 1
lProcEnd = .CountOfDeclarationLines

Else
‘We’re in a procedure, so find its start and end
sProcName = .ProcOfLine(lStartLine, lProcType)
lProcStart = .ProcStartLine(sProcName, lProcType)
lProcEnd = lProcStart + .ProcCountLines(sProcName, lProcType)

End If
End With

‘Select the text to print
.SetSelection lProcStart, 1, lProcEnd, 255

‘Print it
Application.SendKeys “{ENTER}”
Application.VBE.CommandBars.FindControl(ID:=4).Execute

‘The VBE Printing code is on another thread, so we need to let it do its stuff
‘before setting the selection back.
DoEvents

‘And select the original text again
.SetSelection lStartLine, lStartCol, lEndLine, lEndCol

End With
End Sub

The main item to note in this code is that the ProcOfLine method accepts the start line as input, fills the
lProcType variable with a number to identify the procedure type (Sub, Function, Property Let,
Property Get, and so on), and returns the name of the procedure. The procedure type and name are
used to find the start of the procedure (using ProcStartLine) and the number of lines within the proce-
dure (ProcCountLines), which are then selected and printed.

593

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 593

Working with UserForms
The code examples presented in this chapter so far have been extending the VBE to provide additional
tools for the developer. This section shifts its attention to programmatically creating and manipulating
UserForms, adding controls, and adding procedures to the UserForm’s code module to handle the con-
trols’ events. Though the example provided in this section continues to extend the VBE, the same code
and techniques can be applied in end-user applications, including:

❑ Adding UserForms to workbooks created by the application

❑ Sizing the UserForm and moving and sizing its controls to make the best use of the available
screen space

❑ Adding code to handle events in UserForms created by the application

❑ Changing the controls shown on an existing UserForm in response to user input

❑ Creating UserForms on the fly, as they are needed (for example, when the number and type of
controls on the UserForm will vary significantly depending on the data to be shown)

These techniques will be demonstrated by writing code to add a UserForm to the active project, com-
plete with standard-sized OK and Cancel buttons, as well as code to handle the buttons’ Click events
and the UserForm’s QueryClose event. The UserForm’s size will be set to two-thirds of the width and
height of the Excel window, and the OK and Cancel buttons’ position will be adjusted accordingly.

The example shown here is the difficult way to achieve the desired result, and is intended to be an edu-
cational, rather than a practical, example. The easy way to add a standardized UserForm is to create it
manually and export it to disk as a .frm file, then import it using the following code (do not type this in):

Dim oVBC As VBComponent
Set oVBC = Application.VBE.ActiveVBProject.VBComponents.Import(“MyForm.frm”)

When you need to include it in another project, just import it again. The only advantage to doing it
through code is that the UserForm can be given a size appropriate to the user’s screen resolution and
size, and its controls are positioned correctly.

Start by adding code in CMenuHandler Class_Initialize to create another menu:

AddMenu Application.VBE.CommandBars(“Standard”).FindControl(ID:=32806) _
.CommandBar, “&Standard Form”, “FormNewUserform”, 2, 581, _
msoButtonIconAndCaption, “Insert standardized UserForm”

The result of this addition will be the Standard Form menu, shown in Figure 26-5.

You’ll be using objects from the MSForms object library to create the form and controls, so add a reference to
the Microsoft Forms 2.0 Object Library by using the Tools ➪ References dialog, or just adding and removing
a UserForm. It takes quite a lot of code to create an entire form, so in this section the code listing is shown
and explained piecemeal; all the highlighted lines of code should be typed in.

594

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 594

Figure 26-5

Add a new module for this routine, call it modMenuForm, and copy in the following code:

Option Explicit

‘Window API call to freeze a window
‘It does the same as Application.ScreenUpdating, but for the VBE
Private Declare Function LockWindowUpdate Lib “user32” (ByVal hwndLock As Long) _

As Long

Application.ScreenUpdating does not affect the VBE, and the following FormNewUserform proce-
dure to create a form results in quite a lot of screen activity as the form is sized and the controls are
drawn. A simple Windows API call can be used to freeze the VBE window at the start of the routine and
unfreeze it at the end (see Chapter 27 for more information about using this and other API functions):

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
‘ Subroutine: FormNewUserform
‘
‘ Purpose: Creates a new userform, Add-Ing standard OK and Cancel buttons
‘ and code to handle their events
‘
Sub FormNewUserform()
Dim oVBC As VBIDE.VBComponent, fmFrmDesign As UserForm, lLine As Long

Microsoft’s Windows design guidelines recommend a gap of 6 points (approximately 4 pixels) between
buttons, and between a button and the edge of a form.

Const dGap As Double = 6

This is one of the more complex routines in the Add-in, so some error-handling code will be added to it.
Every routine in this chapter should really be given similar error-handling code.

‘Use our error handler to display a message if something goes wrong
On Error GoTo ERR_HANDLER

Use the Windows API call to freeze the VBE’s window. Note that HWnd is a hidden property of the
MainWindow object. To display the hidden properties of an object, open the Object Browser, right-click in
its window, and click the Show Hidden Members item.

‘Freeze the VBE window - same as Application.ScreenUpdating = False
LockWindowUpdate Application.VBE.MainWindow.HWnd

595

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 595

The VBComponent object (oVBC in the code) provides the “canvas” (background) of the UserForm, its
Properties collection, and its CodeModule. When a new UserForm is added to a project, a VBComponent
object is passed back that contains the form. The VBComponent’s Properties collection can be used to
change the size, color, font, caption, and so forth of the form’s background.

‘Add a new userform to the active VB Project
Set oVBC = Application.VBE.ActiveVBProject.VBComponents.Add(vbext_ct_MSForm)

‘Set the form’s height and width to 2/3 that of the Excel application.
oVBC.Properties(“Width”) = Application.UsableWidth * 2 / 3
oVBC.Properties(“Height”) = Application.UsableHeight * 2 / 3

The VBComponent’s Designer object provides access to the content of the UserForm, and is responsible
for the area inside the form’s borders and below its title bar. In this code, two controls are added to the
normal blank UserForm to provide standard OK and Close buttons. The name to use for the control
(Forms.CommandButton.1 in this case) can be found by adding the control to a worksheet, then exam-
ining the resulting =EMBED function. The appropriate controls can be found on the Developer tab of the
Ribbon by clicking Controls ➪ Insert ➪ ActiveX Controls.

‘Get the UserForm’s Designer
Set fmFrmDesign = oVBC.Designer

‘Use the designer to add the standard controls
With fmFrmDesign
‘Add an OK button, according to standard Windows size
With .Controls.Add(“Forms.CommandButton.1”, “bnOK”)
.Caption = “OK”
.Default = True
.Height = 18
.Width = 54

End With

‘Add a Cancel button, according to standard Windows size
With .Controls.Add(“Forms.CommandButton.1”, “bnCancel”)
.Caption = “Cancel”
.Cancel = True
.Height = 18
.Width = 54

End With
‘Move the OK and Cancel buttons to the bottom-right of the UserForm,
‘with a standard-width gap around and between them
With .Controls(“bnOK”)
.Top = fmFrmDesign.InsideHeight - .Height - dGap
.Left = fmFrmDesign.InsideWidth - .Width * 2 - dGap * 2

End With

With .Controls(“bnCancel”)
.Top = fmFrmDesign.InsideHeight - .Height - dGap
.Left = fmFrmDesign.InsideWidth - .Width - dGap

End With
End With

596

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 596

This could be extended to add list boxes, labels, checkboxes, and so on. From this point on, you could just
as easily be working with an existing UserForm, changing its size and the position and size of its controls
to make the best use of the available screen resolution. The preceding code simply moves the OK and
Cancel buttons to the bottom-right corner of the UserForm, without adjusting their size. The same tech-
nique can be used to move and size all of a UserForm’s controls.

Now that buttons have been added to the UserForm at the correct place (the bottom-right corner), code
can be added to the UserForm’s module to handle the buttons’ and UserForm’s events. To add a proce-
dure to a code module, you can use the CreateEventProc, InsertLines, or AddFromString methods.
In this example, the code is being added from strings. Alternatively, the code could be kept in a separate
text file and imported into the UserForm’s module. If CreateEventProc is used, all of the procedure’s
parameters are filled in on your behalf, and you get the Private Sub... line, the End Sub line, and a
blank line between them. CreateEventProc returns the number of the line in the module where the
Private Sub... was added, which is then used to insert a comment line and to replace the default
blank line with the code:

‘ Now add some code to the userform’s code module
With oVBC.CodeModule
‘Add the code for the OK button’s Click event
lLine = .CreateEventProc(“Click”, “bnOK”)
.InsertLines lLine, “‘Standard OK button handler”
.ReplaceLine lLine + 2, “ mbOK = True” & vbCrLf & “ Me.Hide”

If you use AddFromString or InsertLines, you have to supply the full text, such as this for the Cancel
button:

‘Add the code for the Cancel button’s Click event
.AddFromString vbCrLf & _

“‘Standard Cancel button handler” & vbCrLf & _
“Private Sub bnCancel_Click()” & vbCrLf & _
“ mbOK = False” & vbCrLf & _
“ Me.Hide” & vbCrLf & _
“End Sub”

The code for the UserForm’s QueryClose event is the same as that of the Cancel button, so some code
will be added just to call the bnCancel_Click routine:

‘Add the code for the UserForm’s Close event - just call the Cancel code
lLine = .CreateEventProc(“QueryClose”, “UserForm”)
.InsertLines lLine, “‘Standard Close handler, treat same as Cancel”
.ReplaceLine lLine + 2, “ bnCancel_Click”

‘And close the code window that was automatically opened by Excel
‘when we created the event procedures
.CodePane.Window.Close

End With

‘Unfreeze the VBE window - same as Application.ScreenUpdating = True
LockWindowUpdate 0&

Exit Sub

597

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 597

The standard error handler unfreezes the window, displays the error message, and closes. Such error
handling should be added to all the routines in the Add-in:

ERR_HANDLER:

‘Unfreeze the VBE window - same as Application.ScreenUpdating = True
LockWindowUpdate 0&

‘Display the error message (in the VBE Window) and end the routine.
Application.Visible = False

MsgBox “An Error occurred while creating the standard userform.” & vbCrLf & _
Err.Number & “: “ & Err.Description, vbOKOnly, psAddinTitle

Application.Visible = True
End Sub

The Add-in is now complete. Switch back to Excel, use Office Menu ➪ Prepare ➪ Properties to give it a title
and comment, then save the workbook as an Add-in (near the bottom of the list of available file types) with
a .xlam extension. Then use the Add-Ins dialog box (Office Menu ➪ Excel Options ➪ Add-Ins ➪ Manage:
Excel Add-Ins ➪ Go) to install it.

Working with References
One of the major enhancements in recent versions of VBA is the ability to declare a reference to an exter-
nal object library (using the Tools ➪ References dialog), and then use the objects defined in that library as
if they were built into Excel. In this chapter, for example, you have been using the objects defined in the
VBA Extensibility library without thinking about where they came from.

The term for this is early binding, so named because you are binding the external object library to your
application at design time. Using early binding gives the following benefits:

❑ The code is much faster, because all the links between the libraries have been checked and
compiled.

❑ The New operator can be used to create instances of the external objects.

❑ All of the constants defined in the object library can be utilized, thus avoiding numerous “magic
numbers” throughout the code.

❑ Excel displays the Auto List Members, Auto Quick Info, and Auto Data Tips information for the
objects while the application is being developed.

This is explained in more detail in Chapter 19.

There is, however, one major disadvantage. If you try to run your application on a computer that does
not have the external object library installed, you will get a compile-time error that cannot be trapped
using standard error-handling techniques — usually showing a perfectly valid line of code as being the
culprit. Excel will display the error when it runs some code in a module, which contains:

598

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 598

❑ An undeclared variable in a procedure — and you didn’t use Option Explicit

❑ A declaration of a type defined in the missing object library

❑ A constant defined in the missing object library

❑ A call to a routine, object, method, or property defined in the missing object library

The VBIDE References collection provides a method of checking that all the application’s references
are functioning correctly, and that all the required external object libraries are installed and are the cor-
rect versions. The code to check this should be put in your Auto_Open (or Workbook_Open) routine,
and the module that contains the Auto_Open must not contain any code that uses the external object
libraries. If there is a broken reference, it is unlikely that any other code will run, so the routine simply
stops after displaying which references are missing. Typical Auto_Open code is:

Sub Auto_Open()
Dim oRef As Object, bBroken As Boolean, sDescn As String

For Each oRef In ThisWorkbook.VBProject.References
‘Is the link broken?
If oRef.IsBroken Then
‘Some broken links don’t have descriptions, so ignore the error
On Error Resume Next
sDescn = “<Not known>”
sDescn = oRef.Description
On Error GoTo 0

‘Display a message, asking the user to install the missing item
MsgBox “Missing reference to:” & vbCrLf & _

“ Name: “ & sDescn & vbCrLf & _
“ Path: “ & oRef.FullPath & vbCrLf & _
“Please reinstall this file.”

bBroken = True
End If

Next

‘If everything present and correct, carry on with the initializing code
If Not bBroken Then
‘...Continue to open

End If
End Sub

COM Add-ins
The VBE is common to all the Office 2007 applications, so it would be convenient to be able to create
Add-ins for the VBE in a way that is not specific to a single Office application. In this chapter, you have
created the VBE Toolkit as an Excel Add-in, with the result that the added functionality will only be
available when using the VBE from within Excel. This was an appropriate choice, because the Add-in
provides some Excel-specific functionality (such as opening and closing workbooks), but is a poor choice
for the other functions you’ve added.

599

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 599

COM Add-ins provide a different way of extending the VBE and other Office applications, in a way that
is not necessarily specific to a single application. By using a COM Add-in, you can create a single Add-in
that targets the VBE specifically, and hence works across all the Office applications.

Chapter 18 explains how to create COM Add-ins.

Summary
The Microsoft Visual Basic for Applications Extensibility 5.3 object library provides a rich set of objects,
properties, methods, and events for controlling the VBE itself. Using these objects, developers can create
their own labor-saving Add-ins to help in their daily development tasks.

Many end-user applications can also utilize these objects to manipulate their own code modules,
UserForms, and references to provide a feature-rich, flexible, and robust set of functionality.

The example Add-in developed in this chapter can be downloaded from www.wrox.com.

600

Chapter 26: Programming the VBE

29_046432 ch26.qxp 2/16/07 10:05 PM Page 600

Programming with the
Windows API

Visual Basic for Applications is a high-level language that provides you with a rich, powerful, yet
quite simple set of functionality for controlling the Office suite of products, as well as many other
applications. You are insulated — some would say protected — from the “mundane minutiae” of
Windows programming that, say, a C++ programmer has to contend with.

The price you pay for this protection is an inability to investigate and control many elements of
the Windows platform. You can, for example, use Application.International to read most
of the Windows Regional Settings and read the screen dimensions from Application.Usable
Width and Application.UsableHeight, but that’s about it. All the Windows-related items avail-
able to you are properties of the Application object and are listed in Appendix A.

The Windows platform includes a vast amount of low-level functionality that is not normally
accessible from VBA, from identifying the system colors to creating a temporary file. Some of the
functionality has been exposed in VBA, but only to a limited extent, such as creating and using an
Internet connection (for example, you can open a page from the Internet using Workbooks.Open
“<URL>”, but you can’t just download it to disk). There are also a number of other object libraries
typically available on Windows computers that provide high-level, VBA-friendly access to the
underlying Windows functionality. Examples of these are the Windows Scripting Runtime and the
Internet Transfer Control.

There are times, though, when you need to go beyond the limits of VBA and the other object
libraries, and delve into the files that contain the low-level procedures provided and used by
Windows. The Windows Operating System is made up of a large number of separate files, mostly
dynamic link libraries (DLLs), each containing code to perform a discrete set of interrelated func-
tions. DLLs are files that contain functions that can be called by other Windows programs or other
DLLs. They cannot be run like programs themselves.

These files are collectively known as the Windows Application Programming Interface, or
Windows API. Some of the most common files you’ll use in the Windows API are detailed in the
following table.

30_046432 ch27.qxp 2/16/07 10:05 PM Page 601

File Function Group(s)

USER32.EXE User interface functions (such as managing windows,
the keyboard, clipboard, and so on)

KERNEL32.DLL File- and system-related functions (such as managing programs)

GDI32.DLL Graphics and display functions

SHELL32.DLL Windows shell functions (such as handling icons and launching
programs)

COMDLG32.DLL Standard Windows dialog functions

ADVAPI32.DLL Registry and NT Security functions

MPR.DLL and NETAPI32.DLL Network functions

WININET.DLL Internet functions

WINMM.DLL Multimedia functions

WINSPOOL.DRV Printing functions

This chapter explains how to use the functions contained in these files in your VBA applications
and includes a number of useful examples. All of the Windows API functions are documented in
the Platform SDK section of the MSDN Library at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/winprog/winprog/windows_api_start_page.asp,
which can be thought of as the online help for the Windows API. Because Microsoft regularly changes
its URLs, that page can be found in the MSDN Library menu under Win32 and COM Development ➪

Development Guides ➪ Windows API ➪ Windows API.

Anatomy of an API Call
Before you can use the procedures contained in the Windows DLLs, you need to tell the VBA interpreter
where they can be found, the parameters they take, and what they return. Do this using the Declare
statement, which VBA help shows as:

[Public | Private] Declare Sub name Lib “libname” [Alias “aliasname”]
[([arglist])]
[Public | Private] Declare Function name Lib “libname” [Alias “aliasname”]
[([arglist])] [As type]

The following is the declaration used to find the Windows TEMP directory:

Private Declare Function GetTempPath Lib “kernel32” _
Alias “GetTempPathA” (_
ByVal nBufferLength As Long, _
ByVal lpBuffer As String) As Long

602

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 602

This tells VBA that:

❑ The function is going to be referred to in the code as GetTempPath

❑ The procedure can be found in kernel32.dll

❑ It goes by the name of GetTempPathA in the DLL (case sensitive)

❑ It takes two parameters, a Long and a String (more about these later)

❑ It returns a Long

Microsoft used to include a simple API declaration viewer with the Developer Editions of Office, but
that is now only available by installing Visual Studio and hasn’t been updated to include the more recent
versions of Windows. At the time of this writing, a great alternative is available for free download from
www.activevb.de/rubriken/apiviewer/index-apiviewereng.html.

Interpreting C-Style Declarations
The MSDN library is the best source for information about the functions in the Windows API, but it’s
primarily targeted toward C and C++ programmers and displays the function declarations using C nota-
tion. The API viewer mentioned in the previous section contains many of the declarations for the core
Windows functions in VBA notation, but if you encounter a function that it does not include, it is usually
possible to convert the C notation to a VBA Declare statement, using the following method.

The declaration shown in MSDN for the GetTempPath function (at
http://msdn.microsoft.com/library/en-us/fileio/fs/gettemppath.asp) is:

DWORD GetTempPath(
DWORD nBufferLength,
LPTSTR lpBuffer

);

This should be read as:

<Return data type> <Function name>(
<Parameter data type> <Parameter name>,
<Parameter data type> <Parameter name>

);

Rearranging the C-style declaration to a VBA Declare statement gives the following (where the C-style
DWORD and LPSTR are converted to VBA data types later):

Declare Function <Our Name> Lib “???” Alias “GetTempPath” (_
nBufferLength As DWORD, _
lpBuffer As LPTSTR _
) As DWORD

On the Windows platform, there are two types of character sets. The ANSI character set has been the
standard for many years and uses one byte to represent one character, which only gives 255 characters

603

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 603

available at any time. To provide simultaneous access to a much wider range of characters (such as Far
Eastern alphabets), the Unicode character set was introduced. This allocates two bytes for each character,
allowing for 65,535 characters.

To provide the same functionality for both character sets, the Windows API includes two versions of all
the functions that involve strings, denoted by the A suffix for the ANSI version and W for the Unicode (or
Wide) version. VBA always uses ANSI strings, so you will always use the A version of the functions — in
this case GetTempPathA. The C-style declarations also use different names for their data types, which you
need to convert. Though not an exhaustive list, the following table shows the most common data types.

C Data Type VBA Declaration

BOOL ByVal <Name> As Long

BYTE ByVal <Name> As Byte

BYTE * ByRef <Name> As Byte

Char ByVal <Name> As Byte

char huge * ByVal <Name> As String

char FAR * ByVal <Name> As String

char NEAR * ByVal <Name> As String

DWORD ByVal <Name> As Long

HANDLE ByVal <Name> As Long

HBITMAP ByVal <Name> As Long

HBRUSH ByVal <Name> As Long

HCURSOR ByVal <Name> As Long

HDC ByVal <Name> As Long

HFONT ByVal <Name> As Long

HICON ByVal <Name> As Long

HINSTANCE ByVal <Name> As Long

HLOCAL ByVal <Name> As Long

HMENU ByVal <Name> As Long

HMETAFILE ByVal <Name> As Long

HMODULE ByVal <Name> As Long

HPALETTE ByVal <Name> As Long

HPEN ByVal <Name> As Long

HRGN ByVal <Name> As Long

HTASK ByVal <Name> As Long

604

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 604

C Data Type VBA Declaration

HWND ByVal <Name> As Long

Int ByVal <Name> As Long

int FAR * ByVal <Name> As Long

LARGE INTEGER ByVal <Name> As Currency

LONG ByVal <Name> As Long

LPARAM ByVal <Name> As Long

LPCSTR ByVal <Name> As String

LPCTSTR ByVal <Name> As String

LPSTR ByVal <Name> As String

LPTSTR ByVal <Name> As String

LPVOID ByRef <Name> As Any

LRESULT ByVal <Name> As Long

UINT ByVal <Name> As Integer

UINT FAR * ByVal <Name> As Integer

WORD ByVal <Name> As Integer

WPARAM ByVal <Name> As Integer

Other Probably a user-defined type, which you need to define.

Some API definitions on the MSDN also include the IN and OUT identifiers. If the VBA type is shown in
the table as ByVal <Name> As Long, it should be changed to ByRef... for the OUT parameters.

Putting these into the declaration gives:

Declare Function GetTempPath Lib “???” _
Alias “GetTempPathA” (_
ByVal nBufferLength As Long, _
ByVal lpBuffer As String _
) As Long

Strings are always passed ByVal (by value) to API functions. This is because VBA
uses its own storage mechanism for strings, which the C DLLs do not understand.
By passing the string ByVal, VBA converts its own storage structure into one that
the DLLs can use.

605

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 605

The only thing that the declaration doesn’t tell you is the DLL that contains the function. Looking at the
bottom of the MSDN page, the Requirements section includes the lines:

DLL: Requires kernel32.dll

This tells you that the function is in the file kernel32.dll, giving the final declaration of:

Declare Function GetTempPath Lib “kernel32.dll” _
Alias “GetTempPathA” (_
ByVal nBufferLength As Long, _
ByVal lpBuffer As String _
) As Long

This is the same as that shown in the API viewer, which should be your first reference point for all API
function definitions. Note that the Alias clause is not required when the function name is the same as
the alias (typically when there are no String parameters), and is automatically removed when the func-
tion is copied into a code module.

Constants, Structures, Handles, and Classes
Most of the API functions include arguments that accept a limited set of predefined constants. For exam-
ple, to get information about the operating system’s capabilities, you can use the GetSystemMetrics
function:

Declare Function GetSystemMetrics Lib “user32” (_
ByVal nIndex As Long) As Long

The value that you pass in the nIndex argument tells the function which metric you want to be given, and
must be one of a specific set of constants that the function knows about. The applicable constants are listed
in the MSDN documentation, with their corresponding values in many cases. The API Viewer also contains
most of the constants that you are likely to need. There are more than 80 constants for GetSystemMetrics,
including SM_CXSCREEN and SM_CYSCREEN to retrieve the screen’s dimensions:

Const SM_CXSCREEN As Long = 0 ‘Screen width
Const SM_CYSCREEN As Long = 1 ‘Screen height

Private Declare Function GetSystemMetrics Lib “user32” _
(ByVal nIndex As Long) As Long

Sub ShowScreenDimensions()
Dim lScreenX As Long, lScreenY As Long

‘Get the screen’s dimensions
lScreenX = GetSystemMetrics(SM_CXSCREEN)

Warning: Using an incorrect function declaration is likely to crash Excel. When
developing with API calls, save your work regularly.

606

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 606

lScreenY = GetSystemMetrics(SM_CYSCREEN)

MsgBox “Screen resolution is “ & lScreenX & “x” & lScreenY
End Sub

Many of the Windows API functions pass information using structures, which is the C term for a user-
defined type (UDT). For example, the GetWindowRect function is used to return the size of a window,
and is defined as:

Declare Function GetWindowRect Lib “user32” (_
ByVal hwnd As Long, _
lpRect As RECT) As Long

The lpRect parameter is a RECT structure that is filled in by the GetWindowRect function with the
window’s dimensions. The RECT structure is defined on MSDN (at http://msdn.microsoft.com/
library/en-us/gdi/rectangl_6cqa.asp) as:

typedef struct tagRECT {
LONG left;
LONG top;
LONG right;
LONG bottom;

} RECT;

This can be converted to a VBA UDT using the same data-type conversion shown in the previous section,
giving:

Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type

The UDT definitions for most of the common structures are also included in the API Viewer.

The first parameter of the GetWindowRect function is shown as hwnd, and it represents a handle to a win-
dow. A handle is simply a pointer to an area of memory that contains information about the object being
pointed to (in this case, a window). Handles are allocated dynamically by Windows and are unlikely to be
the same between sessions. You cannot, therefore, hard code the handle number in your code, but must
use other API functions to give you the handle you need. For example, to obtain the dimensions of a win-
dow, you need to get the window’s hwnd. The API function FindWindow gives it to you:

‘API call to find a window
Public Declare Function FindWindow Lib “user32” _

Alias “FindWindowA” (_
ByVal lpClassName As String, _
ByVal lpWindowName As String) As Long

This function looks through all the open windows until it finds one with the class name and caption that
you ask for. The Hwnd property for Excel’s main window was added to the Application object in Excel

607

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 607

2002, so you only need to use FindWindow for the main Excel window if you want to be compatible with
Excel 2000 or earlier, or if you want to find the window handle for any other type of window (such as
UserForms). All of the code examples in this chapter use FindWindow, to be compatible with as many
versions of Excel as possible.

There are many different types of windows in Windows applications, ranging from Excel’s application
window to the windows used for dialog sheets, UserForms, ListBoxes, and buttons. Each type of win-
dow has a unique identifier, known as its class. Some common class names in Excel are outlined in the
following table.

Window Class Name

Excel’s main window XLMAIN

Excel desktop XLDESK

Excel worksheet EXCEL7

Excel UserForm ThunderDFrame (since Excel 2000)
ThunderRT6DFrame (since Excel 2000, when
running as a COM Add-In)
ThunderXFrame (in Excel 97)

Excel status bar EXCEL4

Excel chart window (prior to Excel 2007) EXCELE

The FindWindow function uses this class name and the window’s caption to find the window.

Note that the class names for some of Excel’s standard items have changed with every release of Excel
(but very few between Excel 2000 and 2007). You therefore need to include version checking in your
code to determine which class name to use:

Select Case Val(Application.Version)
Case Is >= 9 ‘Use Excel 2000/2002/2003/2007 class names
Case Is >= 8 ‘Use Excel 97 class names
Case Else ‘Use Excel 5/95 class names

End Select

This results in a potential forward-compatibility problem: You don’t know what the class names are
going to be in future versions. Fortunately, Microsoft tries to retain compatibility as much as possible
and has kept the same class names in Excel 2007 as prior versions. One of the more important changes
is the loss of the EXCELE window. That class was officially used for the Chart Window in previous ver-
sions, but was often hijacked as a convenient way of locating a cell’s on-screen position (by creating a
chart at that cell and reading the position of the EXCELE window).

Putting these items together, you can use the following code to find the location and size of the Excel
main window (in pixels):

‘UDT to hold window dimensions
Type RECT

Left As Long

608

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 608

Top As Long
Right As Long
Bottom As Long

End Type

‘API function to locate a window
Declare Function FindWindow Lib “user32” _

Alias “FindWindowA” (_
ByVal lpClassName As String, _
ByVal lpWindowName As String) As Long

‘API function to retrieve a window’s dimensions
Declare Function GetWindowRect Lib “user32” (_

ByVal hWnd As Long, _
lpRect As RECT) As Long

Sub ShowExcelWindowSize()
Dim hWnd As Long, uRect As RECT

‘Get the handle on Excel’s main window
‘Could also use hWnd = Application.Hwnd in Excel 2002+
hWnd = FindWindow(“XLMAIN”, Application.Caption)

‘Get the window’s dimensions into the RECT structure
GetWindowRect hWnd, uRect

‘Display the result
MsgBox “The Excel window has the following dimensions:” & _

vbCrLf & “ Left: “ & uRect.Left & _
vbCrLf & “ Right: “ & uRect.Right & _
vbCrLf & “ Top: “ & uRect.Top & _
vbCrLf & “ Bottom: “ & uRect.Bottom & _
vbCrLf & “ Width: “ & (uRect.Right - uRect.Left) & _
vbCrLf & “ Height: “ & (uRect.Bottom - uRect.Top)

End Sub

Resize the Excel window to cover a portion of the screen, and run the ShowExcelWindowSize routine. You
should be given a message box showing the window’s dimensions. Now try it with Excel maximized —
you may get negative values for the top and left. This is because the GetWindowRect function returns the
size of the Excel window, measuring around the edge of its borders. When maximized, the borders are off
the screen, but still part of the window.

What If Something Goes Wrong?
One of the hardest parts of working with the Windows API functions is identifying the cause of any
errors. If an API call fails for any reason, it should return some indication of failure (usually a zero result
from the function) and register the error with Windows. You should then be able to use the VBA function
Err.LastDLLError to retrieve the error code, and use the FormatMessage API function to retrieve the
descriptive text for the error:

609

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 609

‘Windows API declaration to get the API error text
Private Declare Function FormatMessage Lib “kernel32” _

Alias “FormatMessageA” (_
ByVal dwFlags As Long, _
ByVal lpSource As Long, _
ByVal dwMessageId As Long, _
ByVal dwLanguageId As Long, _
ByVal lpBuffer As String, _
ByVal nSize As Long, _
Arguments As Long) As Long

‘Constant for use in the FormatMessage API function
Private Const FORMAT_MESSAGE_FROM_SYSTEM As Long = &H1000

Sub ShowExcelWindowSize()
‘Define some variables to use in the API calls
Dim hWnd As Long, uRect As RECT

‘Get the handle on Excel’s main window
hWnd = FindWindow(“XLMAIN”, Application.Caption)

If hWnd = 0 Then
‘An error occurred, so get the text of the error
MsgBox LastDLLErrText(Err.LastDllError)

Else
‘Etc.

End If
End Sub

Function LastDLLErrText(ByVal lErrorCode As Long) As String
‘ ***
‘ *
‘ * Function Name: LastDLLErrText
‘ *
‘ * Input: lErrorCode - a Windows error number
‘ *
‘ * Output: Returns the description corresponding to the error
‘ *
‘ * Purpose: Retrieve a Windows error description
‘ *
‘ ***

Dim sBuff As String * 255, iAPIResult As Long

‘Get the text of the error and return it
iAPIResult = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, 0&, lErrorCode, _

0, sBuff, 255, 0)

LastDLLErrText = Left(sBuff, iAPIResult)
End Function

The full code for this example can be found in the module ‘m1_ExcelWindowSize’ in the API
Examples.xlsm workbook, available at www.wrox.com.

610

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 610

Unfortunately, this technique does not always work. For example, if you change the class name to
XLMAINTEST in the FindWindow function call, you may expect to get an error message of Unable to
find window. In Windows XP, the error information is populated with the cryptic text The system
cannot find the file specified. In most cases, you do get more useful error information, as shown
in the next section.

Wrapping API Calls in Class Modules
If you need to use lots of API calls in your application, your code can get very messy, very quickly. Most
developers prefer to encapsulate the API calls within class modules, which provide a number of benefits:

❑ The API declarations and calls are removed from your core application code.

❑ The class module can perform a number of initialization and clean-up tasks, improving your
system’s robustness.

❑ Many of the API functions take a large number of parameters, most of which are not used in
your situation. The class module needs to expose only those properties that need to be changed
by your calling routine.

❑ Class modules can be stored as text, providing a self-contained set of functionality that is easy to
reuse in future projects.

The following code is an example of a class module for working with temporary files, allowing the call-
ing code to:

❑ Create a temporary file in the Windows default TEMP directory

❑ Create a temporary file in a user-specified directory

❑ Retrieve the path and filename of the temporary file

❑ Retrieve the text of any errors that may have occurred while creating the temporary file

❑ Delete the temporary file after use

Create a class module called CTempFile and copy in the following code (this class can also be found in
the API Examples.xlsm file at www.wrox.com):

‘***
‘*
‘* MODULE NAME: EXCEL 2007 PROG REF - TEMP FILE CLASS
‘* AUTHOR: STEPHEN BULLEN, Office Automation Ltd.
‘*
‘* CONTACT: stephen@oaltd.co.uk
‘* WEB SITE: http://www.oaltd.co.uk
‘*
‘* DESCRIPTION: Encapsulates API calls for handling temporary files
‘*
‘***
Option Explicit

611

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 611

‘Windows API declaration to find the Windows Temporary directory
Private Declare Function GetTempPath Lib “kernel32” _

Alias “GetTempPathA” (_
ByVal nBufferLength As Long, _
ByVal lpBuffer As String) As Long

‘Windows API declaration to create, and return the name of,
‘a temporary filename
Private Declare Function GetTempFileName Lib “kernel32” _

Alias “GetTempFileNameA” (_
ByVal lpszPath As String, _
ByVal lpPrefixString As String, _
ByVal wUnique As Long, _
ByVal lpTempFileName As String) As Long

‘Windows API declaration to get the text for an API error code
Private Declare Function FormatMessage Lib “kernel32” _

Alias “FormatMessageA” (_
ByVal dwFlags As Long, _
ByVal lpSource As Long, _
ByVal dwMessageId As Long, _
ByVal dwLanguageId As Long, _
ByVal lpBuffer As String, _
ByVal nSize As Long, _
Arguments As Long) As Long

‘Constant for use in the FormatMessage API function
Const FORMAT_MESSAGE_FROM_SYSTEM As Long = &H1000

‘Variables to store the path, file and error message
Dim msTempPath As String
Dim msTempFile As String
Dim msErrMsg As String
Dim mbTidyUp As Boolean

One advantage of using a class module is that you can perform some operations when the class is initial-
ized. In this case, you will identify the default Windows TEMP directory. The temporary file will be created
in this directory, unless the calling code tells you otherwise:

‘Get the Windows temporary path when the class is initialized
Private Sub Class_Initialize()

‘Define some variables to use in the API calls
Dim sBuff As String * 255, lAPIResult As Long

‘Call the Windows API function to get the TEMP path
lAPIResult = GetTempPath(255, sBuff)

If lAPIResult = 0 Then
‘An error occurred, so get the text of the error
msErrMsg = LastDLLErrText(Err.LastDllError)

Else
‘Store the TEMP path
msTempPath = Left(sBuff, lAPIResult)

End If
End Sub

612

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 612

This is the routine to create the temporary file, returning its name (including the path). In its simplest
use, the calling routine can just call this one method to create a temporary file:

‘Create a temporary file, returning its name (including the path)
Public Function CreateFile() As String

‘Define some variables to use in the API calls
Dim sBuff As String * 255, lAPIResult As Long

‘Try to get a temporary file name (also creates the file)
lAPIResult = GetTempFileName(msTempPath, “”, 0, sBuff)

If lAPIResult = 0 Then
‘An error occurred, so get the text of the error
msErrMsg = LastDLLErrText(Err.LastDllError)

Else
‘Created a temp file OK, so store the file and “OK” error message
msTempFile = Left(sBuff, InStr(1, sBuff, Chr(0)) - 1)
msErrMsg = “OK”
mbTidyUp = True

CreateFile = msTempFile
End If

End Function

In a class module, you can expose a number of properties that allow the calling routine to retrieve and
modify the temporary file creation. For example, you may want to enable the calling program to set
which directory to use for the temporary file. You could extend this to make the property read-only after
the file has been created, raising an error in that case. The use of Property procedures in class modules
is described in more detail in Chapter 16:

‘Show the TEMP path as a property of the class
Public Property Get Path() As String

‘Return the path, without the final ‘\’
Path = Left(msTempPath, Len(msTempPath) - 1)

End Property

‘Allow the user to change the TEMP path
Public Property Let Path(sNewPath As String)

msTempPath = sNewPath

‘Ensure path ends with a \
If Right(msTempPath, 1) <> “\” Then

msTempPath = msTempPath & “\”
End If

End Property

You can also give the calling routine read-only access to the temporary file’s name and full name (that is,
including the path):

‘Show the temporary file name as a property
Public Property Get Name() As String

Name = Mid(msTempFile, Len(msTempPath) + 1)
End Property

613

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 613

‘Show the full name (directory and file) as a property
Public Property Get FullName() As String

FullName = msTempFile
End Property

Give the calling program read-only access to the error messages:

‘Show the error message as a property of the class
Public Property Get ErrorText() As String

ErrorText = msErrMsg
End Property

You’ll also allow the calling program to delete the temporary file after use:

‘Delete the temporary file
Public Sub Delete()

On Error Resume Next ‘In case it has already been deleted
Kill msTempFile
mbTidyUp = False

End Sub

By default, you will delete the temporary file that you created when the class is destroyed. The calling
application may not want you to, so provide some properties to control this:

‘Whether or not to delete the temp file when the
‘class is deleted
Public Property Get TidyUpFiles() As Boolean

TidyUpFiles = mbTidyUp
End Property

‘Allow the user to prevent the deletion of his/her own files
Public Property Let TidyUpFiles(bNew As Boolean)

mbTidyUp = bNew
End Property

In the class’s Terminate code, you’ll delete the temporary file, unless told not to. This code is run when
the instance of the class is destroyed. If declared within a procedure, this will be when the class variable
goes out of scope at the end of the procedure. If declared at a module level, it will occur when the work-
book is closed:

Private Sub Class_Terminate()
If mbTidyUp Then Delete

End Sub

The same function you saw in the previous section is used to retrieve the text associated with a Windows
API error code:

‘Get the text associated with a Windows API error code
Private Function LastDLLErrText(ByVal lErrorCode As Long) As String

Dim sBuff As String * 255, lAPIResult As Long

‘Get the text of the error and return it

614

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 614

lAPIResult = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, _
0&, lErrorCode, 0, sBuff, 255, 0)

LastDLLErrText = Left(sBuff, lAPIResult)
End Function

Once this class module is included in a project, the calling routine does not need to know anything about
any of the API functions you’re using:

Sub TestCTempFile()
Dim oTempFile As New CTempFile

If oTempFile.CreateFile = “” Then
MsgBox “An error occurred while creating the temporary file:” & _

vbCrLf & oTempFile.ErrorText
Else

MsgBox “Temporary file “ & oTempFile.FullName & “ created”
End If

End Sub

This results in a message like this:

Temporary file C:\WINDOWS\TEMP\5024.TMP created

Note that the temporary file is created during the call to CreateFile. When the procedure ends, the
variable oTempFile goes out of scope and hence is destroyed by VBA. The Terminate event in the class
module ensures the temporary file is deleted — the calling procedure does not need to know about any
clean-up routines. If CreateFile is called twice, only the last temporary file is deleted. A new instance
of the class should be created for each temporary file required.

You can force an error by amending TestCTempFile to specify a nonexistent directory for the tempo-
rary file:

Sub TestCTempFile()
Dim oTempFile As New CTempFile

‘Tell the class to use a non-existent path
oTempFile.Path = “C:\NoSuchPath”

If oTempFile.CreateFile = “” Then
MsgBox “An error occurred while creating the temporary file:” & _

Chr(10) & oTempFile.ErrorText
Else

MsgBox “Temporary file “ & oTempFile.FullName & “ created”
End If

End Sub

This time, you get a meaningful error message (see Figure 27-1).

615

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 615

Figure 27-1

Some Example Classes
This section provides a number of common API calls to include in your projects. Note that in each case,
the function and constant definitions must be put in the Declarations section at the top of a module.

A High-Resolution Timer Class
When testing your code, it is a good idea to time the various routines to identify and eliminate any bot-
tlenecks. VBA includes two functions that can be used as timers:

❑ The Now function returns the current time and has a resolution of about one second.

❑ The Timer function returns the number of milliseconds since midnight, with a resolution of
approximately 10 milliseconds.

Neither of these are accurate enough to time VBA routines, unless the routine is repeated many times.

Modern PCs include a high-resolution timer, which updates many thousands of times per second,
accessible through API calls. You can wrap these calls in a class module to provide easy access to a high-
resolution timer.

Class Module CHighResTimer
Note that the API Viewer shows these definitions using the LARGE_INTEGER data type, but they are
defined as Currency:

Option Explicit

‘How many times per second is the counter updated?
Private Declare Function QueryFrequency Lib “kernel32” _

Alias “QueryPerformanceFrequency” (_
lpFrequency As Currency) As Long

‘What is the counter’s value
Private Declare Function QueryCounter Lib “kernel32” _

Alias “QueryPerformanceCounter” (_
lpPerformanceCount As Currency) As Long

616

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 616

The LARGE_INTEGER is a 64-bit data type, usually made up of two Long types. The VBA Currency data
type also uses 64 bits to store the number, so you can use it in place of a LARGE_INTEGER. The only dif-
ferences are that the Currency data type is scaled down by a factor of 10,000, and that VBA can perform
standard math operations with Currency variables:

‘Variables to store the counter information
Dim mcyFrequency As Currency
Dim mcyOverhead As Currency
Dim mcyStarted As Currency
Dim mcyStopped As Currency

The API call itself takes a small amount of time to complete. For accurate timings, you should take this
delay into account. You find this delay and the counter’s frequency in the class’s Initialize routine:

‘When first initialized, determine the overhead incurred when retrieving the
‘high-performance counter value
Private Sub Class_Initialize()

Dim cyCount1 As Currency, cyCount2 As Currency

‘Get the counter frequency
QueryFrequency mcyFrequency

‘Call the hi-res counter twice, to check how long it takes
QueryCounter cyCount1
QueryCounter cyCount2

‘Store the call overhead
mcyOverhead = cyCount2 - cyCount1

End Sub

Public Sub StartTimer()
‘Get the time that you started
QueryCounter mcyStarted

End Sub

Public Sub StopTimer()
‘Get the time that you stopped
QueryCounter mcyStopped

End Sub

Public Property Get Elapsed() As Double
Dim cyTimer As Currency

‘Have you stopped or not?
If mcyStopped = 0 Then

QueryCounter cyTimer
Else

cyTimer = mcyStopped
End If

‘If you have a frequency, return the duration, in seconds
If mcyFrequency > 0 Then

Elapsed = (cyTimer - mcyStarted - mcyOverhead) / mcyFrequency
End If

End Property

617

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 617

When you calculate the elapsed time, both the timer and the frequency contain values that are a factor of
10,000 too small. Because the numbers are divided, the factors cancel out to give a result in seconds.

The High-Resolution Timer class can be used in a calling routine like this:

Sub TestCHighResTimer()
Dim i As Long
Dim oTimer As New CHighResTimer

oTimer.StartTimer

For i = 1 To 100000
Next i
oTimer.StopTimer

Debug.Print “100,000 iterations took “ & oTimer.Elapsed & “ seconds”
End Sub

Freeze a UserForm
When working with UserForms, the display may be updated whenever a change is made to the form,
such as adding an item to a ListBox, or enabling or disabling controls. Application.ScreenUpdating
has no effect on UserForms; this CFreezeForm class provides a useful equivalent:

Option Explicit

‘Find a window
Private Declare Function FindWindow Lib “user32” _

Alias “FindWindowA” (_
ByVal lpClassName As String, _
ByVal lpWindowName As String) As Long

‘Freeze the window to prevent continuous redraws
Private Declare Function LockWindowUpdate Lib “user32” (_

ByVal hwndLock As Long) As Long

Public Sub Freeze(oForm As UserForm)
Dim hWnd As Long

‘Get a handle to the UserForm window,
‘using the class name appropriate for the XL version
If Val(Application.Version) >= 9 Then

hWnd = FindWindow(“ThunderDFrame”, oForm.Caption)
Else

hWnd = FindWindow(“ThunderXFrame”, oForm.Caption)
End If

‘If you got a handle, freeze the window
If hWnd > 0 Then LockWindowUpdate hWnd

End Sub

‘Allow the calling routine to unfreeze the UserForm

618

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 618

Public Sub UnFreeze()
LockWindowUpdate 0

End Sub

‘If they forget to unfreeze the form, do it at the end
‘of the calling routine (when you go out of scope)
Private Sub Class_Terminate()

UnFreeze
End Sub

To demonstrate this in action, create a new UserForm and add a ListBox and a command button. Add
the following code for the command button’s Click event:

Private Sub CommandButton1_Click()
Dim i As Integer

For i = 1 To 1000
ListBox1.AddItem “Item “ & i
DoEvents

Next i
End Sub

The DoEvents line forces the UserForm to redraw, to demonstrate the problem. In more complicated
routines, the UserForm may redraw itself without using DoEvents. To prevent the redrawing, you can
modify the routine to use the CFreezeForm class as follows:

Private Sub CommandButton1_Click()
Dim obFF As New CFreezeForm, i As Integer
‘Freeze the UserForm
obFF.Freeze Me

For i = 1 To 1000
ListBox1.AddItem “Item “ & i
DoEvents

Next i
End Sub

This is much easier than including several API calls in every function. The class’s Terminate event
ensures that the UserForm is unfrozen when the obFF object variable goes out of scope. Freezing a
UserForm in this way can result in a dramatic performance improvement. For example, the non-frozen
version takes approximately 3.5 seconds to fill the ListBox, while the frozen version of the routine takes
approximately 1.2 seconds. This should be weighted against user interaction; they may think the com-
puter has frozen if they see no activity for some time. Consider using Application.StatusBar to keep
them informed of progress in that case.

A System Info Class
The classic use of a class module and API functions is to provide all the information about the Windows
environment that you cannot get at using VBA. The following properties are typical components of such
a CSysInfo class.

619

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 619

Obtaining the screen resolution (in pixels):

Option Explicit

Private Const SM_CYSCREEN As Long = 1 ‘Screen height
Private Const SM_CXSCREEN As Long = 0 ‘Screen width

‘API Call to retrieve system information
Private Declare Function GetSystemMetrics Lib “user32” (_

ByVal nIndex As Long) As Long
‘Retrieve the screen height, in pixels
Public Property Get ScreenHeight() As Long

ScreenHeight = GetSystemMetrics(SM_CYSCREEN)
End Property

‘Retrieve the screen width, in pixels
Public Property Get ScreenWidth() As Long

ScreenWidth = GetSystemMetrics(SM_CXSCREEN)
End Property

Obtaining the color depth (in bits):

Private Declare Function GetDC Lib “user32” (_
ByVal hwnd As Long) As Long

Private Declare Function GetDeviceCaps Lib “Gdi32” (_
ByVal hDC As Long, _
ByVal nIndex As Long) As Long

Private Declare Function ReleaseDC Lib “user32” (_
ByVal hwnd As Long, _
ByVal hDC As Long) As Long

Private Const BITSPIXEL = 12

Public Property Get ColorDepth() As Integer
Dim hDC As Long

‘A device context is the canvas on which a window is drawn
hDC = GetDC(0)
ColorDepth = GetDeviceCaps(hDC, BITSPIXEL)
ReleaseDC 0, hDC

End Property

Obtaining the width of a pixel in UserForm coordinates (where the API declarations are the same as
those for the previous ColorDepth and repeated here for clarity):

The declarations for the constants and API functions used in these procedures must
all be placed together at the top of the class module. For clarity, they are shown here
with the corresponding routines.

620

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 620

Private Declare Function GetDC Lib “user32” (_
ByVal hwnd As Long) As Long

Private Declare Function GetDeviceCaps Lib “Gdi32” (_
ByVal hDC As Long, _
ByVal nIndex As Long) As Long

Private Declare Function ReleaseDC Lib “user32” (_
ByVal hwnd As Long, _
ByVal hDC As Long) As Long

Private Const LOGPIXELSX = 88

‘The width of a pixel in Excel’s UserForm coordinates
Public Property Get PointsPerPixel() As Double

Dim hDC As Long

hDC = GetDC(0)

‘A point is defined as 1/72 of an inch and LOGPIXELSX returns
‘the number of pixels per logical inch, so divide them to give
‘the width of a pixel in Excel’s UserForm coordinates
PointsPerPixel = 72 / GetDeviceCaps(hDC, LOGPIXELSX)

ReleaseDC 0, hDC

End Property

Reading the user’s login ID:

Private Declare Function GetUserName Lib “advapi32.dll” _
Alias “GetUserNameA” (_
ByVal lpBuffer As String, _
ByRef nSize As Long) As Long

Public Property Get UserName() As String
Dim sBuff As String * 255, lAPIResult As Long
Dim lBuffLen As Long

lBuffLen = 255

‘ The second parameter, lBuffLen is both In and Out.
‘ On the way in, it tells the function how big the string buffer is
‘ On the way out, it tells us how long the user name is (including
‘ a terminating Chr(0))
lAPIResult = GetUserName(sBuff, lBuffLen)

‘If you got something, return the text of the user name
If lBuffLen > 0 Then UserName = Left(sBuff, lBuffLen - 1)

End Property

621

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 621

Reading the computer’s name:

Private Declare Function GetComputerName Lib “kernel32” _
Alias “GetComputerNameA” (_
ByVal lbbuffer As String, _
nsize As Long) As Long

Public Property Get ComputerName() As String
Dim sBuff As String * 255, lAPIResult As Long
Dim lBuffLen As Long

lBuffLen = 255
lAPIResult = GetComputerName(sBuff, lBuffLen)
If lBuffLen > 0 Then ComputerName = Left(sBuff, lBuffLen)

End Property

These can be tested by using the following routine (in a standard module):

Sub TestCSysInfo()
Dim oSysInfo As New CSysInfo
Debug.Print “Screen Height = “ & oSysInfo.ScreenHeight
Debug.Print “Screen Width = “ & oSysInfo.ScreenWidth
Debug.Print “Color Depth = “ & oSysInfo.ColorDepth
Debug.Print “One pixel = “ & oSysInfo.PointsPerPixel & “ points”
Debug.Print “User name = “ & oSysInfo.UserName
Debug.Print “Computer name = “ & oSysInfo.ComputerName

End Sub

Modifying UserForm Styles
UserForms in Excel do not provide any built-in mechanism for modifying their appearance. Your only
choice is a simple popup dialog with a caption and an X button to close the form, though you can choose
to show it modally or non-modally.

Using API calls, you can modify the UserForm’s window to do any combination of the following:

❑ Switching between modal and non-modal while the form is showing

❑ Making the form resizable

❑ Showing or hiding the form’s caption and title bar

❑ Showing a small title bar, like those on a floating toolbar

❑ Showing a custom icon on the form

❑ Showing an icon in the task bar for the form

❑ Removing the X button to close the form

❑ Adding standard maximize and minimize buttons

You can find example workbooks demonstrating all these choices at www.wrox.com, with the key parts
of the code explained in the following sections.

622

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 622

Window Styles
The appearance and behavior of a window is primarily controlled by its style and extended style properties.
These styles are both Long values, in which each bit of the value controls a specific aspect of the window’s
appearance — either on or off. You can change the window’s appearance using the following process:

1. Use FindWindow to get the UserForm’s window handle.

2. Read its style using the GetWindowLong function.

3. Toggle one or more of the style bits.

4. Set the window to use this modified style using the SetWindowLong function.

5. For some changes, tell the window to redraw itself using the ShowWindow function.

Some of the main constants for each bit of the basic window style are (no need to type these in):

‘Style to add a titlebar
Private Const WS_CAPTION As Long = &HC00000

‘Style to add a system menu
Private Const WS_SYSMENU As Long = &H80000

‘Style to add a sizable frame
Private Const WS_THICKFRAME As Long = &H40000

‘Style to add a Minimize box on the title bar
Private Const WS_MINIMIZEBOX As Long = &H20000

‘Style to add a Maximize box to the title bar
Private Const WS_MAXIMIZEBOX As Long = &H10000

‘Cleared to show a task bar icon
Private Const WS_POPUP As Long = &H80000000

‘Cleared to show a task bar icon
Private Const WS_VISIBLE As Long = &H10000000

And some of those for the extended window style are:

‘Controls if the window has an icon
Private Const WS_EX_DLGMODALFRAME As Long = &H1

‘Application Window: shown on taskbar
Private Const WS_EX_APPWINDOW As Long = &H40000

‘Tool Window: small titlebar
Private Const WS_EX_TOOLWINDOW As Long = &H80

Note that this is only a subset of all the possible window style bits. See the MSDN documentation for
Window Styles for the full list (http://msdn.microsoft.com/library/en-us/winui/winui/
WindowsUserInterface/Windowing/Windows/WindowReference/WindowStyles.asp) and the
API Viewer for their values.

623

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 623

The following example uses the preceding process to remove a UserForm’s close button, and it can be
found in the NoCloseButton.xlsm example in the code download at www.wrox.com:

‘Find the UserForm’s Window
Private Declare Function FindWindow Lib “user32” _

Alias “FindWindowA” (_
ByVal lpClassName As String, _
ByVal lpWindowName As String) As Long

‘Get the current window style
Private Declare Function GetWindowLong Lib “user32” _

Alias “GetWindowLongA” (_
ByVal hWnd As Long, _
ByVal nIndex As Long) As Long

‘Set the new window style
Private Declare Function SetWindowLong Lib “user32” _

Alias “SetWindowLongA” (_
ByVal hWnd As Long, _
ByVal nIndex As Long, _
ByVal dwNewLong As Long) As Long

Const GWL_STYLE = -16 ‘The standard syle
Const WS_SYSMENU = &H80000 ‘The system menu style bit

Private Sub UserForm_Initialize()
Dim hWnd As Long, lStyle As Long

‘1. Find the UserForm’s window handle
If Val(Application.Version) >= 9 Then

hWnd = FindWindow(“ThunderDFrame”, Me.Caption)
Else

hWnd = FindWindow(“ThunderXFrame”, Me.Caption)
End If

‘2. Get the current window style
lStyle = GetWindowLong(hWnd, GWL_STYLE)

‘3. Toggle the SysMenu bit, to turn off the system menu
lStyle = (lStyle And Not WS_SYSMENU)

‘4. Set the window to use the new style
SetWindowLong hWnd, GWL_STYLE, lStyle

End Sub

The CFormChanger Class
As mentioned previously in this chapter, API calls are much easier to use when they are encapsulated
within a class module. The CFormChanger class included in the FormFun.xlsm file at www.wrox.com
repeats the previous code snippet for all the windows style bits mentioned in the previous section, pre-
senting them as the following properties of the class:

624

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 624

❑ Modal

❑ Sizeable

❑ ShowCaption

❑ SmallCaption

❑ ShowIcon

❑ IconPath (to show a custom icon)

❑ ShowCloseBtn

❑ ShowMaximizeBtn

❑ ShowMinimizeBtn

❑ ShowSysMenu

❑ ShowTaskBarIcon

To use the class on your own forms, copy the entire class module into your project and call it from your
form’s Activate event, as in the following example. You can find this example in the ToolbarForm.xlsm
workbook at www.wrox.com:

Private Sub UserForm_Activate()

Dim oChanger As CFormChanger

‘Create a new instance of the CFormChanger class
Set oChanger = New CFormChanger

‘Set the form changer’s properties
oChanger.SmallCaption = True
oChanger.Sizeable = True

‘Tell the changer which form to apply the style changes to.
‘Also acts as the trigger for applying them
Set oChanger.Form = Me

End Sub

Resizable UserForms
In Office XP, Microsoft made the File ➪ Open and File ➪ Save As dialogs resizable. They remember their
position and size between sessions, greatly improving their usability. Using the same API calls shown in
the previous section and a class module to do all the hard work, you can give your users the same expe-
rience when interacting with your UserForms.

One of the curiosities of the UserForm object is that it has a Resize event, but it doesn’t have a property
to specify whether or not it is resizable — the Resize event only fires when the form is first displayed.
As shown in the previous example, you can provide your own Sizeable property by toggling the

625

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 625

WS_THICKFRAME window style bit; when you do this, the Userform_Resize event comes to life, trig-
gered every time the users change the size of the form (though not when they move it around the
screen). You can respond to this event by changing the size or position of all the controls on the form,
such that they make the best use of the UserForm’s new size.

There are two approaches that can be used to change the size or position of all the controls on the form:
absolute and relative.

Absolute Changes
Using an absolute approach, code has to be written to set the size and position of all the controls on the
form, relative to the form’s new dimensions and to each other. Consider a very simple form showing just
a ListBox and an OK button.

The code to resize and reposition the two controls using absolute methods is as follows:

Private Sub UserForm_Resize()

‘Handle the form’s resizing by specifying the new size and position
‘of all the controls

‘Use a standard gap of 6 points between controls
Const dGap = 6

‘Ignore errors caused by controls getting too small
On Error Resume Next

‘The OK button is in the middle ...
btnOK.Left = (Me.InsideWidth - btnOK.Width) / 2

‘... and at the bottom of the form, with a standard gap below it
btnOK.Top = Me.InsideHeight - dGap - btnOK.Height

‘The list’s width is the form’s width,
‘minus two gaps for the left and right edges
lstItems.Width = Me.InsideWidth - dGap * 2

‘The list should fill the space between the top of the form
‘and the top of the OK button, minus a gap top and bottom
lstItems.Height = btnOK.Top - dGap * 2

End Sub

It works, but has a few major problems:

❑ Specific code has to be written for every control that changes size or position, which can be a
daunting task for more complex forms. See the resize code in FormFun.xlsm for an example
of this.

❑ The size and position of controls are often dependent on the size and position of other controls
(such as the bottom of the ListBox being four pixels above the top of the OK button).

626

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 626

❑ If you modify the appearance of the form by adding or moving controls, you have to make cor-
responding changes to the resize code. For example, to add a Cancel button alongside the OK
button, you have to add code to handle the Cancel button’s repositioning and also change the
code for the OK button.

❑ There is no opportunity for code reuse.

Relative Changes
Using a relative approach, information is added to each control to specify by how much that control’s
size and position should change as the UserForm’s size changes. In the same dialog, the two controls
have the following relative changes:

❑ The OK button should move down by the full change in the form’s height (to keep it at the
bottom).

❑ The OK button should move across by half the change in the form’s width (to keep it in the
middle).

❑ The ListBox’s height and width should change by the full change in the form’s height and width.

These statements can be encoded into a single string to state the percentage change for each control’s
Top, Left, Height, and Width properties, and can be stored against the control. A convenient place to
store it is the control’s Tag property, which allows the resizing behavior of the control to be set at design
time. Using the letters T, L, H, and W for the four properties, and a decimal for the percentage change if
not 100%, gives the Tag properties of HW for the list box and TL0.5 for the OK button, as shown in
Figure 27-2.

Figure 27-2

When the UserForm_Resize event fires, the code can calculate the change in the form’s height and
width and iterate through all the controls, adjusting their Top, Left, Height, and Width as specified by
their Tag properties. The CFormResizer class to do this is shown in the next section.

There are a number of benefits to this approach:

❑ The resize behavior of each control is set at design time, while the form is being viewed, just like
all the other properties of the control.

❑ The change in size and position of each control is independent of any other control.

627

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 627

❑ Controls can be added, moved, or deleted without having to modify the Resize code or change
other controls’ resize behavior.

❑ The resize code can treat every control in exactly the same way; hence, every UserForm uses
exactly the same Resize code, which can be encapsulated in a separate class module.

The CFormResizer Class
By encapsulating all the resize code in a separate class module, any UserForm can be made resizable by
adding just six lines of code to instantiate and call into the class, and setting the resize behavior for each
control in its Tag property.

The CFormResizer class provides the following functionality:

❑ Sets the form to be resizable.

❑ Sets the initial size and position of the form, if it has been shown before.

❑ Resizes and repositions all the controls on the form, according to their Tag resizing string.

❑ Stores the form’s size and position in the registry, for use when the same form is shown again.

❑ Allows the calling code to specify a key name for storing the form dimensions in the registry.

❑ Prevents a form being resized in either direction if none of the controls are set to respond to
changes in height or width.

❑ Stops resizing when any control is moved to the left or top edge of the form, or when any
control is reduced to zero height or width.

The code for the CFormResizer class is as follows, with comments in the code to explain each section. It
is available for download in the FormResizer.xlsm workbook at www.wrox.com:

Option Explicit

‘Find the UserForm’s window handle
Private Declare Function FindWindow Lib “user32” _

Alias “FindWindowA” (_
ByVal lpClassName As String, _
ByVal lpWindowName As String) As Long

‘Get the UserForm’s window style
Private Declare Function GetWindowLong Lib “user32” _

Alias “GetWindowLongA” (_
ByVal hWnd As Long, _
ByVal nIndex As Long) As Long

‘Set the UserForm’s window style
Private Declare Function SetWindowLong Lib “user32” _

Alias “SetWindowLongA” (_
ByVal hWnd As Long, _
ByVal nIndex As Long, _
ByVal dwNewLong As Long) As Long

‘The offset of a window’s style

628

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 628

Private Const GWL_STYLE As Long = (-16)

‘Style to add a sizable frame
Private Const WS_THICKFRAME As Long = &H40000

Dim moForm As Object
Dim mhWndForm As Long
Dim mdWidth As Double
Dim mdHeight As Double
Dim msRegKey As String

‘Default for the registry key to store the dimensions
Private Sub Class_Initialize()

msRegKey = “Excel 2007 Prog Ref”
End Sub

‘Properties to identify where in the registry to store the UserForm
‘position information
Public Property Let RegistryKey(sNew As String)

msRegKey = sNew
End Property

Public Property Get RegistryKey() As String
RegistryKey = msRegKey

End Property

‘We’re told which form to handle the resizing for,
‘set in the UserForm_Initialize event.
‘Make the form resizable and set its size and position
Public Property Set Form(oNew As Object)

Dim sSizes As String, vaSizes As Variant
Dim iStyle As Long

‘Remember the form for later
Set moForm = oNew

‘Get the UserForm’s window handle
If Val(Application.Version) < 9 Then

‘XL97
mhWndForm = FindWindow(“ThunderXFrame”, moForm.Caption)

Else
‘XL2000 and 2002
mhWndForm = FindWindow(“ThunderDFrame”, moForm.Caption)

End If

‘Make the form resizable
iStyle = GetWindowLong(mhWndForm, GWL_STYLE)
iStyle = iStyle Or WS_THICKFRAME
SetWindowLong mhWndForm, GWL_STYLE, iStyle

‘Read its dimensions from the registry (if there)
‘The string has the form of “<Top>;<Left>;<Height>;<Width>”
sSizes = GetSetting(msRegKey, “Forms”, moForm.Name, “”)

629

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 629

‘Remember the current size for use in the Resize routine
mdWidth = moForm.Width
mdHeight = moForm.Height

If sSizes <> “” Then
‘If we got a dimension string, split it into its parts
vaSizes = Split(sSizes, “;”)

‘Make sure we got 4 elements!
ReDim Preserve vaSizes(0 To 3)

‘Set the form’s size and position
moForm.Top = Val(vaSizes(0))
moForm.Left = Val(vaSizes(1))
moForm.Height = Val(vaSizes(2))
moForm.Width = Val(vaSizes(3))

‘Set to manual startup position
moForm.StartUpPosition = 0

End If

End Property

‘Called from the User_Form resize event, also triggered when we change
‘the size ourself.

‘This is the routine that performs the resizing, by checking each control’s
‘Tag property, and moving/sizing it accordingly.
Public Sub FormResize()

Dim dWidthAdj As Double, dHeightAdj As Double
Dim bSomeWidthChange As Boolean
Dim bSomeHeightChange As Boolean
Dim sTag As String, sSize As String
Dim oCtl As MSForms.Control

Static bResizing As Boolean

‘Resizing can be triggered from within this routine,
‘so use a flag to prevent recursion
If bResizing Then Exit Sub
bResizing = True

‘Calculate the change in height and width
dHeightAdj = moForm.Height - mdHeight
dWidthAdj = moForm.Width - mdWidth

‘Check if we can perform the adjustment
‘(i.e. widths and heights can’t be negative)
For Each oCtl In moForm.Controls

‘Read the control’s Tag property, which contains the resizing info
sTag = UCase(oCtl.Tag)

‘If we’re changing the Top, check that it won’t move off the top

630

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 630

‘of the form
If InStr(1, sTag, “T”, vbBinaryCompare) Then

If oCtl.Top + dHeightAdj * ResizeFactor(sTag, “T”) <= 0 Then
moForm.Height = mdHeight

End If

bSomeHeightChange = True
End If

‘If we’re changing the Left, check that it won’t move off the
‘left of the form
If InStr(1, sTag, “L”, vbBinaryCompare) Then

If oCtl.Left + dWidthAdj * ResizeFactor(sTag, “L”) <= 0 Then
moForm.Width = mdWidth

End If

bSomeWidthChange = True
End If

‘If we’re changing the Height, check that it won’t go negative
If InStr(1, sTag, “H”, vbBinaryCompare) Then

If oCtl.Height + dHeightAdj * ResizeFactor(sTag, “H”) <= 0 Then
moForm.Height = mdHeight

End If

bSomeHeightChange = True
End If

‘If we’re changing the Width, check that it won’t go negative
If InStr(1, sTag, “W”, vbBinaryCompare) Then

If oCtl.Width + dWidthAdj * ResizeFactor(sTag, “W”) <= 0 Then
moForm.Width = mdWidth

End If

bSomeWidthChange = True
End If

Next ‘Control

‘If none of the controls move or size,
‘don’t allow the form to resize in that direction
If Not bSomeHeightChange Then moForm.Height = mdHeight
If Not bSomeWidthChange Then moForm.Width = mdWidth

‘Recalculate the height and width changes,
‘in case the previous checks reset them
dHeightAdj = moForm.Height - mdHeight
dWidthAdj = moForm.Width - mdWidth

‘Loop through all the controls on the form,
‘adjusting their position and size
For Each oCtl In moForm.Controls

With oCtl
sTag = UCase(.Tag)

‘Changing the Top

631

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 631

If InStr(1, sTag, “T”, vbBinaryCompare) Then
.Top = .Top + dHeightAdj * ResizeFactor(sTag, “T”)

End If

‘Changing the Left
If InStr(1, sTag, “L”, vbBinaryCompare) Then

.Left = .Left + dWidthAdj * ResizeFactor(sTag, “L”)
End If

‘Changing the Height
If InStr(1, sTag, “H”, vbBinaryCompare) Then

.Height = .Height + dHeightAdj * ResizeFactor(sTag, “H”)
End If

‘Changing the Width
If InStr(1, sTag, “W”, vbBinaryCompare) Then

.Width = .Width + dWidthAdj * ResizeFactor(sTag, “W”)
End If

End With
Next ‘Control

‘Remember the new dimensions of the form for next time
mdWidth = moForm.Width
mdHeight = moForm.Height

‘Store the size and position in the registry
With moForm

SaveSetting msRegKey, “Forms”, .Name, Str(.Top) & “;” & _
Str(.Left) & “;” & Str(.Height) & “;” & Str(.Width)

End With

‘Reset the recursion flag, now that we’re done
bResizing = False

End Sub

‘Function to locate a property letter (T, L, H or W) in the Tag string
‘and return the resizing factor for it
Private Function ResizeFactor(sTag As String, sChange As String)

Dim i As Integer, d As Double

‘Locate the property letter in the tag string
i = InStr(1, sTag, sChange, vbBinaryCompare)

‘If we found it...
If i > 0 Then

‘... read the number following it
d = Val(Mid$(sTag, i + 1))

‘If there was no number, use a factor of 100%
If d = 0 Then d = 1

End If

632

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 632

‘Return the factor
ResizeFactor = d

End Function

The code to use the CFormResizer class in a UserForm’s code module is as follows:

‘Declare an object for our CFormResizer class to handle
‘resizing for this form
Dim moResizer As CFormResizer

‘The Resizer class is set up in the UserForm_Initialize event
Private Sub UserForm_Initialize()

‘Create the instance of the class
Set moResizer = New CFormResizer

‘Tell it where to store the form dimensions
moResizer.RegistryKey = “Excel 2007 Prog Ref”

‘Tell it which form it’s handling
Set moResizer.Form = Me

End Sub

‘When the form is resized, the UserForm_Resize event is raised,
‘which we just pass on to the Resizer class
Private Sub UserForm_Resize()

moResizer.FormResize
End Sub

‘The OK button unloads the form
Private Sub btnOK_Click()

Unload Me
End Sub

‘The QueryClose event in called whenever the form is closed.
‘We call the FormResize method one last time, to store the form’s
‘final size and position in the registry
Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

moResizer.FormResize
End Sub

There are a few points to remember when using this approach in your own UserForms:

❑ The resizer works by changing the control’s Top, Left, Height, and Width properties in
response to changes in the UserForm size, according to the control’s resizing information.

❑ The control’s resizing information is set in its Tag property, using the letters T, L, H, or W fol-
lowed by a number specifying the resizing factor (if not 100%).

❑ The resizing factors must be in U.S. format, using a period as the decimal separator.

❑ If there are no controls that have T or H in their Tag strings, the form will not be allowed to
resize vertically.

633

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 633

❑ If there are no controls that have L or W in their Tag strings, the form will not be allowed to
resize horizontally.

❑ The smallest size for the form is set by the first control to be moved to the top or left edge, or to
have a zero width or height.

❑ This can be used to set a minimum size for the form by using a hidden label with a Tag of HW,
where the size of the label equals the amount that the form can be reduced in size. If the label is
set to zero height and width to start with, the UserForm can only be enlarged from its design-
time size.

❑ List boxes must have their IntegralHeight property set to False for this to work, but due
to an old bug, they may not fully display the very last item in the list. As a workaround, add a
blank entry as the last item in the list, and code to ignore it if it gets selected.

Summary
The functions defined in the Windows API provide a valuable and powerful extension to the VBA
developer’s tool set. The API Viewer provides the VBA definitions for most of the core functions. The
definitions for the remaining functions can be converted from the C-style versions shown in the online
MSDN library.

Class modules enable the user to encapsulate both the API definitions and their use into simple chunks
of functionality that are easy to use and reuse in VBA applications. A number of example classes and
routines have been provided in this chapter to get you started using the Windows API functions within
your applications, including:

❑ Creating a TEMP file

❑ A high-resolution timer

❑ Freezing a UserForm

❑ Getting system information

❑ Modifying a UserForm’s appearance

❑ Making UserForms resizable, with a minimum of code in the form

634

Chapter 27: Programming with the Windows API

30_046432 ch27.qxp 2/16/07 10:05 PM Page 634

Excel 2007 Object Model
Most of the objects in the Excel object model have objects with associated collections. The collec-
tion object is usually the plural form of the associated object. For example, the Worksheets collec-
tion holds a collection of Worksheet objects. For simplicity, each object and associated collection
will be grouped together under the same heading.

Common Proper ties with Collections
and Associated Objects

In most cases, the purpose of the collection object is only to hold a collection of the same objects.
The common properties and methods of the collection objects are listed in the following section.
Only unique properties, methods, or events are mentioned in each object section.

Common Collection Properties
Name Returns Description

Application Application Read-only. Returns a reference to the own-
ing application of the current object —
Excel, in this case

Count Long Read-only. Returns the number of objects
in the collection

Creator Long Read-only. Returns a Long number that
describes whether or not the object was
created in Excel

Parent Object The Parent object is the owning object of
the collection object. For example, Work-
books. Parent returns a reference to the
Application object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 635

Common Collection Methods
Name Returns Parameters Description

Item Single Object Index as Variant Returns the object from the col-
lection with the Index value
specified by the Index parame-
ter. The Index value may also
specify a unique string key
describing one of the objects in
the collection

Common Object Properties
Objects also have some common properties. To avoid redundancy, the common properties and methods
of all objects are listed next. They will be mentioned in each object description as existing, but are only
defined here.

Name Returns Description

Application Application Read-only. Returns a reference to the owning
application of the current object — Excel, in this
case

Creator Long Read-only. Returns a Long number that
describes whether or not the object was created
in Excel

Parent Object Read-only. The owning object of the current
object. For example, Characters. Parent may
return a reference to a Range object, since a
Range object is one of the possible owners of a
Characters object

Excel Objects and Their Proper ties,
Methods, and Events

The objects are listed in alphabetical order. Each object has a general description of the object and possible
parent objects. This is followed by a table format of each of the object’s properties, methods, and events.

AboveAverage Object
The AboveAverage object controls the attributes and specifications of a conditional formatting rule that
evaluates the values in a given scope or range against the average of that scope or range.

636

Common Collection Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 636

AboveAverage Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

AboveAverage Properties

Name Returns Description

AboveBelow xlAboveBelow Set/Get the conditional formatting rule looking
for values above or below the average. Use the
xlAboveBelow constants

AppliesTo Range Set/Get the range that is affected by the format-
ting rule

Borders Borders Read-only. Returns a collection that specifies the
cell borders for the formatting condition

CalcFor xlCalcFor Set/Get the scope of data to be evaluated in a
PivotTable report. Use the xlCalcFor constant

Font Font Read-only. Specifies the font formatting
attributes for the conditional formatting rule

FormatRow Boolean Set/Get the Boolean value specifying if the
entire Excel table row should be formatted. The
default value is False

Interior Interior Read-only. Specifies the interior formatting
attributes for the conditional formatting rule

NumberFormat Variant Set/Get the number format applied to a cell if
the conditional formatting rule evaluates to true

Priority Long Set/Get the priority value of a conditional for-
matting rule, determining the order of evalua-
tion when other rules are in effect

PTCondition Boolean Read-only. Indicates whether the formatting
rule is applied to a PivotTable chart

ScopeType xlPivot Set/Get the scope of the formatting rule when
Condition applied to a PivotTable chart. Use the
Scope xlPivotConditionScope constants

StopifTrue Boolean Set/Get a Boolean value that determines if addi-
tional formatting rules should be applied if the
current rule evaluates to True. The default
value is True

Type xlFormat Read-only. Returns an xlFormatConditionType
ConditionType constant that specifies the type of conditional for-

matting being applied. This object will always
return a value of 12 since it corresponds to the
XlAboveAverageCondition

637

AboveAverage Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 637

AboveAverage Methods

Name Returns Parameters Description

Delete Deletes the object

ModifyAppliesToRange Range As Range Sets the range for which the for-
matting rule will be applied

SetFirstPriority Sets the priority value for the for-
matting rule so that it is evalu-
ated before all other rules on the
worksheet

SetLastPriority Sets the priority value for the for-
matting rule so that it is evalu-
ated after all other rules on the
worksheet

AboveAverage Object Example
Sub CreateBelowAverageCondition()
Dim oFormatCondition As AboveAverage

‘Add a new Formatting rule
Set oFormatCondition = Range(“F6:F16”).FormatConditions.AddAboveAverage

‘Highlight all values that are below the average for the range.
oFormatCondition.AboveBelow = xlBelowAverage
oFormatCondition.Interior.Color = 7039480

End Sub

Action Object and the Actions Collection
The Action object represents an action to be executed in a PivotTable or sheet data, while the Actions
collection contains all Action objects for a given series. The Actions collection has properties outside
the common properties of Application, Count, Item, and Parent.

Action Properties

Name Returns Description

Caption String Read-only. Returns the caption assigned to a
given Action object

Content String Read-only. Returns the contents associated with
a given Action object

Coordinate String Read-only. Returns the coordinate property of a
given Action object

638

AboveAverage Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 638

Name Returns Description

Name String Read-only. Returns the Name of a given Action
object

Type XLActionType Read-only. Returns the action type for a given
Action object, defined by an XLActionType
constant

Add-In Object and the Addins Collection
The Addins collection holds all of the Addin objects available to Excel. The Add-In must be installed
(AddIn.Installed = True) to be able to use it in the current session. Examples of available Addin
objects in Excel include the Analysis Toolpack, the MS Query Add-In, and the Conditional Sum Wizard.

The Add method of the Addins collection can be used to add a new Addin to the collection. The Add
method requires a FileName to be specified (usually with an XLL or XLA file extension). The Count
property of the Addins collection returns the number of Add-Ins that are available for use by the current
Excel session.

Add-In Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Add-In Properties

Name Returns Description

CLSID String Read-only. Returns a unique identifier for the
Add-In

FullName String Read-only. Returns the full path and filename of
the associated Add-In

Installed Boolean Set/Get whether the Add-In can be used in the
current session

Name String Read-only. Returns the filename of the Add-In

Path String Read-only. Returns the full file path of the asso-
ciated Add-In

progID String Read-only. Returns the programmatic identifier
for object

Title String Read-only. This hidden property returns the
string shown in the Add-In Manager dialog box

639

Add-In Object and the Addins Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 639

AddIn Object and the AddIns Collection Example
This example ensures that the Analysis Toolpack is installed:

Sub UsingAnalysisToolpack():

Dim oAddin As AddIn
‘Make sure the Analysis Toolpack is installed
For Each oAddin In AddIns

If oAddin.Name = “analys32.xll” Then
If oAddin.Installed = True Then

MsgBox “True”
Else
MsgBox “False”

End If
End If

Next
End Sub

Note that instead of looping through the Addins collection, you could use the Add-In’s title:

Sub UsingAnalysisToolpack()
If AddIns(“Analysis Toolpak”).Installed = True Then

MsgBox “True”
Else

MsgBox “False”
End If

End Sub

Unfortunately, this approach may not work with a non-English User-Interface language, if the Add-In’s
title has been localized.

Adjustments Object
The Adjustments object holds a collection of numbers used to move the adjustment handles of the parent
Shape object. Each Shape object can have up to eight different adjustments. Each specific adjustment han-
dle can have one or two adjustments associated with it, depending on if it can be moved both horizontally
and vertically (two) or in just one dimension. Adjustment values are between 0 and 1 and hence are per-
centage adjustments — the absolute magnitude of a 100% change is defined by the shape being adjusted.

Adjustments Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Adjustments Properties

Name Returns Description

Count Long Read-only. Returns the number of adjustment
values associated with the parent Shape object

Item Single Parameters: Index As Long. Set/Get the
adjustment value or values indicated by the
Index parameter

640

AddIn Object and the AddIns Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 640

Adjustments Object Example
This example draws a block arrow on the sheet, and then modifies the dimensions of the arrow head:

Sub AddArrow()
Dim oShp As Shape

‘Add an arrow head to the sheet
Set oShp = ActiveSheet.Shapes.AddShape(_

msoShapeRightArrow, 10, 10, 100, 50)

‘Set the ‘head’ of the arrow to start 30% of the way across
‘and the ‘shaft’ to start 40% of the way down.
oShp.Adjustments(1) = 0.3 ‘Left/right
oShp.Adjustments(2) = 0.4 ‘Up/down

End Sub

AllowEditRange Object and the AllowEditRanges Collection
The AllowEditRange object represents a range of cells on a worksheet that can still be edited when
protected. Each AllowEditRange object can have permissions set for any number of users on your
network, and can have a separate password.

Be aware of the Locked property of the Range object when using this feature. When you unlock cells,
then protect the worksheet, you are allowing any user access to those cells, regardless of the
AllowEditRange objects. When each AllowEditRange object’s cells are locked, any user can still edit
them, unless you assign a password or add users and deny them permission without using a password.

The AllowEditRanges collection represents all AllowEditRange objects that can be edited on a pro-
tected worksheet. See the AllowEditRange object for more details.

AllowEditRanges Collection Properties

Name Returns Description

Count Long Read-only. Returns the number of Allow
EditRange objects that are contained in the area

Item AllowEditRange Parameter: Index As Variant. Returns a single
AllowEditRange object in the AllowEditRanges
collection

AllowEditRanges Collection Methods

Name Returns Parameters Description

Add AllowEditRange Title As String, Adds an AllowEditRange
Range As Range, object to the AllowEditRanges
[Password] As Variant collection

641

Adjustments Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 641

AllowEditRange Properties

Name Returns Description

Range Range Returns a subset of the ranges that can be edited
on a protected worksheet

Title String Returns or sets the title of the web page when
the document is saved as a web page

Users UserAccess List Returns the list of users who are allowed access
to the protected range on a worksheet

AllowEditRange Methods

Name Parameters Description

ChangePassword Password As String Sets the password for a range that can be edited
on a protected worksheet

Delete Deletes the object

Unprotect [Password] Removes any protection from a sheet or
workbook

AllowEditRange Object Example
The following routine creates an editable range on a protected worksheet, allowing a user to edit range
J2:M16 with the successful entry of the password. In this case, the password is unlock:

Sub AddAllowEditRange()
ActiveSheet.Protection.AllowEditRanges.Add _
Title:=”EditableRange”, _
Range:=Range(“J2:M16”), _
Password:=”unlock”

End Sub

Application Object
The Application object is the root object of the Excel object model. All the other objects in the Excel
object model can only be accessed through the Application object. Many objects, however, are globally
available. For example, the ActiveSheet property of the Application object is also available globally.
That means that the active worksheet can be accessed in at least two ways: Application.ActiveSheet
and ActiveSheet.

The Application object holds most of the application-level attributes that can be set through the
Options menu in Excel. For example, the DefaultFilePath is equivalent to the Default File Location
text box in the Save section of the Excel Options dialog box.

Many of the Application object’s properties and methods are equivalent to things that can be set with
the Options dialog box.

642

AllowEditRange Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 642

The Application object is also used when automating Excel from another application, such as Word.
The CreateObject function, the GetObject function, or the New keyword can be used to create a new
instance of an Excel Application object from another application. Please refer to Chapter 18 for exam-
ples of automation from another application.

The Application object can also expose events. However, Application events are not automatically
available for use. The following three steps must be completed before Application events can be used:

1. Create a new class module (perhaps called cAppObject) and declare a Public object variable in
a class (perhaps called AppExcel) to respond to events. For example:

Public WithEvents AppExcel As Excel.Application

❑ Now the Application object events will be available in the class for the AppExcel object
variable.

2. Write the appropriate event handling code in the class. For example, if you wanted a message to
appear whenever a worksheet was activated, you could write the following:

Private Sub AppExcel_SheetActivate(ByVal Sh As Object)
‘display worksheet name
MsgBox “The “ & Sh.Name & “ sheet has just been activated.”

End Sub

3. Finally, in a procedure in a standard module, instantiate the class created in the previous step
with a current Application object:

Private App As New cAppObject ‘class with the above code snippets
Sub AttachEvents()

Set App.AppExcel = Application
End Sub

The EnableEvents property of the Application object must also be set to True for events to be trig-
gered at the appropriate time.

Application Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Application Properties

Name Returns Description

ActiveCell Range Read-only. Returns the cell in the active sheet
where the cursor is located

ActiveChart Chart Read-only. Returns the currently selected chart
in the active workbook. If no chart is currently
selected, nothing is returned

ActivePrinter String Set/Get the name of the printer currently being
used

Table continued on following page

643

Application Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 643

Name Returns Description

ActiveSheet Object Read-only. Returns the currently active sheet in
the active workbook

ActiveWindow Window Read-only. Returns the currently selected Excel
window, if any

ActiveWorkbook Workbook Read-only. Returns the workbook that is cur-
rently active, if any

AddIns AddIns Read-only. Returns the collection of Add-Ins
currently available for use in Excel

AlertBefore Boolean Set/Get whether a message pops up any time
Overwriting an attempt to overwrite non-blank cells by a

drag-and-drop operation is made

AltStartupPath String Set/Get the alternative startup file location
folder for Excel

AlwayUseClearType Boolean Set/Get the Boolean value determining whether
ClearType is used to display fonts in menu, rib-
bon, and dialog box text

AnswerWizard Answer Read-only. Returns an object allowing
Wizard manipulation of the Answer Wizard

ArbitraryXML Boolean Read-only. Returns a Boolean value indicating if
Support the XML feature is available in Excel
Available

AskToUpdate Boolean Set/Get whether the user is prompted to update
Links links whenever a workbook with links is opened

Assistance Assistant Read-only. Returns an object representing the
Microsoft Office Help Viewer

Assistant Assistant Read-only. Returns an object allowing manipu-
lation of the Office Assistant

AutoCorrect AutoCorrect Read-only. Returns an object allowing modifica-
tion of Excel’s AutoCorrect features

AutoFormatAsYou Boolean Set/Get whether Excel automatically
TypeReplace formats/creates hyperlinks as you type
Hyperlinks

Automation Mso Set/Get the level of macro security used when
Security Excel opens a file programmatically
Automation
Security

AutoPercent Boolean Set/Get whether Excel automatically adds a %
Entry sign when typing a number into a cell that has a

Percentage format applied

644

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 644

Name Returns Description

AutoRecover AutoRecover Set/Get AutoRecover options such as Path and
Time interval

Build Long Read-only. Returns the exact build number
of Excel

Calculate Boolean Set/Get whether workbooks are calculated
BeforeSave before they are saved to disk. This assumes that

formula calculation is not set to automatic (Cal-
culation property)

Calculation XlCalculation Set/Get when calculations are made automati-
cally, manually, or semi-automatically

Calculation XlCalculation Set/Get the key that can interrupt Excel when
InterruptKey performing calculations
Interrupt
Key

Calculation XlCalculation Read-only. Indicates whether Excel calculations
State are in progress, pending, or done
State

Calculation Long Read-only. Returns the Excel version and
Version calculation engine version used when the file

was last saved

Caller Variant Read-only. Parameters: [Index]. Returns infor-
mation describing what invoked the current
Visual Basic code (for example, cell function,
document event)

CanPlaySounds Boolean Read-only. Returns whether audio notes are
heard in Excel. Property unused from Excel 2000
onward

CanRecord Boolean Read-only. Returns whether sound notes can be
Sounds recorded in Excel. Property unused from Excel

2000 onward

Caption String Set/Get the caption that appears in the main
Excel window

CellDragAnd Boolean Set/Get whether dragging and dropping cells is
Drop possible

Cells Range Read-only. Returns all the cells in the active sheet

Charts Sheets Read-only. Returns all the charts in the active
workbook

Table continued on following page

645

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 645

Name Returns Description

Clipboard Variant Read-only. Parameters: [Index]. Returns an
Formats array of format values (XlClipboardFormat)

that are currently in the clipboard

Columns Range Read-only. Returns all the columns in the
currently active sheet

COMAddIns COMAddIns Read-only. Returns the collection of installed
COM Add-Ins

CommandBars CommandBars Read-only. Returns the collection of command
bars available to Excel

CommandUnderlines XlCommand Set/Get how commands are underlined in
Underlines Excel. Used only on Macintosh systems

Constrain Set/Get whether only numbers and punctuation
Numeric Boolean marks are recognized by handwriting recogni-

tion. Used only by Windows for Pen Computing

Control Boolean Set/Get whether control characters are
Characters displayed for right-to-left languages. (Language

support must be installed)

CopyObjects Boolean Set/Get whether objects (such as embedded
WithCells objects) can be cut, copied, and sorted along

with cell data

Cursor XlMouse Set/Get which mouse pointer is seen in
Pointer Microsoft Excel

Cursor Set/Get what type of cursor is used: visual or
Movement Long logical

CustomList Read-only. Returns the number of custom and
Count Long built-in lists used in Excel (for example,

Monday, Tuesday, Wednesday()

CutCopyMode XlCutCopyMode Set/Get whether a cut or copy operation is
currently happening

DataEntryMode Long Set/Get whether locked cells can be edited
(xlOff for editing allowed, xlOn for editing of
unlocked cells only, xlStrict for editing of
unlocked cells only that cannot be canceled by
pressing Esc)

DDEAppReturnCode Long Read-only. Returns the result (confirmation/
error) of the last DDE message sent by Excel

DecimalSeparator String Set/Get the character used for the decimal sepa-
rator. This is a global setting and will affect all
workbooks when opened. Use Application
UseSystemSeparators = True to globally reset
custom separators

646

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 646

Name Returns Description

DefaultFile String Set/Get the default folder used when
Path opening files

DefaultSave XlFileFormat Set/Get the default file format used when
Format saving files

DefaultSheet Long Set/Get which direction new sheets will appear
Direction in Excel

DefaultWeb DefaultWeb Read-only. Returns an object allowing
Options manipulation of the items associated with the
Options Web Options dialog box

Dialogs Dialogs Read-only. Returns a collection of all the built-in
dialog boxes

DisplayAlerts Boolean Set/Get whether the user is prompted by typi-
cal Excel messages (for example, “Save Changes
to Workbook?”), or no prompts appear and the
default answer is always chosen

Display Boolean Set/Get whether the Clipboard window is
Clipboard displayed. Used in Microsoft Office Macintosh
Window Edition

Display XlComment Set/Get how Excel displays cell comments and
Comment indicators
Indicator
DisplayMode

Display Boolean Set to True to display the Document Actions
Document task pane
Action
TaskPane

DisplayDocument Boolean Set to True to display the Document Properties
InformationPanel panel

DisplayExcel4 Boolean Set/Get whether Excel displays Excel 4.0 menus
Menus

DisplayFormula Boolean Set to False to disable auto complete when
AutoComplete entering formulas

DisplayFormulaBar Boolean Set/Get whether the formula bar is displayed

DisplayFullScreen Boolean Set/Get whether the Excel is in full-screen mode

DisplayFunction Boolean Set/Get whether ToolTips for arguments appear
ToolTips in the cell when typing a function

Table continued on following page

647

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 647

Name Returns Description

DisplayInsert Boolean Set/Get whether the Insert Options drop-down
Options button appears next to a range after inserting

cells, rows, or columns

DisplayNote Boolean Set/Get whether comments inserted into cells
Indicator have a little note indicator at the top-right

corner of the cell

DisplayPaste Boolean Set/Get whether the Paste Options drop-down
Options button appears next to a range after a paste

operation. This is an Office XP setting and
therefore affects all other Office applications
that use this feature

DisplayRecent Boolean Set/Get whether the most recently opened files
Files are displayed under the Office Icon in the upper

left-hand corner of the application

DisplayScroll Boolean Set/Get whether scrollbars are displayed for all
Bars open workbooks in the current session

Display Boolean Set/Get whether the status bar is displayed
StatusBar

EditDirectly Boolean Set/Get whether existing cell text can be
InCell modified directly in the cell. Note that cell text

can still be overwritten directly

Enable Boolean Set/Get whether adding and deleting cells,
Animations rows, and columns are animated

EnableAuto Boolean Set/Get whether the AutoComplete feature
Complete is enabled

EnableKey XlEnable Set/Get how an Excel macro reacts when the
CancelKey user tries to interrupt the macro (for example,
CancelKey Ctrl+Break). This can be used to disable any

user interruption, send any interruption to the
error handler, or just stop the code (default). Use
with care

EnableEvents Boolean Set/Get whether events are triggered for any
object in the Excel object model that supports
events

EnableLarge Boolean Set to True to alert the user when an operation
OperationAlerts will affect the number of cells that exceeds the

number specified in the Office center UI

EnableLivePreview Boolean Set/Get whether to show gallery previews

EnableSound Boolean Set/Get whether sounds are enabled for Excel

648

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 648

Name Returns Description

ErrorChecking ErrorChecking Set/Get error-checking properties such as
Options Options BackgroundChecking, IndicatorColorIndex,

and InconsistentFormula. These options mir-
ror rules found in the Formulas section of the
Excel Options dialog box

Excel4Intl Sheets Read-only. Returns the collection of sheets
MacroSheets containing Excel 4 International macros

Excel4Macro Sheets Read-only. Returns the collection of sheets
Sheets containing Excel 4 macros

ExtendList Boolean Set/Get whether formatting and formulas are
automatically added when adding new rows or
columns to the existing lists of rows or columns

FeatureInstall MsoFeature Set/Get how Excel reacts when an Excel feature
Install is accessed that is not installed (through the

interface or programmatically)

FileConverters Variant Read-only. Parameters: [Index1], [Index2].
Returns an array of all the file converters avail-
able in Excel

FileDialog FileDialog Parameters: [fileDialogType]. Returns an
object that represents an instance of one of sev-
eral types of file dialog boxes

FileFind IFind Returns an object that can be used to search for
files. Used in Microsoft Office Macintosh Edition

FindFormat CellFormat Set/Get search criteria for the types of cell
formats to look for when using the Find and
Replace methods

FixedDecimal Boolean Set/Get whether any numbers entered in the
future will have the decimal points specified by
FixedDecimalPlaces

FixedDecimal Long Set/Get the decimal places used for any future
Places numbers

FormulaBarHeight Long Set/Get the height of the formula bar. The formula
bar cannot exceed the viewable window height

GenerateGet Boolean Set/Get whether Excel can get PivotTable
PivotData report data

GenerateTableRefs Boolean Determines whether the traditional notation
method or the new structured referencing
notation method is used for referencing tables
in formulas

Table continued on following page

649

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 649

Name Returns Description

Height Double Set/Get the height of Excel’s main application
window. The value cannot be set if the main
window is maximized or minimized

Hinstance Long Read-only. Returns the instance handle of the
instance that is calling Excel. Used mainly by
other custom applications like those written in
Visual Basic

Hwnd Long Read-only. Returns the top-level window
handle of the Excel window. Used mainly by
other custom applications like those written in
Visual Basic

IgnoreRemote Boolean Set/Get whether remote requests through DDE
Requests are ignored

Interactive Boolean Set/Get whether Excel accepts keyboard and
mouse input

International Variant Read-only. Parameters: [Index]. Returns
international settings for Excel. Use the
XlApplicationInternational constants as
one of the values of Index

Iteration Boolean Set/Get whether Excel will iterate through and
calculate all the cells in a circular reference try-
ing to resolve the circular reference. Use with
MaxIterations and MaxChange

Language Language Read-only. Returns an object describing the
Settings language settings in Excel
Settings

LargeOperation Long Set/Get the maximum number of cells that can
CellThousandCount be affected by a given operation before trigger-

ing an alert

Left Double Set/Get the left edge of Excel’s main application
window. The value cannot be set if the main
window is maximized or minimized

LibraryPath String Read-only. Returns the directory where Add-Ins
are stored

MailSession Variant Read-only. Returns the hexadecimal mail ses-
sion number or Null if mail session is active

MailSystem XlMailSystem Read-only. Returns what type of mail system is
being used by the computer (for example,
xlMapi, xlPowerTalk)

650

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 650

Name Returns Description

MapPaperSize Boolean Set/Get whether documents formatted for
another country’s/region’s standard paper size
(for example, A4) are automatically adjusted so
that they’re printed correctly on your coun-
try’s/region’s standard paper size (for example,
Letter)

MathCoprocessor Boolean Read-only. Returns whether a math coprocessor
Available is available

MaxChange Double Set/Get the minimum change between iterations
of a circular reference before iterations stop

MaxIterations Long Set/Get the maximum number of iterations
allowed for circular references before iterations
stop

MeasurementUnit xlMeasurement Set/Get the measurement unit used in the
Unit application with the xlMeasurementUnit

constants

MouseAvailable Boolean Read-only. Returns whether the mouse is available

MoveAfter Boolean Set/Get whether the current cell changes when
Return the user hits Enter

MoveAfter XlDirection Set/Get which direction the cursor will move
Return when the user hits Enter, changing the
Direction current cell

MultiThreaded MultThreaded Returns a MultThreadedCalculation object
Calculation that controls the multi-threaded recalculation
Calculation settings

Name String Read-only. Returns “Microsoft Excel”

Names Names Read-only. Returns the collection of defined
names in an active workbook

NetworkTemplates String Read-only. Returns the location on the network
Path where the Excel templates are kept, if any

NewWorkbook NewFile Returns a NewFile object

ODBCErrors ODBCErrors Read-only. Returns the collection of errors
returned by the most recent query or Pivot-
Table report that had an ODBC connection

ODBCTimeout Long Set/Get how long, in seconds, an ODBC
connection will be kept before timing out

OLEDBErrors OLEDBErrors Read-only. Returns the collection of errors
returned by the most recent query or Pivot-
Table report that had an OLEDB connection

Table continued on following page

651

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 651

Name Returns Description

OnWindow String Set/Get the procedure that is executed every
time a window is activated by the end user

Operating String Read-only. Returns the name and version of the
System operating system

OrganizationName String Read-only. Returns the organization name as
seen in the About Microsoft Excel dialog box

Path String Read-only. Returns the path where Excel is
installed

PathSeparator String Read-only. Returns a backslash (“\”) on a PC or
a colon “:” on a Macintosh

PivotTable Boolean Set/Get whether PivotTables use structured
Selection selection. For example, when selecting a Row

field title, the associated data is selected with it

Previous Variant Read-only. Parameters: [Index]. Returns an
Selections array of the last four ranges or named areas

selected by using the Name dialog box or Goto
feature

ProductCode String Read-only. Returns the GUID for Excel

PromptFor Boolean Set/Get whether the user is prompted to enter
SummaryInfo summary information when trying to save a file

Range Range Read-only. Parameters: Cell1, [Cell2].
Returns a Range object containing all the cells
specified by the parameters

Ready Boolean Read-only. Determines whether the Excel
application is ready

RecentFiles RecentFiles Read-only. Returns the collection of recently
opened files

RecordRelative Boolean Read-only. Returns whether recorded macros
use relative cell references (True) or absolute
cell references (False)

ReferenceStyle XlReference Set/Get how cells are referenced: Letter-
Style Number (for example, A1, A3) or RowNumber-

ColumnNumber (for example, R1C1, R3C1)

Registered Variant Read-only. Parameters: [Index1], [Index2].
Functions Returns the array of functions and function

details relating to external DLLs or code
resources. Using Add-Ins will add external
DLLs to your workbook

652

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 652

Name Returns Description

ReplaceFormat CellFormat Set/Get replacement criteria for the types of cell
formats to replace when using the Replace
method

RollZoom Boolean Set/Get whether scrolling with a scroll mouse
will zoom instead of scroll

Rows Range Read-only. Returns all the rows in the active sheet

RTD RTD Read-only. Returns a reference to a real-time
date (RTD) object connected to an RTD Server

ScreenUpdating Boolean Set/Get whether Excel updates its display while
a procedure is running. This property can be
used to speed up procedure code by turning off
screen updates (setting the property to False)
during processing. Use with the ScreenRefresh
method to manually refresh the screen

Selection Object Read-only. Returns whatever object is currently
selected (for example, sheet, chart)

Sheets Sheets Read-only. Returns the collection of sheets in the
active workbook

SheetsInNew Long Set/Get how many blank sheets are put in a
Workbook newly created workbook

ShowChartTip Boolean Set/Get whether charts show the tip names
Names over data points

ShowChartTip Boolean Set/Get whether charts show the tip values
Values over data points

ShowDevTools Boolean Set to True to display the Developer tab

ShowMenuFloaties Boolean Set to False to disable mini-toolbars when
right-clicking in the workbook window

ShowSelection Boolean Set to False to disable mini-toolbars when
Floaties selecting text

ShowStartup Boolean Set/Get whether the New Workbook task pane
Dialog appears when loading the Excel application

ShowToolTips Boolean Set/Get whether ToolTips are shown in Excel

ShowWindowsIn Boolean Set/Get whether each workbook is visible on
Taskbar the taskbar (True) or only one Excel item is visi-

ble in the taskbar (False)

SmartTag SmartTag Read-only. Returns a collection of SmartTag
Recognizers recognition engines (recognizers) currently
Recognizers being used in the application

Table continued on following page

653

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 653

Name Returns Description

Speech Speech Read-only. Allows access to the properties and
methods used to programmatically control the
Office speech tools

Spelling Spelling Read-only. Allows access to the spelling options
Options of the application
Options

StandardFont String Set/Get what font is used as the standard
Excel font

Standard Double Set/Get what font size is used as the standard
FontSize Excel font size (in points)

StartupPath String Read-only. Returns the folder used as the Excel
startup folder

StatusBar Variant Set/Get the status bar text. Returns False if
Excel has control of the status bar. Set to False
to give control of the status bar to Excel

TemplatesPath String Read-only. Returns the path to the Excel templates

ThisCell Range Set/Get the cell in which a user-defined func-
tion is being called

ThisWorkbook Workbook Read-only. Returns the workbook that contains
the currently running VBA code

Thousands String Set/Get the character used for the thousands
Separator separator. This is a global setting and will affect

all workbooks when opened. Use Application
UseSystemSeparators = True to globally reset
custom separators

Top Double Set/Get the top of Excel’s main application
window. The value cannot be set if the main
window is maximized or minimized

Transition String Set/Get what key is used to bring up Excel’s
MenuKey menu. The forward slash key (“/”) is the default

Transition Long Set/Get what happens when the Transition
MenuKeyAction Menu key is pressed. Either Excel menus appear

(xlExcelMenu) or the Lotus Help dialog box
(xlLotusHelp) appears

Transition Boolean Set/Get whether the Transition Navigation keys
NavigKeys are active. These provide different key combina-

tions for moving and selecting within a worksheet

UsableHeight Double Read-only. Returns the vertical space available
in Excel’s main window, in points, that is avail-
able to a sheet’s Window. The value will be 1 if
there is no space available

654

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 654

Name Returns Description

UsableWidth Double Read-only. Returns the horizontal space avail-
able in Excel’s main window, in points, that is
available to a sheet’s Window. This property’s
value will be invalid if no space is available.
Check the value of the UsableHeight property
to check to see if there is any space available (>1)

UsedObjects UsedObjects Read-only. Represents objects allocated in a
workbook

UseLegacy Boolean Set to True to enable the use of legacy keyboard
KeyboardShortcuts shortcuts

UserControl Boolean Read-only. True if the current Excel session was
started by a user, and False if the Excel session
was started programmatically

UserLibraryPath String Read-only. Returns the location of Excel’s COM
Add-Ins

UserName String Set/Get the user name in Excel. Note that this is
the name shown in the General tab of the
Options dialog box, and not the current user’s
network ID or the name shown in the Excel
splash screen

UseSystem Boolean Set/Get whether the system operators in Excel
Separators are enabled. When set to False, you can use

Application.DecimalSeparator and
Application.ThousandsSeparator to over-
ride the system separators, which are located in
the Regional Settings/Options applet in the
Windows Control Panel

Value String Read-only. Returns “Microsoft Excel”

VBE VBE Read-only. Returns an object allowing
manipulation of the Visual Basic Editor

Version String Read-only. Returns the version of Excel

Visible Boolean Set/Get whether Excel is visible to the user

WarnOnFunction Boolean Set to True, this property raises an alert when a
NameConflict newly created function is given a name that

duplicates an existing function name

Watches Watches Read-only. Returns a Watches object that repre-
sents all of the ranges that are tracked when a
worksheet is calculated

Table continued on following page

655

Application Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 655

Name Returns Description

Width Double Set/Get the width of Excel’s main application
window. The value cannot be set if the main
window is maximized or minimized

Windows Windows Read-only. Returns all the Windows open in the
current Excel session

WindowsForPens Boolean Read-only. Returns whether Excel is running in
a Windows for Pen Computing environment

WindowState xlWindowState Set/Get whether the window is maximized,
XlWindow minimized, or in a normal state

Workbooks Workbooks Read-only. Returns all the open workbooks (not
including Add-Ins) in the current Excel session

Worksheet Worksheet Read-only. Returns an object holding all the
Function Excel’s worksheet functions that can be used
Function in VBA

Worksheets Sheets Read-only. Returns all the worksheets in the
active workbook

Application Methods

Name Returns Parameters Description

Activate Index As XlMS Activates an application specified
MicrosoftApp Application by XlMSApplication. Opens the

application if it is not open. Acts in
a similar manner as the GetObject
function in VBA

AddCustomList ListArray, Adds the array of strings specified
[ByRow] by ListArray to Excel’s custom

lists. The ListArray may also be a
cell range

Calculate Calculates all the formulas in all
open workbooks that have changed
since the last calculation. Only appli-
cable if using manual calculation

CalculateFull Calculates all the formulas in all
open workbooks. Forces recalcula-
tion of every formula in every
workbook, regardless of whether or
not it has changed since the last
calculation

656

Application Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 656

Name Returns Parameters Description

CalculateFullRebuild Forces a full calculation of the data
and rebuilds the dependencies for
all open workbooks. Note that
dependencies are the formulas that
depend on other cells

CalculateUnit Runs all pending queries to OLEDB
AsyncQueries and OLAP data sources
Done

CentimetersTo Double Centimeters Converts the Centimeters
Points As Double parameter to points, where

1 cm = 28.35 points

CheckAbort – [KeepAbort] Stops any recalculations in an Excel
application

CheckSpelling Boolean Word As String, Checks the spelling of the Word
[Custom parameter and returns True if the
Dictionary], spelling is correct, or False if there
[Ignore Uppercase] are errors

Convert Variant Formula, Converts the Formula parameter
Formula FromReference between R1C1 references and

Style As A1 references and returns the
XlReference converted formula. Also, can
Style, change the Formula parameter
[ToReference between relative references and
Style], absolute references using the
[ToAbsolute], ToReferenceStyle parameter and
[RelativeTo] the XlReferenceStyle constants

DDEExecute Channel As Long, Sends a Command to an application
String As String using DDE through the given

Channel number. The properties
starting with DDE are associated
with the older technology, Dynamic
Data Exchange, which was used to
share data between applications

DDEInitiate Long App As String, Returns a channel number to use
Topic As String for DDE given an application name

and the DDE topic

DDEPoke Channel As Long, Sends Data to an item in an
Item, Data application using DDE through

the given Channel number

DDERequest Variant Channel As Long, Returns information, given a
Item As String specific DDE channel and a

requested item

Table continued on following page

657

Application Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 657

Name Returns Parameters Description

DDETerminate Channel As Long Closes the specified DDE channel

DeleteCustom ListNum As Long Deletes the custom list specified by the
List list number. The first four lists are built

into Excel and cannot be removed

DisplayXML Activates the XML Source task pane
SourcePane

DoubleClick Triggered by a double-click to the
active cell in the active sheet

Evaluate Variant Name Evaluates the Name string expression as
if it were entered into a worksheet cell

ExecuteExcel4 Variant String As String Executes the Excel 4 macro specified
Macro by the String parameter and returns

the results

FindFile Boolean Shows the Open dialog box, allowing
the user to choose a file to open. True
is returned if the file opens successfully

GetCustomList Variant ListNum As Long Returns the custom list specified by
Contents the ListNum parameter as an array of

strings

GetCustom Long ListArray Returns the list number for the custom
ListNum list that matches the given array of

strings. 0 is returned if nothing matches

GetOpen Variant FileFilter], The Open dialog box is displayed with
Filename [FilterIndex], the optional file filters, titles, and but-

[Title], ton texts specified by the parameters.
[ButtonText], The filename and path are returned
[MultiSelect] from this method call. Optionally, can

return an array of filenames if the
MultiSelect parameter is True.
Does not actually open the file

GetPhonetic String [Text] Returns the phonetic text of the
Japanese characters in the Text param-
eter. If no Text parameter is specified,
then an alternate phonetic text of the
previous Text parameter is returned

GetSaveAs Variant [Initial The Save As dialog box is displayed
Filename Filename], with the optional default filename, file

[FileFilter], filters, titles, and button texts specified
[FilterIndex], by the parameters. The filename and
[Title], path are returned from this method call.
[ButtonText] Does not actually save the file

658

Application Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 658

Name Returns Parameters Description

Goto [Reference], Selects the object specified by the
[Scroll] Reference parameter and activates

the sheet containing that object. The
Reference parameter can be a cell,
a range, or the name of a VBA proce-
dure. The Scroll parameter, if set
to True, will scroll the selected object
to the top-left corner of the Excel
window

Help [HelpFile], Displays the Help topic specified by
[HelpContextID] the HelpContextID parameter in the

Help file HelpFile

InchesTo Double Inches As Double Converts the Inches parameter to
Points points and returns the new value

(1 inch = 72 points)

InputBox Variant Prompt As String, Displays a simple input box, very
[Title], similar to a standard VBA one.
[Default], However, the [Type] parameter can
[Left], [Top], be used to set the return type to a
[HelpFile], formula (0), a number (1), text (2), a
[HelpContextID], Boolean (4), a cell reference (8), an
[Type] error value (16), or an array of val-

ues (64)

Intersect Range Arg1 As Range, Returns the intersection or overlap of
Arg2 As Range, the ranges specified by the parameters
[Arg3], [Arg30] as a Range object

MacroOptions [Macro], Allows modification of macro attributes
[Description], such as the name, description, shortcut
[HasMenu], key, category, and associated Help file.
[MenuText], Equivalent to the Macro Options
[HasShortcut Key], dialog box
[ShortcutKey],
[Category],
[StatusBar],
[HelpContext ID],
[HelpFile]

MailLogoff Logs off the current MAPI mail session
(for example, Exchange, Outlook)

MailLogon [Name], [Password], Logs on to the default MAPI mail
[DownloadNewMail] client (for example, Exchange, Outlook).

Credentials such as name and password
can be specified

Table continued on following page

659

Application Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 659

Name Returns Parameters Description

NextLetter Workbook Used in Macintosh systems with
PowerTalk mail extensions to open the
oldest unread workbook from the In
Tray. Generates an error in Windows

OnKey Key As String, Executes the procedure specified by
[Procedure] the Procedure parameter whenever the

keystroke or key combination described
in the Key parameter is pressed

OnRepeat Text As String, Specifies the procedure that will run
Procedure As when the user chooses the Repeat
String command

OnTime EarliestTime, Chooses a procedure to run at the
Procedure As time specified by the EarliestTime
String, parameter. Uses the LatestTime
[LatestTime], parameter to specify a time range
[Schedule]

OnUndo Text As String, Specifies the procedure to run when
Procedure As the user chooses the Undo command
String

Quit Shuts down Microsoft Excel

RecordMacro [Basic Code], If the user is currently recording a
[XlmCode] macro, running this statement will put

the code specified in the BasicCode
parameter into the currently recording
macro

RegisterXLL Boolean Filename As String Loads the code resource specified by
the Filename parameter, and registers
all the functions and procedures in that
code resource

Repeat Repeats the last user action made.
Must be the first line of a procedure

Run Variant [Macro], [Arg1], Runs the macro or procedure specified
[Arg2], ([Arg30] by the Macro parameter. Can also run

Excel 4.0 macros with this method

SaveWorkspace [Filename] Saves the current workspace to the
Filename parameter

SendKeys Keys, [Wait] Sends the keystrokes in the Keys
parameter to Microsoft Excel user
interface

Undo Undoes the last action done with the
user interface

660

Application Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 660

Name Returns Parameters Description

Union Range Arg1 As Range, Returns the union of the ranges
Arg2 As Range, specified by the parameters
[Arg3], ([Arg30]

Volatile [Volatile] Sets the function that currently con-
tains this statement to be either volatile
(Volatile parameter to True) or not.
A volatile function will be recalculated
whenever the sheet containing it is
calculated, even if its input values have
not changed

Wait Boolean Time Pauses the macro and Excel until the
time in the Time parameter is reached

Application Events

Name Parameters Description

AfterCalculate Triggered when all refresh and calculation activ-
ities have been completed

CalculationDone Wb As Workbook Triggered after a calculation has been executed

NewWorkbook Wb As Workbook Triggered when a new workbook is created. The
new workbook is passed into the event

SheetActivate Sh As Object Triggered when a sheet is activated (brought up
to front of the other sheets). The activated sheet
is passed into the event

SheetBefore Sh As Object, Triggered when a sheet is about to be double-
DoubleClick Target As Range, clicked. The sheet and the potential double-click

Cancel As spot are passed into the event. The double-click
Boolean action can be canceled by setting the Cancel

parameter to True

SheetBefore Sh As Object, Triggered when a sheet is about to be right-
RightClick Target As Range, clicked. The sheet and the potential right-click

Cancel As Boolean spot are passed into the event. The right-click
action can be canceled by setting the Cancel
parameter to True

SheetCalculate Sh As Object Triggered when a sheet is recalculated, passing
in the recalculated sheet

SheetChange Sh As Object, Triggered when a range on a sheet is changed,
Target As Range for example, by clearing the range, entering data,

deleting rows or columns, pasting data, and so
on. Not triggered when inserting rows/columns

Table continued on following page

661

Application Events

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 661

Name Parameters Description

Sheet Sh As Object Triggered when a sheet loses focus. Passes in
Deactivate the sheet

SheetFollow Sh As Object, Triggered when the user clicks a hyperlink
Hyperlink Target As on a sheet. Passes in the sheet and the clicked

Hyperlink hyperlink

SheetPivot ByVal Sh As Object, Triggered by an update of the PivotTable
TableUpdate Target report. Passes in the sheet and the PivotTable

As PivotTable report

SheetSelection Sh As Object, Triggered when the user selects a new cell in
Change Target As Range a worksheet. Passes in the new range and the

sheet where the change occurred

Window Wb As Workbook, Triggered when a workbook window is
Activate Wn As Window activated (brought up to the front of other work-

book windows). The workbook and the window
are passed in

Window Wb As Workbook, Triggered when a workbook window loses
Deactivate Wn As Window focus. The related workbook and the window

are passed in

WindowResize Wb As Workbook, Triggered when a workbook window is resized.
Wn As Window The resized workbook and window are passed

into the event. Not triggered when Excel is
resized

Workbook Wb As Workbook Triggered when a workbook is activated
Activate (brought up to the front of other workbook

windows). The workbook is passed in

WorkbookAddin Wb As Workbook Triggered when an Add-In is added to Excel
Install that is also a workbook. The Add-In workbook

is passed into the event

WorkbookAddin Wb As Workbook Triggered when an Add-In is removed to Excel
Uninstall that is also a workbook. The Add-In workbook

is passed into the event

WorkbookAfter Wb As Workbook Triggered after XML data that is mapped to a
XMLExport Map As XMLMap worksheet is exported

URL As String
Result As
xlxmlexportresult

WorkbookAfter Wb As Workbook Triggered after an existing XML data mapping
XMLImport Map As XMLMap is refreshed or new XML data is imported into

IsRefresh As an existing XML map
Boolean Result As
xlxmlimporttresult

662

Application Events

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 662

Name Parameters Description

Workbook Wb As Workbook, Triggered just before a workbook is closed. The
BeforeClose Cancel As Boolean workbook is passed into the event. The closure

can be canceled by setting the Cancel parameter
to True

Workbook Wb As Workbook, Triggered just before a workbook is printed. The
BeforePrint Cancel As workbook is passed into the event. The printing

Boolean can be canceled by setting the Cancel parameter
to True

Workbook Wb As Workbook, Triggered just before a workbook is saved. The
BeforeSave SaveAsUI As workbook is passed into the event. The saving

Boolean, Cancel As can be canceled by setting the Cancel parameter
Boolean to True. If the SaveAsUI is set to True, then

the Save As dialog box appears

WorkbookBefore Wb As Workbook, Triggered before XML data that is mapped to a
XMLExport Map As XMLMap, worksheet is exported

URL As String
Cancel As Boolean

WorkbookBefore Wb As Workbook, Triggered before an existing XML data mapping
XMLImport Map As XMLMap is refreshed or new XML data is imported into

URL As String an existing XML map

Workbook Wb As Workbook Triggered when a workbook loses focus. The
Deactivate related workbook and the window are passed in

Workbook Wb As Workbook, Sh Triggered when a new sheet is added to a
NewSheet As Object workbook. The workbook and new sheet are

passed into the event

WorkbookOpen Wb As Workbook Triggered when a workbook is opened. The
newly opened workbook is passed into the event

WorkbookPivot ByVal Wb As Triggered when a PivotTable report
TableClose Workbook, Target connectionis closed. The selected workbook and
Connection As PivotTable PivotTable report are passed into this event

WorkbookPivot ByVal Wb As Triggered when a PivotTable report connec-
TableOpen Workbook, Target tion is opened. The selected workbook and
Connection As PivotTable PivotTable report are passed into this event

WorkbookRowset Wb As Workbook Triggered when the user either drills through
Complete Description As the recordset or invokes the rowset action on an

String OLAP PivotTable
Sheet As String
Success As Boolean

WorkbookPivot Wb As Workbook Triggered when the local copy of a workbook
TableOpen SyncEventType As that is part of a Document Workspace is
Connection MsoSyncEventType synchronized with the copy on the server

663

Application Events

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 663

Application Object Example
This example demonstrates how to use Application.GetOpenFilename to get the name of a file to
open. The key to using this function is to assign its return value to a Variant data type:

Sub UsingGetOpenFilename()
Dim sFilter As String
Dim vaFile As Variant

‘Build a filter list.
sFilter = “Excel 2007 Files,*.xlsx,” & _

“Excel 2000-2003 Files,*.xls”
‘Display the File Open dialog, putting the result in a Variant

vaFile = Application.GetOpenFilename(FileFilter:=sFilter, FilterIndex:=1, _
Title:=”Open a New or Old File”, MultiSelect:=False)

‘If user cancelled, then exit, else open the selected file.
If vaFile <> False Then

Workbooks.Open Filename:=vaFile
Else
MsgBox “Action Cancelled”

End If
End Sub

Areas Collection
The Areas collection holds a collection of Range objects. Each Range object represents a block of cells
(for example, A1:A10) or a single cell. The Areas collection can hold many ranges from different parts
of a workbook. The parent of the Areas collection is the Range object.

Areas Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Areas Properties

Name Returns Description

Count Long Read-only. Returns the number of Range objects that are
contained in the area

Item Range Parameter: Index As Long. Returns a single Range object
in the Areas collection. The Index parameter corresponds
to the order of the ranges selected

Areas Collection Example
When using a Range containing a number of different areas, you cannot use code like
rgRange.Cells(20).Value if the 20th cell is not inside the first area in the range. This is because
Excel only looks at the first area, implicitly doing rgRange.Areas(1).Cells(20).Value, as this
example shows — with a function to provide a workaround:

664

Application Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 664

Sub TestMultiAreaCells()
Dim oRNg As Range
‘Define a multi-area range
Set oRNg = Range(“D2:F5,H2:I5”)
‘The 12th cell should be F5.

MsgBox “Rng.Cells(12) is “ & oRNg.Cells(12).Address & _
vbCrLf & “Rng.Areas(1).Cells(12) is “ & oRNg.Areas(1).Cells(12).Address & _
vbCrLf & “MultiAreaCells(oRng, 12) is “ & MultiAreaCells(oRNg, 12).Address

‘The 13th cell of the multi-area range should be H2,
‘that is the first cell in the second area.

MsgBox “Rng.Cells(13) is “ & oRNg.Cells(13).Address & _
vbCrLf & “Rng.Areas(1).Cells(13) is “ & oRNg.Areas(1).Cells(13).Address & _
vbCrLf & “MultiAreaCells(Rng, 13) is “ & MultiAreaCells(oRNg, 13).Address

End Sub

Function MultiAreaCells(oRange As Range, iCellNum As Long) As Range
Dim iTotCells As Long, oArea As Range
‘Loop through all the areas in the range,
‘starting again from the first if we run out

Do
For Each oArea In oRange.Areas

‘Is the cell we want in this area?
‘Return it and exit if Yes

If iTotCells + oArea.Cells.Count >= iCellNum Then
Set MultiAreaCells = oArea.Cells(iCellNum - iTotCells)
Exit Function
Else
iTotCells = iTotCells + oArea.Cells.Count

End If
Next
Loop

End Function

AutoCorrect Object
The AutoCorrect object represents all of the functionality of the Excel’s AutoCorrect features.

AutoCorrect Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

AutoCorrect Properties

Name Returns Description

AutoExpand Boolean Set to True to enable automatic expansion in lists
ListRange

AutoFillFormulasInLists Boolean Set to True to enable the creation of calculated
columns created by automatic fill-down lists

Table continued on following page

665

AutoCorrect Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 665

Name Returns Description

Capitalize Boolean Set/Get whether the first letters of days of the
NamesOfDays week are capitalized

CorrectCaps Boolean Set/Get whether typing mistakes made by leaving
Lock the Caps Lock on are automatically corrected

Correct Boolean Set/Get whether the first letter of a sentence is
SentenceCap capitalized if accidentally left in lowercase

DisplayAuto Boolean Displays/Hides the AutoCorrect Options button.
Correct The default value is True. This is an Office-wide
Options setting. Changing it in Excel will also affect all the

other Office applications

Replacement Boolean Returns a multidimensional array of strings. The
List first column of the array holds the word that will

be changed, and the second column holds the
replaced text. The Index parameter can be used to
return an array containing a single word and its
replacement

ReplaceText Boolean Set/Get whether Excel will automatically replace
certain words with words from the AutoCorrect
list

TwoInitial Boolean Set/Get whether Excel will automatically change
Capitals the second letter of a word to lowercase if the first

letter is uppercase

AutoCorrect Methods

Name Returns Parameters Description

Add Variant What As String, Adds a word (the What parameter)
Replacement Replacement As that will be automatically replaced

String with another word (the Replacement
parameter) to the ReplacementList
list array

Delete Variant What As String Deletes a word from the
Replacement ReplacementList list so that it does

not get replaced with another word
automatically

666

AutoCorrect Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 666

AutoCorrect Object Example
This example uses the AutoCorrect object to find the replacement to use for a given word:

Sub TestAutoCorrect()
MsgBox “‘(c)’ is replaced by “ & UseAutoCorrect(“(c)”)

End Sub

Function UseAutoCorrect(ByVal sWord As String) As String
Dim i As Integer
Dim vaRepList As Variant
Dim sReturn As String
‘Default to returning the word we were given

sReturn = sWord
‘Get the replacement list into an array

vaRepList = Application.AutoCorrect.ReplacementList
‘Go through the replacement list

For i = LBound(vaRepList) To UBound(vaRepList)
‘If there is a match, return the replacement text, else exit loop.

If vaRepList(i, 1) = sWord Then
sReturn = vaRepList(i, 2)
Exit For

End If
Next
‘Return the word, or its replacement if it has one
UseAutoCorrect = sReturn

End Function

AutoFilter Object
The AutoFilter object provides the functionality equivalent to the AutoFilter feature in Excel. This
object can programmatically filter a range of text for specific types of rows, hiding the rows that do not
meet the filter criteria. Examples of filters include top 10 rows in the column, rows matching specific
values, and non-blank cells in the row. The parent of the AutoFilter object is the Worksheet object
(implying that a worksheet can have only one AutoFilter).

The AutoFilter object is used with the AutoFilter method of the Range object and the
AutoFilterType property of the Worksheet object.

AutoFilter Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

667

AutoCorrect Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 667

AutoFilter Properties

Name Returns Description

Filter Boolean Set/Get whether a given worksheet is in the AutoFilter
Mode filter mode

Filters Filters Read-only. Returns the collection of filters associated with the
range that was auto-filtered (for example, non-blank rows)

Range Range Read-only. Returns the group of cells that have an AutoFilter
applied to them

Sort Sort Controls the attributes and specifications of a sort with the
AutoFilter object

AutoFilter Methods

Name Returns Parameters Description

ApplyFilter Applies the specified filters

ShowAllData Removes any specified filters

AutoFilter Object Example
This example demonstrates how to use the AutoFilter, Filters, and Filter objects by displaying the
complete set of auto-filters currently in use:

Sub ShowAutoFilterCriteria()
Dim oAF As AutoFilter, oFlt As Filter
Dim sField As String
Dim sCrit1 As String, sCrit2 As String
Dim sMsg As String, i As Integer
‘Check if the sheet is not filtered, then exit

If ActiveSheet.AutoFilterMode = False Then
MsgBox “The sheet does not have an AutoFilter”
Exit Sub

End If
‘Get the sheet’s AutoFilter object

Set oAF = ActiveSheet.AutoFilter
‘Loop through the Filters of the AutoFilter

For i = 1 To oAF.Filters.Count
‘Get the field name from the first row of the AutoFilter range

sField = oAF.Range.Cells(1, i).Value
‘Get the Filter object

Set oFlt = oAF.Filters(i)
‘If it is on, then get the standard filter criteria

If oFlt.On Then
sMsg = sMsg & vbCrLf & sField & oFlt.Criteria1

‘If it’s a special filter, show it

668

AutoFilter Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 668

Select Case oFlt.Operator
Case xlAnd

sMsg = sMsg & “ And “ & sField & oFlt.Criteria2
Case xlOr

sMsg = sMsg & “ Or “ & sField & oFlt.Criteria2
Case xlBottom10Items

sMsg = sMsg & “ (bottom 10 items)”
Case xlBottom10Percent

sMsg = sMsg & “ (bottom 10%)”
Case xlTop10Items

sMsg = sMsg & “ (top 10 items)”
Case xlTop10Percent

sMsg = sMsg & “ (top 10%)”
End Select

End If
Next

‘Construct a no filters message if no filters applied
If sMsg = “” Then

sMsg = “The range “ & oAF.Range.Address & “ is not filtered.”
Else

‘Construct a message showing any filters that are applied
sMsg = “The range “ & oAF.Range.Address & “ is filtered by:” & sMsg

End If
‘Display the message

MsgBox sMsg
End Sub

AutoRecover Object
This object allows access to the AutoRecover settings for the Excel application. These settings can be
found on the Save section of the Excel Options dialog. Note that each workbook can choose whether or
not to have AutoRecover applied to it — also located on the Save tab.

AutoRecover Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

AutoRecover Properties

Name Returns Description

Enabled Boolean Set/Get whether the AutoRecover object is enabled

Path String Set/Get the complete path to where the AutoRecover
temporary files are saved

Time Long Set/Get the time interval for the AutoRecover object.
Permissible values are integers from 1 to 120 minutes
(default 10)

669

AutoRecover Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 669

AutoRecover Object Example
The following subroutine and function sets AutoRecover properties, then ensures that the workbook the
code is in uses them:

Sub SetAutoRecoverOptions()
‘Set the AutoRecover options for the application

ChangeAutoRecoverSettings True, “C:\Backup Files\AutoRecover\Excel”, 2
‘Make sure this workbook uses them

ThisWorkbook.EnableAutoRecover = True
End Sub

Function ChangeAutoRecoverSettings(Optional ByVal vEnable As Variant, _
Optional ByVal vPath As Variant, Optional ByVal vTime As Variant)
‘Only set the property if a value was passed

With Application.AutoRecover
If Not IsMissing(vEnable) Then

‘Enable AutoRecover
.Enabled = vEnable

End If
‘Only set the property if a value was passed

If Not IsMissing(vPath) Then
‘Change the path to a central backup files area
.Path = vPath

End If
‘Only set the property if a value was passed

If Not IsMissing(vTime) Then
‘Save every AutoRecover file every 2 minutes
.Time = vTime

End If
End With

End Function

Axis Object and the Axes Collection
The Axes collection represents all of the Axes in an Excel chart. Each Axis object is equivalent to an axis
in an Excel chart (for example, X axis, Y axis, and so on). The parent of the Axes collection is the Chart
object.

Unlike most other collections, the Item method of the Axes collection has two parameters: Type and
AxisGroup. Use one of the xlAxisType constants for the Type parameter (xlValue, xlCategory, or
xlSeriesAxis). The optional second parameter, AxisGroup, can take one of the xlAxisGroup con-
stants (xlPrimary or xlSecondary).

Axis Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

670

AutoRecover Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 670

Axis Properties

Name Returns Description

AxisBetween Boolean Set/Get whether the value axis crosses the cate-
Categories gory axis between categories (as in Column charts)

or is aligned with the category label (as in Line
charts)

AxisGroup XlAxisGroup Read-only. Returns whether the current axis is of
the primary group (xlPrimary) or the secondary
group (xlSecondary)

AxisTitle AxisTitle Read-only. Returns an object manipulating the axis
title properties

BaseUnit XlTimeUnit Set/Get what type of base units to have for a cate-
gory axis. Use with BaseUnitIsAuto property.
Fails on a value axis

BaseUnitIsAuto Boolean Set/Get whether the Excel automatically chooses
the base units for a category axis. Fails on a value
axis

Border Border Read-only. Returns the border’s properties around
the selected axis

CategoryNames Variant Set/Get the category names for the axis as a string
array

CategoryType XlCategoryType Set/Get what type of axis to make the category
axis. Fails on a value axis

Crosses XlAxisCrosses Set/Get where one axis crosses with the other axis:
at the minimum value, maximum value, Excel
automatic, or some custom value

CrossesAt Double Set/Get at which value the other axis crosses the
current one. Use when the Crosses property is
xlAxisCrossesCustom

DisplayUnit XlDisplayUnit Set/Get what sort of unit to display for the axis (for
example xlThousands)

DisplayUnit Double Set/Get the value to display units if the
Custom DisplayUnit property is set to xlCustom

DisplayUnit DisplayUnit Read-only. Returns an object that manipulates a
Label Label unit label for an axis

Format ChartFormat Read-only. Returns the ChartFormat object, which
controls the line, fill, and effect formatting for the
chart axis.

Table continued on following page

671

Axis Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 671

Name Returns Description

HasDisplay Boolean Set/Get whether a display unit label created using
UnitLabel the DisplayUnit or DisplayUnitCustom property

is visible on the axis

HasMajor Boolean Set/Get whether major gridlines are displayed on
Gridlines the axis

HasMinor Boolean Set/Get whether minor gridlines are displayed on
Gridlines the axis

HasTitle Boolean Set/Get whether the axis has a title

Height Double Read-only. Returns the height of the axis

Left Double Read-only. Returns the position of the axis from the
left edge of the chart

LogBase Double Set/Get the base of the logarithm when using log
scales

Major Gridlines Read-only. Returns an object to manipulate the
Gridlines major gridlines formatting

Major XlTickMark Set/Get what the major ticks should look like (for
TickMark example, inside the axis, outside the axis)

MajorUnit Double Set/Get what the value is between major blocks of
a unit

Major Boolean Set/Get whether the value of MajorUnit is set
UnitIsAuto automatically

MajorUnitScale XlTimeUnit Set/Get what type to set for the major units

MaximumScale Double Set/Get what the maximum value is for the axis

MaximumScaleIs Boolean Set/Get whether the maximum value for the axis is
Auto determined automatically

MinimumScale Double Set/Get what the minimum value is for the axis

MinimumScaleIs Boolean Set/Get whether the minimum value for the axis is
Auto determined automatically

MinorGridlines Gridlines Read-only. Returns an object to manipulate major
gridline formatting

MinorTickMark XlTickMark Set/Get what the minor ticks should look like (for
example, inside the axis, outside the axis)

MinorUnit Double Set/Get what the value is between minor blocks of
a unit

MinorUnitIs Boolean Set/Get whether the value of MinorUnit is set
Auto automatically

MinorUnitScale XlTimeUnit Set/Get what scale to set for the minor units

672

Axis Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 672

Name Returns Description

ReversePlot Boolean Set/Get whether the unit values on the axis should
Order be reversed

ScaleType XlScale Type Set/Get the type of scale to use for the units: Linear
or Logarithmic

TickLabel XlTickLabel Set/Get the position that the tick marks will appear
Position Position in relation to the axis (for example, low, high)

TickLabels TickLabels Read-only. Returns an object to manipulate proper-
ties of the tick labels of an axis

TickLabel Long Set/Get how often to display the tick labels
Spacing

TickLabel Boolean Set/Get whether the value of TickLabelSpacing
SpacingIsAuto is set automatically

TickMark Long Set/Get how often to display tick marks on an axis.
Spacing Fails on a value axis

Top Double Read-only. Returns the top of the axis in relation to
the top edge of the chart

Type XlAxisType Set/Get the type of axis (xlCategory,
xlSeriesAxis, or xlValue)

Width Double Read-only. Returns the width of the axis

Axis Methods

Name Returns Parameters Description

Delete Variant Deletes the axis from the axes collection

Select Variant Selects the axis on the chart

Axis Object and the Axes Collection Example
This example sets the labels for the X-axis (independently of the data that’s plotted) and applies some
formatting:

Sub FormatXAxis()
Dim oCht As Chart, oAxis As Axis
‘Get the first embedded chart on the sheet

Set oCht = ActiveSheet.ChartObjects(1).Chart
‘Get it’s X axis

Set oAxis = oCht.Axes(xlCategory)
‘Format the X axis

With oAxis
.CategoryNames = Array(“Item 1”, “Item 2”, “Item 3”)
.TickLabels.Orientation = 45

673

Axis Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 673

.AxisBetweenCategories = True

.ReversePlotOrder = False

.MinorTickMark = xlTickMarkNone

.MajorTickMark = xlTickMarkCross
End With

End Sub

AxisTitle Object
The AxisTitle object contains the formatting and words associated with a chart axis title. The parent of
the AxisTitle object is the Axis object. The AxisTitle object is used in coordination with the
HasTitle property of the parent Axis object. The HasTitle property must be True for a child
AxisTitle object to exist.

AxisTitle Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

AxisTitle Properties

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size will change automati-
cally if the parent chart changes sizes

Border Border Read-only. Returns the border’s properties around the
selected axis title

Caption String Set/Get the axis title’s text

Characters Characters Read-only. Parameters: [Start], [Length]. Returns
an object containing all the characters in the axis title.
Allows manipulation on a character-by-character basis

Fill ChartFill Read-only. Returns an object containing fill formatting
Format options for the chart axis title

Font Font Read-only. Returns an object containing Font options
for the chart axis title

Format ChartFormat Read-only. Returns the ChartFormat object, which
controls the line, fill, and effect formatting for the axis
title

Horizontal xlAlign Set/Get how you want the axis title to be horizontally
Alignment aligned. Use the xlAlign constants

IncludeLayout Boolean Set/Get whether the axis title will occupy the chart
layout space when a chart layout is being determined

Interior Interior Read-only. Returns an object containing options to for-
mat the area in the chart title text area (for example,
interior color)

674

AxisTitle Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 674

Name Returns Description

Left Double Set/Get the distance from the left edge of the axis title
text area to the chart’s left edge

Name String Read-only. Returns the name of the axis title object

Position xlChart Set/Get the position of the axis title on the chart
Element
Position

Orientation XlOrientation Set/Get the angle of the text for the axis title. The
value can be in degrees (from –90 to 90) or one of the
XlOrientation constants

ReadingOrder Long Set/Get how the text is read (from left to right or right
to left). Only applicable in appropriate languages

Shadow Boolean Set/Get whether the axis title has a shadow effect

Text String Set/Get the axis title’s text

Top Double Set/Get the distance from the top edge of the axis title
text area to the chart’s top edge

Vertical xlVAlign Set/Get how you want the axis title to be horizontally
Alignment aligned. Use the xlVAlign constants

AxisTitle Methods

Name Returns Parameters Description

Delete Variant Deletes the axis title from the axis

Select Variant Selects the axis title on the chart

AxisTitle Object Example
This example ensures the X-axis has a title and sets the X-axis title’s caption and formatting:

Sub FormatXAxisTitle()
Dim oCht As Chart, oAT As AxisTitle
‘Get the first embedded chart on the sheet
Set oCht = ActiveSheet.ChartObjects(1).Chart
‘Give the X axis a title
oCht.Axes(xlCategory).HasTitle = True
‘Get the title
Set oAT = oCht.Axes(xlCategory).AxisTitle
‘Format the title
With oAT

.AutoScaleFont = False

.Caption = “X Axis Title”

.Font.Bold = True
End With

End Sub

675

AxisTitle Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 675

Border Object and the Borders Collection
The Borders collection contains the properties associated with four borders around the parent object.
Parent objects of the Borders collection are the Range and the Style object. A Borders collection
always has four borders. Use the xlBordersIndex constants with the Item property of the Borders
collection to access one of the Border objects in the collection.

Each Border object corresponds to a side or some sides of a border around a parent object. Some
objects only allow access to all four sides of a border as a whole (for example, the left side of border
cannot be accessed independently). The following objects are parents of the Border object (not the
Borders collection): Axis, AxisTitle, ChartArea, ChartObject, ChartTitle, DataLabel,
DataTable, DisplayUnitLabel, Downbars, DropLines, ErrorBars, Floor, GridLines, HiLoLines,
LeaderLines, Legend, LegendKey, OleObject, PlotArea, Point, Series, SeriesLines, TrendLine,
UpBars, and Walls. The following collections are also possible parents of the Border object:
DataLabels, ChartObjects, and OleObjects.

Borders Collection Properties
The Borders collection has a few properties besides the typical collection attributes. They are listed in
the following table.

Name Returns Description

Color Variant Set/Get the color for all four of the borders in the
collection. Use the RGB function to set the color

ColorIndex Variant Set/Get the color for all four of the borders in the
collection. Use the index number of a color in the
current color palette to set the Color value

LineStyle xlLineStyle Set/Get the style of line to use for the borders (for
example, xlDash). Use the xlLineStyle constants
to set the value

ThemeColor xlThemeColor Set/Get the theme color in the applied color scheme
associated with an object. Should the object have no
association with a theme, then trying to access the
ThemeColor property will result in an error

TintAndShade Single Set/Get a Single value from -1 (darkest) to 1 (lightest),
which darkens or lightens a color. Zero (0) is neutral

Value xlLineStyle Set/Get the style of line to use for the borders (for
example, xlDash). Use the xlLineStyle constants
to set the value. Same as LineStyle

Weight xlBorder Set/Get how thick to make the borders in the
Weight collection (for example, xlThin, xlThick). Use the

xlBorderWeight constants

Border Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

676

Border Object and the Borders Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 676

Border Properties

Name Returns Description

Color Variant Set/Get the color for a border. Use the RGB function to set
the color

ColorIndex Variant Set/Get the color for a border. Use the index number of a
color in the current color palette to set the color value

LineStyle xlLineStyle Set/Get the style of line to use for a border (for example,
xlDash). Use the xlLineStyle constants to set the value

ThemeColor xlThemeColor Set/Get the theme color in the applied color scheme
associated with an object. Should the object have no asso-
ciation with a theme, then trying to access the Theme-
Color property will result in an error

TintAndShade Single Set/Get a Single value from -1 (darkest) to 1 (lightest),
which darkens or lightens a color. Zero (0) is neutral

Weight xlBorder Set/Get how thick to make the border (for example,
Weight xlThin, xlThick). Use the xlBorderWeight constants

Border Object and the Borders Collection Example
Applies a 3D effect to a range:

Sub TestFormat3D()
‘Format the selected range as 3D sunken

Format3D Selection
End Sub
Sub Format3D(oRange As Range, Optional bSunken As Boolean = True)
‘Using the range(

With oRange
‘Surround it with a white border

.BorderAround Weight:=xlMedium, Color:=RGB(255, 255, 255)

If bSunken Then
‘Sunken, so make the left and top dark-grey

.Borders(xlEdgeLeft).Color = RGB(96, 96, 96)

.Borders(xlEdgeTop).Color = RGB(96, 96, 96)
Else

‘Raised, so make the right and bottom dark-grey
.Borders(xlEdgeRight).Color = RGB(96, 96, 96)
.Borders(xlEdgeBottom).Color = RGB(96, 96, 96)

End If
End With

End Sub

CalculatedFields Collection
See the “PivotField Object, PivotFields Collection, and the CalculatedFields Collection” section.

677

Border Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 677

CalculatedItems Collection
See the “PivotItem Object, PivotItems Collection, and the CalculatedItems Collection” section.

CalculatedMember Object and the CalculatedMembers
Collection

The CalculatedMembers collection is a collection of all the CalculatedMember objects on the specified
PivotTable. Each CalculatedMember object represents a calculated field, or calculated item.

CalculatedMembers Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

CalculatedMembers Collection Properties

Name Returns Description

Count Long Returns the number of objects in the collection

Item CalculatedMember Parameter: Index As Variant. Returns a
single CalculatedMember object in the
CalculatedMembers collection

CalculatedMembers Collection Methods

Name Returns Parameters Description

Add Calculated Name As String, Adds a CalculatedField
Member Formula As String, or CalculatedItem to a

[SolveOrder], [Type] PivotTable

CalculatedMember Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

CalculatedMember Properties

Name Returns Description

Formula String Read-only. Returns the CalculatedMember’s formula in multi-
dimensional expressions (MDX) syntax

IsValid Boolean Read-only. Indicates whether the specified CalculatedMember
object has been successfully instantiated with the OLAP
provider during the current session. Will return True even if
the PivotTable is not connected to its data source

Name String Returns the name of the object

678

CalculatedItems Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 678

Name Returns Description

SolveOrder Long Read-only. Gets the value of the CalculatedMember’s MDX
(multidimensional expression) argument (default is zero)

SourceName String Read-only. Gets the object’s name as it appears in the origi-
nal source data for the specified PivotTable report

Type XlCalculated Read-only. Gets the CalculatedMember object’s type
MemberType

CalculatedMember Methods

Name Returns Parameters Description

Delete Deletes the selected object

CalculatedMembers Collection and CalculatedMember Object
Example

The following routine returns information about each CalculatedMember from the data source used by
the PivotTable on the active worksheet. It returns messages if either the data source is not an OLAP type
or there are no CalculatedMembers:

Sub ReturnCalculatedMembers()
Dim lIcon As Long, lCount As Long
Dim ptTable As PivotTable
Dim oCalcMember As CalculatedMember
Dim oCalcMembers As CalculatedMembers
Dim sInfo As String
‘Set the reference to the PivotTable

Set ptTable = ActiveSheet.PivotTables(“PivotTable1”)
On Error Resume Next

Set oCalcMembers = ptTable.CalculatedMembers
On Error GoTo 0

‘Did we return a reference to Calculated Members?
If Not oCalcMembers Is Nothing Then

‘If there’s at least one Calculated Member initialize the Count and message
variables

If oCalcMembers.Count > 0 Then
lCount = 1
lIcon = vbInformation

‘Loop through each Calculated Member and store its name and formula
For Each oCalcMember In oCalcMembers

With oCalcMember
sInfo = sInfo & lCount & “) “ & .Name & “: “ & .Formula
lCount = lCount + 1

End With
Next oCalcMember

Else

679

CalculatedMember Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 679

‘It’s a valid OLAP data source, but no Calculated Members are there
lIcon = vbExclamation
sInfo = “No Calculated Members found.”

End If
Else

‘oCalcMembers returned nothing. Not an OLAP data source
lIcon = vbCritical
sInfo = “No Calculated Members found. Data Source may not be OLAP type.”

End If
MsgBox sInfo, lIcon, “Calculated Members”

End Sub

CalloutFormat Object
The CalloutFormat object corresponds to the line callouts on shapes. The parent of the
CalloutFormat object is the Shape object.

CalloutFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

CalloutFormat Properties

Name Returns Description

Accent MsoTriState Set/Get whether a vertical accent bar is used to separate
the callout box from the line

Angle MsoCallout Set/Get the angle of the callout line in relation to the
AngleType callout box

AutoAttach MsoTriState Set/Get whether a callout line automatically changes
where it is attached to the callout box depending on
where the line is pointing (left or right of the callout box)

AutoLength MsoTriState Read-only. Returns whether the callout line changes size
automatically if the multisegment callout box is moved

Border MsoTriState Set/Get whether the callout box has a border around it

Drop Single Read-only. Returns the distance from the callout box to
the spot where the callout line is pointing

DropType MsoCallout Read-only. Returns the spot on the callout box that
DropType attaches to the callout line

Gap Single Set/Get the distance between the callout line’s end and
the callout box

Length Single Read-only. Returns the length of the first part of a callout
line. AutoLength must be False

Type MsoCallout Set/Get the type of callout line used
Type

680

CalloutFormat Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 680

CalloutFormat Methods

Name Returns Parameters Description

Automatic Sets the AutoLength
Length property to True

CustomDrop Drop As Single Uses the Drop parameter to set
the distance from the callout
box to the spot where the call-
out line is pointing

CustomLength Length As Sets the length of the first part
Single of a callout line to the Length

parameter and sets AutoLength
to False

PresetDrop DropType As Sets the spot on the callout box
MsoCallout that attaches to the callout line,
DropType using the DropType parameter

CalloutFormat Object Example
This example applies the same formatting to all the callouts in a worksheet:

Sub FormatAllCallouts()
Dim oShp As Shape
Dim oCF As CalloutFormat

‘Loop through all the shapes in the sheet
For Each oShp In ActiveSheet.Shapes

On Error GoTo MyExit
‘Is this a callout?

If oShp.Type = msoCallout Then

‘Yes - set its text box to autosize
oShp.TextFrame.AutoSize = True

‘Get the CalloutFormat object
Set oCF = oShp.Callout

‘Format the callout
With oCF

.Gap = 0

.Border = msoFalse

.Accent = msoTrue

.Angle = msoCalloutAngle30

.PresetDrop msoCalloutDropCenter
End With

End If

Next
Exit Sub

681

CalloutFormat Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 681

MyExit:
MsgBox “One or more of your Callouts do not have text”

End Sub

CellFormat Object
Represents both the FindFormat and ReplaceFormat property settings of the Application object,
which are then used by the Find and Replace methods (respectively) of the Range object.

Set the FindFormat property settings before using the Find method to search for cell formats within a
range. Set the ReplaceFormat property settings if you want the Replace method to replace formatting
in cells. Any values specified in the What or Replacement arguments of either the Find or Replace
methods will involve an And condition. For example, if you are searching for the word Wrox and have set
the FindFormat property to search for Bold, only those cells containing both will be found.

When searching for formats, make sure the SearchFormat argument of the Find method is set to
True. When replacing formats, make sure the ReplaceFormat argument of the Replace method is set
to True.

When you want to search for formats only, make sure the What argument of the Find method contains
nothing. When you only want to replace formats, make sure the Replace argument of the Replace
method contains nothing.

When replacing one format with another, make sure you explicitly specify formats you no longer want.
For example, if you are searching for cells containing both bold and red and want to replace both formats
with just blue, you’ll need to make sure you set the bold property of the ReplaceFormat property to
False. If you don’t, you’ll end up with blue and bold text.

When you need to search or replace using different format settings (or none at all), be sure to either use
the Clear method of the CellFormat object — if you’ve declared a variable as such — or directly access
the Clear methods of the FindFormat and ReplaceFormat properties. Setting the SearchFormat and
ReplaceFormat arguments to False for the Find and Replace methods will not prevent the
FindFormat and/or ReplaceFormat settings from being used.

CellFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

CellFormat Properties

Name Returns Description

AddIndent Variant Set/Get whether the text in a cell is automatically
indented when the text alignment is set to equal
distribution, either horizontally or vertically

Borders Borders Set/Get the search criteria based on the cell’s border
format

682

CellFormat Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 682

Name Returns Description

Font Font Set/Get the search criteria based on the cell’s font
format

Formula Variant Set/Get whether the formula will be hidden when the
Hidden worksheet is protected. Returns Null if the specified

range contains some cells with hidden formulas and
some cells without

Horizontal Variant Set/Get the horizontal alignment for the specified
Alignment object

IndentLevel Variant Set/Get the indent level for the cell or range

Interior Interior Set/Get the search criteria based on the cell’s interior
format

Locked Variant Set/Get whether cells in the range can be modified if
the sheet is protected. Returns Null if only some of
the cells in the range are locked

MergeCells Variant Returns True if the range or style contains merged cells

NumberFormat Variant Set/Get the number format associated with the cells
in the range. Null if all the cells don’t have the same
format

NumberFormat Variant Set/Get the number format associated with the cells
Local in the range, in the language of the end user. Null if

all the cells don’t have the same format

Orientation Variant Set/Get the text orientation for the cell text. A value
from -90 to 90 degrees can be specified, or use an
XlOrientation constant

ShrinkToFit Variant Set/Get whether the cell text will automatically shrink
to fit the column width. Returns Null if the rows in
the range have different ShrinkToFit properties

Vertical Variant Set/Get how the cells in the range are vertically
Alignment aligned. Use the XLVAlign constants

WrapText Variant Set/Get whether cell text wraps in the cell. Returns
Null if the cells in the range contain different text
wrap properties

CellFormat Methods

Name Description

Clear Removes the criteria set in the FindFormat and ReplaceFormat
properties

683

CellFormat Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 683

CellFormat Object Example
The following routine searches through the used range in the active worksheet, replacing any cells con-
taining both a Tahoma font and a light blue background with Arial light green background:

Sub ReplaceFormats()
Dim oCellFindFormat As CellFormat
Dim oCellReplaceFormat As CellFormat
Dim rngReplace As Boolean, sMessage As String
‘Define variables for Find and Replace formats
Set oCellFindFormat = Application.FindFormat
Set oCellReplaceFormat = Application.ReplaceFormat

‘Set the Search criteria for the Find Formats
With oCellFindFormat

.Clear

.Font.Name = “Tahoma”

.Interior.ColorIndex = 34
End With

‘Set the Replace criteria for the Replace Formats
With oCellReplaceFormat

.Clear

.Font.Name = “Arial”

.Interior.ColorIndex = 35
End With

‘Perform the replace
ActiveSheet.UsedRange.Replace What:=””, _
Replacement:=””, SearchFormat:=True, ReplaceFormat:=True

‘Reset the Find and Replace formats
oCellFindFormat.Clear
oCellReplaceFormat.Clear

End Sub

Characters Object
The Characters object allows access to individual characters in a string of text. Characters can have
some of the visual properties modified with this object. Possible parents of the Characters object are
the AxisTitle, ChartTitle, DataLabel, and Range objects. Each of the parent objects can use the
Characters([Start], [Length]) property to access a part of their respective texts. The Start param-
eter can specify which character to start at, and the Length parameter can specify how many to take
from the Start position.

Characters Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Characters Properties

Name Returns Description

Caption String Set/Get the full string contained in the Characters object

Count Long Read-only. Returns the number of characters in the object

684

CellFormat Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 684

Name Returns Description

Font Font Read-only. Returns an object allowing manipulation of the
character’s font

Phonetic String Set/Get the phonetic characters contained in the object
Characters Characters

Text String Set/Get the full string contained in the Characters object

Characters Methods

Name Returns Parameters Description

Delete Variant Deletes the characters in the collection

Insert Variant String As Replaces the characters in the collection
String with the specified string

Characters Object Example
This example formats all the capital letters in the active cell in red with 16-point bold text:

Sub FormatCellCapitals()
Dim sText As String
Dim oChars As Characters
Dim i As Integer
‘Get the text of the active cell
sText = ActiveCell.Text
‘Loop through the text
For i = 1 To Len(sText)

‘Is this character a capital letter?
If Asc(Mid(sText, i, 1)) > 64 And Asc(Mid(sText, i, 1)) < 91 Then

‘Yes, so get the Characters object
Set oChars = ActiveCell.Characters(i, 1)

‘Format the Characters object in Red, 16pt Bold.
With oChars

.Font.Color = RGB(255, 0, 0)

.Font.Size = 16

.Font.Bold = True
End With

End If
Next

End Sub

Chart Object and the Charts Collection
The Charts collection holds the collection of chart sheets in a workbook. The Workbook object is always
the parent of the Charts collection. The Charts collection only holds the chart sheets. Individual charts

685

Characters Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 685

can also be embedded in worksheets and dialog sheets. The Chart objects in the Charts collection can
be accessed using the Item property. The name of the chart can be specified either as a parameter to the
Item property’s parameter or an index number describing the position of the chart in the workbook
(from left to right).

The Chart object allows access to all of the attributes of a specific chart in Excel. This includes chart for-
matting, chart types, and other charting properties. The Chart object also exposes events that can be
used programmatically.

Charts Collection Properties and Methods
The Charts collection has a few properties and methods besides the typical collection attributes. These
are listed in the following table.

Name Returns Description

HPageBreaks HPageBreaks Read-only. Returns a collection holding all the horizontal
page breaks associated with the Charts collection

Visible Variant Set/Get whether the charts in the collection are visible.
Also, you can set this to xlVeryHidden to prevent a user
from making the charts in the collection visible

VPageBreaks VPageBreaks Read-only. Returns a collection holding all the vertical
page breaks associated with the Charts collection

Add Chart Method. Parameters: [Before], [After], [Count].
Adds a chart to the collection. You can specify where the
chart goes by choosing which sheet object will be before
the new chart object (Before parameter) or after the new
chart (After parameter). The Count parameter decides
how many charts are created

Copy Method. Parameters: [Before], [After]. Adds a new
copy of the currently active chart to the position specified
at the Before or After parameters

Delete Method. Deletes all the charts in the collection

Move Method. Parameters: [Before], [After]. Moves the cur-
rent chart to the position specified by the parameters

PrintOut Method. Parameters: [From], [To], [Copies],
[Preview], [ActivePrinter], [PrintToFile],
[Collate], [PrToFileName]. Prints out the charts in
the collection. The printer, number of copies, collation,
and whether a print preview is desired can be specified
with the parameters. Also, the sheets can be printed to
a file using the PrintToFile and PrToFileName param-
eters. The From and To parameters can be used to specify
the range of printed pages

686

Charts Collection Properties and Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 686

Name Returns Description

PrintPreview Method. Parameters: [EnableChanges]. Displays the
current chart in the collection in a print preview mode. Set
the EnableChanges parameter to False to disable the
Margins and Setup buttons, hence not allowing the
viewer to modify the chart’s page setup

Select Method. Parameters: [Replace]. Selects the current chart
in the collection

Chart Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Chart Properties

Name Returns Description

AutoScaling Boolean Set/Get whether Excel will stretch a 3D chart to match its
2D chart equivalent. RightAngleAxes must be true

BackWall Walls Read-only. Returns a Walls object allowing users to for-
mat the back wall of a 3D chart

BarShape XlBarShape Set/Get the basic shape used in 3D bar or column charts
(for example, box, cylinder, pyramid, and so on)

ChartArea ChartArea Read-only. Returns the part of a chart containing axes,
titles, legends, and formatting properties

ChartStyle Variant Set/Get a number from 1–48, indicating the chart style for
the chart

ChartTitle ChartTitle Read-only. Returns an object manipulating the chart title’s
properties. Use with the HasTitle property

ChartType XlChart Set/Get what the type of chart is. This property
Type determines which other chart properties are valid. For

example, if the ChartType is set to xl3DBarClustered,
then the Bar3DGroup property can be used to access the
chart group properties

CodeName String Read-only. Returns the programmatic name of the chart
set at design-time in the VBA editor

DataTable DataTable Read-only. Returns an object to manipulate a chart’s data
table

DepthPercent Long Set/Get the percentage of a 3D chart’s depth (y-axis) in
relation to its width (x-axis)

Table continued on following page

687

Chart Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 687

Name Returns Description

Display XlDisplay Set/Get how blank cells are treated when plotting data
BlanksAs BlanksAs in a chart (for example, xlNotPlotted, xlZero, or

xlInterpolated)

Elevation Long Set/Get the angle of elevation, in degrees, at which the
viewer sees a 3D chart. Valid degrees vary depending on
the type of 3D chart

Floor Floor Read-only. Returns an object with the formatting proper-
ties of the floor (base) of a 3D chart

GapDepth Long Set/Get the percentage depth of a data series in relation to
the marker width

HasAxis Variant Parameters: [Index1], [Index2]. Set/Get whether
axes exist for the chart. The parameters can be used to
specify the axis type (using the xlAxisType constants
with the first parameter) and the axis group (using the
xlAxisGroup constants with the second parameter)

HasDataTable Boolean Set/Get whether a data table is associated (and therefore
displayed). Use with the DataTable property

HasLegend Boolean Set/Get whether the chart has a legend. Use with the
Legend property

HasTitle Boolean Set/Get whether the chart has a title. Use with the
ChartTitle property

Height Long Set/Get the percentage of a 3D chart’s height (z-axis) in
Percent relation to its width (x-axis)

Hyperlinks Hyperlinks Read-only. Returns the collection of hyperlinks associated
with the chart

Index Long Read-only. Returns the spot in the parent collection where
the current chart is located

Legend Legend Read-only. Returns the formatting properties for a
Legend. Use with the HasLegend property

MailEnvelope MsoEnvelope Set/Get the e-mail header for a document

Name String Set/Get the name of the chart

Next Object Read-only. Returns the next sheet in the workbook (from
left to right) as an object

PageSetup PageSetup Read-only. Returns an object to manipulate the page setup
properties for the chart

Perspective Long Sets the perspective, in degrees, at which a 3D chart will
be viewed if the RightAngleAxes property is set to
False

688

Chart Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 688

Name Returns Description

PivotLayout PivotLayout Read-only. Returns an object to manipulate the location of
fields for a PivotChart report

PlotArea PlotArea Read-only. Returns an object to manipulate formatting,
gridlines, data markers, and other visual items for the area
where the chart is actually plotted. Inside the chart area

PlotBy XlRowCol Set/Get whether columns in the original data are used as
individual data series (xlColumns), or if the rows in the
original data are used as data series (xlRows)

PlotVisible Boolean Set/Get whether only visible cells are plotted or if
Only invisible cells are plotted too (False)

Previous Read-only. Returns the previous sheet in the workbook
(from right to left) as an object

Protect Boolean Read-only. Returns whether the chart and everything in it
Contents is protected from changes

ProtectData Boolean Set/Get whether the source data can be redirected for a
chart

Protect Boolean Read-only. Returns whether the shapes in the chart can be
Drawing modified (ProtectDrawingObjects = False)
Objects

Protect Boolean Set/Get whether the user can modify the points on a
GoalSeek chart with a mouse action

Protect Boolean Set/Get whether formatting can be changed for a chart
Formatting

Protection Boolean Read-only. Returns whether protection has been applied
Mode to the user interface. Even if a chart has user interface pro-

tection on, any VBA code associated with the chart can
still be accessed

Protect Boolean Set/Get whether parts of a chart can be selected and if
Selection shapes can be put into a chart

RightAngle Variant Set/Get whether axes are fixed at right angles for 3D
Axes charts, even if the perspective of the chart changes

Rotation Variant Set/Get what angle of rotation around the z-axis, in
degrees, the viewer sees on a 3D chart. Valid degrees vary
depending on the type of 3D chart

Shapes Shapes Read-only. Returns all the shapes contained by the chart

ShowDataLabels Boolean Set to True, this property ensures that data labels are
OverMaximum shown even if the data point exceeds the size of the axis;

this property applies to 2D charts only

Table continued on following page

689

Chart Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 689

Name Returns Description

SideWall Walls Read-only. Returns a Walls object allowing users to for-
mat the side wall of a 3D chart

Tab Tab Read-only. Returns a Tab object for a chart or a worksheet

Visible XlSheet Set/Get whether or not the chart is visible. The Visible
Visibility property can also be set to xlVeryHidden to make the

chart inaccessible to the end user

Walls Walls Read-only. Returns an object to manipulate the formatting
of the walls on a 3D chart

Chart Methods

Name Returns Parameters Description

Activate Activates the chart, making it
the ActiveChart

ApplyChart FileName As String Activates and applies a
Template template file for the chart

ApplyData [Type As Xl Sets the point labels for a chart.
Labels DataLabels The Type parameter specifies

Type], [Legend whether no label, a value, a
Key], [Auto percentage of the whole, or a
Text], [Has category label is shown. The
LeaderLines], legend key can appear by the
[ShowSeries point by setting the LegendKey
Name], [Show parameter to True
CategoryName],
[ShowValue],
[Show
Percentage],
[ShowBubble
Size],
[Separator]

ApplyLayout Layout As Long Allows a user to apply any one
of the predefined layouts shown
in the Ribbon

Axes Object Type, AxisGroup Returns the Axis object or the
As XlAxisGroup Axes collection for the associ-

ated chart. The type of axis and
the axis group can be specified
with the parameters

690

Chart Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 690

Name Returns Parameters Description

ChartGroups Object [Index] Returns either a single chart group
(ChartGroup) or a collection of chart
groups (ChartGroups) for a chart

ChartObjects Object [Index] Returns either a single embedded chart
(ChartObject) or a collection of embed-
ded charts (ChartObjecs) in a chart

ChartWizard [Source], A single method to modify the key proper-
[Gallery], ties associated with a chart. Specify the
[Format], properties that you want to change. The
[PlotBy], Source specifies the data source. Gallery
[Category specifies the chart type. Format can
Labels], specify one of the 10 built-in chart auto-
[Series formats. The rest of the parameters set up
Labels], how the source will be read, the source of
[HasLegend], category labels, the source of the series
[Title], labels, whether a legend appears, and the
[Category titles of the chart and the axis. If Source is
Title], not specified, this method can only be
[ValueTitle], used if the sheet containing the chart is
[ExtraTitle] active

CheckSpelling [Custom Checks the spelling of the text in the
Dictionary], chart. A custom dictionary can be speci-
[Ignore fied (CustomDictionary), all uppercase
Uppercase], words can be ignored (IgnoreUppercase),
[Always and Excel can be set to display a list of
Suggest], suggestions (AlwaysSuggest)
[SpellLang]

ClearToMatch Resets the formatting for all chart elements
Style to automatic

Copy [Before], Adds a new copy of the chart to the
[After] position specified at the Before or After

parameters

CopyPicture [Appearance Copies the chart into the clipboard as a
As XlPicture picture. The Appearance parameter can be
Appearance], used to specify whether the picture is
[Format As Xl- copied as it looks on the screen or when
CopyPicture printed. The Format parameter can specify
Format], [Size the type of picture that will be put into the
As XlPicture clipboard. The Size parameter is used
Appearance] when dealing with chart sheets to describe

the size of the picture

Delete Deletes the chart

Table continued on following page

691

Chart Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 691

Name Returns Parameters Description

Deselect Unselects the selected object within a
chart. This is equivalent to pressing the Esc
key while working in a chart

Evaluate Variant Name Evaluates the Name string expression as if
it were entered into a worksheet cell

Export Boolean Filename As Saves the chart as a picture (jpg or gif
String, format) with the name specified by
[FilterName], Filename
[Interactive]

ExportAsFixed Boolean Type As xlFixed Exports a file to a format specified by using
Format FormatType, the xlFixedFormatType constants

FileName As
Variant,
Quality As
Variant,
IncludeDoc
Properties
As Variant,
IgnorePrint
Areas As Variant,
From As Variant,
To As Variant,
OpenAfter
Publish

GetChart Element x As Long, y As Returns what is located at the coordinates
Long, ElementID x and y of the chart. Only the first two
As Long, Arg1 As parameters are sent. Variables must be put
Long, Arg2 As in the last three parameters. After the
Long method is run, the last three parameters

can be checked for return values. The
ElementID parameter will return one of
the XlChartItem parameters. The Arg1
and Arg2 parameters may or may not hold
data, depending on the type of element

Location Chart Where As Moves the chart to the location specified
XlChart by the Where and Name parameters. The
Location, Where can specify if the chart is moving to
[Name] become a chart sheet or an embedded object

Move [Before], Moves the chart to the position specified
[After] by the parameters

OLEObjects Object [Index] Returns either a single OLE object
(OLEObject) or a collection of OLE objects
(OLEObjects) for a chart

692

Chart Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 692

Name Returns Parameters Description

Paste [Type] Pastes the data or pictures from the
clipboard into the chart. The Type parame-
ter can be used to specify if only formats,
formulas, or everything is pasted

PrintOut [From], [To], Prints the chart. The printer, number of
[Copies], copies, collation, and whether a print
[Preview], preview is desired can be specified with
[ActivePrinter], the parameters. Also, the sheets can be
[PrintToFile], printed to a file by using the PrintToFile
[Collate], and PrToFileName parameters. The From
[PrToFile and To parameters can be used to specify
Name] the range of printed pages

PrintPreview [EnableChanges] Displays the current chart in the collection
in a print preview mode. Set the
EnableChanges parameter to False to
disable the Margins and Setup buttons,
hence not allowing the viewer to modify the
page setup

Protect [Password], Protects the chart from changes. A
[DrawingObjects], case-sensitive Password can be specified.
[Contents], Also, determines whether shapes are
[Scenarios], protected (DrawingObjects), the entire
[User contents are protected (Contents), or only
Interface the user interface is protected
Only] (UserInterfaceOnly)

Refresh Refreshes the chart with the data source

SaveAs Filename As Saves the current chart into a new
String, workbook with the filename specified by
[FileFormat], the Filename parameter. A file format,
[Password], password, write-only password, creation
[WriteRes of backup files, and other properties of the
Password], saved file can be specified with the
[ReadOnly parameters
Recommended],
[CreateBackup],
[AddToMru],
[TextCodepage],
[TextVisual
Layout],
[Local]

Table continued on following page

693

Chart Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 693

Name Returns Parameters Description

SaveChart Filename As Saves the specified chart as a custom chart
Template String template. The chart template is saved to

the template directory unless a location is
explicitly provided, telling Excel to use
that location instead

Select [Replace] Selects the chart

Series Object [Index] Returns either a single series (Series) or a
Collection collection of series (SeriesCollection)

for a chart

SetBackground FileName As Sets the chart’s background to the picture
Picture specified by the FileName parameter
String

SetDefault FileName As Specifies the name of the chart template
Chart that is used when new charts are created
String

SetElement Element As Sets/Gets the elements on a chart. Use the
MsoChart- MsoChartElementType constants to
ElementType identify the elements you want to set/get

SetSourceData Source As Sets the source of the chart’s data to the
Range, [PlotBy] range specified by the Source parameter.

The PlotBy parameter uses the XlRowCol
constants to choose whether rows or
columns of data will be plotted

Unprotect [Password] Deletes the protection set up for a chart. If
the chart was protected with a password,
the password must be specified now

Chart Events

Name Parameters Description

Activate Triggered when a chart is made to have focus

BeforeDouble ElementID As Triggered just before a user double-clicks a chart. The
Click element that was double-clicked in the chart is passed
XlChartItem, into the event procedure as ElementID. The Arg1 and
Arg1 As Long, Arg2 parameters may or may not hold values depending
Arg2 As Long, on the ElementID. The double-click action can be
Cancel As canceled by setting the Cancel parameter to True
Boolean

694

Chart Events

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 694

Name Parameters Description

BeforeRight Cancel As Triggered just before a user right-clicks a chart. The
Click Boolean right-click action can be canceled by setting the Cancel

parameter to True

Calculate Triggered after new or changed data is plotted on the chart

Deactivate Triggered when the chart loses focus

DragOver Triggered when a cell range is dragged on top of a chart.
Typically used to change the mouse pointer or give a
status message

DragPlot Triggered when a cell range is dropped onto a chart.
Typically used to modify chart attributes

MouseDown Button As Triggered when the mouse button is pressed down on a
XlMouse chart. Which mouse button is pressed is passed in with
Button, Shift the Button parameter. The Shift parameter holds
As Long, x As information regarding the state of the Shift, Ctrl, and Alt
Long, y As keys. The x and y parameters hold the x and y
Long coordinates of the mouse pointer

MouseMove Button As Triggered when the mouse is moved on a chart. Which
XlMouse mouse button is pressed is passed in with the Button
Button, Shift parameter. The Shift parameter holds information
As Long, x As regarding the state of the Shift, Ctrl, and Alt keys. The x
Long, y As Long and y parameters hold the x and y coordinates of the

mouse pointer

MouseUp Button As Triggered when the mouse button is released on a chart.
XlMouse Which mouse button is pressed is passed in with the
Button, Shift Button parameter. The Shift parameter holds
As Long, x As information regarding the state of the Shift, Ctrl, and Alt
Long, y As Long keys. The x and y parameters hold the x and y coordinates

of the mouse pointer

Resize Triggered when the chart is resized

Select ElementID As Triggered when one of the elements in a chart is selected.
XlChartItem, The element that was selected in the chart is passed into
Arg1 As Long, the event procedure as ElementID. The Arg1 and Arg2
Arg2 As Long parameters may or may not hold values depending on the

ElementID

SeriesChange SeriesIndex Triggered when the value of a point on a chart is changed.
As Long, SeriesIndex returns the location of the series in the
PointIndex As chart series collection. PointIndex returns the point
Long location in the series

695

Chart Events

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 695

Chart Object and the Charts Collection Example
This example creates a 3D chart from a given range, formats it, and saves a picture of it as a .jpg image:

Sub CreateAndExportChart()
Dim oCht As Chart

‘Create a new (blank) chart
Set oCht = Charts.Add

‘Format the chart
With oCht

.ChartType = xl3DColumnStacked
‘Set the data source and plot by columns

.SetSourceData Source:=Range(“Sheet1!B2:D8”), PlotBy:=xlColumns
‘Create a new sheet for the chart

.Location Where:=xlLocationAsNewSheet
‘Size and shape matches the window it’s in

.SizeWithWindow = True
‘Turn of stretching of chart

.AutoScaling = False
‘Set up a title

.HasTitle = True

.ChartTitle.Caption = “Main Chart”
‘No titles for the axes

.Axes(xlCategory).HasTitle = False

.Axes(xlValue).HasTitle = False
‘Set the 3D view of the chart

.RightAngleAxes = False

.Elevation = 50 ‘degrees

.Perspective = 30 ‘degrees

.Rotation = 20 ‘degrees

.HeightPercent = 100
‘No data labels should appear

.ApplyDataLabels Type:=xlDataLabelsShowNone
‘Save a picture of the chart as a jpg image

.Export “c:\” & .Name & “.jpg”, “jpg”, False
End With

End Sub

ChartArea Object
The ChartArea object contains the formatting options associated with a chart area. For 2D charts,
ChartArea includes the axes, axes titles, and chart titles. For 3D charts, ChartArea includes the chart
title and its legend. The part of the chart where data is plotted (plot area) is not part of the ChartArea
object. Please see the PlotArea object for formatting related to the plot area. The parent of the
ChartArea is always the Chart object.

ChartArea Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

696

Chart Object and the Charts Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 696

ChartArea Properties

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size changes in the
ChartArea whenever the Chart changes sizes

Format ChartFormat Read-only. Returns the ChartFormat object, which con-
trols the line, fill, and effect formatting for the chart area

Height Double Set/Get the height of the chart area in points

Left Double Set/Get the left edge of the chart area in relation to the
chart in points

Name String Read-only. Returns the name of the chart area

Shadow Boolean Set/Get whether a shadow effect appears around the
chart area

Top Double Set/Get the top edge of the chart area in relation to the
chart in points

Width Double Set/Get the width of the chart area in points

ChartArea Methods

Name Returns Parameters Description

Clear Variant Clears the chart area

ClearContents Variant Clears the data from the chart area without
affecting formatting

ClearFormats Variant Clears the formatting from the chart area
without affecting the data

Copy Variant Copies the chart area into the clipboard

Select Variant Activates and selects the chart area

ChartArea Object Example
This example sizes the chart area for a chart and gives the chart a shadow:

Sub SetChartColorFormat()
With Worksheets(“Sheet4”).ChartObjects(“Chart 2”).Chart

.ChartArea.Height = 300

.ChartArea.Width = 500

.ChartArea.Shadow = True
End With

End Sub

697

ChartArea Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 697

ChartColorFormat Object
The ChartColorFormat object describes a color of the parent ChartFillFormat. For example, the
ChartFillFormat object contains a BackColor property that returns a ChartColorFormat object to
set the color.

ChartColorFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ChartColorFormat Properties

Name Returns Description

RGB Long Read-only. Returns the RGB value
associated with the color

SchemeColor Long Set/Get the color of ChartColorFormat
using an index value corresponding to
the current color scheme

Type Long Read-only. Returns whether the color is
an RGB, mixed, or scheme type

ChartFillFormat Object
The ChartFillFormat object represents the fill formatting associated with its parent object. This object
allows manipulation of foreground colors, background colors, and patterns associated with the parent
object.

ChartFillFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ChartFillFormat Properties

Name Returns Description

BackColor ChartColorFormat Read-only. Returns the background color
through the ChartColorFormat object

ForeColor ChartColorFormat Read-only. Returns the foreground color
through the ChartColorFormat object

GradientColor Type MsoGradient ColorType Read-only. Returns what type of
gradient fill color concept is used

GradientDegree Single Read-only. Returns how dark or light
the gradient fill is

GradientStyle MsoGradientStyle Read-only. Returns the orientation of
the gradient that is used

698

ChartColorFormat Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 698

Name Returns Description

GradientVariant Long Read-only. Returns the variant used for
the gradient from the center

Pattern MsoPatternType Set/Get the pattern used for the fill, if
any is used

PresetGradient MsoPresetGradient Read-only. Returns the type of gradient
Type Type that is used

PresetTexture MsoPresetTexture Read-only. Returns the non-custom
texture of the fill

TextureName String Read-only. Returns the custom texture
name of the fill

TextureType MsoTextureType Read-only. Returns whether the texture
is custom, preset, or mixed

Type MsoFillType Returns an MsoFillType constant that
determines how transparent the fill is.
From 0 (opaque) to 1 (clear)

Visible MsoTriState Set/Get whether the fill is a texture,
gradient, solid, background, picture, or
mixed

ChartFillFormat Methods

Name Returns Parameters Description

OneColor Style As Set the style, variant, and degree for
Gradient MsoGradientStyle, a one-color gradient fill

Variant As Long,
Degree As Single

Patterned Pattern As Set the pattern for a fill
MsoPatternType

Preset Style As Choose the style, variant, and preset
Gradient MsoGradientStyle, gradient type for a gradient fill

Variant As Long,
PresetGradientType As
MsoPresetGradientType

Preset PresetTexture As Set the preset texture for a fill
Textured MsoPresetTexture

Solid Set the fill to a solid color

TwoColor Style As Set the style for a two-color
Gradient MsoGradientStyle, gradient fill

Variant As Long

Table continued on following page

699

ChartFillFormat Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 699

Name Returns Parameters Description

UserPicture [PictureFile], Set the fill to the picture in the
[Picture Format], PictureFile format
[PictureStackUnit],
[PicturePlacement]

UserTextured TextureFile As String Set the custom texture for a fill with
the TextureFile format

ChartFillFormat Object Example
Sub FormatPlotArea()

Dim oCFF As ChartFillFormat
‘Get the ChartFillFormat for the plot area
Set oCFF = ActiveSheet.ChartObjects(1).Chart.PlotArea.Fill
‘Format the fill area
With oCFF

.TwoColorGradient Style:=msoGradientDiagonalUp, Variant:=1

.Visible = True

.ForeColor.SchemeColor = 6

.BackColor.SchemeColor = 7
End With

End Sub

ChartFormat Object
The ChartFormat object allows access to the new Office Art formatting options that are available in Excel
2007. Using this object, you can apply many of the new graphics to chart elements via VBA formatting.

ChartFormat Common Properties
The Parent, Creator, and Application properties are defined at the beginning of this appendix.

ChartFormat Properties

Name Returns Description

Fill FillFormat Read-only. Returns the fill formatting properties
through the FillFormat object

Glow GlowFormat Read-only. Returns the glow formatting properties
through the GlowFormat object

Line LineFormat Read-only. Returns the line formatting properties
through the LineFormat object

PictureFormat PictureFormat Read-only. Returns the PictureFormat object for
a chart that contains pictures

Shadow ShadowFormat Read-only. Returns the shadow formatting proper-
ties through the ShadowFormat object

700

ChartFillFormat Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 700

Name Returns Description

SoftEdge SoftEdgeFormat Read-only. Returns the SoftEdge formatting
properties through the SoftEdgeFormat object

TextFrame2 TextFrame2 Read-only. Returns the text formatting properties
through the TextFrame2Format object

ThreeD ThreeDFormat Read-only. Returns the 3D effects formatting
properties through the ThreeDFormat object

ChartGroup Object and the ChartGroups Collection
The ChartGroups collection holds all the plotting information associated with the parent chart. A chart
can have more than one ChartGroup associated with it. For example, a single chart can contain both a
line and a bar chart associated with it. The ChartGroups property of the Chart object can be used to
access the ChartGroups collection.

The parent of the ChartGroups collection or the ChartGroup object is the Chart object.

The ChartGroup object includes all of the plotted points associated with a particular chart type. A
ChartGroup can hold many series of points (each column or row of the original data). Each series can
contain many points (each cell of the original data). A Chart can contain more than one ChartGroup
associated with it.

ChartGroup Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ChartGroup Properties

Name Returns Description

AxisGroup XlAxisGroup Set/Get whether the chart group is primary or
secondary

BubbleScale Long Set/Get the percentage increase in the size of bub-
bles from the default size. Valid values from 0 to
300 percent. Valid only for bubble chart group

DoughnutHole Long Set/Get how large the hole in a doughnut chart
Size group is. The value is a percentage of the size of

the chart. Valid values from 10 to 90 percent. Valid
only on doughnut chart groups

DownBars DownBars Read-only. Returns an object to manipulate the
formatting options of down bars on a line chart
group. Valid only on line chart groups. Use with
the HasUpDownBars property

Table continued on following page

701

ChartGroup Object and the ChartGroups Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 701

Name Returns Description

DropLines DropLines Read-only. Returns an object to manipulate the
formatting options of drop lines on a line or area
chart group. Valid only on line or area chart
groups. Use with the HasDropLines property

FirstSlice Long Set/Get what angle to use for the first slice of a pie
Angle or doughnut chart groups (the first data point

plotted on the chart)

GapWidth Long Set/Get how big to make the gap between the
columns of different data series. Also, when deal-
ing with Bar of Pie charts or Pie of Pie charts, the
GapWidth describes the distance from the main
chart to the secondary chart (when the ChartType
is xlPieOfPie or xlBarOfPie for the parent
chart)

Has3Dshading Boolean Set/Get whether 3D shading is applied to the
chart group visuals

HasDropLines Boolean Set/Get whether the chart group has drop lines.
Use with the DownLines property

HasHiLoLines Boolean Set/Get whether the chart group has high-low
lines. Use with the HiLoLines property

HasRadarAxis Boolean Set/Get whether the chart as axis labels. Applies
Labels only to radar charts

HasSeries Boolean Set/Get whether the chart group has series lines.
Lines Use with the SeriesLines property

HasUpDownBars Boolean Set/Get whether the chart group has up and
down bars. Use with the DownBars and UpBars
property

HiLoLines HiLoLines Read-only. Returns an object to manipulate the
formatting of high-low lines in a line chart. Valid
only for line charts

Index Long Read-only. Returns the spot in the parent collection
where the current ChartGroup object is located

Overlap Long Set/Get whether bars and columns in a series will
overlap each other or have a gap between them. A
value from -100 to 100 can be specified, where -100
will put a gap between each bar or column equal
to the bar or column width, and 100 will stack the
bars or columns on top of each other. Valid only
for 2D bar and column chart groups

702

ChartGroup Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 702

Name Returns Description

RadarAxis TickLabels Read-only. Returns an object to manipulate the
Labels formatting and labels associated with radar axis

labels. Valid only for radar chart groups

SecondPlot Long Set/Get the percentage of size of the secondary
Size part of a Pie of Pie or Bar of Pie chart group as a

percentage of the main Pie

SeriesLines SeriesLines Read-only. Returns an object to manipulate the
formatting associated with the series lines in a
chart group. A series line connects same series of
data appearing in a stacked column chart groups,
stacked bar chart groups, Pie of Pie chart groups,
or Bar of Pie chart groups. Use with the
HasSeriesLines property

ShowNegative Boolean Set/Get whether bubbles with negative data values
Bubbles are shown. Valid only on bubble chart groups

Size XlSizeRepresents Set/Get whether the value of the data points is
Represents represented by the size or the area of bubbles on a

bubble chart group. Valid only on bubble chart
groups

SplitType XlChartSplitType Set/Get how the two charts in Pie of Pie chart
group and Bar of Pie chart group are split up. For
example, the chart can be split by percentage of
value (xlSplitByPercentValue) or by value
(xlSplitByValue)

SplitValue Variant Set/Get the value that will be combined in the
main pie chart but split up in the secondary chart
in a Pie of Pie or Bar of Pie chart group

UpBars UpBars Read-only. Returns an object to manipulate the
formatting options of up bars on a line chart
group. Valid only on line chart groups. Use with
the HasUpDownBars property

VaryBy Boolean Set/Get whether different colors are assigned to
Categories different categories in a single series of a chart

group. The chart can only contain a single data
series for this to work

ChartGroup Methods

Name Returns Parameters Description

Series Object [Index] Returns either a single series
Collection (Series) or a collection of series

(SeriesCollection) for a chart

703

ChartGroup Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 703

ChartGroup Object and the ChartGroups Collection Example
This sets the gap width of all column groups in the chart to 10% and sets each column to have a different
color:

Sub FormatColumns()
Dim oCht As Chart
Dim oCG As ChartGroup
For Each oCG In Charts(1).ColumnGroups

oCG.GapWidth = 10
oCG.VaryByCategories = True

Next
End Sub

ChartObject Object and the ChartObjects Collection
The ChartObjects collection holds all of the embedded Chart objects in a worksheet, chart sheet, or
dialog sheet. This collection does not include the actual chart sheets themselves. Chart sheets can be
accessed through the Charts collection. Each Chart in the ChartObjects collection is accessed through
the ChartObject object. The ChartObject acts as a wrapper for the embedded chart itself. The Chart
property of the ChartObject is used to access the actual chart. The ChartObject object also contains
properties to modify the formatting of the embedded chart (for example, Height and Width).

The ChartObjects collection contains many properties besides the typical collection attributes. These
properties are listed next.

ChartObjects Collection Properties and Methods

Name Returns Description

Enabled Boolean Set/Get whether any macros associated with each
ChartObject object in the collection can be
triggered by the user

Height Double Set/Get the height of the ChartObject in the
collection if there is only one object in the collection

Left Double Set/Get the distance from the left edge of the
ChartObject to the left edge of the parent sheet.
This property only works if there is only one
ChartObject in the collection

Locked Boolean Set/Get whether the ChartObject is locked when
the parent sheet is protected. This property only
works if there is only one ChartObject in the
collection

Placement XlPlacement Set/Get how the ChartObject object is anchored
to the sheet (for example, free floating, move with
cells). Use the XlPlacement constants to set this
property. This property only works if there is only
one ChartObject in the collection

704

ChartGroup Object and the ChartGroups Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 704

Name Returns Description

PrintObject Boolean Set/Get whether the embedded chart on the sheet
will be printed when the sheet is printed. This
property only works if there is only one
ChartObject in the collection

Protect Boolean Set to True, this property will ensure that the
ChartObject embedded chart cannot be moved, resized, or

deleted through the user interface

Rounded Boolean Set/Get whether the corners of the embedded
Corners chart are rounded (True) or right angles (False).

This property only works if there is only one
ChartObject in the collection

Shadow Boolean Set/Get whether a shadow appears around the
embedded chart. This property only works if there
is only one ChartObject in the collection

ShapeRange ShapeRange Read-only. Returns the ChartObjects in the col-
lection as Shape objects

Top Double Set/Get the distance from top edge of the
ChartObject to the top of the parent sheet.
This property only works if there is only one
ChartObject object in the collection

Visible Boolean Set/Get whether all the ChartObject objects in
the collection are visible

Width Double Set/Get the width of the ChartObject in the
collection if there is only one ChartObject object
in the collection

Add ChartObject Method. Parameters: Left As Double, Top As
Double, Width As Double, Height As Double.
Adds a ChartObject to the collection of
ChartObjects. The position of the new
ChartObject can be specified by using the Left,
Top, Width, and Height parameters

BringTo Variant Method. Brings all the ChartObject objects in the
Front collection to the front of all the other objects

Copy Variant Method. Copies all the ChartObject objects in
the collection into the clipboard

Table continued on following page

705

ChartObjects Collection Properties and Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 705

Name Returns Description

CopyPicture Variant Method. Parameters: Appearance As XlPic-
tureAppearance, Format As XlCopyPicture-
Format. Copies the Chart objects in the collection
into the clipboard as a picture. The Appearance
parameter can be used to specify whether the pic-
ture is copied as it looks on the screen or when
printed. The Format parameter can specify the
type of picture that will be put into the clipboard

Cut Variant Cuts an embedded chart to the clipboard

Delete Variant Method. Deletes all the ChartObject objects in
the collection into the clipboard

Duplicate Method. Duplicates all the ChartObject objects
in the collection into the parent sheet (for example,
if you had two ChartObject objects in the parent
sheet and used this method, then you would have
four ChartObject objects)

Select Variant Method. Parameters: [Replace]. Selects all the
ChartObject objects in the collection

SendToBack Variant Method. Brings the ChartObject objects in the
collection to the back of other objects

ChartObject Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ChartObject Properties

Name Returns Description

BottomRight Range Read-only. Returns the single cell range located
Cell under the lower-right corner of the ChartObject

Chart Chart Read-only. Returns the actual chart associated
with the ChartObject

Enabled Boolean Set/Get whether a macro associated with the
ChartObject is capable of being triggered

Height Double Set/Get the height of embedded chart

Index Long Read-only. Returns the position of the ChartObject
among the parent collection

Left Double Set/Get the distance from the left edge of the
ChartObject to the left edge of the parent sheet

Locked Boolean Set/Get whether the ChartObject is locked when
the parent sheet is protected

706

ChartObject Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 706

Name Returns Description

Name String Set/Get the name of the ChartObject

Placement XlPlacement Set/Get how the ChartObject object is anchored
to the sheet (for example, free floating, move with
cells). Use the XlPlacement constants to set this
property

PrintObject Boolean Set/Get whether the embedded chart on the sheet
will be printed when the sheet is printed

ProtectChart Boolean Set/Get whether the embedded chart can change
Object sizes, can be moved, or can be deleted from the

parent sheet

Rounded Boolean Set/Get whether the corners of the embedded
Corners chart are rounded (True) or right angles (False)

Shadow Boolean Set/Get whether a shadow appears around the
embedded chart

ShapeRange ShapeRange Read-only. Returns the ChartObject as a Shape
object

Top Double Set/Get the distance from top edge of the
ChartObject to the top of the parent sheet

TopLeftCell Range Read-only. Returns the single cell range located
above the top-left corner of the ChartObject

Visible Boolean Set/Get whether the ChartObject object is visible

Width Double Set/Get the width of embedded chart

ZOrder Long Read-only. Returns the position of the embedded
chart among all the other objects on the sheet.
The ZOrder also matches the location of the
ChartObject in the parent collection

ChartObject Methods

Name Returns Parameters Description

Activate Variant Makes the embedded chart the active chart

BringToFront Variant Brings the embedded chart to the front of
all the other objects on the sheet. Changes
the ZOrder

Copy Variant Copies the embedded chart into the
clipboard

Table continued on following page

707

ChartObject Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 707

Name Returns Parameters Description

CopyPicture Variant Appearance As Copies the Chart object into the clipboard
XlPicture as a picture. The Appearance parameter
Appearance, can be used to specify whether the picture
Format As is copied as it looks on the screen or when
XlCopyPicture printed. The Format parameter can specify
Format the type of picture that will be put into the

clipboard. The Size parameter is used
when dealing with chart sheets to describe
the size of the picture

Cut Variant Cuts an embedded chart into the clipboard

Delete Variant Deletes the embedded chart from the sheet

Duplicate Duplicates the embedded chart and places
the duplicate in the same parent sheet

Select Variant [Replace] Sets focus to the embedded chart

SendToBack Variant Sends the embedded object to the back of
the other objects on the sheet

ChartObject Object and the ChartObjects Collection Example
This example creates .jpg images from all the embedded charts in the active worksheet:

Sub ExportChartObjects()
Dim oCO As ChartObject
For Each oCO In ActiveSheet.ChartObjects

‘Export the chart as a jpg image, giving it the
‘name of the embedded object
oCO.Chart.Export “c:\” & oCO.Name & “.jpg”, “jpg”

Next
End Sub

ChartTitle Object
The ChartTitle object contains all of the text and formatting associated with a chart’s title. The parent
of the ChartTitle object is the Chart object. This object is usually used along with the HasTitle prop-
erty of the parent Chart object.

ChartTitle Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

708

ChartObject Object and the ChartObjects Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 708

ChartTitle Properties

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size will change
automatically if the parent chart changes sizes

Caption String Set/Get the chart title’s text

Characters Characters Read-only. Parameters: [Start], [Length].
Returns an object containing all the characters in
the chart title. Allows manipulation on a character-
by-character basis

Format ChartFormat Returns the ChartFormat object, which controls
the line, fill, and effect formatting for the chart area

Horizontal xlAlign Set/Get how the chart title is horizontally aligned.
Alignment Use the xlAlign constants

IncludeInLayout Boolean Set to True, this property ensures that the chart
title will occupy the chart layout space when a
chart layout is being determined

Left Double Set/Get the distance from the left edge of the chart
title text area to the chart’s left edge

Name String Read-only. Returns the name of the chart title object

Orientation XlOrientation Set/Get the angle of the text for the chart title. The
value can be either in degrees (from -90 to 90) or
one of the XlOrientation constants

Position xlChartElement Set/Get the position of the chart title by using the
Position xlChartElementPosition constants

ReadingOrder Long Set/Get how the text is read (from left to right
or right to left). Only applicable in appropriate
languages

Shadow Boolean Set/Get whether the chart title has a shadow effect

Text String Set/Get the chart title’s text

Top Double Set/Get the distance from the top edge of the chart
title text area to the chart’s top edge

Vertical xlVAlign Set/Get how you want the chart title to be
Alignment horizontally aligned. Use the xlVAlign constants

709

ChartTitle Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 709

ChartTitle Methods

Name Returns Parameters Description

Delete Variant Deletes the chart title from the chart

Select Variant Selects the chart title on the chart

ChartTitle Object Example
This example adds a chart title to a chart and formats it:

Sub AddAndFormatChartTitle()
Dim oCT As ChartTitle
‘Make sure the chart has a title
Charts(1).HasTitle = True
‘Get the ChartTitle object
Set oCT = Charts(1).ChartTitle
‘Format the chart title
With oCT

.Caption = “Hello World”

.Font.Name = “Times New Roman”

.Font.Size = 16

.Characters(1, 1).Font.Color = RGB(255, 0, 0)

.Characters(7, 1).Font.Color = RGB(255, 0, 0)

.Border.LineStyle = xlContinuous

.Border.Weight = xlThin

.Shadow = True
End With

End Sub

ChartView Object
The ChartView object is returned by the Sheets collection and allows you to focus in on a Chart sheet.

ChartView Common Properties
The Application and Parent properties are defined at the beginning of this appendix.

ChartView Properties

Name Returns Description

Sheet Sheet Read-only. Returns the sheet name for the specified
ChartView object

ColorFormat Object
The ColorFormat object describes a single color used by the parent object. Possible parents of the
ColorFormat object are the FillFormat, LineFormat, ShadowFormat, and ThreeDFormat objects.

710

ChartTitle Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 710

ColorFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ColorFormat Properties

Name Returns Description

ObjectTheme MsoThemeColorIndex Set/Get the color of the color mapped to
Color the theme color scheme by using the

MsoThemeColorIndex constants

RGB Long Set/Get the red-green-blue value associated
with the color

SchemeColor Integer Set/Get the color of the ColorFormat using
an index value corresponding to the current
color scheme

TintAndShade Single Set/Get a value that lightens or darkens the
color of a specified shape. The values can be
from -1 (darkest) to 1 (lightest). Zero is neutral

Type MsoColor Type Read-only. Returns whether the color is an
RGB, mixed, or scheme type

ColorFormat Object Example
Set the ForeColor of a shape’s fill effect:

Sub FormatShapeColor()
Dim oShp As Shape
Dim oCF As ColorFormat
Set oShp = ActiveSheet.Shapes(1)
Set oCF = oShp.Fill.ForeColor
oCF.SchemeColor = 53

End Sub

ColorScale Object
The ColorScale object allows you to create a color scale formatting rule by using either the Add or
AddColorScale method of the FormatConditions collection. You can apply a two-color or three-color
scale to a range of data by setting the properties of the ColorScaleCriteria to minimum, maximum,
and midpoint thresholds. The ColorScaleCriteria object is a child of the ColorScale object.

ColorScale Properties
The Application, Parent, and Creator properties are defined at the beginning of this appendix.

711

ColorFormat Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 711

ColorScale Properties

Name Returns Description

AppliesTo Range Set/Get the range that is affected by the
formatting rule

ColorScale ColorScale Returns a ColorScaleCriteria object, which is
Criteria used to specify the type of scale to be used (two or
Criteria three), the values that are to be evaluated, and the

color of threshold criteria used. Read-only

FormatRow Boolean Set/Get the Boolean value specifying if the entire
Excel table row should be formatted. The default
value is False

Formula String Set/Get a string representing a formula that deter-
mines the values that are to be evaluated in the
conditional formatting rule

Priority Long Set/Get the priority value of a conditional format-
ting rule, determining the order of evaluation
when other rules are in effect

PTCondition Boolean Read-only. Indicates whether the formatting rule
is applied to a PivotTable chart

ScopeType xlPivot Set/Get the scope of the formatting rule when
ConditionScope applied to a PivotTable chart. Use the

xlPivotConditionScope constants

StopifTrue Boolean Set/Get a Boolean value that determines if addi-
tional formatting rules should be applied if the cur-
rent rule evaluates to True. The default value is True

Type xlFormat Read-only. Returns an xlFormatConditionType
ConditionType constant that specifies the type of conditional

formatting being applied. This object will always
return a value of 12 since it corresponds to the
xlAboveAverageCondition

ColorScale Methods

Name Parameters Description

Delete Deletes the object

ModifyApplies Range As Range Sets the range for which the formatting rule will
ToRange be applied

SetFirstPriority Sets the priority value for the formatting rule so that
it is evaluated before all other rules on the worksheet

SetLastPriority Sets the priority value for the formatting rule so that
it is evaluated after all other rules on the worksheet

712

ColorScale Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 712

ColorScale Object Example
This example adds a three-color scale formatting rule to a specified range:

Sub CreateColorScale()
Dim oColorScale As ColorScale
‘Add a three-color scale
Set oColorScale = Range(“F6:F16”).FormatConditions.AddColorScale(ColorScaleType:=3)
‘Set the minimum threshold to the lowest value in the range
‘Set the color for the minimum threshold

oColorScale.ColorScaleCriteria(1).Type = xlConditionValueLowestValue
oColorScale.ColorScaleCriteria(1).FormatColor.Color = 7039480

‘Set the midpoint threshold to the value in a specific cell (cell F10 in this case)
‘Set the for the midpoint threshold

oColorScale.ColorScaleCriteria(2).Type = xlConditionValueNumber
oColorScale.ColorScaleCriteria(2).Value = “=F10”
oColorScale.ColorScaleCriteria(2).FormatColor.Color = 49407

‘Set the maximum threshold to the lowest value in the range
‘Set the color for the maximum threshold

oColorScale.ColorScaleCriteria(3).Type = xlConditionValueHighestValue
oColorScale.ColorScaleCriteria(3).FormatColor.Color = 8109667

End SubColorScaleCriterion and the
ColorScaleCriteria Collection

The ColorScaleCriteria collection holds each ColorScaleCriterion in a color scale conditional
format. Each criterion specifies the minimum, midpoint, or maximum threshold for the color scale.

ColorScaleCriteria Common Properties
The Count and Item properties are defined at the beginning of this appendix.

ColorScaleCriterion Properties

Name Returns Description

FormatColor Format Returns a FormatColor object, which defines the color
Color assigned to the specified color scale threshold. Read-only

Index Long Returns a value that represents the threshold for
the criteria. For two-color scales, the index values will be
1 for the minimum threshold and 2 for the maximum
threshold. For three-color scales, the values will be 1 for
the minimum threshold, 2 for the midpoint, and 3 for the
maximum. Read-only

Type xlCondition Specifies how the threshold values for a color scale
ValueTypes conditional format are determined (number, percent, for-

mula, or percentile). This property will return an xlCon-
ditionValueTypes constant

Value Variant Set/Get the value for the minimum, midpoint, and maxi-
mum thresholds in a color scale conditional formatting rule

713

ColorScale Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 713

ColorStop Object and ColorStops Collection
The ColorStop object exposes the properties and methods that control cell fill. Each ColorStop object
represents a color stop for gradient fill in a range or selection. The ColorStops collection contains the
ColorStop objects in a range or selection.

ColorStops Common Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

ColorStops Methods

Name Parameters Description

Add Position Adds a ColorStop for the active selection

Clear Clears the current ColorStops collection

Item Index Returns a single object from the represented
collection

ColorStop Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Color Variant Set/Get the color for the active selection

Position Double Set/Get the position of the ColorStop object

ThemeColor Long Set/Get the theme color for the active selection

TintandShade Variant Set/Get the tint and shade for the active selection

ColorStops Methods

Name Parameters Description

Delete Deletes a specified ColorStop object

Comment Object and the Comments Collection
The Comments collection holds all of the cell comments in the parent Range object. Each Comment object
represents a single cell comment.

Comment Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

714

ColorStop Object and ColorStops Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 714

Comment Properties

Name Returns Description

Author String Read-only. Returns the name of the person who
created the comment

Shape Shape Read-only. Returns the comment box as a Shape
object, allowing manipulation of the comment box

Visible Boolean Set/Get whether the comment is visible all the
time (True) or only when the user hovers over the
cell containing the comment

Comment Methods

Name Returns Parameters Description

Delete Deletes the comment from the cell

Next Comment Returns the next cell comment in the
parent collection

Previous Comment Returns the previous cell comment in the
parent collection

Text String [Text], [Start], Sets the text associated with the comment.
[Overwrite] The Text parameter is used to set the com-

ment text. Use the Start parameter to spec-
ify the starting point for Text in the
existing comment. Set the Overwrite
parameter to True to overwrite existing text

Comment Object and the Comments Collection Example
This example removes the user name added by Excel at the start of the comment and formats the com-
ment to make it more readable:

Sub FormatComments()
Dim oComment As Comment, i As Integer
‘Loop through all the comments in the sheet
For Each oComment In ActiveSheet.Comments

‘Using the text of the comment(
With oComment.Shape.TextFrame.Characters

‘Find and remove the user name inserted by Excel
i = InStr(1, .Text, “:” & vbLf)
If i > 0 Then

.Text = Mid(.Text, i + 2)
End If

‘Increase the font size
With .Font

715

Comment Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 715

.Name = “Arial”

.Size = 10

.Bold = False
End With

End With

‘Make the text frame auto-fit
oComment.Shape.TextFrame.AutoSize = True

Next
End Sub

ConditionValue Object
Returned by the Databar object, the ConditionValue object defines the type of evaluation for a data
bar conditional formatting rule.

ConditionValue Properties
The Application, Parent, and Creator properties are defined at the beginning of this appendix.

ConditionValue Properties

Name Returns Description

Type xlConditionValueTypes Specifies how the threshold values for a data
bar conditional format are determined (num-
ber, percent, formula, or percentile). This prop-
erty will return an xlConditionValueTypes
constant. Read-only

Value Variant Set/Get the shortest bar or longest bar thresh-
old value for a data bar conditional format.
You can only set this value if the condition
value type is set to number, percent, percentile,
or formula

ConditionValue Methods

Name Returns Parameters Description

Modify newtype As Allows a user to modify the method in
xlCondition which the longest and shortest value in a
ValueTypes, data bar conditional format rule is
newvalue evaluated

Connections Object
The Connections object returns or sets a string that enables Excel to connect any one of the valid exter-
nal data sources shown in the Data tab of the Ribbon.

716

ConditionValue Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 716

Connections Common Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

Connections Methods

Name Returns Parameters Description

Add Workbook Name As String, Returns a
Connection Description As String, WorkbookConnection

ConnectionString object, via a connection
As Variant, string defining a
CommandText As Variant, connection to an
lCmdtype external data source

AddFromFile Workbook Filename As String, Returns a
Connection WorkbookConnection

object, via an Office
Data Connection (.odc)
file, a Offline Cube file
(.cub), or any other file
that defines an external
data source

Connections Example
This example adds a connection to a local cube file and then creates a PivotTable.

Sub Create_LocalCube_PivotTable()
‘Add a connection to the local cube file

ActiveWorkbook.Connections.AddFromFile “C:\MyCustomCube.cub”
‘Create a Pivot Cache and Pivot Table

ActiveWorkbook.PivotCaches.Create(SourceType:=xlExternal, _
SourceData:=ActiveWorkbook.Connections(“MyCustomCube”)).CreatePivotTable _
TableDestination:=Range(“A1”), TableName:=”MyPivot”

End Sub

ConnectorFormat Object
The ConnectorFormat object represents the connector line used between shapes. This connector line
connects two shapes together. If either of the shapes is moved, the connector automatically readjusts so
the shapes still look visually connected. The parent of a ConnectorFormat object is the Shape object.

ConnectorFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

717

Connections Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 717

ConnectorFormat Properties

Name Returns Description

BeginConnected MsoTriState Read-only. Returns whether the beginning
of the connector has a shape attached. Use
with BeginConnectedShape

BeginConnected Shape Read-only. Returns the shape that is
Shape connected to the beginning of the connector.

Use with BeginConnected

BeginConnection Long Read-only. Returns which connection site
Site (connection spot) on the shape that the

beginning of the connector is connected to.
Use with BeginConnected

EndConnected MsoTriState Read-only. Returns whether the end of the
connector has a shape attached. Use with
BeginConnectedShape

EndConnectedShape Shape Read-only. Returns the shape that is con-
nected to the end of the connector. Use with
EndConnected

EndConnectionSite Long Read-only. Returns which connection site
(connection spot) on the shape that the end
of the connector is connected to. Use with
EndConnected

Type MsoConnectorType Set/Get what type of connector is being used
(for example, msoConnectorStraight and
msoConnectorCurve)

ConnectorFormat Methods

Name Parameters Description

BeginConnect Connected Shape Sets the beginning of the connector to the
As Shape, Connection shape specified by the ConnectedShape
Site As Long parameter at the connection site specified by

the ConnectionSite parameter

BeginDisconnect Disconnects the shape that was at the
beginning of the connection. This method
does not move the connection line

EndConnect Connected Shape Sets the end of the connector to the shape
As Shape, Connection specified by the ConnectedShape
Site As Long parameter at the connection site specified by

the ConnectionSite parameter

EndDisconnect Disconnects the shape that was at the end of
the connection. This method does not move
the connection line

718

ConnectorFormat Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 718

ConnectorFormat Object Example
This example formats all fully connected connectors as curved lines:

Sub FormatConnectors()
Dim oShp As Shape
Dim oCF As ConnectorFormat
‘Loop through all the Shapes in the sheet
For Each oShp In ActiveSheet.Shapes

‘Is it a Connector?
If oShp.Connector Then

‘Yes, so get the ConnectorFormat object
Set oCF = oShp.ConnectorFormat

‘If the connector is connected at both ends,
‘make it a curved line.
With oCF

If .BeginConnected And .EndConnected Then
.Type = msoConnectorCurve

End If
End With

End If
Next

End Sub

ControlFormat Object
The ControlFormat object contains properties and methods used to manipulate Excel controls such as
text boxes and list boxes. This object’s parent is always the Shape object.

ControlFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ControlFormat Properties

Name Returns Description

DropDownLines Long Set/Get how many lines are displayed in the
drop-down part of a combo box. Valid only if
the control is a combo box

Enabled Boolean Set/Get whether the control is enabled

LargeChange Long Set/Get the value that is added or subtracted
every time the user clicks inside the scrollbar
area for a scroll box. Valid only if the control is
a scroll box

LinkedCell String Set/Get the range where the results of the
control are placed

Table continued on following page

719

ConnectorFormat Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 719

Name Returns Description

ListCount Long Read-only. Returns the number of items in the
list box or combo box. Valid only for list box
and combo box controls

ListFillRange String Set/Get the range that contains the items for a
list box or combo box. Valid only for list box
and combo box controls

ListIndex Long Set/Get the item that is currently selected in
the list box or combo box. Valid only for list
box and combo box controls

LockedText Boolean Set/Get whether the control text can be
changed if the workbook is locked

Max Long Set/Get the maximum value allowed for a
scrollbar or spinner. Valid only on a control
that is a scrollbar or spinner

Min Long Set/Get the minimum value allowed for a
scrollbar or spinner. Valid only on a control
that is a scrollbar or spinner

MultiSelect Long Set/Get how a list box reacts to user selection.
The property can be set to xlNone (only one
item can be selected), xlSimple (each item the
user clicks on is added to the selection), or
xlExtended (the user has to hold down the
Ctrl key to select multiple items). Valid only
on list boxes

PrintObject Boolean Set/Get whether the control will be printed
when the sheet is printed

SmallChange Long Set/Get the value that is added or subtracted
every time the user clicks the arrow button
associated with the scrollbar. Valid only if the
control is a scroll box

Value Long Set/Get the value of the control

ControlFormat Methods

Name Returns Parameters Description

AddItem Text As String, Adds the value of the Text parameter into
[Index] a list box or combo box. Valid only for list

box and combo box controls

720

ControlFormat Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 720

Name Returns Parameters Description

List Variant [Index] Set/Get the string list array associated with a
combo box or list box. Can also Set/Get indi-
vidual items in the list box or combo box if the
Index parameter is specified. Valid only for
list box and combo box controls

RemoveAll Removes all the items from a list box or
Items combo box. Valid only for list box and combo

box controls

RemoveItem Index As Long, Removes the item specified by the Index
[Count] parameter from a list box or combo box. Valid

only for list box and combo box controls

ControlFormat Object Example
This example resets all the list boxes, drop-downs, scrollbars, spinners, and checkboxes on the sheet:

Sub ResetFormControls()
Dim oShp As Shape
Dim oCF As ControlFormat
‘Loop through all the shapes in the sheet
For Each oShp In ActiveSheet.Shapes

‘Is this a Forms control?
If oShp.Type = msoFormControl Then

‘Yes, so get the ControlFormat object
Set oCF = oShp.ControlFormat

‘Reset the control as appropriate
Select Case oShp.FormControlType

Case xlListBox, xlDropDown
oCF.RemoveAllItems

Case xlSpinner, xlScrollBar
oCF.Value = oCF.Min

Case xlCheckBox
oCF.Value = xlOff

End Select
End If

Next
End Sub

CubeField Object and the CubeFields Collection
The CubeFields collection holds all of the PivotTable report fields based on an OLAP cube. Each
CubeField object represents a measure or hierarchy field from the OLAP cube. The parent of the
CubeFields collection is the PivotTable object.

721

ControlFormat Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 721

CubeFields Common Properties
The Application, Count, Creator, Item, and Parent properties are defined at the beginning of this
appendix.

CubeFields Collection Methods

Name Returns Parameters Description

AddSet CubeField Name As String, Adds a new CubeField object to the
Caption As String CubeFields collection

CubeField Common Properties
The Application, Creator, Item, and Parent properties are defined at the beginning of this appendix.

CubeField Properties

Name Returns Description

AllItemsVisible Boolean A read-only Boolean set to True by default,
this property checks whether manual filtering
is applied to either a PivotField or a CubeField.
This property is automatically set to False
when any manual filtering is applied

Caption String Sets/Gets the text label to use for the cube field

CubeFieldSub xlCubeFieldSubType Read-only. Specifies whether a CubeField is an
Type Attribute, Calculated Measure, Hierarchy,

KPIGoal, KPIStatus, KPITrend, KPIValue,
KPIWeight, Measure, or CubeSet

CubeFieldType XlCubeField Read-only. Returns whether the cube field is a
Type hierarchy field (xlHierarchy) or a measure

field (xlMeasure)

CurrentPageName String Set/Get the page name for a specified
CubeField

DragToColumn Boolean Set/Get whether the field can be dragged to a
column position. False for measure fields

DragToData Boolean Set/Get whether the field can be dragged to
the data position

DragToHide Boolean Set/Get whether the field can be dragged off
the PivotTable report and therefore hidden

722

CubeFields Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 722

Name Returns Description

DragToPage Boolean Set/Get whether the field can be dragged to
the page position. False for measure fields

DragToRow Boolean Set/Get whether the field can be dragged to a
row position. False for measure fields

EnableMultiple Boolean Set/Get whether multiple items in the page
PageItems field area for OLAP PivotTables can be

selected

HasMember Boolean Read-only. Returns True when there are
Properties member properties specified to be displayed

for the cube field

IncludeNewItems Boolean When this setting is set to True, excluded
InFilter items are tracked when manual filtering is

applied. When this setting is set to False,
included items are tracked when manual filter-
ing is applied

IsDate Boolean Read-only. Returns True if the CubeField is
a date

LayoutForm XlLayoutForm Set/Get the way the specified PivotTable
Type items appear

LayoutSubtotal XlSubtotal Set/Get the position of the PivotTable field
Location subtotals in relation to the specified field
LocationType

Name String Read-only. Returns the name of the field

Orientation XlPivotField Set/Get where the field is located in the
Orientation PivotTable report

PivotFields PivotFields Read-only. Returns the PivotFields collection

Position Long Set/Get the position number of the hierarchy
field among all the fields in the same orientation

ShowInFieldList Boolean Set/Get whether a CubeField object will be
shown in the field list

TreeviewControl Treeview Read-only. Returns an object allowing
Control manipulation of the cube on an OLAP

PivotTable report

Value String Read-only. Returns the name of the field

723

CubeField Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 723

CubeField Methods

Name Parameters Description

AddMember Property As String, Adds a member property field to the
PropertyField [Property Order] display for the cube field. Note that the

As Variant, property field specified will not be
[PropertyDisplayedIn] viewable if the PivotTable view has
As xlPropertyDisplayedIn no fields

ClearManualFilter Sets the Visible property to True for
all items of a PivotField. It also emp-
ties the HiddenItemsList and
VisibleItemsList collections in
OLAP PivotTables

CreatePivotFields Allows you to create PivotFields and
apply filters to them before adding
them to the PivotTable

Delete Deletes the object

CustomProperty Object and the
CustomProperties Collection

This object allows you to store information within a worksheet or SmartTag. This information can then
be used as metadata for XML, or can be accessed by any routine that needs information specific to the
worksheet or SmartTag.

More important to a developer is the capability of this new object to store specifics regarding a work-
sheet or group of worksheets so any routine can call up the CustomProperty, analyze the information
contained within, and then make decisions on how to handle that worksheet. In the past, many develop-
ers used worksheet-level range names to store information about a worksheet. Worksheet-level range
names only reside in that worksheet, enabling each worksheet to have the same range name, but store
different values.

For example, each worksheet in a workbook containing a dozen budget worksheets and three report
worksheets could contain the same range name, called IsBudget. All of the budget sheets would store
the value of True in the range name, while the report sheets would store False. Routines that need to
loop through the worksheets, applying different formats or calculations to budget sheets, can call on the
value of the range name to determine if it’s a budget sheet before running code on it.

This new CustomProperty object makes storing such information (or any information, for that matter)
simpler than creating worksheet-level range names, or storing such information in a hidden worksheet
or in the Registry.

The CustomProperties collection represents CustomProperty objects for either worksheets or
SmartTags. CustomProperties can store information within either a worksheet or SmartTag. They are
similar to the DocumentProperties object in the Office XP model, except they are stored with a work-
sheet or SmartTag instead of the whole document.

724

CubeField Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 724

CustomProperties Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

CustomProperties Collection Properties

Name Returns Description

Count Long Read-only. Returns the number of objects in the
collection

Item Custom Property Read-only. Index As Variant. Returns a single
object from a collection

CustomProperties Collection Methods

Name Returns Parameters Description

Add Custom Property Name As String, Adds custom property
Value As Variant information

CustomProperty Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

CustomProperty Properties

Name Returns Description

Name String Set/Get the name of the object

Value Variant Set/Get the value to store in the property

CustomProperty Methods

Name Returns Parameters Description

Delete Deletes the object

CustomProperty Object Example
This routine loops through the worksheets in a workbook and creates a CustomProperty called
IsBudget. The value of IsBudget depends on whether or not the worksheet contains the phrase Budget
Analysis. It then lists the results:

Sub CreateCustomProperties()
Dim bBudget As Boolean
Dim lRow As Long
Dim oCustomProp As CustomProperty
Dim rng As Range, wks As Worksheet

‘Turn off the screen and clear the search formats

725

CustomProperties Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 725

With Application
.FindFormat.Clear
.ScreenUpdating = False

End With

‘Clear the worksheet that will contain the Custom Property list
ActiveSheet.UsedRange.Offset(1, 0).ClearContents

‘Initialize the row counter
lRow = 2 ‘Row 1 contains the Column Headings

‘Loop through the worksheet in this workbook
For Each wks In ThisWorkbook.Worksheets

‘Supress errors resulting in no cells found and no Custom Property
On Error Resume Next

bBudget = False

bBudget = (Len(wks.UsedRange.Find(What:=”Budget Analysis”).Address) > 0)
‘We cannot refer to a Custom Property by its name, only its numeric index

Set oCustomProp = wks.CustomProperties(1)
On Error GoTo 0

‘If the Custom Property exists, delete it and add it again
If Not oCustomProp Is Nothing Then oCustomProp.Delete

‘Note the value of bBudget is encased in double quotes.
‘If we don’t, True will be stored as -1 and False 0 (their numeric values).

Set oCustomProp = wks.CustomProperties.Add(Name:=”IsBudget”, Value:=”” _
& bBudget & “”)

‘List the Custom Property settings on the worksheet
With ActiveSheet

‘Parent.Name returns the name of the object holding the Custom Property
‘That object is the worksheet name in this case

.Cells(lRow, 1).Value = oCustomProp.Parent.Name

.Cells(lRow, 2).Value = oCustomProp.Name

.Cells(lRow, 3).Value = oCustomProp.Value
End With

‘Move down one row
lRow = lRow + 1

Next wks
End Sub

CustomView Object and the CustomViews Collection
The CustomViews collection holds the list of custom views associated with a workbook. Each
CustomView object holds the attributes associated with a workbook custom view. A custom view holds
settings such as window size, window position, column widths, hidden columns, and print settings of a
workbook. The parent object of the CustomViews collection is the Workbook object.

726

CustomView Object and the CustomViews Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 726

The CustomViews collection has one other property besides the typical collection attributes. The Add
method adds a custom view to the CustomViews collection. The Add method accepts a name for the
view with the ViewName parameter. Optionally, the Add method accepts whether print settings are
included (PrintSettings) and whether hidden rows and columns are included (RowColSettings).

CustomView Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

CustomView Properties

Name Returns Description

Name String Read-only. Returns the name of the custom view

PrintSettings Boolean Read-only. Returns whether print settings are included
in the custom view

RowCol Settings Boolean Read-only. Returns whether hidden rows and columns
are included in the custom view

CustomView Methods

Name Returns Parameters Description

Delete Deletes the custom view

Show Shows the custom view and the set-
tings associated with it

CustomView Object and the CustomViews Collection Example
Display all the custom views in the workbook as a screen-show, pausing for two seconds between
each one:

Sub ShowCustomView()
Dim oCV As CustomView

‘Cycle through all custom views in the sheet containing row/column information
For Each oCV In ActiveWorkbook.CustomViews

If oCV.RowColSettings Then
oCV.Show

End If

‘Pause for 2 seconds between each view
Application.Wait Now + TimeValue(“00:00:02”)

Next
End Sub

Databar Object
The Databar object allows you to apply visual formatting that uses a colored bar to represent a cell’s
value in relation to other cells in a specified range.

727

CustomView Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 727

Databar Properties
The Application, Parent, and Creator properties are defined at the beginning of this appendix.

Databar Properties

Name Returns Description

AppliesTo Range Read-only. Returns the range that is affected by the for-
matting rule

BarColor Format Read-only. Returns the FormatColor object, which is
Color used to specify the color of the bar shown

Formula String Set/Get a string representing a formula that determines
the values that are to be evaluated in the conditional for-
matting rule

MaxPoint Condition Read-only. Returns the method by which the longest bar
Value in the formatting rule is evaluated. Use the Type and

Value properties of the ConditionValue

MinPoint String Read-only. Returns a ConditionValue object that can
be used to specify the method by which the shortest bar
in the formatting rule is evaluated

PercentMax Long Set/Get the length of the longest bar by using the cell
width as a baseline. The value must be a whole number
between 0 and 100

PercentMin Long Set/Get the length of the shortest bar by using the cell
width as a baseline. The value must be a whole number
between 0 and 100

Priority Long Set/Get the priority value of a conditional formatting
rule, determining the order of evaluation when other
rules are in effect

PTCondition Boolean Read-only. Indicates whether the formatting rule is
applied to a PivotTable chart

ScopeType xlPivot Set/Get the scope of the formatting rule when applied
ConditionScope to a PivotTable chart. Use the xlPivotCondition-

Scope constants

ShowValue Boolean If the ShowValue property is set to True, the actual
value in the cell is displayed along with the data bar

StopifTrue Boolean Set/Get a Boolean value that determines if additional
formatting rules should be applied if the current rule
evaluates to True. The default value is True

Type xlFormat Read-only. Returns an xlFormatConditionType
ConditionType constant, which specifies the type of conditional format-

ting being applied

728

Databar Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 728

Databar Methods

Name Returns Parameters Description

Delete Deletes the object

ModifyAppliesToRange Range As Range Sets the range for which the for-
matting rule will be applied

SetFirstPriority Sets the priority value for the for-
matting rule so that it is evalu-
ated before all other rules on the
worksheet

SetLastPriority Sets the priority value for the for-
matting rule so that it is evalu-
ated after all other rules on the
worksheet

Databar Object Example
This example creates a data bar conditional formatting rule that sets the highest value in the specified
range as the MaxPoint and the value in cell F14 as the MinPoint:

Sub CreateDatabar()
Dim oDatabar As Databar
‘Add a Data bar

Set oDatabar = Range(“F6:F16”).FormatConditions.AddDatabar
‘Set the max and min parameters for the data bar
‘Note the MinPoint for the databar is a value in cell F14

With oDatabar
.MaxPoint.Modify xlConditionValueHighestValue
.MinPoint.Modify xlConditionValueNumber, “=F14”
.BarColor.Color = 7039480
.ShowValue = True

End With
End Sub

DataLabel Object and the DataLabels Collection
The DataLabels collection holds all the labels for individual points or trendlines in a data series. Each
series has only one DataLabels collection. The parent of the DataLabels collection is the Series
object. Each DataLabel object represents a single data label for a trendline or a point. The DataLabels
collection is used with the HasDataLabels property of the parent Series object.

The DataLabels collection has a few properties and methods besides the typical collection attributes.
They are listed in the following table.

729

Databar Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 729

DataLabels Collection Properties and Methods

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size will
change automatically if the parent
chart changes sizes

AutoText Boolean Set/Get whether Excel will generate
the data label text automatically

Format ChartFormat Read-only. Returns the ChartFormat
object, which controls the line, fill,
and effect formatting for the chart
area

HorizontalAlignment xlAlign Set/Get how the data labels are hor-
izontally aligned. Use the xlAlign
constants

Name String Read-only. Returns the name of the
collection

NumberFormat String Set/Get the numeric formatting to
use if the data labels are numeric
values or dates

NumberFormatLinked Boolean Set/Get whether the same numeri-
cal format used for the cells contain-
ing the chart data is used by the
data labels

NumberFormatLocal Variant Set/Get the name of the numeric
format being used by the data
labels, in the language being used
by the user

Orientation XlOrientation Set/Get the angle of the text for the
data labels. The value can be in
degrees (from -90 to 90) or one of
the XlOrientation constants

Position XlDataLabelPosition Set/Get where the data labels are
going to be located in relation to
points or trendlines

ReadingOrder Long Set/Get how the text is read (from
left to right or right to left). Only
applicable in appropriate languages

Separator Variant Set/Get the separator used for the
data labels on a chart

Shadow Boolean Set/Get whether the data labels
have a shadow effect

730

DataLabels Collection Properties and Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 730

Name Returns Description

ShowBubbleSize Boolean Set/Get whether to show the bubble
size for the data labels on a chart

ShowCategoryName Boolean Set/Get whether to display the cate-
gory name for the data labels on a
chart

ShowLegendKey Boolean Set/Get whether the key being used
in the legend, usually a specific
color, will show along with the data
label

ShowPercentage Boolean Set/Get whether to display the
percentage value for the data labels
on a chart

ShowSeriesName Boolean Set/Get whether to show the series
name

ShowValue Boolean Set/Get whether to display the
specified chart’s data label values

VerticalAlignment xlVAlign Set/Get how you want the data
labels to be horizontally aligned.
Use the xlVAlign constants

Delete Variant Method. Deletes the data labels

Select Variant Method. Selects the data labels on
the chart

DataLabel Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

DataLabel Properties

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size will
change automatically if the parent
chart changes sizes

AutoText Boolean Set/Get whether Excel will generate
the data label text automatically

Caption String Set/Get the data label text

Characters Characters Read-only. Parameters: [Start],
[Length]. Returns an object that
represents a range of characters
within the text

Table continued on following page

731

DataLabel Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 731

Name Returns Description

Format ChartFormat Returns the ChartFormat object,
which controls the line, fill, and
effect formatting for the chart area

Horizontal xlAlign Set/Get how the data labels are
Alignment horizontally aligned. Use the

xlAlign constants

Left Double Set/Get the distance from the left
edge of the data label to the parent
chart’s left edge

Name String Read-only. Returns the name of the
data label

NumberFormat String Set/Get the numeric formatting to
use if the data label is a numeric
value or a date

NumberFormat Boolean Set/Get whether the same numerical
Linked format used for the cells containing

the chart data is used by the data
label

NumberFormat Variant Set/Get the name of the numeric
Local format being used by the data label,

in the language being used by the
user

Orientation XlOrientation Set/Get the angle of the text for the
data label. The value can be in
degrees (from -90 to 90) or one of
the XlOrientation constants

Position XlDataLabelPosition Set/Get where the data label is
going to be located in relation to
points or trendlines

ReadingOrder Long Set/Get how the text is read (from
left to right or right to left). Only
applicable in appropriate languages

Separator Variant Set/Get the separator used for the
data labels on a chart

Shadow Boolean Set/Get whether the data label has
a shadow effect

ShowBubbleSize Boolean Set/Get whether to show the bubble
size for the data labels on a chart

ShowCategory Boolean Set/Get whether to display the
Name category name for the data labels on

a chart

732

DataLabel Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 732

Name Returns Description

ShowLegendKey Boolean Set/Get whether the key being used
in the legend, usually a specific
color, will show along with the data
label

ShowPercentage Boolean Set/Get whether to display the per-
centage value for the data labels on
a chart

ShowSeriesName Boolean Set/Get whether to show the series
name

ShowValue Boolean Set/Get whether to display the
specified chart’s data label values

Text String Set/Get the data label text

Top Double Set/Get the distance from the top
edge of the data label to the parent
chart’s top edge

Type Variant Set/Get what sort of data label to
show (for example, labels, percent,
values)

Vertical xlVAlign Set/Get how you want the data
Alignment label to be horizontally aligned. Use

the xlVAlign constants

DataLabel Methods

Name Returns Parameters Description

Delete Variant Deletes the data label

Select Variant Selects the data label on the chart

DataLabel Object and the DataLabels Collection Example
This example adds data labels to all the points on the chart, using the column to the left of the X values
range:

Sub AddDataLabels()
Dim oSer As Series
Dim vaSplits As Variant
Dim oXRng As Range
Dim oLblRng As Range
Dim oLbl As DataLabel
Dim i As Integer

‘Loop through all the series in the chart

733

DataLabel Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 733

For Each oSer In ActiveSheet.ChartObjects(“Chart 1”).Chart.SeriesCollection
‘Get the series formula and split it into its
‘constituent parts (Name, X range, Y range, order)
vaSplits = Split(oSer.Formula, “,”)

‘Get the X range
Set oXRng = Range(vaSplits(LBound(vaSplits) + 1))

‘Get the column to the left of the X range
Set oLblRng = oXRng.Offset(0, -1)

‘Show data labels for the series
oSer.ApplyDataLabels

‘Loop through the points
For i = 1 To oSer.Points.Count

‘Get the DataLabel object
Set oLbl = oSer.Points(i).DataLabel
oLbl.Caption = oLblRng.Cells(i)

Next
Next

End Sub

DataTable Object
A DataTable object contains the formatting options associated with a chart’s data table. The parent of
the DataTable object is the Chart object.

DataTable Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

DataTable Properties

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size will change automati-
cally if the parent chart changes sizes

Border Border Read-only. Returns the border’s properties around
the data table

Font Font Read-only. Returns an object containing Font
options for the data table

Format ChartFormat Read-only. Returns the ChartFormat object, which
controls the line, fill, and effect formatting for the
chart area

HasBorder Boolean Set/Get whether the data table has horizontal cell
Horizontal borders

734

DataTable Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 734

Name Returns Description

HasBorder Boolean Set/Get whether the data table has a border around
Outline the outside

HasBorder Boolean Set/Get whether the data table has vertical cell
Vertical borders

ShowLegendKey Boolean Set/Get whether the legend key is shown along
with the data table contents

DataTable Methods

Name Returns Parameters Description

Delete Deletes the data table

Select Selects the data table on the chart

DataTable Object Example
This example adds a data table to a chart and formats it to only have vertical lines between the values:

Sub FormatDataTable()
Dim oChart As Chart
‘Set the target chart

Set oChart = ActiveSheet.ChartObjects(“Chart 1”).Chart
‘Add data table and change font color

oChart.HasDataTable = True
oChart.DataTable.Font.Color = 1533

End Sub

DefaultWebOptions Object
The DefaultWebOptions object allows programmatic changes to items associated with the default set-
tings of the Web Options dialog box. These options include what Excel does when opening an HTML
page and when saving a sheet as an HTML page.

DefaultWebOptions Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

735

DataTable Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 735

DefaultWebOptions Properties

Name Returns Description

AllowPNG Boolean Set/Get whether Portable Network Graph-
ics Format PNG is allowed as an output for-
mat. PNG is a file format for the lossless,
portable, well-compressed storage of
images

AlwaysSaveIn Boolean Set/Get whether web pages are always
DefaultEncoding saved in the default encoding

CheckIfOfficeIs Boolean Set/Get whether Office is the default
HTMLEditor web editor for Office-created pages

Download Components Boolean Set/Get whether Office components are
downloaded to the end user’s machine
when viewing Excel files in a web browser

Encoding MsoEncoding Set/Get the type of encoding to save a doc-
ument as

FolderSuffix String Read-only. Returns what the suffix name is
for the support directory created when sav-
ing an Excel document as a web page.
Language-dependent

Fonts WebPage Fonts Read-only. Returns a collection of possible
Web type fonts

LoadPictures Boolean Set/Get whether images are loaded when
opening up an Excel file

LocationOf String Set/Get the URL or path that contains the
Components Office Web components needed to view

documents in a web browser

OrganizeInFolder Boolean Set/Get whether supporting files are orga-
nized in a folder

PixelsPerInch Long Set/Get how dense graphics and table cells
should be when viewed on a web page

RelyOnCSS Boolean Set/Get whether Cascading Style Sheets
(CSS) is used for font formatting

RelyOnVML Boolean Set/Get whether image files are not created
when saving a document with drawn
objects. Vector Markup Language is used to
create the images on the fly. VML is an
XML-based format for high-quality vector
graphics on the web

736

DefaultWebOptions Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 736

Name Returns Description

SaveHidden Data Boolean Set/Get whether all hidden data is saved in
the web page along with the regular data

SaveNewWeb Boolean Set/Get whether a new web page can be
PagesAs saved as a web archive
Web Archives

ScreenSize MsoScreen Size Set/Get the target monitor’s screen size

TargetBrowser MsoTargetBrowser Set/Get the browser version

UpdateLinksOnSave Boolean Set/Get whether links are updated every
time the document is saved

UseLongFileNames Boolean Set/Get whether long filenames are used
whenever possible

DefaultWebOptions Object Example
This example shows how to open a web page without loading the pictures:

Sub OpenHTMLWithoutPictures()
Dim bLoadImages As Boolean
Dim oDWO As DefaultWebOptions
‘Get the Default Web options
Set oDWO = Application.DefaultWebOptions

‘Remember whether to load pictures
bLoadImages = oDWO.LoadPictures
‘Tell Excel not to load pictures, for faster opening
oDWO.LoadPictures = False
‘Open a web page, without pictures
Workbooks.Open “http://www.wrox.com”
‘Restore the setting
oDWO.LoadPictures = bLoadImages

End Sub

Dialog Object and the Dialogs Collection
The Dialogs collection represents the list of dialog boxes that are built into Excel. The XlBuiltinDialog
constants are used to access an individual Dialog object in the Dialogs collection. A Dialog object rep-
resents a single built-in Excel dialog box. Each Dialog object will have additional custom properties,
depending on what type of Dialog object it is.

Dialogs Common Properties
The Application, Count, Creator, Item, and Parent properties are defined at the beginning of this
appendix.

737

DefaultWebOptions Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 737

Dialog Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Dialog Methods

Name Returns Parameters Description

Show Boolean [Arg1], Displays and executes the dialog box
[Arg2], settings. True is returned if the user chose
... [Arg30] OK, and False is returned if the user chose

Cancel. The arguments to pass depend on
the dialog box

Dialog Object and the Dialogs Collection Example
Sub ShowPrinterSelection()

‘Show printer selection dialog
Application.Dialogs(xlDialogPrinterSetup).Show

End Sub

DisplayUnitLabel Object
The DisplayUnitLabel object contains all of the text and formatting associated with the label used for
units on axes. For example, if the values on an axis are in the millions, it would be messy to display such
large values on the axis. Using a unit label such as Millions would allow much smaller numbers to be
used. The parent of the DisplayUnitLabel object is the Axis object. This object is usually used along
with the HasDisplayUnit property of the parent Axis object.

DisplayUnitLabel Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

DisplayUnitLabel Properties

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size will change auto-
matically if the parent chart changes sizes

Caption String Set/Get the unit label’s text

Characters Characters Read-only. Parameters: [Start], [Length].
Returns an object containing all the characters in
the unit label. Allows manipulation on a
character-by-character basis

Format ChartFormat Read-only. Returns the ChartFormat object,
which controls the line, fill, and effect formatting
for the chart area

HorizontalAlignment xlAlign Set/Get how you want the unit label to be hori-
zontally aligned. Use the xlAlign constants

738

Dialog Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 738

Name Returns Description

Left Double Set/Get the distance from the left edge of the
unit label text area to the chart’s left edge

Name String Read-only. Returns the name of the Display-
UnitLabel object

Orientation XlOrientation Set/Get the angle of the text for the unit label.
The value can be in degrees (from -90 to 90) or
one of the XlOrientation constants

Position XlChartElement Set/Get where the unit label is going to be
Position located in relation to points or trendlines

Reading Long Set/Get how the text is read (from left to right or
Order right to left). Only applicable in appropriate

languages

Shadow Boolean Set/Get whether the unit label has a shadow
effect

Text String Set/Get the unit label’s text

Top Double Set/Get the distance from the top edge of the
unit label text area to the chart’s top edge

Vertical xlVAlign Set/Get how you want the unit label to be
Alignment horizontally aligned. Use the xlVAlign constants

DisplayUnitLabel Methods

Name Returns Parameters Description

Delete Variant Deletes the unit label from the axis

Select Variant Selects the unit label on the chart

DisplayUnitLabel Object Example
Sub AddUnitLabel()

Dim oDUL As DisplayUnitLabel
‘Format the Y axis to have a unit label
With ActiveSheet.ChartObjects(“Chart 1”).Chart.Axes(xlValue)

.DisplayUnit = xlThousands

.HasDisplayUnitLabel = True
‘Get the unit label
Set oDUL = .DisplayUnitLabel

End With
End Sub

739

DisplayUnitLabel Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 739

DownBars Object
The DownBars object contains formatting options for down bars on a chart. The parent of the DownBars
object is the ChartGroup object. To see if this object exists, use the HasUpDownBars property of the
ChartGroup object.

DownBars Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

DownBars Properties

Name Returns Description

Format ChartFormat Read-only. Returns the ChartFormat object, which controls
the line, fill, and effect formatting for the chart area

Name String Read-only. Returns the name of the down bars

DownBars Methods

Name Returns Parameters Description

Delete Variant Deletes the down bars

Select Variant Selects the down bars in the chart

DropLines Object
The DropLines object contains formatting options for drop lines in a chart. The parent of the DropLines
object is the ChartGroup object. To see if this object exists, use the HasDropLines property of the
ChartGroup object.

DropLines Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

DropLines Properties

Name Returns Description

Border Border Read-only. Returns the border’s properties around the drop
lines

Format ChartFormat Returns the ChartFormat object, which controls the line,
fill, and effect formatting for the chart area

Name String Read-only. Returns the name of the drop lines

740

DownBars Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 740

DropLines Methods

Name Returns Parameters Description

Delete Variant Deletes the drop lines

Select Variant Selects the drop lines in the chart

Error Object and the Errors Collection
The Error object contains one error in the Errors collection representing one error in a cell containing
possible errors.

The Errors collection represents all the errors contained within a cell. Each cell can contain multiple
errors.

Note that neither the Error nor Errors objects contains a count or Boolean property that would allow
you to test whether an error even exists in a cell. For this reason, additional code would be needed to
loop through each error type for every desired cell checking for the Error object’s Value property,
which returns True if that type of error occurs in the cell.

Use the Item property of the Errors Collection object to loop through the error types to determine
which errors might have occurred. The Errors Collection object can be used to check for specific error
conditions available through xlErrorChecks constants.

Errors Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Errors Collection Properties

Name Returns Description

Item Error Returns an Error object that is contained in the Errors collection

Error Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Error Properties

Name Returns Description

Ignore Boolean Get/Set whether error checking is enabled for a range

Value Boolean Read-only. Returns whether all the validation criteria are met

741

DropLines Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 741

Errors Collection Example
Sub CheckForEmptyCellReference()
‘ Place a formula in cell A1.

Range(“A1”).Formula = “=B1+C1”
‘If Cell B1 is empty

If Range(“A1”).Errors.Item(xlEmptyCellReferences).Value = True Then
MsgBox “One or more of the referenced cells are empty.”

End If
End Sub

ErrorBars Object
The ErrorBars object contains formatting options for error bars in a chart. The parent of the Errors
object is the SeriesCollection object.

ErrorBars Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ErrorBars Properties

Name Returns Description

Border Border Read-only. Returns the border’s properties around the
error bars

EndStyle XlEndStyleCap Set/Get the style used for the ending of the error bars

Format ChartFormat Returns the ChartFormat object, which controls the line,
fill, and effect formatting for the chart area.

Name String Read-only. Returns the name of the error bars

ErrorBars Methods

Name Returns Parameters Description

ClearFormats Variant Clears the formatting set on the error bar

Delete Variant Deletes the error bars

Select Variant Selects the error bars in the chart

ErrorBars Object Example
Sub AddAndFormatErrorBars()

Dim oSer As Series
Dim oErrBars As ErrorBars
‘Add error bars to the first series (at +/- 10% of the value)
Set oSer = ActiveSheet.ChartObjects(“Chart 1”).Chart.SeriesCollection(1)
oSer.ErrorBar xlY, xlErrorBarIncludeBoth, xlErrorBarTypePercent, 10
‘Get the ErrorBars object

742

Errors Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 742

Set oErrBars = oSer.ErrorBars
‘Format the error bars
With oErrBars

.Border.Weight = xlThick

.Border.LineStyle = xlContinuous

.Border.ColorIndex = 7

.EndStyle = xlCap
End With

End Sub

ErrorCheckingOptions Collection Object
Represents all of the Error Checking possibilities found on the Formulas section of the Excel Options dia-
log. Using the BackgroundChecking property of this object hides all of the error indicators (small trian-
gle in the upper-right corner of cells).

Use the other properties in this object to specify which type of error checking you want Excel to perform.

The ErrorCheckingOptions object can be referenced through the Application object and therefore
affects all open workbooks.

ErrorCheckingOptions Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ErrorCheckingOptions Collection Properties

Name Returns Description

Background Boolean Set/Get whether background error checking is set;
Checking that is, whether the autocorrect button will appear

in cells that contain errors

EmptyCell Boolean Set/Get whether error checking is on for cells
References containing formulas that refer to empty cells

EvaluateToError Boolean Set/Get whether error checking is on for cells that
evaluate to an error value

Inconsistent Boolean Set/Get whether error checking is on for cells
Formula containing an inconsistent formula in a region

Inconsistent Boolean Set/Get whether error checking is on for cells
TableFormula containing an inconsistent formula in a Table

IndicatorColor XlColor Set/Get the color of the indicator for error
Index Index checking options

ListData Boolean The property will return True if data validation is
Validation enabled for a list

NumberAsText Boolean Set/Get whether error checking is on for numbers
written as text

Table continued on following page

743

ErrorCheckingOptions Collection Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 743

Name Returns Description

OmittedCells Boolean Set/Get whether error checking is on for cells that
contain formulas referring to a range that omits
adjacent cells that could be included

TextDate Boolean Set/Get whether error checking is on for cells that
contain a text date with a two-digit year

UnlockedForm ulaCells Boolean Set/Get whether error checking is on for cells that
are unlocked and contain a formula

FillFormat Object
The FillFormat object represents the fill effects available for shapes. For example, a FillFormat object
defines solid, textured, and patterned fill of the parent shape. A FillFormat object can only be accessed
through the parent Shape object.

FillFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

FillFormat Properties

Name Returns Description

BackColor ColorFormat Read-only. Returns the background color
through the ColorFormat object

ForeColor ColorFormat Read-only. Returns the foreground color
through the ColorFormat object

Gradient MsoGradient Read-only. Returns what type of gradient
ColorType ColorType fill color concept is used

GradientDegree Single Read-only. Returns how dark or light the
gradient fill is

GradientStops GradientStops Set/Get the end point for the gradient fill

GradientStyle MsoGradient Read-only. Returns the orientation of the
Style gradient that is used

GradientVariant Integer Read-only. Returns the variant used for
Long the gradient from the center

Pattern MsoPatternType Read-only. Returns the pattern used for
the fill, if any

PresetGradient MsoPreset GradientType Read-only. Returns the type of gradient
Type that is used

PresetTexture MsoPreset Read-only. Returns the non-custom
Texture texture of the fill

744

FillFormat Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 744

Name Returns Description

RotateWithObject Boolean Set/Get whether the fill style should
rotate with the object

TextureAlignment MsoTextureAlignment Set/Get the text alignment for the speci-
fied FillFormat object

TextureHorizontal Single Set/Get the value for horizontally
Scale scaling the text for the FillFormat

object

TextureName String Read-only. Returns the custom texture
name of the fill

TextureOffsetX Single Set/Get the offset X value for the speci-
fied fill

TextureOffsetY Single Set/Get the offset Y value for the speci-
fied fill

TextureTile Boolean Set/Get the texture tile style for the spec-
ified fill

TextureType MsoTextureType Read-only. Returns whether the texture is
custom, preset, or mixed

TextureVertical Single Set/Get the texture vertical scale for the
Scale specified fill

Transparency Single Set/Get how transparent the fill is. From
0 (opaque) to 1 (clear)

Type MsoFillType Read-only. Returns if the fill is a texture,
gradient, solid, background, picture, or
mixed

Visible MsoTriState Set/Get whether the fill options are visi-
ble in the parent shape

FillFormat Methods

Name Returns Parameters Description

OneColorGradient Style As MsoGradientStyle, Set the style variant and
Variant As Integer, degree for a one-color
Degree as Single gradient fill

Patterned Pattern As MsoPatternType Set the pattern for a fill

PresetGradient Style As MsoGradientStyle, Choose the style, variant,
Variant As Integer, and preset gradient type
PresetGradientType As for a gradient fill
MsoPresetGradientType

Table continued on following page

745

FillFormat Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 745

Name Returns Parameters Description

PresetTextured PresetTexture As Set the preset texture for a
MsoPresetTexture fill

Solid Set the fill to a solid color

TwoColorGradient Style As MsoGradientStyle, Set the style for a
Variant As Integer two-color gradient fill

UserPicture PictureFile As String Set the fill to the picture in
the PictureFile format

UserTextured TextureFile As String Set the custom texture for
a fill with the Texture-
File format

FillFormat Object Example
Sub FormatShape()

Dim oFF As FillFormat
‘Get the Fill format of the first shape
Set oFF = ActiveSheet.Shapes(1).Fill
‘Format the shape
With oFF

.TwoColorGradient msoGradientFromCorner, 1

.ForeColor.SchemeColor = 3

.BackColor.SchemeColor = 5
End With

End Sub

Filter Object and the Filters Collection
The Filters collection holds all of the filters associated with the specific parent AutoFilter. Each
Filter object defines a single filter for a single column in an autofiltered range. The parent of the
Filters collection is the AutoFilter object.

Filters Common Properties
The Application, Count, Creator, Item, and Parent properties are defined at the beginning of this
appendix.

Filter Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

746

FillFormat Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 746

Filter Properties

Name Returns Description

Count Long Read-only. Returns the number of objects in the collection

Criteria1 Variant Read-only. Returns the first criterion defined for the filter (for
example, “>=5”)

Criteria2 Variant Read-only. Returns the second criterion for the filter, if
defined

On Boolean Read-only. Returns whether the filter is in use

Operator XlAuto Read-only. Returns what sort of operator has been defined for
Filter the filter (for example, xlTop10Items)
Operator

Floor Object
The Floor object contains formatting options for the floor area of a 3D chart. The parent of the Floor
object is the Chart object.

Floor Common Properties
The Application, Creator, Name, and Parent properties are defined at the beginning of this appendix.

Floor Properties

Name Returns Description

Format ChartFormat Read-only. Returns the ChartFormat object, which controls
the line, fill, and effect formatting for the chart area

Name String Returns a string representing the name of the object

PictureType Variant Set/Get how an associated picture is displayed on the floor of
the 3D chart (for example, stretched or tiled). Use the
xlChartPictureType constants

Thickness Long Set/Get the thickness of the floor. Default is 0

Floor Methods

Name Returns Parameters Description

ClearFormats Variant Clears the formatting made on the Floor object

Paste Pastes the picture in the clipboard into the
Floor object

Select Variant Selects the floor on the parent chart

747

Filter Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 747

Floor Object Example
Sub FormatFloor()

Dim oChart As Chart
‘Set the target chart

Set oChart = ActiveSheet.ChartObjects(“Chart 1”).Chart
‘Format the chart floor
With oChart.Floor

.Format.Fill.PresetTextured (msoTextureWhiteMarble)

.Format.Fill.Visible = True
End With

End Sub

Font Object
The Font object contains all of the formatting attributes related to fonts of the parent, including font
type, size, and color. Possible parents of the Font object are the AboveAverage, AxisTitle,
CellFormat, Characters, ChartArea, CompareColumns, ChartTitle, DataLabel, Datalabels,
DataTable, FormatCondition, Legend, LegendEntry, Phonetics, Range, Style,
TableSyleElement, TickLabels, and Top10 objects.

Font Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Font Properties

Name Returns Description

Background xlBackground Set/Get the type of background used behind the font
text (xlBackgroundAutomatic, xlBack-
groundOpaque, and xlBackgroundTransparent).
Use the XlBackground constants. Valid only for text on
charts

Bold Variant Set/Get whether the font is bold

Color Variant Set/Get the color of the font. Use the RGB function to
create the color value

ColorIndex Variant Set/Get the color of the font. Use the XlColorIndex
constants or an index value in the current color palette

FontStyle Variant Set/Get what style to apply to the font (for example,
“Bold”)

Italic Variant Set/Get whether the font is italic

Name Variant Set/Get the name of the font

Size Variant Set/Get the font size of the font

748

Floor Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 748

Name Returns Description

Strikethrough Variant Set/Get whether the font has a strikethrough effect

Subscript Variant Set/Get whether the font characters look like a subscript

Superscript Variant Set/Get whether the font characters look like a superscript

ThemeColor Variant Set/Get the theme color in the applied color scheme
associated with an object. Should the object have no
association with a theme, then trying to access the
ThemeColor property will result in an error

ThemeFont XlThemeFont Set/Get the font in the applied font scheme associated
with an object

TintAndShade Variant Set/Get a Single value from -1 (darkest) to 1 (lightest),
which darkens or lightens a color. Zero (0) is neutral

Underline Variant Set/Get whether the font is underlined

Font Object Example
Sub FormatCellFont()

Dim oFont As Font
‘Get the font of the currently selected range
Set oFont = Selection.Font
‘Format the font
With oFont

.Name = “Times New Roman”

.Size = 16 ‘Points

.ColorIndex = 5 ‘Blue

.Bold = True

.Underline = xlSingle
End With

End Sub

FormatColor Object
The FormatColor object specifies the color for a given condition in a conditional formatting rule. The
FormatColor object is applied to the thresholds of a color scale conditional format or the color of a data
bar conditional format. You can pass a color to the condition using an RGB value or a color index. See the
ColorScale object in this appendix to see how the FormatColor is used to assign colors.

FormatColor Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

749

Font Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 749

FormatColor Properties

Name Returns Description

Color Variant Set/Get the color of the font. Use the RGB function to
create the color value

ColorIndex XlColorIndex Set/Get the color of the font. Use the XlColorIndex
constants or an index value in the current color palette

ThemeColor xlThemeColor Set/Get the theme color in the applied color scheme
associated with an object. Should the object have no
association with a theme, then trying to access the
ThemeColor property will result in an error

TintAndShade Single Set/Get a Single value from -1 (darkest) to 1 (lightest),
which darkens or lightens a color. Zero (0) is neutral

FormatCondition Object and the FormatConditions
Collection

The FormatConditions collection contains the conditional formatting associated with the particular
range of cells. The Parent of the FormatConditions collection is the Range object. Each
FormatCondition object represents some formatting that will be applied if the condition is met.

FormatConditions Common Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

FormatConditions Methods

Name Returns Parameters Description

Add Object Several Adds a new formatting
condition

AddAboveAverage AboveAverage Adds a new
AboveAverage format-
ting condition

AddColorScale ColorScale ColorScaleType As Long Adds a new
ColorScale format-
ting condition

AddCompare Compare Adds a new
Columns Columns CompareColumns for-

matting condition

AddDatabar Databar Adds a new Databar
formatting condition

750

FormatColor Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 750

Name Returns Parameters Description

AddIconSet IconSet Adds a new
Condition Condition IconSetCondition

formatting condition

AddTop10 Top10 Adds a new Top10 for-
matting condition

AddUniqueValues Unique Adds a new
Values UniqueValues format-

ting condition

Delete Deletes a formatting
condition

Item Returns a single object
from the collection

FormatCondition Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

FormatCondition Properties

Name Returns Description

AppliesTo Range Read-only. Returns the range that is affected by the format-
ting rule

Borders Borders Read-only. Returns a collection holding all the individual
border attributes for the formatting condition

Font Font Read-only. Returns an object containing Font options for the
formatting condition

FormatRow Boolean Set/Get the Boolean value specifying if the entire Excel table
row should be formatted. The default value is False

Formula1 String Read-only. Returns the value that the cells must contain or an
expression or formula evaluating to True/False. If the for-
mula or expression evaluates to True, then the formatting is
applied

Formula2 String Read-only. Returns the value that the cells must contain or an
expression evaluating to True/False. Valid only if the
Operator property is xlBetween or xlNotBetween

Interior Interior Read-only. Returns an object containing options to format the
inside area for the formatting condition (for example, interior
color)

NumberFormat Variant Set/Get the number format applied to a cell if the condi-
tional formatting rule evaluates to true

Table continued on following page

751

FormatCondition Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 751

Name Returns Description

Operator xlFormat Read-only. Returns the operator to apply to the Formula1 and
Condition Formula2 property. Use the xlFormatConditionOperator
Operator constants

Period xlTimePeriods Set/Get the time period used to apply the conditional for-
matting rule. Use one of the xlTimePeriods constants

Priority Long Set/Get the priority value of a conditional formatting rule,
determining the order of evaluation when other rules are in
effect

PTCondition Boolean Read-only. Indicates whether the formatting rule is applied
to a PivotTable chart

ScopeType xlPivot Set/Get the scope of the formatting rule when applied to a
Condition PivotTable chart. Use the xlPivotConditionScope
Scope constants

StopifTrue Boolean Set/Get a Boolean value that determines if additional for-
matting rules should be applied if the current rule evaluates
to True. The default value is True

Text String Set/Get text string used in the formatting rule

TextOperator XlContains Set/Get an XlContainsOperator constant, specifying the
Operator text search performed by the formatting rule

Type xlFormat Read-only. Returns an xlFormatConditionType constant,
ConditionType which specifies the type of conditional formatting being

applied

FormatCondition Methods
Name Returns Parameters Description

Delete Deletes the format-
ting condition

Modify Type As XlFormat ConditionType, Modifies the format
[Operator], ting condition. Since
[Formula1], all the properties are
[Formula2] read-only, this is the
[String], [Operator2] only way to modify

the format condition

ModifyApplies Range As Range Sets the range for
ToRange which the formatting

rule will be applied

752

FormatCondition Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 752

Name Returns Parameters Description

SetFirst Sets the priority
Priority value for the format-

ting rule so that it is
evaluated before all
other rules on the
worksheet

SetLast Sets the priority
Priority value for the format-

ting rule so that it is
evaluated after all
other rules on the
worksheet

FormatCondition Object and the FormatConditions Collection
Example

Refer to the AboveAverage object in this appendix to see how the FormatCondition object is used.

FreeformBuilder Object
The FreeformBuilder object is used by the parent Shape object to create new freehand shapes. The
BuildFreeform method of the Shape object is used to return a FreeformBuilder object.

FreeformBuilder Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

FreeformBuilder Methods

Name Returns Parameters Description

AddNodes SegmentType As This method adds a point in the
MsoSegmentType, current shape being drawn. A line
EditingType As is drawn from the current node
MsoEditingType, being added to the last node
X1 As Single, Y1 As added. SegmentType describes the
Single, [X2], type of line to add between the
[Y2], nodes. X1, Y1, X2, Y2, X3, Y3 is used
[X3], to define the position of the current
[Y3] node being added. The coordinates

are taken from the upper-left corner
of the document

ConvertToShape Shape Converts the nodes added above
into a Shape object

753

FormatCondition Object and the FormatConditions Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 753

FreeformBuilder Object Example
Sub MakeArch()

Dim oFFB As FreeformBuilder
‘Create a new freeform builder
Set oFFB = ActiveSheet.Shapes.BuildFreeform(msoEditingCorner, 100, 300)
‘Add the lines to the builder
With oFFB

.AddNodes msoSegmentLine, msoEditingAuto, 100, 200

.AddNodes msoSegmentCurve, msoEditingCorner, 150, 150, 0, 0, 200, 200

.AddNodes msoSegmentLine, msoEditingAuto, 200, 300

.AddNodes msoSegmentLine, msoEditingAuto, 100, 300
‘Convert it to a shape
.ConvertToShape

End With
End Sub

Graphic Object
Represents a picture that can be placed in any one of the six locations of the Header and Footer in the
Page Setup of a sheet. It’s analogous to using both the Insert Picture and Format Picture buttons in the
Header or Footer dialogs inside the Page Setup command.

It’s important to note that none of the Property settings of this object will result in anything appearing in
the Header or Footer, unless you insert “&G” (via VBA code) in any of the six different areas of the
Header or Footer.

Graphic Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Graphic Properties

Name Returns Description

Brightness Single Set/Get the brightness of the specified picture. This prop-
erty’s value must be from 0.0 (dimmest) to 1.0 (brightest)

ColorType MsoPicture Set/Get the color transformation applied to the specified
ColorType picture or OLE object

Contrast Single Set/Get the contrast of the specified picture. This property’s
value must be from 0.0 (least) to 1.0 (greatest)

CropBottom Single Set/Get the number of points that are cropped off the bottom
of the specified picture or OLE object

CropLeft Single Set/Get the number of points that are cropped off the left-
hand side of the specified picture or OLE object

CropRight Single Set/Get the number of points that are cropped off the right-
hand side of the specified picture or OLE object

CropTop Single Set/Get the number of points that are cropped off the top of
the specified picture or OLE object

754

FreeformBuilder Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 754

Name Returns Description

Filename String Set/Get the URL or path to where the specified object was
saved

Height Single Set/Get the height of the object

LockAspect MsoTriState Set/Get whether the specified shape retains its original
Ratio proportions when you resize it

Width Single Set/Get the width of the object

Graphic Object Example
The following routine prompts the user for a graphic file. If chosen, it places the graphic in the header of
the active sheet as a watermark and sizes it to fit the page:

Sub AddWatermark()
Dim oSheet As Object
Dim sFile As String

On Error Resume Next
Set oSheet = ActiveSheet

On Error GoTo 0

‘Make sure there is an active sheet
If Not oSheet Is Nothing Then

‘Set the properties of the File Open dialog
With Application.FileDialog(msoFileDialogFilePicker)

‘Change the default dialog title
.Title = “Insert Graphic In Center Header”

‘Allow only one file
.AllowMultiSelect = False

‘Clear the filters and create your own
‘Switch to the custom filter before showing the dialog

.Filters.Add “All Pictures”, _
“*.gif; *.jpg; *.jpeg; *.bmp; *.wmf; *.gif;*.emf;*.dib;*.jfif;*.jpe”, 1

‘Show thumbnails to display small representation
‘ of the image
.InitialView = msoFileDialogViewThumbnail

‘Show the dialog
‘–1 means they didn’t cancel
If .Show = –1 Then

‘Store the chosen file
sFile = .SelectedItems(1)

‘Set up the graphic in the Header

755

Graphic Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 755

With oSheet.PageSetup
With .CenterHeaderPicture

.Filename = sFile

.ColorType = msoPictureWatermark

.LockAspectRatio = True

‘Make it fill the page
‘c Assumes a letter size portrait)
.Width = Application.InchesToPoints(17)

End With

‘Make the graphic appear
‘Without this, nothing happens
.CenterHeader = “&G”

End With

End If

‘Remove the filter when done
.Filters.Clear

End With

End If

End Sub

Gridlines Object
The Gridlines object contains formatting properties associated with the major and minor gridlines on a
chart’s axes. The gridlines are an extension of the tick marks seen in the background of a chart, allowing
the end user to more easily see what a chart object’s value is. The parent of the Gridlines object is the
Axis object. To make sure the object is valid and to create the Gridlines object, use the
HasMajorGridlines and HasMinorGridlines properties of the Axis object first.

Gridlines Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Gridlines Properties

Name Returns Description

Border Border Read-only. Returns the border’s properties around the gridlines

Format ChartFormat Returns the ChartFormat object, which controls the line, fill,
and effect formatting for the chart area

Name String Read-only. Returns the name of the Gridlines object

756

Gridlines Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 756

Gridlines Methods

Name Returns Parameters Description

Delete Variant Deletes the Gridline object

Select Variant Selects the gridlines on the chart

Gridlines Object Example
Sub AddAndFormatGridLines()
Dim oChart As Chart
Dim oGridline As Gridlines

‘Set the target chart and set up the gridline object
Set oChart = ActiveSheet.ChartObjects(“Chart 1”).Chart
Set oGridline = oChart.Axes(xlValue).MajorGridlines

‘Add MajorGridlines
oChart.Axes(xlValue).HasMajorGridlines = True

‘Format gridlines
With oGridline

.Border.Weight = xlMedium

.Border.LineStyle = xlContinuous

.Border.ColorIndex = 3
End With

End Sub

GroupShapes Collection
The GroupShapes collection holds all of the shapes that make up a grouped shape. The GroupShapes
collection holds a collection of Shape objects. The parent of the GroupShapes object is the Shape object.

The GroupShapes collection only has one property besides the typical collection attributes. The Range
property returns a subset of the shapes in the Shapes collection.

HeaderFooter Object
The HeaderFooter object represents a single header or footer. The HeaderFooter object is a member of
the HeadersFooters collection. The HeadersFooters collection includes all headers and footers in the
specified workbook section.You will notice that the HeadersFooters collection is not exposed through
the object model. As a result, you cannot explicitly add HeaderFooter objects to the HeadersFooters
collection.

757

Gridlines Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 757

HeaderFooter Properties

Name Returns Description

Picture Graphic Read-only. Returns a Picture object that represents a picture field
included in the specified header or footer

Text String Set/Get a Text object that represents text included in the specified
header or footer

HiLoLines Object
The HiLoLines object contains formatting attributes for a chart’s high-low lines. The parent of the
HiLoLines object is the ChartGroup object. High-low lines connect the largest and smallest points on a
2D line chart group.

HiLoLines Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

HiLoLines Properties

Name Returns Description

Border Border Read-only. Returns the border’s properties around the high-low
lines

Format ChartFormat Returns the ChartFormat object, which controls the line, fill, and
effect formatting for the HiLoLines

Name String Read-only. Returns the name of the HiLoLines object

HiLoLines Methods

Name Returns Parameters Description

Delete Variant Deletes the high-low lines

Select Selects the object

HPageBreak Object and the HPageBreaks Collection
The HPageBreaks collection contains all of the horizontal page breaks in the printable area of the parent
object. Each HPageBreak object represents a single horizontal page break for the printable area of the
parent object. Possible parents of the HPageBreaks collection are the WorkSheet, Worksheets, and
Chart objects.

The HPageBreaks collection contains one method besides the typical collection attributes. The Add
method is used to add an HPageBreak object to the collection (and horizontal page break to the sheet).
The Add method has a Before parameter to specify the range above where the horizontal page break
will be added.

758

HeaderFooter Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 758

HPageBreak Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

HPageBreak Properties

Name Returns Description

Extent XlPageBreak Extent Read-only. Returns whether the horizontal page
break is full-screen or only for the print area

Location Range Set/Get the cell where the horizontal page break
is located. The top edge of the cell is the location
of the page break

Type XlPageBreak Set/Get whether the page break is automatic or
manually set

HPageBreak Methods

Name Returns Parameters Description

Delete Deletes the page break

DragOff Direction As XlDirection, Drags the page break out of the
RegionIndex As Long printable area. The Direction

parameter specifies the direc-
tion the page break is dragged.
The RegionIndex parameter
specifies which print region the
page break is being dragged
out of

HPageBreak Object and the HPageBreaks Collection Example
Sub AddHPageBreaks()

Dim oCell As Range
‘Loop through all the cells in the first column of the sheet
For Each oCell In ActiveSheet.UsedRange.Columns(1).Cells

‘If the font size is 16, add a page break above the cell
If oCell.Font.Size = 16 Then

ActiveSheet.HPageBreaks.Add oCell
End If

Next
End Sub

Hyperlink Object and the Hyperlinks Collection
The Hyperlinks collection represents the list of hyperlinks in a worksheet or range. Each Hyperlink
object represents a single hyperlink in a worksheet or range. The Hyperlinks collection has an Add and
Delete method besides the typical collection of properties and methods. The Add method takes the text

759

HPageBreak Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 759

or graphic that is to be converted into a hyperlink (Anchor) and the URL address or filename (Address),
and creates a Hyperlink object. The Delete method deletes the Hyperlinks in the collection.

Hyperlink Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Hyperlink Properties

Name Returns Description

Address String Set/Get the filename or URL address of the hyperlink

EmailSubject String Set/Get the e-mail subject line if the address is an e-mail
address

Name String Read-only. Returns the name of the hyperlink

Range Range Read-only. Returns the range in the document where the
hyperlink is

ScreenTip String Set/Get the text that appears when the mouse hovers over
the hyperlink

Shape Shape Read-only. Returns the shape associated with the hyper-
link, if any

SubAddress String Set/Get the spot in the target location that the hyperlink
points to

TextToDisplay String Set/Get the text to be displayed for the specified hyper-
link. The default value is the address of the hyperlink

Type Long Set/Get the target location of the HTML frame of the
address

Hyperlink Methods

Name Parameters Description

AddTo Adds the Address property to the
Favorites Favorites folder

CreateNew Filename As String, Creates a new document with the FileName
Document EditNow As Boolean, name from the results of the hyperlink’s

Overwrite As Boolean address. Set the EditNow property to True to
open up the document in the appropriate
editor. Set Overwrite to True to overwrite
any existing document with the same name

Delete Deletes the Hyperlink object

760

Hyperlink Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 760

Name Parameters Description

Follow [NewWindow], Opens up the target document specified by
[AddHistory], the Address property. Setting NewWindow to
[ExtraInfo], True opens up a new window with the
[Method], target document. Set AddHistory to True to
[HeaderInfo display the item in the history folder. Use the

Method parameter to choose if the ExtraInfo
property is sent as a Get or a Post

Hyperlink Object and the Hyperlinks Collection Example
This example creates a hyperlink-based Table of Contents worksheet:

Sub CreateHyperlinkTOC()
Dim oBk As Workbook
Dim oShtTOC As Worksheet, oSht As Worksheet
Dim iRow As Integer
Set oBk = ActiveWorkbook
‘Add a new sheet to the workbook
Set oShtTOC = oBk.Worksheets.Add
With oShtTOC

‘Add the title to the sheet
.Range(“A1”).Value = “Table of Contents”
‘Add Mail and web hyperlinks
.Hyperlinks.Add .Range(“A3”), “mailto:Me@MyISP.com”, _

TextToDisplay:=”Email your comments”
.Hyperlinks.Add .Range(“A4”), “http://www.wrox.com”, _

TextToDisplay:=”Visit Wrox Press”
End With
‘Loop through the sheets in the workbook
‘adding location hyperlinks
iRow = 6
For Each oSht In oBk.Worksheets

If oSht.Name <> oShtTOC.Name Then
oShtTOC.Hyperlinks.Add oShtTOC.Cells(iRow, 1), “”, _

SubAddress:=”’” & oSht.Name & “‘!A1”, _
TextToDisplay:=oSht.Name

iRow = iRow + 1
End If

Next
End Sub

Icon Object
The Icon object represents as single icon used in a conditional formatting rule.

761

Hyperlink Object and the Hyperlinks Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 761

Icon Common Properties
The Application and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Index Long Read-only. Returns a value that represents the index number
of a given icon within the IconSet object

IconCriterion and the IconCriteria Collection
The IconCriteria collection holds each IconCriterion in an icon set conditional format. Each crite-
rion defines the range of values and the threshold type associated with each icon in an icon set condi-
tional formatting rule.

IconCriteria Common Properties
The Count and Item properties are defined at the beginning of this appendix.

IconCriterion Properties

Name Returns Description

Index Long Returns a value that represents the threshold for the criteria.
1 would represent the first threshold, 2 would represent the
second, and so on. Read-only

Operator XlFormat Set/Get whether the threshold is greater than or greater than
Condition or equal to the threshold value. This property uses either the
Operator xlGreater or xlGreaterEqual

Type xlCondition Specifies how the threshold values for an icon set conditional
ValueTypes format are determined (number, percent, formula, or per-

centile). This property will return an xlConditionValue-
Types constant. Read-only

Value Variant Set/Get the value for each threshold in an icon set condi-
tional formatting rule

IconSet and the IconSets Collection
The IconSets collection holds each IconSet that is available for use in building a formatting condition.
Each IconSet represents a single set of icons and is assigned by using the xlIconSet enumeration as
an index of the IconSet property of the Workbook object.

762

Icon Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 762

IconSets Common Properties
The Application, Count, Creator, Item, and Parent properties are defined at the beginning of this
appendix.

IconSet Properties
The Application, Count, Creator, Item, and Parent properties are defined at the beginning of this
appendix.

IconSet Properties

Name Returns Description

ID xlIconSet Read-only. Returns an xlIconSet constant identifying the
icons that are used in the formatting condition

IconSetCondition Object
The IconSetCondition object allows you to create a formatting rule by using either the Add or
AddIconSetCondition method of the FormatConditions collection. You can apply any one of the
built-in icon sets to a range of values, assigning each value an icon based on thresholds set via the
IconCriteria collection.

IconSetCondition Properties
The Application, Parent, and Creator properties are defined at the beginning of this appendix.

IconSetCondition Properties

Name Returns Description

AppliesTo Range Read-only. Returns the range that is affected by the format-
ting rule

FormatRow Boolean Set/Get the Boolean value specifying if the entire Excel table
row should be formatted. The default value is False

Formula String Set/Get a string representing a formula that determines the
values that are to be evaluated in the conditional formatting
rule

IconCriteria IconCriteria Read-only. Returns an IconCriteria collection, which is
used to specify the thresholds of the criteria used in the for-
matting condition

IconSet IconSets Set/Get the specific built-in icon set used in the formatting
condition

Table continued on following page

763

IconSets Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 763

Name Returns Description

Percentile Boolean Set/Get whether the thresholds for an icon set conditional
Values format are determined by using percentiles. Setting this

property to True will ensure that all values are evaluated
based on percentiles

Priority Long Set/Get the priority value of a conditional formatting rule,
determining the order of evaluation when other rules are in
effect

PTCondition Boolean Read-only. Indicates whether the formatting rule is applied
to a PivotTable chart

ReverseOrder Boolean Set/Get whether the formatting rule should be applied in
reverse order. For example, where low values are tagged as
red, setting this property would tag low values as green

ScopeType xlPivot Set/Get the scope of the formatting rule when applied to a
Condition PivotTable chart. Use the xlPivotConditionScope
Scope constants

ShowIconOnly Boolean Setting this property to True ensures that only the icons will
be displayed in the cell, as opposed to both the data and the
icon

StopifTrue Boolean Set/Get a Boolean value that determines if additional for-
matting rules should be applied if the current rule evaluates
to True. The default value is True

Type xlFormat Read-only. Returns an xlFormatConditionType constant,
ConditionType which specifies the type of conditional formatting being

applied. This object will always return a value of 12 since it
corresponds to the xlAboveAverageCondition

IconSetCondition Methods

Name Parameters Description

Delete Deletes the object

ModifyAppliesToRange Range As Range Sets the range for which the formatting rule will
be applied

SetFirstPriority Sets the priority value for the formatting rule so
that it is evaluated before all other rules on the
worksheet

SetLastPriority Sets the priority value for the formatting rule so
that it is evaluated after all other rules on the
worksheet

764

IconSetCondition Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 764

IconSetCondition Object Example
This example adds an icon condition that tags a range of values with one of three colored flags:

Sub CreateIconConditions()
Dim oIconCondition As IconSetCondition

‘Add an icon set condition
Set oIconCondition = Range(“F6:F16”).FormatConditions.AddIconSetCondition

‘Choose the 3Flags icon set
oIconCondition.IconSet = ActiveWorkbook.IconSets(xl3Flags)

‘Set the threshold for Green flag; above 80 percent is green.
With oIconCondition.IconCriteria(3)

.Type = xlConditionValuePercent

.Operator = xlGreater

.Value = 80
End With

‘Set the threshold for Yellow flag; 70 percent and above is yellow.
‘Values that qualify for green will not be tagged as yellow.
‘Any values that do not qualify for yellow or green will be red.

With oIconCondition.IconCriteria(2)
.Type = xlConditionValuePercent
.Operator = xlGreater
.Value = 70

End With

‘Show only the flag icons; not the data values
oIconCondition.ShowIconOnly = True

End Sub

Interior Object
The Interior object contains the formatting options associated with the inside area of the parent object.
Possible parents of the Interior object are the AboveAverage, AxisTitle, ChartArea, CellFormat,
ChartObject, ChartTitle, DataLabel, DownBars, Floor, FormatCondition, Legend, LegendKey,
OLEObject, PlotArea, Point, Range, Series, Style, TableStyleElement, Top10, Style, Upbars,
and Walls objects. The ChartObjects, DataLabels, OLEObjects, and UniqueValues collections also
are possible parents of the Interior object.

Interior Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

765

IconSetCondition Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 765

Interior Properties

Name Returns Description

Color Variant Set/Get the color of the interior. Use the RGB func-
tion to create the color value

ColorIndex Variant Set/Get the color of the interior. Use the XlColor-
Index constants or an index value in the current
color palette

Gradient MsoGradient Read-only. Returns what type of gradient fill color
ColorType ColorType concept is used

GradientStyle MsoGradient Read-only. Returns the orientation of the gradient
Style that is used

GradientType Long Read-only. Returns the gradient type used for the
specified Interior object

GradientVariant Integer Read-only. Returns the variant used for the gradi-
ent from the center

InvertIfNegative Variant Set/Get whether the color in the interior of the par-
ent object is inverted if the values are negative

InteriorGradient Long Read-only. Returns an InteriorGradientStops
Stops value of an Interior object

Pattern XlPattern Set/Get the pattern to use for the interior of the
parent object. Use one of the XlPattern constants

PatternColor Variant Set/Get the color of the interior pattern. Use the
RGB function to create the color value

PatternColorIndex XlColorIndex Set/Get the color of the interior pattern. Use the
XlColorIndex constants or an index value in the
current color palette

PatternThemeColor Variant Set/Get a theme color pattern for an Interior
object

PatternTintAnd Variant Set/Get a tint and shade pattern for an Interior
Shade object

ThemeColor xlThemeColor Set/Get the theme color in the applied color
scheme associated with an object. Should the object
have no association with a theme, then trying to
access the ThemeColor property will result in an
error

TintAndShade Single Set/Get a Single value from -1 (darkest) to 1
(lightest), which darkens or lightens a color. 0 is
neutral

766

Interior Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 766

Interior Object Example
Sub FormatRange()

Dim oInt As Interior
‘Get the interior of the current selection
Set oInt = Selection.Interior

‘Format the interior in solid yellow
‘(color depends on the workbook palette)
With oInt

.Pattern = xlSolid

.ColorIndex = 6
End With

End Sub

IRtdServer Object
This object allows the ability to connect to a Real-Time Data Server (RTD). This type of server allows
Excel to receive timed interval data updates without the need for extra coding. In prior versions of Excel,
when regular updates were needed, you could use the OnTime method to set up regular data update
intervals. RTDs send updates automatically based on an interval set within the server, or by using the
HeartbeatInterval method of the IRTDUpdateEvent object.

This object is similar in nature to using the RTD worksheet function, which displays data at regular inter-
vals in a worksheet cell.

Note that to use this object, you must instantiate it using the Implements keyword.

IRtdServer Methods

Name Returns Parameters Description

ConnectData TopicID As Long, Called when a file is
Strings As Variant, opened that contains
GetNewValues As Boolean real-time data (RTD)

functions, or when a
new formula that con-
tains a RTD function is
entered

DisconnectData TopicID As Long Used to notify the RTD
server that a topic is no
longer in use

Heartbeat Long Checks to see if the
RTD server is still
active. Negative num-
bers or zero are a fail-
ure, while positive
numbers indicate
success

Table continued on following page

767

Interior Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 767

Name Returns Parameters Description

RefreshData Variant ByRef TopicCount As Long This method is called
to get new data, but
only after being noti-
fied by the RTD server
that there is new data

ServerStart Long CallbackObject As Called immediately
IRTDUpdateEvent after an RTD server is

instantiated. Negative
numbers or zero are a
failure, while positive
numbers indicate
success

ServerTerminate Used to terminate the
connection to the
server

IRTDUpdateEvent Object
Represents real-time update events. This object is used to set the interval between updates for an
IrtdServer object using the HeartbeatInterval property. This object is returned when you use the
ServerStart method of the IrtdServer object to connect to a real-time data server.

IRTDUpdateEvent Properties

Name Returns Description

Heartbeat Interval Long Set/Get the interval between updates for RTD

IRTDUpdateEvent Methods

Name Returns Parameters Description

Disconnect Instructs the RTD
server to disconnect
from the specified
object

UpdateNotify Excel is informed by
the RTD server that
new data has been
received

768

IRTDUpdateEvent Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 768

LeaderLines Object
The LeaderLines object contains the formatting attributes associated with leader lines on charts con-
necting data labels to the actual points. The parent of the LeaderLines object is the Series object. Use
the HasLeaderLines property of the Series object to create a LeaderLines object and to make sure
one exists.

LeaderLines Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

LeaderLines Properties

Name Returns Description

Border Border Read-only. Returns the border’s properties around the
leader lines

Format ChartFormat Returns the ChartFormat object, which controls the line,
fill, and effect formatting for the chart area

LeaderLines Methods

Name Returns Parameters Description

Delete Deletes the LeaderLines object

Select Selects the leader lines on the chart

LeaderLines Object Example
Sub AddAndFormatLeaderLines()

Dim oChart As Chart
Dim oLeaderLines As LeaderLines

‘Set the target chart
Set oChart = ActiveSheet.ChartObjects(“Chart 1”).Chart

‘Apply labels and add leaderlines
With oChart.SeriesCollection(1)

.ApplyDataLabels

.HasLeaderLines = True
End With

‘Target the leaderlines object
Set oLeaderLines = oChart.SeriesCollection(1).LeaderLines

‘Format the leaderlines
With oLeaderLines

.Border.LineStyle = xlContinuous

.Border.ColorIndex = 5
End With

End Sub

769

LeaderLines Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 769

Legend Object
The Legend object contains the formatting options and legend entries for a particular chart. The parent
of the Legend object is the Chart object. Use the HasLegend property of the Chart object to create a
Legend object and to make sure one exists.

Legend Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Legend Properties

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size will change auto-
matically if the parent chart changes sizes

Format ChartFormat Read-only. Returns the ChartFormat object that
controls the line, fill, and effect formatting for the
chart area

Height Double Set/Get the height of the legend box

IncludeIn Boolean When set to True, the legend will occupy the
Layout chart layout space while a chart layout is being

determined. Default is True

Left Double Set/Get the distance from the left edge of the
legend box to the left edge of the chart contain-
ing the legend

Name String Read-only. Returns the name of the Legend
object

Position XlLegendPosition Set/Get the position of the legend on the chart
(for example, xlLegendPositionCorner,
xlLegendPositionLeft)

Shadow Boolean Set/Get whether the legend has a shadow effect

Top Double Set/Get the distance from the top edge of the
legend box to the top edge of the chart contain-
ing the legend

Width Double Set/Get the width of the legend box

Legend Methods

Name Returns Parameters Description

Clear Variant Clears the legend

Delete Variant Deletes the legend

770

Legend Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 770

Name Returns Parameters Description

LegendEntries Object [Index] Returns either one LegendEntry object or
a LegendEntries collection, depending if
an Index parameter is specified. Contains
all the legend text and markers

Select Variant Selects the legend on the chart

Legend Object Example
Sub AddAndFormatLegend()

Dim oChart As Chart
Dim oLegend As Legend

‘Set the targe chart
Set oChart = ActiveSheet.ChartObjects(“Chart 1”).Chart

‘Apply Legend
oChart.HasLegend = True

‘Target the leaderlines object
Set oLegend = oChart.Legend

‘Format the leaderlines
With oLegend
.Position = xlLegendPositionBottom
.Border.LineStyle = xlNone
.AutoScaleFont = False

End With
End Sub

LegendEntry Object and the LegendEntries Collection
The LegendEntries collection contains the collection of entries in a legend. Each LegendEntry object
represents a single entry in a legend. This consists of the legend entry text and the legend entry marker.
The legend entry text is always the associated series name or trendline name. The parent of the
LegendEntries collection is the Legend object. The LegendEntries collection has no properties or
methods, outside the typical collection attributes listed at the beginning of this appendix.

LegendEntry Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

771

Legend Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 771

LegendEntry Properties

Name Returns Description

AutoScaleFont Variant Set/Get whether the font size will change automatically
if the parent chart changes sizes

Font Font Read-only. Returns an object containing Font options for
the legend entry text

Format ChartFormat Read-only. Returns the ChartFormat object, which con-
trols the line, fill, and effect formatting for the chart area

Height Double Read-only. Returns the height of the legend entry

Index Long Read-only. Returns the position of the LegendEntry in
the LegendEntries collection

Left Double Read-only. Returns the distance from the left edge of the
legend entry box to the left edge of the chart

LegendKey LegendKey Read-only. Returns an object containing formatting asso-
ciated with the legend entry marker

Top Double Read-only. Returns the distance from the top edge of the
legend entry box to the top edge of the chart

Width Double Read-only. Returns the width of the legend entry

LegendEntry Methods

Name Returns Parameters Description

Delete Variant Deletes the LegendEntry object

Select Variant Selects the legend entry on the chart

LegendEntry Object and the LegendEntries Collection Example
Sub FormatEachLegendEntry()

Dim oChart As Chart
Dim oEntry As LegendEntry
Dim oEntries As LegendEntries

‘Set the targe chart
Set oChart = ActiveSheet.ChartObjects(“Chart 4”).Chart

‘Apply Legend
oChart.HasLegend = True

‘Target the leaderlines object
Set oEntries = oChart.Legend.LegendEntries

For Each oEntry In oEntries
oEntry.Font.Size = 16

772

LegendEntry Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 772

oEntry.Font.ColorIndex = 15
Next oEntry

End Sub

LegendKey Object
The LegendKey object contains properties and methods to manipulate the formatting associated with a
legend key entry marker. A legend key is a visual representation, such as a color, that identifies a specific
series or trendline.

LegendKey Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

LegendKey Properties

Name Returns Description

Format ChartFormat Read-only. Returns the ChartFormat object that controls
the line, fill, and effect formatting for the chart area

Height Double Read-only. Returns the height of the legend entry key

InvertIf Boolean Set/Get whether the color in the legend key is inverted if
Negative the values are negative

Left Double Read-only. Returns the distance from the left edge of the
legend key entry box to the left edge of the chart

Marker Long Set/Get the color of the legend key background. Use the
Background RGB function to create the color value
Color

Marker XlColorIndex Set/Get the color of the legend key background. Use the
Background XlColorIndex constants or an index value in the current
ColorIndex color palette

Marker Long Set/Get the color of the legend key foreground. Use the
Foreground RGB function to create the color value
Color

Marker XlColor Set/Get the color of the legend key foreground. Use the
Foreground Index XlColorIndex constants or an index value in the current
ColorIndex color palette

MarkerSize Long Set/Get the size of the legend key marker

MarkerStyle XlMarker Set/Get the type of marker to use as the legend key (for
Style example, square, diamond, triangle, picture, and so on)

PictureType Long Set/Get how an associated picture is displayed on the
legend (for example, stretched, tiled). Use the XlPicture-
Type constants

Table continued on following page

773

LegendKey Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 773

Name Returns Description

PictureUnit Long Set/Get how many units a picture represents if the
PictureType property is set to xlScale

PictureUnit2 Double Set/Get how many units a picture represents if the
PictureType property is set to xlScale

Shadow Boolean Set/Get whether a shadow effect appears around the leg-
end entry key

Smooth Boolean Set/Get whether the legend key has smooth curving
enabled

Top Double Read-only. Returns the distance from the top edge of the
legend entry key box to the top edge of the chart

Width Double Read-only. Returns the width of the legend entry key box

LegendKey Methods

Name Returns Parameters Description

ClearFormats Variant Clears the formatting made on the
LegendKey object

Delete Variant Deletes the LegendKey object

LinearGradient Object
The LinearGradient object transitions through a series of colors in a linear manner along a specific
angle. Attempting to access a Gradient property of an Interior object that does not have an existing
gradient fill will result in a run-time error. Be aware of the Interior.Pattern property before accessing
the Gradient property.

LinearGradient Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

LinearGradient Properties

Name Returns Description

ColorStops ColorStops Read-only. Returns the ColorStops for the
LinearGradient object

Degree Double Set/Get the angle of the linear gradient fill within a
selection

774

LegendKey Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 774

LineFormat Object
The LineFormat object represents the formatting associated with the line of the parent Shape object.
The Line property of the Shape object is used to access the LineFormat object. The LineFormat object
is commonly used to change line properties such as arrowhead styles and directions.

LineFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

LineFormat Properties

Name Returns Description

BackColor Color Read-only. Returns an object allowing manipulation of the
Format background color of the line

Begin MsoArrowhead Set/Get the arrowhead length on the start of the line
Arrowhead Length
Length

Begin Mso Set/Get how the arrowhead looks on the start of the line
Arrowhead Arrowhead
Style Style

Begin Mso Set/Get the arrowhead width on the start of the line
Arrowhead Arrowhead
Width Width

DashStyle MsoLine Dash Set/Get the style of the line
Style

End Mso Set/Get the arrowhead length on the end of the line
Arrowhead Arrowhead
Length Length

End Mso Set/Get how the arrowhead looks on the end of the line
Arrowhead Arrowhead
Style Style

End Mso Set/Get the arrowhead width on the end of the line
Arrowhead Arrowhead
Width Width

ForeColor ColorFormat Read-only. Returns an object allowing manipulation of the
background color of the line

Pattern MsoPattern Set/Get the pattern used on the line
Type

Style MsoLine Style Set/Get the line style

Transparency Single Set/Get how transparent (1) or opaque (0) the line is

Visible MsoTri State Set/Get whether the line is visible

Weight Single Set/Get how thick the line is

775

LineFormat Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 775

LineFormat Object Example
Sub AddAndFormatLine()

Dim oShp As Shape
Dim oLF As LineFormat
‘Add a line shape
Set oShp = ActiveSheet.Shapes.AddLine(100, 100, 200, 250)
‘Get the line format object
Set oLF = oShp.Line
‘Set the line format
With oLF

.BeginArrowheadStyle = msoArrowheadOval

.EndArrowheadStyle = msoArrowheadTriangle

.EndArrowheadLength = msoArrowheadLong

.EndArrowheadWidth = msoArrowheadWide

.Style = msoLineSingle
End With

End Sub

LinkFormat Object
The LinkFormat object represents the linking attributes associated with an OLE object or picture. The
LinkFormat object is associated with a Shape object. Only Shape objects that are valid OLE objects can
access the LinkFormat object.

LinkFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

LinkFormat Properties

Name Returns Description

AutoUpdate Boolean Set/Get whether the parent Shape object is updated when-
ever the source file changes, or when the parent object is
opened

Locked Boolean Set/Get whether the parent Shape object does not update
itself against the source file

LinkFormat Methods

Name Returns Parameters Description

Update Updates the parent Shape object with the source
file data

776

LineFormat Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 776

LinkFormat Object Example
Sub UpdateShapeLinks()

Dim oShp As Shape
Dim oLnkForm As LinkFormat
‘Loop through all the shapes in the sheet
For Each oShp In ActiveSheet.Shapes

‘Is it a linked shape?
If oShp.Type = msoLinkedOLEObject Or oShp.Type = msoLinkedPicture Then

‘Yes, so get the link format
Set oLnkForm = oShp.LinkFormat
‘and update the link
oLnkForm.Update

End If
Next

End Sub

ListColumn and ListColumns Collection
The ListColumn object represents a column in a List. The ListColumns collection contains all columns
within a list, represented by one or more ListColumn objects.

ListColumns Common Properties
The Application, Count, Creator, Item, and Parent properties are defined at the beginning of this
appendix. The only method for the ListColumns object is the Add method, which adds a new column to
a given list.

ListColumn Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ListColumn Properties

Name Returns Description

DataBodyRange Range Read-only. Returns the range that holds the
values for the list object. Excludes header row

Index Long Index number of ListColumn object in the List

Name String Name of this object

Range Range Returns a range representing the range for
which the current ListColumn applies to the
current list. This includes the header row

Total Read-only. Returns the Total row for a List-
Column object

TotalsCalulation XlTotalsCalculation Determines the type of calculation in the totals
row

XPath XPath Returns an XPath object for the element
mapped to the specific range

777

LinkFormat Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 777

ListColumn Methods

Name Returns Parameters Description

Delete Deletes a column of data in the list

ListColumns Object Example
Sub CreateEmptyListObject()
Dim oList As ListObject
Dim oColumn As ListColumn
Dim i As Integer

‘Create a new list in A1.
Range(“A1”).Select
Set oList = ActiveSheet.ListObjects.Add

‘Add 9 more columns to the list object
For i = 1 To 9

oList.ListColumns.Add
Next i

‘Enumerate through each column and name it
i = 1
For Each oColumn In oList.ListColumns
oColumn.Name = “Field-” & i
i = i + 1
Next

End Sub

ListDataFormat Object
The ListDataFormat object holds all of the data type properties for a ListColumn object. All properties
of the ListDataFormat object are read-only.

ListDataFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ListDataFormat Properties

Name Returns Description

AllowFillIn Boolean Determines if the user can provide values or if they
are restricted to using information from a list

Choices String Array Contains a string array of choices

DecimalPlaces Long Determines the number of decimal places to show

DefaultValue Variant Default value to use for this item

778

ListColumn Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 778

Name Returns Description

IsPercent Boolean Determines if this item should be displayed as a
percentage

LCID Long Determines the currency symbol that is used

MaxCharacters Long The maximum number of characters that can be
entered

MaxNumber Variant The largest number used

MinNumber Variant The minimum number that can be used

ReadOnly Boolean Determines if the item should be read-only and there-
fore disallow changes

Required Boolean Determines if the item is required

Type XlListDataType Used when a item links to a SharePoint site

ListObject Object and the ListObjects Collection
The ListObject object represents a list table within a workbook. The ListObjects collection repre-
sents all of the list objects on a worksheet.

ListObjects Common Properties
The Application, Count, Creator, Item, and Parent properties are defined at the beginning of this
appendix. The only method for the ListObjects object is the Add method, which adds a new
ListObject to a given worksheet.

ListObject Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ListObject Properties

Name Returns Description

Active Boolean Read-only. Indicates whether the active cell is inside
the range of the ListObject object

AutoFilter AutoFilter Read-only. Filters a list using the AutoFilter

Comment String Set/Get any comments associated with the list object

DataBodyRange Range Read-only. Returns the range that holds the values
for the list object. Excludes header row

DisplayName Set/Get the display name for the specified List-
Object object

Table continued on following page

779

ListObject Object and the ListObjects Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 779

Name Returns Description

DisplayRight Boolean Read-only. Determines whether a given list object is
ToLeft displayed left to right or right to left. If the property is

set to True, then the values are displayed right to left

HeaderRowRange Range Read-only. Returns the range that holds the header
row for the list object

InsertRowRange Range Read-only. Returns the range that represents the
insert row

ListColumns ListColumns Read-Only. Returns a collection of all columns within
the given list object

ListRows ListRows Read-only. Returns a collection of all rows within the
given list object

Name String Set/Get the name of the list object

QueryTable QueryTable Read-only. Returns a QueryTable object that pro-
vides a link for the ListObject object to a list server

Range Range Set/Get the range to which the list object is applied

SharePointURL String Read-only. Returns the URL of the SharePoint list to
which the given list object is linked

ShowAutoFilter Boolean Set/Get whether AutoFilter is applied. Default is True

ShowHeaders Boolean Set/Get whether the header row is displayed.
Default is True

ShowTableStyle Boolean Set/Get whether the alternate color banding is
ColumnStripes applied to the columns of the ListObject

ShowTableStyle Boolean Set/Get whether the first column is displayed for a
FirstColumn given ListObject object

ShowTableStyle Boolean Set/Get whether the last column is displayed for a
LastColumn given ListObject object

ShowTableStyle Boolean Set/Get whether the alternate color banding is
RowStripes applied to the rows of the ListObject

ShowTotals Boolean Set/Get whether the Total row is displayed. Default
is True

Sort Sort Read-only. Returns the sort criteria for the ListObject

SourceType xlListObject Set/Get an xlListObjectSourceType constant that
SourceType determines the source of the given list object

TableStyle Variant Set/Get the style applied to the ListObject

TotalsRowRange Range Read-only. Returns the range that represents the
Totals row

XmlMap XmlMap Read-only. Returns the schema map used as the
source for the given list object

780

ListObject Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 780

ListObject Methods

Name Returns Parameters Description

Delete Deletes an item from the
collection

ExportToVisio Exports a ListObject object
to Visio

Publish String [Target – String Array] Publishes the object to a
[LinkSource – Boolean] Windows Sharepoint Server.

The Target string array must
contain the following elements:
0 – URL of SharePoint Server
1 – ListName
2 – Description of list

Refresh Refreshes the current data from
a Windows SharePoint Server

Resize Range Allows a ListObject to be
resized of a certain range

Unlink Removes the current link to a
Windows SharePoint Server

Unlist Removes the list functionality
from a ListObject, thus
turning all data into a regular
range of data

List Object Example
Sub DeletSpecificListColumn()
Dim olist As ListObject
Dim i As Integer

‘Set olist to the first list object on the active sheet
Set olist = ActiveSheet.ListObjects(1)

‘Find the column named “Field-3” and delete it
For i = 1 To olist.ListColumns.Count - 1

If olist.ListColumns(i).Name = “Field-3” Then
olist.ListColumns(i).Delete

End If
Next

End Sub

ListRow Object and the ListRows Collection
The ListRow object represents a singe row in a given list object. The ListRows collection represents all
of the rows in a list object.

781

ListObject Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 781

ListRows Common Properties
The Application, Count, Creator, Item, and Parent properties are defined at the beginning of this
appendix. The only method for the ListRows object is the Add method, which adds new rows to a given
list object.

ListRow Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ListRow Properties

Name Returns Description

Index Long Read-only. Returns an index number for an item within a collection

Range Range Read-only. Returns a range to which the current object applies

ListRow Methods

Name Returns Parameters Description

Delete Deletes an item from the collection

Mailer Object
The Mailer object is used on the Macintosh to mail Excel files using the PowerTalk Mailer.

Mailer Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Mailer Properties

Name Returns Description

BCCRecipients Variant Set/Get the list of blind copies

CCRecipients Variant Set/Get the list of carbon copies

Enclosures Variant Set/Get the list of enclosures

Received Boolean Read-only. Returns whether the mail message was received

SendDateTime Date Read-only. Returns the date and time the message was sent

Sender String Read-only. Returns the name of the mail message sender

Subject String Set/Get the subject line of the mail message

ToRecipients Variant Set/Get the array of recipient names

WhichAddress Variant Set/Get the address that the mail message originates from

782

ListRows Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 782

MultiThreadedCalculation Object
The MultithreadedCalculation object exposes the properties that allow for programmatic control of
the multithreaded calculations (calculations that can be performed across multiple threads).

MultiThreadedCalculation Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

MultiThreadedCalculation Properties

Name Returns Description

Enabled Boolean Set/Get whether MultiThreadedCalculation objects
are enabled at run time

ThreatCount Long Returns the total count of the process threads that are a
part of the specified MultiThreadedCalculation
object

ThreadMode XlThreadMode Set/Get the thread mode for the specified Multi-
ThreadedCalculation object using an XlThreadMode
constant

Name Object and the Names Collection
The Names collection holds the list of named ranges in a workbook. Each Name object describes a range
of cells in a workbook that can be accessed by the name. Some Name objects are built-in (for example,
Print_Area) and others are user-defined. The parent of the Names collection can be the WorkBook,
Application, or Worksheet object. The Name object can also be accessed through the Range object.

The Names collection has an Add method besides the typical collection attributes. The Add method adds a
Name object to the collection. The parameters of the Add method correspond to the properties of the Name
object.

Name Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Properties

Name Returns Description

Category String Set/Get the category of the Name in the language used to
create the macro. Valid only if the Name is a custom func-
tion or command

CategoryLocal String Set/Get the category of the Name in the language of the
end user. Valid only if the Name is a custom function or
command

Comment String Set/Get any comments associated with a name

Table continued on following page

783

MultiThreadedCalculation Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 783

Name Returns Description

Index Long Read-only. Returns the spot where Name is located in the
Names collection

IsWorkbook Boolean Set/Get the specified Name object as a workbook
Parameter parameter

MacroType XlXLMMacro Set/Get if the Name refers to a command, a function, or
Type just a range

Name String Set/Get the name of the Name object in the language of
the macro

NameLocal String Set/Get the name of the Name object in the language of
the end user

RefersTo Variant Set/Get the range text that the Name refers to in the lan-
guage of the macro and in A1 notation style

RefersToLocal Variant Set/Get the range text that the Name refers to in the lan-
guage of the user and in A1 notation style

RefersToR1C1 Variant Set/Get the range text that the Name refers to in the lan-
guage of the macro and in R1C1 notation style

RefersTo Variant Set/Get the range text that the Name refers to in the
R1C1Local language of the user and in R1C1 notation style

RefersToRange Range Read-only. Returns the range that the Name refers to

ShortcutKey String Set/Get the shortcut key to trigger a Microsoft Excel 4.0
macro associated with a Name

ValidWorkbook Boolean Set/Get the specified Name object if a valid workbook
Parameter parameter

Value String Set/Get the range text that the Name refers to in the lan-
guage of the macro and in A1 notation style

Visible Boolean Set/Get whether the name of the Name object appears in
the Names dialog box in Excel

Name Methods

Name Returns Parameters Description

Delete Deletes the Name object from the collection

784

Name Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 784

Name Object and the Names Collection Example
Sub DeleteInvalidNames()

Dim oName As Name
‘Loop through all the names in the active workbook
For Each oName In ActiveWorkbook.Names

‘Is it an invalid name?
If InStr(1, oName.RefersTo, “#REF”) > 0 Then

‘Yes, so log it
Debug.Print “Deleted name “ & oName.Name & “ - “ & oName.RefersToLocal

‘and delete it from the collection
oName.Delete

End If
Next

End Sub

ODBCConnection Object
When an ODBC connection is stored in an Excel workbook, Excel opens an in-memory ODBC connec-
tion each time the workbook opens. This in-memory connection in the ODBCConnection object holds
the connection string that allows an Excel workbook to connect to an external data source. The
ODBCConnection object typically contains the name of the server to connect to, the name of the objects
to be opened, and authentication parameters.

ODBCConnection Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ODBCConnection Properties

Name Returns Description

AlwaysUse Boolean Set/Get whether an external connection file will be used
ConnectionFile to establish a connection to the data source. When this

property is set to True, any embedded connection infor-
mation will be ignored, and the external connection file
will be used

Background Boolean Set/Get if the processing of queries is done
Query asynchronously

CommandText Variant Set/Get a command string that passes commands to the
data source. This property essentially replaces the SQL
property, which still exists only for compatibility purposes

Table continued on following page

785

Name Object and the Names Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 785

Name Returns Description

CommandType xlCmdType Set/Get one of the xlCmdType constants that define the
type of command that is passed. The default is the xlCmd-
SQL constant

Connection String Set/Get the connection string for to an ODBC data source

EnableRefresh Boolean Set/Get whether an external connection can be refreshed
via the user interface. Default is True

RefreshDate Date Read-only. Returns date of last refresh

Refreshing Boolean Set/Get whether a background ODBC query is currently
being run

RefreshOnFileOpen Boolean Set/Get whether a connection is automatically refreshed
when the workbook is opened. Default is False

RefreshPeriod Long Set/Get the number of minutes between refreshes. This
property can be set to any value between 0 and 32767. Set-
ting this property to 0 will effectively disable automatic
periodic refreshing

RobustConnect xlRobust Set/Get the method by which the ODBCConnection object
Connect connects to your data source. The RobustConnect prop-

erty allows an IT Department to maintain and update con-
nections in a central place, permitting users to
automatically fetch those updates in the event that the
connection cached within their workbook fails

SavePassword Boolean Set/Get whether password information is saved in the
connection string

ServerCredentials xl Set/Get the type of credentials to be used for server
Method Credentials authentication. Your choices through the

Method xlCredentialsMethod are integrated, none, prompted,
and stored

ServerSSO String Set/Get a single sign-on application (SSO) identifier that
ApplicationID is used to do a lookup in the SSO database for credentials

Source String Set/Get the name of the file that was used to create the
Connection connection
File

SourceData Variant Set/Get the data source for the connection

SourceData String Set/Get the name of the source data file for the connection
File

786

ODBCConnection Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 786

ODBCConnection Methods

Name Returns Parameters Description

Cancel Cancels any refresh or query operations
Refresh specified by the ODBCConnection

object

Refresh Refreshes the ODBC connection

SaveAsODC ODCFileName as string, Saves the ODBC connection as an
[Description] As Variant, Office Data Connection file (.odc)
[Keywords]As Variant

ODBCError Object and the ODBCErrors Collection
The ODBCErrors collection contains a list of errors that occurred on the most recent query using an
ODBC connection. Each ODBCError object contains information describing an error that occurred on the
most recent query using an ODBC connection. If the most recent query against an ODBC source did not
generate any errors, then the collection is empty. The ODBCErrors collection has no properties and meth-
ods outside the typical collection attributes listed at the beginning of this appendix.

ODBCError Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ODBCError Properties

Name Returns Description

ErrorString String Read-only. Returns the error string generated from the
ODBC connection

SqlState String Read-only. Returns the SQL state error generated from the
ODBC connection

ODBCError Object and the ODBCErrors Collection Example
Sub CheckODBCErrors()

Dim oErr As ODBCError
Dim sMsg As String
‘Continue after errors
On Error Resume Next
‘Don’t show logon prompts etc
Application.DisplayAlerts = False
‘Update an ODBC query table
ActiveSheet.QueryTables(1).Refresh
‘Any errors?
If Application.ODBCErrors.Count = 0 Then

‘No, so all OK
MsgBox “Updated OK”

787

ODBCConnection Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 787

Else
‘Yes, so list them all
sMsg = “The following error(s) occurred during the update”
For Each oErr In Application.ODBCErrors

sMsg = sMsg & vbCrLf & oErr.ErrorString & “ (“ & oErr.SqlState & “)”
Next
MsgBox sMsg

End If
End Sub

OLEDBConnection Object
When an OLEDB connection is stored in an Excel workbook, Excel opens an in-memory OLEDB connec-
tion each time the workbook opens. This in-memory connection in the OLEDBConnection object holds
the connection string that allows an Excel workbook to connect to an external data source. The
OLEDBConnection object typically contains the name of the server to connect to, the names of the objects
to be opened, and authentication parameters.

OLEDBConnection Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

OLEDBConnection Properties

Name Returns Description

ADOConnection Object Read-only. Returns an ADO connection object

AlwaysUse Boolean Set/Get whether an external connection file will be used to
ConnectionFile establish a connection to the data source. When this prop-

erty is set to True, any embedded connection information
will be ignored, and the external connection file will be used

Background Boolean Set/Get the processing of queries asynchronously. False for
Query OLAP data sources

CommandText Variant Set/Get a command string that passes commands to the
data source. This property essentially replaces the SQL
property, which still exists only for compatibility purposes

CommandType xlCmdType Set/Get one of the xlCmdType constants that define the
type of command that is passed. The default is the xlCmd-
SQL constant

Connection String Set/Get the connection string for to an OLEDB data source

EnableRefresh Boolean Set/Get whether an external connection can be refreshed
via the user interface. Default is True

IsConnected Boolean Read-only. Checks whether an OLEDB connection is con-
nected to its data source

LocalConnection String Set/Get the connection string for an offline cube file. For a
non-OLAP data source, the value of the LocalConnection
property is an empty string

788

OLEDBConnection Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 788

Name Returns Description

Maintain Boolean Set/Get whether the connection to the data source is
Connection maintained after the refresh operation and until the work-

book is closed. Setting this property to True will keep the
connection open

MaxDrilltrhough Long Used with OLAP data sources, this property sets or gets the
Records maximum number of records that can be retrieved from the

data source at any given time

OLAP Boolean Read-only. Returns True if the target data source is an
OLAP server

RefreshDate Date Read-only. Returns date of last refresh

Refreshing Boolean Set/Get whether a background OLEDB query is currently
being run

RefreshOn Boolean Set/Get whether a connection is automatically refreshed
FileOpen when the workbook is opened. Default is False

RefreshPeriod Long Set/Get the number of minutes between refreshes. This
property can be set to any value between 0 and 32767. Set-
ting this property to 0 will effectively disable automatic
periodic refreshing

RetrieveIn Boolean Set/Get whether the errors are to be retrieved in the Office
OfficeUILang user interface display language

RobustConnect xlRobust Set/Get the method by which the OLEDBConnection object
Connect connects to your data source. The RobustConnect property

allows an IT Department to maintain and update connec-
tions in a central place, permitting users to automatically
fetch those updates in the event that the connection cached
within their workbook fails

SavePassword Boolean Set/Get whether password information is saved in the con-
nection string

Server xl Set/Get the type of credentials to be used for server
Credentials Credentials authentication. Your choices through the
Method Method xlCredentialsMethod are integrated, none, prompted,

and stored

ServerFillColor Boolean Set/Get whether to retrieve the OLAP fill color formatting
when connected to an OLAP server

ServerFontStyle Boolean Set/Get whether to retrieve the OLAP font style formatting
when connected to an OLAP server

ServerNumber Boolean Set/Get whether to retrieve the OLAP number formatting
Format when connected to an OLAP server

Table continued on following page

789

OLEDBConnection Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 789

Name Returns Description

ServerSSO String Set/Get a single sign-on application (SSO) identifier that is
ApplicationID used to do a lookup in the SSO database for credentials

ServerTextColor Boolean Set/Get whether to retrieve the OLAP text color formatting
when connected to an OLAP server

Source String Set/Get the name of the file that was used to create the
Connection connection
File

SourceData String Read-only. Returns the name of the source data file for the
File connection

UseLocal Boolean Set/Get if the LocalConnection property is used to set the
Connection data source. False means the Connection property is

used. Allows you to store some data sources offline

OLEDBConnection Methods

Name Returns Parameters Description

Cancel Cancels any refresh or query
Refresh operations specified by the

ODBCConnection object

Make Establishes a connection when a
Connection connection drops or when the user

wants to reestablish the connection.
This method will result in a run-time
error if the MaintainConnection
property has been set to False

Refresh Refreshes the ODBC connection

SaveAsODC ODCFileName As String, Saves the ODBC connection as an
[Description]As Variant, Office Data Connection file (.odc)
[Keywords]As Variant

OLEDBError Object and the OLEDBErrors Collection
The OLEDBErrors collection contains a list of errors that occurred on the most recent query using an
OLE DB provider. Each OLEDBError object contains information describing an error that occurred on the
most recent query using an OLE DB provider. If the most recent query against an OLE DB provider did
not generate any errors, then the collection is empty. The OLEDBErrors collection has no properties and
methods outside the typical collection attributes listed at the beginning of this appendix.

OLEDBError Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

790

OLEDBConnection Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 790

OLEDBError Properties

Name Returns Description

ErrorString String Read-only. Returns the error string generated from the OLE
DB provider

Native Long Read-only. Returns a provider-specific error number describ-
ing the error

Number Long Read-only. Returns the error number describing the error

SqlState String Read-only. Returns the SQL state error generated from the
OLE DB provider

Stage Long Read-only. Returns the stage of an error generated from the
OLE DB provider

OLEDBError Object and the OLEDBErrors Collection Example
Sub CheckOLEDbErrors()

Dim oErr As OLEDBError
Dim sMsg As String
‘Continue after errors
On Error Resume Next
‘Don’t show logon prompts etc
Application.DisplayAlerts = False
‘Update an OLE DB pivot table
ActiveSheet.PivotTables(1).Refresh
‘Any errors?
If Application.OLEDBErrors.Count = 0 Then

‘No, so all OK
MsgBox “Updated OK”

Else
‘Yes, so list them all
sMsg = “The following error(s) occurred during the update”
For Each oErr In Application.OLEDBErrors

sMsg = sMsg & vbCrLf & oErr.ErrorString & “ (“ & oErr.SqlState & “)”
Next
MsgBox sMsg

End If
End Sub

OLEFormat Object
The OLEFormat object, returned by the OLEFormat property of the Shape object, exposes the object
properties for a linked or embedded object.

OLEFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

791

OLEDBError Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 791

OLEFormat Properties

Name Returns Description

Object OLEObject Read-only. Returns the OLE Automation object associated
with a given OLE object

progID String Read-only. Returns the programmatic identifiers for the given
OLE object

OLEFormat Methods

Name Returns Parameters Description

Activate Variant Sets the focus and activates the given
OLE object

Verb Variant Verb As XlOLEVerb Performs an action on the parent OLE
object that triggers a reaction in the
OLE object (for example, xlOpen)

OLEObject Object and the OLEObjects Collection
The OLEObjects collection holds all the ActiveX controls, linked OLE objects, and embedded OLE objects
on a worksheet or chart. An OLE object represents an ActiveX control, a linked OLE object, or an embed-
ded OLE object on a worksheet or chart.

The OLEObjects collection has many properties and methods besides the typical collection attributes.
These are listed in the following table.

OLEObjects Collection Properties and Methods

Name Returns Description

AutoLoad Boolean Set/Get whether the OLE object is automatically loaded when
the workbook is opened. Not valid for ActiveX controls. Usu-
ally set to False. This property only works if there is one
OLEObject in the collection

Border Border Read-only. Returns the border’s properties around the OLE
object. This property only works if there is one OLEObject in
the collection

Enabled Boolean Set/Get whether the OLEObject is enabled. This property
only works if there is one OLEObject in the collection

Height Double Set/Get the height of OLEObject frame. This property only
works if there is one OLEObject in the collection

792

OLEFormat Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 792

Name Returns Description

Interior Interior Read-only. Returns an object containing options to format the
inside area of the OLE object (for example, interior color). This
property only works if there is one OLEObject in the collection

Left Double Set/Get the distance from the left edge of the OLEObject
frame to the left edge of the sheet. This property only works if
there is one OLEObject in the collection

Locked Boolean Set/Get whether editing will be possible when the parent
sheet is protected. This property only works if there is one
OLEObject in the collection

Placement XlPlacement Set/Get how the OLEObject object is anchored to the sheet
(for example, free floating, move with cells). Use the
XlPlacement constants to set this property. This property
only works if there is one OLEObject in the collection

PrintObject Boolean Set/Get whether the OLEObject on the sheet will be printed
when the sheet is printed. This property only works if there is
one OLEObject in the collection

Shadow Boolean Set/Get whether a shadow appears around the OLE object.
This property only works if there is one OLEObject in the
collection

ShapeRange ShapeRange Read-only. Returns the OLE object as a Shape object. This prop-
erty only works if there is one OLEObject in the collection

SourceName String Set/Get the link source name of the OLE object. This property
only works if there is one OLEObject in the collection

Top Double Set/Get the distance from top edge of the OLE object to the
top of the parent sheet. This property only works if there is
one OLEObject in the collection

Visible Boolean Set/Get whether all the OLEObjects in the collection are visible

Width Double Set/Get the width of the OLE object frame. This property only
works if there is one OLEObject in the collection

ZOrder Long Read-only. Returns the position of the OLE object among all
the other objects on the sheet. This property only works if
there is one OLEObject in the collection

Add OLEObject Method. Parameters: [ClassType], [Filename], [Link],
[DisplayAsIcon], [IconFileName], [IconIndex], [Icon-
Label], [Left], [Top], [Width], [Height]. Adds an OLE
object to the collection of OLEObjects. The position of the new
OLE object can be specified by using the Left, Top, Width, and
Height parameters. The type of OLEObject (ClassType) or its
location (FileName) can be specified as well. The other param-
eters have equivalent OLEObject properties

Table continued on following page

793

OLEObjects Collection Properties and Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 793

Name Returns Description

BringToFront Variant Method. Brings all the OLE objects in the collection to the front
of all the other objects

Copy Variant Method. Copies all the OLE objects in the collection into the
clipboard

CopyPicture Variant Method. Parameters: Appearance As XlPictureAppear-
ance, Format As XlCopyPictureFormat. Copies the OLE
objects in the collection into the clipboard as a picture. The
Appearance parameter can be used to specify whether the
picture is copied as it looks on the screen or when printed.
The Format parameter can specify the type of picture that
will be put into the clipboard

Cut Variant Method. Cuts all the OLE objects in the collection into the
clipboard

Delete Variant Method. Deletes all the OLEObject objects in the collection
from the clipboard

Duplicate Object Method. Duplicates all the OLEObject objects in the collection
into the parent sheet

Select Variant Method. Parameters: [Replace]. Selects all the OLEObject
objects in the collection

SendToBack Variant Method. Brings the OLEObject objects in the collection to the
back of other objects

OLEObject Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

OLEObject Properties

Name Returns Description

AutoLoad Boolean Set/Get whether the OLE object is automatically loaded when
the workbook is opened. Not valid for ActiveX controls. Usu-
ally set to False

AutoUpdate Boolean Set/Get whether the OLE object is automatically updated
when the source changes. Valid only for linked objects (OLE-
Type=xlOLELink)

Border Border Read-only. Returns the border’s properties around the OLE
object

BottomRight Range Read-only. Returns the single cell range located under the
Cell lower-right corner of the OLE object

Enabled Boolean Set/Get whether the OLEObject is enabled

794

OLEObject Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 794

Name Returns Description

Height Double Set/Get the height of OLEObject frame

Index Long Read-only. Returns the spot in the collection where the cur-
rent OLEObject is located

Interior Interior Read-only. Returns an object containing options to format the
inside area of the OLE object (for example, interior color)

Left Double Set/Get the distance from the left edge of the OLEObject
frame to the left edge of the sheet

LinkedCell String Set/Get the range that receives the value from the results of
the OLE object

ListFill String Set/Get the range that holds the values used by an ActiveX
Range list box

Locked Boolean Set/Get whether editing will be possible when the parent
sheet is protected

Name String Set/Get the name of the OLE object

Object Object Read-only. Returns access to some of the properties and
methods of the underlying object in the OLE object

OLEType Variant Read-only. Returns the type OLE object: xlOLELink or
xlOLEEmbed. Use the XlOLEType constants

Placement XlPlacement Set/Get how the OLEObject object is anchored to the sheet
(for example, free floating, move with cells). Use the
XlPlacement constants to set this property

PrintObject Boolean Set/Get whether the OLEObject on the sheet will be printed
when the sheet is printed

ProgId String Read-only. Returns the programmatic identifier associated
with the OLE object (for example, “Excel.Application”)

Shadow Boolean Set/Get whether a shadow appears around the OLE object

ShapeRange ShapeRange Read-only. Returns the OLE object as a Shape object

SourceName String Set/Get the link source name of the OLE object

Top Double Set/Get the distance from top edge of the OLE object to the
top of the parent sheet

TopLeftCell Range Read-only. Returns the single cell range located above the
top-left corner of the OLE object

Visible Boolean Set/Get whether the OLEObject is visible

Width Double Set/Get the width of the OLE object frame

ZOrder Long Read-only. The position of the OLE object among all the other
objects on the sheet

795

OLEObject Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 795

OLEObject Methods

Name Returns Parameters Description

Activate Variant Sets the focus and activates the OLE
object

BringToFront Variant Brings the OLE object to the front of all
the other objects

Copy Variant Copies the OLE object into the clipboard

CopyPicture Variant Appearance As Xl Copies the OLE object into the
Picture Appearance, clipboard as a picture. The
Format As XlCopy Appearance parameter can be
Picture Format used to specify whether the picture is

copied as it looks on the screen or
when printed. The Format parameter
can specify the type of picture that will
be put into the clipboard

Cut Variant Cuts the OLE object into the clipboard

Delete Variant Deletes the OLEObject object from the
clipboard

Duplicate Object Duplicates the OLEObject object into
the parent sheet

Select Variant [Replace] Selects the OLEObject object

SendToBack Variant Brings the OLEObject object to the
back of other objects

Update Variant Updates the OLE object link, if
applicable

Verb Variant Verb As XlOLEVerb Performs an action on the parent OLE
object that triggers a reaction in the
OLE object (for example, xlOpen)

OLEObject Events

Name Parameters Description

GotFocus Triggered when the OLE object gets focus

LostFocus Triggered when the OLE object loses focus

Outline Object
The Outline object represents the outline feature in Excel. The parent of the Outline object is the
WorkSheet object.

796

OLEObject Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 796

Outline Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Outline Properties

Name Returns Description

AutomaticStyles Boolean Set/Get whether the outline has styles auto-
matically assigned by Excel

SummaryColumn XlSummaryColumn Set/Get whether the summary columns are
to the left (xlLeft) or the right (xlRight) of
the detail columns

SummaryRow XlSummaryRow Set/Get whether the summary rows are
above (xlAbove) or below (xlBelow) the
detail rows

Outline Methods

Name Returns Parameters Description

ShowLevels Variant [RowLevels], Show the details of rows and columns
[ColumnLevels] at a higher level as specified by the

RowLevels and ColumnLevels parame-
ters, respectively. The rest of the details for
the other levels are hidden

Outline Object Example
Sub ShowOutlines()

Dim oOutl As Outline
‘Group some rows
ActiveSheet.Range(“4:5”).Group
‘Get the Outline object
Set oOutl = ActiveSheet.Outline
‘Format the outline display
With oOutl

.ShowLevels 1

.SummaryRow = xlSummaryAbove
End With

End Sub

Page Object and the Pages Collection
The Page object represents a single page in a given workbook. The Pages collection represents a collec-
tion of Page objects in a workbook. The Pages collection exposes only two properties, the standard
Count property and the Item property, which returns a single Page object.

797

Outline Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 797

Page Properties

Name Returns Description

CenterFooter HeaderFooter Read-only. Specifies that a picture or text should be
center-aligned in the page footer

CenterHeader HeaderFooter Read-only. Specifies that a picture or text should be
center-aligned in the page header

LeftFooter HeaderFooter Read-only. Specifies that a picture or text should be
left-aligned in the page footer

LeftHeader HeaderFooter Read-only. Specifies that a picture or text should be
left-aligned in the page header

RightFooter HeaderFooter Read-only. Specifies that a picture or text should be
right-aligned in the page footer

RightHeader HeaderFooter Read-only. Specifies that a picture or text should be
right-aligned in the page header

PageSetup Object
The PageSetup object contains the functionality of the Page Setup dialog box. Possible parents of the
PageSetup object are the Chart and Worksheet objects.

PageSetup Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PageSetup Properties

Name Returns Description

AlignMargins Boolean Set/Get whether the header and footer for a given
HeaderFooter document are aligned with margins set in the page

setup options

BlackAndWhite Boolean Set/Get whether worksheet items will be printed in
black and white only. Not valid when parents are
Chart objects

BottomMargin Double Set/Get the bottom margin of the page in points

CenterFooter String Set/Get the text for the center part of the footer

CenterFooter Graphic Read-only. Returns the picture for the center section
Picture of the footer

CenterHeader String Set/Get the text for the center part of the header

CenterHeader Graphic Read-only. Returns the picture for the center section
Picture of the footer

798

Page Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 798

Name Returns Description

Center Boolean Set/Get whether the worksheet or chart will be
Horizontally horizontally centered on the page

Center Boolean Set/Get whether the worksheet or chart will be
Vertically vertically centered on the page

Different Boolean Set/Get whether different header or footer is used on
FirstPage the first page
HeaderFooter

Draft Boolean Set/Get whether graphics will be printed. True
means graphics will not be printed

EvenPage Page Set/Get the alignment of text on the even page of a
workbook or section

FirstPage Page Set/Get the alignment of text on the first page of a
workbook or section

FirstPage Long Set/Get which number will be used as the first page
Number number. Use xlAutomatic to have Excel choose this

(default)

FitToPages Variant Set/Get how many pages tall the sheet will be scaled
Tall to. Setting this property to False will mean the Fit-

ToPagesWide property will be used

FitToPagesWide Variant Set/Get how many pages wide the sheet will be
scaled to. Setting this property to False will mean
the FitToPagesTall property will be used

FooterMargin Double Set/Get the distance from the page’s bottom to the
footer of the page in points

HeaderMargin Double Set/Get the distance from the page’s top to the
header of the page in points

LeftFooter String Set/Get the text for the left part of the footer

LeftFooter Graphic Read-only. Returns the picture for the left section of
Picture the footer

LeftHeader String Set/Get the text for the center part of the header

LeftHeader Graphic Read-only. Returns the picture for the left section of
Picture the header

LeftMargin Double Set/Get the left margin of the page in points

OddAndEvenPages Boolean Set/Get whether the specified PageSetup object has
HeaderFooter different headers and footers for odd-numbered and

even-numbered pages

Table continued on following page

799

PageSetup Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 799

Name Returns Description

Order XlOrder Set/Get the manner in which Excel numbers pages
for large worksheets (for example, xlDownTheOver,
xlOverThenDown). Not valid for parents that are
Chart objects

Orientation XlPage Set/Get the page orientation: xlLandscape or
Orientation xlPortrait

Pages Pages Set/Get the count or item number of the pages in
Pages collection

PaperSize XlPaper Set/Get the paper size (for example, xlPaperLetter,
Size xlPaperLegal, and so on)

PrintArea String Set/Get the range on a worksheet that will be
printed. If this property is set to False, then the
entire sheet is printed. Not valid for parents that are
Chart objects

PrintComments XlPrint Set/Get how comments are printed, or if they are at
Location all (for example, xlPrintInPlace, xlPrintNo-

Comments)

PrintErrors XlPrint Set/Get the type of print error displayed. This allows
Errors the suppression of error values when printing a

worksheet

Print Boolean Set/Get whether cell gridlines are printed for a
Gridlines worksheet. Not valid for parents that are Chart

objects

PrintHeadings Boolean Set/Get whether row and column headings are
printed

PrintNotes Boolean Set/Get whether notes attached to the cells are
printed at the end as endnotes. Not valid if parents
are Chart objects

PrintTitle String Set/Get which columns to repeat on the left side of
Columns every printed page

PrintTitleRows String Set/Get which rows to repeat on the top of every
page

RightFooter String Set/Get the text for the right part of the footer

RightFooter Graphic Read-only. Returns the picture for the right section of
Picture the footer

RightHeader String Set/Get the text for the right part of the header

RightHeader Graphic Read-only. Returns the picture for the right section of
Picture the header

800

PageSetup Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 800

Name Returns Description

RightMargin Double Set/Get the right margin of the page in points

ScaleWithDoc Boolean Set/Get whether the header and footer should be
HeaderFooter scaled with the document when the size of the docu-

ment changes

TopMargin Double Set/Get the top margin of the page in points

Zoom Variant Set/Get the percentage scaling that will occur for the
worksheet. Not valid for parents that are Chart
objects (10 to 400 percent)

PageSetup Methods

Name Returns Parameters Description

PrintQuality Variant [Index] Set/Get the print quality. The Index
parameter can be used to specify horizon-
tal (1) or vertical (2) print quality

PageSetup Object Example
Sub SetUpPage()

Dim oPS As PageSetup
‘Get the sheet’s PageSetup object
Set oPS = ActiveSheet.PageSetup
‘Set up the page
With oPS

‘Set the paper size to the local default
.PaperSize = fnLocalPaperSize
.Orientation = xlPortrait
‘etc.

End With
End Sub
Function fnLocalPaperSize() As XlPaperSize

‘Remember the paper size when we’ve read it
Static iPaperSize As XlPaperSize
‘Is it set?
If iPaperSize = 0 Then

‘No, so create a new workbook and read off the paper size
With Workbooks.Add

iPaperSize = .Worksheets(1).PageSetup.PaperSize
.Close False

End With
End If
‘Return the paper size
fnLocalPaperSize = iPaperSize

End Function

801

PageSetup Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 801

Pane Object and the Panes Collection
The Panes collection allows manipulation of the different panes of a window. A Pane object is equiva-
lent to the single pane of a window. The parent object of the Panes collection is the Window object. The
Panes collection has no properties or methods outside the typical collection attributes listed at the begin-
ning of this appendix.

Pane Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Pane Properties

Name Returns Description

Index Long Read-only. Returns the spot in the collection where the Pane
object is located

ScrollColumn Long Set/Get which column number is the leftmost column in the
pane window

ScrollRow Long Set/Get which row number is the top row in the pane window

VisibleRange Range Read-only. Returns the cell range that is visible in the pane

Pane Methods

Name Returns Parameters Description

Activate Boolean Activates the pane

LargeScroll Variant [Down], Causes the document to scroll in a
[Up], certain direction a screenful at a time, as
[ToRight], specified by the parameters
[ToLeft]

PointsToScreen Long Points Set/Get a pixel point on the screen
PixelsX

PointsToScreen Long Points Set/Get the location of the pixel on the
PixelsY screen

ScrollInto Left As Long, Scrolls the spot specified by the Left,
View Top As Long, Top, Width, and Height parameters to

Width As Long, either the upper-left corner of the pane
Height As Long, (Start = True) or the lower-right corner
[Start] of the pane (Start = False). The Left,

Top, Width, and Height parameters are
specified in points

SmallScroll Variant [Down], Causes the document to scroll in a
[Up], certain direction a document line at a
[ToRight], time, as specified by the parameters
[ToLeft]

802

Pane Object and the Panes Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 802

Pane Object and the Panes Collection Example
Sub ScrollActivePane()

Dim oPane As Pane
Dim oRNg As Range
‘The range to show in the pane
Set oRNg = Range(“G3:J10”)
‘Get the active pane
Set oPane = Application.ActiveWindow.ActivePane
‘Scroll the pane to show the range in the top-left corner
oPane.ScrollColumn = oRNg.Column
oPane.ScrollRow = oRNg.Row

End Sub

Parameter Object and the Parameters Collection
The Parameters collection holds the list of parameters associated with a query table. If no parameters
exist, then the collection has no Parameter objects inside of it. Each Parameter object represents a sin-
gle parameter for a query table. The parent of the Parameters collection is the QueryTable object.

The Parameters collection has two extra properties and methods besides the typical collection
attributes. They are listed in the following table.

Parameters Collection Properties and Methods

Name Returns Description

Add Parameter Method. Parameters: Name As String, [iDataType].
Adds a parameter to the collection creating a new query
parameter for the parent query table. The type of
parameter can be specified by iDataType. Use the
XlParamaterDataType constants for iDataType

Delete Method. Deletes the parameters in the collection

Parameter Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Parameter Properties

Name Returns Description

DataType XlParameter Set/Get the data type of the parameter
DataType

Name String Set/Get the name of the parameter

Prompt String String Read-only. Returns the prompt that is displayed to the
user when prompted for a parameter value

Table continued on following page

803

Pane Object and the Panes Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 803

Name Returns Description

RefreshOn Boolean Set/Get whether the query table results are refreshed
Change when the parameter value changes

Source Range Range Read-only. Returns the range of text that contains the
parameter value

Type XlParameter Read-only. Returns the type of parameter (for example,
Type xlConstant, xlPrompt, or xlRange). XlConstant

means that the Value parameter has the value of the
parameter. XlPrompt means that the user is prompted
for the value. XlRange means that the value defines the
cell range that contains the value

Value Variant Read-only. Returns the parameter value

Parameter Methods

Name Returns Parameters Description

SetParam Type As XlParameter Set/Get the type of the
Type, Value parameter and the value of

the parameter

Parameter Object and the Parameters Collection Example
Sub UpdateQuery()

Dim oParam As Parameter
‘Using the Query Table(
With ActiveSheet.ListObjects(1).QueryTable ‘Get the first parameter

Set oParam = .Parameters(1)

‘Set its value
oParam.SetParam xlConstant, “Company”

‘Refresh the query
.Refresh

End With
End Sub

Phonetic Object and the Phonetics Collection
The Phonetics collection holds all of the phonetic text in a range. The Phonetic object represents a sin-
gle phonetic text string. The parent of the Phonetics object is the Range object.

The Phonetics collection has a few properties and methods besides the typical collection attributes.
They are listed in the following table.

804

Parameter Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 804

Phonetics Collection Properties and Methods

Name Returns Description

Alignment Long Set/Get the alignment for the phonetic text. Use the
XlPhoneticAlignment constants

Character Type Long Set/Get the type of phonetic text to use. Use the
XLPhoneticCharacterType constants

Font Font Read-only. Returns an object containing Font options for
the text in the Phonetics collection

Length Long Read-only. Returns the number of phonetic text characters
starting from the Start parameter

Start Long Read-only. Returns the position that represents the first
character of the phonetic text strings. Valid only if there is
only one Phonetic object in the collection

Text String Set/Get the phonetic text. Valid only if there is only one
Phonetic object in the collection

Visible Boolean Set/Get whether the phonetic text is visible to the end
user. Valid only if there is only one Phonetic object in the
collection

Add Method. Parameters: Start As Long, Length As Long,
Text As String. Adds a Phonetic object to the collec-
tion at the cell specified by the parent Range object

Delete Method. Deletes all the Phonetic objects in the collection

Phonetic Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Phonetic Properties

Name Returns Description

Alignment Long Set/Get the alignment for the phonetic text. Use the
XlPhoneticAlignment constants

CharacterType Long Set/Get the type of phonetic text to use. Use the
XLPhoneticCharacterType constants

Font Font Read-only. Returns an object containing Font options for
the phonetic text

Text String Set/Get the phonetic text

Visible Boolean Set/Get whether the phonetic text is visible to the end
user

805

Phonetics Collection Properties and Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 805

PictureFormat Object
The PictureFormat object allows manipulation of the picture properties of the parent Shape object.

PictureFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PictureFormat Properties

Name Returns Description

Brightness Single Set/Get the brightness of the parent shape (0 to 1, where
1 is the brightest)

ColorType MsoPicture Set/Get the type of color setting of the parent shape
ColorType

Contrast Single Set/Get the contrast of the parent shape (0 to 1, where 1
is the greatest contrast)

CropBottom Single Set/Get how much is cropped off the bottom

CropLeft Single Set/Get how much is cropped off the left

CropRight Single Set/Get how much is cropped off the right

CropTop Single Set/Get how much is cropped off the top

Transparency Long Set/Get the color used for transparency
Color

Transparent MsoTriState Set/Get whether transparent colors appear transparent
Background

PictureFormat Methods

Name Returns Parameters Description

Increment Increment As Single Increases the brightness by the
Brightness Increment value

Increment Increment As Single Increases the contrast by the
Contrast Increment value

PictureFormat Object Example
Sub SetPictureFormat()

Dim oShp As Shape
Dim oPF As PictureFormat
For Each oShp In ActiveSheet.Shapes

If oShp.Type = msoPicture Then

‘Get the PictureFormat

806

PictureFormat Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 806

Set oPF = oShp.PictureFormat
‘Format the picture

With oPF
.TransparentBackground = msoTrue
.TransparencyColor = RGB(255, 0, 0)
.ColorType = msoPictureWatermark

End With
End If

Next
End Sub

PivotAxis Object
The PivotAxis object allows for asymmetric drilling of a PivotTable via the PivotRowAxis and the
PivotColumnAxis.

PivotAxis Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotAxis Properties

Name Returns Description

PivotLines PivotLines Read-only. Returns the PivotLines attached to a given
PivotAxis object

PivotCache Object and the PivotCaches Collection
The PivotCaches collection holds the collection of memory caches holding the data associated with a
PivotTable report. Each PivotCache object represents a single memory cache for a PivotTable
report. The parent of the PivotCaches collection is the Workbook object. Also, a possible parent of the
PivotCache object is the PivotTable object.

The PivotCaches collection has a Create method besides the typical collection attributes. The Create
method takes a SourceType constant (from the XlPivotTableSourceType constants) and SourceData
to add a PivotCache to the collection.

PivotCache Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

807

PivotAxis Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 807

PivotCache Properties

Name Returns Description

ADOConnection Object Read-only. Returns an ADO connection object if the
PivotCache is connected to an OLE DB data source

Background Boolean Set/Get if the processing of queries in a PivotTable
Query report is done asynchronously. False for OLAP data

sources

CommandText Variant Set/Get the SQL command used to retrieve data

CommandType XlCmdType Set/Get the type of ComandText (for example,
xlCmdSQL, xlCmdTable)

Connection Variant Set/Get the OLE DB connection string, ODBC string,
web data source, path to a text file, or path to a database

EnableRefresh Boolean Set/Get whether the PivotTable cache data can be
refreshed. Always False for OLAP data sources

Index Long Read-only. Returns the spot in the collection for the spe-
cific cache

IsConnected Boolean Read-only. Returns whether the PivotCache is still con-
nected to a data source

Local String Set/Get the connection string to an offline cube file.
Connection Blank for non-OLAP data sources. Use with UseLocal-

Connection

Maintain Boolean Set/Get whether the connection to the data source does
Connection not close until the workbook is closed. Valid only against

an OLE DB source

MemoryUsed Long Read-only. Returns the number of bytes used by the
PivotTable cache

MissingItems XlPivot Set/Get the maximum number of unique items that are
Limit Table retained per PivotTable field, even when they have no

Missing supporting data in the cache records
Items

OLAP Boolean Read-only. Returns whether the PivotCache is con-
nected to an OLAP server

OptimizeCache Boolean Set/Get whether the PivotTable cache is optimized
when it is built. Always False for OLE DB data sources

QueryType xlQuery Read-only. Returns the type of connection associated
Type with the query table. (For example, xlOLEDBQuery,

xlDAOQuery, xlTextImport)

808

PivotCache Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 808

Name Returns Description

RecordCount Long Read-only. Returns the number of records in the Pivot-
Table cache

Recordset Object Set/Get the recordset used as the data source for the
PivotTable cache

RefreshDate Date Read-only. Returns the date the cache was last refreshed

RefreshName String Read-only. Returns the name of the person who last
refreshed the cache

RefreshOnFile Boolean Set/Get whether the PivotTable cache is refreshed
Open when the workbook is opened

RefreshPeriod Long Set/Get how long (in minutes) between automatic
refreshes from the data source. Set to 0 to disable

RobustConnect XlRobust Set/Get the method by which the PivotCache connects
Connect to its data source

SavePassword Boolean Set/Get whether an ODBC connection password is saved
with the query table

Source String Set/Get the name of the file that was used to create the
Connection PivotTable
File

SourceData Variant Set/Get the data source for the PivotTable report

SourceData String Read-only. Returns the name of the source data file for
File the PivotCache

SourceType XlPivot Read-only. Returns a value that identifies the type of item
TableSource being published
Type

UpgradeOnRefresh Boolean Set/Get whether to upgrade the PivotCache and all con-
nected PivotTables on the next refresh

UseLocal Boolean Set/Get if the LocalConnection property is used to set
Connection the data source. False means the Connection property

is used. Allows you to store some data sources offline

Version Variant Read-only. Returns the version in which the PivotTable
was created

Workbook Variant Read-only. Establishes a connection between the active
Connection workbook and the PivotCache object

809

PivotCache Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 809

PivotCache Methods

Name Returns Parameters Description

CreatePivotTable PivotTable Table Creates a PivotTable
Destination report that is based on the
As Variant, current PivotCache object.
[TableName], The TableDestination
[ReadData], parameter specifies where
[Default the new PivotTable report
Version] will be located. A Table-

Name can also be specified.
Set ReadData to True to fill
the cache with all the
records from the external
database. Set ReadData to
False to only retrieve some
of the data. DefaultVer-
sion is the default version
of the PivotTable report

Make Makes a connection for the
Connection specified PivotCache

Refresh Refreshes the data in the
PivotTable cache with the
latest copy of the external
data

ResetTimer Resets the time for the auto-
matic refresh set by
RefreshPeriod property

SaveAsODC ODCFileName Saves the PivotCache
As String, source as an Office Data
[Description], Connection (ODC) file.
[Keywords] ODCFileName is the loca-

tion where the file is to be
saved. Description is the
description that will be
saved in the file. Keywords
is a list of space-separated
keywords that can be used
to search for this file

PivotCache Object and the PivotCaches Collection Example
Sub RefreshPivotCache()
Dim oPC As PivotCache

Set oPC = ActiveWorkbook.PivotCaches(1)
With oPC

‘Only refresh if the data is over 1 hour old

810

PivotCache Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 810

If .RefreshDate < Now - TimeValue(“01:00:00”) Then
.Refresh

End If
End With

End Sub

PivotCell Object
Represents a cell somewhere inside a PivotTable. You access the PivotCell object through the range
object. Once obtained, you can use the various properties of the PivotCell object to retrieve data from a
PivotTable. For example, you can use the PivotCellType, ColumnItems, and RowItems properties to
locate a particular sales person’s total sales for a specific region.

This object mirrors the functionality of the GETPIVOTDATA worksheet function and the GetPivotData
method of the PivotTable object. The difference is that the PivotCell object can render information about
where the cell is in the report. The GETPIVOTDATA worksheet function and the GetPivotData method do
just the opposite. They yield the value associated with the row and column heading you provide.

PivotCell Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotCell Properties

Name Returns Description

ColumnItems PivotItemList Read-only. Returns the items that represent the
selected range on the column axis

Custom Subtotal Xl Consolidation Read-only. Returns the custom subtotal function
Function Function field setting of the PivotCell

DataField PivotField Read-only. Returns the selected data field

PivotCellType XlPivotCellType Read-only. Returns the PivotTable entity that
the selected cell corresponds to

PivotColumnLine PivotLine Returns the PivotLine on a column if the speci-
fied PivotCell is in the Column Area. This
property will return an error for PivotCells in
the Row area

PivotField PivotField Read-only. Returns the PivotTable field con-
taining the upper-left corner of the specified
range

PivotItem PivotItem Read-only. Returns the PivotTable item con-
taining the upper-left corner of the specified
range

PivotRowLine PivotLine Returns the PivotLine on a row if the specified
PivotCell is in the Row Area. This property will
return an error for PivotCells in the Column area

Table continued on following page

811

PivotCell Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 811

Name Returns Description

PivotTable PivotTable Read-only. Returns the PivotTable report con-
taining the upper-left corner of the specified
range, or the PivotTable report associated with
the PivotChart report

Range Range Read-only. Returns the range to which the speci-
fied PivotCell applies

RowItems PivotItemList Read-only. Returns the items that represent the
selected range on the row axis

PivotField Object, PivotFields Collection, and the
CalculatedFields Collection

The PivotFields collection holds the collection of fields associated with the parent PivotTable report.
The CalculatedFields collection holds the collection of calculated fields associated with the parent
PivotTable report. Each PivotField object represents single field in a PivotTable report. The parent
of the PivotFields and CalculatedFields collection is the PivotTable object.

The CalculatedFields collection has an Add method that adds a new calculated field to the collection,
given a Name, a Formula, and a UseStandardFormula parameter.

PivotField Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotField Properties

Name Returns Description

AllItemsVisible Boolean A read-only Boolean set to True by default, this
property checks whether manual filtering is
applied to either a PivotField or a CubeField. This
property is automatically set to False when any
manual filtering is applied

AutoShowCount Long Read-only. Returns the number of top or bottom
items that are automatically displayed in the
PivotTable field

AutoShowField String Read-only. Returns the name of the data field
used to figure out what top or bottom items to
show automatically for a PivotTable field

AutoShowRange Long Read-only. Returns either xlTop if the top items
are shown automatically or xlBottom if the bot-
tom items are shown

812

PivotField Object, PivotFields Collection, and the CalculatedFields Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 812

Name Returns Description

AutoShowType Long Read-only. Returns either xlAutomatic if
AutoShow is True or xlManual if AutoShow is
disabled

AutoSortCustom Long Read-only. Returns a value representing the type
Subtotal of operation used to automatically sort a given

PivotField. The possible values are: 1 (Auto-
matic), 2 (Sum), 3 (Count), 4 (Average), 5 (Max), 6
(Min), 7 (Product), 8 (Count Nums), 9 (StdDev),
10 (StdDevp), 11 (Var), and 12 (Varp)

AutoSortField String Read-only. Returns the data field name that
will be used to sort the PivotTable field
automatically

AutoSortOrder XLSortOrder Read-only. Returns one of the XLSortOrder con-
stants specifying the automatic sort order type
used for the field

AutoSortPivot PivotLine Read-only. Returns the name of the PivotLine
Line used to sort the specified PivotTable field

automatically

BaseField Variant Set/Get the base field used for a calculation. Data
fields only

BaseItem Variant Set/Get the base item in the base field used for a
calculation. Data fields only

Calculation Xl Set/Get the type of calculation to do on the data
PivotField field
Calculation

Caption String Set/Get the text label to use for the field

ChildField PivotField Read-only. Returns the child field of the current
field, if any

ChildItems Variant Read-only. Parameters: [Index]. Returns an
object or collection containing a single Pivot-
Table item (PivotItem) or group of Pivot-
Table items (PivotItems) associated with the
field

CubeField CubeField Read-only. Returns the cube field that the current
PivotTable field comes from

CurrentPage Variant Set/Get the current page showing for the page
field. Page fields only

CurrentPageList Variant Set/Get an array of strings corresponding to the
list of items included in a multiple-item page field
of a PivotTable report

Table continued on following page

813

PivotField Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 813

Name Returns Description

CurrentPageName String Set/Get the displayed page of the PivotTable
report

DatabaseSort Boolean Set/Get whether manual sorting and reposition-
ing of data items in an OLAP PivotTable is
allowed. Note that setting the DatabaseSort to
either True or False causes an update

DataRange Range Read-only. Returns a range containing the data or
items in the field

DataType XlPivotField Read-only. Returns the data type of the
DataType PivotTable field

DisplayAsCaption Boolean Read-only. This property returns True when a
given member property is used as a caption, and
False when a member property PivotField is
not used as caption

DisplayAsTooltip Boolean Read-only. This property returns True when a
given member property is displayed in ToolTips,
and False when a member property PivotField is
not displayed in ToolTips

DisplayInReport Boolean Read-only. This property returns True when a
given member property is displayed in the Pivot-
Table, and False when a member property is not
displayed in the PivotTable

DragToColumn Boolean Set/Get whether the field can be dragged to a col-
umn position

DragToData Boolean Set/Get whether the field can be dragged to the
data position

DragToHide Boolean Set/Get whether the field can be dragged off the
PivotTable report and therefore hidden

DragToPage Boolean Set/Get whether the field can be dragged to the
page position

DragToRow Boolean Set/Get whether the field can be dragged to a
row position

DrilledDown Boolean Set/Get whether the PivotTable field can be
drilled down

EnableItem Boolean Set/Get whether the ability to use the field
Selection drop-down in the user interface is enabled

Enable Boolean Set/Get whether checkboxes are enabled in the
Multiple drop-down boxes of the fields in the PivotTable’s
PageItems Filter area

814

PivotField Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 814

Name Returns Description

Formula String Set/Get the formula associated with the field, if any

Function Xl Set/Get the type of function used to summarize
Consolidation the PivotTable field
Function

GroupLevel Variant Read-only. Returns how the field is placed within
a group of fields

Hidden Boolean Set/Get whether a given level in an OLAP hierar-
chy is visible. Set this property to True to hide
levels, and False to make them visible

HiddenItems Variant Read-only. Parameters: [Index]. Returns an
object or collection containing a single hidden
PivotTable item (PivotItem) or group of hid-
den PivotTable items (PivotItems) associated
with the field

HiddenItemsList Variant Set/Get an array of strings that are hidden items
for the PivotField

IncludeNewItems Boolean Set/Get whether excluded or included items
InFilter should be tracked when manual filtering is

applied to a given PivotField. Set this property to
True to keep track of excluded items, and set to
False to keep track of included items

IsCalculated Boolean Read-only. Returns whether the PivotTable
field is calculated

IsMember Boolean Read-only. Returns whether the PivotField
Property contains member properties

LabelRange Range Read-only. Returns the cell range containing the
field’s label

LayoutBlankLine Boolean Set/Get whether a blank row is added just after
the current row field

LayoutCompactRow Boolean Set/Get whether a given PivotField is compacted
when rows are selected

LayoutForm XlLayoutForm Set/Get how the items will appear in the field
Type

LayoutPage Boolean Set/Get whether a page break is inserted after
Break each field

LayoutSubtotal XlSubtotal Set/Get the location for the field subtotals as
Location LocationType compared to the current field

Table continued on following page

815

PivotField Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 815

Name Returns Description

MemberProperty String Set/Get which member property is used as
Caption caption for a given level. Note that this setting

only has a visual effect when the UseMember-
PropertyAsCaption property is set to True for
the PivotField

MemoryUsed Long Read-only. Returns the number of bytes of com-
puter memory being used for the field

Name String Set/Get the name of the field

NumberFormat String Set/Get the format used for numbers in the field

Orientation XlPivotField Set/Get where the field is located in the
Orientation PivotTable report

ParentField PivotField Read-only. Returns the parent field of the current
field, if any

ParentItems Variant Read-only. Parameters: [Index]. Returns an
object or collection containing a single parent
PivotTable item (PivotItem) or group of par-
ent PivotTable items (PivotItems) associated
with the field

PivotFilters Variant Sets/Gets the PivotFilters for a given Pivot-
Field

Position Variant Set/Get the position number of the field among
all the fields in the same orientation

PropertyOrder Long Set/Get the display position of the member prop-
erty within the cube field to which it belongs (set-
ting will rearrange the order). Valid only for
PivotField objects that are member property
fields

PropertyParent PivotField Read-only. Returns the field to which the
Field properties in this field are linked

ServerBased Boolean Set/Get whether only items that match the page
field selection are retrieved from the external data
source

ShowAllItems Boolean Set/Get whether all items in the field are dis-
played

ShowingInAxis Boolean Read-only. Returns True if the PivotField is
currently visible and returns False if the Pivot-
Field is currently not visible

SourceCaption Variant Read-only. Returns the original caption as it
existed on the OLAP server for a given
PivotField

816

PivotField Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 816

Name Returns Description

SourceName String Read-only. Returns the name of the source data
for the field

StandardFormula String Set/Get the formulas with standard U.S.
formatting

SubtotalName String Set/Get the label used for the subtotal column or
row for this field

Subtotals Variant Parameters: [Index]. Set/Get the subtotals dis-
played for the field

TotalLevels Variant Read-only. Returns the total number of fields in
the current field group

UseMember Boolean Set/Get whether member property captions are
PropertyAs used for captions in a given PivotField. If set to
Captions True, then the MemberPropertyCaption prop-

erty is used to define which member property
caption to display. If none is specified, then the
first member property of that PivotField (in
data source order) will be displayed as the cap-
tion for items of that PivotField

Value String Set/Get the name of the field

VisibleItems Variant Read-only. Parameters: [Index]. Returns an
object or collection containing a single visible
PivotTable item (PivotItem) or group of visi-
ble PivotTable items (PivotItems) associated
with the field

VisibleItemsList Variant Set/Get an array that represents the included
items in the manual filter applied to a given
PivotField

PivotField Methods

Name Returns Parameters Description

AddPageItem Item As String, Adds an additional item to a
[ClearList] multiple item page field. Item

is the source name of a Pivot-
Item object, corresponding to
the specific OLAP member
unique name. ClearList
indicates whether to delete all
existing items before adding
the new item

Table continued on following page

817

PivotField Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 817

Name Returns Parameters Description

AutoShow Type As Long, Set the number of top or
Range As Long, bottom items to display for a
Count As Long, row, page, or column field.
Field As String Type describes whether the

items are shown as xlAuto-
matic or xlManual. Range is
the location to start showing
items. Count is the number of
items to show for the field.
Field is the base data field
name

AutoSort Order As Long, Sets the field to sort
Field As String, automatically based on the
PivotLine As Variant, Order specified (using
Custom XlSortOrder constants) and
Subtotal As Variant the base data Field

Calculated Calculated Returns the group of
Items Items calculated PivotTable items

associated with the field

ClearAll Clears all filters applied to the
Filters PivotField, including man-

ual filters and those applied
from the PivotFilters col-
lection of the PivotField

ClearLabel Clears all Label and Date
Filters filters applied to the

PivotFilters collection of
the PivotField

ClearManual Sets the Visible property to
Filters True for all items in a given

PivotField. This property will
also clears the HiddenItems-
List and VisibleItemsList
collections in OLAP PivotTables

ClearValue Clears all Value filters applied
Filters to the PivotFilters collec-

tion of the PivotField

Delete Deletes the PivotField
object

818

PivotField Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 818

Name Returns Parameters Description

DrillTo Allows for drilling to a speci-
fied PivotField, so long as
the hierarchy containing the
requested field is an actual
PivotTable and the field being
drilled is in the same hierar-
chy or attribute chain

PivotItems Variant [Index] Returns an object or collection
containing a single Pivot-
Table item (PivotItem) or
group of PivotTable items
(PivotItems) associated with
the field

PivotField Object, PivotFields Collection, and the CalculatedFields
Example

Sub AddField()
Dim oPT As PivotTable
Dim oPF As PivotField
‘Set target pivot table

Set oPT = ActiveSheet.PivotTables(1)
‘Add a calculated field

Set oPF = oPT.CalculatedFields.Add(“Total”, “=Price * Volume”, True)
oPF.Orientation = xlDataField

End Sub

PivotFilter Object and the PivotFilters Collection
The PivotFilters collection holds the collection of filters actively being applied to a PivotTable.
Each PivotFilter object represents a single filter in the PivotFilters collection. The PivotFilters
collection has no properties and methods outside the typical collection attributes listed at the beginning
of this appendix.

PivotFilter Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

819

PivotField Object, PivotFields Collection, and the CalculatedFields Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 819

PivotFilter Properties

Name Returns Description

Active Boolean Read-only. Returns True when the filtered Pivot-
Field is in the PivotTable, and the filter is evalu-
ated when the PivotTable is updated. It returns
False when the filtered PivotField is not in the
PivotTable and has no effect on the PivotTable
calculation

DataCubeField CubeField Returns the Value field actively being filtered by in
the Value filter of an OLAP PivotTable

DataField PivotField Returns the Value field actively being filtered by in
the Value filter of a Non-OLAP PivotTable

Description String Read-only. Returns the description for the Pivot-
Filter object

FilterType xlPivotFitler Read-only. Returns an xlPivotFilter constant,
defining the type of filter that is to be applied

IsMemberProperty Boolean Read-only. Specifies whether the label filter is based
Filter on the PivotItem captions of a member property

of the field or on the PivotItem captions of the
PivotField itself. Returns True if the label filter is
based on PivotItem captions of a member prop-
erty of the PivotField. Returns False if the filter
is based on the PivotItem captions of the Pivot-
Field

MemberProperty PivotField Returns the property of the PivotField on which
Field the filter is based. Note that this property is valid

only for Label filters and OLAP PivotField,
which contain at least one member property

Name String Set/Get the name of the filter

Order Integer Set/Get the evaluation order of all Value and Top
Long Nth type filters applied to a PivotTable

PivotField PivotField Read-only. Returns the name of the PivotField to
which a filter is being applied

Value1 Variant Set/Get any parameter used to define a filter for a
PivotField

Value2 Variant Set/Get any parameter used to define a filter for a
PivotField

820

PivotFilter Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 820

PivotFilter Methods

Name Returns Parameters Description

Delete Deletes the filter and removes it from the fil-
ter collections of the PivotField and the
PivotTable

PivotFilters Object Example
Sub CreatePivotFilters()
Dim oPivotTable As PivotTable

‘Set target pivot table
Set oPivotTable = ActiveSheet.PivotTables(“PivotTable1”)

‘Add two filters, filtering out drums with over $500 in revenue
With oPivotTable
.PivotFields(“Product”).PivotFilters.Add Type:=xlCaptionContains, Value1:=”Drums”
.PivotFields(“Revenue”).PivotFilters.Add Type:=xlValueIsGreaterThan, Value1:=500
End With
End Sub

PivotFormula Object and the PivotFormulas Collection
The PivotFormulas collection holds the formulas associated with the PivotTable. Each
PivotFormula object represents a formula being used in a PivotTable report. The parent of the
PivotFormulas collection is the PivotTable object.

The PivotFormulas collection has an Add method besides the typical collection attributes. The Add
method adds a PivotFormula to the collection but requires the Formula and UseStandardFormula
parameters to be specified.

PivotFormula Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotFormula Properties

Name Returns Description

Formula String Set/Get the formula associated with the table. Use the
A1-style reference notation

Index Long Set/Get the order that the formulas in the parent collec-
tion will be processed

StandardFormula String Set/Get the formulas with standard U.S. formatting

Value String Set/Get the formula associated with the table

821

PivotFilter Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 821

PivotFormula Methods

Name Returns Parameters Description

Delete Deletes the formula from the parent collection

PivotItem Object, PivotItems Collection, and the
CalculatedItems Collection

The PivotItems collection holds the collection of individual data entries in a field. The
CalculatedItems collection holds the collection of individual calculated entries in a field. Each
PivotItem object represents a single entry in a data field. The parent of the PivotItems and
CalculatedItems collections is the PivotField object.

The Add method of the PivotItems collection adds another item to the collection (only a Name is
required). The Add method of the CalculatedItems collection adds another item to the collection but
requires the Name, Formula, and UseStandardFormula parameters to be specified.

PivotItem Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotItem Properties

Name Returns Description

Caption String Set/Get the label text associated with the item

ChildItems Variant Read-only. Parameters: [Index]. Returns an object
or collection containing a single PivotTable
item (PivotItem) or group of PivotTable items
(PivotItems) associated with the item

DataRange Range Read-only. Returns a range containing the data or
items in the item

DrilledDown Boolean Set/Get whether the PivotTable item is drilled
down

Formula String Set/Get the formula associated with item, if any

IsCalculated Boolean Read-only. Returns whether the item that was calcu-
lated is a data item

LabelRange Range Read-only. Returns the cell range containing the
field’s item

Name String Set/Get the name of the item

ParentItem PivotItem Read-only. Returns the parent item of the current
item, if any

822

PivotFormula Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 822

Name Returns Description

ParentShowDetail Boolean Read-only. Returns whether the current item is being
shown because the one of the item’s parents is set to
show detail

Position Long Set/Get the position number of the item among all
the items in the same orientation

RecordCount Long Read-only. Returns the number of records in the
PivotTable cache that contain the item

ShowDetail Boolean Set/Get whether the detail items are being displayed

SourceName Variant Read-only. Returns the name of the source data for
the item

SourceName String Read-only. Returns the PivotItem’s source name in
Standard standard U.S. format settings

StandardFormula String Set/Get the formulas with standard U.S. formatting

Value String Set/Get the name of the specified item

Visible Boolean Set/Get whether the item is visible

PivotItem Methods

Name Description

Delete Deletes the item from the collection

DrillTo Allows for drilling to a specified PivotField, so long as the hierarchy
containing the requested field is on the actual PivotTable and the field
being drilled is in the same hierarchy or attribute chain

PivotItem Object, PivotItems Collection, and the CalculatedItems
Collection Example

Sub ShowPivotItemData()
Dim oPT As PivotTable
Dim oPI As PivotItem
‘Get the pivot table
Set oPT = ActiveSheet.PivotTables(1)
‘Get the pivot item
Set oPI = oPT.PivotFields(“Product”).PivotItems(“Oranges”)
‘Show all the source data rows for that pivot item
oPI.ShowDetail = True

End Sub

823

PivotItem Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 823

PivotItemList Object
Represents a list of PivotItems associated with a particular cell in a PivotTable. You access the list
through the PivotCell object. PivotItemLists are accessed either through the ColumnItems or
RowItems properties of the PivotCell object. How many row and column items there are in the
PivotItemList depend on the structure of the PivotTable.

For example, cell D5 is in a PivotTable called WroxSales1. In the row area to the left of cell D5 is the
row heading OR (Oregon). To the left of OR is another row label called Region1. Based on this informa-
tion, the following will yield 2:

MsgBox wksPivotTable.Range(“D5”).PivotCell.RowItems.Count

The following will yield Region1, the farthest label to the left of cell D5:

MsgBox wksPivotTable.Range(“D5”).PivotCell.RowItems(1)

Finally, the following will yield OR, the second farthest label to the left of cell D5:

MsgBox wksPivotTable.Range(“D5”).PivotCell.RowItems(2)

A use for both the PivotItemList and PivotCell objects has yet to be found. Normally, you are look-
ing for the opposite. You want to retrieve information based on row or column items (headings) you pro-
vide, something the GetPivotData method and the GETPIVOTDATA worksheet function can obtain.

PivotItemList Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotItemList Properties

Name Returns Description

Count Long Returns the number of objects in the collection

PivotItemList Methods

Name Returns Parameters Description

Item PivotItem Index As Variant Returns a single PivotItem from the
PivotItemList

PivotLayout Object
The PivotLayout object describes how the fields of a PivotChart are placed in the parent chart. Either
the Chart object or the ChartGroup object is the parent of the PivotChart object.

824

PivotItemList Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 824

PivotLayout Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotLayout Properties

Name Returns Description

PivotTable PivotTable Read-only. Returns the PivotTable associated with the
PivotChart

PivotLine Object, the PivotLines Collection, and the
PivotLinesCells Collection

The PivotLine object defines the profile of a particular row or column. Each row and column in a
PivotTable is a Regular line, a Blank line, a SubTotal line, or a GrandTotal line. The PivotLines collec-
tion contains all of the PivotLine objects in a given PivotTable. The PivotCells collection represents
the each PivotCell within a given PivotLine. The PivotLines and PivotLinesCells collections
have no properties and methods outside the typical collection attributes listed at the beginning of this
appendix.

PivotLine Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotLine Properties

Name Returns Description

LineType xlPivotLineType Read-only. Returns the line type for the
PivotLine object

PivotLineCells PivotLineCells Read-only. Returns the collection of PivotCell
objects contained in a given PivotLine object

Position Position Set/Get the position of a given PivotLine object

PivotTable Object and the PivotTables Collection
The PivotTables collection contains the collection of PivotTables in the parent worksheet. Each
PivotTable object in the collection allows manipulation and creation of Excel PivotTables. The parent
of the PivotTables collection is the Worksheet object.

The PivotTables collection has an Add method besides the typical collection attributes. The Add
method takes a new PivotTable cache (containing the data) and the destination single cell range deter-
mining the upper-left corner of the PivotTable report to create a new PivotTable report. The name of
the new PivotTable report can also be specified in the Add method.

825

PivotLayout Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 825

PivotTable Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PivotTable Properties

Name Returns Description

ActiveFilters ActiveFilter Read-only. Indicates the current active filter in a given
PivotTable

AllowMultiple Boolean Set/Get whether a given PivotField can have
Filters multiple filters applied to it. Default is False for any

new PivotField

CacheIndex Long Set/Get the index number pointing to the Pivot-
Table cache of the current PivotTable

Calculated Calculated Read-only. Returns all the calculated fields and
Members Members calculated items for the PivotTable

ColumnFields Object Read-only. Parameters: [Index]. Returns an object or
collection containing the PivotTable field (Pivot-
Field) or PivotTable fields (PivotFields) associ-
ated with the columns of the PivotTable

ColumnGrand Boolean Set/Get whether grand totals are shown for columns
in the PivotTable

ColumnRange Range Read-only. Returns the range of cells containing the
column area in the PivotTable report

CompactLayout String Set/Get the column header caption that is displayed
ColumnHeader when the PivotTable is in compact row layout form

CompactLayout String Set/Get the row header caption that is displayed
RowHeader when the PivotTable is in compact row layout form

CompactRowIndent Long Set/Get the indent increment for PivotItems when
the PivotTable is in compact row layout form

CubeFields CubeFields Read-only. Returns the collection of cube fields asso-
ciated with the PivotTable report

DataBodyRange Range Read-only. Returns the range of cells containing the
data area of the PivotTable report

DataFields Object Read-only. Parameters: [Index]. Returns an object or
collection containing the PivotTable field (Pivot-
Field) or PivotTable fields (PivotFields) associ-
ated with the data fields of the PivotTable

DataLabelRange Range Read-only. Returns the range of cells that contain the
labels for the data fields in the PivotTable report

DataPivotField PivotField Read-only. Returns all the data fields in a PivotTable

826

PivotTable Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 826

Name Returns Description

DisplayContext Boolean Set/Get whether context ToolTips are displayed
Tooltips within the PivotTable

DisplayEmpty Boolean Read-only. Returns whether the non-empty MDX
Column keyword is included in the query to the OLAP

provider for the value axis

DisplayEmptyRow Boolean Read-only. Returns whether the non-empty MDX
keyword is included in the query to the OLAP
provider for the category axis

DisplayError Boolean Set/Get whether the string in the ErrorString
String property is displayed in cells that contain errors

DisplayField Boolean Set/Get whether the field captions and filter buttons
Captions are displayed on the PivotTable itself

DisplayImmediate Boolean Set/Get whether items in the row and column areas
Items are visible when the data area of the PivotTable is

empty

Display Boolean Set/Get whether the member properties of
MemberProperty PivotItems are displayed in ToolTips
Tooltips

DisplayNull Boolean Set/Get whether the string in the NullString
String property is displayed in cells that contain null values

EnableData Boolean Set/Get whether to show an alert when the user
ValueEditing overwrites values in the data area of the PivotTable

Enable Boolean Set/Get whether drilldown in the PivotTable report
Drilldown is enabled

EnableField Boolean Set/Get whether the PivotTable Field dialog box is
Dialog displayed when the user double-clicks a PivotTable

field

EnableField Boolean Set/Get whether to disable the ability to display the
List field well for the PivotTable. If the list was already

visible, it disappears

EnableWizard Boolean Set/Get whether the PivotTable Wizard is available

ErrorString String Set/Get the string that is displayed in cells that con-
tain errors. Use with the DisplayErrorString
property

FieldListSort Boolean Set/Get sort order of fields in a given PivotField
Ascending for a non-OLAP PivotTable. True sets the sort order

to ascending, while False sets the sort order to
descending

Table continued on following page

827

PivotTable Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 827

Name Returns Description

GrandTotal String Set/Get the string label that will be displayed on the
Name grand total column or row heading of a PivotTable

report. Default is “Grand Total”

HasAuto Boolean Set/Get whether the PivotTable report is
Format automatically reformatted when the data is refreshed

or the fields are moved around

HiddenFields Object Read-only. Parameters: [Index]. Returns an object or
collection containing the PivotTable field (Pivot-
Field) or PivotTable fields (PivotFields) associ-
ated with the hidden fields of the PivotTable

InGridDropZones Boolean Set/Get whether drop zones are available directly on
the spreadsheet. Setting this property to True allows
for dragging pivot fields directly into the Pivot-
Table object on the spreadsheet, just as in Excel
2000-2003

InnerDetail Boolean Set/Get the name of the field that will show the detail
when the ShowDetail property is True

LayoutRowDefault xlLayout Set/Get the default layout settings for PivotFields
RowType that are added to the PivotTable for the first time. Use

the xlLayoutRowType constants to define whether
the default layout will be compact, tabular, or outline

Location String Specifies the location of the given PivotTable

ManualUpdate Boolean Set/Get whether the PivotTable report is only recal-
culated manually. Default for this property is False

MDX String Read-only. Returns the MDX (Multidimensional
Expression) that would be sent to the provider to
populate the current PivotTable view

MergeLabels Boolean Set/Get whether the outer-row item, column item,
subtotal, and grand total labels of a PivotTable
report have merged cells

Name String Set/Get the name of the PivotTable report

NullString String Set/Get the string that is displayed in cells that con-
tain null strings. Use with the DisplayNullString
property

PageFieldOrder Long Set/Get how new page fields are added to a Pivot-
Table report’s layout. Use the XLOrder constants

PageFields Object Read-only. Parameters: [Index]. Returns an object or
collection containing the PivotTable field (Pivot-
Field) or PivotTable fields (PivotFields) associ-
ated with the page fields of the PivotTable

828

PivotTable Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 828

Name Returns Description

PageFieldStyle String Set/Get the style used for a page field area in a Pivot-
Table

PageField Long Set/Get how many page fields are in each column or
WrapCount row of the PivotTable report

PageRange Range Read-only. Returns the range containing the page
area in the PivotTable report

PageRange Range Read-only. Returns the range containing the page
Cells fields and item drop-down lists in the PivotTable

report

PivotColumnAxis PivotAxis Read-only. Returns a PivotAxis object that repre-
sents the entire column axis

Pivot PivotFormulas Read-only. Returns the collection of formulas used in
Formulas the PivotTable report

PivotRowAxis PivotAxis Read-only. Returns a PivotAxis object that repre-
sents the entire row axis

PivotSelection String Set/Get the data and label selection in the Pivot-
Table using the standard PivotTable report selec-
tion format. For example, to select the data and label
for the Country equal to “Canada”, the string would
be “Country[Canada]”

PivotSelection String Set/Get the PivotTable selection in standard
Standard PivotTable report format using U.S. settings

Preserve Boolean Set/Get whether formatting of the PivotTable
Formatting report is preserved when the report is changed,

sorted, pivoted, refreshed, or recalculated

PrintDrill Boolean Set/Get whether drill indicators are printed along
Indicators with the PivotTable

PrintTitles Boolean Set/Get whether the print title set on the PivotTable
report is printed whenever the parent worksheet is
printed

RefreshDate Date Read-only. Returns the date that the PivotTable report
data was refreshed last

RefreshName String Read-only. Returns the name of the user who last
refreshed the PivotTable report data

RepeatItems Boolean Set/Get whether row, column, and item labels appear
OnEachPrintedPage on the first row of each page when the PivotTable

report is printed

Table continued on following page

829

PivotTable Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 829

Name Returns Description

RowFields Object Read-only. Parameters: [Index]. Returns an object or
collection containing the PivotTable field (Pivot-
Field) or PivotTable fields (PivotFields) associ-
ated with the rows of the PivotTable

RowGrand Boolean Set/Get whether grand totals are shown for rows in
the PivotTable

RowRange Range Read-only. Returns the range of cells containing the
row area in the PivotTable report

SaveData Boolean Set/Get whether the PivotTable report data is saved
with the workbook

SelectionMode XlPTSelection Set/Get how the PivotTable report selection mode is
Mode set (for example, xlLabelOnly)

ShowDrill Boolean Set/Get whether drill indicators are displayed on the
Indicators PivotTable report

ShowCell Boolean Set/Get whether the MDX that Excel asks for
Backgroun includes the BackColor property for each cell in the
dFromOLAP data area that corresponds to a cell in the OLAP data set

ShowPage Boolean Set/Get whether “(Multiple Items)” will appear in
MultipleItem the PivotTable cell whenever items are hidden and an
Label aggregate of non-hidden items is shown in the Pivot-

Table view

ShowTableStyle Boolean Set/Get whether column headers are displayed
ColumnHeaders

ShowTableStyle Boolean Set/Get whether the alternate color banding is
ColumnStripes applied to columns

ShowTableStyle Boolean Set/Get whether row headers are displayed
RowHeaders

ShowTableStyle Boolean Set/Get whether the alternate color banding is
RowStripes applied to rows

SmallGrid Boolean Set/Get whether a two-by-two grid is used for a
newly created PivotTable report (True) or a blank
stencil outline (False)

SortUsingCustom Boolean Set/Get whether custom sort lists are used to sort the
Lists items in a PivotField. Note that setting this prop-

erty to True may adversely impact PivotTable
performance

830

PivotTable Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 830

Name Returns Description

SourceData Variant Set/Get the source of the PivotTable report data. Can
be a cell reference, an array, multiple ranges, and
another PivotTable report. Not valid to use with OLE
DB data sources

Subtotal Boolean Set/Get whether hidden page fields are included in
HiddenPage row and column subtotals, block totals, and
Items grand totals

TableRange1 Range Read-only. Returns the range containing the whole
PivotTable report, not including page fields

TableRange2 Range Read-only. Returns the range containing the whole
PivotTable report, with page fields

TableStyle2 String Set/Get the current PivotTable report body style

Tag String Set/Get a string to be saved with the PivotTable
report (for example, a description of the PivotTable
report)

TotalsAnnotation Boolean When this property is set to True, the asterisk indi-
cates that hidden items are included in the total. For
non-OLAP data sources, the value of this property is
always False

VacatedStyle String Set/Get the style to use for vacated cells when a
PivotTable report is refreshed

Value String Set/Get the name of the PivotTable report

Version XlPivot Read-only. Returns the version number of Excel
Table
VersionList

View Boolean Set/Get whether calculated members for OLAP
Calculated PivotTables can be viewed
Members

VisibleFields Object Read-only. Parameters: [Index]. Returns an object or
collection containing the PivotTable field (Pivot-
Field) or PivotTable fields (PivotFields) associ-
ated with the visible fields of the PivotTable

VisualTotals Boolean Set/Get whether PivotTables should retotal after an
item has been hidden from view

831

PivotTable Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 831

PivotTable Methods

Name Returns Parameters Description

AddDataField Pivot Field As Object, Adds a data field to a
Field [Caption], PivotTable report.

[Function] Field is the unique
field on the server, Cap-
tion is the label used to
identify this data field,
and Function is the
function performed in
the added data field

AddFields Variant [RowFields], Adds row, column, and
[ColumnFields], page fields to a
[PageFields], PivotTable report.
[AddToTable] RowFields,

ColumnFields, and
PageFields can hold a
single string field name
or an array of string
field names. Set
AddToTable to True to
add the fields to the
report. Set AddToTable
to False to replace the
fields in the report

Calculated Calculated Returns the collection of
Fields Fields calculated fields in the

PivotTable report

Change [Connection] Change the connection
Connection string for a given pivot

cache

ChangePivot [PivotCache] Change the PivotCache
Cache for a given PivotTable

ClearAll Clears all filters applied
Filters to the PivotField,

including manual filters
and those applied from
the PivotFilters collec-
tion of the PivotField

832

PivotTable Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 832

Name Returns Parameters Description

ClearTable Removes all fields from
the PivotTable, deletes
all applied filters,
deletes all applied sort-
ing, and returns the Piv-
otTable to an empty state

ConvertTo ConvertFilters As Converts a given OLAP
Formulas Boolean PivotTable to Cube

formulas

CreateCubeFile String File As String, Creates a cube file from
[Measures], a PivotTable report
[Levels], connected to an OLAP
[Members], data source. File is the
[Properties] name of the cube file to

be created, Measures is
an array of unique
names of measures that
are to be part of the
slice, and Levels an
array of strings where
each array item is a
unique level name. Mem-
bers is an array of
string arrays where the
elements correspond, in
order, to the hierarchies
represented in the Lev-
els array. Properties
should be set to False if
you don’t want member
properties being
included in the slice

DisplayAll Boolean Determines whether
Member member properties are
Properties listed in a ToolTip when
InTooltip hovering over a member

GetData Double Name As String Get the value of a spe-
cific cell in the Pivot-
Table report. The Name
parameter must be in
the standard PivotTable
report selection format

Table continued on following page

833

PivotTable Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 833

Name Returns Parameters Description

GetPivotData Range [DataField], Returns information
[Field1], about a data item in a
[Item1], PivotTable report.
[Field2], FieldN is the name of a
[Item2], column or row field in
[Field3], the PivotTable report,
[Item3], and ItemN is the name
[Field4], of an item in FieldN
[Item4],
[Field5],
[Item5],
[Field6],
[Item6],
[Field7],
[Item7],
[Field8],
[Item8],
[Field9],
[Item9],
[Field10],
[Item10],
[Field11],
[Item11],
[Field12],
[Item12],
[Field13],
[Item13],
[Field14],
[Item14]

834

PivotTable Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 834

Name Returns Parameters Description

ListFormulas Creates a separate work-
sheet with the list of all
the calculated Pivot-
Table items and fields

PivotCache PivotCache Returns a data cache
associated with the cur-
rent PivotTable

PivotFields Object [Index] Returns an object or col-
lection containing the
PivotTable field (Pivot-
Field) or PivotTable
fields (PivotFields)
associated with the
fields of the PivotTable

PivotSelect Name As String, Selects the part of the
[Mode As XlPTSelection PivotTable specified by
Mode], Name parameter in the
[UseStandardName] standard PivotTable

report selection format.
Mode decides which part
of the PivotTable to
select (for example,
xlBlanks). Set
UseStandardName to
True for recorded
macros that will play
back in other locales

Table continued on following page

835

PivotTable Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 835

Name Returns Parameters Description

PivotTable [SourceType], Creates a PivotTable
Wizard [SourceData], report. The SourceType

[TableDestination], uses the XLPivotTable
[TableName], SourceType constants
[RowGrand], to specify the type of
[ColumnGrand], SourceData being used
[SaveData], for the PivotTable. The
[HasAutoFormat], TableDestination
[AutoPage], holds the range in the
[Reserved], parent worksheet where
[BackgroundQuery], the report will be placed.
[OptimizeCache], TableName holds the
[PageFieldOrder], name of the new report.
[PageFieldWrapCount], Set RowGrand or
[ReadData], ColumnGrand to True to
[Connection] show grand totals for

rows and columns,
respectively. Set Has-
AutoFormat to True for
Excel to format the report
automatically when it is
refreshed or changed.
Use the AutoPage
parameter to set if a page
field is created for consol-
idation automatically. Set
BackgroundQuery to
True for Excel to query
the data source asyn-
chronously. Set Opti-
mizeCache to True for
Excel to optimize the
cache when it is built. Use
the PageFieldOrder
with the XLOrder con-
stants to set how new
page fields are added to
the report. Use the Page-
FieldWrapCount to set
the number of page fields
in each column or row.
Set ReadData to True to
copy the data from the
external database into a
cache. Finally, use the
Connection parameter
to specify an ODBC con-
nection string for the Piv-
otTable’s cache

836

PivotTable Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 836

Name Returns Parameters Description

RefreshTable Boolean Refreshes the PivotTable
report from the source
data and returns True if
successful

RowAxisLayout RowLayout As XlLayout Sets the layout options
RowType for all existing Pivot-

Fields. Note that if lay-
out options cannot be
set on any of the Pivot-
Fields, no change will be
made on any of the
fields in the PivotTable

ShowPages Variant [PageField] Creates a new Pivot-
Table report for each
item in the page field
(PageField) in a new
worksheet

Subtotal Location As XlSubtotal Sets the Layout
Location LocationType SubtotalLocation

property for all existing
PivotFields. Note that
changing the subtotal
location has a visual
effect only for those
fields in outline form

Update Updates the PivotTable
report

PivotTable Object and the PivotTables Collection Example
Sub MakePrettyPivotTable()
Dim oPT As PivotTable
‘Set the target pivot tablet

Set oPT = ActiveSheet.PivotTables(“PivotTable1”)

‘Change layout, add color bandings, apply a style.
With oPT

.RowAxisLayout xlTabularRow

.ShowTableStyleColumnStripes = True

.ShowTableStyleRowStripes = True

.TableStyle2 = “PivotStyleMedium10”
End With

End Sub

837

PivotTable Object and the PivotTables Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 837

PlotArea Object
The PlotArea object contains the formatting options associated with the plot area of the parent chart. For
2D charts, the PlotArea includes trendlines, data markers, gridlines, data labels, and the axis labels — but
not titles. For 3D charts, the PlotArea includes the walls, floor, axes, axis titles, check marks, and all of
the items mentioned for the 2D charts. The area surrounding the plot area is the chart area. Please see the
ChartArea object for formatting related to the chart area. The parent of the PlotArea is always the
Chart object.

PlotArea Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PlotArea Properties

Name Returns Description

Format ChartFormat Read-only. Returns the ChartFormat object, which con-
trols the line, fill, and effect formatting for the chart area

Height Double Set/Get the height of the chart’s plot area

InsideHeight Double Set/Get the height inside the plot area that does not
include the axis labels

InsideLeft Double Set/Get the distance from the left edge of the plot area,
not including axis labels, to the chart’s left edge

InsideTop Double Set/Get the distance from the left edge of the plot area,
not including axis labels, to the chart’s left edge

InsideWidth Double Set/Get the width inside the plot area that does not
include the axis labels

Left Double Set/Get the distance from the left edge of the plot area to
the chart’s left edge

Name String Read-only. Returns the name of the plot area

Position XlChart Set/Get the position of a given chart’s plot area
Element
Position

Top Double Set/Get the distance from the top edge of the plot area to
the chart’s top edge

Width Double Set/Get the width of the chart’s plot area

PlotArea Methods

Name Returns Parameters Description

ClearFormats Variant Clears any formatting made to the plot area

Select Variant Selects the plot area on the chart

838

PlotArea Object

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 838

PlotArea Object Example
This example uses the PlotArea object to make all the embedded charts in the workbook (not chart
sheets) have the same size and position plot area, regardless of the formatting of the axes (for example,
different fonts and number scales):

Sub MakeChartAreasSameSizeAsFirst()
Dim oCht As Chart, oPA As PlotArea
Dim dWidth As Double, dHeight As Double
Dim dTop As Double, dLeft As Double
‘Get the dimensions of the inside of the plot area of the first chart

With ActiveSheet.ChartObjects(1).Chart.PlotArea
dWidth = .InsideWidth
dHeight = .InsideHeight
dLeft = .InsideLeft
dTop = .InsideTop

End With

‘Loop through the charts in the workbook
For Each oCht In Charts

‘Get the PlotArea
Set oPA = oCht.PlotArea

‘Size and move the plot area
With oPA

If .InsideWidth > dWidth Then
‘Too big, make it smaller
.Width = .Width - (.InsideWidth - dWidth)

Else
‘Too small, move it left and make bigger
.Left = .Left - (dWidth - .InsideWidth)
.Width = .Width + (dWidth - .InsideWidth)

End If

If .InsideHeight > dHeight Then
‘Too big, make it smaller
.Height = .Height - (.InsideHeight - dHeight)

Else
‘Too small, move it left and make bigger
.Top = .Top - (dHeight - .InsideHeight)
.Height = .Height + (dHeight - .InsideHeight)

End If
‘Set the position of the inside of the plot area
.Left = .Left + (dLeft - .InsideLeft)
.Top = .Top + (dTop - .InsideTop)

End With
Next

End Sub

Point Object and the Points Collection
The Points collection holds all of the data points of a particular series of a chart. In fact, a chart (Chart
object) can have many chart groups (ChartGroups / ChartGroup) that can contain many series
(SeriesCollection / Series), which in turn can contain many points (Points / Point). A Point

839

PlotArea Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 839

object describes the particular point of a series on a chart. The parent of the Points collection is the
Series object. The Points collection has no properties and methods outside the typical collection
attributes listed at the beginning of this appendix.

Point Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Point Properties

Name Returns Description

ApplyPictTo Boolean Set/Get whether pictures are added to the end of the
End point

ApplyPictTo Boolean Set/Get whether pictures are added to the front of the
Front point

ApplyPictTo Boolean Set/Get whether pictures are added to the sides of the
Sides point

DataLabel DataLabel Read-only. Returns an object allowing you to manipu-
late the data label attributes (for example, formatting,
text). Use with HasDataLabel

Explosion Long Set/Get how far out a slice (point) of a pie or dough-
nut chart will explode out. 0 for no explosion

Format ChartFormat Read-only. Returns the ChartFormat object, which
controls the line, fill, and effect formatting for the chart
area.

Has3DEffect Boolean Set/Get whether the point has a three-dimensional
appearance

HasDataLabel Boolean Set/Get whether the point has a data label. Use with
DataLabel

Interior Interior Read-only. Returns an object containing options to for-
mat the inside area of the point (for example, interior
color)

InvertIfNegative Boolean Set/Get whether the point’s color will be inverted if
the point value is negative

Marker Long Set/Get the color of the point marker background Use
Background the RGB function to create the color value
Color

Marker XlColor Set/Get the color of the point marker background. Use
Background Index the XlColorIndex constants or an index value in the
ColorIndex current color palette

840

Point Common Properties

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 840

Name Returns Description

Marker Long Set/Get the color of the point marker foreground. Use
Foreground the RGB function to create the color value
Color

Marker XlColor Set/Get the color of the point marker foreground. Use
Foreground Index the XlColorIndex constants or an index value in the
ColorIndex current color palette

MarkerSize Long Set/Get the size of the point key marker

MarkerStyle XlMarker Set/Get the type of marker to use as the point key (for
Style example, square, diamond, triangle, picture, and so on)

PictureType XlChart Set/Get how an associated picture is displayed on
PictureType the point (for example, stretched, tiled). Use the

XlPictureType constants

PictureUnit2 Long Set/Get how many units a picture represents if the
PictureType property is set to xlScale

Secondary Boolean Set/Get if the point is on the secondary part of a Pie of
Plot Pie chart of a Bar of Pie chart

Shadow Boolean Set/Get whether the point has a shadow effect

Point Methods

Name Returns Parameters Description

ApplyData Variant [Type As Applies the data label properties
Labels XlDataLabels specified by the parameters to

Type], the point. The Type parameter
[LegendKey], specifies whether no label, a
[AutoText], value, a percentage of the whole,
[HasLeader or a category label is shown. The
Lines], legend key can appear by the
[ShowSeries point by setting the LegendKey
Name], parameter to True. Set
[ShowCategory AutoText to True if the object
Name], automatically generates
[ShowValue], appropriate text based on
[Show content. HasLeaderLines
Percentage], should be set to True if the series
[ShowBubble has leader lines. All the other
Size], parameters are simply the
[Separator] properties of the data labels that

they describe

Table continued on following page

841

Point Methods

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 841

Name Returns Parameters Description

ClearFormats Variant Clears the formatting made to a
point

Copy Variant Cuts the point and places it in
the clipboard

Delete Variant Deletes the point

Paste Variant Pastes the picture in the clip-
board into the current point so it
becomes the marker

Select Variant Selects the point on the chart

Point Object and the Points Collection Example
Sub ExplodePie()

Dim oPt As Point
‘Get the first data point in the pie chart
Set oPt = ActiveSheet.ChartObjects(1).Chart.SeriesCollection(1).Points(1)
‘Add a label to the first point only and
‘set it away from the pie
With oPt

.ApplyDataLabels xlDataLabelsShowLabelAndPercent

.Explosion = 20
End With

End Sub

Protection Object
Represents the group of sheet protection options. When you protect a sheet, you now have the option to
only allow unlocked cells selected, allow cell, column, and row formatting, allow insertion and deletion
of rows and columns, allow sorting, and more.

Setting Protection options is done via the Protect method of the Worksheet object. Use the
Protection property of the Worksheet object to check the current protection settings:

MsgBox ActiveSheet.Protection.AllowFormattingCells

Protection Properties

Name Returns Description

AllowDeleting Boolean Read-only. Returns whether the deletion of columns is
Columns allowed on a protected worksheet

AllowDeleting Boolean Read-only. Returns whether the deletion of rows is
Rows allowed on a protected worksheet

AllowEdit AllowEdit Read-only. Returns an AllowEditRanges object
Ranges Ranges

842

Point Object and the Points Collection Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 842

Name Returns Description

Allow Boolean Read-only. Returns whether the user is allowed to
Filtering make use of an AutoFilter that was created before

the sheet was protected

Allow Boolean Read-only. Returns whether the formatting of cells is
Formatting allowed on a protected worksheet
Cells

AllowFormatting Boolean Read-only. Returns whether the formatting of
Columns columns is allowed on a protected worksheet

AllowFormatting Boolean Read-only. Returns whether the formatting of rows is
Rows allowed on a protected worksheet

AllowInserting Boolean Read-only. Returns whether the inserting of columns
Columns is allowed on a protected worksheet

AllowInserting Boolean Read-only. Returns whether the inserting of
Hyperlinks hyperlinks is allowed on a protected worksheet

AllowInserting Boolean Read-only. Returns whether the inserting of rows is
Rows allowed on a protected worksheet

AllowSorting Boolean Read-only. Returns whether the sorting option is
allowed on a protected worksheet

AllowUsing Boolean Read-only. Returns whether the manipulation of
PivotTables PivotTables is allowed on a protected worksheet

Protection Object Example
The following routine sets Protection options based on the user name associated with the application
(found in the Popular section of the Excel Options dialog box) and that user’s settings on a table on the
worksheet. If the user isn’t found, a message appears and the default settings are used:

Sub ProtectionSettings()
Dim rngUsers As Range, rngUser As Range

Dim sCurrentUser As String

‘Grab the current username
sCurrentUser = Application.UserName

‘Define the list of users in the table
With wksAllowEditRange

Set rngUsers = .Range(.Range(“Users”), .Range(“Users”).End(xlToRight))
End With

‘Locate the current user on the table
Application.FindFormat.Clear
Set rngUser = rngUsers.Find(What:=sCurrentUser, SearchOrder:=xlByRows,

MatchCase:=False, SearchFormat:=False)

‘If current user is found on the table(

843

Protection Object Example

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 843

If Not rngUser Is Nothing Then
‘Set the Protection properties based
‘ on a table
wksAllowEditRange.Protect Password:=”wrox1”, _
DrawingObjects:=True, _
Contents:=True, _
AllowFormattingCells:=rngUser.Offset(1, 0).Value, _
AllowFormattingColumns:=rngUser.Offset(2, 0).Value, _
AllowFormattingRows:=rngUser.Offset(3, 0).Value, _
AllowSorting:=rngUser.Offset(4, 0).Value, _
UserInterfaceOnly:=True

‘Select Unlocked cells, Locked and Unlocked cells, or neither
‘ is NOT part of the Protection object
If rngUser.Offset(5, 0).Value = True Then

wksAllowEditRange.EnableSelection = xlUnlockedCells
Else

wksAllowEditRange.EnableSelection = xlNoRestrictions
End If

Else
‘Current user is not on the table
MsgBox “User not found on User Table. Default Options will be used.”,

vbExclamation, “Protection Settings”
wksAllowEditRange.Protect , True, True, False, False, False, _

False, False, False, False, False, _
False, False, False, False, False

wksAllowEditRange.EnableSelection = xlNoRestrictions

End If

End Sub

PublishObject Object and the PublishObjects Collection
The PublishObjects collection holds all of the things in a workbook that have been saved to a web
page. Each PublishObject object contains items from a workbook that have been saved to a web page
and may need some occasional refreshing of values on the web page side. The parent of the
PublishObjects collection is the Workbook object. The PublishObjects collection has no properties
outside the typical collection attributes listed at the beginning of this appendix.

PublishObjects Methods

Name Returns Description

Add Publish Method. Parameters: SourceType As XlSourceType,
Object Filename As String, [Sheet], [Source], [HtmlType],

[DivID], [Title]. Adds a PublishObject to the collection

Delete Method. Deletes the PublishObject objects from the collection

Publish Method. Publishes all the items associated with the
PublishObject objects to a web page

844

PublishObject Object and the PublishObjects Collection

31_046432 appa_a.qxp 2/16/07 10:06 PM Page 844

PublishObject Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

PublishObject Properties

Name Returns Description

AutoRepublish Boolean Set/Get whether an item in the PublishObjects
collection should be republished when a workbook
is saved

DivID String Read-only. Returns the id used for the <DIV> tag on
a web page

Filename String Set/Get the URL or path that the object will be
saved to as a web page

HtmlType XlHtmlType Set/Get what type of web page to save (for exam-
ple, xlHtmlStatic, xlHtmlChart). Pages saved as
other than xlHtmlStatic need special ActiveX
components

Sheet String Read-only. Returns the Excel sheet that will be
saved as a web page

Source String Read-only. Returns the specific item, like range
name, chart name, or report name, from the base
type specified by the SourceType property

SourceType XlSource Type Read-only. Returns the type of source being pub-
lished (for example, xlSourceChart, xlSource-
PrintArea, and so on)

Title String Set/Get the web page title for the published web
page

PublishObject Methods

Name Returns Parameters Description

Delete Deletes the PublishObject object

Publish [Create] Publishes the source items specified by the
PublishObject as a web file. Set the Cre-
ate parameter to True to overwrite exist-
ing files. False will append to the existing
web page with the same name, if any

845

PublishObject Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 845

PublishObject Object and the PublishObjects Collection Example
Sub UpdatePublishedCharts()

Dim oPO As PublishObject
For Each oPO In ActiveWorkbook.PublishObjects

If oPO.SourceType = xlSourceChart Then
oPO.Publish

End If
Next

End Sub

QueryTable Object and the QueryTables Collection
The QueryTables collection holds the collection of data tables created from an external data source.
Each QueryTable object represents a single table in a worksheet filled with data from an external data
source. The external data source can be an ODBC source, an OLE DB source, a text file, a Data Finder, a
web-based query, or a DAO/ADO recordset. Possible parents of the QueryTables collection are the
Worksheet and ListObject objects.

The QueryTables collection has a few properties and methods not typical of a collection. These atypical
attributes are listed next. The QueryTables collection has no properties outside the typical collection
attributes listed at the beginning of this appendix.

QueryTables Methods

Name Returns Description

Add QueryTable Method. Parameters: Connection, Destination As
Range, [Sql]. Adds a QueryTable to the collection.
The Connection parameter can specify the ODBC or
OLE DB connection string, another QueryTable
object, a DAO or ADO recordset object, a web-based
query, a Data Finder string, or a text file name. The
Destination parameter specifies the upper-left cor-
ner that the query table results will be placed. The SQL
parameter can specify the SQL for the connection, if
applicable

QueryTable Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

846

PublishObject Object and the PublishObjects Collection Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 846

QueryTable Properties

Name Returns Description

AdjustColumn Boolean Set/Get whether the column widths automatically
Width adjust to best fit the data every time the query table is

refreshed

Background Boolean Set/Get if the query table processing is done
Query asynchronously

CommandText Variant Set/Get the SQL command used to retrieve data (or
table name if CommandType is xlCmdTable)

CommandType XlCmdType Set/Get the type of ComandText (for example,
xlCmdSQL, xlCmdTable)

Connection Variant Set/Get the OLE DB connection string, the ODBC
string, web data source, path to a text file, or path to a
database

Destination Range Read-only. Returns the upper-left corner cell where
the query table results will be placed

EditWebPage Variant Set/Get the URL for a web query

Enable Boolean Set/Get whether the query table data can be edited or
Editing only refreshed (False)

Enable Boolean Set/Get whether the query table data can be refreshed
Refresh

FetchedRow Boolean Read-only. Returns whether the last query table
Overflow refresh retrieved more rows than available on the

worksheet

FieldNames Boolean Set/Get whether the field names from the data source
become column headings in the query table

FillAdjacent Boolean Set/Get whether formulas located to the right of the
Formulas query table will update automatically when the query

table data is refreshed

ListObject ListObject Returns a ListObject object

Maintain Boolean Set/Get whether the connection to the data source
Connection does not close until the workbook is closed. Valid only

against an OLE DB source

Name String Set/Get the name of the query table

Parameters Parameters Read-only. Returns the parameters associated with the
query table

PostText String Set/Get the post message sent to the web server to
return data from a web query

Table continued on following page

847

QueryTable Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 847

Name Returns Description

Preserve Boolean Set/Get whether column location, sorting, and
Column filtering does not disappear when the data query is
Info refreshed

Preserve Boolean Set/Get whether common formatting associated with
Formatting the first five rows of data is applied to new rows in

the query table

QueryType xlQuery Type Read-only. Returns the type of connection associated
with the query table. (For example, xlOLEDBQuery,
xlDAOQuery, xlTextImport)

Recordset Object Read-only. Returns a recordset associated with the
data source query

Refreshing Boolean Read-only. Returns whether an asynchronous query is
currently in progress

RefreshOn Boolean Set/Get whether the query table is refreshed when the
FileOpen workbook is opened

Refresh Long Set/Get how long (in minutes) between automatic
Period refreshes from the data source. Set to 0 to disable

RefreshStyle XlCell Set/Get how worksheet rows react when data rows
Insertion are retrieved from the data source. Worksheet cells can
Mode be overwritten (xlOverwriteCells), cell rows can be

partially inserted/deleted as necessary (xlInsert-
DeleteCells), or only cell rows that need to be
added can be added (xlInsertEntireRows)

ResultRange Range Read-only. Returns the cell range containing the
results of the query table

Robust XlRobust Set/Get how the QueryTable connects to its data
Connect Connect source

RowNumbers Boolean Set/Get whether a worksheet column is added to the
left of the query table containing row numbers

SaveData Boolean Set/Get whether query table data is saved with the
workbook

SavePassword Boolean Set/Get whether an ODBC connection password is
saved with the query table

Sort Sort Read-only. Returns the sort criteria for the Query-
Table

SourceConnection String Set/Get the name of the file that was used to create
File the QueryTable

SourceData File String Read-only. Returns the name of the source data file for
the QueryTable

848

QueryTable Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 848

Name Returns Description

TextFile Variant Set/Get the array of column constants representing
Column the data types for each column. Use the
DataTypes XlColumnDataType constants. Used only when

QueryType is xlTextImport

TextFile Boolean Set/Get whether a comma is the delimiter for text file
Comma imports into a query table. Used only when
Delimiter QueryType is xlTextImport and for a delimited

text file

TextFile Boolean Set/Get whether consecutive delimiters (for example,
Consecutive “,,,”) are treated as a single delimiter. Used only when
Delimiter QueryType is xlTextImport

TextFile String Set/Get the type of delimiter to use to define a
Decimal decimal point. Used only when QueryType is
Separator xlTextImport

TextFile Variant Set/Get the array of widths that correspond to the
Fixed columns. Used only when QueryType is
ColumnWidths xlTextImport and for a fixed-width text file

TextFile String Set/Get the character that will be used to delimit
Other columns from a text file. Used only when QueryType
Delimiter is xlTextImport and for a delimited text file

TextFile XlText Set/Get the type of text file that is being imported:
ParseType ParsingType xlDelimited or xlFixedWidth. Used only when

QueryType is xlTextImport

TextFilePlatform XlPlatform Set/Get which code pages to use when importing a
text file (for example, xlMSDOS, xlWindows). Used
only when QueryType is xlTextImport

TextFile Boolean Set/Get whether the user is prompted for the text file
PromptOn to use to import into a query table every time the data
Refresh is refreshed. Used only when QueryType is

xlTextImport. The prompt does not appear on the
initial refresh of data

TextFile Boolean Set/Get whether the semicolon is the text file
Semicolon delimiter for importing text files. Used only when
Delimiter QueryType is xlTextImport and the file is a delim-

ited text file

TextFile Boolean Set/Get whether the space character is the text file
Space delimiter for importing text files. Used only when
Delimiter QueryType is xlTextImport and the file is a delim-

ited text file

TextFile Long Set/Get which row number to start importing from a
StartRow text file. Used only when QueryType is xlTextImport

Table continued on following page

849

QueryTable Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 849

Name Returns Description

TextFileTab Boolean Set/Get whether the tab character is the text file
Delimiter delimiter for importing text files. Used only when

QueryType is xlTextImport and the file is a delim-
ited text file

TextFileText XlText Set/Get which character will be used to define string
Qualifier Qualifier data when importing data from a text file. Used only

when QueryType is xlTextImport

TextFile String Set/Get which character is used as the thousands
Thousands separator in numbers when importing from a text file
Separator (for example, “,”)

TextFile Boolean Set/Get whether to treat numbers imported as text
TrailingMinus that begin with a “-” symbol as negative numbers
Numbers

TextFile XlText Returns 1 or 2 depending on the visual layout of the
VisualLayout Visual file. A value of 1 represents left-to-right, while

LayoutType 2 represents right-to-left

Web Boolean Set/Get whether consecutive delimiters are treated as
Consecutive a single delimiter when importing data from a web
DelimitersAsOne page. Used only when QueryType is xlWebQuery

WebDisable Boolean Set/Get whether data that looks like dates is parsed as
Date text when importing web page data. Used only when
Recognition QueryType is xlWebQuery

WebDisable Boolean Set/Get whether web query redirections are disabled
Redirections for the QueryTable object

WebFormatting xlWeb Set/Get whether to keep any of the formatting when
Formatting importing a web page (for example, xlAll, xlNone).

Used only when QueryType is xlWebQuery

WebPre Boolean Set/Get whether HTML data with the <PRE> tag is
Formatted parsed into columns when importing web pages.
TextToColumns Used only when QueryType is xlWebQuery

WebSelection xlWeb Set/Get which data from a web page is imported,
Type Selection either all tables (xlAllTables), the entire page

Type (xlEntirePage), or specified tables (xlSpeci-
fiedTables). Used only when QueryType is
xlWebQuery

WebSingleBlock Boolean Set/Get whether all the web page data with the <PRE>
TextImport tags is imported all at once. Used only when Query-

Type is xlWebQuery

850

QueryTable Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 850

Name Returns Description

WebTables String Set/Get a comma-delimited list of all the table
names that will be imported from a web page.
Used only when QueryType is xlWebQuery and
WebSelectionType is xlSpecifiedTables

Workbook Workbook Read-only. Returns the connection that the
Connection Connection QueryTable uses

QueryTable Methods

Name Returns Parameters Description

CancelRefresh Cancels an asynchronously run-
ning query table refresh

Delete Deletes the query table

Refresh Boolean [Background Refreshes the data in the query
Query] table with the latest copy of the

external data. Sets the Back-
groundQuery parameter to True
to get the data to refresh asyn-
chronously

ResetTimer Resets the time for the automatic
refresh set by RefreshPeriod
property

SaveAsODC ODCFileName As Saves the PivotCache source as
String, an Office Data Connection file.
[Description], ODCFileName is the location of
[Keywords] the source file. Description is

the description that will be saved
in the file. Keywords is a list of
space-separated keywords that
can be used to search for this file

QueryTable Events

Name Parameters Description

AfterRefresh Success As Triggered after a query is completed or cancelled
Boolean

BeforeRefresh Cancel As Triggered just before a refresh of the query table
Boolean

851

QueryTable Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 851

QueryTable Object and the QueryTables Collection Example
Sub UpdateAllWebQueries()

Dim oQT As QueryTable
For Each oQT In ActiveSheet.QueryTables

If oQT.QueryType = xlWebQuery Then
oQT.BackgroundQuery = False
oQT.Refresh

End If
Next

End Sub

Range Object and the Ranges Collection Object
The Range object is one of the more versatile objects in Excel. A range can be a single cell, a column, a
row, a contiguous block of cells, or a non-contiguous range of cells. The main parent of a Range object is
the Worksheet object. However, most of the objects in the Excel object model use the Range object. The
Range property of the Worksheet object can be used to choose a certain range of cells using the Cell1
and Cell2 parameters. New to Excel 2007, the Ranges object holds a collection of Range objects. The
Ranges collection has no properties outside the typical collection attributes listed at the beginning of this
appendix.

Range Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Range Properties

Name Returns Description

AddIndent Variant Set/Get whether text in a cell is automatically indented if
the text alignment in a cell is set to equally distribute

Address String Read-only. Parameters: RowAbsolute, ColumnAbsolute,
ReferenceStyle As XlReferenceStyle, [External],
[RelativeTo]. Returns the address of the current range
as a string in the macro’s language. The type of address
(reference, absolute, A1 reference style, R1C1 reference
style) is specified by the parameters

AddressLocal String Read-only. Parameters: RowAbsolute, ColumnAbsolute,
ReferenceStyle As XlReferenceStyle, [External],
[RelativeTo]. Returns the address of the current range
as a string in the user’s language. The type of address (ref-
erence, absolute, A1 reference style, R1C1 reference style) is
specified by the parameters

AllowEdit Boolean Read-only. Returns True if the range can be edited on a
protected worksheet

Areas Areas Read-only. Returns an object containing the different non-
contiguous ranges in the current range

852

QueryTable Object and the QueryTables Collection Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 852

Name Returns Description

Borders Borders Read-only. Returns all the individual borders around the
range. Each border side can be accessed individually in the
collection

Cells Range Read-only. Returns the cells in the current range. The
Cells property will return the same range as the current
range

Characters Characters Read-only. Parameters: [Start], [Length]. Returns all
the characters in the current range, if applicable

Column Long Read-only. Returns the column number of the first column
in the range

Columns Range Read-only. Returns a range of the columns in the current
range

ColumnWidth Variant Set/Get the column width of all the columns in the range.
Returns Null if the columns in the range have different
widths

Comment Comment Read-only. Returns an object representing the range com-
ment, if any

Count Long Read-only. Returns the number of cells in the current range

CountLarge Variant Read-only. Counts the largest value in a given range of values

CurrentArray Range Read-only. Returns a Range object that represents the array
associated with the particular cell range, if the cell is part
of an array

CurrentRegion Range Read-only. Returns the current region that contains the
Range object. A region is defined as an area that is sur-
rounded by blank cells

Dependents Range Read-only. Returns the dependents of a cell on the same
sheet as the range

Direct Range Read-only. Returns the direct dependents of a cell on the
Dependents same sheet as the range

Direct Range Read-only. Returns the direct precedents of a cell on the
Precedents same sheet as the range

End Range Read-only. Parameters: Direction As XlDirection.
Returns the cell at end of the region containing the Range
object. Which end of the region is specified by the Direc-
tion parameter

EntireColumn Range Read-only. Returns the full worksheet column(s) occupied
by the current range

Table continued on following page

853

Range Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 853

Name Returns Description

EntireRow Range Read-only. Returns the full worksheet row(s) occupied by
the current range

Errors Errors Read-only. Returns the Errors collection associated with
the Range object

Font Font Read-only. Returns an object containing Font options for
the text in the range

Format Format Read-only. Returns an object holding conditional
Conditions Conditions formatting options for the current range

Formula Variant Set/Get the formula of the cells in the range

FormulaArray Variant Set/Get the array formula of the cells in the range

Formula Variant Set/Get whether the formula will be hidden if the
Hidden workbook/worksheet is protected

FormulaLocal Variant Set/Get the formula of the range in the language of the
user using the A1 style references

FormulaR1C1 Variant Set/Get the formula of the range in the language of the
macro using the R1C1 style references

FormulaR1C1 Variant Set/Get the formula of the range in the language of the
Local user using the R1C1 style references

HasArray Variant Read-only. Returns whether a single cell range is part of an
array formula

HasFormula Variant Read-only. Returns whether all the cells in the range con-
tain formulas (True). If only some of the cells contain for-
mulas, then Null is returned

Height Variant Read-only. Returns the height of the range

Hidden Variant Set/Get whether the cells in the range are hidden. Only
works if the range contains whole columns or rows

Horizontal Variant Set/Get how the cells in the range are horizontally aligned.
Alignment Use the XLHAlign constants

Hyperlinks Hyperlinks Read-only. Returns the collection of hyperlinks in the
range

ID String Set/Get the ID used for the range if the worksheet is saved
as a web page

IndentLevel Variant Set/Get the indent level for the range

Interior Interior Read-only. Returns an object containing options to format
the inside area of the range, if applicable (for example,
interior color)

854

Range Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 854

Name Returns Description

Left Variant Read-only. Returns the distance from the left edge of the
leftmost column in the range to the left edge of ColumnA

ListHeader Long Read-only. Returns the number of header rows in the range
Rows

ListObject ListObject Returns a ListObject object

LocationIn XlLocation Read-only. Returns the location of the upper-left corner of
Table InTable the range

Locked Variant Set/Get whether cells in the range can be modified if the
sheet is protected. Returns Null if only some of the cells in
the range are locked

MDX String Returns the MDX (Multidimensional Expression) that can
be sent to an OLAP provider

MergeArea Range Read-only. Returns a range containing the merged range of
the current cell range

MergeCells Variant Set/Get whether the current range contains merged cells

Name Variant Set/Get the Name object that contains the name for the
range

Next Range Read-only. Returns the next range in the sheet

NumberFormat Variant Set/Get the number format associated with the cells in the
range. Null if all the cells don’t have the same format

NumberFormat Variant Set/Get the number format associated with the cells in the
Local range, in the language of the end user. Null if all the cells

don’t have the same format

Offset Range Read-only. Parameters: [RowOffset], [ColumnOffset].
Returns the cell as a Range object that is the offset from the
current cell as specified by the parameters. A positive
RowOffset offsets the row downward. A negative
RowOffset offsets the row upward. A positive Colum-
nOffset offsets the column to the right, and a negative
ColumnOffset offsets the column to the left

Orientation Variant Set/Get the text orientation for the cell text. A value from -
90 to 90 degrees can be specified, or use an XlOrienta-
tion constant

OutlineLevel Variant Set/Get the outline level for the row or column range

PageBreak Long Set/Get how page breaks are set in the range. Use the
XLPageBreak constants

Phonetic Phonetic Read-only. Returns the Phonetic object associated with
the cell range

Table continued on following page

855

Range Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 855

Name Returns Description

Phonetics Phonetics Read-only. Returns the Phonetic objects in the range

PivotCell PivotCell Read-only. Returns a PivotCell object that represents a
cell in a PivotTable report

PivotField PivotField Read-only. Returns the PivotTable field associated with
the upper-left corner of the current range

PivotItem PivotItem Read-only. Returns the PivotTable item associated with
the upper-left corner of the current range

PivotTable PivotTable Read-only. Returns the PivotTable report associated with
the upper-left corner of the current range

Precedents Range Read-only. Returns the range of precedents of the current
cell range on the same sheet as the range

Prefix Variant Read-only. Returns the character used to define the type of
Character data in the cell range. For example, “‘“ for a text label

Previous Range Read-only. Returns the previous range in the sheet

QueryTable QueryTable Read-only. Returns the query table associated with the
upper-left corner of the current range

Range Range Read-only. Parameters: Cell1, [Cell2]. Returns a Range
object as defined by the Cell1 and optionally Cell2
parameters. The cell references used in the parameters are
relative to the range. For example, Range.Range (“A1”)
would return the first column in the parent range, but not
necessarily the first column in the worksheet

ReadingOrder Long Set/Get whether the text is from right-to-left (xlRTL), left-
to-right (xlLTR), or context-sensitive (xlContext)

Resize Range Read-only. Parameters: [RowSize], [ColumnSize].
Returns a new resized range as specified by the RowSize
and ColumnSize parameters

Row Long Read-only. Returns the row number of the first row in the
range

RowHeight Variant Set/Get the height of the rows in the range. Returns Null
if the rows in the range have different row heights

Rows Range Read-only. Returns a Range object containing the rows of
the current range

ServerActions Actions Read-only. Returns the actions that can be performed on
the SharePoint server for a Range object

ShowDetail Variant Set/Get if all the outline levels in the range are expanded.
Applicable only if a summary column or row is the range

856

Range Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 856

Name Returns Description

ShrinkToFit Variant Set/Get whether the cell text will automatically shrink to
fit the column width. Returns Null if the rows in the range
have different ShrinkToFit properties

SmartTags SmartTags Read-only. Returns a SmartTags object representing the
identifier for the specified cell

SoundNote SoundNote Property is kept for backwards compatibility only

Style Variant Set/Get the Style object associated with the range

Summary Variant Read-only. Returns whether the range is an outline sum-
mary row or column

Text Variant Read-only. Returns the text associated with a range cell

Top Variant Read-only. Returns the distance from the top edge of the
topmost row in the range to the top edge of Row1

UseStandard Variant Set/Get whether the row height is the standard height of
Height the sheet. Returns Null if the rows in the range contain

different heights

UseStandard Variant Set/Get whether the column width is the standard width
Width of the sheet. Returns Null if the columns in the range con-

tain different widths

Validation Validation Read-only. Returns the data validation for the current
range

Value Variant Parameters: [RangeValueDataType]. Set/Get the value
of a cell or an array of cells depending on the contents of
the Range object

Value2 Variant Set/Get the value of a cell or an array of cells depending
on the contents of the Range object. No Currency or Date
types are returned by Value2

Vertical Variant Set/Get how the cells in the range are vertically aligned.
Alignment Use the XLVAlign constants

Width Variant Read-only. Returns the height of the range

Worksheet Worksheet Read-only. Returns the worksheet that has the Range
object

WrapText Variant Set/Get whether cell text wraps in the cell. Returns Null if
the cells in the range contain different text wrap properties

XPath Xpath Represents the XPath element of the object at the current
range

857

Range Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 857

Range Methods

Name Returns Parameters Description

Activate Variant Selects the range cells

AddComment Comment [Text] Adds the text specified by the
parameter to the cell specified in
the range. Must be a single cell
range

Advanced Variant [Action] As Copies or filters the data in the
Filter XlFilter current range. The Action

Action, parameter specifies whether a copy
[Criteria or filter is to take place.
Range], CriteriaRange optionally
[CopyToRange], specifies the range containing the
[Unique] criteria. CopyToRange specifies the

range that the filtered data will be
copied to (if Action is
xlFilterCopy)

ApplyNames Variant [Names], Applies defined names to the
[Ignore formulas in a range. For example, if
Relative a cell contained =A1*100 and
Absolute], A1 was given the name
[UseRowColumn “TopLeft”, you could apply the
Names], “TopLeft” name to the range,
[OmitColumn], resulting in the formula changing to
[OmitRow], =TopLeft*100. Note that there is no
[Order] As UnApplyNames method
XlApplyNames
Order,
[AppendLast]

ApplyOutline Variant Applies the outline styles to the
Styles range

AutoComplete String String As Returns and tries to AutoComplete
String the word specified in the String

parameter. Returns the complete
word, if found. Returns an empty
string if no word or more than one
word is found

AutoFill Variant [Destination] Uses the current range as the source
As Range, [Type] to figure out how to AutoFill the

range specified by the Destina-
tion parameter. The Type parame-
ter can also be used to specify the
type of fill to use (for example,
xlFillCopy, xlFillDays)

858

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 858

Name Returns Parameters Description

AutoFilter Variant [Field], Creates an auto-filter on the data in
[Criteria1], the range. See the AutoFilter
[Operator, object for details on the parameters
[Criteria2],
[Visible
Drop Down]

AutoFit Variant Changes the column widths in the
range to best fit the data in the cells.
The range must contain full rows or
columns

AutoOutline Variant Creates an outline for the range

BorderAround Variant [LineStyle], Creates a border around the range
[Weight] As with the associated line style
XlBorder (LineStyle), thickness (Weight),
Weight, and color (ColorIndex)
[ColorIndex],
[Color]

Calculate Variant Calculates all the formulas in the
range

CheckSpelling Variant [Custom Checks the spelling of the text in the
Dictionary], range. A custom dictionary can be
[Ignore specified (CustomDictionary), all
Uppercase], uppercase words can be ignored
[Always (IgnoreUppercase), and Excel can
Suggest], be set to display a list of
[SpellLang] suggestions (AlwaysSuggest)

Clear Variant Clears the text in the cells of the
range

ClearComments Clears all the comments in the
range cells

ClearContents Variant Clears the formulas and values in a
range

ClearFormats Variant Clears the formatting in a range

ClearNotes Variant Clears comments from the cells in
the range

ClearOutline Variant Clears the outline used in the cur-
rent range

Column Range [Comparison] Returns the range of cells that are
Differences specific to the cell specified by the

Comparison parameter

Table continued on following page

859

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 859

Name Returns Parameters Description

Consolidate Variant [Sources], Consolidates the source array of
[Function], range reference strings in the
[TopRow], Sources parameter and returns the
[Left Column], results to the current range. The
[Create Function parameter can be used to
Links] set the consolidation function. Use

the XLConsolidation Function
constants

Copy Variant [Destination] Copies the current range to the
range specified by the parameter, or
to the clipboard if no destination is
specified

CopyFrom Long [Data] As Copies the records from the ADO or
Recordset Recordset, DAO recordset specified by the

[MaxRows], Data parameter into the current
[MaxColumns] range. The recordset can’t contain

OLE objects

CopyPicture Variant [Appearance], Copies the range into the clipboard
[Format] as a picture. The Appearance

parameter can be used to specify
whether the picture is copied as it
looks on the screen or when
printed. The Format parameter can
specify the type of picture that will
be put into the clipboard

CreateNames Variant [Top], [Left], Creates a named range for the items
[Bottom], in the current range. Set Top to
[Right] True to make the first row hold the

names for the ranges below. Set
Bottom to True to use the bottom
row as the names. Set Left or
Right to True to make the left or
right column contain the Names,
respectively

Cut Variant [Destination] Cuts the current range to the range
specified by the parameter, or to
the clipboard if no destination is
specified

DataSeries Variant [Rowcol], [Type] Creates a data series at the current
, [Date range location
, [Step], [Stop],
[Trend]

860

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 860

Name Returns Parameters Description

Delete Variant [Shift] Deletes the cells in the current
range and optionally shifts the cells
in the direction specified by the
Shift parameter. Use the
XlDeleteShift Direction con-
stants for the Shift parameter

DialogBox Variant Displays a dialog box defined by an
Excel 4.0 macro sheet

Dirty Selects a range to be recalculated
when the next recalculation occurs

Edition Variant [Type] As Used on the Macintosh.
Options XlEdition Type, EditionOptions set how the range

[Option] As Xl should act when being used as the
Edition source (publisher) or target
OptionsOption, (subscriber) of the link. Editions
[Name], are basically the same as Windows’
[Reference], DDE links
Appearance,
[ChartSize],
[Format]

ExportAs [Type] As Exports a file to a format specified
FixedFormat XlFixedFormatType, by using the xlFixedFormatType

[FileName], constants
[Quality],
[IncludeDoc
Properties],
[IgnorePrintAreas]
[From] ,[To],
[OpenAfterPublish]

FillDown Variant Copies the contents and formatting
from the top row into the rest of the
rows in the range

FillLeft Variant Copies the contents and formatting
from the rightmost column into the
rest of the columns in the range

FillRight Variant Copies the contents and formatting
from the leftmost column into the
rest of the columns in the range

FillUp Variant Copies the contents and formatting
from the bottom row into the rest of
the rows in the range

Table continued on following page

861

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 861

Name Returns Parameters Description

Find Range [What] As Looks through the current range for
Variant, the text of data type specified by the
[After], What parameter. Use a single cell
[LookIn], range in the After parameter to
[LookAt], choose the starting position of the
[SearchOrder], search. Use the LookIn parameter
[Search Direction] to decide where the search is going
As XlSearch to take place
Direction,
[MatchCase],
[MatchByte],
[Search Format]

FindNext Range [After] Finds the next instance of the search
criteria defined with the Find
method

FindPrevious Range [After] Finds the previous instance of the
search criteria defined with the
Find method

Function Variant Displays the Function Wizard for
Wizard the upper-left cell of the current

range

GoalSeek Boolean [Goal], Returns True if the value specified
[ChangingCell] by the Goal parameter is returned
As Range when changing the ChangingCell

cell range

Group Variant [Start], Either demotes the outline in the
[End], range or groups the discontinuous
[By], ranges in the current Range object
[Periods]

Insert Variant [Shift], Inserts the equivalent rows or
[CopyOrigin] columns in the range into the

range’s worksheet

InsertIndent [InsertAmount] Indents the range by the amount
As Long specified by the InsertAmount

parameter

Justify Variant Evenly distributes the text in the
cells from the current range

ListNames Variant Pastes the names of all the named
ranges in the current range starting
at the top-left cell in the range

862

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 862

Name Returns Parameters Description

Merge [Across] Merges the cells in the range. Set
the Across parameter to True to
merge each row as a separate cell

NavigateArrow Variant [Toward Moves through the tracer arrows in
Precedent], a workbook from the current range,
[ArrowNumber], returning the range of cells that
[LinkNumber] make up the tracer arrow destina-

tion. Tracer arrows must be turned
on. Use the ShowDependents and
ShowPrecendents methods

NoteText String [Text], Set/Get the cell notes associated
[Start], with the cell in the current range
[Length]

Parse Variant [ParseLine], Parses the string specified by the
[Destination] ParseLine parameter and returns

it to the current range parsed out by
column. Optionally, can specify the
destination range with the Desti-
nation parameter. The ParseLine
string should be in the “[ColumnA]
[ColumnB]” format

PasteSpecial Variant [Paste], Pastes the range from the clipboard
[Operation], into the current range. Use the
[SkipBlanks], Paste parameter to choose what to
[Transpose] paste (for example, formulas, val-

ues). Use the Operation parameter
to specify what to do with the paste.
Set SkipBlanks to True to keep
blank cells in the clipboard’s range
from being pasted. Set Transpose
to True to transpose columns with
rows

PrintOut Variant [From], Prints the charts in the collection.
[To], The printer, number of copies,
[Copies], collation, and whether a print
[Preview], preview is desired can be specified
[Active Printer], with the parameters. Also, the
[PrintToFile], sheets can be printed to a file using
[Collate], the PrintToFile and
[PrToFile PrToFileName parameters. The
Name] From and To parameters can be

used to specify the range of printed
pages

Table continued on following page

863

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 863

Name Returns Parameters Description

PrintPreview Variant [Enable Displays the current range in a
Changes] print preview. Set the

EnableChanges parameter to
False to disable the Margins and
Setup buttons, hence not allowing
the viewer to modify the page setup

Remove [Columns], Removes duplicate values from a
Duplicates [Header] range of values

Remove Variant Removes subtotals from the list in
Subtotal the current range

Replace Boolean [What] As Variant, Finds the text specified by the What
[Replacement] parameter in the range. Replaces
As Variant, the found text with the
[LookAt], Replacement parameter. Use the
[SearchOrder], SearchOrder parameters with the
[MatchCase], XLSearchOrder constants to
[MatchByte], choose whether the search occurs
[Search by rows or by columns
Format],
[Replace
Format]

Row Range [Comparison] Returns the range of cells that are
Differences specific to the cell specified by the

Comparison parameter

Run Variant [Arg1], Runs the Excel 4.0 macro specified
[Arg2], by the current range. The potential
(arguments to the macro can be
[Arg30] specified with the Argx parameters

Select Variant Selects the cells in the range

SetPhonetic Creates a Phonetic object for each
cell in the range

Show Variant Scrolls the Excel window to display
the current range. This only works
if the range is a single cell

864

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 864

Name Returns Parameters Description

Show Variant [Remove] Displays the dependents for the
Dependents current single cell range using

tracer arrows

ShowErrors Variant Displays the source of the errors for
the current range using tracer
arrows

ShowPrecedents Variant [Remove] Displays the precedents for the cur-
rent single cell range using tracer
arrows

Sort Variant [Key1], Sorts the cells in the range. If the
[Order1 As range contains only one cell, then
XlSortOrder], the active region is searched. Use
[Key2], [Type], the Key1, Key2, and Key3
[Order2 As parameters to set which columns
XlSortOrder], will be the sort columns. Use the
[Key3], [Order3 Order1, Order2, and Order3
As XlSortOrder], parameters to set the sort order.
[Header As Use the Header parameter to set
XlYesNoGuess], whether the first row contains
[OrderCustom], headers. Set the MatchCase
[MatchCase], parameter to True to sort data and
[Orientation to treat uppercase and lowercase
As XlSort characters differently. Use the
Orientation], Orientation parameter to choose
[SortMethod As whether rows are sorted or columns
XlSortMethod], are sorted. Finally, the SortMethod
[DataOption1 parameter is used to set the sort
As XlSortData method for other languages (for
Option], example, xlStroke or xlPinYin).
[DataOption2 Use the SortSpecial method for
As XlSortData sorting in East Asian languages
Option],
[DataOption3
As XlSortData
Option]

Table continued on following page

865

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 865

Name Returns Parameters Description

SortSpecial Variant [SortMethod As Sorts the data in the range using
XlSortMethod], East Asian sorting methods. The
[Key1], [Order1 parameters are the same as the
As XlSortOrder], Sort method
[Type],
[Key2],
[Order2 As
XlSortOrder],
[Key3], [Order3
As XlSortOrder],
[Header As
XlYesNoGuess],
[OrderCustom],
[MatchCase],
[Orientation
As XlSort
Orientation],
[DataOption1
As XlSortData
Option],
[DataOption2
As XlSortData
Option],
[DataOption3
As XlSortData
Option]

Speak [Speak Causes the cells of the range to be
Direction], spoken in row order or column
[Speak order
Formulas]

SpecialCells Range Type As Returns the cells in the current
XlCellType, range that contain some special
[Value] attribute as defined by the Type

parameter. For example, if Type is
xlCellTypeBlanks, then a Range
object containing all of the empty
cells is returned

SubscribeTo Variant [Edition] As Only valid on the Macintosh.
String, Defines the source of a link that the
[Format] current range will contain

866

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 866

Name Returns Parameters Description

Subtotal Variant [GroupBy] As Creates a subtotal for the range. If
Long, [Function] the range is a single cell, then a
As Xl subtotal is created for the current
Consolidation region. The GroupBy parameter
Function, specifies the field to group (for
[TotalList], subtotaling). The Function
[Replace], parameter describes how the fields
[PageBreaks], will be grouped. The TotalList
[SummaryBelow parameter uses an array of field
Data] offsets that describe the fields that

will be subtotaled. Set the Replace
parameter to True to replace exist-
ing subtotals. Set PageBreaks to
True for page breaks to be added
after each group. Use the Summary-
BelowData parameter to choose
where the summary row will be
added

Table Variant [RowInput], Creates a new data table at the
[Column current range
Input]

TextTo Variant [Destination], Parses text in cells into several
Columns [DataType As columns. The Destination

XlTextParsing specifies the range that the parsed
Type], text will go into. The DataType
[Text parameter can be used to choose
Qualifier As whether the text is delimited or
XlText fixed width. The TextQualifier
Qualifier], parameter can specify which
[Consecutive character denotes string data when
Delimiter], parsing. Set the Consecutive
[Tab], Delimiter to True for Excel to
[Semicolon], treat consecutive delimiters as one.
[Comma], Set the Tab, Semicolon, Comma, or
[Space], Space parameter to True to use the
[Other], associated character as the
[OtherChar], delimiter. Set the Other parameter
[FieldInfo], to True and specify an OtherChar
[Decimal to use another character as the
Separator], delimiter. FieldInfo takes a
[Thousands two-dimensional array containing
Separator], more parsing information. The
[Trailing DecimalSeparator and
MinusNumbers] ThousandsSeparator can specify

how numbers are treated when
parsing

Table continued on following page

867

Range Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 867

Name Returns Parameters Description

Ungroup Variant Either promotes the outline in the
range or ungroups the range in a
PivotTable report

UnMerge Splits up a merged cell into single
cells

RecentFile Object and the RecentFiles Collection
The RecentFiles collection holds the list of recently modified files, equivalent to the files listed under
the Office icon in the left-hand corner of the application. Each RecentFile object represents one of the
recently modified files.

RecentFiles has a few attributes besides the typical collection ones. The Maximum property can be used
to set or return the maximum number of files that Excel will “remember” modifying. The value can
range from 0 to 9. The Add method is used to add a file (with the Name parameter) to the collection.

RecentFile Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

RecentFile Properties

Name Returns Description

Index Long Read-only. Returns the spot in the collection where the current
object is located

Name String Read-only. Returns the name of the recently modified file

Path String Read-only. Returns the file path of the recently modified file

RecentFile Methods

Name Returns Description

Delete Deletes the object from the collection

Open Workbook Opens up the recent file and returns the opened workbook

RecentFile Object and the RecentFiles Collection Example
Sub CheckRecentFiles()

Dim oRF As RecentFile
‘Remove any recent files that refer to the floppy drive
For Each oRF In Application.RecentFiles

If Left(oRF.Path, 2) = “A:” Then
oRF.Delete

868

RecentFile Object and the RecentFiles Collection

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 868

End If
Next

End Sub

RectangularGradient Object
The LinearGradient object transitions through a series of colors in a linear manner along a specific
angle. Attempting to access a Gradient property of an Interior object that does not have an existing
gradient fill will result in a run-time error. Be aware of the Interior.Pattern property before accessing
the Gradient property.

RectangleGradient Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

RectangleGradient Properties

Name Returns Description

ColorStops ColorStops Read-only. Returns the ColorStops for the Linear-
Gradient object

RectangleBottom Double Set/Get the point or vector that the gradient fill con-
verges to

RectangleLeft Double Set/Get the point or vector that the gradient fill con-
verges to

RectangleRight Double Set/Get the point or vector that the gradient fill con-
verges to

RectangleTop Double Set/Get the point or vector that the gradient fill con-
verges to

RoutingSlip Object
The RoutingSlip object represents the properties and methods of the routing slip of an Excel docu-
ment. The parent object of the RoutingSlip object is the Workbook object. The HasRoutingSlip prop-
erty of the Workbook object has to be set to True before the RoutingSlip object can be manipulated.

RoutingSlip Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

869

RectangularGradient Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 869

RoutingSlip Properties

Name Returns Description

Delivery XlRouting Set/Get how the delivery process will proceed
Slip Delivery

Message Variant Set/Get the body text of the routing slip message

Recipients Variant Parameters: [Index]. Returns the list of recipient
names to send the parent workbook to

ReturnWhen Boolean Set/Get whether the message is returned to the
Done original sender

Status XlRouting Read-only. Returns the current status of the routing
SlipStatus slip

Subject Variant Set/Get the subject text for the routing slip message

TrackStatus Boolean Set/Get whether the message is sent to the original
sender each time the message is forwarded

RoutingSlip Methods

Name Returns Description

Reset Variant Resets the routing slip

RTD Object
Represents a Real-Time Data object, like one referenced using the IrtdServer object. As of this writing,
there was very little documentation.

RTD Properties

Name Returns Description

Throttle Long Set/Get the time interval between updates
Interval

RTD Methods

Name Description

RefreshData Requests an update of RTD from the RTD server

Restart Reconnects to servers for RTD
Servers

870

RoutingSlip Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 870

Scenario Object and the Scenarios Collection
The Scenarios collection contains the list of all the scenarios associated with a worksheet. Each
Scenario object represents a single scenario in a worksheet. A scenario holds the list of saved cell values
that can later be substituted into the worksheet. The parent of the Scenarios collection is the
Worksheet object. The Scenarios collection has no properties outside the typical collection attributes
listed at the beginning of this appendix.

Scenarios Methods

Name Returns Description

Add Scenario Method. Parameters: Name As String, ChangingCells,
[Values], [Comment], [Locked], [Hidden]. Adds a
scenario to the collection. The Name parameter specifies
the name of the scenario. See the Scenario object for a
description of the parameters

CreateSummary Variant Method. Parameters: ReportType As XlSummaryReport-
Type, [ResultCells]. Creates a worksheet containing a
summary of all the scenarios of the parent worksheet. The
ReportType parameter can specify the report type. The
ResultCells parameter can be a range of cells containing
the formulas related to the changing cells

Merge Variant Method. Parameters: Source. Merges the scenarios in the
Source parameter into the current worksheet

Scenario Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Scenario Properties

Name Returns Description

ChangingCells Range Read-only. Returns the range of cells in the worksheet
that will have values plugged in for the specific scenario

Comment String Set/Get the scenario comment

Hidden Boolean Set/Get whether the scenario is hidden

Index Long Read-only. Returns the spot in the collection where the
current Scenario object is located

Locked Boolean Set/Get whether the scenario cannot be modified when
the worksheet is protected

Name String Set/Get the name of the scenario

Values Variant Read-only. Parameters: [Index]. Returns an array of the
values to plug into the changing cells for this particular
scenario

871

Scenario Object and the Scenarios Collection

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 871

Scenario Methods

Name Returns Parameters Description

Change Variant Changing Changes which set of cells in the
Scenario Cells, [Values] worksheet are able to change for the

scenario. Optionally, can choose new
values for the scenario

Delete Variant Deletes the Scenario object from the
collection

Show Variant Shows the scenario results by putting
the scenario values into the worksheet

Scenario Object and the Scenarios Collection Example
Sub GetBestScenario()

Dim oScen As Scenario
Dim oBestScen As Scenario
Dim dBestSoFar As Double
‘Loop through the scenarios in the sheet
For Each oScen In ActiveSheet.Scenarios

‘Show the secnario
oScen.Show

‘Is it better?
If Range(“Result”).Value > dBestSoFar Then

dBestSoFar = Range(“Result”).Value
‘Yes - remember it

Set oBestScen = oScen
End If

Next
‘Show the best scenario
oBestScen.Show
MsgBox “The best scenario is “ & oBestScen.Name

End Sub

Series Object and the SeriesCollection Collection
The SeriesCollection collection holds the collection of series associated with a chart group. Each
Series object contains a collection of points associated with a chart group in a chart. For example, a sim-
ple line chart contains a series (Series) of points brought in from the originating data. Because some
charts can have many series plotted on the same chart, the SeriesCollection is used to hold that
information. The parent of the SeriesCollection is the ChartGroup. The SeriesCollection object
has no properties outside the typical collection attributes listed at the beginning of this appendix.

872

Scenario Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 872

SeriesCollection Methods

Name Returns Description

Add Series Method. Parameters: Source, Rowcol, [Series-
Labels], [CategoryLabels], [Replace]. Adds a
Series to the collection. The Source parameter spec-
ifies either a range or an array of data points describ-
ing the new series (and all the points in it). The
Rowcol parameter sets whether the row or the col-
umn of the Source contains a series of points. Set
SeriesLabels or CategoryLabels to True to make
the first row or column of the Source contain the
labels for the series and category, respectively

Extend Variant Method. Parameters: Source, [Rowcol], [Category-
Labels]. Adds the points specified by the range or
array of data points in the Source parameter to the
SeriesCollection. See the Add method for details
on the other parameters

Paste Variant Method. Parameters: Rowcol, [SeriesLabels],
[CategoryLabels], [Replace], [NewSeries].
Pastes the data from the Clipboard into the Series-
Collection as a new Series. See the Add method
for details on the other parameters

NewSeries Series Method. Creates a new series and returns the newly
created series

Series Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Series Properties

Name Returns Description

ApplyPictToEnd Boolean Set/Get whether pictures are added to the end of the
points in the series

ApplyPictToFront Boolean Set/Get whether pictures are added to the front of the
points in the series

ApplyPictToSides Boolean Set/Get whether pictures are added to the sides of the
points in the series

AxisGroup XlAxis Set/Get the axis type being used by the series
Group (primary or secondary)

BarShape XlBarShape Set/Get the type of shape to use in a 3D bar or column
chart (for example, xlBox)

Table continued on following page

873

SeriesCollection Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 873

Name Returns Description

BubbleSizes Variant Set/Get the cell references (A1 reference style) that
contain data relating to how big the bubble should be
for bubble charts

ChartType XlChartType Set/Get the type of chart to use for the series

ErrorBars ErrorBars Read-only. Returns the error bars in a series. Use with
HasErrorBars

Explosion Long Set/Get how far out the slices (points) of a pie or
doughnut chart will explode out. 0 for no explosion

Format ChartFormat Returns the ChartFormat object, which controls the
line, fill, and effect formatting for the chart area

Formula String Set/Get the type of formula label to use for the series

FormulaLocal String Set/Get the formula of the series in the language of
the user using the A1 style references

FormulaR1C1 String Set/Get the formula of the series in the language of
the macro using the R1C1 style references

FormulaR1C1 String Set/Get the formula of the series in the language of
Local the user using the R1C1 style references

Has3DEffect Boolean Set/Get if bubble charts have a 3D appearance

HasDataLabels Boolean Set/Get if the series contains data labels

HasErrorBars Boolean Set/Get if the series contains error bars. Use with the
ErrorBars property

HasLeader Lines Boolean Set/Get if the series contains leader lines. Use with
the LeaderLines property

InvertIf Boolean Set/Get whether the color of the series’ points should
Negative be the inverse if the value is negative

LeaderLines Leader Read-only. Returns the leader lines associated with the
Lines series

MarkerBackground Long Set/Get the color of the series marker background.
Color Use the RGB function to create the color value

MarkerBackground XlColor Set/Get the color of the series marker background.
ColorIndex Index Use the XlColorIndex constants or an index value in

the current color palette

MarkerForeground Long Set/Get the color of the series points marker
Color foreground. Use the RGB function to create the color

value

MarkerForeground XlColor Set/Get the color of the series points marker
ColorIndex Index foreground. Use the XlColorIndex constants or an

index value in the current color palette

874

Series Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 874

Name Returns Description

MarkerSize Long Set/Get the size of the point key marker

MarkerStyle XlMarker Set/Get the type of marker to use as the point key (for
Style example, square, diamond, triangle, picture, and so on)

Name String Set/Get the name of the series

PictureType XlChart Set/Get how an associated picture is displayed on the
Picture series (for example, stretched, tiled). Use the
Type XlPictureType constants

PictureUnit2 Long Set/Get how many units a picture represents if the
PictureType property is set to xlScale

PlotOrder Long Set/Get the plotting order for this particular series in
the SeriesCollection

Shadow Boolean Set/Get whether the points in the series will have a
shadow effect

Smooth Boolean Set/Get whether scatter or line charts will have curves
smoothed

Type Long Set/Get the type of series

Values Variant Set/Get the range containing the series values or an
array of fixed values containing the series values

XValues Variant Set/Get the array of x values coming from a range or
an array of fixed values

Series Methods

Name Returns Parameters Description

ApplyData Labels Variant [Type As Applies the data label
XlDataLabels properties specified by the
Type], parameters to the series.
[LegendKey], The Type parameter
[AutoText], specifies whether no label,
[HasLeader a value, a percentage of the
Lines], whole, or a category label
[ShowSeries is shown. The legend key
Name], [ShowCategory can appear by the point by
Name], setting the LegendKey
[ShowValue], parameter to True. Set the
[Show Percentage], HasLeaderLines to True
[ShowBubble to add leader lines to the
Size], series
[Separator]

Table continued on following page

875

Series Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 875

Name Returns Parameters Description

ClearFormats Variant Clears the formatting
made on the series

Copy Variant Copies the series into the
clipboard

DataLabels Object [Index] Returns the collection of
data labels in a series. If
the Index parameter is
specified, then only a sin-
gle data label is returned

Delete Variant Deletes the series from the
series collection

ErrorBar Variant [Direction Adds error bars to the
As XlErrorBar series. The Direction
Direction], parameter chooses
[Include As whether the bar appears
XlErrorBar Include], on the x or y axis. The
[Type As Include parameter
XlErrorBar specifies which error parts
Type], to include. The Type
[Amount], parameter decides the type
[MinusValues] of error bar to use. The

Amount parameter is used
to choose an error amount.
The MinusValues param-
eter takes the negative
error amount to use when
the Type parameter is
xlErrorBarTypeCustom

Paste Variant Uses the picture in the
Clipboard as the marker
on the points in the series

Points [Index] Returns either the collec-
tion of points associated
with the series or a single
point if the Index parame-
ter is specified

Select Variant Selects the series’ points on
the chart

Trendlines [Index] Returns either the collection
of trendlines associated
with the series or a single
trendline if the Index
parameter is specified

876

Series Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 876

See the DataLabel object in this appendix for an example of using the Series object.

SeriesLines Object
The SeriesLines object accesses the series lines connecting data values from each series. This object
only applies to 2D stacked bar or column chart groups. The parent of the SeriesLines object is the
ChartGroup object.

SeriesLines Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

SeriesLines Properties

Name Returns Description

Border Border Read-only. Returns the border’s properties around the series
lines

Format ChartFormat Returns the ChartFormat object, which controls the line, fill,
and effect formatting for the chart area

Name String Read-only. Returns the name of the SeriesLines object

SeriesLines Methods

Name Returns Description

Delete Variant Deletes the SeriesLines object

Select Variant Selects the series lines in the chart

SeriesLines Object Example
Sub FormatSeriesLines()

Dim oCG As ChartGroup
Dim oSL As SeriesLines
‘Loop through the column groups on the chart
For Each oCG In ActiveSheet.ChartObjects(“Chart 1”).Chart.ColumnGroups

‘Make sure we have some series lines
oCG.HasSeriesLines = True
‘Get the series lines
Set oSL = oCG.SeriesLines
‘Format the lines
With oSL

.Border.Weight = xlThin

.Border.ColorIndex = 5
End With

Next
End Sub

877

SeriesLines Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 877

ServerViewableItems Collection
The ServerViewableItems collection allows you to programmatically define the objects in a workbook
that will be viewable through Excel Services. By default, when you choose to publish your workbook to
Excel Services, the entire workbook is shown. After you set the ServerViewableItems, you can view
the collection of objects that are marked as viewable in the Excel Services Options dialog box. Note that
only one ServerViewableItems object can exist per workbook. The ServerViewableItems collection
has no properties outside the typical collection attributes listed at the beginning of this appendix.

ServerViewableItems Methods

Name Returns Parameters Description

Add Object Object as Variant Adds a reference to the
ServerViewableItems collection
for the workbook

Delete Index As Long Deletes a reference to an object
within the ServerViewableItems
collection

DeleteAll Deletes the references to all objects
within the ServerViewableItems
collection for the workbook

ServerViewableItems Collection Example
The following example ensures that the chart and the PivotTable on the Summary sheet are the only
items that will be viewable in Excel Services:

Sub MakeObjectsViewable()
‘Clear the ServerViewableItems collection

ActiveWorkbook.ServerViewableItems.DeleteAll

‘Make only the pivot table and the chart on Summary sheet viewable
With ActiveWorkbook.ServerViewableItems

.Add ActiveWorkbook.Sheets(“Summary”).PivotTables(“PivotTable1”)

.Add ActiveWorkbook.Sheets(“Summary”).ChartObjects(“Chart 1”)
End With

End Sub

ShadowFormat Object
The ShadowFormat object allows manipulation of the shadow formatting properties of a parent Shape
object. Use the Shadow property of the Shape object to access the ShadowFormat object.

ShadowFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

878

ServerViewableItems Collection

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 878

ShadowFormat Properties

Name Returns Description

Blur Single Set/Get the degree of blurriness of the specified
shadow

ForeColor ColorFormat Set/Get the shadow forecolor

Obscured MsoTriState Set/Get whether or not the shape obscures the shadow

OffsetX Single Set/Get the horizontal shadow offset

OffsetY Single Set/Get the vertical shadow offset

RotateWith Boolean Set/Get whether to rotate the shadow when rotating
Shape the shape

Size Single Set/Get the size of the specified shadow

Style MsoShadowStyle Set/Get the style of the specified shadow

Transparency Single Set/Get the transparency of the shadow (0 to 1, where
1 is clear)

Type MsoShadow Type Set/Get the shadow type

Visible MsoTriState Set/Get whether the shadow is visible

ShadowFormat Methods

Name Parameters Description

Increment Increment As Changes the horizontal shadow offset
OffsetX Single

Increment Increment As Changes the vertical shadow offset
OffsetY Single

ShadowFormat Object Example
Sub AddShadow()

Dim oSF As ShadowFormat
Set oSF = ActiveSheet.Shapes.Range(1).Shadow
With oSF

.Type = msoShadow6

.OffsetX = 5

.OffsetY = 5

.ForeColor.SchemeColor = 2

.Visible = True
End With

End Sub

879

ShadowFormat Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 879

Shape Object and the Shapes Collection
The Shapes collection holds the list of shapes for a sheet. The Shape object represents a single shape
such as an AutoShape, a freeform shape, an OLE object (such as an image), an ActiveX control, or a pic-
ture. Possible parent objects of the Shapes collection are the Worksheet and Chart objects.

The Shapes collection has a few methods and properties besides the typical collection attributes. They
are listed in the following table.

Shapes Collection Properties and Methods

Name Returns Description

Range ShapeRange Read-only. Parameters: Index. Returns a ShapeRange
object containing only some of the shapes in the Shapes
collection

AddCallout Shape Method. Parameters: Type As MsoCalloutType, Left
As Single, Top As Single, Width As Single, Height
As Single. Adds a callout line shape to the collection

AddChart Shape Method. Parameters: Type As xlChartType, Left, Top,
Width, Height. Adds a chart at a specified location

AddConnector Shape Method. Parameters: Type As MsoConnectorType,
BeginX As Single, BeginY As Single, EndX As
Single, EndY As Single. Adds a connector shape to the
collection

AddCurve Shape Method. Parameters: SafeArrayOfPoints. Adds a
Bezier curve to the collection

AddFormControl Shape Method. Parameters: Type As XlFormControl, Left As
Long, Top As Long, Width As Long, Height As Long.
Adds an Excel control to the collection

AddLabel Shape Method. Parameters: Orientation As MsoText-
Orientation, Left As Single, Top As Single, Width
As Single, Height As Single. Adds a label to the
collection

AddLine Shape Method. Parameters: BeginX As Single, BeginY As
Single, EndX As Single, EndY As Single. Adds a line
shape to the collection

AddOLEObject Shape Method. Parameters: [ClassType], [Filename],
[Link], [DisplayAsIcon], [IconFileName],
[IconIndex], [IconLabel], [Left], [Top], [Width],
[Height]. Adds an OLE control to the collection

AddPicture Shape Method. Parameters: Filename As String, LinkToFile
As MsoTriState, SaveWithDocument As
MsoTriState, Left As Single, Top As Single, Width
As Single, Height As Single. Adds a picture object to
the collection

880

Shape Object and the Shapes Collection

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 880

Name Returns Description

AddPolyline Shape Method. Parameters: SafeArrayOfPoints. Adds an
open polyline or a closed polygon to the collection

AddShape Shape Method. Parameters: Type As MsoAutoShapeType, Left
As Single, Top As Single, Width As Single, Height
As Single. Adds a shape using the Type parameter to
the collection

AddTextbox Shape Method. Parameters: Orientation As MsoTextOrien-
tation, Left As Single, Top As Single, Width As
Single, Height As Single. Adds a textbox to the
collection

AddText Shape Method. Parameters: PresetTextEffect As
Effect MsoPresetTextEffect, Text As String, FontName As

String, FontSize As Single, FontBold As MsoTriState,
FontItalic As MsoTriState, Left As Single, Top As
Single. Adds a WordArt object to the collection

Build Freeform Method. Parameters: EditingType As MsoEditingType,
Freeform Builder X1 As Single, Y1 As Single. Accesses an object that

allows creation of a new shape based on ShapeNode
objects

SelectAll Method. Selects all the shapes in the collection

Shape Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Shape Properties

Name Returns Description

Adjustments Adjustments Read-only. An object accessing the adjustments for a
shape

AlternativeText String Set/Get the alternate text to appear if the image is not
loaded. Used with a web page

AutoShapeType MsoAuto Set/Get the type of AutoShape used
ShapeType

BackgroundStyle MsoBackground Set/Get an MsoBackgroundStyleIndex constant
StyleIndex representing the background style

BlackWhite MsoBlack Property used for compatibility with other drawing
Mode WhiteMode packages only. Does not do anything

BottomRight Range Read-only. Returns the single cell range that describes
Cell the cell under the lower-right corner of the shape

Table continued on following page

881

Shape Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 881

Name Returns Description

Callout Callout Read-only. An object accessing the callout properties of
Format the shape

Chart Chart Read-only. Returns the chart object contained in a given
shape

Child MsoTriState Read-only. Returns whether the specified shape is a child
shape, or if all shapes in a shape range are child shapes
of the same parent

Connection Long Read-only. Returns the number of potential connection
SiteCount points (sites) on the shape for a connector

Connector MsoTriState Read-only. Returns whether the shape is a connector

Connector Connector Read-only. Returns an object containing formatting
Format Format options for a connector shape. Shape must be a connector

shape

ControlFormat Control Read-only. Returns an object containing formatting
Format options for an Excel control. Shape must be an Excel

control

Diagram Diagram Read-only. Returns a Diagram object

DiagramNode DiagramNode Read-only. Returns a node in the diagram

Fill FillFormat Read-only. Returns an object containing fill formatting
options for the Shape object

FormControl XlForm Read-only. Returns the type of Excel control the current
Type Control shape is (for example, xlCheck Box). Shape must be an

Excel control

Glow GlowFormat Read-only. Returns the glow formatting properties
through the GlowFormat object

GroupItems GroupShapes Read-only. Returns the shapes that make up the current
shape

HasChart MsoTriState Read-only. Returns whether a shape or shape range con-
tains a chart

Height Single Set/Get the height of the shape

Horizontal MsoTriState Read-only. Returns whether the shape has been flipped
Flip

Hyperlink Hyperlink Read-only. Returns the hyperlink of the shape, if any

ID Long Read-only. Returns the type for the specified object

Left Single Set/Get the horizontal position of the shape

Line LineFormat Read-only. An object accessing the line formatting of the
shape

882

Shape Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 882

Name Returns Description

LinkFormat LinkFormat Read-only. An object accessing the OLE linking
properties

LockAspect MsoTriState Set/Get whether the dimensional proportions of the
Ratio shape are kept when the shape is resized

Locked Boolean Set/Get whether the shape can be modified if the sheet is
locked (True = cannot modify)

Name String Set/Get the name of the Shape object

Nodes ShapeNodes Read-only. An object accessing the nodes of the freeform
shape

OLEFormat OLEFormat Read-only. An object accessing OLE object properties, if
applicable

OnAction String Set/Get the macro to run when the shape is clicked

ParentGroup Shape Read-only. Returns the common parent shape of a child
shape or a range of child shapes

PictureFormat Picture Read-only. An object accessing the picture format options
Format

Placement XlPlacement Set/Get how the object will react with the cells around
the shape

Reflection Reflection Read-only. Returns the reflection formatting properties
Format through the ReflectionFormat object

Rotation Single Set/Get the degrees rotation of the shape

Script Script Read-only. Returns the VBScript associated with the
shape

Shadow Shadow Read-only. An object accessing the shadow properties
Format

ShapeStyle MsoShapte Set/Get an MsoShapteStyleIndex constant
StyleIndex representing the shape style of the Shape object

SoftEdge SoftEdge Read-only. Returns the SoftEdge formatting properties
Format through the SoftEdgeFormat object

TextEffect TextEffect Read-only. An object accessing the text effect properties
Format

TextFrame TextFrame Read-only. An object accessing the text frame properties

TextFrame2 TextFrame2 Read-only. An object accessing the text frame properties

ThreeD ThreeD Read-only. An object accessing the 3D effect formatting
Format properties

Top Single Set/Get the vertical position of the shape

Table continued on following page

883

Shape Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 883

Name Returns Description

TopLeftCell Range Read-only. Returns the single cell range that describes
the cell over the upper-left corner of the shape

Type MsoShape Read-only. Returns the type of shape
Type

VerticalFlip MsoTriState Read-only. Returns whether the shape has been vertically
flipped

Vertices Variant Read-only. Returns a series of coordinate pairs describing
the Freeform’s vertices

Visible MsoTriState Set/Get whether the shape is visible

Width Single Set/Get the width of the shape

ZOrder Long Read-only. Returns where the shape is in the ZOrder of
Position the collection (for example, front, back)

Shape Methods

Name Returns Parameters Description

Apply Applies formatting that has
been copied using the PickUp
method

Copy Copies the shape to the
clipboard

CopyPicture [Appearance Copies the range into the
As XLPicture clipboard as a picture. The
Appearance], Appearance parameter can be
[Format As used to specify whether the
XlCopyPicture picture is copied as it looks on
Format] the screen or when printed.

The Format parameter can
specify the type of picture that
will be put into the clipboard

Cut Cuts the shape and places it in
the clipboard

Delete Deletes the shape

Duplicate Shape Duplicates the shape return-
ing the new shape

Flip FlipCmd As Flips the shape using the
MsoFlipCmd FlipCmd parameter

884

Shape Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 884

Name Returns Parameters Description

Increment Increment Moves the shape horizontally
Left As Single

Increment Increment Rotates the shape using the
Rotation As Single Increment parameter as

degrees

IncrementTop Increment Moves the shape vertically
As Single

PickUp Copies the format of the cur-
rent shape so another shape
can then apply the formats

Reroute Optimizes the route of the
Connections current connector shape con-

nected between two shapes.
Also, this method may be
used to optimize all the routes
of connectors connected to the
current shape

ScaleHeight Factor As Scales the height of the shape
Single, by the Factor parameter
RelativeTo
OriginalSize
As MsoTriState,
[Scale]

ScaleWidth Factor As Scales the width of the shape
Single, by the Factor parameter
RelativeTo
OriginalSize
As MsoTriState,
[Scale]

Select [Replace] Selects the shape in the
document

SetShapes Sets the formatting of the
Default current shape as a default
Properties shape in Word

Ungroup ShapeRange Breaks apart the shapes that
make up the Shape object

ZOrder ZOrderCmd Changes the order of the
As MsoZ shape object in the collection
OrderCmd

885

Shape Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 885

ShapeNode Object and the ShapeNodes Collection
The ShapeNodes collection has the list of nodes and curved segments that make up a freeform shape.
The ShapeNode object specifies a single node or curved segment that makes up a freeform shape. The
Nodes property of the Shape object is used to access the ShapeNodes collection. The ShapeNodes collec-
tion has no properties outside the typical collection attributes listed at the beginning of this appendix.

ShapeNodes Collection Methods

Name Returns Description

Count Integer Read-only. Returns the number of ShapeNode objects in
the collection

Delete Method. Parameters: Index As Long. Deletes the node
specified by the Index

Insert Method. Parameters: Index As Long, SegmentType As
MsoSegmentType, EditingType As MsoEditingType,
X1, Y1, X2, Y2, X3, Y3. Inserts a node or curved segment in
the Nodes collection

SetEditing Type Method. Parameters: Index As Long, EditingType As
MsoEditingType. Sets the editing type for a node

SetPosition Method. Parameters: Index As Long, X1 As Single, Y1
As Single. Moves the specified node

SetSegment Type Method. Parameters: Index As Long, SegmentType As
MsoSegmentType. Changes the segment type following
the node

ShapeNode Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ShapeNode Properties

Name Returns Description

EditingType MsoEditing Read-only. Returns the editing type for the node
Type

Points Variant Read-only. Returns the positional coordinate pair

SegmentType MsoSegment Read-only. Returns the type of segment following the
Type node

886

ShapeNode Object and the ShapeNodes Collection

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 886

ShapeNode Object and the ShapeNodes Collection Example
Sub ToggleArch()

Dim oShp As Shape
Dim oSN As ShapeNodes
Set oShp = ActiveSheet.Shapes(1)
‘Is the Shape a freeform?
If oShp.Type = msoFreeform Then

‘Yes, so get its nodes
Set oSN = oShp.Nodes
‘Toggle segment 3 between a line and a curve
If oSN.Item(3).SegmentType = msoSegmentCurve Then

oSN.SetSegmentType 3, msoSegmentLine
Else

oSN.SetSegmentType 3, msoSegmentCurve
End If

End If
End Sub

ShapeRange Collection
The ShapeRange collection holds a collection of Shape objects for a certain range or selection in a docu-
ment. Possible parent items are the Range and Selection objects. The ShapeRange collection has many
properties and methods besides the typical collection attributes. These items are listed next.

It’s important to note that some operations will cause an error if performed on a ShapeRange collection
with multiple shapes.

ShapeRange Properties

Name Returns Description

Adjustments Adjustments Read-only. An object accessing the adjustments
for a shape

AlternativeText String Set/Get the alternative text to appear if the
image is not loaded. Used with a web page

AutoShapeType MsoAuto Set/Get the type of AutoShape used
ShapeType

BackgroundStyle MsoBackground Set/Get an MsoBackgroundStyleIndex
StyleIndex constant representing the background style

BlackWhiteMode MsoBlack Property used for compatibility with other
WhiteMode drawing packages only. Does not do anything

Callout Callout Read-only. An object accessing the callout
Format properties of the shape

Chart Chart Read-only. Returns the chart object contained in
a given shape range

Table continued on following page

887

ShapeNode Object and the ShapeNodes Collection Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 887

Name Returns Description

Child MsoTriState Read-only. Returns whether the specified shape
is a child shape, or if all shapes in a shape range
are child shapes of the same parent

Connection Long Read-only. Returns the number of potential
SiteCount connection points (sites) on the shape for a

connector

Connector MsoTriState Read-only. Returns whether the shape is a
connector

Connector Connector Format Read-only. Returns an object containing
Format formatting options for a connector shape. Shape

must be a connector shape

Fill FillFormat Read-only. An object accessing the fill proper-
ties of the shape

Glow GlowFormat Read-only. Returns the glow formatting proper-
ties through the GlowFormat object

GroupItems GroupShapes Read-only. Returns the shapes that make up the
current shape

HasChart MsoTriState Read-only. Returns whether a shape or shape
range contains a chart

Height Single Set/Get the height of the shape

Horizontal MsoTriState Read-only. Returns whether the shape has been
Flip flipped

ID Long Read-only. Returns the type for the specified
object

Left Single Set/Get the horizontal position of the shape

Line LineFormat Read-only. An object accessing the line format-
ting of the shape

LockAspect MsoTriState Set/Get whether the dimensional proportions
Ratio of the shape are kept when the shape is resized

Name String Set/Get the name of the shape

Nodes ShapeNodes Read-only. Returns the nodes associated with
the shape

ParentGroup Shape Read-only. Returns the common parent shape
of a child shape or a range of child shapes

PictureFormat Picture Read-only. An object accessing the picture
Format format options

888

ShapeRange Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 888

Name Returns Description

Reflection Reflection Read-only. Returns the reflection formatting
Format properties through the ReflectionFormat

object

Rotation Single Set/Get the degrees rotation of the shape

Shadow Shadow Read-only. An object accessing the shadow
Format properties

ShapeStyle MsoShapteStyle Set/Get an MsoShapteStyleIndex constant
Index representing the shape style of the Shape object

SoftEdge SoftEdgeFormat Read-only. Returns the SoftEdge formatting
properties through the SoftEdgeFormat object

TextEffect TextEffect Read-only. An object accessing the text effect
Format properties

TextFrame TextFrame Read-only. An object accessing the text frame
properties

TextFrame2 TextFrame2 Read-only. Returns the text formatting proper-
ties through the TextFrame2 object

ThreeD ThreeD Read-only. An object accessing the 3D effect
Format formatting properties

Top Single Set/Get the vertical position of the shape

Type MsoShape Type Read-only. Returns the type of shape

VerticalFlip MsoTriState Read-only. Returns whether the shape has been
vertically flipped

Vertices Variant Read-only. Returns a series of coordinate pairs
describing the Freeform’s vertices

Visible MsoTriState Set/Get whether the shape is visible

Width Single Set/Get the width of the shape

ZOrderPosition Long Read-only. Changes the order of the object in
the collection

ShapeRange Methods

Name Returns Parameters Description

Align AlignCmd As Aligns the shapes in the
MsoAlignCmd, collection to the alignment
RelativeTo properties set by the
As MsoTriState parameters

Table continued on following page

889

ShapeRange Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 889

Name Returns Parameters Description

Apply Applies the formatting that was
set by the PickUp method

Delete Deletes the shape

Distribute DistributeCmd As Distributes the shapes in the
MsoDistribute collection evenly, either
Cmd, RelativeTo horizontally or vertically
As MsoTriState

Duplicate ShapeRange Duplicates the shape and
returns a new ShapeRange

Flip FlipCmd Flips the shape using the
As MsoFlipCmd FlipCmd parameter

Group Shape Groups the shapes in the
collection

IncrementLeft Increment Moves the shape horizontally
As Single

Increment Increment Rotates the shape using the
Rotation As Single Increment parameter as

degrees

IncrementTop Increment Moves the shape vertically
As Single

PickUp Copies the format of the cur-
rent shape so another shape can
then apply the formats

Regroup Shape Regroups any previously
grouped shapes

Reroute Optimizes the route of the
Connections current connector shape con-

nected between two shapes.
Also, this method may be used
to optimize all the routes of
connectors connected to the
current shape

ScaleHeight Factor As Scales the height of the shape
Single, by the Factor parameter
RelativeTo
OriginalSize As
MsoTriState,
[Scale]

890

ShapeRange Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 890

Name Returns Parameters Description

ScaleWidth Factor As Scales the width of the shape
Single, by the Factor parameter
RelativeTo
OriginalSize As
MsoTriState,
[Scale]

Select [Replace] Selects the shape in the
document

SetShapes Sets the formatting of the
Default current shape as a default
Properties shape in Word

Ungroup ShapeRange Breaks apart the shapes that
make up the Shape object

ZOrder ZOrderCmd Changes the order of the Shape
As MsoZOrderCmd object in the collection

ShapeRange Collection Example
Sub AlignShapeRanges()

Dim oSR As ShapeRange
‘Get the first two shapes on the sheet
Set oSR = ActiveSheet.Shapes.Range(Array(1, 2))
‘Align the left-hand edges of the shapes
oSR.Align msoAlignLefts, msoFalse

End Sub

Sheets Collection
The Sheets collection contains all of the sheets in the parent workbook. Sheets in a workbook consist of
chart sheets and worksheets. Therefore, the Sheets collection holds both the Chart objects and
Worksheet objects associated with the parent workbook. The parent of the Sheets collection is the
Workbook object.

Sheets Common Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

891

ShapeRange Collection Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 891

Sheets Properties

Name Returns Description

HPageBreaks HPageBreaks Read-only. Returns a collection holding all the hori-
zontal page breaks associated with the Sheets
collection

Visible Variant Set/Get whether the sheets in the collection are visi-
ble. Also, can set this to xlVeryHidden to prevent a
user from making the sheets in the collection visible

VPageBreaks VpageBreaks Read-only. Returns a collection holding all the verti-
cal page breaks associated with the worksheets of
the Sheets collection

Sheets Methods

Name Returns Parameters Description

Add Object [Before], Adds a sheet to the collection.
[After], You can specify where the
[Count], sheet goes by choosing which
[Type] sheet object will be before the

new sheet object (Before
parameter) or after the new
sheet (After parameter). The
Count parameter decides how
many sheets are created. The
Type parameter can be used to
specify the type of sheet using
the XLSheetType constants

Copy [Before], Adds a new copy of the
[After] currently active sheet to the

position specified in the
Before or After parameters

Delete Deletes all the sheets in the
collection. Remember, a work-
book must contain at least one
sheet

FillAcross Sheets RangeAs Copies the values in the Range
Range, Type parameter to all the other
As XlFillWith sheets at the same location.

The Type parameter can be
used to specify whether cell
contents, formulas, or every-
thing is copied

892

Sheets Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 892

Name Returns Parameters Description

Move [Before], Moves the current sheet to the
[After] position specified by the

parameters. See the Add
method

PrintOut [From], Prints out the sheets in the
[To], collection. The printer, number
[Copies], of copies, collation, and
[Preview], whether a print preview is
[Active desired can be specified with
Printer], the parameters. Also, the
[Print sheets can be printed to a file
ToFile], using the PrintToFile and
[Collate], PrToFileName parameters.
[PrToFile The From and To parameters
Name] can be used to specify the

range of printed pages

Print [Enable Displays the current sheet in
Preview Changes] the collection in a print

preview mode. Set the
EnableChanges parameter to
False to disable the Margins
and Setup buttons, hence not
allowing the viewer to modify
the page setup

Select [Replace] Selects the current sheet in the
collection

SheetViews Object
The Sheetviews collection represents all the sheet views in the specified or active workbook window.
This collection has no properties or methods outside of the common Application, Count, Item, and
Parent properties, which are defined at the beginning of this appendix.

SmartTag Object and the SmartTags Collection Object
The SmartTag object represents an identifier that is assigned to a cell. Excel comes with many
SmartTags, such as the Stock Ticker and Date recognizer, built in. However, you may also write your
own SmartTags in Visual Basic.

The SmartTags collection represents all the SmartTags assigned to cells in an application.

SmartTags Collection Common Properties
Along with the typical collection attributes, the SmartTags collection has an Add method that adds a
SmartTag object to the collection.

893

SheetViews Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 893

SmartTag Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

SmartTag Properties

Name Returns Description

DownloadURL String Read-only. Returns a URL to save along with the corre-
sponding SmartTag

Name String Read-only. Returns the name of the SmartTag

Properties Custom Read-only. Returns the properties of the SmartTag
Properties

Range Range Read-only. Returns the range to which the specified Smart-
Tag applies

SmartTag SmartTag Read-only. Returns the type of action for the selected
Actions Actions SmartTag

XML String Read-only. Returns a sample of the XML that would be
passed to the action handler

SmartTag Methods

Name Description

Delete Deletes the object

SmartTagAction Object and the SmartTagActions
Collection Object

The SmartTagAction object represents an action that can be performed by a SmartTag. This may
involve displaying the latest price for a stock symbol, or setting up an appointment on a certain date.

The SmartTagActions collection represents all of the SmartTagAction objects in the application.

SmartTagAction Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

SmartTagAction Properties

Name Returns Description

ActiveXControl Object Reference to an ActiveX control that is currently in the
Document Actions task pane

CheckboxState Boolean Returns True if the checkbox is checked; otherwise, False
is returned

894

SmartTag Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 894

Name Returns Description

ExpandHelp Boolean Returns True if the smart document help control is cur-
rently expanded. If not, False is returned

ListSelection Long Returns a index number for an item within a List control

Name String Read-only. Returns the name of the SmartTag

PresentInPane Boolean Returns a Boolean value indicating if a smart document
control is currently being shown in the Document Actions
task pane

RadioGroup Long Returns an index number to the currently selected radio
Selection button within a RadioGroup control

TextboxText String Returns the text within a TextBox control

Type xlSmartTag Returns a constant of the xlSmartTagControlType
ControlType enumeration, representing the type of Smart Document

control displayed in the Document Actions task pane

SmartTagAction Methods

Name Description

Execute Activates the SmartTag action

SmartTagOptions Collection Object
The SmartTagOptions collection represents all the options of a SmartTag. For instance, it determines
whether SmartTags should be embedded in the worksheet, or if they should be displayed at all.

SmartTagOptions Collection Properties

Name Returns Description

DisplaySmart XlSmartTag Set/Get the display features for SmartTags
Tags DisplayMode

EmbedSmartTags Boolean Set/Get whether to embed SmartTags on the specified
workbook

SmartTagRecognizer Object and the SmartTagRecognizers
Collection Object

The SmartTagRecognizer object represents the recognizer engines that label the data in the worksheet.
These can be user-defined, and as such, any kind of information can be identified by SmartTags.

The SmartTagRecognizers collection represents all of the SmartTagRecognizer objects in the application.

895

SmartTagAction Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 895

SmartTagRecognizers Collection Properties

Name Returns Description

Recognize Boolean Set/Get whether data can be labeled with a SmartTag

SmartTagRecognizer Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

SmartTagRecognizer Properties

Name Returns Description

Enabled Boolean Set/Get whether the object is recognized

FullName String Read-only. Returns the name of the object, including its
path on disk, as a string

ProgId String Read-only. Returns the programmatic identifiers for the
object

Sort Object
The Sort object exposes the properties and methods to programmatically manipulate the sorting of a
range of data.

Sort Common Properties
The Application and Parent properties are defined at the beginning of this appendix.

Sort Properties

Name Returns Description

Header XlYesNoGuess Set/Get whether the first row contains header information

MatchCase Boolean Set/Get whether the sort is case-sensitive

Orientation XlSort Set/Get the orientation for the sort (Column sort or Row
Orientation sort)

Rng Range Read-only. Returns the range of values on which the sort is
performed

SortFields SortFields Read-only. Allows for the storing of sort state on work-
books, lists, and autofilters

SortMethod XlSortMethod Set/Get the sort method for Chinese languages

896

SmartTagRecognizers Collection Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 896

Sort Methods

Name Returns Parameters Description

Apply Applies the copied sort formatting

SetRange [Rng] AS Range Sets the starting and ending character
positions for Sort object

SortField Object and the SortFields Collection
The SortFields collection is a collection of SortField objects that allow developers to store a sort state
on workbooks, lists, and autofilters.

SortFields Common Properties
The Application, Count, and Parent properties are defined at the beginning of this appendix.

SortFields Methods

Name Returns Parameters Description

Add Applies the copied sort formatting

Clear Clears all the SortFields objects

SortField Common Properties
The Application and Parent properties are defined at the beginning of this appendix.

SortField Properties

Name Returns Description

CustomOrder Variant Set/Get a custom order to sort the fields

DataOption XlSortDataOption Set/Get how to sort text in the range specified in
SortField object

Key Range Read-only. Specifies the sort field that determines
the values to be sorted

Order XlSortOrder Set/Get the sort order for the values specified in
the key

Priority Long Set/Get the priority for the sort field

SortOn XlSortOn Set/Get the attribute of the cell on which to sort

SortOnValue Object Read-only. Retuns the value on which the sort is
performed for the specified SortField object

897

Sort Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 897

SortField Methods

Name Returns Parameters Description

Delete Removes the specified SortField
object from the SortFields collection

ModifyKey [Key] As Range Modifies the key value by which values
are sorted in the field

SetIcon [Icon] as Icon Sets an icon for a SortField object

SoundNote Object
The SoundNote object is not used in the current version of Excel. It is kept here for compatibility pur-
poses only. The list of its methods is shown next.

SoundNote Methods

Name Returns Parameters

Delete Variant

Import Variant Filename As String

Play Variant

Record Variant

Speech Object
Represents the speech recognition applet that comes with Office. This new Speech feature allows text to
be read back on demand, or when you enter data on a document. For Excel, you have the option of hav-
ing each cell’s contents read back as they are entered on the worksheet. Use the SpeakCellOnEnter
property of this object to enable this feature.

Speech is accessible through the Application object.

Speech Properties

Name Returns Description

Direction XlSpeak Direction Set/Get the order in which the cells
will be spoken

SpeakCellOn Boolean Set/Get whether to turn on Excel’s
Enter mode where the active cell will be

spoken when the Enter key is pressed,
or when the active cell is finished being
edited

898

SortField Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 898

Speech Methods

Name Returns Parameters Description

Speak Text As String, The Text is spoken by Excel. If
[SpeakAsync], Purge is True, the current speech
[SpeakXML],[Purge] will be terminated and any buffered

text will be purged before Text is
spoken

Speech Object Example
The following routine reads off the expense totals for all items that are greater than a limit set in another
cell on the sheet:

Sub ReadHighExpenses()

Dim lTotal As Long
Dim lLimit As Long
Dim rng As Range

‘Grab the limitation amount
lLimit = wksAllowEditRange.Range(“Limit”)

‘Loop through the expense totals
For Each rng In wksAllowEditRange.Range(“Expenses”)

‘Store the current expense total
lTotal = rng.Offset(0, 5).Value

‘If the current total is greater than
‘ the limit, read it off
If lTotal > lLimit Then

Application.Speech.Speak rng.Text
Application.Speech.Speak lTotal

End If
Next rng

End Sub

SpellingOptions Collection Object
Represents the spelling options in Excel. These options can be found on the Proofing section of the Excel
Options dialog box and are accessed through the Application object. Hence, this object is accessible
through the Application object.

899

Speech Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 899

SpellingOptions Collection Properties

Name Returns Description

ArabicModes XlArabic Modes Set/Get the mode for the Arabic spelling checker

DictLang Long Set/Get the dictionary language used by Excel for
checking spelling

GermanPost Boolean Set/Get whether to check the spelling of words
Reform using the German post-reform rules

HebrewModes XlHebrew Modes Set/Get the mode for the Hebrew spelling checker

IgnoreCaps Boolean Set/Get whether to check for uppercase words, or
lowercase words during spelling checks

IgnoreFile Boolean Set/Get whether to check for Internet and file
Names addresses during spelling checks

IgnoreMixed Boolean Set/Get whether to check for mixed digits during
Digits spelling checks

KoreanCombine Boolean Set/Get whether to combine Korean auxiliary verbs
Aux and adjectives when using the spelling checker

KoreanProcess Boolean Set/Get whether to process Korean compound
Compound nouns when using the spelling checker

KoreanUseAuto Boolean Set/Get whether to use the auto-change list for
ChangeList Korean words when using the spelling checker

SuggestMain Boolean Set/Get whether to suggest words from only the
Only main dictionary for using the spelling checker

UserDict String Set/Get whether to create a custom dictionary to
which new words can be added when performing
spelling checks

SpellingOptions Collection Object Example
The following routine sets some spelling options and creates a new custom dictionary where added
words during a spellcheck can be found:

Sub SetSpellingOptions()

‘This one is as simple as it gets
With Application.SpellingOptions

.IgnoreCaps = True

.IgnoreFileNames = True

.IgnoreMixedDigits = True

.SuggestMainOnly = False

‘This property creates a custom dictionary
‘ called Wrox.dic, which can be found and directly edited

900

SpellingOptions Collection Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 900

‘ in C:\WINDOWS\Application Data\Microsoft\Proof.
‘Added words during a spellcheck will now appear
‘ in this custom dictionary.
.UserDict = “Wrox.dic”

End With
End Sub

Style Object and the Styles Collection
The Styles collection holds the list of user-defined and built-in formatting styles, such as Currency and
Normal, in a workbook or range. Each Style object represents formatting attributes associated with the
parent object. There are some Excel built-in Style objects, such as Currency. Also, new styles can be
created. Possible parents of the Styles collection are the Range and Workbook objects.

The Styles collection has two extra attributes besides the typical collection ones. The Add method uses
the Name parameter to add a new style to the collection. The BasedOn parameter of the Add method can
be used to specify a range that the new style will be based on. The Merge method merges the styles in
the workbook specified by the Workbook parameter into the current parent workbook.

Style Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Style Properties

Name Returns Description

AddIndent Boolean Set/Get whether text associated with the style is auto-
matically indented if the text alignment in a cell is set to
equally distribute

Borders Borders Read-only. Returns the collection of borders associated
with the style. Each border side can be accessed indi-
vidually

BuiltIn Boolean Read-only. Returns whether the style is built-in

Font Font Read-only. Returns an object containing Font options
for the associated style

FormulaHidden Boolean Set/Get whether formulas associated with the style will
be hidden if the workbook/worksheet is protected

Horizontal XlHAlign Set/Get how the cells associated with the style are
Alignment horizontally aligned. Use the XlHAlign constants

IncludeAlignment Boolean Set/Get whether the styles include properties associ-
ated with alignment (that is, AddIndent, Horizonta-
lAlignment, Vertical Alignment, WrapText, and
Orientation)

Table continued on following page

901

Style Object and the Styles Collection

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 901

Name Returns Description

IncludeBorder Boolean Set/Get whether border attributes are included with
the style (that is, Color, ColorIndex, LineStyle, and
Weight)

IncludeFont Boolean Set/Get whether font attributes are included in the
style (that is, Background, Bold, Color, ColorIndex,
FontStyle, Italic, Name, OutlineFont, Shadow,
Size, Strikethrough, Subscript, Superscript, and
Underline)

IncludeNumber Boolean Set/Get whether the NumberFormat property is
included in the style

Include Boolean Set/Get whether interior pattern related properties are
Patterns included in the style (that is, Color, ColorIndex,

InvertIfNegative, Pattern, PatternColor, and
PatternColorIndex)

Include Boolean Set/Get whether the locking related properties are
Protection included with the style (that is, FormulaHidden and

Locked)

IndentLevel Long Set/Get the indent level for the style

Interior Interior Read-only. Returns an object containing options to for-
mat the inside area of the style (for example, interior
color)

Locked Boolean Set/Get whether the style properties can be changed if
the workbook is locked

MergeCells Variant Set/Get whether the current style contains merged cells

Name String Read-only. Returns the name of the style

NameLocal String Read-only. Returns the name of the style in the lan-
guage of the user’s computer

NumberFormat String Set/Get the number format associated with the style

NumberFormat String Set/Get the number format associated with the style in
Local the language of the end user

Orientation Xl Set/Get the text orientation for the cell text associated
Orientation with the style. A value from -90 to 90 degrees can be

specified or an XlOrientation constant

ReadingOrder Long Set/Get whether the text associated with the style is
from right-to-left (xlRTL), left-to-right (xlLTR), or con-
text sensitive (xlContext)

ShrinkToFit Boolean Set/Get whether the cell text associated with the style
will automatically shrink to fit the column width

902

Style Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 902

Name Returns Description

Value String Read-only. Returns the name of the style

Vertical Alignment XlVAlign Set/Get how the cells associated with the style are ver-
tically aligned. Use the XlVAlign constants

WrapText Boolean Set/Get whether cell text wraps in cells associated with
the style

Style Methods

Name Returns Parameters Description

Delete Variant Deletes the style from the collection

Style Object and the Styles Collection Example
Sub UpdateStyles()

Dim oStyle As Style
Set oStyle = ActiveWorkbook.Styles(“Accent4”)
‘Update the Editing style to be unlocked with a default background
With oStyle

.IncludePatterns = True

.IncludeProtection = True

.Locked = False

.Interior.Pattern = xlNone
End With

End Sub

Tab Object
Represents the Sheet tab at the bottom of an Excel chart sheet or worksheet. You will note that you can
customize the sheet’s tab color by using either the Color or ColorIndex properties of this object.

Tab Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Tab Properties

Name Returns Description

Color Variant Set/Get the primary color of the Tab object. Use the
RGB function to create a color value

ColorIndex XlColor Set/Get the color of the interior
Index

Table continued on following page

903

Style Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 903

Name Returns Description

ThemeColor xlTheme Set/Get the theme color in the applied color scheme
Color associated with an object. Should the object have no

association with a theme, then trying to access the
ThemeColor property will result in an error

TintAndShade Single Set/Get a Single value from -1 (darkest) to 1 (lightest),
which darkens or lightens a color. Zero (0) is neutral

Tab Object Example
The following routine changes the tab color for all budget worksheets in a workbook based on a setting
in a custom property for each worksheet:

Sub ColorBudgetTabs()
Dim bBudget As Boolean
Dim oCustomProp As CustomProperty
Dim oCustomProps As CustomProperties
Dim wks As Worksheet

‘Loop through each worksheet in this workbook
For Each wks In ThisWorkbook.Worksheets

‘Loop through all of the custom properties
‘ for the current worksheet until the
‘ “IsBudget” property name is found
For Each oCustomProp In wks.CustomProperties

If oCustomProp.Name = “IsBudget” Then
‘Grab its value and exit the loop
bBudget = CBool(oCustomProp.Value)
Exit For

End If
Next oCustomProp

‘Use the value in the custom property to determine
‘ whether the tab should be colored.
If bBudget Then wks.Tab.ColorIndex = 20 ‘Light blue

Next wks

End Sub

TableStyle Object and the TableStyles Collection Object
The TableStyle object defines the formatting style applied to any given table. The TableStyles collec-
tion contains all TableStyles.

TableStyles Collection Common Properties
Along with the typical collection attributes, the TableStyles collection has an Add method, which adds
a TableStyle object to the collection.

904

Tab Object Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 904

TableStyle Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

TableStyle Properties

Name Returns Description

BuiltIn Boolean Read-only. Returns True if the specified style is
built-in

Name String Read-only. Returns the name of the TableStyle
object

NameLocal String Read-only. Returns the name of the TableStyle
object. If the style is a built-in style, this property
returns the name of the style in the language of
the current locale

ShowAsAvailable Boolean Set/Get whether a style is shown in the gallery
PivotTable for PivotTable styles. Setting this property to
Style False tells Excel not to show the specified style

in either the gallery or when the active cell is in
the PivotTable.

ShowAsAvailable Boolean Set/Get whether a style is shown in the gallery
TableStyle for Table styles. Setting this property to False

tells Excel not to show the specified style either
in the gallery or when the active cell is in the
table.

TableStyleElements TableStyle Read-only. Returns the TableStyleElements
Elements object

TableStyle Methods

Name Returns Parameters Description

Delete Deletes the specified object

Duplicate TableStyle NewTableStyleName Adds a duplicate copy of the speci-
fied TableStyle object and returns
a reference to the new copy

TableStyle Object and TableStyles Example
Sub AddCustomStyle()
Dim oStyle As TableStyle

‘Add a new style
Set oStyle = ActiveWorkbook.TableStyles.Add(“JustMyStyle”)

‘Apply desired formats

905

TableStyle Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 905

With oStyle
.TableStyleElements(xlHeaderRow).Font.ColorIndex = 50
.TableStyleElements(xlHeaderRow).Interior.ColorIndex = 44

‘Ensure your style is shown in the styles gallery
.ShowAsAvailableTableStyle = True

End With

‘Make your style the default for the workbook
ActiveWorkbook.DefaultTableStyle = “JustMyStyle”

End Sub

TableStyleElement Object and the TableStyleElements
Collection Object

The TableStyleElement object defines the individual elements that make up the look and feel of a
table style. The TableStyleElements collection contains all elements that, together, make up the for-
matting of a TableStyle object.

TableStyleElement Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

TableStyleElement Properties

Name Returns Description

Borders Borders Read-only. Returns a Borders collection that represents the
borders of a table style element

Font Font Read-only. Returns a Font object that represents the font of
the specified object

HasFormat Boolean Set/Get whether a table style element has formatting
applied to the specified element

Interior Interior Read-only. Returns an Interior object that represents the
interior of the specified object

StripeSize Long Set/Get banding size

TableStyleElement Methods

Name Returns Parameters Description

Clear Clears all formatting for the specified
TableStyleElement object

906

TableStyleElement Object and the TableStyleElements Collection Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 906

TextEffectFormat Object
The TextEffectFormat object contains all the properties and methods associated with WordArt objects.
The parent object of the TextEffectFormat is always the Shape object.

TextEffectFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

TextEffectFormat Properties

Name Returns Description

Alignment MsoText Set/Get the alignment of the WordArt
Effect
Alignment

FontBold MsoTriState Set/Get whether the WordArt is bold

FontItalic MsoTriState Set/Get whether the WordArt is italic

FontName String Set/Get the font used in the WordArt

FontSize Single Set/Get the font size in the WordArt

KernedPairs MsoTriState Set/Get whether the characters are kerned in the
WordArt

Normalized MsoTriState Set/Get whether both the uppercase and
Height lowercase characters are the same height

PresetShape MsoPreset Set/Get the shape of the WordArt
TextEffect
Shape

PresetText Effect MsoPreset Set/Get the effect associated with the WordArt
TextEffect

RotatedChars MsoTriState Set/Get whether the WordArt has been rotated
by 90 degrees

Text String Set/Get the text in the WordArt

Tracking Single Set/Get the spacing ratio between characters

TextEffectFormat Methods

Name Description

Toggle Toggles the text from vertical to horizontal and back
VerticalText

907

TextEffectFormat Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 907

TextEffectFormat Object Example
Sub FormatTextArt()

Dim oTEF As TextEffectFormat
Dim oShp As Shape
Set oShp = ActiveSheet.Shapes(1)

Set oTEF = oShp.TextEffect

With oTEF
.FontName = “Times New Roman”
.FontBold = True
.PresetTextEffect = msoTextEffect14
.Text = “Hello World!”

End With
End Sub

TextFrame Object
The TextFrame object contains the properties and methods that can manipulate text-frame shapes.
Possible parent objects of the TextFrame object are the Shape and ShapeRange objects.

TextFrame Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

TextFrame Properties

Name Returns Description

AutoMargins Boolean Set/Get whether Excel will calculate the margins of the text
frame automatically. Set this property to False to use the
MarginLeft, MarginRight, MarginTop, and Margin-
Bottom properties

AutoSize Boolean Set/Get whether the size of the text frame changes to match
the text inside

Horizontal XlHAlign Set/Get how the text frame is horizontally aligned. Use the
Alignment XLHAlign constants

MarginBottom Single Set/Get the bottom spacing in a text frame

MarginLeft Single Set/Get the left spacing in a text frame

MarginRight Single Set/Get the right spacing in a text frame

MarginTop Single Set/Get the top spacing in a text frame

Orientation MsoText Set/Get the orientation of the text in the text frame
Orientation

908

TextEffectFormat Object Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 908

Name Returns Description

ReadingOrder Long Set/Get whether the text in the frame is read from right-to-
left (xlRTL), is read from left-to-right (xlLTR), or is context
sensitive (xlContext)

Vertical XlVAlign Set/Get how the text frame is vertically aligned. Use the
Alignment XlVAlign constants

TextFrame Methods

Name Returns Parameters Description

Characters Characters [Start], Returns an object containing all the
[Length] characters in the text frame. Allows

manipulation on a character-by-
character basis and retrieves only a
subset of text in the frame

TextFrame Object Example
Sub SetShapeAutoSized()

Dim oTF As TextFrame
Dim oShp As Shape
Set oShp = ActiveSheet.Shapes(1)
Set oTF = oShp.TextFrame
oTF.AutoSize = True

End Sub

TextFrame2 Object
The TextFrame2 object represents the text frame in a Shape, ShapeRange, or ChartFormat object. This
object contains the text in the text frame, as well as the properties and methods that control the align-
ment and anchoring of the text frame.

TextFrame2 Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

TextFrame2 Properties

Name Returns Description

AutoSize MsoAutoSize Set/Get the size of the specified object that changes automat-
ically to fit text within its boundaries

Column TextColumn2 Read-only. Returns the TextColumn2 object that represents
the columns within the text frame

Table continued on following page

909

TextFrame Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 909

Name Returns Description

HasText Boolean Read-only. Returns whether the specified text frame has text

Horizontal MsoHorizontal Set/Get the horizontal anchor type for the specified text
Anchor Anchor

MarginBottom Single Set/Get the distance (in points) between the bottom of the
text frame and the bottom of the inscribed rectangle of the
shape that contains the text

MarginLeft Single Set/Get the distance (in points) between the left edge of the
text frame and the left edge of the inscribed rectangle of the
shape that contains the text

MarginRight Single Set/Get the distance (in points) between the right edge of
the text frame and the right edge of the inscribed rectangle of
the shape that contains the text

MarginTop Single Set/Get the distance (in points) between the top of the text
frame and the top of the inscribed rectangle of the shape that
contains the text

Orientation MsoText Set/Get a value that represents the text frame orientation
Orientation

PathFormat MsoPath Set/Get the path type for the specified text frame
Format

Ruler Ruler Read-only. Returns a Ruler object that represents the ruler
for the specified text

TextRange TextRange2 Read-only. Returns the TextRange2 object that represents
the text in the object

ThreeD ThreeDFormat Read-only. Returns a ThreeDFormat object that contains 3D-
effect formatting properties for the specified text

Vertical MsoVertical Set/Get the vertical anchor type for the specified text
Anchor Anchor

WarpFormat MsoWarp Set/Get the warp type for the specified text frame
Format

WordArt MsoPreset Set/Get the Word Art type for the specified text frame
Format TextEffect

WordWrap Boolean Set/Get whether text break lines are within or past the
boundaries of the shape

910

TextFrame2 Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 910

ThreeDFormat Methods

Name Parameters Description

DeleteText Deletes the text from a text frame and all the
associated text properties

ThreeDFormat Object
The ThreeDFormat object contains all of the three-dimensional formatting properties of the parent
Shape object. The ThreeD property of the Shape object is used to access the ThreeDFormat object.

ThreeDFormat Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ThreeDFormat Properties

Name Returns Description

BevelBottom Single Set/Get the bottom depth when using the bevel
Depth effect on a ThreeDFormat object

BevelBottom Single Set/Get a value indicating whether the bottom
Inset insert bevel should be raised for a ThreeDFormat

object

BevelBottom MsoBevelType Set/Get the bottom bevel type for a
Type ThreeDFormat object

BevelTopDepth Single Set/Get the top depth when using the bevel effect
on a ThreeDFormat object

BevelTopInset Single Set/Get a value indicating whether the top insert
bevel should be raised for a ThreeDFormat
object

BevelTopType MsoBevelType Set/Get the top Bevel type for a ThreeDFormat
object

ContourColor ColorFormat Read-only. Returns the contour color for a
ThreeDFormat object

ContourWidth Single Set/Get the contour width for a ThreeDFormat
object

Depth Single Set/Get the depth of a 3D shape

ExtrusionColor ColorFormat Read-only. An object manipulating the color of
the extrusion

ExtrusionColor MsoExtrusion Set/Get how the color for the extrusion is set
Type ColorType

Table continued on following page

911

ThreeDFormat Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 911

Name Returns Description

FieldOfView Single Set/Get the angle at which a ThreeDFormat
object can be viewed

LightAngle Single Set/Get the angle of the extrusion lights set on a
ThreeDFormat object

Perspective MsoTriState Set/Get whether the shape’s extrusion has
perspective

PresetCamera MsoPresetCamera Read-only. Returns the extrusion preset camera
for a ThreeDFormat object

Preset MsoPreset Read-only. Returns the direction of the extrusion
Extrusion Extrusion
Direction Direction

PresetLighting MsoLightRigType Read-only. Returns the extrusion preset lighting
for a ThreeDFormat object

Preset MsoPreset Set/Get the direction of the light source
Lighting Lighting
Direction Direction

Preset MsoPreset Set/Get the softness of the light source
Lighting Lighting
Softness Softness

Preset MsoPreset Set/Get the surface material of the extrusion
Material Material

PresetThreeD MsoPreset Read-only. Returns the preset extrusion format
Format ThreeD

Format

RotationX Single Set/Get how many degrees the extrusion is rotated

RotationY Single Set/Get how many degrees the extrusion is rotated

RotationZ Single Set/Get how many degrees the extrusion is rotated

Visible MsoTriState Set/Get whether the 3D shape is visible

Z Single Set/Get the Z order of the specified ThreeDFormat
object

ThreeDFormat Methods

Name Parameters Description

IncrementRotation Increment As Changes the rotation of the specified shape
Horizontal Single horizontally by the specified number of degrees

IncrementRotation Increment As Changes the rotation of the specified shape
Vertical Single vertically by the specified number of degrees

912

ThreeDFormat Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 912

Name Parameters Description

Increment Increment Changes the RotationX property
RotationX As Single

Increment Increment As Changes the RotationY property
RotationY Single

Increment Increment As Changes the RotationZ property
RotationZ Single

ResetRotation Resets RotationX and RotationY to 0

SetExtrusion Preset Extrusion Changes the extrusion direction
Direction Direction As

MsoPreset
Extrusion
Direction

SetPresetCamera Sets the camera for the specified ThreeDFormat
object

SetThreeD Format PresetThreeD Sets the preset extrusion format
Format As
MsoPreset
ThreeDFormat

ThreeDFormat Object Example
Sub SetShape3D()

Dim o3DF As ThreeDFormat
Dim oShp As Shape
Set oShp = ActiveSheet.Shapes(1)
Set o3DF = oShp.ThreeD
With o3DF

.Depth = 10

.SetExtrusionDirection msoExtrusionBottomRight
End With

End Sub

TickLabels Object
The TickLabels object contains the formatting options associated with the tick-mark labels for tick
marks on a chart axis. The parent of the TickLabels object is the Axis object.

TickLabels Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

913

ThreeDFormat Object Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 913

TickLabels Properties

Name Returns Description

Alignment Long Set/Get the alignment of the tick labels. Use the
XlHAlign constants

AutoScaleFont Variant Set/Get whether the font size will change automati-
cally if the parent chart changes sizes

Depth Long Read-only. Returns how many levels of category tick
labels are on the axis

Font Font Read-only. Returns an object containing Font options
for the tick label text

Format ChartFormat Read-only. Returns the ChartFormat object, which
controls the line, fill, and effect formatting for the chart
area

MultiLevel Boolean Set/Get whether an axis is multilevel

Name String Read-only. Returns the name of the TickLabels object

NumberFormat String Set/Get the numeric formatting to use if the tick labels
are numeric values or dates

NumberFormat Boolean Set/Get whether the same numerical format used for
Linked the cells containing the chart data is used by the tick

labels

NumberFormat Variant Set/Get the name of the numeric format being used by
Local the tick labels in the language being used by the user

Offset Long Set/Get the percentage distance between levels of
labels as compared to the axis label’s font size

Orientation XlTickLabel Set/Get the angle of the text for the tick labels. The
Orientation value can be in degrees (from -90 to 90) or one of the

XlTickLabelOrientation constants

ReadingOrder Long Set/Get how the text is read (from left to right or right
to left). Only applicable in appropriate languages

TickLabels Methods

Name Returns Description

Delete Variant Deletes the tick labels from the axis labels

Select Variant Selects the tick labels on the chart

914

TickLabels Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 914

TickLabels Object Example
Sub FormatTickLabels()

Dim oTL As TickLabels
Set oTL = Activesheet.ChartObjects(1).Chart.Axes(xlValue).TickLabels
With oTL

.NumberFormat = “#,##0”

.Font.Size = 12
End With

End Sub

Top10 Object
The Top10 object controls the attributes and specifications of a conditional formatting rule that evaluates
values in a given scope or range against each other to determine the rank of each value in that scope or
range.

Top10 Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Top10 Properties

Name Returns Description

AppliesTo Range Read-only. Returns the range that is affected by the for-
matting rule

Borders Borders Read-only. Returns a collection that specifies the cell
borders for the formatting condition

CalcFor xlCalcFor Set/Get the scope of data to be evaluated in a PivotTable
report. Use the xlCalcFor constant

Font Font Read-only. Specifies the font formatting attributes for
the conditional formatting rule

FormatRow Boolean Set/Get the Boolean value specifying if the entire Excel
table row should be formatted. The default value is
False

Interior Interior Read-only. Specifies the Interior formatting attributes for
the conditional formatting rule

NumberFormat Variant Set/Get the number format applied to a cell if the condi-
tional formatting rule evaluates to true

Percent Boolean Set/Get whether the ranking of values within the given
scope or range is determined by a percentage value

Priority Long Set/Get the priority value of a conditional formatting
rule, determining the order of evaluation when other
rules are in effect

Table continued on following page

915

TickLabels Object Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 915

Name Returns Description

PTCondition Boolean Read-only. Indicates whether the formatting rule is
applied to a PivotTable chart

Rank Long Set/Get either the number or percentage rank value for
the rule

ScopeType xlPivot Set/Get the scope of the formatting rule when applied
Condition to a PivotTable chart. Use the xlPivotConditionScope
Scope constants

StopifTrue Boolean Set/Get a Boolean value that determines if additional
formatting rules should be applied if the current rule
evaluates to True. The default value is True

TopBottom xlTopBottom Set/Get whether the ranking is evaluated from the top
or the bottom. Use the xlTopBottom constants

Type xlFormat Read-only. Returns an xlFormatConditionType
ConditionType constant that specifies the type of conditional formatting

being applied

Top10 Methods

Name Returns Parameters Description

Delete Deletes the object

ModifyAppliesToRange Range As Range Sets the range for which the
formatting rule will be
applied

SetFirstPriority Sets the priority value for the
formatting rule so that it is
evaluated before all other
rules on the worksheet

SetLastPriority Sets the priority value for the
formatting rule so that it is
evaluated after all other rules
on the worksheet

Top10 Object Example

Sub CreateTopPercentCondition()
Dim oFormatCondition As Top10

‘Add a new Formatting rule

916

Top10 Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 916

Set oFormatCondition = Range(“F5:F22”).FormatConditions.AddTop10

‘Highlight all values that make up the Top 20% of the total range
With oFormatCondition

.TopBottom = xlTop10Top

.Rank = 20

.Percent = True

.Font.Bold = True

.Interior.Color = 7039480
End With

End Sub

TreeviewControl Object
The TreeviewControl object allows manipulation of the hierarchical member-selection of a cube field.
This object is usually used by macro recordings and not when building VBA code. The parent of the
TreeviewControl object is the CubeField object.

TreeviewControl Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

TreeviewControl Properties

Name Returns Description

Drilled Variant Set/Get a string array describing the drilled status of the
members of the parent cube field

Hidden Variant Set/Get the hidden status of the members in a cube field

Trendline Object and the Trendlines Collection
The Trendlines collection holds the collection of trendlines in a chart. Each Trendline object describes
a trendline on a chart of a particular series. Trendlines are used to graphically show trends in the data
and help predict future values. The parent of the Trendlines collection is the Series object.

The Trendlines collection has one method besides the typical collection attributes. The Add method
adds a trendline to the current chart. The Add method has a Type, Order, Period, Forward, Backward,
Intercept, DisplayEquation, DisplayRSquared, and Name parameter. See the “Trendline Properties”
section for more information.

Trendline Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

917

TreeviewControl Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 917

Trendline Properties

Name Returns Description

Backward Long Set/Get how many periods the trendline extends back

Backward2 Double Set/Get how many periods the trendline extends back

Border Border Read-only. Returns the border’s properties around the
trendline

DataLabel DataLabel Read-only. Returns an object to manipulate the trendline’s
data label

Display Boolean Set/Get whether the equation used for the trendline is
Equation displayed on the chart

Display Boolean Set/Get whether the R-squared value for the trendline is
RSquared displayed on the chart

Format ChartFormat Returns the ChartFormat object, which controls the line
and effect formatting for the trendline

Forward2 Double Set/Get how many periods the trendline extends forward

Index Long Read-only. Returns the spot in the collection where the
current object is

Intercept Double Set/Get at which point the trendline crosses the value (y)
axis

InterceptIs Boolean Set/Get whether the point at which the trendline crosses
Auto the value axis is automatically calculated with regression

Name String Set/Get the name of the Trendline object

NameIsAuto Boolean Set/Get whether Excel automatically chooses the trend-
line name

Order Long Set/Get the order of a polynomial trendline. The Type
property must be xlPolynomial

Period Long Set/Get what the period is for the moving-average
trendline

Type XlTrendline Set/Get the type of the trendline (for example,
Type xlExponential, xlLinear, and so on)

Trendline Methods

Name Returns Description

ClearFormats Variant Clears any formatting made on the trendlines

Delete Variant Deletes the trendlines

Select Variant Selects the trendlines on the chart

918

Trendline Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 918

Trendline Object and the Trendlines Collection Example
Sub AddTrendLine()

Dim oSer As Series
Dim oTL As Trendline
Set oSer = Activesheet.chartobjects(1).Chart.SeriesCollection(1)
Set oTL = oSer.Trendlines.Add(xlLinear)
With oTL

.DisplayEquation = True

.DisplayRSquared = True
End With

End Sub

UniqueValues Object
The UniqueValues object controls the attributes and specifications of a conditional formatting rule that
evaluates whether a value is unique or is a duplicate based on a given scope or range of values.

UniqueValues Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

UniqueValues Properties

Name Returns Description

AppliesTo Range Read-only. Returns the range that is affected by the format-
ting rule

Borders Borders Read-only. Returns a collection that specifies the cell bor-
ders for the formatting condition

DupeUnique xlDupeUnique Set/Get whether the formatting condition will evaluate for
unique values or duplicate values. Use the xlDupeUnique
constants

Font Font Read-only. Specifies the font formatting attributes for the
conditional formatting rule

FormatRow Boolean Set/Get the Boolean value specifying if the entire Excel
table row should be formatted. The default value is False

Interior Interior Read-only. Specifies the Interior formatting attributes for
the conditional formatting rule

NumberFormat Variant Set/Get the number format applied to a cell if the condi-
tional formatting rule evaluates to true

Priority Long Set/Get the priority value of a conditional formatting rule,
determining the order of evaluation when other rules are
in effect

Table continued on following page

919

Trendline Object and the Trendlines Collection Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 919

Name Returns Description

PTCondition Boolean Read-only. Indicates whether the formatting rule is applied
to a PivotTable chart

ScopeType xlPivot Set/Get the scope of the formatting rule when applied to a
Condition PivotTable chart. Use the xlPivotConditionScope
Scope constants

StopifTrue Boolean Set/Get a Boolean value that determines if additional for-
matting rules should be applied if the current rule evalu-
ates to True. The default value is True

Type xlFormat Read-only. Returns an xlFormatConditionType constant
Condition that specifies the type of conditional formatting being
Type applied

UniqueValues Methods

Name Parameters Description

Delete Deletes the object

ModifyApplies Range As Sets the range for which the formatting rule will be applied
ToRange Range

SetFirst Sets the priority value for the formatting rule so that it is
Priority evaluated before all other rules on the worksheet

SetLast Sets the priority value for the formatting rule so that it is
Priority evaluated after all other rules on the worksheet

UniqueValues Object Example
Sub CreateDuplicateValuesCondition()
Dim oFormatCondition As UniqueValues

‘Add a new Formatting rule
Set oFormatCondition = Range(“A1:A21”).FormatConditions.AddUniqueValues

‘Find and highlight all duplicate values in the range
With oFormatCondition

.DupeUnique = xlDuplicate

.Font.Bold = True

.Interior.Color = 7039480
End With

End Sub

UpBars Object
The UpBars object contains formatting options for up bars on a chart. The parent of the UpBars object is the
ChartGroup object. To see if this object exists, use the HasUpDownBars property of the ChartGroup object.

920

UniqueValues Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 920

UpBars Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

UpBars Properties

Name Returns Description

Format ChartFormat Read-only. Returns the ChartFormat object, which controls
the line, fill, and effect formatting for the chart area

Name String Read-only. Returns the name of the up bars

UpBars Methods

Name Returns Description

Delete Variant Deletes the up bars

Select Variant Selects the up bars in the chart

UsedObjects Collection Object
The UsedObjects collection represents the total number of objects currently being used in all open
workbooks. Used objects can be worksheets, chart sheets, the workbook itself, and any ActiveX controls
placed on worksheets. This object can be referenced through the Application object. Note that the
UsedObjects collection object has no properties or methods outside the typical collection attributes
listed at the beginning of this appendix.

UserAccess Collection Object
Represents one user within a possible group of users who have permission to access a range specified by
the AllowEditRange object. You can refer to a user by using the Item property of the UserAccessList
object. Once referenced, you use the properties of this object to change the user’s settings.

UserAccess Collection Properties

Name Returns Description

AllowEdit Boolean Set/Get whether the user is allowed access to the specified
range on a protected worksheet

Name String Read-only. Returns the name of the UserAccess object

921

UpBars Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 921

UserAccess Collection Methods

Name Description

Delete Deletes the object

UserAccessList Collection Object
Represents a list of users who have access to a protected range on a worksheet. This object can be
accessed via the AllowEditRange object after it has been created. Use the Add method of this object to
add a user to the list, which contains an argument that determines whether or not they need a password
to access the range.

Note that the password is set using the ChangePassword method of the AllowEditRange object. This
means that all of the users for an AllowEditRange use the same password. Note that this collection only
has Count and Item properties.

UserAccessList Methods

Name Returns Parameters Description

Add UserAccess Name As String, Adds a user access list to the
AllowEdit As collection. Name is the name
Boolean of the list, and if AllowEdit

is True, users on the access
list are allowed to edit
the editable ranges on a
protected worksheet

DeleteAll Removes all users associated
with access to a protected
range on a worksheet

UserAccessList Object Example
The following routine loops through all of the AllowEditRange objects on a specified worksheet and
removes all of the users except for the range pcNetSales:

Sub DeleteAllUsers()
Dim oAllowRange As AllowEditRange

‘Loop through all AllowEditRange objects on the active sheet
For Each oAllowRange In ActiveSheet.Protection.AllowEditRanges

‘Remove all names from all AllowEditRanges
‘except for the range whose AllowEditRange Title is pcNetSales

If oAllowRange.Title <> “pcNetSales” Then
oAllowRange.Users.DeleteAll

End If
Next oAllowRange

End Sub

922

UserAccess Collection Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 922

Validation Object
The Validation object contains properties and methods to represent validation for a range in a work-
sheet. The Range object is the parent of the Validation object.

Validation Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Validation Properties

Name Returns Description

AlertStyle Long Read-only. Returns how the user will be alerted if the range
includes invalid data. Uses the XlDVAlertStyle constants

ErrorMessage String Set/Get the error message to show for data validation

ErrorTitle String Set/Get what the title is for the error data validation dialog box

Formula1 String Read-only. Returns the value, cell reference, or formula used
for data validation

Formula2 String Read-only. Returns the second part of the value, cell refer-
ence, or formula used for data validation. The Operator
property must be xlBetween or xlNotBetween

IgnoreBlank Boolean Set/Get whether a blank cell is always considered valid

IMEMode Long Set/Get how the Japanese input rules are described. Use the
XlIMEMode constants

InCell Dropdown Boolean Set/Get whether a drop-down list of valid values is dis-
played in the parent range. Used when the Type property is
xlValidateList

InputMessage String Set/Get the validation input message to prompt the user for
valid data

InputTitle String Set/Get what the title is for the input data validation dialog box

Operator Long Read-only. Returns the operator describing how Formula1
and Formula2 are used for validation. Uses the XlFormat-
ConditionOperator constants

ShowError Boolean Set/Get whether the error message will be displayed when
invalid data is entered in the parent range

ShowInput Boolean Set/Get whether the input message will be displayed when
the user chooses one of the cells in the parent range

Type Long Read-only. Returns the data validation type for the range.
The XlDVType constants can be used (for example, xlVali-
dateDecimal, xlValidateTime)

Value Boolean Read-only. Returns if the validation is fulfilled for the range

923

Validation Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 923

Validation Methods

Name Returns Parameters Description

Add Type As Adds data validation to the parent range.
XlDVType, The validation type (Type parameter) must
[Alert be specified. The type of validation alert
Style], (AlertStyle) can be specified with the
[Operator], XlDVAlertStyle constants. The
[Formula1], Operator parameter uses the
[Formula2] XlFormatCondition Operator to pick

the type of operator to use. The Formula1
and Formula2 parameters pick the data
validation formula

Delete Deletes the Validation method for the
range

Modify [Type], Modifies the properties associated with the
[AlertStyle], Validation. See the properties of the
[Operator], Validation object for a description of the
[Formula1], parameters
[Formula2]

Validation Object Example
Sub AddValidation()

Dim oValid As Validation
Set oValid = Selection.Validation
With oValid

.Delete

.Add Type:=xlValidateWholeNumber, AlertStyle:=xlValidAlertStop, _
Operator:=xlBetween, Formula1:=”10”, Formula2:=”20”

.ShowInput = False

.ShowError = True

.ErrorTitle = “Error”

.ErrorMessage = “Number must be between 10 and 20”
End With

End Sub

VPageBreak Object and the VPageBreaks Collection
The VPageBreaks collection contains all of the vertical page breaks in the printable area of the parent
object. Each VPageBreak object represents a single vertical page break for the printable area of the par-
ent object. Possible parents of the VPageBreaks collection are the WorkSheet and Chart objects.

The VPageBreaks collection contains one method besides the typical collection attributes. The Add
method is used to add a VPageBreak object to the collection (and vertical page break to the sheet). The
Add method has a Before parameter to specify the range to the right of where the vertical page break
will be added.

924

Validation Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 924

VPageBreak Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

VPageBreak Properties

Name Returns Description

Extent XlPageBreak Read-only. Returns whether the vertical page break is full
Extent screen or only for the print area

Location Range Set/Get the cell where the vertical page break is located. The
left edge of the cell is the location of the page break

Type XlPageBreak Set/Get whether the page break is automatic or manually set

VPageBreak Methods

Name Parameters Description

Delete Deletes the page break

DragOff Direction As Drags the page break out of the printable area. The
XlDirection, Direction parameter specifies the direction the page break
RegionIndex As is dragged. The RegionIndex parameter specifies which
Long print region the page break is being dragged out of

VPageBreak Object and the VPageBreaks Collection Example
Sub AddVPageBreaks()

Dim oCell As Range
‘Loop through all the cells in the first column of the sheet
For Each oCell In ActiveSheet.UsedRange.Rows(1).Cells

‘If the font size is 16, add a page break to the left of the cell
If oCell.Font.Size = 16 Then

ActiveSheet.VPageBreaks.Add oCell
End If

Next
End Sub

Walls Object
The Walls object contains formatting options for all the walls of a 3D chart. The walls of a 3D chart can-
not be accessed individually. The parent of the Walls object is the Chart object.

Walls Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

925

VPageBreak Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 925

Walls Properties

Name Returns Description

Format ChartFormat Read-only. Returns the ChartFormat object, which con-
trols the line, fill, and effect formatting for the chart area

Name String Read-only. Returns the name of the Walls object

PictureType Variant Set/Get how an associated picture is displayed on the
walls of the 3D chart (for example, stretched, tiled). Use
the XlPictureType constants

PictureUnit Variant Set/Get how many units a picture represents if the
PictureType property is set to xlScale

Thickness Long Set/Get the thickness of the wall. Default is 0

Walls Methods

Name Returns Description

ClearFormats Variant Clears the formatting made on the Walls object

Paste Pastes a picture from the clipboard

Select Variant Selects the walls on the parent chart

Walls Object Example
Sub FormatWalls()

Dim oWall As Walls
Set oWall = ActiveSheet.ChartObjects(“Chart 1”).Chart.Walls
With oWall

.Fill.PresetTextured msoTextureCork

.Fill.Visible = True
End With

End Sub

Watch Object and the Watches Collection Object
The Watch object represents one Watch in the Watch window (found on the Formulas tab in the Excel
interface). Each Watch can be a cell or cell range you need to keep track of as other data on the worksheet
changes. A Watch object is an auditing tool similar to the watches you can create in the VBE. Watches do
just that: They keep track of a cell or cell range, allowing you to study changes to those cells when other
data on the worksheet changes.

The Watches collection contains all the Watch objects that have been set in the application.

926

Walls Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 926

Watches Collection Methods

Name Returns Parameters Description

Add Watch Source As Variant Adds a range that is tracked when
the worksheet is recalculated

Delete Deletes the object

Watch Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Watch Properties

Name Returns Description

Source Variant Read-only. Returns the unique name that identifies items that
have a SourceType property value of xlSourceRange,
xlSourceChart, xlSourcePrintArea, xlSourceAuto-
Filter, xlSourcePivotTable, or xlSourceQuery

Watch Methods

Name Description

Delete Deletes the object

Watch Object Example
The following routine prompts the user for a range, then loops through each cell in the range and adds it
to the Watch window. It then displays the Watch window:

Sub AddWatches()
Dim oWatch As Watch
Dim rng As Range
Dim rngWatches As Range

‘Prompt the user for a range
‘Suppress the error if they cancel
On Error Resume Next

Set rngWatches = Application.InputBox(_
“Please select a cell or cell range to watch”, “Add Watch”, , , , , , 8)

On Error GoTo 0

‘If they selected a range
If Not rngWatches Is Nothing Then

‘Loop through each cell and
‘ add it to the watch list
For Each rng In rngWatches

Application.Watches.Add rng

927

Watches Collection Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 927

Next rng
End If
‘View the watch window based on their answer
Application.CommandBars(“Watch Window”).Visible = (Not rngWatches Is Nothing)

End Sub

WebOptions Object
The WebOptions object contains attributes associated with opening or saving web pages. The parent of
the WebOptions object is the Workbook object. The properties set in the WebOptions object override the
settings of the DefaultWebOptions object.

WebOptions Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

WebOptions Properties

Name Returns Description

AllowPNG Boolean Set/Get whether Portable Network Graphics Format
(PNG) is allowed as an output format. PNG is a file
format for the lossless, portable, well-compressed stor-
age of images

DownloadComponents Boolean Set/Get whether Office components are downloaded
to the end user’s machine when viewing Excel files in
a web browser

Encoding MsoEncoding Set/Get the type of code page or character set to save
with a document

FolderSuffix String Read-only. Returns the suffix name for the support
directory created when saving an Excel document as a
web page. Language dependent

LocationOf String Set/Get the URL or path that contains the Office Web
Components components needed to view documents in a web browser

OrganizeIn Boolean Set/Get whether supporting files are organized in a
Folder separate folder from the document

PixelsPerInch Long Set/Get how dense graphics and table cells should be
when viewed on a web page

RelyOnCSS Boolean Set/Get whether Cascading Style Sheets (CSS) is used
for font formatting

RelyOnVML Boolean Set/Get whether image files are not created when sav-
ing a document with drawn objects. Vector Markup
Language is used to create the images on the fly. VML
is an XML-based format for high-quality vector graph-
ics on the web

928

WebOptions Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 928

Name Returns Description

ScreenSize MsoScreen Set/Get the target monitor’s screen size
Size

Target MsoTarget Set/Get the browser version
Browser Browser

UseLongFile Boolean Set/Get whether links are updated every time the
Names document is saved

WebOptions Methods

Name Description

UseDefault Tells Excel to use its default naming scheme for creating supporting
FolderSuffix folders

WebOptions Object Example
Sub SetWebOptions()

Dim oWO As WebOptions
Set oWO = ActiveWorkbook.WebOptions
With oWO

.ScreenSize = msoScreenSize800x600

.RelyOnCSS = True

.UseDefaultFolderSuffix
End With

End Sub

Window Object and the Windows Collection
The Windows collection holds the list of windows used in Excel or in a workbook. Each Window object
represents a single Excel window containing scrollbars and gridlines for the window. The parents of the
Windows collection can be the Application object and the Workbook object.

The Windows collection has several properties and methods outside the typical collection attributes.

Windows Collection Properties and Methods

Name Returns Description

Item Window Read-only. Returns a Window object from the Windows
collection based on a given Index parameter specify-
ing an index number or a name

SynchScrolling Boolean Set/Get whether the contents of multiple windows
SideBySide can be simultaneously scrolled when documents are

being compared side by side

Table continued on following page

929

WebOptions Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 929

Name Returns Description

Arrange Method used to arrange the windows on the screen.
Parameters: [ArrangeStyle] As XlArrangeStyle,
[ActiveWorkbook], [SynchHorizontal],
[SynchVertical]

BreakSideBySide Boolean Method used to end Side-by-Side mode. Returns a
Boolean value indicating whether the operation was
successful

Compare Boolean Method used to open two windows in Side-by-Side
SideBySideWith mode. Note that you cannot use this method with the

Application object or the ActiveWorkbook prop-
erty. This method takes one parameter: [WindowName]
As Variant

ResetPositions Method used to reset the position of two worksheet
SideBySide windows that are being compared side by side

Window Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Window Properties

Name Returns Description

ActiveCell Range Read-only. Returns the cell in the window where the
cursor is

ActiveChart Chart Read-only. Returns the currently selected chart in the
window. If no chart is currently selected, nothing is
returned

ActivePane Pane Read-only. Returns the active pane in the window

ActiveSheet Object Read-only. Returns the active sheet in the window

ActiveSheet Object Read-only. Returns a view of the active sheet in the
View window

AutoFilter Boolean Set/Get whether the auto filter for date grouping is
DataGrouping currently displayed in the specified window

Caption Variant Set/Get the caption that appears in the window

Display Boolean Set/Get whether formulas are displayed in the
Formulas window. Not valid in a Chart sheet

Display Boolean Set/Get whether worksheet gridlines are displayed
Gridlines

930

Window Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 930

Name Returns Description

Display Boolean Set/Get whether row and column headings are
Headings displayed. Not valid in a Chart sheet

Display Boolean Set/Get whether the horizontal scrollbar is displayed
Horizontal in the window
ScrollBar

Display Boolean Set/Get whether outline symbols are displayed
Outline

Display Boolean Set/Get whether the window contents are displayed
RightToLeft from right to left. Valid only with languages that sup-

port right-to-left text

DisplayRuler Boolean Set/Get whether a ruler is displayed for the specified
window

Display Boolean Set/Get whether the vertical scrollbar is displayed in
Vertical the window
ScrollBar

Display Boolean Set/Get whether whitespace is displayed
Whitespace

Display Boolean Set/Get whether workbook tabs are displayed
WorkbookTabs

DisplayZeros Boolean Set/Get whether zero values are displayed. Not valid
with Chart sheets

EnableResize Boolean Set/Get whether a user can resize the window

FreezePanes Boolean Set/Get whether split panes are frozen. Not valid with
Chart sheets

GridlineColor Long Set/Get the color of the gridlines. Use the RGB func-
tion to create the color value

GridlineColor XlColor Set/Get the color of the gridlines. Use the
Index Index XlColorIndex constants or an index value in the cur-

rent color palette

Height Double Set/Get the height of the window

Index Long Read-only. Returns the spot in the collection where the
current object is located

Left Double Set/Get the distance from the left edge of the client
area to the window’s left edge

OnWindow String Set/Get the name of the procedure to run whenever a
window is activated

Table continued on following page

931

Window Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 931

Name Returns Description

Panes Panes Read-only. Returns the panes that are contained in the
window

Range Range Read-only. Returns the selected range of cells or
Selection objects in the window

ScrollColumn Long Set/Get the column number of the leftmost column in
the window

ScrollRow Long Set/Get the row number of the topmost row in the
window

Selected Sheets Read-only. Returns all the selected sheets in the
Sheets window

Selection Object Read-only. Returns the selected object in the window

SheetViews SheetViews Read-only. Returns the SheetViews object for a given
window

Split Boolean Set/Get whether the window is split into panes

SplitColumn Long Set/Get at which column number the window split is
going to be located

Split Double Set/Get where the horizontal split of window will be
Horizontal located, in points

SplitRow Long Set/Get at which row number the window split is
going to be located

SplitVertical Double Set/Get where the vertical split of window will be
located, in points

TabRatio Double Set/Get how big a workbook’s tab is, as a ratio of a
workbook’s tab area width to the window’s horizontal
scrollbar width

Top Double Set/Get the distance from the top edge of the client
area to the window’s top edge

Type XlWindow Read-only. Returns the window type
Type

UsableHeight Double Read-only. Returns the maximum height that the win-
dow can be

UsableWidth Double Read-only. Returns the maximum width that the win-
dow can be

View XlWindow Set/Get the view in the window (for example,
View xlNormalView and xlPageBreakPreview)

Visible Boolean Set/Get whether the window is visible

932

Window Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 932

Name Returns Description

VisibleRange Range Read-only. Returns the range of cells that are visible in
the current window

Width Double Set/Get the width of the window

WindowNumber Long Read-only. Returns the number associated with a win-
dow. Typically used when the same workbook is
opened twice (for example, MyBook.xlsx:1 and
MyBook.xlsx:2)

WindowState XlWindow Set/Get the state of the window: minimized,
State maximized, or normal

Zoom Variant Set/Get the percentage of window zoom

Window Methods

Name Returns Parameters Description

Activate Variant Sets focus to the window

ActivateNext Variant Activates the next window in
the z-order

ActivatePrevious Variant Activates the previous window
in the z-order

Close Boolean [SaveChanges], Closes the window. Set
[Filename], SaveChanges to True to
[RouteWorkbook] automatically save changes in

the window’s workbook. If
SaveChanges is False, then
all changes are lost. The File-
name parameter can be used to
specify the filename to save to.
RouteWorkbook is used to auto-
matically route the workbook
onto the next recipient, if
applicable

LargeScroll Variant [Down], Causes the document to scroll a
[Up], certain direction a screenful at
[ToRight], a time, as specified by the
[ToLeft] parameters

NewWindow Window Creates and returns a new
window

Table continued on following page

933

Window Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 933

Name Returns Parameters Description

PointsTo Long Points As Long Converts the horizontal
Screen document coordinate Points
PixelsX parameter to screen coordinate

pixels

PointsTo Long Points As Long Converts the vertical document
Screen coordinate Points parameter to
PixelsY screen coordinate pixels

PrintOut Variant [From], Prints out the document in the
[To], window. The printer, number of
[Copies], copies, collation, and whether a
[Preview], print preview is desired can be
[Active specified with the parameters.
Printer], Also, the sheets can be printed
[PrintToFile], to a file using the PrintToFile
[Collate], and PrToFileName parameters.
[PrToFile The From and To parameters
Name] can be used to specify the range

of printed pages

PrintPreview Variant [Enable Displays the current workbook
Changes] in the window in a print

preview mode. Set the
EnableChanges parameter to
False to disable the Margins
and Setup buttons, hence not
allowing the viewer to modify
the page setup

RangeFrom Object x As Long, Returns the shape or range
Point y As Long located at the x and y

coordinates. Returns nothing if
there is no object at the x, y
coordinates

ScrollInto Left As Long, Scrolls the spot specified by the
View Top As Long, Left, Top, Width, and Height

Width As Long, parameters to either the
Height As Long, upper-left corner of the window
[Start] (Start = True) or the lower-

right corner of the window
(Start = False). The Left,
Top, Width, and Height param-
eters are specified in points

ScrollWorkbook Variant [Sheets], Scrolls through the number of
Tabs [Position] sheets specified by the Sheets

parameter, or goes to the sheet
specified by the position
parameter (xlFirst or xlLast)

934

Window Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 934

Name Returns Parameters Description

SmallScroll Variant [Down], Causes the document to scroll a
[Up], certain direction one document
[ToRight], line at a time, as specified by the
[ToLeft] parameters

Window Object and the Windows Collection Example
Sub MinimizeAllWindows()

Dim oWin As Window
For Each oWin In Windows

‘Minimize all workbooks that are not hidden
If oWin.Visible = True Then

oWin.WindowState = xlMinimized
End If
Next

End Sub

Workbook Object and the Workbooks Collection
The Workbooks collection contains the list of open workbooks. A Workbook object represents a single
workbook. The parent of the Workbook is the Application object.

Workbooks Properties

Name Returns Description

Item Workbook Read-only. Returns a single Workbook object from the
Workbooks collection based on a given Index parameter
specifying an index number or a name

Workbooks Methods

Name Returns Parameters Description

Add Workbook [Template] Adds a new workbook to the
collection. Using a template
name in the Template parame-
ter can specify a template. Also,
the XlWBATemplate constants
can be used to open up a type of
workbook

CanCheckOut Boolean Filename As String Returns whether Excel can
check out a specified workbook
from a server

Table continued on following page

935

Window Object and the Windows Collection Example

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 935

Name Returns Parameters Description

CheckOut Filename As String Returns a specified workbook
from a server for editing

Close Closes the workbook

Open Workbook Filename As String, Opens a workbook specified by
[UpdateLinks], the Filename parameter and
[ReadOnly], adds it to the collection. Use the
[Format], UpdateLinks parameter to
[Password], choose how links in the file are
[WriteRes updated. Set ReadOnly to True
Password], to open up the workbook in
[IgnoreRead-only read-only mode. If the file
Recommended], requires a password, use the
[Origin], Password or WriteResPassword
[Delimiter], parameters. Set AddToMru to
[Editable], True to add the opening
[Notify], workbook to the recently used
[Converter], files list.
[AddToMru], If the file to open is a delimited
[Local], text file, then there are some
[CorruptLoad] parameters that can be used.

Use the Format parameter to
choose the text delimiter charac-
ter if opening a text file. Use the
Origin parameter to choose the
code page style of the incoming
delimited text file. Use the
Delimiter parameter to spec-
ify a delimiter if 6 (custom) was
chosen for the Format parameter

OpenDatabase Workbook Filename As Returns a Workbook
String, representing a database
[CommandText], specified by the Filename
[CommandType], parameter. The CommandText
[Background Query], and CommandType parameters
[ImportData As] set the text and the type of the

query

936

Workbooks Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 936

Name Returns Parameters Description

OpenText Filename As Opens the text file in Filename
String, [Origin], and parses it into a sheet on a
[StartRow], new workbook. Origin is used
[DataType], to choose the code page style of
[Text Qualifier], the file (XlPlatform constant).
[Consecutive StartRow decides the first row
Delimiter], to parse. DataType decides if
[Tab], the file is xlDelimited or
[Semicolon], xlFixedWidth. Set
[Comma], ConsecutiveDelimiter to
[Space], True to treat consecutive
[Other], delimiters as one. Set Tab,
[OtherChar], Semicolon, Comma, Space, or
[FieldInfo], Other to True to pick the
[TextVisual Layout], delimiter character. Use the
[Decimal Separator], DecimalSeparator and
[Thousands ThousandsSeparator to pick
Separator], the numeric characters to use
[Trailing
MinusNumbers],
[Local]

OpenXML Workbook Filename As String, Returns an XML file in
[Stylesheets], Microsoft Excel. Use the
[LoadOption] Stylesheets parameter to

specify which XSLT stylesheet
processing instructions to apply

Workbook Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Workbook Properties

Name Returns Description

ActiveChart Chart Read-only. Returns the active chart in the workbook

ActiveSheet Object Read-only. Returns the active sheet (chart or workbook)
in the workbook

AutoUpdate Long Set/Get how often a shared workbook is updated
Frequency automatically, in minutes

AutoUpdate Boolean Set/Get whether changes made to a shared workbook are
SaveChanges visible to other users whenever the workbook is automat-

ically updated

Table continued on following page

937

Workbook Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 937

Name Returns Description

Builtin Document Read-only. Returns a collection holding all the built-in
Document Properties properties of the workbook. Things like title, subject,
Properties author, and number of words in the workbook can be

accessed from this object

Calculation Long Read-only. Returns the version number of Excel that was
Version last used to recalculate the Excel spreadsheet

ChangeHistory Long Set/Get how far back, in days, a shared workbook’s
Duration change history is visible

Charts Sheets Read-only. Returns the charts in the workbook

Check Boolean Set/Get whether the compatibility checker runs
Compatibility automatically when the workbook is saved

CodeName String Read-only. Returns the name of the workbook that was
set at design time in the VBE

Colors Variant Parameters: [Index]. Set/Get the color palette colors for
the workbook. There are 56 possible colors in the palette

CommandBars CommandBars Read-only. Returns an object to manipulate the command
bars in Excel

Conflict XlSave Set/Get how shared workbook conflicts are resolved
Resolution Conflict when they are being updated (for example,

Resolution xlLocalSessionChanges means that the local user’s
changes are always accepted)

Connections Read-only. Establishes a connection between the work-
book and an external datasource, refreshing the data
without prompting the user

Connections Boolean Specifies whether the connections between the workbook
Disabled and external datasources are disabled

Container Object Read-only. Returns the object that contains the workbook,
if applicable

ContentType Meta Read-only. Returns a MetaProperties collection that
Properties Properties describes the metadata stored in the workbook

CreateBackup Boolean Read-only. Returns whether a backup file is created
whenever the workbook is saved

Custom Document Read-only. Returns a collection holding all the
Document Properties user-defined properties of the workbook
Properties

CustomViews CustomViews Read-only. Returns the collection of custom views in a
workbook

CustomXMLParts Custom Read-only. Returns a CustomXMLParts collection that
XMLParts represents the custom XML in the XML data store

938

Workbook Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 938

Name Returns Description

Date1904 Boolean Set/Get whether the 1904 date system is used in the
workbook

Default TableStyle Set/Get the TableStyle that is to be used as the default
PivotTableStyle style for PivotTables

Default TableStyle Set/Get the TableStyle that is to be used as the default
TableStyle style for tables

Display xlDisplay Set/Get if shapes are displayed, placeholders are
Drawing Drawing displayed, or shapes are hidden
Objects Objects

DisplayInk Boolean Set/Get whether ink comments are displayed in the
Comments workbook

Document Document Read-only. Returns a DocumentInspectors collection
Inspectors Inspectors that represents the Document Inspector modules for the

specified workbook

DocumentLibrary Document Read-only. Returns a collection that represents the
Versions Library versions of a shared workbook that has versioning

Versions enabled and that is stored in a document library on a
server

DoNotPrompt Boolean Set/Get whether a user should be prompted to convert
ForConvert the workbook if the workbook contains features not sup-

ported by previous versions of Excel

EnableAuto Boolean Set/Get whether the option to save changed files, of all
Recover formats, on a timed interval is switched on

Encryption String Set/Get the name of the algorithm encryption provider
Provider used to encrypt workbooks

Envelope Boolean Set/Get whether the envelope toolbar and e-mail
Visible composition header are visible

Excel4Intl Sheets Read-only. Returns the collection of Excel 4.0
MacroSheets international macro sheets in the workbook

Excel4Macro Sheets Read-only. Returns the collection of Excel 4.0 macro
Sheets sheets in the workbook

Excel8 Boolean Read-only. Returns whether the workbook is in
Compatiblity compatibility mode
Mdode

FileFormat XlFile Read-only. Returns the file format of the workbook
Format

Final Boolean Set/Get indicator tagging the workbook as final

Table continued on following page

939

Workbook Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 939

Name Returns Description

ForceFull Boolean Determines whether full calculations are performed
Calculation

FullName String Read-only. Returns the path and filename of the work-
book

FullNameURL String Read-only. Returns the name of the object, including its
Encoded path on disk, as a string

HasPassword Boolean Read-only. Returns whether the workbook has a protec-
tion password

HasRouting Boolean Set/Get whether the workbook has a routing slip. Use
Slip with the RoutingSlip object

HasVBProject Boolean Read-only. Returns whether the workbook has an attaché
VBA project

Highlight Boolean Set/Get whether changes in a shared workbook are
Changes visibly highlighted
OnScreen

IconSets IconSets Read-only. Used to filter data in a workbook based on a
cell icon from the IconSet collection

InactiveList Boolean Set/Get whether list borders are visible when a list is not
Border active

IsAddin Boolean Set/Get whether the current workbook is running as an
Add-In

IsInplace Boolean Read-only. Returns whether the workbook is being edited
as an object (True) or in Microsoft Excel (False)

KeepChange Boolean Set/Get whether changes are tracked in a shared
History workbook

ListChangesOn Boolean Set/Get whether a separate worksheet is used to display
NewSheet changes of a shared workbook

Mailer Mailer Read-only. Returns a Mailer object

MultiUser Boolean Read-only. Returns whether a workbook is being shared
Editing

Name String Read-only. Returns the filename of the workbook

Names Names Read-only. Returns the collection of named ranges in the
workbook

Password String Set/Get the password that must be supplied to open the
specified workbook

Password String Read-only. Returns the algorithm used by Excel to
Encryption encrypt passwords for the specified workbook
Algorithm

940

Workbook Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 940

Name Returns Description

Password Boolean Read-only. Returns whether Excel encrypts file properties
EncryptionFile for the specified password-protected workbook
Properties

Password Long Read-only. Returns the key length of the algorithm that
EncryptionKey Excel uses when encrypting passwords for the specified
Length workbook

Password String Read-only. Returns the name of the algorithm encryption
Encryption provider that Excel uses when encrypting passwords for
Provider the specified workbook

Path String Read-only. Returns the file path of the workbook

Path String Read-only. Returns the file path of the workbook
doubled

Permission Permission Read-only. Represents the permission settings for the
workbook

PersonalView Boolean Set/Get whether the filter and sort settings for lists are
ListSettings included in the user’s personal view of the shared

workbook

PersonalView Boolean Set/Get whether a user’s view of the workbook includes
PrintSettings print settings

PrecisionAs Boolean Set/Get whether the precision of numbers in the
Displayed workbook are as displayed in the cells. Used for

calculations

Protect Boolean Read-only. Returns whether the sheet order cannot be
Structure changed in the workbook

Protect Boolean Read-only. Returns whether the workbook windows are
Windows protected

Publish Publish Read-only. Returns access to an object used to publish
Objects Objects objects in the workbook as web pages

ReadOnly Boolean Read-only. Returns whether the workbook is in read-only
mode

ReadOnly Boolean Read-only. Returns whether the user is prompted with a
Recommended message recommending that you open the workbook as

read-only

Remove Boolean Set/Get whether personal information can be removed
Personal from the specified workbook
Information

Research Research Read-only. Represents the Research service for the
workbook

Table continued on following page

941

Workbook Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 941

Name Returns Description

Revision Long Read-only. Returns how many times a shared workbook
Number has been saved while open

Routed Boolean Read-only. Returns whether a workbook has been routed
to the next recipient

RoutingSlip RoutingSlip Read-only. Returns access to a RoutingSlip object that
can be used to add a routing slip for the workbook. Use
with the HasRoutingSlip property

Saved Boolean Set/Get whether a workbook does not have changes that
need saving

SaveLink Boolean Set/Get whether values linked from external sources are
Values saved with the workbook

ServerPolicy Server Read-only. Represents a policy specified for a workbook
Policy stored on a server running Office SharePoint Server

ServerViewable Server Read-only. Returns a collection of various Excel objects
Items Viewable with which a developer can interact through Excel

Items Services

SharedWorkspace Shared Read-only. Represents the Document Workspace in which
Workspace a specified document is located

Sheets Sheets Read-only. Returns the collection of sheets in a workbook
(Chart or Worksheet)

ShowConflict Boolean Set/Get whether the sheet containing conflicts related to
History shared workbooks is displayed

ShowPivotChart Boolean Set/Get whether the PivotChart Filter Pane is visible
ActiveFields

ShowPivot Boolean Set/Get whether the PivotTable field list can be shown
Table
FieldList

Signatures Signatures Read-only. Returns digital signatures for the workbook

SmartDocument Smart Read-only. Represents the settings for a SmartDocument
Document solution

SmartTag SmartTag Read-only. Returns the options that can be performed
Options Options with a SmartTag

Styles Styles Read-only. Returns the collection of styles associated with
the workbook

942

Workbook Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 942

Name Returns Description

Sync Sync Read-only. Provides programmatic access for documents
that are part of a Document Workspace

TableStyles TableStyles Read-only. Allows users to return and manipulate the
style in use by the workbook

Template Boolean Set/Get whether all the external data references are
Remove removed after a workbook is saved as a template
ExtData

Theme OfficeTheme Read-only. Returns the theme applied to the current
workbook

UpdateLinks XlUpdate Set/Get the workbook’s setting for updating embedded
Links OLE links

UpdateRemote Boolean Set/Get whether remote references are updated for the
References workbook

UserStatus Variant Read-only. Returns the name of the current user

VBASigned Boolean Read-only. Returns whether the VBA Project for the work-
book has been digitally signed

VBProject VBProject Read-only. Returns access to the VBE and associated
project

WebOptions WebOptions Read-only. Returns an object allowing manipulation of
web-related properties of the workbook

Windows Windows Read-only. Returns the collection of windows that make
up the workbook

Worksheets Sheets Read-only. Returns the collection of worksheets that make
up the workbook

WritePassword String Set/Get the write password of a workbook

WriteReserved Boolean Read-only. Returns whether the workbook can be
modified

Write String Read-only. Returns the name of the person with write
ReservedBy permission to the workbook

XMLMaps XMLMaps Read-only. Returns the XMLMaps in a given workbook

XMLNamespaces XML Read-only. Returns the XMLNamespaces in a given
Namespaces workbook

943

Workbook Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 943

Workbook Methods

Name Returns Parameters Description

Accept [When], Accepts all the changes made by
AllChanges [Who], other people in a shared workbook

[Where]

Activate Activates the workbook

AddTo Adds the workbook shortcut to the
Favorites Favorites folder

ApplyTheme Filename As String Applies a specified theme

BreakLink Name As String, Converts formulas linked to other
Type As XlLinkType Excel sources or OLE sources to

values

CanCheckIn Boolean Set/Get whether Excel can check
in a specified workbook to a server

ChangeFile Mode As Xl Changes access permissions of the
Access FileAccess, workbook to the one specified by

[Write Password], the Mode parameter. If necessary,
[Notify] the WritePassword can be speci-

fied. Set Notify to True to have
the user notified if the file cannot
be accessed

ChangeLink Name As Changes the link from the
String, workbook specified by the Name
NewName As String, parameter to the NewName
Type workbook. Type chooses the type

of link (for example, OLE or Excel)

CheckIn [SaveChanges], Performs a check-in or undo-
[Comments], check-out of the working copy on
[MakePublic], the server
[VersionType]

Close [SaveChanges], Closes the workbook. Set
[Filename], SaveChanges to True to
[Route automatically save changes in the
Workbook] workbook. If SaveChanges is

False, then all changes are lost.
The Filename parameter can be
used to specify the filename to save
to. RouteWorkbook is used to
automatically route the workbook
onto the next recipient, if applicable

DeleteNumber NumberFormat Deletes the number format in the
Format As String NumberFormat parameter from

the workbook

944

Workbook Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 944

Name Returns Parameters Description

Enable Enable data connections for a user
Connections

EndReview Ends the review of a file that has
been sent for review

Exclusive Boolean Gives the current user exclusive
Access access to a shared workbook

ExportAs Type As xlFixed Publish a workbook in either PDF
Fixed Format FormatType, or XPS

Filename, Quality,
IncludeDocProperties,
IgnorPrintAreas,
From, To,
OpenAfterPublish,
FixedFormatExtClassPtr

Follow Address As String, Opens up the appropriate
Hyperlink [SubAddress], application with the URL specified

[NewWindow], by the Address parameter. Set
[AddHistory], NewWindow to True to open up a
[ExtraInfo], new window for the hyperlink.
[Method], Use the ExtraInfo and Method
[HeaderInfo] parameters to send more information

to the hyperlink (say, for an ASP
page). The Method parameter uses
the MsoExtraInfoMethod constants

ForwardMailer Used only in a Macintosh environ-
ment. Consult the language refer-
ence help included with Microsoft
Office Macintosh Edition

GetWorkflow Workflow Returns the collection of
Tasks Tasks WorkflowTask objects for the

specified workbook

GetWorkflow Workflow Returns the collection of
Templates Templates WorkflowTemplate objects for the

specified workbook

Highlight [When], Set/Get when changes are viewed
Changes [Who], in a shared workbook (When),
Options [Where] whose workbook changes can be

viewed (Who), and the range that
the changes should be put in
(Where). Use the XlHigh-
lighChangesTime constants with
the When parameter

Table continued on following page

945

Workbook Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 945

Name Returns Parameters Description

LinkInfo Variant Name As Returns the link details mentioned
String, in the LinkInfo parameter for the
LinkInfo As link specified by the Name
XlLinkInfo, parameter. Use the Type parameter
[Type], with the XlLinkInfoType
[EditionRef] constants to pick the type of link

that will be returned

LinkSources Variant [Type] Returns the array of linked docu-
ments, editions, and DDE and
OLE servers in a workbook. Use
the Type parameter with the
XlLinkInfoType constants to
pick the type of link that will be
returned

LockServer Locks a workbook on the server to
File prevent edits and modifications

Merge Filename Merges the changes from the
Workbook Filename workbook into the cur-

rent workbook

NewWindow Window Opens up a new window with the
current workbook

OpenLinks Name As Opens the Name link and
String, supporting documents. Set
[ReadOnly], ReadOnly to True to open the
[Type] documents as read-only. Use the

Type parameter with the XlLink-
InfoType constants to pick the
type of link that will be returned

PivotCaches Pivot Returns the collection of
Caches PivotTable caches in the

workbook

Post [DestName] Posts the workbook into a
Microsoft Exchange public folder

946

Workbook Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 946

Name Returns Parameters Description

PrintOut [From], Prints out the workbook. The
[To], printer, number of copies,
[Copies], collation, and whether a print
[Preview], preview is desired can be specified
[Active with the parameters. Also, the
Printer], sheets can be printed to a file using
[PrintToFile], the PrintToFile and
[Collate], PrToFileName parameters. The
[PrToFileName], From and To parameters can be
[IgnorePrintAreas] used to specify the range of

printed pages

PrintPreview [Enable Displays the current workbook in
Changes] a print preview mode. Set the

EnableChanges parameter to
False to disable the Margins and
Setup buttons, hence not allowing
the viewer to modify the page
setup

Protect [Password], Protects the workbook from user
[Structure], changes. A protect Password can
[Windows] be specified. Set the Structure

parameter to True to protect the
relative position of the sheets. Set
Windows to True to protect the
workbook windows

Protect [Filename], Protects and saves the workbook
Sharing [Password], for sharing. The file is saved to the

[WriteRes Filename parameter with the
Password], optional passwords in the
[ReadOnly Password, WriteResPassword,
Recommended], and SharingPassword parameters.
[Create Set ReadOnlyRecommended to
Backup], True to display a message to the
[Sharing user every time the workbook is
Password], opened. Set CreateBackup to
[FileFormat] True to create a backup of the

saved file

Table continued on following page

947

Workbook Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 947

Name Returns Parameters Description

PurgeChange Days As Deletes the entries in the change
HistoryNow Long, log for the shared workbook. The

[Sharing Days parameter specifies how
Password] many days back to delete the

entries. A SharingPassword may
be required

RecheckSmart Does a foreground SmartTag
Tags check. Any data that was not

annotated before will now be
annotated

RefreshAll Refreshes any external data
source’s data into the workbook

RejectAll [When], Rejects all the changes in a shared
Changes [Who], workbook

[Where]

ReloadAs Encoding As Reopens the workbook using the
MsoEncoding web page-related Encoding

parameter

RemoveDocument RemoveDocInfoType Removes information specified
Information As xlRemoveDoc using one of the xlRemoveDoc

InfoType InfoType constants

RemoveUser Index As Disconnects the user (specified by
Long the user index in the Index

parameter) from a shared
workbook

Reply Replies to the sender of the sent
workbook. Valid only in the Mac-
intosh Edition of Excel

ReplyAll Replies to the sender and all recip-
ients of the sent workbook. Valid
only in the Macintosh Edition of
Excel

ReplyWith [ShowMessage] E-mails a notification to the author
Changes of a workbook telling them that a

reviewer has completed review of
the workbook

ResetColors Resets the colors in the color
palette to the default colors

Route Routes the workbook using the
routing slip

948

Workbook Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 948

Name Returns Parameters Description

RunAuto Which As Runs the auto macro specified by
Macros XlRunAuto the Which parameter

Macro

Save Saves the workbook

SaveAs Filename, Saves the workbook as FileName.
FileFormat, The type of file to be saved can be
Password, specified with the FileFormat
WriteRes parameter. The file can be saved
Password, with the optional passwords in the
ReadOnly Password and WriteResPassword
Recommended, parameters. Set ReadOnly
CreateBackup, Recommended to True to display a
AccessMode, message to the user every time the
[Conflict workbook is opened. Set
Resolution], CreateBackup to True to create a
[AddToMru], backup of the saved file. Use
[Text AccessMode to choose how the
Codepage], workbook is accessed (for
[TextVisual example, xlShared,
Layout], xlExclusive). Use the
[Local] ConflictResolution parameter

to decide how shared workbooks
resolve change conflicts. Set the
AddToMru parameter to True to
add the workbook to the recently
opened files list

SaveAsXMLData Filename As String, Exports the data that has been
Map As XMLMap mapped to the specified XML

schema map to an XML data file

SaveCopyAs [Filename] Saves a copy of the workbook as
the FileName

SendFaxOver [Recipients], Sends a worksheet as a fax to the
Internet [Subject], specified recipients

[ShowMessage]

SendForReview [Recipients], Sends a workbook in an e-mail
[Subject], message for review to the specified
[ShowMessage], recipients
[Include
Attachment]

Table continued on following page

949

Workbook Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 949

Name Returns Parameters Description

SendMail Recipients, Sends the workbook through the
[Subject], default mail system. The recipient
[Return or recipients and subject can be
Receipt] specified with the parameters. Set

ReturnReceipt to True to
request a return receipt

SendMailer FileFormat, The SendMailer method is used
Priority only on the Macintosh. For infor-

mation about this keyword, con-
sult the language reference Help
included with Microsoft Office
Macintosh Edition

SetLinkOnData Name As Runs the procedure in the
String, Procedure parameter whenever
[Procedure] the DDE or OLE link in the Name

parameter is updated

SetPassword [Password Sets the options for encrypting
Encryption Encryption workbooks using passwords
Options Provider],

[Password
Encryption
Algorithm],
[Password
EncryptionKey
Length],
[Password
Encryption
File
Properties]

ToggleForms Toggles into design mode when
Design using Forms controls

Unprotect [Password] Unprotects the workbook with the
password, if necessary

Unprotect [Sharing Unprotects the workbook from
Sharing Password] sharing and saves the workbook

UpdateFrom Reloads the current workbook
File from the file if the file is newer

than the workbook

UpdateLink [Name], Updates the link specified by the
[Type] Name parameter. Use the Type

parameter with the
XlLinkInfoType constants to
pick the type of link that will be
returned

950

Workbook Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 950

Name Returns Parameters Description

WebPage Previews the workbook as a web
Preview page

XmlImport URL As String, Imports an XML data file to an
ImportMap As XMLMap, established XMLMap in the
Overwrite, workbook
Destination

XmlImportXml XmlImport Data As String, Imports an XML data string to an
XmlResult ImportMap As XMLMap, established XMLMap in the

Destination workbook

Workbook Events

Name Parameters Description

Activate Triggered when the workbook is activated

AddinInstall Triggered when the workbook is opened as an
Add-In

Addin Triggered when the workbook is opened as an
Uninstall Add-In is uninstalled

AfterXML Map As XMLMap, URL Triggered after XML data is exported
Export As String, Result

As xlXmlExportRsult

AfterXML Map As XmlMap, Triggered after XML data is refreshed or imported
Import IsRefresh As

Boolean, Result as
XlXmlImportResult

BeforeClose Cancel As Triggered just before the workbook closes.
Boolean Set the Cancel parameter to True to cancel the

closing

BeforePrint Cancel As Triggered just before the workbook is printed. Set
Boolean the Cancel parameter to True to cancel the printing

BeforeSave SaveAsUI Triggered just before the workbook is saved. Set
As Boolean, the Cancel parameter to True to cancel the saving.
Cancel As Boolean Set the SaveAsUI to True for the user to be

prompted with the Save As dialog box

BeforeXML Map As XMLMap, Triggered before XML data is exported
Export URL As String,

Result As xlXml
ExportRsult

Table continued on following page

951

Workbook Events

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 951

Name Parameters Description

BeforeXML Map As XmlMap,URL As Triggered before XML data is refreshed or
Import String, IsRefresh As imported

Boolean, Result as
XlXmlImportResult,
Cancel As Boolean

Deactivate Triggered when the workbook loses focus

NewSheet Sh As Triggered when a new sheet is created in the
Object workbook. The Sh parameter passes in the

new sheet

Open Triggered when the workbook is opened

PivotTable ByVal Target As Triggered when a PivotTable report closes the
Close PivotTable connection to its data source. Target is the
Connection selected PivotTable

PivotTable ByVal Target Triggered when a PivotTable report opens the
Open As PivotTable connection to its data source. Target is the
Connection selected PivotTable

RowSet Description As Triggered when an OLAP drillthrough or rowset
Complete String, Sheet As action has been completed

String, Success As
Boolean

SheetActivate Sh As Object Triggered when a sheet is activated in the work-
book. The Sh parameter passes in the activated
sheet

SheetBefore Sh As Object, Triggered when a sheet is about to be double-
DoubleClick Target As Range, clicked. The sheet and the potential double-click

Cancel As Boolean spot are passed into the event. The double-click
action can be canceled by setting the Cancel
parameter to True

SheetBefore Sh As Object, Triggered when a sheet is about to be right-clicked.
RightClick Target As Range, The sheet and the potential right-click spot are

Cancel As Boolean passed into the event. The right-click action can be
canceled by setting the Cancel parameter to True

Sheet Sh As Object Triggered when a sheet is recalculated passing in
Calculate the recalculated sheet

SheetChange Sh As Object, Triggered when the contents of a cell are changed in
Range Target As any worksheet in the workbook. For example, this

can be triggered by entering new data, clearing
the cell, or deleting a row/column. Not triggered
when inserting rows/columns

Sheet Sh As Object Triggered when a sheet loses focus. Passes in
Deactivate the sheet

952

Workbook Events

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 952

Name Parameters Description

SheetFollow Sh As Object, Triggered when the user clicks a hyperlink on
Hyperlink Target As a sheet. Passes in the sheet and the clicked

Hyperlink hyperlink

SheetPivot Sh Triggered when the sheet of the PivotTable
TableUpdate As Object, report has been updated

Target As
PivotTable

Sheet Sh As Triggered when the user selects a different cell on
Selection Object, the sheet. Passes in the new range and the sheet
Change Target As where the change occurred

Range

SyncEvent SyncEventType As Triggers when the local copy of a worksheet that is
MsoSyncEventType part of a Document Workspace is synchronized

with the copy on the server

Window Wn As Triggered when a workbook window is activated
Activate Window (brought up to the front of other workbook

windows). The workbook and the window are
passed in

Window Wn As Triggered when a workbook window loses focus.
Deactivate Window The related workbook and the window are

passed in

WindowResize Wn As Triggered when a workbook window is resized.
Window The resized workbook and window are passed

into the event

WorkbookConnection Object
The WorkbookConnection object manages all external data connections in a workbook. Each time
a QueryTable, ListObject, or PivotCache that points to external data is created, a new instance of a
WorkbookConnection object is created. You can also create a standalone WorkbookConnection object,
one that is not associated with any external data container. You can create a new WorkbookConnection
object using the Add or AddFromFile methods of the Workbook.Connections collection. See Chapter
21 for examples of how to use the WorkbookConnection object.

Worksheet Object and the Worksheets Collection
The Worksheets collection holds the collection of worksheets in a workbook. The Workbook object is
always the parent of the Worksheets collection. The Worksheets collection only holds the worksheets.
The Worksheet objects in the Worksheets collection can be accessed using the Item property. The name
of the worksheet can be specified as either a parameter to the Item’s parameter or an index number
describing the position of the worksheet in the workbook (from left to right).

953

WorkbookConnection Object

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 953

The Worksheet object allows access to all of the attributes of a specific worksheet in Excel. This includes
worksheet formatting and other worksheet properties. The Worksheet object also exposes events that
can be used programmatically.

The Worksheets collection has a few properties and methods besides the typical collection attributes.
These are listed in the following table.

Worksheets Collection Properties and Methods

Name Returns Description

HPageBreaks HPage Read-only. Returns a collection holding all the horizontal
Breaks page breaks associated with the Worksheets collection

Visible Variant Set/Get whether the worksheets in the collection are visi-
ble. Also can set this to xlVeryHidden to prevent a user
from making the worksheets in the collection visible

VpageBreaks VPage Read-only. Returns a collection holding all the vertical
Breaks page breaks associated with the Worksheets collection

Add Method. Parameters: [Before], [After], [Count],
[Type]. Adds a worksheet to the collection. You can
specify where the worksheet goes by choosing which
sheet object will be before the new worksheet object
(Before parameter) or after the new worksheet (After
parameter). The Count parameter decides how many
worksheets are created

Copy Method. Parameters: [Before], [After]. Adds a new
copy of the currently active worksheet to the position
specified by the Before or After parameters

Delete Method. Deletes all the worksheets in the collection

FillAcross Method. Parameters: Range As Range, Type. Copies the
Sheets range specified by the Range parameter across all the

other worksheets in the collection. Use the Type parame-
ter to pick what part of the range is copied (for example,
xlFillWithContents, xlFillWithFormulas)

Move Method. Parameters: [Before],[After]. Moves the cur-
rent worksheet to the position specified by the parameters

PrintOut Method. Parameters: [From], [To], [Copies], [Pre-
view], [ActivePrinter], [PrintToFile], [Collate,
[[PrToFileName], [IgnorePrintAreas]. Prints the
worksheets in the collection. The printer, number of
copies, collation, and whether a print preview is desired
can be specified with the parameters. Also, the sheets can
be printed to a file using the PrintToFile and
PrToFileName parameters. The From and To parameters
can be used to specify the range of printed pages

954

Worksheets Collection Properties and Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 954

Name Returns Description

PrintPreview Method. Parameters: [EnableChanges]. Displays the
current worksheet in the collection in a print preview
mode. Set the EnableChanges parameter to False to
disable the Margins and Setup buttons, hence not allow-
ing the viewer to modify the page setup

Select Method. Parameters: [Replace]. Selects the current
worksheet in the collection

Worksheet Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Worksheet Properties

Name Returns Description

AutoFilter AutoFilter Read-only. Returns an AutoFilter object if filtering is
turned on

AutoFilter Boolean Set/Get whether AutoFilter drop-down arrows are
Mode currently displayed on the worksheet

Cells Range Read-only. Returns the cells in the current worksheet

Circular Range Read-only. Returns the cell range that contains the first
Reference circular reference on the worksheet

CodeName String Read-only. Returns the name of the worksheet set at
design time in the VBE

Columns Range Read-only. Returns a range of the columns in the current
worksheet

Comments Comments Read-only. Returns the collection of comments in the
worksheet

Consolidation Xl Read-only. Returns the type of consolidation being used
Function Consolidation in the worksheet (for example, xlSum, xlMax, xlAverage)

Function

Consolidation Variant Read-only. Returns a one-dimensional array containing
Options three elements of Booleans. The first element describes

whether the labels in the top row are used; the second ele-
ment describes whether the labels in the leftmost column
are used; and the third element describes whether links
are created to the source data

Consolidation Variant Read-only. Returns the array of strings that describe the
Sources source sheets for the current worksheet’s consolidation

Table continued on following page

955

Worksheet Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 955

Name Returns Description

Custom Custom Read-only. Returns the identifier information associated
Properties Properties with a worksheet

DisplayPage Boolean Set/Get whether page breaks are displayed
Breaks

DisplayRight Boolean Set/Get whether the worksheet contents are displayed
ToLeft from right to left. Valid only with languages that support

right-to-left text

EnableAuto Boolean Set/Get whether the AutoFilter arrows are enabled when
Filter a worksheet is user interface-only protected

Enable Boolean Set/Get whether Excel will automatically recalculate the
Calculation worksheet as necessary

EnableFormat Boolean Set/Get whether conditional formats will occur
Conditions automatically as needed
Calculation

EnableOut Boolean Set/Get whether outlining symbols are enabled when a
lining worksheet is user interface-only protected

EnablePivot Boolean Set/Get whether PivotTable controls and related actions
Table are enabled when a worksheet is user interface-only

protected

Enable XlEnable Set/Get what objects can be selected when a worksheet
Selection Selection is protected (for example, xlNoSelection and

xlNoRestrictions)

FilterMode Boolean Read-only. Returns whether a worksheet is in a filter mode

HPageBreaks HPageBreaks Read-only. Returns a collection holding all the horizontal
page breaks associated with the Worksheet

Hyperlinks Hyperlinks Read-only. Returns the collection of hyperlinks in the
worksheet

Index Long Read-only. Returns the spot in the parent collection where
the current worksheet is located

ListObjects ListObjects Returns a ListObjects object

MailEnvelope MsoEnvelope Set/Get the e-mail header for a document

Name String Set/Get the name of the worksheet

Names Names Read-only. Returns the collection of ranges with names in
the worksheet

Next Object Read-only. Returns the next sheet in the workbook (from
left to right) as an object

Outline Outline Read-only. Returns an object to manipulate an outline in
the worksheet

956

Worksheet Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 956

Name Returns Description

PageSetup PageSetup Read-only. Returns an object to manipulate the page
setup properties for the worksheet

Previous Object Read-only. Returns the previous sheet in the workbook
(from right to left) as an object

Protect Boolean Read-only. Returns whether the worksheet and
Contents everything in it is protected from changes

Protect Boolean Read-only. Returns whether the shapes in the worksheet
DrawingObjects can be modified (ProtectDrawingObjects = False)

Protection Protection Read-only. Returns the protection options of the
worksheet

Protection Boolean Read-only. Returns whether protection has been applied
Mode to the user interface. Even if a worksheet has user inter-

face protection on, any VBA code associated with the
worksheet can still be accessed

Protect Boolean Read-only. Returns whether the worksheet scenarios
Scenarios are protected

QueryTables QueryTables Read-only. Returns the collection of query tables associated
with the worksheet

Range Range Read-only. Parameters: Cell1, [Cell2]. Returns a Range
object as defined by the Cell1 and, optionally, Cell2
parameters

Rows Range Read-only. Returns a Range object containing the rows of
the current worksheet

ScrollArea String Sets the A1-style reference string describing the range in
the worksheet that can be scrolled. Cells not in the range
cannot be selected

Shapes Shapes Read-only. Returns all the shapes contained by the
worksheet

SmartTags SmartTags Read-only. Returns the identifier for the specified cell

Sort Sort Controls the attributes and specifications of a sort of the
AutoFilter object

Standard Double Read-only. Returns the default height of the rows in the
Height worksheet, in points

Standard Double Read-only. Returns the default width of the columns in
Width the worksheet, in points

Tab Tab Read-only. Returns the Tab object for the selected chart or
worksheet

Table continued on following page

957

Worksheet Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 957

Name Returns Description

TransitionExp Boolean Set/Get whether to evaluate expressions using
Eval Lotus 1-2-3 rules in the worksheet

TransitionForm Boolean Set/Get whether formula entries can be entered using
Entry Lotus 1-2-3 rules

Type XlSheetType Read-only. Returns the worksheet type (for example,
xlWorksheet, xlExcel4MacroSheet,
xlExcel4IntlMacroSheet)

UsedRange Range Read-only. Returns the range in the worksheet that is
being used

Visible XlSheet Set/Get whether the worksheet is visible. Also, set this to
Visibility xlVeryHidden to prevent a user from making the work-

sheet visible

VPageBreaks VPageBreaks Read-only. Returns a collection holding all the vertical
page breaks associated with the worksheet

Worksheet Methods

Name Returns Parameters Description

Activate Activates the worksheet

Calculate Calculates all the formulas in the
worksheet

ChartObjects Object [Index] Returns either a chart object
(ChartObject) or a collection of
chart objects (ChartObjects) in
a worksheet

CheckSpelling [CustomDictionary], Checks the spelling of the text in the
[IgnoreUppercase], worksheet. A custom dictionary can
[AlwaysSuggest], be specified (CustomDictionary),
[SpellLang] all uppercase words can be ignored

(IgnoreUppercase), and Excel can
be set to display a list of suggestions
(AlwaysSuggest)

CircleInvalid Circles the invalid entries in the
worksheet

ClearArrows Clears out all the tracer arrows in
the worksheet

ClearCircles Clears all the circles around invalid
entries in a worksheet

958

Worksheet Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 958

Name Returns Parameters Description

Copy [Before],[After] Adds a new copy of the worksheet
to the position specified at the
Before or After parameter

Delete Deletes the worksheet

Evaluate Variant Name Evaluates the Name string expression
as if it were entered into a work-
sheet cell

ExportAs Type As Variant, Exports a file to a format specified
FixedFormat FileName, Quality, by using the xlFixedFormatType

IncludeDoc constants
Properties,
IgnorePrintAreas,
From, To,
OpenAfterPublish

Move [Before], [After] Moves the worksheet to the position
specified by the parameters

OLEObjects Object [Index] Returns either a single OLE object
(OLEObject) or a collection of
OLE objects (OLEObjects) for a
worksheet

Paste [Destination], Pastes the contents of the clipboard
[Link] into the worksheet. A specific desti-

nation range can be specified with
the Destination parameter. Set
Link to True to establish a link to
the source of the pasted data. Either
the Destination or the Link
parameter can be used

PasteSpecial [Format],[Link], Pastes the clipboard contents into the
[DisplayAsIcon], current worksheet. The format of the
[IconFileName], clipboard data can be specified with
[IconIndex], the string Format parameter. Set
[IconLabel], Link to True to establish a link to
[NoHTMLFormatting] the source of the pasted data. Set

DisplayAsIcon to True to display
the pasted data as an icon and the
IconFileName, IconIndex, and
IconLabel to specify the icon and
label. A destination range must be
already selected in the worksheet

Table continued on following page

959

Worksheet Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 959

Name Returns Parameters Description

PivotTables Object [Index] Returns either a single PivotTable
report (PivotTable) or a collection
of PivotTable reports (Pivot-
Tables) for a worksheet

PivotTable Pivot [SourceType], Creates a PivotTable report. The
Wizard Table [SourceData], SourceType uses the XLPivot

[TableDestination], TableSourceType constants to
[TableName], specify the type of SourceData
[RowGrand],[Column being used for the PivotTable.
Grand],[SaveData], TableDestination holds the range
[HasAutoFormat], in the parent worksheet where that
[AutoPage], report will be placed. TableName
[Reserved], holds the name of the new report. Set
[BackgroundQuery], RowGrand or ColumnGrand to True
[OptimizeCache], to show grand totals for rows and
[PageFieldOrder], columns, respectively. Set HasAuto
[PageFieldWrap Format to True for Excel to format
Count],[ReadData], the report automatically when it is
[Connection] refreshed or changed. Use the Auto

Page parameter to set if a page field
is created automatically for consoli-
dation. Set BackgroundQuery to
True for Excel to query the data
source asynchronously. Set Opti-
mizeCache to True for Excel to
optimize the cache when it is built.
Use the PageFieldOrder with the
xlOrder constants to set how new
page fields are added to the report.
Use the PageFieldWrapCount to
set the number of page fields in each
column or row. Set ReadData to
True to copy the data from the
external database into a cache.
Finally, use the Connection param-
eter to specify an ODBC connection
string for the PivotTable’s cache

PrintOut [From],[To], Prints out the worksheet. The
[Copies],[Preview], printer, number of copies, collation,
[ActivePrinter], and whether a print preview is
[PrintToFile], desired can be specified with the
[Collate], parameters. Also, the sheets can be
[PrToFileName], printed to a file using the Print
[IgnorePrintAreas] ToFile and PrToFileName param-

eters. The From and To parameters
can be used to specify the range of
printed pages

960

Worksheet Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 960

Name Returns Parameters Description

PrintPreview [EnableChanges] Displays the worksheet in a print pre-
view mode. Set the EnableChanges
parameter to False to disable the
Margins and Setup buttons, hence not
allowing the viewer to modify the
page setup

Protect [Password], Protects the worksheet from changes.
[DrawingObjects], A case-sensitive Password can be
[Contents], specified. Also specifies whether
[Scenarios],[User shapes are protected (Drawing
InterfaceOnly], Objects), whether the entire
[AllowFormatting contents are protected (Contents),
Cells],[Allow or whether only the user interface
FormattingColumns], is protected (UserInterfaceOnly)
[AllowFormatting
Rows],[Allow
InsertingColumns],
[AllowInserting
Rows],[Allow
Inserting
Hyperlinks],
[AllowDeleting
Columns],[Allow
DeletingRows],
[AllowSorting],
[AllowFiltering],
[AllowUsing
PivotTables]

ResetAllPage Resets all the page breaks in the
Breaks worksheet

SaveAs Filename As String, Saves the worksheet as FileName.
[FileFormat], The type of file to be saved can be
[Password], specified with the FileFormat
[WriteResPassword], parameter. The file can be saved
[ReadOnly with the optional passwords in the
Recommended], Password and WriteResPassword
[CreateBackup], parameters. Set ReadOnly
[AddToMru], [Text Recommended to True to display a
Codepage],[Text message to the user every time the
VisualLayout] , worksheet is opened. Set Create
[Local] Backup to True to create a backup

of the saved file. Set the AddToMru
parameter to True to add the work-
sheet to the recently opened files list

Table continued on following page

961

Worksheet Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 961

Name Returns Parameters Description

Scenarios Object [Index] Returns either a single scenario
(Scenario) or a collection of sce-
narios (Scenarios) for a worksheet

Select [Replace] Selects the worksheet

SetBackground Filename As String Sets the worksheet’s background to
Picture the picture specified by the File

Name parameter

ShowAllData Displays all of the data that is
currently filtered

ShowDataForm Displays the data form that is part of
the worksheet

Unprotect [Password] Deletes the protection set up for a
worksheet. If the worksheet was
protected with a password, the
password must be specified now

XmlDataQuery Range [XPath] As String, Represents cells mapped to a
[Selection particular XPath
Namespaces],[Map]

XmlMapQuery Range [XPath] As String, Represents cells mapped to a
[Selection particular XPath
Namespaces][Map]

Worksheet Events

Name Parameters Description

Activate Triggered when a worksheet is made to have focus

BeforeDouble Target AsRange, Triggered just before a user double-clicks a work-
Click Cancel AsBoolean sheet. The cell closest to the point double-clicked

in the worksheet is passed into the event proce-
dure as Target. The double-click action can be
canceled by setting the Cancel parameter to True

BeforeRight Target as Range, Triggered just before a user right-clicks a worksheet.
Click Cancel AsBoolean The cell closest to the point right-clicked in the

worksheet is passed into the event procedure as
Target. The right-click action can be canceled by
setting the Cancel parameter to True

Calculate Triggered after the worksheet is recalculated

Change Target As Triggered when the worksheet cell values are
Range changed. The changed range is passed into the

event procedure as Target

962

Worksheet Events

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 962

Name Parameters Description

Deactivate Triggered when the worksheet loses focus

Follow Target As Triggered when a hyperlink is clicked on the
Hyperlink Hyperlink worksheet. The hyperlink that was clicked is

passed into the event procedure as Target

PivotTable ByVal Triggered when a PivotTable report is updated
Update Target As on a worksheet

PivotTable

Selection Target As Triggered when the selection changes in a
Change Range worksheet. The new selected range is passed into

the event procedure as Target

WorksheetFunction Object
The WorksheetFunction object allows access to Excel worksheet functions via VBA. The parent of the
WorksheetFunction object is the Application object.

WorksheetFunction Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

WorksheetFunction Methods
The methods of the WorksheetFunction object are actually individual Excel functions that do not have
VBA equivalents. The Excel functions listed here constitute the methods of the WorksheetFunction
object. You can explore these functions in detail by going to Excel’s Help and entering the keywords
“List of Functions” in the Search box.

963

WorksheetFunction Object

❑ AccrInt

❑ AccrIntM

❑ Acos

❑ Acosh

❑ AmorDegrc

❑ AmorLinc

❑ And

❑ Asc

❑ Asin

❑ Asinh

❑ Atan2

❑ Atanh

❑ AveDev

❑ Average

❑ AverageIf

❑ AverageIfs

❑ BahtText

❑ BesselI

❑ BesselJ

❑ BesselK

❑ BesselY

❑ BetaDist

❑ BetaInv

❑ Bin2Dec

❑ Bin2Hex

❑ Bin2Oct

❑ BinomDist

❑ Ceiling

❑ ChiDist

❑ ChiInv

❑ ChiTest

❑ Choose

❑ Clean

❑ Combin

❑ Complex

❑ Confidence

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 963

❑ Convert

❑ Correl

❑ Cosh

❑ Count

❑ CountA

❑ CountBlank

❑ CountIf

❑ CountIfs

❑ CoupDayBs

❑ CoupDays

❑ CoupDaysNc

❑ CoupNcd

❑ CoupNum

❑ CoupPcd

❑ Covar

❑ CritBinom

❑ CumIPmt

❑ CumPrinc

❑ DAverage

❑ Days360

❑ Db

❑ Dbcs

❑ DCount

❑ DCountA

❑ Ddb

❑ Dec2Bin

❑ Dec2Hex

❑ Dec2Oct

❑ Degrees

❑ Delta

❑ DevSq

❑ DGet

❑ Disc

❑ DMax

❑ DMin

❑ Dollar

❑ DollarDe

❑ DollarFr

❑ DProduct

❑ DStDev

❑ DStDevP

❑ DSum

❑ Duration

❑ DVar

❑ DVarP

❑ EDate

❑ Effect

❑ EoMonth

❑ Erf

❑ ErfC

❑ Even

❑ ExponDist

❑ Fact

❑ FactDouble

❑ FDist

❑ Find

❑ FindB

❑ FInv

❑ Fisher

❑ FisherInv

❑ Fixed

❑ Floor

❑ Forecast

❑ Frequency

❑ FTest

❑ Fv

❑ FVSchedule

❑ GammaDist

❑ GammaInv

❑ GammaLn

❑ Gcd

❑ GeoMean

❑ GeStep

❑ Growth

❑ HarMean

❑ Hex2Bin

❑ Hex2Dec

❑ Hex2Oct

❑ HLookup

❑ HypGeomDist

❑ IfError

❑ ImAbs

❑ Imaginary

❑ ImArgument

❑ ImConjugate

❑ ImCos

❑ ImDiv

❑ ImExp

❑ ImLn

❑ ImLog10

❑ ImLog2

❑ ImPower

❑ ImProduct

❑ ImReal

❑ ImSin

❑ ImSqrt

964

WorksheetFunction Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 964

❑ ImSub

❑ ImSum

❑ Index

❑ Intercept

❑ IntRate

❑ Ipmt

❑ Irr

❑ IsErr

❑ IsError

❑ IsEven

❑ IsLogical

❑ IsNA

❑ IsNonText

❑ IsNumber

❑ IsOdd

❑ Ispmt

❑ IsText

❑ Kurt

❑ Large

❑ Lcm

❑ LinEst

❑ Ln

❑ Log

❑ Log10

❑ LogEst

❑ LogInv

❑ LogNormDist

❑ Lookup

❑ Match

❑ Max

❑ MDeterm

❑ MDuration

❑ Median

❑ Min

❑ MInverse

❑ MIrr

❑ MMult

❑ Mode

❑ MRound

❑ MultiNomial

❑ NegBinomDist

❑ NetworkDays

❑ Nominal

❑ NormDist

❑ NormInv

❑ NormSDist

❑ NormSInv

❑ NPer

❑ Npv

❑ Oct2Bin

❑ Oct2Dec

❑ Oct2Hex

❑ Odd

❑ OddFPrice

❑ OddFYield

❑ OddLPrice

❑ OddLYield

❑ Or

❑ Pearson

❑ Percentile

❑ PercentRank

❑ Permut

❑ Phonetic

❑ Pi

❑ Pmt

❑ Poisson

❑ Power

❑ Ppmt

❑ Price

❑ PriceDisc

❑ PriceMat

❑ Prob

❑ Product

❑ Proper

❑ Pv

❑ Quartile

❑ Quotient

❑ Radians

❑ RandBetween

❑ Rank

❑ Rate

❑ Received

❑ Replace

❑ ReplaceB

❑ Rept

❑ Roman

❑ Round

❑ RoundDown

❑ RoundUp

❑ RSq

❑ RTD

❑ Search

❑ SearchB

❑ SeriesSum

❑ Sinh

❑ Skew

965

WorksheetFunction Methods

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 965

❑ Sln

❑ Slope

❑ Small

❑ SqrtPi

❑ Standardize

❑ StDev

❑ StDevP

❑ StEyx

❑ Substitute

❑ Subtotal

❑ Sum

❑ SumIf

❑ SumIfs

❑ SumProduct

❑ SumSq

❑ SumX2MY2

❑ SumX2PY2

❑ SumXMY2

❑ Syd

❑ Tanh

❑ TBillEq

❑ TBillPrice

❑ TBillYield

❑ TDist

❑ Text

❑ TInv

❑ Transpose

❑ Trend

❑ Trim

❑ TrimMean

❑ TTest

❑ USDollar

❑ Var

❑ VarP

❑ Vdb

❑ VLookup

❑ Weekday

❑ WeekNum

❑ Weibull

❑ WorkDay

❑ Xirr

❑ Xnpv

❑ YearFrac

❑ YieldDisc

❑ YieldMat

❑ ZTest

966

WorksheetFunction Object Example

WorksheetFunction Object Example
In this example, an array of numbers is passed to the Max worksheet function to determine the biggest
number in the array:

Sub GetBiggest()
Dim oWSF As WorksheetFunction
Dim vaArray As Variant
Set oWSF = Application.WorksheetFunction
vaArray = Array(10, 20, 13, 15, 56, 12, 8, 45)
MsgBox “Biggest is “ & oWSF.Max(vaArray)

End Sub

WorksheetView Object
The WorksheetView object contains various properties that determine how certain values and objects
on a given worksheet are displayed. Along with the common properties of Application, Creator, and
Parent, the WorksheetView object contains the following properties.

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 966

WorksheetView Properties

Name Returns Description

Display Boolean Set/Get whether the formulas are displayed on the
Formulas worksheet

Display Boolean Set/Get whether the gridlines are displayed on the
Gridlines worksheet

DisplayHeadings Boolean Set to True to display both row and column headings.
Set to False to display no headings

DisplayOutline Boolean Set/Get whether outline symbols are displayed on the
worksheet

DisplayZeros Boolean Set/Get whether the zero values are displayed on the
worksheet

Sheet Object Read-only. Returns the sheet associated with the specified
WorksheetView object

XmlDataBinding Object
The XMLDataBinding object represents the connection to the data source for an XML Map. Along with
the common properties of Application, Creator, and Parent, the XMLDataBinding object contains
the SourceURL property. The SourceURL property returns a string variable that represents the path to
the XML data file or the URL that provides the source data for the specified data binding. See Chapter 12
for examples of how to use the XMLDataBinding object.

XmlDataBinding Methods

Name Returns Parameters Description

ClearSettings Clears all settings for the current
object

LoadSettings Url as String Loads a set of settings

Refresh xlXmlImport Refreshes all data
Result

XmlMap Object and the XMLMaps Collection
The XMLMap object represents an XML Map that has been added to a workbook. The XMLMaps collection
contains all of the XMLMap objects within a workbook. Along with the common collection attributes, the
XMLMaps collection has an Add method that allows you to add a new XMLMap object to the collection.

967

WorksheetView Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 967

XMLMap Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

XmlMap Properties

Name Returns Description

AdjustColumn Boolean Set this to True to automatically adjust column widths
Width when data is refreshed

AppendOnImport Boolean Set this to True and imported data will be appended to
current data. Otherwise, imported data will be overwritten

DataBinding XmlData Read-only. Returns an XmlDataBinding object that
Binding represents the binding associated with the specified

schema map

IsExportable Boolean Read-only. Determines if the current data is exportable

Name String Get/Set the name of a given XMLMap object

PreserveColumn Boolean Set/Get whether the column filters are persisted
Filter

PreserveNumber Boolean Set/Get whether number formatting is persisted
Formatting

RootElement String Read-only. Returns a string representing the root element
Name name in the XML tree

RootElement XmlName Read-only. Returns a XmlNamespace object that represents
Namespace space the namespace of the current root element

SaveDataSource Boolean Set/Get whether the data source information is saved
Definition

Schemas XmlSchemas Read-only. Returns a collection of XmlSchema objects that
have been applied to the current workbook

ShowImport Boolean Set this to True and any validation errors will be
Export displayed during import and export operations
Validation
Errors

Workbook Workbook Read-only. Returns an object that manages the external
Connection Connection connections to the source XML data

XmlMap Methods

Name Returns Parameters Description

Delete Deletes the current XmlMap object

Export XlXmlExportResult Url As String, Exports the current XmlMap object
[Overwrite]

968

XMLMap Common Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 968

Name Returns Parameters Description

ExportXml XlXmlExportResult Data As String Exports the current XmlMap object as
XML that can be persisted to a file

Import XlXmlImportResult Url As String, Imports an XmlMap object
[Overwrite]

ImportXml XlXmlImportResult XmlData As Imports an XmlMap object from XML
String,
[Overwrite]

See Chapter 12 for examples of how to use the XMLMap object.

XmlNameSpace Object and the
XMLNameSpacesCollection

The XMLNameSpace object represents an XML namespace that has been added to a workbook. The
XMLNameSpaces collection contains all of the XMLNameSpace objects within a workbook. Along with the
common collection attributes, the XMLNameSpaces collection contains a Value property that returns the
actual namespace name. The XMLNameSpaces collection only has one method. This method is the
InstallManifest, which installs a specified XML expansion pack (a collection of files that add custom
displays and actions to your Excel workbook).

XMLNameSpace Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

XMLNameSpace Properties

Name Returns Description

Prefix String Read-only. Returns the prefix for the specified namespace

Uri String Read-only. Returns the Uniform Resource Identifier (URI)
for the specified namespace

XmlSchema Object and the XmlSchemas Collection
The XMLSchema object represents an XML schema contained by the XMLMap object. The
XMLNameSchemascollection contains all of the XMLSchema objects within a workbook.
XMLNameSchemascollection has only the common collection.

XMLSchema Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

969

XmlNameSpace Object and the XMLNameSpacesCollection

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 969

XMLSchema Properties

Name Returns Description

Name String Read-only. Returns the user-friendly name for the XML
schema

Namespace XMLNamespace Read-only. Returns an XMLNamespace object representing
the target namespace for the specified schema

XML String Returns the XML string that makes up the content for the
specified schema

XPath Object
The XPath object represents an XPath expression mapped to a range or list. For more information on
XPath expressions and how to use them with Excel VBA, refer to Chapter 12.

XPath Common Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

XPath Properties

Name Returns Description

Map XMLMap Read-only. Returns an XMLMap object representing the
schema map that contains the specified XPath object

Repeating Boolean Read-only. Get whether the given XPath object is mapped
to an XML list

Value String Set/Get the string that makes up the XPath expression

XPath Methods

Name Parameters Description

Clear Clears all XPath schema information for the mapped
range. Note that this method does not clear the data from
the cells mapped to the specified XPath

SetValue Map As XMLMap, Maps the specified XPath object to a ListColumn object
XPath as String, or Range collection
Selection
NameSpace,
Repeating

970

XMLSchema Properties

32_046432 appa_b.qxp 2/16/07 10:06 PM Page 970

VBE Object Model
Officially known as “Microsoft Visual Basic for Applications Extensibility 5.3,” the VBE object library
provides access to the code and forms within an application, and to the various objects that com-
pose the Visual Basic Integrated Development Environment (VBIDE). By default, this object library is
not included in the list of referenced libraries for new projects. In order to use the objects referred
to in this chapter, a reference to the Microsoft Visual Basic for Applications Extensibility 5.3 library
must be created using the Tools ➪ References menu in the VBE.

Many of the objects in the VBE object model have the same names as objects in the Excel object
model. To distinguish the libraries and to ensure that you have the object from the VBE library,
you need to include the VBIDE library name in any Dim statements you may use:

Dim oWinVB As VBIDE.Window ‘Always gives a VBE Window
Dim oWinXL As Excel.Window ‘Always gives an XL Window
Dim oWin As Window ‘Gives an XL Window

All of the applications in Office 2007 share the same development environment — the VBE. The code
and forms that belong to each Excel workbook, Word document, Access database, or PowerPoint
presentation (that is, the “host document”) are grouped into Visual Basic projects (the VBProject
object). There is one project for each host document. Outlook has a single Project, which “belongs” to
the application.

Links between the Excel
and VBE Object Models

A number of properties of Excel objects provide links to the VBE object model. Similarly, a number
of properties in the VBE object model provide a link back into Excel. Many of the code examples in
this appendix and in Chapter 26 use the links outlined in the following tables.

33_046432 appb.qxp 2/16/07 10:06 PM Page 971

Excel to VBE

Excel Property Resulting VBE Item

Application.VBE VBE object

Workbook.VBProject VBProject object

Workbook.CodeName The name of the workbook-level VBComponent in the workbook’s
VBProject, usually “ThisWorkbook” in English versions of Excel 2007

Worksheet.CodeName The name of the sheet-level VBComponent in the workbook’’s
VBProject, usually “Sheet1”, “Chart1”, and so forth in English
versions of Excel 2007

VBE to Excel

VBE Property Resulting Excel item

VBProject.FileName The full name of the workbook, if the VBProject is an Excel work-
book project and the workbook has been saved.

VBComponent The filename of the workbook, if the VBComponent is the workbook-
.Properties(“Name”) level item (for example, “ThisWorkbook”) or the name of the sheet for

sheet-level VBComponents.

VBComponent The properties associated with the Excel object to which VBComponent
.Properties(“<Other applies (if any).
Properties>”)

Common Proper ties and Methods
Most of the objects in the VBE object library have the following common properties. To avoid redun-
dancy, these properties will be listed for each object, but will not be explained.

Name Returns Description

Collection Read-only. Returns the collection to which an object belongs. For
example, a Reference object belongs to the References collec-
tion. The Collection property is used for objects that belong to
collections.

Parent Read-only. Returns the object to which an object belongs. For
example, a References collection belongs to a VBProject
object. The Parent property is used for objects that do not belong
to collections.

VBE VBE Read-only. Returns the Visual Basic Editor object, which is
analogous to the Application object in the Excel object model.

972

Excel to VBE

33_046432 appb.qxp 2/16/07 10:06 PM Page 972

Most of the objects in the VBE object model are contained in associated collections. The collection object
is usually the plural form of the associated object. For example, the Windows collection holds a collection
of Window objects. For simplicity, each object and associated collection are grouped together under the
same heading. The common properties and methods of the collection objects are the same as in the Excel
object model, and are listed in Appendix A. Only unique properties, methods, or events are mentioned
for each object.

AddIn Object and Add-Ins Collection
Not to be confused with Excel’s AddIn object, VBE Add-Ins are DLLs that conform to Microsoft’s
Component Object Model architecture and are more commonly known as COM Add-Ins. These Add-Ins
are typically created using C++, Visual Basic, or .NET. If you have any installed, they can be found
under the VBE’s Add-Ins menu and can be loaded and unloaded using the Add-Ins ➪ Add-In Manager
menu item.

The following table defines the Collection and VBE properties.

Add-In Properties

Name Returns Description

Connect Boolean Whether the COM Add-In is currently connected (active). Can be
set to True to load and run the Add-In. Similar to the Installed
property of an Excel Add-In.

Description String The text that appears in the Description box of the VBE Add-In
Manager.

Guid String Read-only. Returns the globally unique identifier for the Add-In.
The Guid is created by Excel/VB when the Add-In is compiled.

Object In the Add-In’s OnConnection method, it can expose an object to
the VBE (typically the root class of its object model, if it has one).
You can then use the Add-In’s Object property to access this
object and, through it, the rest of the Add-In’s object model. Few
Add-Ins currently expose an Object.

ProgId String Read-only. Returns the program ID for the Add-In, which is com-
posed of the name of the Add-In project and the name of the con-
nection class (usually a connection designer). For example, if you
have an Add-In project called MyAddin and an Add-In Designer
class called dsrMyConnection, the ProgId will be
“MyAddin.dsrMyConnection”.

973

AddIn Object and Add-Ins Collection

33_046432 appb.qxp 2/16/07 10:06 PM Page 973

Add-Ins Collection Methods

Name Returns Description

Item AddIn Parameters: Item As Variant. Returns an Add-In associated with
the item. The parameter can be either a number or the ProgId of
the Add-In (for example, MyAddin.dsrMyConnection).

Update Updates the list of available COM Add-Ins from the Registry. This
should only need to be used if you are compiling an Add-In through
code (for example, using VBProject.MakeCompiledFile).

The following example iterates through all the Add-Ins registered for use in the VBE and prints informa-
tion about those that are active:

Sub ListRunningAddins()
‘Define as a VBE Addin, not an Excel one
Dim oAddin As VBIDE.Addin

‘Loop through the VBE’s addins
For Each oAddin In Application.VBE.AddIns

‘Is it active (i.e. connected)?
If oAddin.Connect Then

‘Yes, so show it’s ID and description
Debug.Print oAddin.ProgId, oAddin.Description

End If
Next

End Sub

Note that VBE Add-Ins do not have a property to provide their name, as shown in the list in the Add-In
Manager dialog.

CodeModule Object
The CodeModule object contains all of the code for a single VBComponent (such as a Module, UserForm,
Class Module, the Excel workbook, or an Excel sheet). There is only ever one CodeModule for a
component — its methods and properties enable you to locate, identify, modify, and add lines of code
to a project’s components. There can be more than one procedure of the same name in a module, if they
are Property procedures:

Dim msSelection As String
Property Get TheSelection() As String

TheSelection = msSelection
End Property

Property Let TheSelection(NewString As String)
MsSelection = NewString

End Property

974

Add-Ins Collection Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 974

Hence, to uniquely identify a procedure, you need to supply both its name (TheSelection in this exam-
ple) and the type of procedure you’re looking for (vbext_pk_Get for Property Get, vbext_pk_Let for
Property Let, vbext_pk_Set for Property Set, or vbext_pk_Proc for Subs and Functions). The
ProcOfLine property provides this information for a given line number — the name of the procedure
is the return value of the function, and the type of procedure is returned in the variable you supply to its
ProcKind argument. It is one of the few properties in the whole of Office 2007 that returns values by
modifying the arguments passed to it.

The Parent and VBE properties are defined at the beginning of this section (the Parent of a
CodeModule being the VBComponent).

CodeModule Properties

Name Returns Description

CodePane CodePane Read-only. Returns the active CodePane for the module. If there
is no visible CodePane, one is created and displayed. Note that
a CodeModule can have up to two code panes, but there is no
CodePanes collection for them!

CountOf Long Read-only. Returns the number of lines at the top of the module
Declaration used for Dim, Type, and Option statements. If there are any
Lines such items at the top of the module, any comments following

them are considered to be part of the following procedure, not
the declarations. The following has two declaration lines:
Option Explicit
Dim msSelection As String

‘My Comment
Sub ProcedureStart()

If no such statements exist, comments appearing at the top of
the module are counted as declaration lines, if they are followed
by a blank line. The following has one declaration line:

‘My Comment
Sub ProcedureStart()

If the comment is immediately followed by the procedure, it is
included in the procedure’s lines, so the following has no decla-
ration line:

‘My Comment
Sub ProcedureStart()

CountOfLines Long Read-only. Returns the total number of lines of code in the mod-
ule, with line continuations counted as separate lines.

Lines String Read-only. Parameters: StartLine As Long, Count As Long.
Returns a block of code, starting from Startline and continu-
ing for Count lines.

Table continued on following page

975

CodeModule Properties

33_046432 appb.qxp 2/16/07 10:06 PM Page 975

Name Returns Description

Name String (Hidden) Read-only. Returns the name of the associated
VBComponent.

ProcBody Long Read-only. Parameters: ProcName As String, ProcKind As
Line vbext_ProcKind. Returns the line number of the start of the pro-

cedure, not including any preceding comments — that is, it gives
the line number of the Sub, Function, or Property statement.

ProcCount Long Read-only. Parameters: ProcName As String, ProcKind As
Line vbext_ProcKind. Returns the number of lines used by the pro-

cedure, including preceding comments, up to the End Sub, End
Function, or End Property statement.

ProcOfLine String Read-only. Parameters: Line As Long [in], ProcKind As Long
[out]. Returns the name of the procedure that a line is located
within. The ProcKind argument is also modified to return the
type of procedure (Sub/Function, Property Let, Get or Set).
This is usually the first property to be called; the name and type
returned from this are then used in calls to the other methods.

ProcStart Long Read-only. Parameters: ProcName As String, ProcKind As
Line vbext_ProcKind. Returns the line number of the start of

the procedure, including comments. Hence, ProcBodyLine -
ProcStartLine gives you the number of preceding comment
lines.

CodeModule Methods

Name Returns Parameters Description

AddFromFile FileName As String Reads code from a text file and
adds it to the end of the code mod-
ule. It does not check if the names
of procedures read from a file
already exist in the module.

AddFromString String As String Adds code from a string to the end
of the code module.

CreateEvent Long EventName As String, Creates an empty event procedure
Proc ObjectName As String in a module, filling in the event

parameters for you. Cannot be
used on standard modules, as
they do not support events. The
ObjectName must be a valid
object for the class module, and
the EventName must be a valid
event for that object.

976

CodeModule Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 976

Name Returns Parameters Description

DeleteLines StartLine As Long, Deletes lines from a code module,
Count As Long starting at StartLine, for Count

lines.

Find Boolean Target As String, Locates a string within a code
StartLine As Long, module, or section of a code
StartColumn As Long, module. It provides the same
EndLine As Long, functionality as the VBE’s Find
EndColumn As Long, dialog.
WholeWord As Boolean,
MatchCase As Boolean,
PatternSearch As
Boolean

InsertLines Line As Long, Adds code from a string into the
String As String middle of a code module, inserting

the code before the Line given.

ReplaceLines Line As Long, Adds code from a string into the
String As String middle of a code module, replacing

the Line given.

There are a number of CodeModule examples in Chapter 26. The following example identifies the proce-
dure for a given line and displays its type, name, and line count:

Sub WhichProc()
Dim lLine As Long, iProcKind As Long, lLineCount As Long
Dim sProc As String, sMsg As String
Dim oActiveCM As VBIDE.CodeModule

lLine = CLng(InputBox(“Which line?”))

‘Cancelled?
If lLine = 0 Then Exit Sub

‘Get the currently active code module
Set oActiveCM = Application.VBE.ActiveCodePane.CodeModule

‘Get the name and type of the procedure at
‘that line - iProcKind is filled in
sProc = oActiveCM.ProcOfLine(lLine, iProcKind)

If sProc = “” Then
‘We didn’t get a name, so you must be in the Declarations section
sMsg = “You are in the Declarations section”
lLineCount = oActiveCM.CountOfDeclarationLines

Else
sMsg = “You are in “

‘Display the type of the procedure...

977

CodeModule Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 977

Select Case iProcKind
Case vbext_pk_Proc

sMsg = sMsg & “Sub or Function procedure”
Case vbext_pk_Get

sMsg = sMsg & “Property Get procedure”
Case vbext_pk_Let

sMsg = sMsg & “Property Let procedure”
Case vbext_pk_Set

sMsg = sMsg & “Property Set procedure”
End Select

‘... its name ...
sMsg = sMsg & “ ‘“ & sProc & “‘“

‘... and how many lines it has.
lLineCount = oActiveCM.ProcCountLines(sProc, iProcKind)

End If

‘Display the message
MsgBox sMsg & vbCrLf & “which has “ & lLineCount & “ lines.”

End Sub

CodePane Object and CodePanes Collection
A CodePane is a view of a CodeModule, providing you with access to the interaction layer between the
developer and the code being edited. Most VBE Add-Ins use this layer to identify the line in which
CodePane is currently being edited and then modify the code at the line, using CodeModule’s methods
and properties. Note that there can be more than one CodePane for a CodeModule (for example, by split-
ting a code window into two panes with the horizontal splitter bar).

The following tables define the Collection and VBE properties.

CodePane Properties

Name Returns Description

CodeModule CodeModule Read-only. Returns the CodeModule that contains the code
being viewed in the CodePane.

CodePaneView vbext_Code Read-only. Returns whether the CodePane is set to show one
PaneView procedure at a time, or a full-module view with separator lines

between procedures.

CountOf Long Read-only. Returns the number of lines visible in the CodePane.
VisibleLines This and the TopLine property can be used to center a line in

the CodePane window (see following example).

TopLine Long The CodeModule line number of the first line visible in the
CodePane window.

Window Window Read-only. Returns the Window object containing the
CodePane(s).

978

CodePane Object and CodePanes Collection

33_046432 appb.qxp 2/16/07 10:06 PM Page 978

CodePane Methods

Name Parameters Description

GetSelection StartLine As Long, Used to retrieve the currently selected text. All of the
StartColumn As arguments are passed ByRef and are modified within
Long, EndLine As the procedure to return the selection. All arguments are
Long, EndColumn required, but it is only required to pass arguments for
As Long those items you want to retrieve. For example, to get

only the start line, you can use:
Dim lStart As Long
Application.VBE.ActiveCodePane.GetSelection
lStart, 0, 0, 0

SetSelection StartLine As Long, Used to set the position of the currently selected text.
StartColumn As A program would typically read the selection using
Long, EndLine As GetSelection, modify the code, then set the selection
Long, EndColumn back again using SetSelection. See the PrintProcedure
As Long routine in Chapter 26 for an example.

Show Opens and displays the CodePane, making it active.

The CodePanes collection contains all of the open CodePane objects in the VBE.

CodePanes Collection Properties

Name Returns Description

Current CodePane Hidden. Read-only. Returns the currently active
CodePane, and is the same as Application.VBE
.ActiveCodePane.

Chapter 26 contains many CodePane examples. The following example identifies the current selection
and centers it in the CodePane window:

Sub CenterSelectionInWindow()
Dim oCP As VBIDE.CodePane
Dim lStartLine As Long, lEndLine As Long
Dim lVisibleLines As Long, lNewTop As Long

‘Get the active CodePane
Set oCP = Application.VBE.ActiveCodePane

‘Using the CodePane object...
With oCP

‘Get the start and end lines of the selection
.GetSelection lStartLine, 0, lEndLine, 0

‘How many lines fit in the window?
lVisibleLines = .CountOfVisibleLines

‘So what should the new top line be?

979

CodePane Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 979

lNewTop = (lStartLine + lEndLine - lVisibleLines) \ 2

‘Set the window to display code from that line
.TopLine = lNewTop

End With
End Sub

CommandBarEvents Object
Within the VBE, the OnAction property of a command bar button has no effect — the routine named in
this property is not run when the button is clicked. Instead, the VBE object model provides you with the
CommandBarEvents object, which hooks into whichever command bar button you tell it to, either your
own custom buttons or built-in items, and raises events for the button’s actions. In Office 2007 it only
raises the Click event, and hence provides exactly the same functionality as Excel’s OnAction and the
Click event of the CommandBarButton. It was introduced for Excel 97 and is now rarely used.

CommandBarEvents Events

Name Parameters Description

Click CommandBarControl Triggered when a hooked command bar button is clicked.
As Object, handled The CommandBarControl is passed to the event.
As Boolean, Cancel
Default As Boolean A single control can be hooked by many CommandBarEvents

objects. The events are fired in reverse order of setting up
(most recently set up fires first). An event handler can set
the handled flag to True to tell subsequent handlers that
the event has already been processed.

The CommandBarEvents object can also be used to hook
into built-in menu items. If you want to handle the event
through code, you can set the CancelDefault flag to True
to stop the menu’s normal action.

To demonstrate the use of CommandBarEvents, in a class module called CBarEvents, add the following
code:

Public WithEvents oCBEvents As VBIDE.CommandBarEvents

‘Hook into the Click event for the menu item
Private Sub oCBEvents_Click(ByVal CommandBarControl As Object, _

handled As Boolean, CancelDefault As Boolean)

Debug.Print “Clicked “ & CommandBarControl.Caption
End Sub

980

CommandBarEvents Object

33_046432 appb.qxp 2/16/07 10:06 PM Page 980

In a normal module, add the following code:

‘Declare a collection to hold all the instances of our events class
Dim ocolMenus As New Collection

Sub AddMenus()

‘Declare some CommandBar items
Dim oBar As CommandBar
Dim oBtn1 As CommandBarButton, oBtn2 As CommandBarButton

‘And an object to hold instances of your events class
Dim oCBE As CBarEvents

‘Get the VBE’s menu bar
Set oBar = Application.VBE.CommandBars(“Menu Bar”)

‘Add a menu item to it
Set oBtn1 = oBar.Controls.Add(Type:=msoControlButton, temporary:=True)
oBtn1.Caption = “Menu1”
oBtn1.Style = msoButtonCaption

‘Create a new instance of your CommandBarEvent handler
Set oCBE = New CBarEvents

‘Link your CommandBarEvent handler to the menu item you just created
Set oCBE.oCBEvents = Application.VBE.Events.CommandBarEvents(oBtn1)

‘And add the instance of your event handler to the collection
ocolMenus.Add oCBE

‘Repeat for a second menu
Set oBtn2 = oBar.Controls.Add(Type:=msoControlButton, temporary:=True)
oBtn2.Caption = “Menu2”
oBtn2.Style = msoButtonCaption

Set oCBE = New CBarEvents
Set oCBE.oCBEvents = Application.VBE.Events.CommandBarEvents(oBtn2)
ocolMenus.Add oCBE

End Sub

When you run the AddMenus routine, two menus are added to the VBE standard menu bar, which both
use your CommandBarEvents handling class to hook into their Click event. When you click each of the
menu items, the Immediate window displays the menu’s caption.

Events Object
The Events object is a high-level container for the VBE’s event model. In Office 2007, it contains event
objects associated with clicking a command bar button and adding or removing references. The VBE exten-
sibility model is based on the Visual Basic extensibility model, which contains a much richer set of events.

981

Events Object

33_046432 appb.qxp 2/16/07 10:06 PM Page 981

Events Properties

Name Returns Description

CommandBarEvents CommandBarEvents Read-only. Parameters: CommandBarControl.
Performs the linking required to hook a
CommandBarEvents object to a specific
command bar button.

ReferencesEvents ReferencesEvents Read-only. Parameters: VBProject. Performs
the linking required to hook a References
Events object to a specific project.

Examples of the Events object are included in the CommandBarEvents section.

LinkedWindows Collection
The LinkedWindows collection contains all the docked windows in the VBE workspace. COM Add-Ins
written in VB6 (but not .NET) can add their own windows to this collection. Within the Office environ-
ment, you are limited to docking or undocking the built-in windows. Note that if you undock, then dock
a built-in window, it does not go back to its original position.

LinkedWindows Collection Methods

Name Description

Add Method. Parameters: Window As Window. Docks the specified window.

Remove Method. Parameters: Window As Window. Undocks the specified window.

Proper ty Object and Proper ties Collection
Every VBComponent in a project has a Properties collection. The properties contained in the collection
correspond to the items shown in the Properties window of the VBE. For each VBComponent that corre-
sponds to the Excel objects, the Properties collection of the VBComponent also includes many of the
properties of the Excel object.

The following tables define the Collection, Parent, and VBE properties.

Property Properties

Name Returns Description

IndexedValue Variant Parameters: Index1, [Index2], [Index3], [Index4].
The Value of the Property can be an array of up to four
indices. The IndexedValue can be used to read a single
item in the returned array.

982

Events Properties

33_046432 appb.qxp 2/16/07 10:06 PM Page 982

Name Returns Description

Name String Read-only. Returns the name of the property, and is also
used to refer to a specific property.

NumIndices Integer Read-only. If the value of the Property is an array,
NumIndices returns the number of indices (dimensions)
in the array. If not an array, it returns 0.

Object Object Used to obtain a reference to the object returned by the
Property, if any.

Value Variant The value of the Property.

It is easy to get confused between the many types of Name property of a VBComponent, which are sum-
marized in the following table.

Syntax Refers to

Worksheet.CodeName The code name of the VBComponent (read-only).

VBComponent.Name The code name of the VBComponent (read/write).

VBComponent.Properties The code name of the VBComponent (read-only). (This was
(“CodeName”) the only reliable way to change a worksheet’s CodeName in

Excel 97.)

VBComponent.Properties The code name of the VBComponent (read/write).
(“_CodeName”)

VBComponent.Properties The name of the worksheet (read/write).
(“Name”)

VBComponent.Properties “Name”.
(“Name”).Name

This simple example identifies the workbook containing a given VBComponent:

Sub IdentifyWorkbook()
Dim oBk As Workbook

‘Get the workbook containing a given VBComponent
Set oBk =

Application.VBE.ActiveVBProject.VBComponents(“Sheet1”).Properties(“Parent”).Object

MsgBox oBk.Name
End Sub

983

Property Properties

33_046432 appb.qxp 2/16/07 10:06 PM Page 983

Reference Object and References Collection
A Reference is a link from your VBProject to an external file, which may be an object library (for
example, linking to the Word object library), a control (for example, Windows Common Controls), an
ActiveX DLL, or another VBProject. By creating a reference to the external object, you can implement
early binding, meaning that the referenced objects run in the same memory area, all the links are evalu-
ated at compile time, and Excel provides ToolTip programming help when working with the referenced
objects.

When you run your application on another machine, it may not have all the objects that your application
requires. The Reference object and References collection provide access to these references, allowing
you to check that they are all present and working before you try to use them.

The tables that follow define the Collection and VBE properties.

Reference Properties

Name Returns Description

BuiltIn Boolean Read-only. Returns if the reference is built-in or added by
the developer. The Visual Basic for Applications and
Microsoft Excel 12.0 Object Library references are built-in
and cannot be removed.

Description String Read-only. Returns the description of the reference, which is
the text shown in the Object Browser.

FullPath String Read-only. Returns the path to the workbook, DLL, OCX,
TLB, or OLB file that is the source of the reference.

Guid String Read-only. Returns the globally unique identifier for the
reference.

IsBroken Boolean Read-only. Returns True if the reference is broken (is not
available on the machine).

Major Long Read-only. Returns the major version number of the refer-
enced file.

Minor Long Read-only. Returns the minor version number of the refer-
enced file.

Name String Read-only. Returns a short name for the reference (for exam-
ple, VBA or Excel).

Type vbext_ Read-only. Returns the reference type, vbext_rk_TypeLib
RefKind for DLLs and so on, or vbext_rk_Project for other

VBProjects.

984

Reference Object and References Collection

33_046432 appb.qxp 2/16/07 10:06 PM Page 984

References Collection Methods

Name Returns Description

AddFromFile Reference Method. Parameters: FileName As String. Adds a refer-
ence between the VBProject and a specific file. This should
only be used to create references between workbooks.

AddFromGuid Reference Method. Parameters: Guid As String, Major As Long,
Minor As Long. Adds a reference between the VBProject
and a specific DLL, Typelib, and so forth. A library’s file-
name, location, and version may change over time, but its
Guid is guaranteed to be constant. Hence, when adding a
reference to a DLL, Typelib, and so on, the Guid should be
used. If you require a specific version of the DLL, you can
request the major and minor version numbers.

Remove Method. Parameters: Reference As Reference. Removes
a reference from the VBProject.

The References collection provides two events, which you can use to detect when items are added to
or removed from the collection. You could use this, for example, to create a Top 10 References dialog,
by using Application events to detect when a workbook is opened or created and hooking into the
References collection of the workbook’s VBProject events to detect when a particular Reference is
added to a project. You could maintain a list of these and display them in a dialog box, similar to the
existing Tools ➪ References dialog in the VBE (but without all the clutter).

References Collection Events

Name Parameters Description

ItemAdded Reference As Triggered when a Reference is added to the
VBIDE.Reference VBProject being watched.

ItemRemoved Reference As Triggered when a Reference is removed from
VBIDE.Reference the VBProject being watched.

Putting the References collection to use, this example checks for broken references and alerts the user:

Function HasMissingRefs() As Boolean
Dim oRef As VBIDE.Reference

‘Loop through all the references for the project
For Each oRef In ThisWorkbook.VBProject.References

‘Is it missing?
If oRef.IsBroken Then

‘Yes - show different messages for workbook and DLL references
If oRef.Type = vbext_rk_Project Then

985

References Collection Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 985

MsgBox “Could not find the workbook “ & oRef.FullPath & _
“, which is required by this application.”

Else
MsgBox “This application requires the object library ‘“ & _

oRef.Description & “‘, which has not been installed.”
End If

‘Return that there are some missing references
HasMissingRefs = True

End If
Next

End FunctionReferencesEvents Object
In a similar manner to the way in which the CommandBarEvents object provides the Click event for a
command bar, the ReferencesEvents object provides two events related to the References collection
of a VBProject. The ReferencesEvents object appears to be redundant — all of the events it handles
are also included in the References object of a VBProject. The only difference (apart from the defini-
tion) is that the ReferencesEvents object works with a VBProject object instead of the References
collection of a VBProject. Note that a VBProject is compiled when a Reference is added or removed,
resulting in the loss of any variables and instances of classes. Hence, a VBProject cannot monitor its
own References events.

ReferencesEvents Events

Name Parameters Description

ItemAdded Reference As Triggered when a Reference is added to the
VBIDE.Reference VBProject being watched.

ItemRemoved Reference As Triggered when a Reference is removed from
VBIDE.Reference the VBProject being watched.

VBComponent Object and VBComponents
Collection

The VBComponents collection contains all the modules, class modules (including code-behind work-
sheets), and UserForms in a VBProject; they are all different types of VBComponent. Every VBComponent
has a CodeModule to store its code, and some VBComponents (such as a UserForm) have a graphical
development interface, called its Designer. Through the Designer, you can modify the graphical ele-
ments of the VBComponent, such as adding controls to a UserForm.

This section defines the Collection and VBE properties.

986

End FunctionReferencesEvents Object

33_046432 appb.qxp 2/16/07 10:06 PM Page 986

VBComponent Properties

Name Returns Description

CodeModule CodeModule Read-only. Returns the CodeModule for the component,
used to store its VBA code.

Designer Read-only. Returns the Designer object for the component,
which provides access to the design-time graphical elements
of the component.

DesignerID String Read-only. Returns an identifier for the Designer, so you
know what sort of Designer it is. For example, a User-
Form’s designer ID is Forms.Form.

DesignerWindow Window Read-only. Returns a Window object, representing the
Window displaying the Designer. (Shown as a method in the
Object Browser, as it opens the Window if not already open.)

HasOpenDesigner Boolean Read-only. Identifies if the component’s Designer is open.

Name String The name of the VBComponent.

Properties Properties Read-only. Returns the component’s Properties collection,
providing access to the items shown in the Property win-
dow, and to many of the associated Excel object’s properties
if the VBComponent represents the code behind an Excel
object. See the Property object in this appendix for more
information.

Saved Boolean Read-only. Returns whether the contents of the
VBComponent has changed since the last save. It is
analogous to an Excel workbook’s Saved property, but
applies to each component individually.

Type vbext_ Read-only. Returns the type of the component:
Component
Type Normal module: vbext_ct_StdModule

Class module: vbext_ct_ClassModule
UserForm: vbext_ct_MSForm
Excel object: vbext_ct_Document
All other types: vbext_ct_ActiveXDesigner

VBComponent Methods

Name Parameters Description

Activate Displays the VBComponent’s main window (code
module or designer) and sets the focus to it.

Export FileName As String Saves the component as a file, separate from the
workbook.

987

VBComponent Properties

33_046432 appb.qxp 2/16/07 10:06 PM Page 987

VBComponents Collection Methods

Name Returns Description

Add VBComponent Parameters: ComponentType. Adds a new, built-in
VBComponent to the project. The ComponentType can be
one of vbext_ct_StdModule, vbext_ct_ClassModule,
or vbext_ct_MSForm.

AddCustom VBComponent Parameters: ProgId. Adds a new, custom VBComponent
to the project. The result is always of type vbext_ct_
ActiveXDesigner. It seems that custom VB components
can only be added to ActiveX DLL projects and not to Excel
workbook projects.

Import VBComponent Parameters: FileName. Adds a new VBComponent to
the project from a file (usually a previously exported
VBComponent).

Remove Parameters: VBComponent. Removes a VBComponent from
a project.

Many of the examples in this section and in Chapter 26 use the VBComponent object and its properties
and methods. The example that follows exports a UserForm from the workbook containing the code,
imports it into a new workbook, and renames it. It then adds a standard module, fills in some code to
show the form, then calls the routine to show the form in the new workbook:

Sub CopyAndShowUserForm()
Dim oNewBk As Workbook, oVBC As VBIDE.VBComponent

‘Create a new workbook
Set oNewBk = Workbooks.Add

‘Export a UserForm from this workbook to disk
ThisWorkbook.VBProject.VBComponents(“UserForm1”).Export “c:\temp.frm”

‘Import the UserForm into the new workbook
Set oVBC = oNewBk.VBProject.VBComponents.Import(“c:\temp.frm”)

‘Rename the UserForm
oVBC.Name = “MyForm”

‘Add a standard module to the new workbook
Set oVBC = oNewBk.VBProject.VBComponents.Add(vbext_ct_StdModule)

‘Add some code to the standard module, to show the form
oVBC.CodeModule.AddFromString _

“Sub ShowMyForm()” & vbCrLf & _
“ MyForm.Show” & vbCrLf & _
“End Sub” & vbCrLf

‘Close the code pane the Excel opened when you added code to the module

988

VBComponents Collection Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 988

oVBC.CodeModule.CodePane.Window.Close

‘Delete the exported file
Kill “c:\temp.frm”

‘Run the new routine to show the imported UserForm
Application.Run oNewBk.Name & “!ShowMyForm”

End Sub

VBE Object
The VBE object is the top-level object in the VBIDE object library, and hence is analogous to the
Application object in the Excel library. Its main jobs are to act as a container for the VBIDE’s command
bars, add-ins, windows, and so on, and to provide information about the objects currently being modi-
fied by the user. Unfortunately, the VBE object does not expose any of the VBIDE’s options settings (code
settings, edit formats, error handling, and so on), nor does it provide any editing events (such as select-
ing a different project, or adding or deleting lines of code).

VBE Properties

Name Returns Description

ActiveCodePane CodePane Returns or sets the CodePane currently being edited by
the user. Typically used to identify which object is being
worked on, or to force the user to work with a specific
code pane.

ActiveVBProject VBProject Returns or sets the VBProject selected in the Project
Explorer window. If the Project Explorer is showing a
VBComponent selected, this property returns the VBProject
containing the component.

ActiveWindow Window Read-only. Returns the active Window, which may be a code
pane, designer, or one of the VBIDE windows (such as
Project Explorer, Immediate window, and so on).

Addins Addins Read-only. Returns a collection of all the COM Add-Ins reg-
istered for use in the VBIDE. See the AddIn object for more
information.

CodePanes CodePanes Read-only. Returns a collection of all the open CodePanes in
the VBIDE. See the CodePane object for more information.

CommandBars Command Read-only. Returns a collection of all the command bars in
Bars the VBIDE.

Events Events Read-only. Returns an object containing all the events in the
VBIDE. See the Events object for more information.

MainWindow Window Read-only. Returns a Window object representing the main
window of the VBIDE.

Table continued on following page

989

VBE Object

33_046432 appb.qxp 2/16/07 10:06 PM Page 989

Name Returns Description

SelectedVB VBComponent Read-only. Returns the VBComponent object that is shown as
Component selected in the Project Explorer window. Note that this usu-

ally, but not always, corresponds to the ActiveCodePane.

VBProjects VBProjects Read-only. Returns a collection of all the VBProjects in the
VBIDE, both Excel workbooks and ActiveX DLLs.

Version String Read-only. Returns the version number of the Extensibility
library (shows 6.05 for Office 2007).

Windows Windows Read-only. Returns a collection of all the open windows in
the VBIDE. See the Windows object for more information.

Most of the examples in this section and in Chapter 26 include the VBE’s properties. The following line
displays the VBE:

Application.VBE.MainWindow.Visible = True

VBProject Object and VBProjects Collection
A VBProject represents all of the code for a workbook, including code behind sheets, modules, class
modules, and UserForms. In the Developer edition of Office 2002 (and only in more recent versions
when installed by upgrading from Office 2002), a VBProject can also be a standalone project, compiled
as an ActiveX DLL.

VBProject Common Properties
This section defines the Collection and VBE properties.

VBProject Properties

Name Returns Description

BuildFileName String For ActiveX DLLs only, gets or sets the name of the DLL file
to compile the project into.

Description String For ActiveX DLLs only, the description of the DLL as it will
appear in the Tools ➪ References list.

FileName String Read-only. For workbook projects, returns the full name of
the workbook. For ActiveX DLL projects, returns the name
of the source code version of the project *.vba. If the file has
not been saved, a run-time error occurs if you try to read
this property.

990

VBProject Object and VBProjects Collection

33_046432 appb.qxp 2/16/07 10:06 PM Page 990

Name Returns Description

HelpContextID Long Identifies the default help-file context ID for the project.

HelpFile String Gets or sets the help file for a project. Each of the UserForms
and controls within the project can be assigned a context ID
to show a page from this help file.

Mode Vbext_ Read-only. Returns the VBProject’s operation mode
VBAMode (Design, Run, or Break). Note that a VBProject can have

different execution modes (for example, an ActiveX COM
Add-In project can be running while you are in Design
mode on a different project).

Name String The name of the project.

Protection Vbext_ Read-only. Returns whether the project is locked for viewing.
Project Locked projects only expose their VBProject object. Any
Protection attempt to navigate below the VBProject level results in an

error. Note that if a VBProject is set to Protected, but is
unprotected by the user during a session, its Protection
property shows as vbext_pp_none for the remainder of
that session.

References References Read-only. Returns the collection of References for
the VBProject. See the References object for more
information.

Saved Boolean Read-only. Returns whether the VBProject has been
changed since the last save. For Excel projects, this should
agree with the workbook’s Saved property.

Type Vbext_ Read-only. Returns the type of project — host project (an
Project Excel workbook, Word document, Access database, and so
Type on) or an ActiveX DLL project.

VBComponents VBComponents Read-only. Returns the collection of VBComponents in the
project. See the VBComponent object for more information.

VBProject Methods

Name Parameters Description

MakeCompiled For ActiveX DLL projects only. Compiles the project and
File makes the DLL file.

SaveAs FileNameAs For ActiveX DLL projects only. Saves the project file.
String

991

VBProject Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 991

VBProjects Collection Methods

Name Returns Description

Add VBProject Method. Parameters: Type. Adds a new project to the VBE.
Can only successfully add standalone (ActiveX DLL) projects
using this method.

Remove Method. Parameters: lpc As VBProject. Removes a
VBProject from the VBE. Can only be used for ActiveX
DLL projects.

Most of the examples in this section use the VBProject object and its properties. This example lists the
names of all the VBComponents in all the unlocked projects in the VBE:

Sub PrintComponents()
Dim oVBP As VBIDE.VBProject
Dim oVBC As VBIDE.VBComponent

‘Loop through all the projects in the VBE
For Each oVBP In Application.VBE.VBProjects

‘If the project is not protected...
If oVBP.Protection = vbext_pp_none Then

‘... loop through its components
For Each oVBC In oVBP.VBComponents

Debug.Print oVBP.Name & “.” & oVBC.Name
Next

End If
Next

End Sub

Window Object and Windows Collection
The Window object represents a single window in the VBE, including the VBE’s main window, the built-
in Project Explorer, Immediate, Debug, and Watch windows, and so on, as well as all open CodePanes
and Designer windows.

Window Common Properties
The Collection and VBE properties are defined at the beginning of this section.

Window Properties

Name Returns Description

Caption String Read-only. Returns the caption of the Window, as shown in
its title bar.

992

VBProjects Collection Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 992

Name Returns Description

Height Long The height of the Window, in twips (1 twip = 1/20 points).
Does not affect docked windows.

HWnd Long Hidden. Read-only. Returns a handle to the Window, for use
in Windows API calls.

Left Long The left edge of the Window on the screen, in twips (1 twip =
1/20 points). Does not affect docked windows.

Linked Window Read-only. Multiple windows can be linked together in the
WindowFrame VBE (for example, while docking them). This property returns

another Window that represents the frame surrounding the
docked windows. Returns Nothing if the window is not
linked.

Linked Linked Read-only. Returns a collection of windows linked to the
Windows Windows Window (for example, when docked).

Top Long The top of the Window on the screen, in twips (1 twip = 1/20
points). Does not affect docked windows.

Type vbext_ Read-only. Returns the window type, such as CodePane,
WindowType Immediate window, Main window, and so on.

Visible Boolean Gets or sets whether or not the window is visible.

Width Long The width of the Window, in twips (1 twip = 1/20 points).
Does not affect docked windows.

WindowState vbext_ The Window state.
WindowState

Window Methods

Name Description

Close Closes the window.

SetFocus Opens and activates the window, displays it, and gives it the focus.

Windows Collection Methods

Name Returns Description

CreateTool Window Parameters: AddInInst, ProgId, Caption, GuidPosition,
Window DocObj. This method is only used when creating COM Add-

Ins using VB6, to create a dockable window in the VBE.

993

Window Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 993

This example closes all code and designer windows in the VBE:

Sub CloseAllCodeWindows()
Dim oWin As VBIDE.Window

‘Loop through all the open windows in the VBE
For Each oWin In Application.VBE.Windows

‘Close the window, depending on its type
Select Case oWin.Type

Case vbext_wt_Browser, vbext_wt_CodeWindow, vbext_wt_Designer

‘Close the Object Browser, code windows and designer windows
Debug.Print “Closed ‘“ & oWin.Caption & “‘ window.”
oWin.Close

Case Else
‘Don’t close any other windows
Debug.Print “Kept ‘“ & oWin.Caption & “‘ window open.”

End Select
Next

End Sub

994

Windows Collection Methods

33_046432 appb.qxp 2/16/07 10:06 PM Page 994

Office 2007 Object Model

Common Proper ties with Collections
and Associated Objects

Most of the objects in the Office object model have objects with associated collections. The collec-
tion object is usually the plural form of the associated object. For example, the CommandBars
collection holds a collection of CommandBar objects. For simplicity, all the objects and associated
collections are grouped together under the same heading.

In most cases, the purpose of the collection object is only to hold a collection of the same objects.
The common properties of the collection objects are listed in the following section. Only unique
properties, methods, or events are mentioned in each object section.

Common Collection Properties
Name Returns Description

Application Application Read-only. Returns a reference to the application
owning the current object.

Count Long Read-only. Returns the number of objects in the
collection.

Creator Long Read-only. Returns a Long number that describes
which application the object was created in.
Macintosh only.

Parent Object Read-only. The Parent object is the container
object of the collection object. For example,
Workbooks.Parent returns a reference to the
Application object.

34_046432 appc.qxp 2/16/07 10:07 PM Page 995

Common Object Properties
Objects also have some common properties. To avoid redundancy, the common properties of all objects
are listed next. They will be mentioned in each object description as existing but are only defined here.

Name Returns Description

Application Application Read-only. Returns a reference to the application owning
the current object.

Creator Long Read-only. Returns a Long number that describes which
application the object was created in. Macintosh only.

Parent Object Read-only. The container object of the current object. For
example, in Excel Shapes(1).Parent may return a refer-
ence to a Worksheet object, since a Worksheet object is
one of the possible containers of a Shapes object.

Office Objects and Their Proper ties
and Events

The objects are listed in alphabetical order. Each object has a general description of the object and possi-
ble parent objects. This is followed by a table format of each of the object’s properties and methods. The
last section of each object describes some code examples of the object’s use.

BulletFormat2 Object
The BulletFormat2 object exposes the properties and methods used to configure the formatting
options of bullets, such as color and size.

BulletFormat2 Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Character Boolean Set/Get the Unicode character value that is used for bullets
in the specified text.

Font Font2 Read-only. Returns a Font2object that represents character
formatting for a given BulletFormat2 object.

Number Long Read-only. Returns the bullet number of a paragraph.

RelativeSize Single Set/Get the size of a given bullet relative to the size of the
first text character in the paragraph.

StartValue Long Set/Get the beginning value of a bulleted list.

996

Common Object Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 996

Name Returns Description

Style MsoNumbered Get/Set an MsoNumberedBulletStyle constant that
BulletStyle defines the style of a bullet.

Type MsoBullet Get/Set an MsoBulletType constant that defines the type
Type of bullet used.

UseTextColor Boolean Set/Get whether the specified bullets are set to the color of
the first text character in the paragraph.

UseTextFont Boolean Set/Get whether the specified bullets are set to the font of
the first text character in the paragraph.

Visible Boolean Set/Get whether the specified bullets are visible.

BulletFormat2 Methods

Name Returns Parameters Description

Picture Filename Sets the graphics file to be used for
bullets in a bulleted list. Valid graph-
ics files include: .bmp, .cdr, .cgm,
.drw, .dxf, .emf, .eps, .gif, .jpg, .jpeg,
.pcd, .pct, .pcx, .pict, .png, .tga, .tiff,
.wmf, and .wpg.

COMAddinObject and the COMAddins Collection Object
COMAddins object represents a single COM Add-In in the Microsoft Office host application, and is also a
member of COMAddins collection. COMAddins are custom solutions for use with several Office applica-
tions like Excel, Access, Word, and Outlook developed in any language (VB, C++, or J++) that supports
COM (Component Object Model) components. The COMAddins collection is a list of all COMAddins
objects for a Microsoft Office host application, in this case Excel.

COMAddins Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

COMAddins Collection Methods

Name Returns Parameters Description

Item COMAddIn Index as Returns a member of the specified
Variant COMAddins collection.

Update Updates the contents of the COMAddins
collection from the list of Add-Ins
stored in the Windows registry.

997

BulletFormat2 Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 997

COMAddinProperties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Connect Boolean Set/Get the state of the connection for the specified
COMAddIn object.

Description String Set/Get a descriptive String value for the specified
COMAddIn object.

Guid String Read-only. Returns the globally unique class identifier
(Guid) for the specified COMAddIn object.

Object Object Set/Get the object that is the basis for the specified
COMAddIn object. Used primarily to communicate with
other COMAddins.

ProgId String Read-only. Returns the programmatic identifier (ProgID)
for the specified COMAddIn object.

COMAddin Object Example
The following routine loops through the list of COMAddins and displays its relevant information in a
table on Sheet1 of the workbook containing the code:

Sub COMAddinInfo()

Dim lRow As Long
Dim oCom As COMAddIn

‘ Set up the headings on Sheet1 of this workbook
With Sheet1.Range(“A1:D1”)
.Value = Array(“Guid”, “ProgId”, “Creator”, “Description”)
.Font.Bold = True
.HorizontalAlignment = xlCenter
End With

‘ Loop through the COMAddins collection and place
‘ its information in cells below the headings
If Application.COMAddIns.Count Then
For Each oCom In Application.COMAddIns

With Sheet1.Range(“A2”)
.Offset(lRow, 0).Value = oCom.GUID
.Offset(lRow, 1).Value = oCom.progID
.Offset(lRow, 2).Value = oCom.Creator
.Offset(lRow, 3).Value = oCom.Description
lRow = lRow + 1
End With
Next oCom
End If

998

COMAddinProperties

34_046432 appc.qxp 2/16/07 10:07 PM Page 998

‘ Autofit the table
Sheet1.Range(“A1:D1”).EntireColumn.AutoFit

End Sub

CommandBar Object and the CommandBars
Collection Object

The CommandBar object holds the properties and methods for a specific CommandBar in the CommandBars
collection. The properties and methods are similar to the CommandBars collection, but only apply to the
individual CommandBar referenced. The CommandBars collection contains a list of all CommandBars
(known as Toolbars to most users) in the container application. Use CommandBars(Index) to return a
reference to a specific CommandBar, as in the following example:

Dim oBar As CommandBar
Set oBar = CommandBars(“Wrox”)

CommandBars Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

ActionControl CommandBar Read-only. Returns the CommandBarControl object whose
Control OnAction property is set to the running procedure. If the

running procedure was not initiated by a command bar
control, this property returns Nothing.

ActiveMenuBar CommandBar Read-only. Returns a CommandBar object that represents the
active menu bar in the container application. This almost
always returns the application’s Worksheet menu bar.

AdaptiveMenus Boolean Set/Get whether adaptive (abbreviated) menus are
enabled.

DisableAskA Boolean Set/Get whether the Answer Wizard drop-down menu is
QuestionDrop enabled. When set to True, the drop-down disappears
down from the menu bar.

Disable Boolean Set/Get whether toolbar customization is disabled. When
Customize True, the Customize command becomes disabled on the

Tools menu and disappears from the Toolbar’s shortcut
(right-click) menu.

DisplayFonts Boolean Set/Get whether the font names in the Font box are dis-
played in their actual fonts. Recommend setting this to
False on older computer systems with fewer resources.

DisplayKeys Boolean Set/Get whether shortcut keys are displayed in the
InTooltips ToolTips for each command bar control. This property has

no effect on Excel’s command bars.

Table continued on following page

999

CommandBar Object and the CommandBars Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 999

Name Returns Description

Display Boolean Set/Get whether ScreenTips are displayed whenever the
Tooltips user positions the pointer over command bar controls.

Item CommandBar Read-only. Returns a CommandBar object from the Command
Bars collection with the Index value specified by the
Index parameter. Index can also be a string representing
the name of the CommandBar.

Large Boolean Set/Get whether the toolbar buttons displayed are larger
Buttons than normal size.

Menu MsoMenu Set/Get the animation type of all CommandBarPopup
Animation Animation controls (menus) in the CommandBars collection.
Style

CommandBars Collection Methods

Name Returns Parameters Description

Add CommandBar Name, Position, Creates a new command bar and
MenuBar, adds it to the collection of command
Temporary bars.

ExecuteMso idMso Executes a given control identified by
the idMso parameter.

FindControl CommandBar Type, Id, Tag, Returns a single CommandBarControl
Control Visible object that fits a specified criterion

based on the parameters.

FindControls CommandBar Type,Id, Tag, Returns a series of CommandBar
Controls Visible Control objects in a collection that

fits the specified criteria based on the
parameters.

GetEnabled Boolean idMso Returns True if the control identified
Mso by the idMso parameter is enabled.

GetImagedMso IPictureDisp idMso, Width, Returns an IPictureDisp object of
Height the control image identified by the

idMso parameter.

GetLabelMso Variant idMso Returns the label of the control
identified by the idMso parameter
as a String.

GetPressed Boolean idMso Returns whether a given toggle
Mso Button control identified by the

idMso parameter is pressed.

GetScreen Variant idMso Returns the ScreenTip of the control
tipMso identified by the idMso parameter as

a String.

1000

CommandBars Collection Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1000

Name Returns Parameters Description

GetSupertip Variant idMso Returns the supertip of the control
Mso identified by the idMso parameter as

a String.

GetVisible Boolean idMso Returns True if the control identified
Mso by the idMso parameter is visible.

ReleaseFocus idMso Releases the user interface focus from
all command bars.

CommandBars Collection Events

Name Parameters Description

OnUpdate The OnUpdate event is recognized by the CommandBar
object and all command bar controls. Due to the large
number of OnUpdate events that can occur during normal
usage, Excel developers should exercise caution when
using this event.

CommandBar Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Adaptive Menu Boolean Set/Get whether short menus are shown.

BuiltIn Boolean Read-only. Returns True if the specified command bar or
command bar control is a built-in command bar or control
of the container application. Returns False if it’s a custom
command bar or control, or if it’s a built-in control whose
OnAction property has been set.

Context String Set/Get a string that determines where a command bar
will be saved. The string is defined and interpreted by the
application.

Controls CommandBar Read-only. Returns a CommandBarControl object that
Controls represents all the controls on a command bar.

Enabled Boolean Set/Get whether the CommandBar is enabled. Setting this
property to True causes the name of the command bar to
appear in the list of available command bars.

Height Long Set/Get the height of the CommandBar.

Index Long Read-only. Returns the index number for a CommandBar in
the CommandBars collection.

Table continued on following page

1001

CommandBars Collection Events

34_046432 appc.qxp 2/16/07 10:07 PM Page 1001

Name Returns Description

Left Long Set/Get the distance (in pixels) of the left edge of the com-
mand bar relative to the screen.

Name String Set/Get the name of the CommandBar.

NameLocal String Set/Get the name of a built-in command bar as it’s
displayed in the language version of the container
application, or the name of a custom command bar.

Position MsoBar Set/Get the position of the command bar.
Position

Protection MsoBar Set/Get the way a command bar is protected from user
Protection customization.

RowIndex Long Set/Get the docking order of a command bar in relation to
other command bars in the same docking area. Can be an
integer greater than 0, or either of the following MsoBar
Row constants: msoBarRowFirst or msoBarRowLast.

Top Long Set/Get the distance (in points) from the top of the
command bar to the top edge of the screen.

Type MsoBar Type Read-only. Returns the type of command bar.

Visible Boolean Set/Get whether the command bar is visible. The Enabled
property for a command bar must be set to True before
the visible property is set to True.

Width Long Set/Get the width (in pixels) of the specified command bar.

CommandBar Methods

Name Returns Parameters Description

Delete Deletes the specified CommandBar
from the CommandBars collection.

Find Control CommandBar Type, Id, Returns a CommandBar that fits the
Control Tag, Visible, specified criteria.

Recursive

Reset Resets a built-in CommandBar to its
default configuration.

ShowPopup x, y Displays the CommandBar as a short-
cut menu at specified coordinates or
at the current pointer coordinates.

1002

CommandBar Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1002

CommandBarButton Object
A CommandBarButton is any button or menu item on any CommandBar. You access a specific Command
BarButton by referencing the Commandbar it’s located in and by using Controls(Index). Index can
either be the CommandBarButton object’s number position on the menu or toolbar, or its Caption.

For example, you can refer to the first control on a Commandbar called “Wrox” using:

CommandBars(“Wrox”).Controls(1)

Or:

CommandBars(“Wrox”).Controls(“Member Info”)

CommandBarButton Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

BeginGroup Boolean Set/Get whether the specified CommandBarButton
appears at the beginning of a group of controls on the
command bar.

BuiltIn Boolean Read-only. Returns True if the specified command bar or
command bar control is a built-in command bar or control
of the container application. Returns False if it’s a custom
command bar or control, or if it’s a built-in control whose
OnAction property has been set.

BuiltInFace Boolean Set/Get whether the face of the CommandBarButton con-
trol is its original built-in face. This property can only be
set to True, which will reset the face to the built-in face.

Caption String Set/Get the caption text of the CommandBarButton.

Description String Set/Get the description for a CommandBarButton. The
Text description is not displayed to the user, but it can be useful

for documenting the behavior of the control for other
developers.

Enabled Boolean Set/Get whether the CommandBarButton object is enabled.

FaceId Long Set/Get the Id number for the face of the CommandBar
Button.

Height Long Set/Get the height of the CommandBarButton.

HelpContextId Long Set/Get the Help context Id number for the Help topic
attached to the CommandBarButton.

Table continued on following page

1003

CommandBarButton Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1003

Name Returns Description

HelpFile String Set/Get the filename for the Help topic for the Command
BarButton.

Hyperlink MsoCommand Set/Get the type of hyperlink associated with the specified
Type BarButton CommandBarButton.

Hyperlink
Type

Id Long Read-only. Returns the ID for a built-in CommandBar
Button.

Index Long Read-only. Returns the index number for a CommandBar
Button in the CommandBars collection.

IsPriority Boolean Read-only. Returns whether the CommandBarButton is
Dropped currently dropped from the menu or toolbar, based on

usage statistics and layout space. (Note that this is not the
same as the control’s visibility, as set by the Visible prop-
erty.) A CommandBarButton with Visible set to True will
not be immediately visible on a Personalized menu or
toolbar if IsPriorityDropped is True.

Left Long Read-only. Returns the horizontal position of the
CommandBarButton (in pixels) relative to the left edge of
the screen. Returns the distance from the left side of the
docking area.

Mask Ipicture Returns an IPictureDisp object representing the mask
Disp image of a CommandBarButton object. The mask image

determines what parts of the button image are transparent.

OLEUsage MsoControl Set/Get the OLE client and OLE server roles in which a
OLEUsage CommandBarButton will be used when two Microsoft

Office applications are merged.

OnAction String Set/Get the name of a Visual Basic procedure that will run
when the user clicks or changes the value of a Command
BarButton.

Parameter String Set/Get a string that an application can use to execute a
command.

Picture IPicture Set/Get an IPictureDisp object representing the image
Disp of the CommandBarButton.

Priority Long Set/Get the priority of a CommandBarButton.

ShortcutText String Set/Get the shortcut key text displayed next to the
CommandBarButton control when the button appears on
a menu, submenu, or shortcut menu.

State MsoButton Set/Get the appearance of the CommandBarButton.
State

1004

CommandBarButton Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1004

Name Returns Description

Style MsoButton Set/Get the way a CommandBarButton is displayed.
Style

Tag String Set/Get information about the CommandBarButton— for
example, data to be used as an argument in procedures.

TooltipText String Set/Get the text displayed in the CommandBarButton’s
ScreenTip.

Top Long Read-only. Returns the number of pixels from the top edge
of a given command bar and the top edge of the applica-
tion window.

Type MsoControl Read-only. Returns the specified command bar control’s
Type type name.

Visible Boolean Set/Get whether the CommandBarButton is visible.

Width Long Set/Get the width (in pixels) of the specified Command
BarButton.

CommandBarButton Methods

Name Returns Parameters Description

Copy CommandBar Bar, Before Copies a CommandBarButton to an
Control existing command bar.

CopyFace Copies the face of a CommandBar
Button to the Clipboard.

Delete Temporary Deletes the specified CommandBar
Button from its collection. Set
Temporary to True to delete the con-
trol for the current session only — the
application will display the control
again in the next session.

Execute Runs the procedure or built-in com-
mand assigned to the specified
CommandBarButton. For custom con-
trols, use the OnAction property to
specify the procedure to be run.

Move CommandBar Bar, Before Moves the specified CommandBar
Control Button to an existing command bar.

PasteFace Pastes the contents of the Clipboard
onto a CommandBarButton.

Table continued on following page

1005

CommandBarButton Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1005

Name Returns Parameters Description

Reset Resets a built-in CommandBarButton
to its default configuration, or resets
a built-in CommandBarButton to its
original function and face.

SetFocus Moves the keyboard focus to the
specified CommandBarButton. If the
control is disabled or isn’t visible, this
method will fail.

CommandBarButton Events

Name Parameters Description

Click ByVal Ctrl Triggered when a user clicks a CommandBarButton. Ctrl
As CommandBar denotes the control that initiated the event. CancelDefault
Button, Cancel is False if the default behavior associated with the
Default As CommandBarButton control occurs, unless cancelled by
Boolean another process or Add-In.

CommandBarComboBox Object
This object represents a drop-down list, custom edit box, or ComboBox (combination of the first two) con-
trol on any CommandBar. These types of controls only appear on the command bar — when it’s either
floating or docked at either the top or bottom of the Application window.

CommandBarComboBox Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

BeginGroup Boolean Set/Get whether the specified CommandBarComboBox
appears at the beginning of a group of controls on the
command bar.

BuiltIn Boolean Read-only. Returns True if the specified command bar or
command bar control is a built-in command bar or control
of the container application. Returns False if it’s a custom
command bar or control, or if it’s a built-in control whose
OnAction property has been set.

Caption String Set/Get the caption text of the CommandBarComboBox.

Description String Set/Get the description for a CommandBarComboBox. The
Text description is not displayed to the user, but it can be useful

for documenting the behavior of the control for other
developers.

1006

CommandBarButton Events

34_046432 appc.qxp 2/16/07 10:07 PM Page 1006

Name Returns Description

DropDown Long Set/Get the number of lines in a CommandBarComboBox.
Lines The ComboBox control must be a custom control. Note that

an error occurs if you attempt to set this property for a
ComboBox control that’s an edit box or a built-in ComboBox
control.

DropDown Long Set/Get the width (in pixels) of the list for the specified
Width CommandBarComboBox. Note that an error occurs if you

attempt to set this property for a built-in control.

Enabled Boolean Set/Get whether the CommandBarComboBox object is
enabled.

Height Long Set/Get the height of the CommandBarComboBox.

HelpContext Long Set/Get the Help context Id number for the Help topic
Id attached to the CommandBarComboBox.

HelpFile String Set/Get the file name for the Help topic for the Command
Bar ComboBox.

Id Long Read-only. Returns the ID for a built-in CommandBar
ComboBox.

Index Long Read-only. Returns a Long representing the index number
for the CommandBarComboBox object in the CommandBars
collection.

IsPriority Boolean Read-only. Returns whether the CommandBarComboBox is
Dropped currently dropped from the menu or toolbar, based on

usage statistics and layout space. (Note that this is not the
same as the control’s visibility, as set by the Visible prop-
erty.) A CommandBarComboBox with Visible set to True
will not be immediately visible on a Personalized menu or
toolbar if IsPriorityDropped is True.

Left Long Read-only. Returns the horizontal position of the
CommandBarComboBox (in pixels) relative to the left edge
of the screen. Returns the distance from the left side of the
docking area.

List String Set/Get a specified item in the CommandBarComboBox.
Read-only for built-in CommandBarComboBox controls.
Required parameter: Index as Long.

ListCount Long Read-only. Returns the number of list items in a Command
BarComboBox.

ListHeader Long Set/Get the number of list items in a CommandBar
Count ComboBox that appear above the separator line. Read-only

for built-in ComboBox controls.

Table continued on following page

1007

CommandBarComboBox Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1007

Name Returns Description

ListIndex Long Set/Get the index number of the selected item in the list
portion of the CommandBarComboBox. If nothing is
selected in the list, this property returns 0.

OLEUsage Mso Control Set/Get the OLE client and OLE server roles in which a
OLEUsage CommandBarComboBox will be used when two Microsoft

Office applications are merged.

OnAction String Set/Get the name of a Visual Basic procedure that will run
when the user clicks or changes the value of a Command-
BarComboBox.

Parameter String Set/Get a string that an application can use to execute a
command.

Priority Long Set/Get the priority of a CommandBarComboBox.

Style MsoCombo Set/Get the way a CommandBarComboBox control is
Style displayed. Can be either of the following MsoComboStyle

constants: msoComboLabel or msoComboNormal.

Tag String Set/Get information about the CommandBarComboBox—
for example, data to be used as an argument in procedures.

Text String Set/Get the text in the display or edit portion of the
CommandBarComboBox control.

TooltipText String Set/Get the text displayed in the CommandBarComboBox’s
ScreenTip.

Top Long Read-only. Returns the distance (in pixels) from the top
edge of the CommandBarComboBox to the top edge of the
screen.

Type MsoControl Read-only. Returns the type of CommandBarComboBox.
Type

Visible Boolean Set/Get whether the CommandBarComboBox is visible.

Width Long Set/Get the width (in pixels) of the specified Command
BarComboBox.

CommandBarComboBox Methods

Name Returns Parameters Description

AddItem Text as String, Adds a list item to the specified
Index as CommandBarComboBox. The combo
Variant box control must be a custom control

and must be a drop-down list box or
a combo box. This method will fail if
it’s applied to an edit box or a built-in
ComboBox control.

1008

CommandBarComboBox Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1008

Name Returns Parameters Description

Clear Removes all list items from a
CommandBarComboBox (drop-down
list box or combo box) and clears the
text box (edit box or combo box). This
method will fail if it’s applied to a
built-in command bar control.

Copy CommandBar Bar, Before Copies a CommandBarComboBox to an
control existing command bar.

Delete Temporary Deletes the specified CommandBar
ComboBox from its collection. Set
Temporary to True to delete the con-
trol for the current session only — the
application will display the control
again in the next session.

Execute Runs the procedure or built-in com-
mand assigned to the specified
CommandBarComboBox. For custom
controls, use the OnAction property
to specify the procedure to be run.

Move CommandBar Bar, Before Moves the specified CommandBar
Control ComboBox to an existing command bar.

RemoveItem Index As Long Removes a specified item from a
CommandBarComboBox.

Reset Resets a built-in CommandBar
ComboBox to its default configura-
tion, or resets a built-in CommandBar
ComboBox to its original function
and face.

SetFocus Moves the keyboard focus to the
specified CommandBarComboBox. If
the control is disabled or isn’t visible,
this method will fail.

CommandBarComboBox Events

Name Parameters Description

Change ByVal Ctrl Triggered when the end user changes the selection in a
As CommandBar CommandBarComboBox.
ComboBox

1009

CommandBarComboBox Events

34_046432 appc.qxp 2/16/07 10:07 PM Page 1009

CommandBarControl Object and the
CommandBarControls Collection Object

The CommandBarControl object represents a generic control on a CommandBar. A control usually con-
sists of a CommandBarButton, a CommandBarComboBox, or a CommandBarPopup. When using one of
these controls, you can work with them directly using their own object reference. Doing so will yield all
of the properties and methods specific to that control.

Use the Control object when you are unsure which type of CommandBar object you are working
with, or when using controls other than the three mentioned earlier. Most of the methods and
properties for the CommandBarControl object can also be accessed via the CommandBarButton,
CommandBarComboBox, and CommandBarPopup controls.

The CommandBarControl collection object holds all of the controls on a CommandBar. This collection’s
name can only be seen when declaring it as a variable type. You can access all the controls for a
CommandBar directly, using:

CommandBars(Index).Controls

Where Index can either be a number representing its position on the list of CommandBars or a string
representing the Name of the CommandBar.

CommandBarControls Collection Properties
The Application, Creator, Count, and Parent properties are defined at the beginning of this
appendix.

Name Returns Parameters Description

Item CommandBar Index Returns a CommandBarControl
Control object from the CommandBar

Controls collection.

CommandBarControls Collection Methods

Name Returns Parameters Description

Add CommandBar Type, Id, Creates a new CommandBarControl
Control Parameter, object and adds it to the collection of

Before, controls on the specified command
Temporary bar.

CommandBarControl Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

1010

CommandBarControl Object and the CommandBarControls Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1010

Name Returns Description

BeginGroup Boolean Set/Get whether the specified CommandBarControl
appears at the beginning of a group of controls on the
command bar.

BuiltIn Boolean Read-only. Returns True if the specified command bar or
command bar control is a built-in command bar or control
of the container application. Returns False if it’s a custom
command bar or control, or if it’s a built-in control whose
OnAction property has been set.

Caption String Set/Get the caption text of the CommandBarControl.

Description String Set/Get the description for a CommandBarControl. The
Text description is not displayed to the user, but it can be useful

for documenting the behavior of the control for other
developers.

Enabled Boolean Set/Get whether the CommandBarControl object is
enabled.

Height Long Set/Get the height of the CommandBarControl.

HelpContext Long Set/Get the Help context Id number for the Help topic
Id attached to the CommandBarControl.

HelpFile String Set/Get the file name for the Help topic for the Command
BarControl.

Id Long Read-only. Returns the Id for a built-in CommandBar
Control.

Index Long Read-only. Returns a Long representing the index number
for the CommandBarControl object in the CommandBar-
Controls collection.

IsPriority Boolean Read-only. Returns whether the CommandBar control is
Dropped currently dropped from the menu or toolbar based on

usage statistics and layout space. (Note that this is not the
same as the control’s visibility, as set by the Visible prop-
erty.) A CommandBarControl with Visible set to True
will not be immediately visible on a Personalized menu or
toolbar if IsPriorityDropped is True.

Left Long Read-only. Returns the horizontal position of the Command
BarControl (in pixels) relative to the left edge of the screen.
Returns the distance from the left side of the docking area.

OLEUsage MsoControl Set/Get the OLE client and OLE server roles in which a
OLEUsage CommandBarControl will be used when two Microsoft

Office applications are merged.

Table continued on following page

1011

CommandBarControl Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1011

Name Returns Description

OnAction String Set/Get the name of a Visual Basic procedure that will run
when the user clicks or changes the value of a Command
BarControl.

Parameter String Set/Get a string that an application can use to execute a
command.

Priority Long Set/Get the priority of a CommandBarControl.

Tag String Set/Get information about the CommandBarControl— for
example, data to be used as an argument in procedures.

Tooltip Text String Set/Get the text displayed in the CommandBarControl
object’s ScreenTip.

Top Long Read-only. Returns the distance (in pixels) from the top
edge of the CommandBarControl to the top edge of the
screen.

Type MsoControl Read-only. Returns the type of CommandBarControl.
Type

Visible Boolean Set/Get whether the CommandBarControl is visible.

Width Long Set/Get the width (in pixels) of the specified Command
BarControl.

CommandBarControl Methods

Name Returns Parameters Description

Copy CommandBar Bar, Before Copies a CommandBarControl to an
Control existing command bar.

Delete Temporary Deletes the specified CommandBar
Control from its collection. Set
Temporary to True to delete the con-
trol for the current session only — the
application will display the control
again in the next session.

Execute Runs the procedure or built-in com-
mand assigned to the specified
CommandBarControl. For custom
controls, use the OnAction property
to specify the procedure to be run.

Move CommandBar Bar, Before Moves the specified CommandBar
Control Control to an existing command bar.

1012

CommandBarControl Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1012

Name Returns Parameters Description

Reset Resets a built-in CommandBar
Control to its default configuration, or
resets a built-in CommandBarControl
to its original function and face.

SetFocus Moves the keyboard focus to the
specified CommandBarControl. If the
control is disabled or isn’t visible, this
method will fail.

CommandBarPopup Object
This object represents a menu or submenu on a CommandBar, which can contain other CommandBar con-
trols within them.

Because CommandBarPopup controls can have other controls added to them, they are in effect a separate
CommandBar. For example, assuming the first control on a custom CommandBar named Wrox is a
CommandBarPopup control, the following code can be used to reference and treat the control as if it
were just another CommandBar:

Dim oBar as CommandBar
Set oBar = CommandBars(“Wrox”).Controls(1).CommandBar

To reference the same control as a CommandBarPopup:

Dim ctl As CommandBarPopup
Set ctl = CommandBars(“Wrox”).Controls(1)

CommandBarPopup Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

BeginGroup Boolean Set/Get whether the specified CommandBarPopup appears
at the beginning of a group of controls on the command bar.

BuiltIn Boolean Read-only. Returns True if the specified command bar or
command bar control is a built-in command bar or control
of the container application. Returns False if it’s a custom
command bar or control, or if it’s a built-in control whose
OnAction property has been set.

Caption String Set/Get the caption text of the CommandBarPopup.

CommandBar CommandBar Read-only. Returns a CommandBar object that represents
the menu displayed by the specified popup control.

Table continued on following page

1013

CommandBarPopup Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1013

Name Returns Description

Controls CommandBar Read-only. Returns a CommandBarControls object that
Controls represents all the controls on a command bar popup

control.

Description String Set/Get the description for a CommandBarPopup. The
Text description is not displayed to the user, but it can be useful

for documenting the behavior of the control for other
developers.

Enabled Boolean Set/Get whether the CommandBarPopup object is enabled.

Height Long Set/Get the height of the CommandBarPopup.

HelpContext Long Set/Get the Help context Id number for the Help topic
Id attached to the CommandBarPopup.

HelpFile String Set/Get the file name for the Help topic for the Command
BarPopup.

Id Long Read-only. Returns the Id for a built-in CommandBarPopup.

Index Long Read-only. Returns a Long representing the index number
for the CommandBarPopup object in the CommandBars
collection.

IsPriority Boolean Read-only. Returns whether the CommandBarPopup is
Dropped currently dropped from the menu or toolbar, based on

usage statistics and layout space. (Note that this is not the
same as the control’s visibility, as set by the Visible prop-
erty.) A CommandBarPopup with Visible set to True will
not be immediately visible on a Personalized menu or
toolbar if IsPriorityDropped is True.

Left Long Read-only. Returns the horizontal position of the Command
BarPopup (in pixels) relative to the left edge of the screen.
Returns the distance from the left side of the docking area.

OLEMenu MsoOLEMenu Set/Get the menu group that the specified CommandBar
Group Group Popup belongs to when the menu groups of the OLE

server are merged with the menu groups of an OLE client.
Read-only for built-in controls.

OLEUsage MsoControl Set/Get the OLE client and OLE server roles in which a
OLE Usage CommandBarPopup will be used when two Microsoft

Office applications are merged.

OnAction String Set/Get the name of a Visual Basic procedure that will
run when the user clicks or changes the value of a
CommandBarPopup.

Parameter String Set /Get a string that an application can use to execute a
command.

1014

CommandBarPopup Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1014

Name Returns Description

Priority Long Set/Get the priority of a CommandBarPopup.

Tag String Set/Get information about the CommandBarPopup— for
example, data to be used as an argument in procedures.

TooltipText String Set/Get the text displayed in the CommandBarPopup
object’s ScreenTip.

Top Long Read-only. Returns the distance (in pixels) from the top
edge of the CommandBarPopup to the top edge of the
screen.

Type MsoControl Read-only. Returns the type of CommandBarPopup.
Type

Visible Boolean Set/Get whether the CommandBarPopup is visible.

Width Long Set/Get the width (in pixels) of the specified Command
BarPopup.

CommandBarPopup Methods

Name Returns Parameters Description

Copy CommandBar Bar, Before Copies a CommandBarPopup to an
Control existing command bar.

Delete Temporary Deletes the specified CommandBar
Popup from its collection. Set
Temporary to True to delete the
control for the current session only —
the application will display the con-
trol again in the next session.

Execute Runs the procedure or built-in com-
mand assigned to the specified
CommandBarPopup. For custom con-
trols, use the OnAction property to
specify the procedure to be run.

Move CommandBar Bar, Before Moves the specified CommandBar
Control Popup to an existing command bar.

Reset Resets a built-in CommandBarPopup
to its default configuration, or resets
a built-in CommandBarPopup to its
original function and face.

SetFocus Moves the keyboard focus to the
specified CommandBarPopup. If the
control is disabled or isn’t visible,
this method will fail.

1015

CommandBarPopup Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1015

CustomTaskPane Object
The CustomTaskPane object acts as the container for a single custom-created task pane. This container
can hold any task pane created in a language that supports COM and allows the creation of DLL files.
Note that Microsoft VBA does not support the creation of custom task panes.

CustomTaskPane Properties
The Application property is defined at the beginning of this appendix.

Name Returns Description

Content Read-only. Returns the ActiveX control instance displayed
Control in the frame of the CustomTaskPane object.

Dock MsoCTPDock Set/Get the position of the CustomTaskPane object; using
Position Postion one of the MsoCTPDockPostion constants.

DockPosition MsoCTPDock Set/Get the orientation restriction of a given Custom
Restrict Postion TaskPane object using one of the MsoCTPDockPostion

Restrict Restrict constants.

Height Long Set/Get the height of the CustomTaskPane object.

Title String Read-only. Returns the title of the CustomTaskPane
object.

Visible Boolean Set/Get whether the CustomTaskPane object is displayed.

Width Long Set/Get the width of the CustomTaskPane object.

Window Window Read-only. Returns the parent window of the Custom
TaskPane object.

CustomTaskPane Methods

Name Returns Parameters Description

Delete Deletes the active CustomTaskPane
object.

CustomTaskPane Events

Name Parameters Description

DockPosition ByVal Custom Triggered when the end user changes the docking position
StateChange TaskPaneInst of the active CustomTaskPane object.

Visible ByVal Custom Triggered when the end user changes the visibility of the
StateChange TaskPaneInst active CustomTaskPane object.

1016

CustomTaskPane Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1016

CustomXMLNode Object and the CustomXMLNodes
Collection Object

The CustomXMLNode object is a new object in Office 2007, and is designed to provide functionality simi-
lar to that found in the IXMLDOMNode interface when working with custom XML parts. This object and
its properties and methods allow users to find and extract a single node in an XML document without
relying on the DOM interface found in MSXML. Whereas the CustomXMLNode object represents a
single node in an XML document, the CustomXMLNodes collection object represents a collection of
CustomXMLNode objects.

CustomXMLNodes Collection Properties
In addition to the common properties found in most collections, the CustomXMLNodes collection object
also contains an Item property that returns the index number of a single CustomXMLNode object in the
collection.

CustomXMLNode Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Attributes CustomXML Read-only. Returns a CustomXMLNodes collection
Nodes representing the attributes of the current element in the

current node.

BaseName String Read-only. Returns the name of the specified node without
the namespace prefix.

ChildNodes CustomXML Read-only. Returns a collection of nodes containing all of
Nodes the child elements of specified node.

FirstChild CustomXML Read-only. Returns a CustomXMLNode object corresponding
Node to the first child element of the current node.

LastChild CustomXML Read-only. Returns a CustomXMLNode object corresponding
Node to the last child element of the current node.

NamespaceURI String Read-only. Returns the unique address identifier for the
namespace of the given node.

Nextsibling CustomXML Read-only. Returns a CustomXMLNode object corresponding
Node to next sibling node (element, comment, or processing

instruction) of the current node.

NodeType MsoCustomXML Read-only. Returns an MsoCustomXMLNodeType constant
NodeType for a given node, specifying the node’s type.

NodeValue String Set/Get the value of a given node.

Owner Object Read-only. Returns the object representing the Microsoft
Document Office Excel workbook, Microsoft Office PowerPoint presen-

tation, or the Microsoft Office Word document associated
with a given node.

Table continued on following page

1017

CustomXMLNode Object and the CustomXMLNodes Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1017

Name Returns Description

OwnerPart CustomXML Read-only. Returns the CustomXMLPart object associated
Part with a given node.

ParentNode CustomXML Read-only. Returns the parent element node of a given
Node node current node. If the current node is at the root level,

the property returns Nothing.

Previous CustomXML Read-only. Returns a CustomXMLNode object corresponding
Sibling Node to the previous sibling node (element, comment, or pro-

cessing instruction) of the current node.

Text String Set/Get the text for a given node.

XML String Read-only. Returns the XML representation of the specified
node and its children.

XPath String Read-only. Returns a String with the canonicalized XPath
for the specified node.

CustomXMLNode Methods

Name Returns Parameters Description

AppendChild Name, Namespace Appends a single node as the last
Nodes URI, NodeType, child under the context element node.

NodeValue

AppendChild XML Adds a subtree as the last child under
Subtree the context element node.

Delete Deletes a specified node and all of its
children.

HasChild Boolean Returns True if the specified node
Nodes has child element nodes.

InsertNodes Name, Namespace Inserts a new node just before the
Before URI, NodeType, context node.

NodeValue,
NextSibling

Insert XML, Inserts the specified subtree into the
Subtree NextSibling location just before the context node.
Before

RemoveChild Child Removes the specified child node
from the tree.

Replace OldNode, Name, Removes the specified child node
ChildNode NamespaceURI, and replaces it with a different node

NodeType, in the same location.
NodeValue

1018

CustomXMLNode Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1018

Name Returns Parameters Description

ReplaceChild XML, OldNode Removes the specified node and
Subtree replaces it with a different subtree in

the same location.

SelectNodes Xpath Selects a collection of nodes matching
an XPath expression.

SelectSingle Xpath Selects a single node from a collection
Node matching an XPath expression.

CustomXMLNode, CustomXMLNodes, and CustomXMLPart Example
The following routine adds a custom XML part to the active workbook and traverses the XML part using
the new CustomXMLNodes collection:

Sub Add_Traverse_CustomXMLPart()
Dim oCustomPart As CustomXMLPart
Dim oCustomNode As CustomXMLNode
Dim oCustomNodes As CustomXMLNodes

‘Add a Custom XML Part from a file and then load
Set oCustomPart = ActiveWorkbook.CustomXMLParts.Add
oCustomPart.Load “C:\EmployeeSales.xml”

‘Return all nodes for the employee who has invoice amount over 3000
Set oCustomNodes = oCustomPart.SelectNodes(“//Employee[InvoiceAmount>3000]”)
For Each oCustomNode In oCustomNodes
Debug.Print oCustomNode.Text

Next

‘Delete the Custom XML Part
oCustomPart.Delete

End Sub

To run this code, enter the following XML into Notepad and save as C:\ EmployeeSales.xml:

<?xml version=”1.0”?>
<EmployeeSales>
<Employee>
<Empid>2312</Empid>
<FirstName>Mike</FirstName>
<LastName>Alexander</LastName>
<InvoiceNumber>100</InvoiceNumber>
<InvoiceAmount>2300</InvoiceAmount>
</Employee>

<Employee>
<Empid>24601</Empid>
<FirstName>Stephen</FirstName>
<LastName>Bullen</LastName>

1019

CustomXMLNode, CustomXMLNodes, and CustomXMLPart Example

34_046432 appc.qxp 2/16/07 10:07 PM Page 1019

<InvoiceNumber>200</InvoiceNumber>
<InvoiceAmount>3211</InvoiceAmount>
</Employee>
</EmployeeSales>

CustomXMLPart Object and the CustomXMLParts
Collection Object

The CustomXMLPart object allows you to programmatically work with any XML document you integrate
into your Excel workbook as a custom XML part. The CustomXMLParts collection object represents a
collection of CustomXMLPart objects.

CustomXMLParts Collection Properties
In addition to the common properties found in most collections, the CustomXMLNodes object also contains
an Item property that returns the index number of a single CustomXMLPart object in the collection.

CustomXMLParts Collection Methods

Name Returns Parameters Description

Add CustomXML XMLSchema Adds a new custom XML part to
Part Collection a file.

SelectByID CustomXML ID Selects a custom XML part by
Part matching a GUID.

SelectBy CustomXML NamespaceURI Selects a custom XML part by
Namespace Parts matching a Namespace URI.

CustomXMLParts Collection Events

Name Parameters Description

PartAfterAdd NewPart Triggered after a new CustomXMLPart object is added to
the current file.

PartAfter Part Triggered after a CustomXMLPart object is loaded.
Load

PartBefore OldPart Triggered before a CustomXMLPart object is deleted.
Delete

CustomXMLPart Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

1020

CustomXMLPart Object and the CustomXMLParts Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1020

Name Returns Description

BuiltIn Boolean Read-only. Specifies whether the CustomXMLPart is
built-in.

Document CustomXML Read-only. Returns the root element of a bound region of
Element Node data in a document.

Errors CustomXML Read-only. Provides access to any XML validation errors
Validation via the CustomXMLValidationErrors object.
Errors

Id String Read-only. Returns the GUID assigned to the specified
CustomXMLPart object.

Namespace CustomXML Read-only. Returns the set of namespace prefix mappings
Manager Prefix used against the specified CustomXMLPart object.

Mappings

NamespaceURI String Read-only. Returns the unique address identifier for the
namespace of the CustomXMLPart object.

Schema CustomXML Set/Get the CustomXMLSchemaCollection object
Collection Schema representing the set of schemas attached to a bound region

Collection of data in a document.

XML String Read-only. Returns the XML representation of the speci-
fied CustomXMLPart object.

CustomXMLPart Methods

Name Returns Parameters Description

AddNode Parent, Name, Adds a node to the XML tree within a
NamespaceURI, CustomXMLPart object.
NextSibling,
NodeType,
NodeValue

Delete Deletes the specified CustomXMLPart
object from the IXMLDataStore
interface.

Load FilePath Populates a given CustomXMLPart
object using an existing XML file.

LoadXML XML Populates a given CustomXMLPart
object using an XML string.

SelectNodes XPath Selects a collection of nodes from a
CustomXMLPart object.

SelectSingle XPath Selects a single node from a
Node CustomXMLPart object.

1021

CustomXMLPart Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1021

CustomXMLPart Events

Name Returns Parameters Description

NodeAfter OldNode, Old Triggered after a node within the
Delete ParentNode, specified CustomXMLPart object is

OldNextSibling, deleted.
InUndoRedo

NodeAfter NewNode, Triggered after a node within the
Insert InUndoRedo specified CustomXMLPart object is

inserted.

NodeAfter OldNode, Triggered after a node within the
Replace NewNode, specified CustomXMLPart object

InUndoRedo is replaced.

CustomXMLPrefixMapping Object and the
CustomXMLPrefixMappings Collection Object

The CustomXMLPrefixMapping object allows you to programmatically work with both the namespaces
and the namespace prefixes within your custom XML parts. The CustomXMLPrefixMappings collection
object represents a collection of CustomXMLPrefixMapping objects.

CustomXMLPrefixMappings Collection Properties
In addition to the common properties found in most collections, the CustomXMLPrefixMappings object
also contains an Item property that returns the index number of a single CustomXMLPrefixMapping
object in the collection.

CustomXMLPrefixMappings Collection Methods

Name Returns Parameters Description

AddNamespace Prefix, Adds a custom namespace and prefix
NamespaceURI mapping.

Lookup String Prefix Returns the namespace corresponding
Namespace to a specified prefix.

LookupPrefix String NamespaceURI Returns the prefix corresponding to a
specified namespace.

CustomXMLPrefixMapping Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

1022

CustomXMLPart Events

34_046432 appc.qxp 2/16/07 10:07 PM Page 1022

Name Returns Description

NamespaceURI String Read-only. Returns the unique address identifier for the
namespace of the CustomXMLPrefixMapping object.

Prefix String Read-only. Returns the prefix name for the namespace of
the CustomXMLPrefixMapping object.

CustomXMLSchema Object and the
CustomXMLSchemaCollection Object

The CustomXMLSchema object allows you to programmatically work with the XML schemas for your cus-
tom XML parts. The CustomXMLSchemaCollection object represents a collection of CustomXMLSchema
objects.

CustomXMLSchemaCollection Properties
In addition to the common properties found in most collections, the CustomXMLPrefixMappings object
also contains an Item property that returns the index number of a single CustomXMLPrefixMapping
object in the collection, and a NamespaceURI property that returns the unique address identifier for the
namespace of the CustomXMLSchemaCollection object.

CustomXMLSchemaCollection Methods

Name Returns Parameters Description

Add CustomXML NamespaceURI, Adds one or more schemas to a
Schema Alias, File schema collection.

Name,Install
forAllUsers

AddCollection Schema Adds an existing schema collection to
Collection the current schema collection.

Validate Boolean Allows you to check whether the
schemas in a schema collection con-
form to the syntactic rules of XML and
the rules for a specified vocabulary.

CustomXMLSchema Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Location String Read-only. Returns the location of a specified schema file.

NamespaceURI String Read-only. Returns the unique address identifier for the
namespace of the CustomXMLPrefixMapping object.

1023

CustomXMLSchema Object and the CustomXMLSchemaCollection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1023

CustomXMLSchema Methods

Name Returns Parameters Description

Delete Deletes the specified schema from the
CustomXMLSchema collection.

Reload Reloads a schema from a specified
schema file.

CustomXMLValidationError Object and the
CustomXMLValidationErrors CollectionObject

The CustomXMLValidationError object represents a single error triggered when validating an opera-
tion against the schema for your custom XML part. This object is typically used to display and manage
any errors that may occur when programming against your custom XML parts. The CustomXML-
ValidationErrors collection object represents a collection of CustomXMLValidationError objects.

CustomXMLValidationErrors Collection Properties
In addition to the common properties found in most collections, the CustomXMLValidationErrors
object also contains an Item property that returns the index number of a single CustomXML-
ValidationError object in the collection.

CustomXMLValidationErrors Collection Methods

Name Returns Parameters Description

Add Node, Error Adds a CustomXMLValidation
Name,Error Error object containing an XML
Text,Cleared validation error to the CustomXML
OnUpdate ValidationErrors collection.

CustomXMLValidationError Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

ErrorCode Long Read-only. Returns the validation error number.

Name String Read-only. Returns the name of the error.

Node CustomXML Read-only. Returns the node in which the error occurred. If
Node no node is bound to the error, this property returns Nothing.

Text String Read-only. Returns the plain language text associated with
the CustomXMLValidationError object.

1024

CustomXMLSchema Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1024

Name Returns Description

Type MsoCustomXML Read-only. Returns an MsoCustomXMLValidation
Validation ErrorType constant indicating the type of error
ErrorType generated.

CustomXMLValidationError Methods

Name Description

Delete Deletes the specified CustomXMLValidationError object represent-
ing the data validation error.

DocumentInspector Object and the DocumentInspectors
CollectionObject

The DocumentInspector object allows you to programmatically inspect and fix an Excel workbook just
as you would via the Document Inspector dialog box. You can programmatically call upon any one of
the inspection modules found in the Document Inspector dialog box by specifying that module’s index
value in the DocumentInspectors collection, as demonstrated in the example code for this section.

Here are the built-in inspection modules for Excel 2007 and their corresponding index values:

❑ Inspect for custom XML data stored with the document: Use index value 1

❑ Inspect the workbook for information in headers and footers: Use index value 2

❑ Inspect the workbook for hidden rows and columns: Use index value 3

❑ Inspect the workbook for hidden worksheets: Use index value 4

❑ Inspect the workbook for invisible objects: Use index value 5

You will note that the first two modules in the Document Inspector dialog box (Comments and
Annotations, Document Properties and Personal Information) are not shown here. That is because they
are not available via DocumentInspectors collection; instead, their functionality is available through
the RemoveDocumentInformation method of the Workbook object.

DocumentInspectors Collection Properties
In addition to the common properties found in most collections, the DocumentInspectors object also
contains an Item property that returns the index number of a single DocumentInspector object in the
collection.

DocumentInspector Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

1025

CustomXMLValidationError Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1025

Name Returns Description

Description Long Read-only. Returns the description of the specified
DocumentInspector object.

Name String Read-only. Returns the module name of the specified
DocumentInspector object.

DocumentInspector Methods

Name Parameters Description

Fix Status, Performs an action on specific information or document
Results properties as defined by the specified DocumentInspector

object.

Inspect Status, Inspects a document for the information or document
Results properties defined by a given DocumentInspector object.

DocumentInspector Object Example
Sub InspectMyDocument()
Dim oInspector As DocumentInspector
Dim cnstStatus As MsoDocInspectorStatus
Dim strResult As String

‘Set the inspector to inspect for hidden worksheets
Set oInspector = ActiveWorkbook.DocumentInspectors(4)
oInspector.Inspect cnstStatus, strResult

‘If inspection produced no results, notify user and exit procedure
If cnstStatus <> 1 Then
MsgBox “Inspection produced no results”
Exit Sub
End If

‘Give user the option to delete the found hidden worksheets
‘If User chooses to delete worksheets, then remove worksheet
‘If User chooses not to delete worksheets, then exit procedure

Select Case MsgBox(strResult & vbCrLf & “Remove Hidden Worksheets?”, vbYesNo)

Case Is = vbYes
oInspector.Fix cnstStatus, strResult
MsgBox strResult
Exit Sub

Case Is = vbNo
MsgBox “Hidden worksheets will not be removed”
Exit Sub

End Select
End Sub

1026

DocumentInspector Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1026

DocumentLibraryVersion Object and the
DocumentLibraryVersions Collection Object

The DocumentLibraryVersion object represents a single saved version of a shared document that has
versioning enabled and that is stored in a document library on the server. Each DocumentLibrary
Version object is a member of the active document’s DocumentLibraryVersions collection. The
DocumentLibraryVersions collection object represents a collection of DocumentLibraryVersion
objects.

DocumentLibraryVersions Collection Properties
In addition to the common properties found in most collections, the DocumentInspectors object also
contains an Item property that returns the index number of a single DocumentInspector object in the
collection, and the IsVersioningEnabled property that indicates whether the document library in
which the active document is saved on the server is configured to create a backup copy, or version, each
time the file is edited on the web site.

DocumentLibraryVersion Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Comments String Read-only. Returns any optional comments associated
with the specified version of the shared document.

Index Long Returns a Long representing the index number for an
object in the collection. Read-only.

Modified Variant Read-only. Returns the date and time the document was
last saved to the server.

ModifiedBy String Returns the name of the user who last saved the specified
version of the shared document to the server. Read-only
String.

DocumentLibraryVersion Methods

Name Returns Description

Delete Removes a document library version from the Document
Library Versions collection.

Open Object Opens the specified version of the shared document from
the DocumentLibraryVersions collection in Read-only
mode.

Restore Object Restores a previous saved version of a shared document
from the DocumentLibraryVersions collection.

1027

DocumentLibraryVersion Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1027

DocumentProperty Object and the DocumentProperties
Collection Object

The DocumentProperty object represents a single property in the DocumentProperties collection. The
property can be either a built-in or custom property. Use BuiltinDocumentProperties or Custom
DocumentProperties to reference a single DocumentProperty.

The DocumentProperties collection object represents all of the Document Properties listed in the host
application’s Summary and Custom tabs of the Properties command (File menu) for a document. The
document would be the Workbook object in Excel and the Document object in Word.

The DocumentProperties collection consists of two distinct types: Built-in properties and Custom
properties. Built-in properties are native to the host application and are found on the Summary tab of
the Properties command. Custom properties are those created by the user for a particular document
and are found on the Custom tab of the Properties command.

It’s important to note that when accessing DocumentProperties for a document, you must use either
the BuiltinDocumentProperties property for properties native to the host application, or the Custom
DocumentProperties property for properties created by the user. Strangely enough, BuiltinDocument
Properties and CustomDocumentProperties are not found in the Office object model, but are part of
the host application’s model. In other words, you will not find these two properties within the Document
Properties or DocumentProperty objects of Microsoft Office 2007.

To access the built-in author document property, you can use the index value of the built-in document
property. For example, you can get the document author by using:

MsgBox ActiveWorkbook.BuiltinDocumentProperties(3).Value

You can also assign values to document properties as such:

ActiveWorkbook.BuiltinDocumentProperties(3).Value = “Mike Alexander”

The following is a list of the available built-in document properties and their corresponding index values:

❑ Title: 1

❑ Subject: 2

❑ Author: 3

❑ Keywords: 4

❑ Comments: 5

❑ Template: 6

❑ Last author: 7

❑ Revision number: 8

❑ Application name: 9

❑ Last print date: 10

1028

DocumentProperty Object and the DocumentProperties Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1028

❑ Creation date: 11

❑ Last save time: 12

❑ Total editing time: 13

❑ Number of pages: 14

❑ Number of words: 15

❑ Number of characters: 16

❑ Security: 17

❑ Category: 18

❑ Format: 19

❑ Manager: 20

❑ Company: 21

❑ Number of bytes: 22

❑ Number of lines: 23

❑ Number of paragraphs: 24

❑ Number of slides: 25

❑ Number of notes: 26

❑ Number of hidden slides: 27

❑ Number of multimedia clips: 28

❑ Hyperlink base: 29

❑ Number of characters (with spaces): 30

❑ Content type: 31

❑ Content status: 32

❑ Language: 33

❑ Document version: 34

Keep in mind that several of the built-in properties are specific to certain host applications. For example,
the Number of Paragraphs property is native to Microsoft Word, and any attempt to reference it from
another application will result in a run-time error.

DocumentProperties Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Parameters Description

Item Document Index as Index can also be a string representing
Property Variant the DocumentProperty’s name.

1029

DocumentProperties Collection Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1029

DocumentProperties Collection Methods

Name Returns Parameters Description

Add Document Name As String, Creates a new custom document
Property LinkToContent property. You can only add a new

As Boolean, document property to the custom
Type, Value, DocumentProperties collection.
LinkSource

DocumentProperty Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

LinkSource String Set/Get the source of a linked custom document property.

LinkTo Boolean Returns whether the custom document property is linked
Content to the content of the container document.

Name String Set/Get the name of the Document property.

Type MsoDoc Set/Get the document property type. Read-only for built-in
Properties document properties; Read/Write for custom document

properties.

Value Variant Set/Get the value of a document property. If the container
application doesn’t define a value for one of the built-in
document properties, reading the Value property for that
document property causes an error.

DocumentProperty Methods

Name Parameters Description

Delete Removes a custom document property.

EncryptionProvider Object
The EncryptionProvider object allows access to the methods for setting up permissions, applying
encryption and decryption, and controlling user authentication. Microsoft Office provided a certain
amount of storage for Add-In–specific information to store whatever information you need to encrypt,
decrypt, apply rights, and display permission setup or authentication user interfaces.

1030

DocumentProperties Collection Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1030

EncryptionProvider Methods

Name Returns Parameters Description

Authenticate Long ParentWindow, Determines whether the user has
EncryptionData, the proper permissions to open the
Permission encrypted document.
Mask

CloneSession Long SessionHandle Creates a second, working copy of
the EncryptionProvider object’s
encryption session for a file that is
about to be saved.

Decrypt Encryption SessionHandle, Decrypts and returns a stream of
Stream Provider StreamName, encrypted data for a document. This

Encrypted method is the inverse of Encrypt
Stream, Stream method and converts
Unencrypted encrypted data back into pure
Stream (unencrypted) data.

Encrypt Encryption SessionHandle, Encrypts and returns a stream of data
Stream Provider StreamName, for a document.

Unencrypted
Stream,
Encrypted
Stream

EndSession Encryption SessionHandle Ends the current encryption session.
Provider

GetProvider Variant Encryption Queries the EncryptionProvider
Detail Provider object for information such as down

Detail load URL, implementation algorithm,
and cipher mode.

NewSession Long ParentWindow Creates a new encryption session.

Save Long SessionHandle, Saves an encrypted document.
EncryptionData

ShowSettings SessionHandle, Used to display any dialogs and
ParentWindow, encryption settings required for
ReadOnly, access to the current document.
Remove

FileDialog Object
This object is now a more structured and more flexible alternative to both the GetSaveAsFilename and
GetOpenFilename methods. It includes the ability to customize the action button (for example, the Save
button in Save As dialog) and choose from a list of different dialog types (above and beyond Open and

1031

EncryptionProvider Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1031

Save As), adds more flexibility when using custom file types or filters (for example, “*.bil”), and
allows you to set a default view that the user will see when the dialog appears (for example, Detail or
Large Icon views).

Note that some of the properties and methods for this object depend on the MsoFileDialogType cho-
sen in the FileDialogType property. For example, the following will encounter an error when attempt-
ing to use the Add method of the Filters property with the msoFileDialogSaveAs dialog type:

Application.FileDialog(msoFileDialogSaveAs).Filters.Add _
“Billing Files”, “*.bil”, 1

FileDialog Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

AllowMulti Boolean Set/Get whether the user is allowed to select multiple files
Select from a file dialog box.

ButtonName String Set/Get the text that is displayed on the action button of a
file dialog box. By default, this property is set to the stan-
dard text for the type of file dialog box.

DialogType MsoFile Read-only. Returns an MsoFileDialogType constant
DialogType representing the type of file dialog box that the File

Dialog object is set to display.

FilterIndex Long Set/Get the default file filter of a file dialog box. The
default filter determines which types of files are displayed
when the file dialog box is first opened.

Filters FileDialog Returns a FileDialogFilters collection.
Filters

Initial String Set/Get the path and/or file name that is initially displayed
FileName in a file dialog box.

InitialView MsoFile Set/Get an MsoFileDialogView constant representing
DialogView the initial presentation of files and folders in a file

dialog box .

Item String Read-only. Returns the text associated with the File
Dialog object.

Selected FileDialog Returns a FileDialogSelectedItems collection. This
Items Selected collection contains a list of the paths of the files that a user

Items selected from a file dialog box displayed using the Show
method of the FileDialog object.

Title String Set/Get the title of a file dialog box displayed using the
FileDialog object.

1032

FileDialog Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1032

FileDialog Methods

Name Returns Description

Execute FileDialog objects of type msoFileDialogOpen or
msoFileDialogSaveAs, carries out a user’s action right
after the Show method is invoked.

Show Long Displays a file dialog box. Returns a Long indicating
whether the user pressed the action button (-1) or the can-
cel button (0). When the Show method is called, no more
code will execute until the user dismisses the file dialog
box. With Open and Save As dialog boxes, use the
Execute method right after the Show method to carry
out the user’s action.

FileDialogFilter Object and the FileDialogFilters
Collection Object

The FileDialogFilter is a single filter in the FileDialogFilters collection. To reference an
individual filter, use:

Application.FileDialog(msoFileDialogOpen).Filters(lIndex)

The FileDialogFilters collection object represents all the filters shown in the new FileDialog
object, including custom filters created using the Add method of the Filters property for the
FileDialog object.

Note that filters created using the Add method of the Filters property do not appear in the standard
Open and Save As dialogs.

FileDialogFilters Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

FileDialogFilters Collection Methods

Name Returns Parameters Description

Add File Dialog Description Adds a new file filter to the list of
Filter As String, filters in the Files of type drop-down

Extensions list box in the File dialog box. Returns
As String, a FileDialogFilter object that
Position represents the newly added file filter.

Clear Removes all the file filters in the
FileDialogFilters collection.

Table continued on following page

1033

FileDialog Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1033

Name Returns Parameters Description

Delete filter Removes a specified file filter from
the FileDialogFilters collection.

Item FileDialog Index As Long Returns the specified FileDialog
Filter Filter object from a FileDialog

Filters collection.

FileDialogFilter Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Description String Read-only. Returns the description displayed in the file
dialog box of each Filter object as a String value.

Extensions String Read-only. Returns a String value containing the exten-
sions that determine which files are displayed in a file
dialog box for each Filter object.

FileDialogSelectedItems Collection Object
This collection returns all of the chosen items in a FileDialog. It consists of more than one item when
the AllowMultiSelect property of the FileDialog object is set to True, unless the
msoFileDialogSaveAs FileDialog is used (where only one item is always returned). The
FileDialogSelectedItems collection is a collection of strings.

FileDialogSelectedItems Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

FileDialogSelectedItems Collection Methods

Name Returns Parameters Description

Item String Index as long Returns the path of one of the files that
the user selected from a file dialog box
that was displayed using the Show
method of the FileDialog object.

FileTypes Object
The FileTypes object represents a set of file types you want to search for when using the FileSearch
object. You will note that although the FileTypes object is meant to be used with the FileSearch
object, the FileSearch object is no longer part of the Office 2007 object model.

1034

FileDialogFilter Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1034

FileTypes Collection Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Parameters Description

Item MsoFile Index as Long Read-only. Returns a value that
Type indicates which file type will be

searched for by the Execute method
of the FileSearch object.

FileTypes Collection Methods

Name Parameters Description

Add FileType As Adds a new file type to a file search.
MsoFileType

Remove Index As Long Removes the specified file type from the FileTypes
collection.

Font2 Object
The GlowFormat object exposes the various properties used to configure the font attributes for an Office
object.

Font2 Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Allcaps Boolean Set/Get whether font is formatted as all capital letters.

Autorotate Boolean Set/Get whether the numbers in a numbered list should
Numbers be rotated when the text is rotated.

Baseline Single Set/Get a single defining the horizontal offset of the
Offset selected font.

Bold Boolean Set/Get whether the font should be bold.

Caps MsoTextCaps Set/Get an MsoTextCaps constant specifying that the text
should be capitalized.

DoubleStrike Boolean Set/Get whether the font is formatted as double
Through strikethrough text.

Embeddable Boolean Read-only. Returns whether the font can be embedded in
a page.

Table continued on following page

1035

FileTypes Collection Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1035

Name Returns Description

Embedded Boolean Read-only. Returns whether the font is embedded in a page.

Equalize Boolean Set/Get whether the text for a selection should be spaced
equal distances apart.

Fill FillFormat Read-only. Returns the fill format for a font.

Glow GlowFormat Read-only. Returns the value indicating whether the font is
displayed as a glow effect.

Highlight ColorFormat Read-only. Returns the value indicating whether the font is
displayed as highlighted.

Italic Boolean Set/Get whether the text for a selection is italic.

Kerning Single Set/Get the amount of spacing between text characters.

Line LineFormat Read-only. Returns the format of a line.

Name String Set/Get the font to use for a selection.

NameAscii String Set/Get the font used for Latin text (characters with char-
acter codes from 0 (zero) through 127).

NameComplex String Set/Get the complex script font name used for mixed
Script language text.

NameFarEast String Set/Get an East Asian font name.

NameOther String Set/Get the font used for characters whose character set
numbers are greater than 127.

Reflection Reflection Read-only. Returns the type of reflection format for the
Format selection of text.

Shadow Shadow Read-only. Returns the type of shadow effect for the
Format selection of text.

Size Single Read-only. Returns the size of the font.

Smallcaps Boolean Set/Get whether small caps should be used with the selec-
tion of text.

SoftEdge MsoSoft Set/Get the type of soft edge effect used in a selection
Format EdgeType of text.

Spacing Single Set/Get the value specifying the spacing between characters
in a selection of text. Read/write.

Strike MsoText Set/Get the strike format used for a selection of text.
Strike

Strike Boolean Set/Get whether strikethrough formatting should be used.
Through

1036

Font2 Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1036

Name Returns Description

Subscript Boolean Set/Get whether subscript formatting should be used.

Underline ColorFormat Read-only. Returns the color of the underline for the
Color selected text.

Underline MsoText Set/Get whether underline formatting should be used.
Style Underline

Type

WordArt MsoPreset Set/Get the text effect for the selected text.
Format Text

Effect

GlowFormat Object
The GlowFormat object exposes the properties used to configure the glow effect around Office graphics.

GlowFormat Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Color ColorFormat Read-only. Returns a ColorFormat object representing the
color of text formatted as glow.

Radius Single Sets/Get the radius value of the glow effect.

GradientStop Object and the GradientStops
Collection Object

A GradientStop object represents one endpoint in a series of sections that make up a color gradient.
This object can be used to add and remove gradient color stops, effectively customizing the color gradi-
ent for a particular graphic, shape, or object. The GradientStops collection object represents all of the
GradientStop objects that make up a color gradient.

GradientStops Collection Properties
The Application, Count, and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Item GradientStop Read-only. Returns a GradientStop from a Gradient
Stops collection using an index value or a name.

1037

GlowFormat Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1037

GradientStops Collection Methods

Name Returns Parameters Description

Delete Index Removes a gradient stop.

Insert RGB, Position, Adds a stop to a gradient.
Transparency,
Index

GradientStop Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Color ColorFormat Read-only. Returns a ColorFormat object representing the
color of the gradient stop.

Position Single Set/Get the position of a stop within the gradient. This is
expressed as a percentage.

Transparency Single Set/Get the opacity of the gradient fill. This is expressed as
a percentage.

IAssistance Object
The IAssistance object allows developers to display help topics through the Office Help Viewer. The
IAssistance object is returned by the Assistance property of the Application object, allowing devel-
opers to call specific help files by either passing a Help ID or a keyword to the help system. For instance:

This code uses the SearchHelp method to open the Office Help Viewer, and displays all topics relating to
calculated fields in pivot tables:

Application.Assistance.SearchHelp “PivotTable Calculated Field”

Here, you are using the ShowHelp method to pass a specific Help ID to display help on corrupted
workbooks:

Application.Assistance.ShowHelp “22261”

IAssistance Methods

Name Parameters Description

ClearDefault Helpid Clears the default help topic previously defined in the
Context SetDefaultContext method.

SearchHelp Query, Scope Performs a search from the Office Help Viewer based on
one or more keywords. Keywords can be words or phrases.

1038

GradientStops Collection Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1038

Name Parameters Description

SetDefault Helpid Sets a default help topic that allows a specified topic to
Context display when the user presses F1 or clicks the Help button

in a dialog box.

ShowHelp Helpid, Displays the help topic specified by its ID. The Scope will
Scope determine the application namespace that is used. The fol-

lowing scopes are available within the Microsoft Office
applications: Access, Excel, Outlook, PowerPoint, Project,
Publisher, SharePoint Designer, Visio, and Word. By
default, the scope is set to the current application’s name-
space if a Null string (“”) is passed as a scope parameter.

IBlogExtensibility and IBlogPictureExtensibility Objects
Both the IBlogExtensibility object and the IBlogPicturesExtensibility object are new in Office
2007. These objects provide the interfaces that allow users to interact with, and publish to, blog providers
via Microsoft Word.

IBlogExtensibility Methods

Name Returns Parameters Description

BlogProvider BlogProvider, Returns information about the
Properties FriendlyName, provider.

Category
Support,Padding,
NoCredentials

GetCategories Account, Returns the list of blog categories for
ParentWindow, an account, allowing Word to
Document, populate its category drop-down
username, lists.
Password,
Categories()

GetRecent Account, Returns the list of the last 15 blogs in
Posts ParentWindow, the Open Existing Post dialog. Note

Document, that this method does not actually
userName, return the blog post contents.
Password,
PostTitles(),
PostDates(),
PostIDs()

Table continued on following page

1039

IBlogExtensibility and IBlogPictureExtensibility Objects

34_046432 appc.qxp 2/16/07 10:07 PM Page 1039

Name Returns Parameters Description

GetUserBlogs Account, Returns the list and details of user
ParentWindow, blogs associated with the specified
Document, account.
userName,
Password,
BlogNames(),
BlogIDs(),
BlogURLs()

Open Account, Opens the blog specified by the
PostID, blog ID.
ParentWindow,
userName,
Password,
xHTML, Title,
DatePosted,
Categories()

PublishPost Account, Transfers the current post of the blog
ParentWindow, provider so that it can be published.
Document,
username,
Password, xHTML,
Title,DateTime,
Categories(),
Draft, PostID,
PublishMessage

RepublishPost Account, Transfers the current post of the blog
ParentWindow, provider so it can be republished.
Document,
username,
Password,
PostID, DateTime,
Categories(),
Draft,
PublishMessage

SetupBlog Account, Called from the Choose Account
Account ParentWindow, dialog when the provider’s name is

Document, chosen in the Blog Host dropdown,
NewAccount, or when the user requests to change a
ShowPictureUI provider’s account in the Blog

Accounts dialog box.

1040

IBlogExtensibility Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1040

IBlogPictureExtensibility Methods

Name Returns Parameters Description

BlogPicture BlogPicture Enables picture providers to offer
Provider Provider, themselves as an upload location for
Properties FriendlyName blog pictures.

CreatePicture Account, Allows a picture provider to display
Account BlogProvider, the user interface needed to guide the

ParentWindow, user through setting up a picture
Document, account.
userName,
Password

Create Account, Posts a picture object to its final
Picture ParentWindow, destination in a blog.
Account Document,

userName,
Password,
Image,
PictureURI

ICTPFactory Object
When an external application is used to create an instance of a CustomTaskPane object in an Add-In and
implements the CTPFactoryAvailable method, the CTPFactoryAvailable method passes an
ICTPFactory object to the Add-In. From here, the ICTPFactory object is used to create the task pane by
employing the CreateCTP method.

ICTPFactory Methods

Name Returns Parameters Description

CreateCTP Custom CTPAxID, Creates an instance of a custom
TaskPane CTPTitle, CTP task pane.

ParentWindow

ICustomTaskPaneConsumer Object
The ICustomTaskPaneConsumer object acts as an interface, providing access to its only method,
CTPFactoryAvailable. This method creates an instance of a custom task pane by passing a
CTPFactory object to an ActiveX Add-In that can then use that object to create the custom task pane.

1041

IBlogPictureExtensibility Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1041

ICustomTaskPaneConsumer Methods

Name Parameters Description

CTPFactory CTPFactory Passes a CTPFactory object to an ActiveX Add-In that can
Available Inst then used when creating a custom task pane.

IDocumentInspector Object
The IDocumentInspector object provides an interface that can be used to access the methods of custom
Document Inspector modules. Note that the IDocumentInspector object is designed to be used by
developers of Document Inspector modules and cannot be used with Visual Basic for Applications (VBA).

IDocumentInspector Methods

Name Parameters Description

Fix Doc, Hwnd, Performs some action on specific information items or
Status, document properties as defined by the custom Document
Result Inspector module.

GetInfo Name, Desc Returns information about a given custom Document
Inspector module.

Inspect Doc, Status Evaluates specific information items or document
Result, properties as defined by the custom Document Inspector
Action module.

IRibbonControl Object
The IRibbonControl object allows developers to pass information to and from a given Ribbon UI con-
trol’s callback procedure. Review Chapter 14 for a detailed look at how the IRibbonControl object is
used in Excel.

IRibbonControl Properties

Name Returns Description

Context Window Read-only. Returns the active window containing the con-
trol that triggers the callback procedure.

Id String Read-only. Returns the unique identifier for a given control.
This ID is specified within the custom UI XML part used to
create the custom interface.

Tag String Read-only.

1042

ICustomTaskPaneConsumer Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1042

IRibbonExtensibility Object
The IRibbonExtensibility object provides the interface that allows COM Add-Ins to customize the
Ribbon UI.

IRibbonExtensibility Methods

Name Returns Parameters Description

GetCustomUI String RibbonID Loads the XML markup, either from
an XML customization file or from
XML markup embedded in the proce-
dure that customizes the Ribbon user
interface.

IRibbonUI Object
When a host application that contains a custom UI XML part starts, the onLoad callback procedure is
called, returning an IRibbonUI object that points to the Ribbon UI. You can then use the IRibbonUI
object to either invalidate control caches or perform an immediate refresh of the user interface.

IRibbonUI Methods

Name Returns Parameters Description

Invalidate Forces the recaching of response val-
ues from callback procedures for all
controls. For each callback an Add-In
implements, the response values are
cached. From there, the cached values
are used instead of recalling the pro-
cedure. The cached values remain in
place until the Add-In signals that the
cached values are invalid by using the
Invalidate method, at which time
the callback procedure is again called
and the return response is cached.

Invalidate ControlID Forces the recaching of response
Control values from callback procedures for a

single control.

LanguageSettings Object
Returns information about the language settings currently being used in the host application. These are
read-only and can affect how data is viewed and edited in certain host applications.

1043

IRibbonExtensibility Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1043

LanguageSettings Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

LanuguageID Long Read-only. Returns the locale identifier (LCID) for the
install language, the user interface language, or the
Help language.

Language Boolean Read-only. Returns True if the value for the
Preferred msoLanguageID constant has been identified in the
ForEditing Windows registry as a preferred language for editing.

MetaProperty Object and the MetaProperties
Collection Object

The MetaProperties collection object represents a collection of properties describing the metadata
stored in a document. Each single property in the MetaProperties collection object is represented by
its own MetaProperty object.

MetaProperties Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

Name Returns Description

Item MetaProperty Read-only. Returns a single MetaProperty object based
on the name or index number of the property.

SchemaXML String Read-only. Returns schema XML that provides informa-
tion about various metadata properties of a document,
such as type information and restrictions.

MetaProperties Collection Methods

Name Returns Parameters Description

GetItemBy MetaProperty InternalName Returns a given property’s value
Internal using its name, as opposed to its
Name index number.

Validate String Validates all properties in a given
MetaProperties collection against
a schema.

1044

LanguageSettings Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1044

MetaProperty Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Id String Read-only. Returns the ID of a given MetaProperty
object.

IsReadOnly Boolean Read-only. Returns whether a given MetaProperty is
read-only.

IsRequired Boolean Read-only. Returns whether a given MetaProperty is
required.

Name String Read-only. Returns the name of the MetaProperty object.

Type MsoMeta Read-only. Returns the data type of the given
PropertyType MetaProperty object.

Value Variant Set/Get the value of a given MetaProperty object.

MetaProperty Methods

Name Returns Parameters Description

Validate String Validates a single property against a
schema.

MsoEnvelope Object
This Office object allows you to send data from a host application using an Outlook mail item without
having to reference and connect to the Outlook object model. Using the Item property of this object
allows access to a host of Outlook features not available through the SendMail feature, such as Voting
Options, CC and BCC fields, Body Formatting choices (HTML, rich text, and plain text), and much more.

Note that the MsoEnvelope object sends the document as inline (formatted) text. It does not attach
the document to an e-mail, though you can add attachments using the Attachments property of the
MailItem object, which you can access via this object’s Item property. For Excel, this object can only be
accessed through a Worksheet or a Chart object, which means it only sends those objects (and not the
entire workbook). Similar to the SendMail feature in Excel, except that this exposes a CommandBar
object associated with this feature and allows for the setting of Introduction text.

The properties you set are saved with the document or workbook and are therefore persistent.

MsoEnvelope Properties
The Parent property is defined at the beginning of this appendix.

1045

MetaProperty Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1045

Name Returns Description

CommandBars CommandBars Read-only. Returns a CommandBars collection.

Introduction String Set/Get the introductory text that is included with a docu-
ment that is sent using the MsoEnvelope object. The intro-
ductory text is included at the top of the document in the
e-mail.

Item MailItem Read-Only. Returns a MailItem object that can be used to
send the document as an e-mail.

MsoEnvelope Events

Name Description

EnvelopeHide Triggered when the user interface that corresponds to the
MsoEnvelope object is hidden.

EnvelopeShow Triggered when the user interface that corresponds to the
MsoEnvelope object is displayed.

NewFile Object
Represents a new document listing in the Task Pane of the host application. In Excel, this object allows
you to add workbooks to any of the five sections in the Task Pane: Open a Workbook, New, New from
existing workbook, New from template, or the bottom section (which has no name). When clicking
added workbooks in the New, New from existing workbook, or New from template sections, Excel cre-
ates a copy of the file by default unless you override it using the Action parameter of the Add method.

NewFile Properties
The Application and Creator properties are defined at the beginning of this appendix.

NewFile Methods

Name Returns Parameters Description

Add Boolean FileName As Adds a new item to the New Item
String, Section, task pane.
DisplayName,
Action

Remove Boolean FileName As Removes a new item to the New Item
String, Section, task pane.
DisplayName,
Action

1046

MsoEnvelope Events

34_046432 appc.qxp 2/16/07 10:07 PM Page 1046

The ODSOColumn Object and the ODSOColumns
Collection Object

The ODSOColumn object represents a single field in a Mail Merge Data Source, while the ODSOColumns
object represents a set of data fields (columns) in a Mail Merge Data Source. Note that these objects can-
not be implemented at this time. These objects require that the OfficeDataSourceObject be refer-
enced via the Application object of the host application. No OfficeDataSourceObject exists in any
of the Application objects in Microsoft Office 2007.

The ODSOFilter Object and the ODSOFilters
Collection Object

The ODSOFilter object represents a single Filter in the ODSO (Office Data Source Object) Filters collection,
while the ODSOFilters object represents a set of filters applied to a Mail Merge Data Source. Filters are
essentially queries that restrict which records are returned when a Mail Merge is performed. Note that these
objects cannot be implemented at this time. These objects require that the OfficeDataSourceObject be
referenced via the Application object of the host application. No OfficeDataSourceObject exists in any
of the Application objects in Microsoft Office 2007.

OfficeDataSourceObject Object
This object represents a data source when performing a Mail Merge operation and allows you to return a
set of records that meet specific criteria. Note that this object cannot be implemented at this time. This
object requires that the OfficeDataSourceObject be referenced via the Application object of the
host application. No OfficeDataSourceObject exists in any of the Application objects in Microsoft
Office 2007.

OfficeTheme Object
The OfficeTheme object exposes the properties that control the color, font, and effects in a given Office
theme.

OfficeTheme Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

ThemeColor ThemeColor Read-only. Returns a ThemeColorScheme object that
Scheme Scheme exposes the color scheme of a given Office theme.

ThemeEffect ThemeEffect Read-only. Returns a ThemeEffectScheme object that
Scheme Scheme exposes the effect scheme of a given Office theme.

ThemeFont ThemeFont Read-only. Returns a ThemeFontScheme object that
Scheme Scheme exposes the font scheme of a given Office theme.

1047

The ODSOColumn Object and the ODSOColumns Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1047

ParagraphFormat2 Object
The ParagraphFormat2 object exposes various properties that control alignment, spacing, and other
paragraph formatting options.

ParagraphFormat2 Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Alignment MsoParagraph Set/Get the alignment of the paragraph.
Alignment

Baseline MsoBaseline Set/Get the vertical position of fonts in a paragraph.
Alignment Alignment

Bullet Bullet Read-only. Returns a BulletFormat2 object for the
Format2 paragraph.

FarEastLine Boolean Set/Get the East Asian line break control level for the
BreakLevel specified paragraph.

FirstLine Single Set/Get the first line indent or hanging indent.
Indent

Hanging Boolean Set/Get whether hanging punctuation is enabled for the
Punctuation specified paragraphs.

IndentLevel Integer Set/Get the indent level assigned to text in the selected
paragraph.

LeftIndent Single Set/Get the left indent value for the specified paragraphs.

LineRule Boolean Set/Get whether line spacing after the last line in each
After paragraph is set to a specific number of points or lines.

LineRule Boolean Set/Get whether line spacing before the first line in each
Before paragraph is set to a specific number of points or lines.

LineRule Boolean Set/Get whether line spacing between base lines is set to a
Within specific number of points or lines.

RightIndent Single Set/Get the right indent (in points) for the specified
paragraphs.

SpaceAfter Single Set/Get the amount of spacing (in points) after the
specified paragraph.

SpaceBefore Single Set/Get the spacing (in points) before the specified
paragraphs.

SpaceWithin Single Set/Get the amount of space between base lines in the
specified paragraph, in points or lines.

TabStops TabStops2 Read-only. Returns a TabStops2 collection that represents
all the custom tab stops for the specified paragraphs.

1048

ParagraphFormat2 Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1048

Name Returns Description

TextDirection MsoText Set/Get the text direction for the specified paragraph.
Direction

WordWrap Boolean Set/Get whether the application wraps the Latin text in
the middle of a word in the specified paragraphs.

Permission Object
Use the Permission object to restrict permissions to the active document, and to return or set specific
permissions settings.

Permission Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Document String Set/Get the name, in e-mail form, of the author of the
Author active document.

Enabled Boolean Set/Get a Boolean value that indicates whether
permissions are enabled on the active document.

Enable Boolean Determines if a user can view a document with restricted
Trusted permission in a web browser if client application is not
Browser installed.

Item User Read-only. Returns a UserPermission object that is a
Permission member of the Permission collection. The User

Permission object associates a set of permissions on
the active document with a single user and an optional
expiration date.

Permission Boolean Read-only. Returns a Boolean value indicating if a
FromPolicy permission has been applied to the active document.

Policy String Read-only. Returns a description of the permission policy
Description that is applied the currently active document.

PolicyName String Read-only. Returns the name indicating the permission
policy that is currently applied to the active document.

Request String When users need additional permission for the current
PermissionURL document, this property can contain a web address or

e-mail address for the person to contact.

StoreLicenses Boolean Set/Get a Boolean value that indicates whether the user’s
license to view the active document should be cached to
allow offline viewing when the user cannot connect to a
rights management server.

1049

Permission Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1049

Permission Methods

Name Returns Parameters Description

Add User UserID, Creates a new set of permissions on
Permission Permission, the active document for the specified

Expiration user.
Date

ApplyPolicy Filename Applies the specified permission
policy to the active document.

RemoveAll Removes all UserPermission objects
from the Permission collection of the
active document.

PolicyItem Object and the ServerPolicy Collection Object
The ServerPolicy object represents a policy specified for a document type stored on a server running
Office SharePoint Server 2007. Each ServerPolicy object contains its own collection of PolicyItem
objects, each one representing the individual definition settings for one policy item in the active docu-
ment. Policy items are distinct conditions defined for a document stored on a server running Office
SharePoint Server 2007.

ServerPolicy Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

Name Returns Description

BlockPreview Boolean Read-only. Indicates whether you can preview the items
using a given server policy.

Description String Read-only. Returns the full description of the server policy,
including its definition and purpose.

Id String Read-only. Returns the ID of a given server policy.

Item PolicyItem Read-only. Returns a PolicyItem object representing one
policy item.

Name String Read-only. Returns the name of a given server policy.

Statement String Read-only. Returns the information specified in the server
policy statement. This information is displayed as a business
bar notification in the Office client application when a docu-
ment affected by the policy is opened.

1050

Permission Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1050

PolicyItem Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Data String Read-only. Returns the information used to implement a
given policy item.

Description String Read-only. Returns the description of the current state of a
given policy item.

Id String Read-only. Returns the ID of a given policy item.

Name String Read-only. Returns the name of a given policy item.

ReflectionFormat Object
The ReflectionFormat object represents the reflection effect of a given Office graphic.

ReflectionFormat Properties
The Application property is defined at the beginning of this appendix.

Name Returns Description

Type MsoReflection Set/Get the reflection type using one of the
Type MsoReflectionType constants.

Ruler2 Object
The Ruler2 object, returned by the Ruler2 property of the TextFrame2 object, represents the ruler for
the text in a given shape or text style. This object exposes the tab stops and the indentation settings for
text outline levels.

Ruler2 Properties
The Application property is defined at the beginning of this appendix.

Name Returns Description

Levels RulerLevels2 Read-only. Returns a RulerLevels2 object, exposing out-
line text formatting.

TabStops TabStops2 Read-only. Returns the Tabstops2 collection, exposing the
tab stops for the specified text.

1051

PolicyItem Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1051

RulerLevel2 Object and the RulerLevels2 Collection Object
The RulerLevel2 object exposes information about the first-line and left indent for text at a particular
outline level. The RulerLevels2 collection object will always contain five RulerLevel2 objects — one
for each of the available outline levels.

RulerLevels2 Collection Properties
The Application and Parent properties are defined at the beginning of this appendix.

RulerLevels2 Collection Methods

Name Returns Parameters Description

Item RulerLevel2 Index Read-only. Returns one of the five
RulerLevel2 objects contained in
the RulerLevels2 collection.

RulerLevel2 Properties
The Application, Creator and Parent properties are defined at the beginning of this appendix.

Name Returns Description

FirstMargin Single Set/Get the first-line indent for a given outline level.

LeftMargin Single Set/Get the left indent for a given outline level.

ScopeFolder Object and the ScopeFolders
Collection Object

Both the ScopeFolder object and the ScopeFolders collection can be analyzed to determine whether
they will be used in a search by the FileSearch object. Any ScopeFolder you want used in a search is
added to the SearchFolders collection using the AddToSearchFolders method of the ScopeFolder
object. You will note that although these objects are meant to be used with the FileSearch object, the
FileSearch object is no longer part of the Office 2007 object model.

ScopeFolders Collection Properties
The Application, Count, and Creator properties are defined at the beginning of this appendix.

Name Returns Parameters Description

Item ScopeFolder Index Returns a ScopeFolder object that
represents a subfolder of the parent
object.

1052

RulerLevel2 Object and the RulerLevels2 Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1052

ScopeFolder Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Name String Read-only. Returns the name of the ScopeFolder object.

Path Read-only. Returns the full path for a given ScopeFolder
object.

ScopeFolders Read-only. Returns a ScopeFolders collection represent-
ing the subfolders of the parent ScopeFolder object.

ScopeFolder Methods

Name Description

AddToSearchFolders Adds a ScopeFolder object to the SearchFolders collection.

SearchFolders Collection Object
Represents all of the folders used in a File Search (by the FileSearch object). SearchFolders consist of
ScopeFolder objects (with the corresponding ScopeFolders collection), which are simply folders. Use
the Add method of the SearchFolders object to add ScopeFolder objects to its collection. You will note
that although the SearchFolders object is meant to be used with the FileSearch object, the
FileSearch object is no longer part of the Office 2007 object model.

SearchFolders Collection Common Properties
The Application, Count, and Creator properties are defined at the beginning of this appendix.

SearchFolders Collection Properties

Name Returns Parameters Description

Item Scope Folder Index Returns a ScopeFolder object that
represents a subfolder of the parent
object.

SearchFolders Collection Methods
The Application and Creator properties are defined at the beginning of this appendix.

Name Parameters Description

Add ScopeFolder Adds a search folder to a file search.

Remove Index Removes a specified object from the collection.

1053

ScopeFolder Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1053

SearchScope Object and the SearchScopes
Collection Object

The SearchScope object represents an individual top-level area in the SearchScopes collection object
that can be searched when using the FileSearch object. The SearchScopes collection object contains
the list of top-level searchable areas when performing a File Search using the FileSearch object. Top-
level areas include My Computer, My Network Places, Outlook (folders), and Custom, if available. You
will note that although these objects are meant to be used with the FileSearch object, the FileSearch
object is no longer part of the Office 2007 object model.

SearchScopes Collection Properties
The Application, Count, and Creator properties are defined at the beginning of this appendix.

Name Returns Parameters Description

Item SearchScope Index as Long Returns a SearchScope object that
corresponds to an area in which to
perform a file search, such as local
drives or Microsoft Outlook folders.

SearchScope Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

ScopeFolder ScopeFolder Read-only. Returns a ScopeFolder object.

Type MsoSearchIn Read-only. Returns a value that corresponds to the type of
SearchScope object. The type indicates the area in which
the Execute method of the FileSearch object will search
for files.

SharedWorkspace Object
The SharedWorkspace property returns a SharedWorkspace object that allows the developer to add
the active document to a Microsoft Windows SharePoint Services document workspace on the server,
and to manage other objects in the shared workspace.

SharedWorkspace Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Connected Boolean Read-only. Indicates if the current document is saved in
and connected to a workspace.

1054

SearchScope Object and the SearchScopes Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1054

Name Returns Description

Files Shared Read-only. Returns a collection of
Workspace SharedWorkspaceFiles.
Files

Folders Shared Read-only. Returns a collection of
Workspace SharedWorkspaceFolders.
Folders

LastRefreshed Date/Time Read-only. Returns a date and time indicating the last time
the Refresh was most recently called.

Links Shared Read-only. Returns a collection of SharedWorkspaceLinks.
Workspace
Links

Members Shared Read-only. Returns a collection of
Workspace SharedWorkspaceMembers.
Members

Name String Set/Get the name of the object. Read/Write.

SourceURL String Read-only. Designates the location of a shared document.

Tasks Share Read-only. Returns a collection of SharedDocumentTasks.
dWorkspace
Tasks

URL String Read-only. Returns the URL of the shared workspace.

SharedWorkspace Methods

Name Parameters Description

CreateNew URL, Name Creates a new SharedWorkspace object.

Delete Deletes a SharedWorkspace object from the collection.

Disconnect Disconnects from the shared workspace.

Refresh Refreshes the current copy of a document from the shared
workspace.

RemoveDocument Removes the current document from the shared workspace.

SharedWorkspaceFile Object and the
SharedWorkspaceFiles Collection Object

The SharedWorkSpaceFile object represents a file that has been saved in a shared document
workspace. This shared document workspace would typically be a SharePoint server. The
SharedWorkSpaceFiles collection object represents multiple SharedWorkSpaceFile objects.

1055

SharedWorkspace Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1055

SharedWorkspaceFiles Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

Name Returns Description

Item SharedWork Read-only. Returns a SharedWorkSpaceFile object from
SpaceFile the Files collection of the SharedWorkSpace object.

ItemCount Boolean Read-only. Returns whether the number of files allowed in
Exceeded the shared workspace has been exceeded.

SharedWorkspaceFiles Collection Methods

Name Returns Parameters Description

Add Shared FileName, Adds a file to the document library in
Workspace ParentFolder, a shared workspace.
File Overwriteif

FileAlready
Exists,
KeepInSync

SharedWorkspaceFile Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

CreatedBy String Read-only. Returns the name of creator of the shared
workspace object .

CreatedDate Variant Read-only. Returns the date on which the shared
workspace object was created.

ModifiedBy String Read-only. Returns the name of the member who last
modified the shared workspace object.

ModifiedDate Variant Read-only. Returns the date on which the shared
workspace object was last modified.

URL String Read-only. Returns the URL and filename of a given
shared workspace folder.

SharedWorkspaceFile Methods

Name Description

Delete Deletes a SharedWorkSpaceFile object.

1056

SharedWorkspaceFiles Collection Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1056

SharedWorkspaceFolder Object and the
SharedWorkspaceFolders Collection Object

The SharedWorkspaceFolder object represents a single subfolder within the main document library
folder of a shared workspace. The SharedWorkspaceFolders object is a collection of multiple
SharedWorkspaceFolder objects.

SharedWorkspaceFolders Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

Name Returns Description

Item Shared Read-only. Returns a SharedWorkSpaceFolder object
WorkSpace from the Folders collection of the SharedWorkSpace
Folder object.

ItemCount Boolean Read-only. Returns whether the number of folders allowed
Exceeded in the shared workspace has been exceeded.

SharedWorkspaceFolders Collection Methods

Name Parameters Description

Add FolderName, Adds a folder to the document library in a shared
ParentFolder workspace.

SharedWorkspaceFolder Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

FolderName String Read-only. Returns the name of a given subfolder in the
document library in a shared workspace.

SharedWorkspaceFolder Methods

Name Parameters Description

Delete DeleteEven Deletes a given subfolder and all of its files if specified.
IfFolder
ContainsFiles
As Boolean

1057

SharedWorkspaceFolder Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1057

SharedWorkspaceLink Object and the
SharedWorkspaceLinks Collection Object

The SharedWorkspaceLink object is used to manage links to additional documents and information
of interest to the members who are collaborating on the documents in the shared workspace site. The
SharedWorkspaceLinks object represents a collection of SharedWorkspaceLink objects on a given
shared workspace.

SharedWorkspaceLinks Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Item Shared Read-only. Returns a SharedWorkspaceLink object from
Workspace the Links collection of the SharedWorkSpace object.
Link

ItemCount Boolean Read-only. Returns whether the number of links allowed
Exceeded in the shared workspace has been exceeded.

SharedWorkspaceLinks Collection Methods

Name Parameters Description

Add URL, Adds a link to the list of links in a shared workspace.
Description,
Notes

SharedWorkspaceLink Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

CreatedBy String Read-only. Returns the name of creator of the shared
workspace object.

CreatedDate Variant Read-only. Returns the date on which the shared
workspace object was created.

Description String Set/Get some descriptive text for the specified Shared-
WorkspaceLink or SharedWorkspaceTask.

ModifiedBy String Read-only. Returns the name of member who last modi-
fied the shared workspace object.

ModifiedDate Variant Read-only. Returns the date on which the shared
workspace object was last modified.

1058

SharedWorkspaceLink Object and the SharedWorkspaceLinks Collection Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1058

Name Returns Description

Notes String Set/Get the optional notes associated with a workspace
link.

URL String Set/Get the URL for a given shared workspace link.

SharedWorkspaceLink Methods

Name Parameters Description

Delete Deletes the specified link.

Save QueryName Saves changes to the specified link.

SharedWorkspaceMember Object and the
SharedWorkspaceMembers Collection Object

The SharedWorkspaceMember object is used to manage users and their rights on a given shared
workspace site. The SharedWorkspaceMembers object represents a collection of users who have the
right to work with shared documents on a given shared workspace site.

SharedWorkspaceMembers Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this
appendix.

Name Returns Description

Item Shared Read-only. Returns a SharedWorkspaceMember object
Workspace from the Members collection of the SharedWorkSpace
Member object.

ItemCount Boolean Read-only. Returns whether the number of members
Exceeded allowed in the shared workspace has been exceeded.

SharedWorkspaceMembers Collection Methods

Name Parameters Description

Add Email, Adds a user to the list of members in a shared workspace.
DomainName,
DisplayName,
Role

1059

SharedWorkspaceLink Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1059

SharedWorkspaceMember Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

DomainName String Read-only. Returns the domain and username for a given
shared workspace user.

Email String Read-only. Returns the e-mail address for a given shared
workspace user.

Name String Read-only. Returns the name of a given shared workspace
user.

SharedWorkspaceMember Methods

Name Description

Delete Deletes a given shared workspace user.

SharedWorkspaceTask Object and the
SharedWorkspaceTasks Collection Object

The SharedWorkspaceTask object is used to manage tasks assigned to users on a given shared
workspace site. The SharedWorkspaceTasks object represents a collection of tasks.

SharedWorkspaceTasks Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Item Shared Read-only. Returns a SharedWorkspaceTask object from
Workspace the Tasks collection of the SharedWorkSpace object.
Task

ItemCount Boolean Read-only. Returns whether the number of tasks allowed
Exceeded in the shared workspace has been exceeded.

SharedWorkspaceTasks Collection Methods

Name Returns Parameters Description

Add Shared Title, Status, Adds a task to the list of tasks in a
Workspace Priority, shared workspace.
Task Assignee,

Description,
DueDate

1060

SharedWorkspaceMember Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1060

SharedWorkspaceTask Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

AssignedTo String Set/Get the name of the user to which the task is assigned.

CreatedBy String Read-only. Returns the name of creator of the task.

CreatedDate Variant Read-only. Returns the date on which the task was created.

Description String Set/Get an optional description value for the task.

DueDate Variant Set/Get the date and time the task is due.

ModifiedBy String Read-only. Returns the name of the member who last
modified the task.

ModifiedDate Variant Read-only. Returns the date on which the task was last
modified.

Priority MsoShared Set/Get the value setting the priority for the task.
Workspace
TaskPriority

Status MsoShared Set/Get the value setting the status of the task.
Workspace
TaskStatus

Title String Set/Get the value setting the status for the task.

SharedWorkspaceTask Methods

Name Description

Delete Deletes the current task.

Save Saves changes to the current task.

Signature Object and the SignatureSet Collection Object
The Signature object represents a digital signature attached to a document. A document can contain
multiple Signature objects, which are held in a SignatureSet collection.

Digital signatures are electronic versions of handwritten signatures. Digital signatures protect users from
opening documents that could contain macro viruses, and they also protect authors by ensuring that the
contents of the documents remain unchanged. When you digitally sign a document, an encrypted key is
added to the signature. When other users change the document, a message appears informing them that
they do not have the key to unlock the signature. This causes the document to lose its signature.

This object is currently not accessible in Microsoft Excel, though it is available through the Document
object in Microsoft Word and the Presentation object in Microsoft PowerPoint.

1061

SharedWorkspaceTask Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1061

SignatureSet Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

CanAdd Boolean Read-only. Indicates whether a signature line can be added
SignatureLine to the document.

Item Signature Read-only. Returns a Signature object corresponding to
one of the digital signatures with which the document is
currently signed.

ShowSignatures Boolean Set/Get whether the signature task pane is displayed.
Pane

Subset MsoSignature Set/Get the MsoSignatureSubset that is to be used as a
Subset filter on the available Signature objects for a document.

SignatureSet Collection Methods

Name Returns Parameters Description

AddNonVisible Signature varSigProv Creates a signature packet when
Signature digitally signing a document.

AddSignature Signature varSigProv Adds lines to a document where
Line signatures are collected.

Signature Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

CanSetup Boolean Read-only. Indicates whether the user can set the proper-
ties of the Signature object.

Details Signature Read-only. Returns information about the signature, such
Info as whether the certificate associated with the signature has

expired, whether the signature is valid, and whether the
signature is read-only.

IsSignature Boolean Read-only. Returns whether this is a signature line.
Line

IsSigned Boolean Read-only. Returns whether the digital certificate that
corresponds to the Signature object has been signed
successfully.

Setup Signature Read-only. Returns the SignatureSetup object, exposing
Setup the various properties of the signature packet.

1062

SignatureSet Collection Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1062

Name Returns Description

Signature Object Read-only. Returns Shape object that makes up the
LineShape signature line for the associated Signature object.

SortHint Long Read-only. Returns the value representing the sort order of
the signatures in a packet with multiple signatures.

Signature Methods

Name Parameters Description

Delete Deletes the specified signature from the SignatureSet
collection.

ShowDetails Displays the details related to a signature packet.

Sign varSiglmg, Creates a signature packet.
VarDelSugg
Signer,
varDelSugg
SignerLine2,
VarDelSugg
SignerEmail

SignatureInfo Object
The SignatureInfo object exposes the properties and methods used to create a digital or in-document
signature.

SignatureInfo Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Certificate Certifcate Read-only. Returns the results from the verification of a
Verification Verification digital certificate.
Results Results

Content Content Read-only. Returns the results from the verification of the
Verification Verification hash contents of a signed document.
Results Results

IsCertificate Boolean Read-only. Returns whether a given digital certificate is
Expired expired.

IsCertificate Boolean Read-only. Returns whether a given digital certificate is
Revoked revoked.

Table continued on following page

1063

Signature Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1063

Name Returns Description

IsCertificate Boolean Read-only. Returns whether a given digital certificate
Untrusted comes from an untrusted source.

IsValid Boolean Read-only. Returns whether a signature was successfully
validated.

ReadOnly Boolean Read-only. Returns whether the SignatureInfo object is
read-only.

Signature String Set/Get the comments for a signature packet.
Comment

Signature IPictureDisp Set/Get the value of the image used to sign the document.
Image

Signature String Read-only. Identifies the installed signature provider
Provider Add-In.

SignatureText String Set/Get the text used to sign the document.

SignatureInfo Methods

Name Parameters Description

GetCertificate Certdet Displays a specified certificate detail value as defined by
Detail the passed CertificateDetail constant.

GetSignature sigdet Displays a specified signature detail value as defined by
Detail the passed SignatureDetail constant.

Select bstr Displays a dialog box containing information about a
Certificate Thumbprint digital certificate following verification of the user from
DetailBy a thumbprint.
Thumbprint

Select ParentWindow Displays a dialog box allowing users to select a signature
Signature certificate to use for signing the document.
Certificate

ShowSignature ParentWindow Displays the selected or default digital certificate.
Certificate

SignatureProvider Object
The SignatureProvider object represents a signature provider Add-In implemented via a custom
COM Add-In. Note that signature providers cannot be implemented in VBA.

1064

SignatureInfo Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1064

SignatureProvider Methods

Name Returns Parameters Description

Generate IPictureDisp Siglnimg, Gets the signature line image.
Signature psigsetup,
LineImage psiginfo,

xmlDsigStream

GetProvider Variant sigprovdet Queries the signature provider for
Detail various details

HashStream Byte QueryContinue, Allows a signature provider Add-In
Stream to create a hash value for the docu-

ment that you can use to determine if
the document contents were tampered
with after digital signing.

Notify ParentWindow, Used to display a dialog box
Signature psigsetup, informing the user that the signing
Added psiginfo process has completed, and provid-

ing additional functionality for the
Add-In.

ShowSignature ParentWindow, Provides a signature provider Add-In
Added psigsetup, the opportunity to display details

psiginfo about a signed signature line and dis-
play additional stored information,
such as a secure time-stamp.

Show ParentWindow, Provides a signature provider Add-In
Signature psigsetup, the opportunity to display details
Details XmlDsigStream, about a signature.

pcontverres,
pcerverres

Show ParentWindow, Provides a signature provider Add-In
Signature psigsetup the opportunity to display the
Setup Signature Setup dialog box to the user.

ShowSigning ParentWindow, Provides a signature provider Add-In
Ceremony psigsetup, the opportunity to display the

psiginfo Signature dialog box to users, allow-
ing them to specify their identity and
then be authenticated.

SignXmlDsig QueryContinue, Used to sign the XMLDSIG template.
psigsetup, XMLDSIG is a standards-based
psiginfo, signature format (www.w3.org/tr/
XmlDsigStream xmldsig-core/), verifiable by third

parties. This is the default format for
signatures in Office 2007.

Table continued on following page

1065

SignatureProvider Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1065

Name Returns Parameters Description

VerifyXmlDsig QueryContinue, Verifies a signature based on the
psigsetup, signed state of the document and
psiginfo, the legitimacy of the certificate used
XmlDsigStream, for signing.
pcontverres,
pcertverres

SignatureSetup Object
The SignatureSetup object exposes the various properties used to set up a signature packet.

SignatureSetup Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

AdditionalXml String Set/Get any XML data added to the signature during setup.

AllowComments Boolean Set/Get whether the signer can enter comments.

Id String Read-only. Returns the ID of the signature provider for a
document.

ReadOnly Boolean Read-only. Returns whether the SignatureSetup object is
read-only.

ShowSignDate Boolean Set/Get whether the document signed date should be
displayed.

Signature String Read-only. Identifies the installed signature provider
Provider Add-In.

Signing String Set/Get the instructions for signing the document.
Instructions

Suggested String Set/Get the name of the principal signer.
Signer

Suggested String Set/Get the e-mail address of the principal signer.
SignerEmail

Suggested String Set/Get the additional information on the principal signer,
SignerLine2 such as title, address, phone, and so on.

SmartDocument
The SmartDocument object is used to manage the XML expansion pack attached to the currently active
document.

1066

SignatureSetup Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1066

SmartDocument Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

SolutionID String Set/Get the ID identifying the XML expansion pack
attached to the active document.

SolutionURL String Set/Get the absolute URL that links to the XML expansion
pack attached to the active document.

SmartDocument Methods

Name Parameters Description

PickSolution ConsiderAll Displays a dialog box that allows the user to choose an
Schemas available XML expansion pack to attach to the active

document.

RefreshPane Refreshes the Document Actions task pane for the active
document.

SoftEdgeFormat Object
The SoftEdgeFormat object represents the soft edges effect of a given Office graphic.

ReflectionFormat Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Type MsoSoftEdge Set/Get the soft edge type using one of the MsoSoft
Type EdgeType constants.

Sync Object
Use the Sync object to manage the synchronization of the local and server copies of a shared document
stored in a Windows SharePoint Services document workspace. The Status property returns important
information about the current state of synchronization. Use the GetUpdate method to refresh the sync
status. Use the LastSyncTime, ErrorType, and WorkspaceLastChangedBy properties to return addi-
tional information.

Sync Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

1067

SmartDocument Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1067

Name Returns Description

ErrorType MsoSync Read-only. Returns the MsoSyncErrorType constant
ErrorType indicating the type of document synchronization error that

most recently occurred.

LastSyncTime Variant Read-only. Returns the date and time when the local copy
of the active document was last synchronized.

Status MsoSync Read-only. Returns the MsoSyncStatusType constant
StatusType indicating the status of the most recent synchronization.

WorkspaceLast String Read-only. Returns the name of the user who last saved
ChangedBy changes to the server copy of a shared document.

Sync Methods

Name Parameters Description

GetUpdate Compares the local version of the shared document to the
version on the server.

OpenVersion SyncVersion Opens a different version of the shared document along
Type side the currently open local version.

PutUpdate Updates the server copy of the shared document with the
local copy.

Resolve SyncConflict Resolves conflicts between the local and server copies of a
Conflict Resolution shared document.

Unsuspend Resumes synchronization between the local copy and the
server copy of a shared document.

TabStop2 Object and the TabStops2 Collection Object
The TabStop2 object represents a single numerically indexed tab stop along the ruler. The TabStops2
collection object contains all of TabStop2 objects represented in a given document.

TabStops2 Collection Properties
The Application, Creator, Count, and Parent properties are defined at the beginning of this
appendix.

Name Returns Description

Default Sing Set/Get the default spacing between tab stops.
Spacing

1068

Sync Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1068

TabStops2 Collection Methods

Name Returns Parameters Description

Add Type, Position Adds a new tab stop.

Item TabStop2 Index Returns the individual TabStop2
object matching a specified index
value.

TabStop2 Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Position Single Set/Get the position of a given tab stop relative to the left
margin.

Type MsoTab Set/Get the type of TabStop2 object by using one of the
StopType MsoTabStopType constants.

TabStop2 Methods

Name Description

Clear Removes the specified custom tab stop.

TextColumn2 Object and the TextColumns2
Collection Object

The TextColumn2 object represents a single text column. Multiple TextColumn2 objects are contained
within the TextColumns2 collection. As of this writing, the TextColumns2 collection is not available in
the Office object model. This will most assuredly be corrected in a future version of Office.

TextColumn2 Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Number Integer Set/Get the index number of the specified column.

Spacing Single Set/Get the spacing between text columns.

TextDirection MsoText Set/Get the direction of the text in the text column.
Direction

1069

TabStops2 Collection Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1069

TextRange2 Object
The TextRange2 object exposes the text in a text frame, as well as the properties and methods that con-
trol the alignment and anchoring of the text frame.

TextRange2 Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

BoundHeight Single Read-only. Returns the height of the bounding box, which
represents the perimeter immediately surrounding the text.

BoundLeft Single Read-only. Returns the left coordinate of the bounding
box, which represents the perimeter immediately sur-
rounding the text.

BoundTop Single Read-only. Returns the top coordinate of the bounding
box, which represents the perimeter immediately sur-
rounding the text.

BoundWidth Single Read-only. Returns the width of the bounding box, which
represents the perimeter immediately surrounding the text.

Characters TextRange2 Read-only.

Font Font Returns a Font, which exposes the character formatting
for the TextRange2 object.

LanguageID MsoLanguage Set/Get the language value for the TextRange2 object.
ID Use one of the MsoLanguageID constants.

Length Long Read-only. Returns the length of the text range.

Lines TextRange2 Read-only. Returns a specified subset of text lines.

Paragraph Paragraph Returns a ParagraphFormat, which exposes the
Format Format paragraph formatting for the TextRange2 object.

Paragraphs TextRange2 Read-only. Returns a specified subset text paragraphs.

Runs TextRange2 Read-only. Returns a specified subset of text runs (a range
of characters that share the same font attributes).

Sentences TextRange2 Read-only. Returns a specified subset of text sentences.

Start Long Read-only. Returns the starting point for the specified text
range.

Text String Set/Get the text in the specified text range.

Words TextRange2 Read-only. Returns a TextRange2 object that represents
a subset of text matching the parameters passed in the
expression Words(Start, Length). The Start parameter
specifies the first word in the returned range. The Length
parameter specifies the number of words to be returned.

1070

TextRange2 Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1070

TextRange2 Methods

Name Returns Parameters Description

AddPeriods Adds period (.) punctuation to the
text contained in a given TextRange2
object.

ChangeCase Type Changes the case of a TextRange2
object to one of MsoTextChangeCase
constants.

Copy Copies a TextRange2 object.

Cut Removes a portion or all of the text
from a range of text.

Delete Deletes a TextRange2 object.

Find FindWhat,After, Searches a TextRange2 object for a
MatchCase, subset of text.
WholeWords

InsertAfter NewText Inserts text to the right of existing
text in the TextRange2 object.

InsertBefore NewText Inserts text to the left of existing text
in the TextRange2 object.

InsertSymbol FontName, Inserts a symbol from the specified
ChartNumber, font set.
Unicode

Item Index Gets the range of text specified by the
index number from the TextRange2
object.

LtrRun Returns a TextRange2 object that rep-
resents the specified subset of left-to-
right text runs (a range of characters
that share the same font attributes).

Paste Pastes the contents of the Clipboard
into the TextRange2 object.

PasteSpecial Format Replaces the text range with the con-
tents of the Clipboard in the format
specified.

RemovePeriods Removes all period (.) punctuation
from the text in the TextRange2
object.

Table continued on following page

1071

TextRange2 Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1071

Name Returns Parameters Description

Replace FindWhat, Finds specific text in a text range,
ReplaceWhate, replaces the found text with a
After, specified string, and returns a
MatchCase, TextRange2 object that represents
WholeWords the first occurrence of the found text.

Returns nothing if no match is found.

RotateBounds X1, Y1, X2, Y2, Gets the coordinates of the vertices of
X3, Y3, X4, Y4 the text bounding box for the speci-

fied text range.

RtlRun Returns a TextRange2 object that
represents the specified subset of
right-to-left text runs. A text run con-
sists of a range of characters that
share the same font attributes.

Select Selects the TextRange2 object.

TrimText Removes the white space on the left
and right sides of the text in the
TextRange2 object.

ThemeColor Object
The ThemeColor object exposes the properties that can be used to configure the color in the color
scheme of a given theme.

ThemeColor Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

RGB MsoRGBType Set/Get the value of a color in the color scheme of a given
theme.

ThemeColor MsoTheme Read-only. Returns a MsoThemeColorSchemeIndex
Scheme ColorScheme constant representing the index value of the color scheme
Index Index for a given theme.

ThemeColorsScheme Object
The ThemeColorScheme object exposes the properties and methods for working with the color scheme
of a given theme.

ThemeColorsScheme Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

1072

ThemeColor Object

34_046432 appc.qxp 2/16/07 10:07 PM Page 1072

ThemeColorsScheme Methods

Name Returns Parameters Description

Colors ThemeColor Index Gets a ThemeColor object that repre-
sents a color in the color scheme of a
given theme.

GetCustom MsoRGBType Name Gets a value that represents a color in
Color the color scheme of a given theme.

Load FileName Loads a specified color scheme from
a file.

Save FileName Saves a specified color scheme to a
file.

ThemeEffectScheme Object
The ThemeEffectScheme object exposes the properties and methods for working with the effect scheme
of a given theme.

ThemeEffectScheme Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

ThemeEffectScheme Methods

Name Parameters Description

Load FileName Loads a specified effects scheme from a file.

ThemeFont Object and the ThemeFonts Collection Object
The ThemeFont represents a container for the font schemes in a given theme. The ThemeFonts object
represents a collection of major and minor fonts in the font scheme of a given theme.

ThemeFonts Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

ThemeFonts Collection Methods

Name Returns Parameters Description

Item ThemeFont Index Returns one of the three language
fonts contained in the ThemeFonts
collection.

1073

ThemeColorsScheme Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1073

ThemeFont Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Name String Sets/Gets the name of a font in the font scheme of a given
theme.

ThemeFontScheme Object
The ThemeFontScheme object exposes the properties and methods for working with the font scheme of
a given theme.

ThemeFontScheme Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

MajorFont ThemeFonts Read-only. Returns the font settings for the Headings in a
document.

MinorFont ThemeFonts Read-only. Returns the font settings for the body of a
document.

ThemeFontScheme Methods

Name Parameters Description

Load FileName Loads a specified font scheme from a file.

Save FileName Saves a specified font scheme to a file.

UserPermission
The UserPermission object is used to assign permissions for the active document on a per-user basis
with per-user expiration dates. This object represents a member of the active document’s Permission
collection.

UserPermission Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

1074

ThemeFont Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1074

Name Returns Description

Expiration Variant Set/Get an optional expiration date on the permissions
Date assigned to the user associated with a given User

Permission object.

Permission Mso Set/Get an MsoPermission constant, representing the
Permission permissions assigned to the user associated with a given

UserPermission object.

UserId String Read-only. Returns the e-mail address of the user whose
permissions on the active document are determined by the
specified UserPermission object.

UserPermission Methods

Name Description

Remove Removes the current UserPermission object from the collection of
Permissions.

WebPageFont Object and the WebPageFonts
Collection Object

The WebPageFont object represents which fixed and proportional font and size are used when the host
application’s documents are saved as web pages. Microsoft Excel and Microsoft Word also use these set-
tings when you open a web page within the application, but the settings only take effect when the web
page being opened cannot display its own font settings, or when no font information is contained within
the HTML code.

Be aware that the FixedWidthFont and ProportionalFont properties will accept any valid String
and FixedWidthFontSize, and ProportionalFontSize will accept any valid Single value. For
example, the following will not encounter an error, even though they aren’t valid font and size settings:

Application.DefaultWebOptions.Fonts(msoCharacterSetEnglishWesternEuropean
OtherLatinScript).ProportionalFont = “XXXXXXXX”

Application.DefaultWebOptions.Fonts(msoCharacterSetEnglishWesternEuropean
OtherLatinScript).ProportionalFontSize = 1200

An error will occur when the application attempts to use these settings.

The WebPageFonts collection object can be referenced using the Fonts property of the
DefaultWebOptions property in the host’s Application object, like so:

Set oWebPageFonts = Application.DefaultWebOptions.Fonts

1075

UserPermission Methods

34_046432 appc.qxp 2/16/07 10:07 PM Page 1075

Note that the count property of the WebPageFonts collection object always returns 0, even though there
are 12 WebPageFont objects (character sets) in the collection.

WebPageFonts Collection Properties
The Application, Count, and Creator properties are defined at the beginning of this appendix.

Name Returns Parameters Description

Item WebPage Font Index as Returns a WebPageFont object from
MsoCharacter the WebPageFonts collection for a
Set particular value of MsoCharacter

Set.

WebPageFont Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

FixedWidth String Set/Get the fixed-width font setting in the host
Font application.

FixedWidth Single Set/Get the fixed-width font size setting (in points) in the
FontSize host application.

Proportional String Set/Get the proportional font setting in the host
Font application.

Proportional Single Set/Get the proportional font size setting (in points) in the
FontSize host application.

WorkflowTask Object and the WorkflowTasks
Collection Object

The WorkflowTask object is used to manage tasks assigned to users for a SharePoint workflow process.
The WorkflowTasks object represents a collection of tasks.

WorkflowTasks Collection Properties
The Application, Count, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

Item WorkflowTask Read-only. Returns the WorkflowTask object matching a
specified index value.

1076

WebPageFonts Collection Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1076

WorkflowTask Properties
The Application, Creator, and Parent properties are defined at the beginning of this appendix.

Name Returns Description

AssignedTo String Read-only. Returns the name of the user to which the task
is assigned.

CreatedBy String Read-only. Returns the name of creator of the task.

CreatedDate Variant Read-only. Returns the date on which the task was created.

Description String Read-only. Returns an optional description value for the
task.

DueDate Variant Read-only. Returns the date and time the task is due.
Date

Id String Read-only. Returns the ID of the SharePoint list item.

ListID String Read-only. Returns the ID of the list containing the work-
flow task.

Name String Read-only. Returns the name of the workflow task.

WorkflowID String Read-only. Returns the ID of the workflow associated with
a workflow task.

WorkflowTask Methods

Name Returns Description

Show Long Displays a workflow task edit user interface for the speci-
fied WorkflowTask object.

WorkflowTemplate Object and the WorkflowTemplates
Collection Object

The WorkflowTemplate object represents a single workflow in the collection of workflows that may
be available for the current document. The collection for workflows is represented by the Workflow
Templates object.

WorkflowTemplates Collection Properties
The Application, Count, and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Item Workflow Read-only. Returns the WorkflowTemplate object
Template matching a specified index value.

1077

WorkflowTask Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1077

WorkflowTemplate Properties
The Application and Creator properties are defined at the beginning of this appendix.

Name Returns Description

Description String Read-only. Returns the description value for the workflow
template.

Document String Read-only. Returns the name of the document library
Library associated with the workflow template.
Name

Document String Read-only. Returns the URL of the document library where
LibraryURL workflow templates are stored.

Id String Read-only. Returns the ID of the template used to create a
workflow instance.

Name String Read-only. Returns the name of the WorkflowTemplate
object.

WorkflowTemplate Methods

Name Returns Parameters Description

Show Long Displays a configuration user interface
for the specified WorkflowTemplate
object.

1078

WorkflowTemplate Properties

34_046432 appc.qxp 2/16/07 10:07 PM Page 1078

In
de

x

Index

A
AboveAverage object, 636–638, 753
AboveBelow property, AboveAverage object, 637
Abs function, 156
absolute recording, 7–8
Accept property, CalloutFormat object, 680
AcceptAllChanges method, Workbook object, 944
Access, and ADO

connecting to Access, 448–449
inserting, updating, and deleting records with plain text

SQL, 452–454
overview, 419–423
retrieving data using plain text queries, 449–450
retrieving data using stored queries, 451–452

Action object, 638–639
ActionControl property, CommandBars collection, 999
Actions collection, 638–639
Activate event
Chart object, 694
Workbook object, 951
Worksheet object, 962

Activate method
Chart object, 690
overview, 93–94
Range object, 858
VBcomponent object, 987
Window object, 933
Workbook object, 944
Worksheet object, 958

ActivateMso method, 317
ActivateNext method, Windows object, 933
ActivatePrevious method, Windows object, 933
Active Office language, 538
active properties, 64–65

Active Server pages (ASP), 532
ActiveCell property
Application object, 643
Windows collection, 930

ActiveChart object, 186
ActiveChart property
Application object, 643
Window object, 930
Workbooks collection, 937

ActiveCodePane property, VBE, 989
ActiveConnection property
Command object, 457
Recordset object, 441–442, 446, 463

ActiveMenuBar property, CommandBars
collection, 999

ActiveMicrosoftApp method, Application
object, 656

ActivePane property, Windows object, 930
ActivePrinter property, Application object, 643
ActiveSheet property
Application object, 644
Window object, 930
Workbooks collection, 937

ActiveSheet.UsedRange, 107, 684, 726, 759, 925
ActiveSheetView property, Windows object, 930
ActiveVBProject property, VBE, 989
ActiveWindow property
Application object, 644
VBE, 989

ActiveWorkbook property, 65, 644
ActiveX category, 496
ActiveX controls
CheckBox control, 212
dynamic, 216–219
Option Button controls, 212–214

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1079

ActiveX controls (continued)
and running macros, 13–15
Scrollbar control, 211
Spin Button control, 211–212

ActiveX Data Objects (ADO)
Command object

collections, 447
methods, 446–447
properties, 446

Connection object, 437–441
collections, 441–443
events, 440–441
methods, 439–440
properties, 437–438

Recordset object, 441–445
collections, 445
events, 445
methods, 443–445
properties, 441–443

SELECT Statement, 432–434
Structured Query Language (SQL) overview, 431–435
DELETE statement, 435
INSERT statement, 434
UPDATE statement, 434–435

using in Excel applications, 447–448
using with Access, 448–454

connecting to Access, 448–449
inserting, updating, and deleting records with plain text

SQL, 452–454
retrieving data using plain text queries, 449–450
retrieving data using stored queries, 451–452

using with non-standard data sources, 463–468
inserting and updating records in workbooks, 466–467
querying text files, 467–468
querying workbooks, 464–466

using with SQL Server, 454–463
connecting to SQL Server, 455–456
disconnected recordsets, 461–463
multiple recordsets, 460–461
stored procedures, 456–460

ActiveX Data Objects Multidimensional (ADO MD),
522–523

ActiveX settings category, 495–496
ActiveXControl property, SmartTagAction object, 894
AdaptiveMenu property, CommandBar object, 1001
AdaptiveMenus property, CommandBars

collection, 999
Add button, 15, 252, 405
Add Charts method, Charts collection, 686
Add fields method, 166
Add method
AllowEditRanges collection, 641
CalculatedMembers collection, 678

CommandBarControls collection, 1010
CommandBars collection, 1000
CustomXMLParts collection, 1020
CustomXMLSchemaCollection object, 1023
CustomXMLValidationErrors collection, 1024
DocumentProperties collection, 1030
FileDialogFilters collection, 1033
FileTypes collection, 1035
LinkedWindows Collection, 982
NewFile object, 1046
Permission object, 1050
QueryTables collection, 846
Scenarios collection, 871
SearchFolders collection, 1053
SeriesCollection object, 873
ServerViewableItems collection, 878
SharedWorkspaceFiles collection, 1056
SharedWorkspaceFolders collection, 1057
SharedWorkspaceMembers collection, 1059
SharedWorkspaceTasks collection, 1060
Sheets collection, 892
SortFields collection, 897
TabStops2 collection, 1069
UserAccessList object, 922
Validation object, 924
VBcomponents collection, 988
VBprojects collection, 992
Watches collection, 927
Workbooks collection, 935

AddCallout method, Shapes collection, 880
AddChart method, 177, 184, 187, 880
AddCollectionCollection method,

CustomXMLSchema collection, 1023
AddComment method, Range object, 858
AddConnector method, Shapes collection, 880
AddCurve method, Shapes collection, 880
AddCustom method, VBcomponents collection, 988
AddCustomList method, Application object, 656
AddFormControl method, Shapes collection, 880
AddFromFile method
CodeModule object, 976
Reference collection, 985
Workbook.Connections collection, 953

AddFromGuid method, Reference collection, 985
AddFromString method, 597
AddFromString method, CodeModule object, 976
add-in class, 388, 396, 401, 407
Add-In object, 639
AddIn object, 640, 973–974
AddIndent property
CellFormat object, 682
Range object, 852
Style object, 901

1080

ActiveX controls (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1080

AddinInstall event, 381, 951
Add-ins

closing, 375–376
code changes, 376
creating, 374–375
hiding code, 374
installing, 379–381
interface changes, 377–379
removing from Add-ins list, 381–382
saving changes, 377

Add-ins category, 494, 498
Addins collection, 639, 640
Add-ins dialog box, 295–297, 373, 379, 381, 382, 385,

386, 395, 396, 398, 405, 575, 588, 598
AddIns property, Application object, 644
Add-Ins tab, 319, 335
AddinUninstall event, 381, 951
Addin.xlam file, 379
AddItem method, 150, 216, 218, 1008
AdditionalXml property, SignatureSetup object,

1066
AddLabel method, Shapes collection, 880
AddLine method, Shapes collection, 880
AddMenu procedure, 579
AddNamespace method, CustomXMLPrefixMapping

collection, 1022
AddNode method, CustomXMLPart object, 1021
AddNonVisibleSignature method, SignatureSet

collection, 1062
AddOLEObject method, Shapes collection, 880
AddPeriods method, TextRange2 object, 1071
AddPicture method, Shapes collection, 880
AddPolyline method, Shapes collection, 881
AddReplacement method, AutoCorrect object, 666
Address property, 111, 128, 760, 761, 852
AddressLocal property, Range object, 852
AddShape method, Shapes collection, 881
AddSignatureLine method, SignatureSet

collection, 1062
AddTextbox method, Shapes collection, 881
AddTextEffect method, Shapes collection, 881
AddToFavorites method, Workbook object, 944
AddToSearchFolders method, ScopeFolder

object, 1053
AddToTable parameter, 166, 832
AdjustColumnWidth property, QueryTable

object, 847
Adjustments object, 640–641
Adjustments property
Shape object, 881
ShapeRange object, 887

ADO (ActiveX Data Objects)
Command object

collections, 447
methods, 446–447
properties, 446

Connection object, 437–441
collections, 441–443
events, 440–441
methods, 439–440
properties, 437–438

Recordset object, 441–445
collections, 445
events, 445
methods, 443–445
properties, 441–443

SELECT Statement, 432–434
Structured Query Language (SQL) overview, 431–435
DELETE statement, 435
INSERT statement, 434
UPDATE statement, 434–435

using in Excel applications, 447–448
using with Access, 448–454

connecting to Access, 448–449
inserting, updating, and deleting records with plain text

SQL, 452–454
retrieving data using plain text queries, 449–450
retrieving data using stored queries, 451–452

using with non-standard data sources, 463–468
inserting and updating records in workbooks, 466–467
querying text files, 467–468
querying workbooks, 464–466

using with SQL Server, 454–463
connecting to SQL Server, 455–456
disconnected recordsets, 461–463
multiple recordsets, 460–461
stored procedures, 456–460

ADO MD (ActiveX Data Objects Multidimensional), 522–523
ADO object library, 419, 448
ADO object model, 436
ADO Recordset object, 179
AdParamInput parameter, 446
AdParamInputOutput parameter, 446
AdParamOutput parameter, 446
AdParamReturn value parameter, 446
AdStateConnecting object, 438
Advanced button, 128, 157, 555
Advanced Filter, 128, 141, 142, 156–160, 559
AdvancedFilter method, 158, 559–560, 858
ADVAPI32.DLL file, 602
After parameter, 686
AfterCalculate event, Application object, 661
AfterRefresh event, 528, 851

1081

AfterRefresh event

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1081

AfterXMLExport event, Workbook object, 951
AfterXMLImport event, Workbook object, 951
AlertBeforeOverwriting property, Application

object, 644
AlertStyle property, Validation object, 923
Align method, ShapeRange object, 889
Alignment property
ParagraphFormat2 object, 1048
TextEffectFormat object, 907
TickLabels object, 914

Allcaps property, Font2 object, 1035
AllowComments property, SignatureSetup object, 1066
AllowEdit property
Range object, 852
UserAccess collection, 921

AllowEditRange object, 641, 642, 921, 922
AllowEditRanges collection, 641
AllowMultiSelect property, 237, 1032
AllowPNG property, WebOptions object, 928
AlternativeText property
Shape object, 881
ShapeRange object, 887

AltStartupPath property, Application object, 644
AlwayUseClearType property, Application object, 644
Analysis Services, 508, 509, 512, 514–518, 520, 522, 523
AND operator, 157
Angle property, CalloutFormat object, 680
AnswerWizard property, Application object, 644
API, Windows object. See Windows API
API functions, 595, 602, 605–607, 609, 611, 615,

619, 620, 634
Appearance parameter, 691, 706, 708, 794, 796
AppendChildNodes method, CustomXMLNode

object, 1018
AppendChildSubtree method, CustomXMLNode

object, 1018
AppendOnImport property, XmlMap object, 968
AppExcel object, 643
Application add-ins, 494
Application events, trapping, 363, 365
Application method, 63
Application object

active properties, 64–65
Caller property, 74–75
display alerts, 65
Evaluate method, 66–68
events, 661–663
example, 664
globals, 63–64
InputBox function, 68–69
methods, 656–661
OnKey method, 72–73
OnTime method, 71–72

properties, 63, 64, 643–656
screen updating, 66
SendKeys method, 70–71
StatusBar property, 70
worksheet functions, 73–74

Application property, 635, 995, 996
Application window, 373
Application.Caller, 75, 133, 215, 333
Applications Extensibility library, 571
Application.StatusBar, 70, 288, 323, 324, 326,

329, 339, 340
Application.VBE Excel property, 972
AppliesTo property
AboveAverage object, 637
Top10 object, 915
UniqueValues object, 919

Apply method
Shape object, 884
ShapeRange object, 890
Sort object, 143, 897

ApplyChartTemplate method, Chart object, 690
ApplyDataLabels method
Chart object, 690
Series object, 875

ApplyFilter method, AutoFilter object, 668
ApplyLayout method, 184, 690
ApplyNames method, Range object, 858
ApplyOutlineStyles method, Range object, 858
ApplyPictToEnd property, Series object, 873
ApplyPictToSides property, Series object, 873
ApplyPolicy method, Permission object, 1050
ApplyTheme method, Workbook object, 944
Appointment item object, 413
ArabicModes property, SpellingOptions

collection, 900
ARange object, 93
ArbitraryXMLSupportAvailable property,

Application object, 644
Areas, 8, 113–115, 247, 313, 501, 537, 652, 664, 665,

692, 754, 827, 852, 1054
Areas collection, 113–114, 664–665
Areas property, Range object, 852
Arg1, 202, 203, 366, 659–661, 692, 694, 695, 738, 864
Arg2, 202–204, 366, 659–661, 692, 694, 695, 738, 864
ArRange method, Windows object, 930
Array function, 56, 87, 109, 167, 216, 279
arrays, 55–58

converting charts to use, 193, 194
defining chart series with, 190–193
dynamic, 58, 120, 279
multi-dimensional arrays, 57
storing, 130–131

Asian language, 143

1082

AfterXMLExport event, Workbook object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1082

AskToUpdateLinks property, Application object, 644
ASP (Active Server pages), 532
AssignedTo property
SharedWorkspaceTask object, 1061
WorkflowTask object, 1077

Assistance property, Application object, 644
Assistant property, Application object, 644
attributes, XML, 242–243
Attributes property, CustomXMLNode object, 1017
Auditing add-in, 295, 313
Auditing group, 295–297, 301
Auditing tab, 296, 304
Auditing.xlam file, 296
Auditing.xlam workbook, 303
Authenticate method, EncryptionProvider

object, 1031
Auto page parameter, 836
AutoAttach property, CalloutFormat object, 680
AutoComplete feature, 648
AutoComplete method, Range object, 858
AutoCorrect features, 665
AutoCorrect object, 665–667
AutoCorrect property, Application object, 644
AutoExpand property, AutoCorrect object, 665
AutoFill method, Range object, 858
AutoFillFormulasInLists property, AutoCorrect

object, 665
AutoFilter dialog box, 148
AutoFilter drop-downs, 338
AutoFilter feature

adding combo boxes, 149–153
date format problems, 151–152
getting exact date, 152–153

copying visible rows, 153–154
Date Custom Filter, 148–149
Filter object, 148
finding visible rows, 154–156

AutoFilter method, 147, 148, 151, 152, 559, 667, 859
AutoFilter object, 143, 147–148, 667–669, 746
AutoFilter operation, 338
AutoFilter property, Worksheet object, 955
AutoFilterDataGrouping property, Windows

object, 930
AutoFilterMode property, Worksheet object, 955
AutoFit method, Range object, 859
AutoFormatAsYouTypeReplaceHyperlinks property,

Application object, 644
AutoLength property, CalloutFormat object, 680
AutoMargins property, TextFrame object, 908
AutomaticLength method, CalloutFormat object, 681
automation, 161, 253, 265, 383–391, 393–399, 401,

403, 405, 407, 409, 411, 412, 415–419, 611, 643,
644, 792

Automation Add-Ins. See also COM Add-in Designer
IDTExtensibility2 interface, 388–394
registering with Excel, 385–386

in Registry, 385–386
through Excel user interface, 385
using VBA, 385

using, 386–387
in VBA, 387
in worksheet, 386–387

Automation add-ins dialog box, 385, 395
Automation button, 385
AutomationSecurityAutomationSecurity property,

Application object, 644
AutoNumber field, 452
AutoOutline method, Range object, 859
AutoPercentEntry property, Application object, 644
AutoRecover object, 669–670
AutoRecover option, 645, 670
AutoRecover property, Application object, 645
AutoRecover setting, 669
AutoRepublish property, PublishObject object, 845
AutorotateNumbers property, Font2 object, 1035
AutoScaleFont property
AxisTitle object, 674
ChartArea object, 697
TickLabels object, 914

AutoScaling property, Chart object, 687
AutoShapeType property
Shape object, 881
ShapeRange object, 887

AutoSize property, TextFrame object2 object, 909
AutoUpdateFrequency property, Workbook object, 937
AutoUpdateSaveChanges property, Workbook

object, 937
Axes method, Chart object, 690
Axis object, 670–674, 690, 738, 756, 913
AxisGroup property
Axis object, 671
Series object, 873

AxisTitle object, 674–675
AxisTitle property, Axis object, 671
AZ button, 142

B
BackColor property, 698, 830
Background ODBC query, 786
Background OLEDB query, 789
background query, 474, 512, 936
Background query option, 512
BackgroundChecking property, 743
BackgroundQuery argument, 475
BackgroundQuery property, QueryTable object, 847

1083

BackgroundQuery property, QueryTable object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1083

BackgroundStyle property
Shape object, 881
ShapeRange object, 887

BackWall property, Chart object, 687
Backward parameter, 917
Backward property, Trendline object, 918
Backward2 property, Trendline object, 918
BarShape property
Chart object, 687
Series object, 873

BaselineAlignment property, ParagraphFormat2
object, 1048

BaselineOffset property, Font2 object, 1035
BaseName property, CustomXMLNode object, 1017
BaseUnit property, Axis object, 671
BaseUnitIsAuto property, Axis object, 671
BasicCode parameter, 660
Before double click, 202
Before parameter, 686, 758
BeforeClose event, 16, 206, 207, 338, 351, 377, 951
BeforeDoubleClick event, 215, 366, 367, 694, 962
BeforePrint event, 207, 363, 951
BeforeRefresh event, 528, 851
BeforeRightClick event, 200, 217, 343, 695, 962
BeforeSave event, 16, 951
BeforeXMLExport event, Workbook object, 951
BeforeXMLImport event, Workbook object, 952
BeginGroup property
CommandBarButton object, 1003
CommandBarComboBox object, 1006
CommandBarControl object, 1011
CommandBarPopup object, 1013

BevelBottomDepth property, ThreeDFormat object, 911
BevelBottomInset property, ThreeDFormat object, 911
BevelBottomType property, ThreeDFormat object, 911
BevelTopDepth property, ThreeDFormat object, 911
BevelTopInset property, ThreeDFormat object, 911
BevelTopType property, ThreeDFormat object, 911
BlackWhiteMode property
Shape object, 881
ShapeRange object, 887

block If structure, 48–49
BlockPreview property, ServerPolicy object, 1050
BlogPictureProviderProperties method,

IBlogPictureExtensibility object, 1041
BlogProviderProperties method,

IBlogExtensibility object, 1039
Blur property, ShadowFormat object, 879
BOF property, Recordset object, 442
Bold property, Font2 object, 1035
bookmark, 426, 427
BOOL C data type, 604
Border object, 676–677

Border property
Axis object, 671
AxisTitle object, 674
CalloutFormat object, 680
SeriesLines object, 877
Trendline object, 918

BorderAround method, Range object, 859
Borders property
AboveAverage object, 637
CellFormat object, 682
Range object, 853
Style object, 901
TableStyleElement object, 906
Top10 object, 915
UniqueValues object, 919

BottomRight Cell property, Shape object, 881
BoundColumn property, 279
BoundHeight property, TextRange2 object, 1070
BoundLeft property, TextRange2 object, 1070
BoundTop property, TextRange2 object, 1070
BoundWidth property, TextRange2 object, 1070
<box ...> contents </box> container control, 301
box element, 298
boxStyle attribute, 301
Break key, 5
BreakLink method, Workbook object, 944
BreakSideBySide method, Windows object, 930
Browse button, 379, 406, 492
BubbleSizes property, Series object, 874
Build Freeform method, Shapes collection, 881
Build property, Application object, 645
BuildFileName property, VBproject object, 990
built-in command bars, 322–325
BuiltIn property
CommandBar object, 1001
CommandBarButton object, 1003
CommandBarComboBox object, 1006
CommandBarControl object, 1011
CommandBarPopup object, 1013
CustomXMLPart object, 1021
Reference object, 984
Style object, 901
TableStyle object, 905

built-in shortcut menus, 338
BuiltinDocumentProperties property, Workbook

object, 938
BuiltInFace property, CommandBarButton object, 1003
Bullet property, ParagraphFormat2 object, 1048
BulletFormat2 object, 996–997
bUseDATE function, 542
BUseDATE function, 543
<button .../> control type, 299
Button parameter, 695

1084

BackgroundStyle property

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1084

<buttonGroup ...> contents </buttonGroup>

container control, 301
ButtonName property, FileDialog object, 1032
bWinToDate function, 566–567
bWinToNum function, 565–566
ByRef parameter, 303
BYTE * C data type, 604
BYTE C data type, 604

C
C control events, 368
C controlEvents class module, 369
CalcFor property
AboveAverage object, 637
Top10 object, 915

Calculate event
Chart object, 695
Worksheet object, 962

Calculate method
Application object, 656
Range object, 859
Worksheet object, 958

CalculateBeforeSave property, Application
object, 645

CalculatedFields collection, 170–171, 677, 812
CalculatedItems collection, 176, 678, 822–823
CalculatedMember object, 678–679
CalculatedMembers collection, 678, 679–680
CalculateFull method, Application object, 656
CalculateFullRebuild method, Application

object, 657
CalculateUnitAsyncQueries Done method,

Application object, 657
Calculation property, 645
CalculationDone event, Application object, 661
CalculationInterruptKey property, Application

object, 645
CalculationState property, Application object, 645
CalculationVersion property
Application object, 645
Workbooks object, 938

Call statement, 36, 38
Caller property, 74–75, 134, 210, 645
Callout property
Shape object, 882
ShapeRange object, 887

CalloutFormat object, 680–682
CanAddSignatureLine property, SignatureSet collection,

1062
Cancel parameter, 200, 661, 663, 694, 695, 952
Cancel property, 281
CancelRefresh method, QueryTable object, 851

CanCheckIn method, Workbook object, 944
CanCheckOut method, Workbook object, 935
CanPlaySounds property, Application object, 645
CanRecordSounds property, Application object, 645
CanSetup property, Signature object, 1062
CapitalizeNamesOfDays property, AutoCorrect

object, 666
CApp events, 363–365
Caps property, Font2 object, 1035
Caption property
Action object, 638
Application object, 645
AxisTitle object, 674
and built-in command bars, 324
Characters object, 684
CommandBarButton object, 1003
CommandBarComboBox object, 1006
CommandBarControl object, 1011
CommandBarPopup object, 1013
and new menus, 332
and pop-up menus, 341
and user form creation, 275, 276
and UserForm controls, 369
Window object, 930, 992

Catalog object, 455–458, 517–520, 522, 523
CategoryNames property, Axis object, 671
CategoryType property, Axis object, 671
CBool function, 542
CByte function, 541
CChart events, 367
CCur function, 541
CDate function, 541
CDbl function, 541
CDec function, 541
Cell command, 340–342
Cell command bar, 340–342
Cell format object, 682–684
Cell shortcut menu, 342, 344
Cell1 parameter, 852
Cell2 parameter, 852
CellDragAndDrop property, Application object, 645
CellFormat object, 682–684
Cells property, 51, 97–101, 102, 123, 133, 175, 645,

853, 955
CEmployee class module, 357
CentimetersToPoints method, Application

object, 657
CertificateVerificationResults property,

SignatureInfo object, 1063
CFormChanger class, 624–625
CFormResizer class, 627, 628–634
CFreezeForm class, 618, 619
Chain Pivot item object, 823

1085

Chain Pivot item object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1085

chain reaction, 201
Change event, 200, 201, 206, 209, 211, 237, 284, 286,

287, 576, 962, 1009
ChangeCase method, TextRange2 object, 1071
ChangeFileAccess method, Workbook object, 944
ChangeHistoryDuration property, Workbook

object, 938
ChangeLink method, Workbook object, 944
ChangePassword method, 642, 922
ChangeScenario methods, Scenario object, 872
ChangingCells property, Scenario object, 871
Char C data type, 604
char FAR * C data type, 604
char huge * C data type, 604
char NEAR * C data type, 604
Character property, BulletFormat2 object, 996
Characters method, TextFrame object, 909
Characters object, 684–685
Characters property
AxisTitle object, 674
Range object, 853
TextRange2 object, 1070

chart events, 199, 202–204, 355, 365, 694, 695
chart labels, 181, 195–196, 690
Chart object

and embedded charts, 185–190
events, 694–695
example, 696
methods, 690–694, 707–708
properties, 687–690, 706–707

Chart property
Shape object, 882
ShapeRange object, 887

chart series with arrays, defining, 190
chart sheet, 85, 90, 95, 181, 184, 186, 196, 199, 422,

423, 692, 704, 710, 903
Chart title, 182, 186, 190, 193, 674, 696, 709, 710
Chart tools, 313
Chart type property, 184, 192
ChartArea object, 696–697, 838
ChartArea property, Chart object, 687
ChartColorFormat object, 698
ChartData sub procedure, 421, 422
ChartFillFormat object, 698–700
ChartFormat object, 700–701
ChartGroup object, 691, 701–704, 740, 758, 824,

839, 877, 920
ChartGroups collection, 701, 702, 704
ChartGroups method, Chart object, 691
Chartobject collection, 83, 177, 181, 187, 704,

705, 708
ChartObject object, 706–708
ChartObjects collection, 196, 704–706, 708

ChartObjects method
Chart object, 691
Worksheet object, 958

charts
chart labels, 195–196
chart sheets

adding using VBA code, 184–185
recorded macro, 184

controls on, 220–221
converting to use arrays, 193
defining chart series with arrays, 190–193
determining ranges used in, 194–195
editing data series in, 181, 187–190
embedded, 185–187

adding using VBA code, 186–187
using macro recorder, 186

Charts collection, 83, 181, 184, 196, 685,
686–687, 696, 704

Charts property
Application object, 645
Workbook object, 938

ChartStyle property, Chart object, 687
ChartTitle method, 710
ChartTitle object, 184–187, 708–710
ChartTitle property, Chart object, 687
ChartType property
Chart object, 687
Series object, 874

ChartView object, 710
ChartWizard method, Chart object, 691
ChDrive statement, 60
CheckAbort method, Application object, 657
<checkbox .../> control type, 299
CheckBox control, 212, 276
CheckboxState property, SmartTagAction object, 894
CheckCompatibility property, Workbook object, 938
CheckIn method, Workbook object, 944
CheckOut method, Workbook object, 936
CheckSpelling method
Application object, 657
Chart object, 691
Range object, 859
Worksheet object, 958

Child property
Shape object, 882
ShapeRange object, 888

ChildNodes property, CustomXMLNode object, 1017
CInt function, 189, 541
CircularReference property, Worksheet object, 955
Class Module collection, 360–363
class modules

collection of userform controls, 368–370
creating collections, 359–363

1086

chain reaction

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1086

creating objects, 356–357
embedded chart events, 365–367
encapsulation, 363
property procedures, 357–359
referencing classes across projects, 370–371
trapping Application events, 363–365
wrapping API calls in, 611–616

class_Initialize event, 576, 577
class_Initialize procedure, 579, 582
class_Terminate event, 577
classes, 606–609
classReferences.xlsm, 370, 371
classUserForm controls.xlsm, 370, 371
Clear method
CellFormat object, 683
ChartArea object, 697
CommandBarComboBox object, 1009
FileDialogFilters collection, 1033
Range object, 859
SortFields collection, 897
TableStyleElement object, 906
TabStop2 object, 1069
XPath object, 970

ClearArrows method, Worksheet object, 958
ClearCircles method, Worksheet object, 958
ClearComments method, Range object, 859
ClearContents method
ChartArea object, 697
Range object, 859

ClearDefaultContext method, IAssistance
object, 1038

ClearFormats method
ChartArea object, 697
Range object, 859
Series object, 876
Trendline object, 918
Walls object, 926

ClearNotes method, Range object, 859
ClearOutline method, Range object, 859
ClearSettings method, XmlDataBinding object, 967
ClearToMatchStyle method, Chart object, 691
Click event, 153–155, 157, 209, 210, 212, 217, 218,

219, 277, 281, 286, 378, 398, 399, 400, 550,
576–578, 594, 597, 619, 980

Click event procedure, 157, 210, 212, 219
ClipboardFormats property, Application object, 646
CLng function, 541
CloneSession method, EncryptionProvider

object, 1031
Close button, 281–282, 596, 624
Close method
Connection object, 440
Recordset object, 444

Window object, 933, 993
Workbook object, 82, 83, 936, 944

CloseMode parameter, 282
CLSID property, Add-In, 639
CMenuHandler class, 577, 580, 589, 594
code, hiding, 363
code modules, VBE, 9–10
Code Window popup menu, 580, 589
CodeModule object, 574, 974–978
CodeModule property
CodePane object, 978
VBcomponent object, 987

CodeName property
Chart object, 687
and VBComponent, 573
Workbook object, 938
Worksheet object, 955

CodePane object, 574, 978–980
CodePane property, CodeModule object, 975
CodePanes property, VBE, 989
CodePaneView property, CodePane object, 978
collection methods, 636
Collection object, 359, 741
collection properties, 635
collections, 22–23
color index, 51, 204, 749
Color object, 713, 728, 749
Color property
Border object, 677
Borders collection, 676
GlowFormat object, 1037
GradientStop object, 1038
Tab object, 903

ColorFormat object, 710–711
ColorIndex property
Border object, 677
Borders collection, 676
Interior object, 26
Tab object, 903

Colors method, ThemeColorsScheme object, 1073
Colors property, Workbook object, 938
ColorScale object, 711–713, 749
ColorScaleCriteria collection, 713
ColorScaleCriteria object, 711, 712
ColorStop object, 714
ColorStops collection, 714
column field, 164, 818
Column object, 113
Column property
Range object, 853
TextFrame2 object, 909

column width, 24, 250, 279, 483, 683, 702, 853, 857, 902
ColumnCount property, 279

1087

ColumnCount property

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1087

ColumnDifferences method, Range object, 859
ColumnLevels parameter, 797
columns attribute, 301
Columns property
Application object, 646
overview, 112–114
Range object, 853
Worksheet object, 955

ColumnWidth property, 23, 24, 279, 853
COM Add-in Designer, 396–408

creating custom task panes, 404–405
linking to Excel, 397–401

adding CommandBar controls, 398–401
overview, 397–398
responding to Excel’s events, 398

linking to multiple Office applications, 407–408
showing VBA UserForms as task panes, 405–406
using COM Add-In from VBA, 401–403

adding Ribbon controls, 402–403
overview, 401–402

COM Add-ins collection, 407, 997–999
COM Add-ins dialog box, 396, 398, 405
COMAddinObject, 997–999
COMAddIns property, Application object, 646
ComandBars.ExecuteMso method, 316
combo boxes, adding, 149–153

date format problems, 151–152
getting exact date, 152–153

<comboBox ...> contents </comboBox> container
control, 300

ComboBox control, 214, 315
ComboBox object, 150, 216, 218
COMDLG32.DLL file, 602
command bars

built-in, 322–325
controls at all levels, 325–330
creating new menus, 330–333
creating toolbars, 335–338
deleting menus, 334
passing parameter values, 333–334
popup menus, 338–341
showing popup command bars, 342–353
toolbars, menu bars, and popups, 320–322

command button, 13–16, 26, 153, 155, 157, 214, 233,
274, 282, 283, 321, 619

Command object
ActiveConnection property, 457
CommandText property, 446, 447, 457
methods, 446–447
parameters collection, 446, 457, 460
properties, 446, 459

Command type, 446, 458, 473–478, 485, 786, 788, 808
Command type property, 474

CommandBar controls, 398–401
CommandBar extensions, for RibbonX, 316
CommandBar object, 576, 999–1002
CommandBar property, CommandBarPopup object, 1013
CommandBarButton events, 398, 576
CommandBarButton object, 1003–1006
CommandBarComboBox object, 1006–1009
CommandBarControl object, 1010–1013
CommandBarControls collection, 1010–1013
CommandBarEvents object, 980–981
CommandBarEvents property, Events object, 982
CommandBarPopup object, 1013–1015
CommandBars collection, 319, 321, 326, 330, 333, 337,

341, 343, 347, 349, 995, 999–1002, 1007, 1014
CommandBars object, 293, 316, 317, 348, 398
CommandBars property
Application object, 646
MsoEnvelope object, 1046
VBE, 989
Workbook object, 938

CommandBars.Reset, 349
CommandButton, 275, 276, 596
CommandButton control, 276
CommandLineSafe value, 396
Commands list, 556
CommandText argument, 439, 440
CommandText operation, 439
CommandText property, 446, 447, 454, 457, 474, 477,

482, 847
CommandText type, 440
CommandType property
QueryTable object, 847
Recordset object, 446

CommandTypeEnum value, 440
CommandUnderlines Underlines property,

Application object, 646
Comment object, 714–716
Comment property
Range object, 853
Scenario object, 871

comments, XML, 241
Comments box, 381, 588
Comments collection, 714–716
Comments property
DocumentLibraryVersion object, 1027
Worksheet object, 955

CompareSideBySide method, Windows object, 930
Complex add-in, 390, 394
Complex class, 401
Component tab, 389
CONCATENATE function, 74
Condition object, 750, 753

1088

ColumnDifferences method, Range object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1088

Conditions collection, 711, 750, 753, 763
Conditionvalue object, 716, 728
ConflictResolution property, Workbook object, 938
Connect class, 402
Connect optionEnum value, 439
Connect property, 973, 998
Connected property, SharedWorkspace object, 1054
Connection events, 441
Connection file, 470, 484, 490, 785, 788
Connection object

collections, 441
events, 440–441
Execute method, 443, 446, 447
methods, 439–440
properties, 437–438
Recordset object, 462

Connection parameter, 836
Connection property, 482, 790, 809, 847
Connection string argument, 439
Connection string property, 439
Connections button, 470, 471, 486
Connections collection, 487–489, 490
Connections dialog box, 470, 484, 485
Connections object, 716–717
Connections property, Workbook object, 938
ConnectionsDisabled property, Workbook object, 938
ConnectionSite parameter, 718
ConnectionSiteCount property
Shape object, 882
ShapeRange object, 888

ConnectionString property, Connection object, 438
ConnectionTimeout property, Connection object, 438
Connector format object, 717–719
Connector property
Shape object, 882
ShapeRange object, 888

ConnectorFormat object, 717–719
ConnectorFormat property
Shape object, 882
ShapeRange object, 888

Consolidate method, Range object, 860
ConsolidationFunction property, Worksheet

object, 955
ConsolidationOptions property, Worksheet

object, 955
ConsolidationSources property, Worksheet

object, 955
Const keyword, 44
constants, 33, 44, 606–609
ConstrainNumeric property, Application object, 646
container controls, 298, 300
Container property, Workbook object, 938
Content button, 489

Content property, Action object, 638
ContentControl property, CustomTaskPane

object, 1016
ContentTypeProperties property, Workbook

object, 938
ContentVerificationResults property,

SignatureInfo object, 1063
Context property
CommandBar object, 1001
IRibbonControl object, 1042

ContourColor property, ThreeDFormat object, 911
ContourWidth property, ThreeDFormat object, 911
<control .../> control type, 299
control attributes, 301
control ID, 302, 304, 310, 344, 346, 347
control images, 305, 316, 324, 354
control menu, 282
control reference, 304
control Toolbox, 12, 496, 579, 580
control types, 298, 299, 301, 305, 307, 308, 313, 318, 327
ControlCharacters property, Application object, 646
ControlFormat object, 719–721
ControlFormat property, Shape object, 882
ControlFormatType property, Shape object, 882
controls, 209–221
ActiveX controls, 210–214
CheckBox control, 212
dynamic, 216–219
Option Button controls, 212–214
Scrollbar control, 211
Spin Button control, 211–212

adding, 209–221, 347, 594, 986
on charts, 220–221
Forms controls, 214–216

controls collection, 321, 322, 330, 332, 337, 341, 369
controls dialog box, 12, 13
controls group, 12, 209, 495, 496
Controls property
CommandBar object, 1001
CommandBarPopup object, 1014

controlSource property, 276
conversion functions, 542
Application.Evaluate function, 544–545
DateValueUS function, 544–545
IsDateUS function, 544
overview, 544

CBool function, 542
CByte function, 541
CCur function, 541
CDate function, 541
CDbl function, 541
CDec function, 541
CInt function, 541

1089

conversion functions

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1089

conversion functions (continued)
CLng function, 541
CSng function, 541
CStr function, 541
DateValue function, 541
Format function, 542
FormatCurrency function, 542
FormatDateTime function, 542
FormatNumber function, 542
FormatPercent function, 542
IsDate function, 541
IsNumeric function, 541
sNumToUS function, 542–543
Str function, 542
Val function, 543–544

ConvertFormula function, Application object, 560, 657
ConvertFormulaLocale function, 557, 558, 559
Coordinate property, Action object, 638
Copy button, 297
Copy command, 321
Copy menu, 298
Copy method
ChartArea object, 697
Charts collection, 686
CommandBarButton object, 1005
CommandBarComboBox object, 1009
CommandBarControl object, 1012
CommandBarPopup object, 1015
Range object, 25, 860
Series object, 876
Shape object, 884
Sheets collection, 892
TextRange2 object, 1071
Worksheet object, 85–87, 355, 959
Worksheets collection, 954

Copy statement, 266
Copy Variant method, 705, 794
CopyFace method, CommandBarButton object, 1005
CopyFromRecordset method, 420, 445, 450, 517, 860
CopyObjectsWithCells property, Application

object, 646
CopyPicture method
Chart object, 691
Range object, 860
Shape object, 884

CorrectCapsLock property, AutoCorrect object, 666
CorrectSentenceCap property, AutoCorrect object, 666
Count method, ShapeNodes collection, 886
Count parameter, 686
Count property
Addins collection, 635
Adjustments object, 640
AllowEditRanges collection, 641

Areas collection, 664
CalculatedMembers collection, 678
Characters object, 684
Employees collection, 360
overview, 995
Pages collection, 797
Range object, 100, 853
Rows object, 112
SeriesCollection object, 221
Worksheets collection, 53, 375

COUNTA function, 130
CountLarge property, 100, 853
CountOfDeclarationLines property, CodeModule

object, 975
CountOfVisibleLines property, CodePane object, 978
CountOfLines property, CodeModule object, 975
CREATE GLOBAL CUBE statement, 522
Create item method, 413, 423
Create method, 165, 807
CreateBackup property, Workbook object, 938
CreateCTP method, ICTPFactory object, 1041
CreateCubeFile method, 521–522
CreatedBy property
SharedWorkspaceFile object, 1056
SharedWorkspaceLink object, 1058
SharedWorkspaceTask object, 1061
WorkflowTask object, 1077

CreatedDate property
SharedWorkspaceFile object, 1056
SharedWorkspaceLink object, 1058
SharedWorkspaceTask object, 1061
WorkflowTask object, 1077

CreateEventProc method, CodeModule object, 976
CreateNames method, Range object, 860
CreateNew method, SharedWorkspace object, 1055
CreateParameter method, Recordset object, 446–447
CreatePictureAccount method, IBlogPicture

Extensibility object, 1041
CreatePivotTable method, 164–166, 170
CreateSummary method, Scenario objects, 871
CreateToolbar, 336
CreateToolWindow method, Window collection, 993
Creator property, 635, 636, 995, 996
Criteria range, 156, 559
cross tabulation tables, 161
Crosses property, Axis object, 671
CrossesAt property, Axis object, 671
CSng function, 541
CStr function, 541, 542
C-style declarations, interpreting, 603–606
CSysInfo class, 619
CTemp file, 611
CTP functionality, 405

1090

conversion functions (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1090

CTP-creation features, 409
CTPFactoryAvailable method, ICustom

TaskPaneConsumer object, 1042
Ctrl object, 577
Cube field methods, 724
Cube file method, 521
CubeField object, 721–724, 917
CubeFields collection, 721–724
cubes, 508, 512, 514, 516, 518–521, 523
Currency (sealed integer) data type, 43
Currency object, 901
CurrentArray property, Range object, 853
CurrentRegion property, 108–110, 123, 422, 853
Cursor type property, 463
CursorLocation property, Recordset object, 442
CursorMovement property, Application object, 646
CursorPointer property, Application object, 646
Custom Filter, 148, 755
Custom menu, 334, 343–345, 351, 352, 575, 577
Custom option, 542
Custom parameter, 657
Custom properties collection, 724
custom task panes, 383, 403–405, 409, 1016
CustomDocumentProperties property, Workbook

object, 938
CustomDrop method, CalloutFormat object, 681
Customers table, 432–435, 456, 473, 474, 484, 485
CustomersTable.odc file, 485
customization, 158, 294, 295, 297, 303, 309, 313, 314,

382, 383, 405, 409, 999, 1002, 1043
Customization button, 158
customized objects, 355
CustomLength method, CalloutFormat object, 681
CustomListCount property, Application object, 646
CustomOrder property, SortFields object, 897
CustomProperties collection, 724–726
CustomProperties property, Worksheet object, 956
CustomProperty object, 724–726
CustomTaskPane object, 1016
customUI, 294–296, 306–313, 316, 403
CustomUI method, 317
CustomView object, 726–727
CustomViews collection, 726–727
CustomViews property, Workbook object, 938
CustomXMLNode object, 1017–1020
CustomXMLNodes collection, 1017–1020
CustomXMLPart object, 1020–1022
CustomXMLParts collection, 317, 1020–1022
CustomXMLParts property, Workbook object, 938
CustomXMLPrefixMapping object, 1022–1023
CustomXMLPrefixMappings collection, 1022–1023
CustomXMLSchema object, 1023–1024
CustomXMLSchemaCollection object, 1023–1024

CustomXMLValidationError object, 1024–1025
CustomXMLValidationErrors CollectionObject,

1024–1025
Cut button, 321
Cut method
Range object, 860
Shape object, 884
TextRange2 object, 1071

CutCopyMode property, Application object, 646

D
Data Connection Wizard, 509
Data Connections section, 490
Data field, 169, 170
Data field object, 144
Data Form feature, 158–159, 160
Data group, 182, 469, 470
Data Labels button, 195
data lists, 141–160

Advanced Filter, 156–158
AutoFilter feature, 146–156

adding combo boxes, 149–153
AutoFilter object, 147–148
copying visible rows, 153–154
Date Custom Filter, 148–149
Filter object, 148
finding visible rows, 154–156

creating tables, 144–145
Data Form, 158–159
sorting ranges, 142–144
sorting tables, 145–146
structuring data, 141–142

Data object, 557
data strings, reading, 229
Data tab, 128, 142, 146, 157, 469, 484, 508, 716
Databar methods, 729
Databar object, 716, 727–729
DataBindingBinding property, XmlMap object, 968
DataEntryMode property, Application object, 646
DataLabel object, 729–734
DataLabel property, 174, 918
DataLabels collection, 729–734
DataLabels method, Series object, 876
DataLists, 344, 345, 349, 352
DataRange property, 174, 175
DataSeries method, Range object, 860
DataTable object, 734–735
DataTable property, Chart object, 687
date

format problems, 151
getting exact, 152

date custom filter, 148–149

1091

date custom filter

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1091

Date data type, 43
Date Filters, 148, 818
DATE function, 73, 74, 87, 542, 543, 544, 547
date literals, 540, 541
date order, 538, 542, 551, 552, 555, 556
Date Order setting, 538
Date Picker button, 403
Date property, PolicyItem, 1051
date separator, 538, 551, 552
Date1904 property, Workbook object, 939
DateSerial function, 73, 87, 152, 153, 413
DateValue function, 87, 541, 544
DateValueUS function, 544, 545
DDEAppReturnCode property, Application object, 646
DDEExecute method, Application object, 657
DDEInitiate method, Application object, 657
DDEPoke method, Application object, 657
DDERequest method, Application object, 657
DDETerminate method, Application object, 658
Deactivate event, 91
Chart object, 695
Workbook object, 952
Worksheet object, 963

Debug toolbar, 29, 579
Decimal data type, 43
DecimalSeparator, 530, 538, 552, 553, 555, 556, 558,

646, 867
(Declarations) section, 39–42, 44, 55–57, 109, 118,

131, 216, 283, 358, 365, 593, 977
Declare function, 584
Declare statement, 602
DecryptStream method, EncryptionProvider

object, 1031
Default property, OK button, 281
DefaultFilePath property, Application object, 647
DefaultPivotTableStyle property, Workbook

object, 939
DefaultSaveFormat property, Application object, 647
DefaultSheetDirection property, Application

object, 647
DefaultSpacing property, TabStops2 collection, 1068
DefaultTableStyle property, Workbook object, 939
DefaultWebOptions object, 735–737
DefaultWebOptions property, Application object, 647
Definition tab, 486
Delete button, 283
Delete method
AboveAverage object, 638
AllowEditRange object, 642
Axis object, 673
AxisTitle object, 675
CalculatedMember object, 679
Characters object, 685

Chart object, 691
Charts collection, 686
CommandBar object, 1002
CommandBarButton object, 1005
CommandBarComboBox object, 1009
CommandBarControl object, 1012
CommandBarPopup object, 1015
CustomTaskPane object, 1016
CustomXMLNode object, 1018
CustomXMLPart object, 1021
CustomXMLSchema object, 1024
CustomXMLValidationError, 1025
deleting menus, 334
deleting XML map, 255
DocumentLibraryVersion object, 1027
DocumentProperty object, 1030
FileDialogFilters collection, 1034
GradientStops collection, 1038
HPageBreak object, 759
Hyperlink object, 760
PublishObject object, 845
PublishObjects collection, 844
QueryTable object, 851
Range object, 861
RecentFile object, 868
Series object, 197, 876
SeriesLines object, 877
ServerViewableItems collection, 878
Shape object, 884
ShapeNodes Collection, 886
ShapeRange object, 890
SharedWorkspace object, 1055
SharedWorkspaceFile object, 1056
SharedWorkspaceFolder, 1057
SharedWorkspaceLink object, 1059
SharedWorkspaceMember, 1060
SharedWorkspaceTask object, 1061
Sheets collection, 892
Signature object, 1063
SmartTag object, 894
SortFields collection, 898
SoundNote object, 898
TableStyle object, 905
TextRange2 object, 1071
TickLabels object, 914
Top10 object, 916
Trendline object, 918
UniqueValues object, 920
UpBars object, 921
UserAccess Collection, 922
Validation object, 924
VPageBreak object, 925
Watch object, 927

1092

Date data type

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1092

Watches Collection, 927
Worksheet object, 959
Worksheets collection, 954
XmlMap object, 968

DELETE statement, 435, 445, 452, 454
DeleteAll method
ServerViewableItems collection, 878
UserAccessList object, 922

DeleteCustomList method, Application object, 658
DeleteLines method, CodeModule object, 977
DeleteNumberFormat method, Workbook object, 944
DeleteReplacement method, AutoCorrect object, 666
DeleteText method, ThreeDFormat object, 911
deleting

menus, 334
records with plain text SQL in Access, 452–454
rows, 121–123

delimiters, 230, 233, 483, 849, 850, 867, 937
Delivery property, RoutingSlip object, 870
Dependents property, Range object, 853
Depth property
ThreeDFormat object, 911
TickLabels object, 914

DepthPercept property, Chart object, 687
DESC specifier, 434
description attribute, 302
Description property
Add-in object, 973
COMAddin object, 998
Err object, 59
FileDialogFilter, 1034
IDocumentInspector object, 1026
PolicyItem object, 1051
Reference object, 984
ServerPolicy object, 1050
SharedWorkspaceLink object, 1058
SharedWorkspaceTask object, 1061
VBproject object, 990
WorkflowTask object, 1077
WorkflowTemplate object, 1078

Description value, 396
DescriptionText property
CommandBarButton object, 1003
CommandBarComboBox object, 1006
CommandBarControl object, 1011
CommandBarPopup object, 1014

Deselect method, Chart object, 692
Design Mode button, 13, 14
Design tab, 144, 182, 186, 313
Designer class, 397, 407
Designer Connect class, 402
Designer object, 574–575, 596

Designer property, VBcomponent, 987
DesignerID property, VBcomponent, 987
DesignerWindow property, VBcomponent, 987
Destination parameter, 25
Destination property, QueryTable object, 847
Details property, Signature object, 1062
Developer tab, 3, 5–9, 12, 13, 71, 209, 233, 247, 250,

251, 305, 495, 496, 596, 653
Diagram property, Shape object, 882
DiagramNode property, Shape object, 882
Dialog object, 223, 233, 235, 737–738
dialog sheets, 12, 74, 209, 549, 608, 686
Dialog types, 235
DialogBox method, Range object, 861
<dialogBoxLauncher .../> control type, 300
DialogFilters collection, 235
Dialogs collection, 737–738
Dialogs property, Application object, 647
DialogSelected items collection, 235, 237
DialogSelected items object, 235
DialogType property, FileDialog object, 1032
dictator applications, 312, 313
dictator applications, RibbonX in, 312
DictLang property, SpellingOptions collection, 900
digital certificate, 492, 1062–1064
digital signatures, 492, 942, 1061, 1062
Dim statement, 38, 39, 42, 43
Dim Zip file, 267
Dir function, 58, 81, 82
direct reference to ranges, 20–21
DirectDependents property, Range object, 853
Direction parameter, 759
Direction property, Speech object, 898
DirectPrecedents property, Range object, 853
Dirty method, Range object, 861
DisableAskAQuestionDropdown property,

CommandBars collection, 999
DisableCustomize property, CommandBars

collection, 999
Disconnect method, SharedWorkspace object, 1055
disconnected recordsets, 461–463
display alerts, 65
DisplayAlerts property, 60, 65, 254, 256, 647
DisplayAutoCorrectOptions property, AutoCorrect

object, 666
DisplayBlanksAs property, Chart object, 688
DisplayClipboardWindow property, Application

object, 647
DisplayCommentIndicatorDisplayMode property,

Application object, 647
DisplayDocumentActionTaskPane property,

Application object, 647

1093

DisplayDocumentActionTaskPane property, Application object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1093

DisplayDocumentInformationPanel property,
Application object, 647

DisplayDrawingObjects property, Workbook
object, 939

DisplayEquation property, Trendline object, 918
DisplayExcel4 Menus property, Application

object, 647
DisplayFonts property, CommandBars collection, 999
DisplayFormulaAutoComplete property, Application

object, 647
DisplayFormulaBar property, Application object, 647
DisplayFormulas property
Window object, 930
WorksheetView object, 967

DisplayFullScreen property, Application object, 647
DisplayFunctionToolTips property, Application

object, 647
DisplayGridlines property
Window object, 930
WorksheetView object, 967

DisplayHeadings property
Window object, 931
WorksheetView object, 967

DisplayHorizontalScrollBar property, Windows
object, 931

DisplayInkComments property, Workbook object, 939
DisplayInsertOptions property, Application

object, 648
DisplayKeysInTooltips property, CommandBars

collection, 999
DisplayNoteIndicator property, Application

object, 648
DisplayOutline property, Worksheet object View, 967
DisplayPageBreaks property, Worksheet object, 956
DisplayPasteOptions property, Application

object, 648
DisplayRecentFiles property, Application

object, 648
DisplayRightToLeft property
Window object, 931
Worksheet object, 956

DisplayRSquared property, Trendline object, 918
DisplayRuler property, Windows object, 931
DisplayScrollBars property, Application object, 648
DisplaySmartTags property, SmartTagOptions

collection, 895
DisplayStatusBar property, Application object, 648
DisplayTooltips property, CommandBars

collection, 1000
DisplayUnit or DisplayUnitCustom property, 672
DisplayUnit property, 671
DisplayUnitCustom property, Axis object, 671
DisplayUnitLabel object, 738–739

DisplayUnitLabel property, Axis object, 671
DisplayVerticaScrollBar property, Windows

object, 931
DisplayWhitespace property, Windows object, 931
DisplayWorkbookTabs property, Windows object, 931
DisplayXMLSourcePane method, Application

object, 658
DisplayZeros property
Window object, 931
WorksheetView object, 967

DISTINCT keyword, 433
Distribute method, ShapeRange object, 890
DivID property, PublishObject object, 845
Do events, 289, 531, 536, 593, 619
Do statement, 51, 52
Do...Loop, 50, 57
Docked Window, 580
DockPosition property, CustomTaskPane object, 1016
DockPositionRestrict property, CustomTaskPane

object, 1016
DockPositionStateChange event, Custom

TaskPane object, 1016
document inspection automation, 503–506
DocumentInspectors collection, 505–506
RemoveDocumentInformation method, 503–505

Document Inspector, 501, 503, 505, 939, 1025, 1042
Document Library Name property, Workflow

Template object, 1078
Document LibraryURL property, WorkflowTemplate

object, 1078
Document Object Model (DOM), 258–262

loading XML into DOM document, 259–260
traversing and modifying XML files with, 262–265
using with ADO to convert Excel data to XML, 260–262

document security, 491
document variables, 426–429
DocumentAuthor property, Permission object, 1049
documentControls, 307, 313
DocumentElement property, CustomXMLPart

object, 1021
DocumentInspector object, 505, 506, 1025–1026
DocumentInspectors collection, 501, 503, 505–506,

1025–1026
DocumentInspectors property, Workbook object, 939
DocumentLibraryVersion object, 1027
DocumentLibraryVersions collection, 1027
DocumentLibraryVersions property, Workbook

object, 939
DocumentProperties collection, 1028–1030
DocumentProperties object, 485, 724
DocumentProperty object, 1028–1030
Documents.Open filename, 416, 429
DoEvents statement, 289, 593

1094

DisplayDocumentInformationPanel property, Application object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1094

Do...loop, 50–53
DOM (Document Object Model), 258–262

loading XML into DOM document, 259–260
traversing and modifying XML files with, 262–265
using with ADO to convert Excel data to XML, 260–262

DomainName property, SharedWorkspaceMember
object, 1060

DOMDocument object, 259, 260, 262, 269–271
DoNotPromptForConvert property, Workbook

object, 939
DoubleClick method, Application object, 658
DoubleStrikeThrough property, Font2 object, 1035
Down menus, 309
DownBars object, 740
DownloadComponents property, WebOptions object, 928
DownloadURL property, SmartTag object, 894
DragOff method, VPageBreak object, 925
DragOver event, Chart object, 695
DragPlot event, Chart object, 695
Drawing object, 693, 844
DrilldownLevel function, 516
Drilled property, TreeviewControl object, 917
Drop parameter, 681
Drop property, CalloutFormat object, 680
DropDown control, 215
DropDown menu buttons, 146
DropDown object, 214, 216
DropDownLines property, CommandBarComboBox

object, 1007
DropDowns collection, 214, 216
DropDownWidth property, CommandBarComboBox

object, 1007
DropLines methods, 741
DropLines object, 740–741
DropType property, CalloutFormat object, 680
DueDate property
SharedWorkspaceTask object, 1061
WorkflowTask object, 1077

DupeUnique property, UniqueValues object, 919
Duplicate method
Shape object, 884
ShapeRange object, 890
TableStyle object, 905

Duration, 964
DWORD C data type, 604
dynamic ActiveX controls, 216–219
dynamic arrays, 58, 120, 279
dynamic controls, RibbonX
comboBox control, 315
gallery, 315

dynamicMenu, 300–302, 304, 315, 316
<dynamicMenu .../> control type, 300

E
early binding, 411, 412, 414–420, 430, 598, 984
edit box, 209, 1006–1009
Edit button, 9
Edit menu, 320, 321
Edit Query button, 486
editBox, 300, 302–304, 316
<editBox .../> control type, 300
EditDirectlyInCell property, Application object, 648
Editing options, 552
EditingType property, ShapeNode object, 886
EditionOptions method, Range object, 861
EditNow property, 760
Editor tab, 40, 64
EditWebPage property, QueryTable object, 847
ElementID parameter, 204, 692
elements, XML, 241–242
Elevation property, Chart object, 688
Else statement, 20
Email property, SharedWorkspaceMember object, 1060
Embeddable property, Font2 object, 1035
embedded chart events, 355, 365
embedded charts, 185–187

adding using VBA code, 186–187
using macro recorder, 186

Embedded OLE object, 792
Embedded property, Font2 object, 1036
EmbedSmartTags property, SmartTagOptions

collection, 896
Employee object, 355, 356, 357, 359, 360, 371
Employees collection, 355, 360, 362
EmployeeSales.xml file, 247, 248, 257, 264
empty cells, 110, 115, 324, 743, 866
Enable button, 522
EnableAnimations property, Application object, 648
EnableAutoComplete property, Application

object, 648
EnableAutoFilter property, Worksheet object, 956
EnableAutoRecover property, Workbook object, 939
EnableCalculation property, Worksheet object, 956
EnableChanges parameter, 687, 693
EnableConnections method, Workbook object, 945
Enabled attribute, 302
Enabled property
AutoRecover object, 669
CommandBar object, 1001
CommandBarButton object, 1003
CommandBarComboBox object, 1007
CommandBarControl object, 1011
CommandBarPopup object, 1014
Permission object, 1049
SmartTagRecognizer object, 896

1095

Enabled property

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1095

EnableEditing property, QueryTable object, 847
EnableEvents property, Application object, 648
EnableFormatConditionsCalculation property,

Worksheet object, 956
EnableKeyCancelKey property, Application

object, 648
EnableLargeOperationAlerts property, Application

object, 648
EnableLivePreview property, Application object, 648
EnableOutlining property, Worksheet object, 956
EnablePivotTable property, Worksheet object, 956
EnableRefresh property, QueryTable object, 847
EnableResize property, Windows object, 931
EnableSelection property, Worksheet object, 956
EnableSound property, Application object, 648
EnableTrustedBrowser property, Permission

object, 1049
encapsulation, 363, 371
Encapsulation class modules, 363
Encoding property, WebOptions object, 928
Encoding text files, 265
EncryptionProvider object, 1030–1031
EncryptionProvider property, Workbook object, 939
EncryptStream method, EncryptionProvider

object, 1031
End function, 79
End FunctionReferencesEvents object, 986
End If statement, 48
End parameter, 174
End property, 110–111, 115, 123, 358, 361, 401, 408,

613, 614, 617, 620–622, 629, 630, 853, 974
End statement, 365
End Sub statement, 14
End With statement, 281
EndReview method, Workbook object, 945
EndSession method, EncryptionProvider

object, 1031
English language formulas, 546
EntireColumn property, Range object, 853
EntireRow property, 52, 107, 854
EnvelopeHide event, MsoEnvelope object, 1046
EnvelopeShow event, MsoEnvelope object, 1046
EnvelopeVisible property, Workbook object, 939
EOF function, 226
EOF property, Recordset object, 442
Equalize property, Font2 object, 1036
Err object, 59, 60, 62, 134
Error object, 441, 741–742
Error string property, 827
ErrorBar method, Series object, 876
ErrorBars object, 742–743
ErrorBars property, Series object, 874
ErrorCheckingOptions collection, 743–744

ErrorCheckingOptions object, 743
ErrorCheckingOptions property, Application

object, 649
ErrorCode property, CustomXMLValidationError

object, 1024
error-handling, run-time, 59–62
ErrorMessage property, Validation object, 923
Errors collection, 441, 741–742
Errors object, 741
Errors property
CustomXMLPart object, 1021
Range object, 854

ErrorTitle property, Validation object, 923
ErrorType property, Sync object, 1068
Esc, 5, 201, 281, 646, 692
Evaluate method
Application object, 96, 544–545, 560, 658
Chart object, 692
overview, 66–68
Worksheet object, 959

event list, 363
event procedures, 199–208
chart events, 202–204
headers and footers, 207–208
and running macros, 16–17
Workbook object events, 205–207
worksheet events, 199–202
enable events, 200–201
Worksheet_Calculate event, 201–202

events, 26–27
Events object, 981–982
Events property, VBE, 989
Excel 2007 object model
AboveAverage object, 636–638
Action object, 638–639
Actions collection, 638–639
Add-In object, 639
Addins collection, 639
Adjustments object, 640–641
AllowEditRange object, 642
AllowEditRanges collection, 641
Application object, 642–664

events, 661–663
example, 664
methods, 656–661
properties, 643–656

Areas collection, 664–665
AutoCorrect object, 665–667
AutoFilter object, 667–669
AutoRecover object, 669–670
Axis object and Axes collection, 670–674
AxisTitle object, 674–675
Border object and Borders collection, 676–677

1096

EnableEditing property, QueryTable object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1096

CalculatedFields collection, 677
CalculatedItems collection, 678
CalculatedMember object, 678–679
CalculatedMembers collection, 679–680
CalloutFormat object, 680–682
CellFormat object, 682–684
Characters object, 684–685
Chart object

events, 694–695
example, 696
methods, 690–694
properties, 687–690

ChartArea object, 696–697
ChartColorFormat object, 698
ChartFillFormat object, 698–700
ChartFormat object, 700–701
ChartGroup object, 701–704
ChartObject object, 706–708
ChartObjects collection, 704–706
Charts collection, 686–687
ChartTitle object, 708–710
ChartView object, 710
collection methods, 636
collection properties, 635
ColorFormat object, 710–711
ColorScale object, 711–713
ColorScaleCriteria collection, 713
Comment object and Comments collection, 714–716
ConditionValue object, 716
Connections object, 716–717
ConnectorFormat object, 717–719
ControlFormat object, 719–721
CubeField object and CubeFields collection, 721–724
CustomProperty object and CustomProperties

collection, 724–726
CustomView object and CustomViews collection,

726–727
Databar object, 727–729
DataLabel object and DataLabels collection, 729–734
DataTable object, 734–735
DefaultWebOptions object, 735–737
Dialog object and Dialogs collection, 737–738
DisplayUnitLabel object, 738–739
DownBars object, 740
DropLines object, 740–741
Error object and Errors collection, 741–742
ErrorBars object, 742–743
ErrorCheckingOptions collection object, 743–744
FillFormat object, 744–746
Filter object and Filters collection, 746–747
Floor object, 747–748
Font object, 748–749

FormatColor object, 749–750
FormatCondition object and FormatConditions

collection, 750–753
FreeformBuilder object, 753–754
Graphic object, 754–756
Gridlines object, 756–757
GroupShapes collection, 757
HeaderFooter object, 757–758
HiLoLines object, 758
HPageBreak object and HPageBreaks collection,

758–759
Hyperlink object and Hyperlinks collection, 759–761
Icon object, 761–762
IconCriterion and IconCriteria collection, 762
IconSet and IconSets collection, 762–763
IconSetCondition object, 763–765
Interior object, 765–767
IRtdServer object, 767–768
IRTDUpdateEvent object, 768
LeaderLines object, 769
Legend object, 770–771
LegendEntry object and LegendEntries collection,

771–773
LegendKey object, 773–774
LinearGradient object, 774
LineFormat object, 775–776
LinkFormat object, 776–777
ListColumn and ListColumns collection, 777
ListColumns Common Properties, 777–778
ListDataFormat object, 778–779
ListObject object and ListObjects collection,

779–781
Mailer object, 782
MultiThreadedCalculation object, 783
Name object and Names collection, 783–785
object properties, 636
ODBCConnection object, 785–787
ODBCError object and ODBCErrors collection, 787–788
OLEDBConnection object, 788–790
OLEDBError object and OLEDBErrors collection,

790–791
OLEFormat object, 791–792
OLEObject object and OLEObjects collection, 792–796
Outline object, 796–797
Page object and Pages collection, 797–798
PageSetup object, 798–801
Pane object and Panes collection, 802–803
Parameter object and Parameters collection, 803–804
Phonetic object and Phonetics collection, 804–805
PictureFormat object, 806–807
PivotAxis object, 807
PivotCache object and PivotCaches collection,

807–811

1097

Excel 2007 object model

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1097

Excel 2007 object model (continued)
PivotCell object, 811–812
PivotField object, PivotFields collection, and

CalculatedFields collection, 812–819
PivotFilter object and PivotFilters collection,

819–821
PivotFormula object and PivotFormulas collection,

821–822
PivotItem object, PivotItems collection, and

CalculatedItems collection, 822–823
PivotItemList object, 824
PivotLayout object, 824–825
PivotLine object, PivotLines collection, and Pivot

LinesCells collection, 825
PivotTable object and PivotTables collection,

825–837
PlotArea object, 838–839
Point object and Points collection, 839–842
Protection object, 842–844
PublishObject object and PublishObjects collection,

844–846
QueryTable object and QueryTables collection,

846–852
Range object and Ranges collection object, 852–868

methods, 858–868
overview, 852
properties, 852–857

Real-Time Data (RTD) object, 870
RecentFile object and RecentFiles collection,

868–869
RectangularGradient object, 869
RoutingSlip object, 869–870
Scenario object and Scenarios collection, 871–872
Series object and SeriesCollection collection,

872–877
SeriesLines object, 877
ServerViewableItems collection, 878
ShadowFormat object, 878–879
Shape object and Shapes collection, 880–885
ShapeNode object and ShapeNodes collection, 886–887
ShapeRange object collection, 887–891
Sheets collection, 891–893

overview, 891
Sheets common properties, 891
Sheets methods, 892–893
Sheets properties, 892

SheetViews object, 893
SmartTag object and SmartTags collection object,

893–894
SmartTagAction object and SmartTagActions

collection object, 894–895
SmartTagOptions collection object, 895

SmartTagReconizer object and SmartTag
Recognizers collection object, 895–896

Sort object, 896–897
SortField object and SortFields collection, 897–898
SoundNote object, 898
Speech object, 898–899
SpellingOptions collection object, 899–901
Style object and Styles collection, 901–903
Tab object, 903–904
TableStyle object and TableStyles collection object,

904–906
TableStyleElement object and TableStyleElements

collection object, 906
TextEffectFormat object, 907–908
TextFrame object, 908–909
TextFrame2 object, 909–911
ThreeDFormat object, 911–913
TickLabels object, 913–915
Top10 object, 915–917
TreeviewControl object, 917
Trendline object and Trendlines collection, 917–919
UniqueValues object, 919–920
UpBars object, 920–921
UsedObjects collection object, 921–922
UserAccessList collection object, 922
Validation object, 923–924
VPageBreak object and VPageBreaks collection,

924–925
Walls object, 925–926
Watch object and Watches collection object, 926–928
WebOptions object, 928–929
Window object and Windows collection, 929–935
Workbook object and Workbooks collection, 935–953

events, 951–953
methods, 935–937, 944–951
overview, 935
properties, 935–943

WorkbookConnection object, 953
Worksheet object, 953–963

events, 962–963
methods, 958–962
properties, 955–958

WorksheetFunction object, 963–966
Worksheets collection, 954–955
WorksheetView object, 966–967
XmlDataBinding object, 967
XmlMap object and XMLMaps collection, 967–969
XmlNameSpace object and XMLNameSpaces

collection, 969
XmlSchema object and XmlSchemas collection, 969–970
XPath object, 970

Excel chart window (prior to Excel 2007) window, 608

1098

Excel 2007 object model (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1098

Excel Object model, 21–30
getting help, 27–29
Immediate window, 29–30
objects, 22–27

collections, 22–23
events, 26–27
methods, 25
properties, 23–25

EXCEL4 class, 608
Excel4IntlMacroSheets property
Application object, 649
Workbook object, 939

Excel4MacroSheets property
Application object, 649
Workbook object, 939

EXCEL7 class, 608
Excel8CompatiblityMode property, Workbook object, 939
EXCELE class, 608
ExclusiveAccess method, Workbook object, 945
Execute method
Command object, 447
CommandBarButton object, 1005
CommandBarComboBox object, 1009
CommandBarControl object, 1012
CommandBarPopup object, 1015
Connection object, 439, 439–440, 446
FileDialog object, 235, 1033
Recordset object, 447
SmartTagAction object, 895

ExecuteExcel4Macro function, 546, 555, 560, 569, 658
ExecuteMso method, 316, 317, 1000
ExecuteOptionEnum value, 440
Exit Do statement, 52
Exit statement, 59
Exit Sub statement, 35, 91
ExpandHelp property, SmartTagAction object, 895
Expiration Date property, UserPermission

object, 1075
Explosion property, Series object, 874
Export file, 363
Export method

exporting to XML file, 258
VBcomponent object, 987
XmlMap object, 968

ExportAsFixedFormat method
Chart object, 692
Range object, 861
Workbook object, 945
Worksheet object, 959

ExportString method, Chart object, 692
ExportXml method, XmlMap object, 969
Extend method, Series object Collection, 873
ExtendList property, Application object, 649

extensibility, 295, 402, 403, 409, 571, 572, 598, 600,
971, 981, 990

eXtensible Markup Language (XML), 239–272
attributes, 242–243
comments, 241
consuming XML data directly, 246–249
elements and root element, 241–242
namespaces, 243–245
processing instructions, 241
using VBA to program Open XML files, 265–272

programmatically unzipping Excel containers, 266–267
programmatically zipping Excel containers, 267–272

using VBA to program XML processes, 253–265
Document Object Model (DOM), 258–265
programming XML maps, 253–258
XPath, 262–264

viewing and editing XML documents, 245
XML Declaration, 240–241
XML maps, 249–253

creating, 251–253
creating XML schema description, 249–251

Extensions property, FileDialogFilter, 1034
Extent property, VPageBreak object, 925
External Content category, 499–500
External Content section, 489
external data, managing, 469–490

External Data user interface, 469–472
Get External Data group, 470–471
Manage Connections group, 471–472

QueryTables, 472–487
associated with ListObject, 475–476
creating and using connection files, 484–489
and parameter queries, 476–479
from relational database, 472–475
from text file, 482–483
from web queries, 479–482

security settings, 489–490
WorkbookConnection object and Connections

collection, 487–489
external data sources, 142, 165, 178, 180, 241, 270,

470, 716
External Excel workbooks, 499, 500
Extra Auditing tab, 296
ExtraInfo property, 761
ExtrusionColor property, ThreeDFormat object, 911
ExtrusionColor Type property, ThreeDFormat

object, 911

F
FaceId property, 322–324, 330, 341, 1003
FarEastLineBreakLevel property, ParagraphFormat2

object, 1048

1099

FarEastLineBreakLevel property, ParagraphFormat2 object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1099

FeatureInstallInstall property, Application
object, 649

FetchComplete event, 445
FetchedRowOverflow property, QueryTable object, 847
field codes, 426, 428
field names, 123, 141, 145, 157, 261, 285, 420, 422, 429,

432, 433, 445, 450, 466, 467, 512, 832, 847
field properties, 816
FieldNames property, QueryTable object, 847
FieldOfView property, ThreeDFormat object, 912
Fields collection, Recordset object, 445
FileConverters property, Application object, 649
FileDialog object

dialog types, 235
Execute method, 235
FileDialogFilters property, 235
FileDialogSelectedItems collection, 235
MultiSelect property, 236–237
overview, 233–237, 1031–1033

FileDialog property, Application object, 649
FileDialogFilter object, 1033–1034
FileDialogFilters collection, 234–236, 235,

1033–1034
FileDialogFilters property, 235
FileDialogSelectedItems collection, 235, 1034
FileFind property, Application object, 649
FileFormat property, Workbook object, 939, 940
filename, getting from a path, 78–80
FileName property
PublishObject object, 845
VBproject object, 990

filenumber, 223
files, 405, 406, 648
files folder, 504, 505
Files property, SharedWorkspace object, 1055
FileTypes object, 1034–1035
Fill property
ChartFormat object, 700
Font2 object, 1036
Shape object, 882
ShapeRange object, 888

FillAcrossSheets method
Sheets collection, 892
Worksheets collection, 954

FillAdjacent Formulas property, QueryTable
object, 847

FillDown method, Range object, 861
FillFormat object, 700, 710, 744–746
FillFormat property, Axis object Title, 674
FillLeft method, Range object, 861
FillRight method, Range object, 861
FillUp method, Range object, 861
Filter button, 146, 827

Filter menu, 347
Filter object, 148, 668, 746–747, 1034
Filter property, 442–443
FilterDates procedure, 151
FilterGroupEnum constants, 442
FilterIndex property, FileDialog object, 1032
FilterMode property
AutoFilter object, 668
Worksheet object, 956

Filters collection, 746–747
Filters property
AutoFilter object, 668
FileDialog object, 1032

Final property, Workbook object, 939
Find Control method, CommandBar object, 1002
Find method
CellFormat object, 682
CodeModule object, 977
Range object, 862
TextRange2 object, 1071

FindControl method, CommandBars collection, 1000
FindControls method, CommandBars collection, 1000
FindFile method, Application object, 658
FindFormat property
Application object, 649
CellFormat object, 682
settings, 682

FindNext method, Range object, 862
FindPrevious method, Range object, 862
FindWindow function, 608, 611
FirstChild property, CustomXMLNode object, 1017
FirstLineIndent property, ParagraphFormat2

object, 1048
FitToPages variant, 799
FitToPagesTall property, 799
FitToPagesWide property, 799
FitToPagesWide variant, 799
Fix method, DocumentInspector object, 506, 1026
Fix method, IDocumentInspector object, 1042
Fixed method, 964
FixedDecimal property, Application object, 649
FixedDecimalPlaces property, Application

object, 649
FixedWidthFont property, WebPageFont object, 1076
FixedWidthFontSize property, WebPageFont

object, 1076
Flip method
Shape object, 884
ShapeRange object, 890

Floor object, 747–748, 964
Floor property, Chart object, 688
Folder options, 5

1100

FeatureInstallInstall property, Application object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1100

FolderName property, SharedWorkspaceFolder
object, 1057

Folders property, SharedWorkspace object, 1055
FolderSuffix property, WebOptions object, 928
FollowHyperlink event, Worksheet object, 963
FollowHyperlink method, Workbook object, 534, 945
Font group, 295
Font object, 748–749
Font options, 674, 734, 751, 772, 805
Font property
AboveAverage object, 637
AxisTitle object, 674
BulletFormat2 object, 996
CellFormat object, 683
Characters object, 685
Range object, 854
Style object, 901
TableStyleElement object, 906
TextRange2 object, 1070
TickLabels object, 914
Top10 object, 915
UniqueValues object, 919

Font2 object, 1035–1037
FontBold property, TextEffectFormat object, 907
FontItalic property, TextEffectFormat object, 907
FontName property, TextEffectFormat object, 907
FontSize property, TextEffectFormat object, 907
Footer dialog box, 754
footers, 201–202, 207, 505, 757, 799, 1025
For Each...Next loop, 54–55
For statement, 53
For...Next loop, 53, 79
Forecast method, 964
ForeColor property
ChartFillFormat object, 698
ShadowFormat object, 879

Form button, 158, 214
Form command, 158, 556
Form controls, 209–210, 214, 216, 221, 535
Format function, 87, 152, 228, 542, 546–549, 552, 560
Format parameter, 691, 706, 708, 794, 796
Format property
Axis object, 671
AxisTitle object, 674
ChartArea object, 697
Series object, 874
SeriesLines object, 877
TickLabels object, 914
Trendline object, 918
UpBars object, 921
Walls object, 926

FormatColor object, 749–750

FormatCondition object, 750–753
FormatConditions collection, 750–753
FormatConditions property, Range object, 854
FormatCurrency function, 542
FormatDateTime function, 542
FormatNumber function, 542
FormatPercent function, 542
FormatRow property
AboveAverage object, 637
Top10 object, 915
UniqueValues object, 919

FormFun.xlsm file, 624
FormResizer.xlsm workbook, 628
Forms button, 12
Forms controls, 12–13, 214–216, 950
Forms toolbar, 12, 75, 214, 219, 220
Formula Hidden property, Range object, 854
Formula parameter, 657, 821
Formula property, 194, 197, 548, 557, 559, 568, 678,

854, 874
Formula strings, 548
Formula1 property, Validation object, 923
Formula2 property, Validation object, 923
FormulaArray property, Range object, 559, 854
FormulaBarHeight property, Application object, 649
FormulaHidden property
CellFormat object, 683
Style object, 901

FormulaLocal property
Range object, 854
Series object, 874

FormulaR1C1 property
Range object, 854
Series object, 874

FormulaR1C1Local property
Range object, 854
Series object, 874

Formulas tab, 17, 125, 295
Formulas table, 649
For...Next loop, 53–54
Forward parameter, 917
Forward2 property, Trendline object, 918
ForwardMailer method, Workbook object, 945
Frame control, 275, 496
FreeformBuilder object, 753–754
FreezePanes property, Windows object, 931
Frequency method, 964
FriendlyName, 396, 1039, 1041
From parameters, 686
Front collection, 705
FrontPage Server Extensions, 526, 536
FTest method, 964

1101

FTest method

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1101

FullName property
Add-In, 639
SmartTagRecognizer object, 896
Workbook object, 940

FullNameURLEncoded property, Workbook object, 940
FullPath property, Reference object, 984
Function property, 593, 976
function types, declaring, 44
functions, calling, 35–36
FunctionWizard method, Range object, 862
Fv method, 964
FVSchedule method, 964

G
<gallery .../> control type, 300
GammaDist method, 964
GammaInv method, 964
GammaLn method, 964
Gap property, CalloutFormat object, 680
GapDepth property, Chart object, 688
Gcd method, 964
GDI32.DLL file, 602
GenerateGetPivotData property, Application

object, 649
GenerateSignatureLineImage method,

SignatureProvider object, 1065
GenerateTableRefs property, Application object, 649
GeoMean method, 964
GermanPostReform property, SpellingOptions

collection, 900
GeStep method, 964
Get External Data group, 470–471
GetCategories method, IBlogExtensibility

object, 1039
GetCertificateDetail method, SignatureInfo

object, 1064
GetChartElemerLong method, Chart object, 692
getContent, 304, 305, 316
GetCustom Color method, ThemeColorsScheme, 1073
GetCustomListContents method, Application

object, 658
GetCustomListNum method, Application object, 658
GetCustomUI function, 402, 403
GetCustomUI method, IRibbonExtensibility

object, 1043
GetEnabledMso method, 316, 1000
GetFileName function, 79
GetImagedMso method, CommandBars collection, 1000
GetImageMso, 316
GetInfo method, IDocumentInspector object, 1042
GetInput function, 36

GetItemByInternalName property, MetaProperties
collection, 1044

getItemCount, 304, 305, 315
getItemID, 304, 305, 315
getItemImage, 304, 305, 315
getItemLabel, 304, 305, 315
getItemScreentip, 304, 305, 315
getItemSupertip, 304, 305, 315
getLabel callback, 298
GetLabelMso method, CommandBars collection, 1000
GetObject function, 416, 417, 430, 643, 656
GetOpen filename, 539, 540, 584, 664
GetOpenFileName function, 540, 584, 658
GetPhonetic method, Application object, 658
GetPhonetic string, 658
GetPivotData method, 811, 824
GETPIVOTDATA worksheet function, 824
GetPressedMso method, 316, 1000
GetProviderDetail method
EncryptionProvider object, 1031
SignatureProvider object, 1065

GetRecentPosts method, IBlogExtensibility
object, 1039

GetSaveAsFilename method, Application object, 658
GetScreenTipMso method, 316, 1000
getSelectedItemID callback, 304
getSelectedItemIndex callback, 304
GetSelection method, 591, 979
GetSignatureDetail method, SignatureInfo

object, 1064
GetSupertipMso method, 316, 1001
GetTempPath function, 603
getText, 304
GetUpdate method, Sync object, 1068
GetUserBlogs method, IBlogExtensibility

object, 1040
GetVisibleMso method, CommandBars collection, 1001
GetWindowLong function, 623
GetWindowRect function, 607, 609
GetWorkflowTasks method, Workbook object, 945
GetWorkflowTemplates method, Workbook object, 945
Given Action object, 638, 639
globals, 63–64
<globals>, 63, 74, 95, 97, 115, 376
Glow property
ChartFormat object, 700
Font2 object, 1036
Shape object, 882
ShapeRange object, 888

GlowFormat object, 1037
Go button, 385
GoalSeek method, Range object, 862

1102

FullName property

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1102

Goto method, Application object, 659
Gradient property, 774, 869
GradientColorType property, ChartFillFormat

object, 698
GradientDegree property, ChartFillFormat object, 698
GradientStop object, 1037–1038
GradientStops collection, 1037–1038
GradientStyle property, ChartFillFormat object, 698
GradientVariant property, ChartFillFormat

object, 699
Graphic object, 754–756
GridlineColor property, Windows object, 931
GridlineColorIndex property, Windows object, 931
Gridlines methods, 757
Gridlines object, 756–757
Group method
Range object, 862
ShapeRange object, 890

Group mode, 90, 91
grouping, Worksheet objects, 87–88
Grouping dialog box, 174
GroupItems property
Shape object, 882
ShapeRange object, 888

GroupName property, 213, 281
groups, controlling using RibbonX, 313–314
GroupShapes collection, 757
Guid property
Add-in object, 973
COMAddin object, 998
Reference object, 984

H
HANDLE C data type, 604
handles, 306, 406, 407, 606–609, 640, 986
HangingPunctuation property, ParagraphFormat2

object, 1048
HarMean method, 964
Has3DEffect property, Series object, 874
HasArray property, Range object, 854
HasAuto format, 836
HasAxis property, Chart object, 688
HasChart property
Shape object, 882
ShapeRange object, 888

HasChildNodes method, CustomXMLNode object, 1018
HasDataLabel property, 204
HasDataLabels property, Series object, 874
HasDataTable property, Chart object, 688
HasDisplayUnitLabel property, Axis object, 672
HasErrorBars property, Series object, 874

HasFormat property, TableStyleElement, 906
HasFormula property, Range object, 854
HashStream method, SignatureProvider object, 1065
HasLeaderLines property, Series object, 874
HasLegend property, Chart object, 688
HasMajorGridlines property, Axis object, 672
HasMinorGridlines property, Axis object, 672
HasOpenDesigner property, VBcomponent, 987
HasPassword property, Workbook object, 940
HasRoutingSlip property, 869, 940
HasShortcut key, 659
HasText property, TextFrame object2, 910
HasTitle property
Axis object, 672, 674
Chart object, 688
ChartTitle object, 708

HasUpDownBars property, 701, 920
HasVBProject property, Workbook object, 940
HBITMAP C data type, 604
HBRUSH C data type, 604
HCURSOR C data type, 604
HDC C data type, 604
Header property, Sort object, 896
Header Row, 155, 347, 350, 378, 777, 779, 780
HeaderFooter object, 757–758
headers, 207–208, 505, 757, 799, 1025
HeadersFooters collection, 757
HeartbeatInterval property, 768
HebrewModes property, SpellingOptions

collection, 900
Height parameters, 705, 793, 802
Height property
Application object, 650
Axis object, 672
ChartArea object, 697
CommandBar object, 1001
CommandBarButton object, 1003
CommandBarComboBox object, 1007
CommandBarControl object, 1011
CommandBarPopup object, 1014
CustomTaskPane object, 1016
Range object, 854
Shape object, 882
ShapeRange object, 888
values, 187
Window object, 931, 993

HeightPercent property, Chart object, 688
help, 27–29
Help button, 32, 34
Help file, 659
Help method, Application object, 659
HelpContextID parameter, 659

1103

HelpContextID parameter

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1103

HelpContextId property
CommandBarButton object, 1003
CommandBarComboBox object, 1007
CommandBarControl object, 1011
CommandBarPopup object, 1014

HelpContextID property, VBproject object, 991
HelpFile property
CommandBarButton object, 1004
CommandBarComboBox object, 1007
CommandBarControl object, 1011
CommandBarPopup object, 1014
VBproject object, 991

Hex2Bin method, 964
Hex2Dec method, 964
Hex2Oct method, 964
HFONT C data type, 604
HICON C data type, 604
Hidden fields object, 828
Hidden items property, 171
hidden member, 214
Hidden property
Range object, 154, 160, 854
Scenario object, 871
TreeviewControl object, 917

Hide button, 6
Hide method, 274, 277
hiding names, 131–132
Hierarchize function, 516
Highlight property, Font2 object, 1036
HighlightChangesOnScreen property, Workbook

object, 940
HighlightChangesOptions method, Workbook

object, 945
high-resolution timer, 616, 618, 634
HiLoLines object, 758
HINSTANCE C data type, 604
Hinstance property, Application object, 650
HLOCAL C data type, 604
HLookup method, 964
HMENU C data type, 604
HMETAFILE C data type, 604
HMODULE C data type, 604
Home Directory tab, 532
Home tab, 4, 8, 295
HorizontalAlignment property
AxisTitle object, 674
CellFormat object, 683
Range object, 854
Style object, 901
TextFrame object, 908

HorizontalAnchor property, TextFrame object2, 910

HorizontalFlip property
Shape object, 882
ShapeRange object, 888

HoursPerWeek property, 357, 358
HPageBreak object, 758–759
HPageBreaks collection, 758–759
HPageBreaks property
Charts collection, 686
Sheets collection, 892
Worksheets collection, 954, 956

HPALETTE C data type, 604
HPEN C data type, 604
HRGN C data type, 604
HTASK C data type, 604
HTML feature, 533
HTML file, 532
HTML format, 480, 533
HTML page, 404, 735
HtmlType property, PublishObject object, 845
HWND C data type, 605
Hwnd property
Application object, 650
GetWindowRect function, 607

HWnd property, Window object, 993
Hyperlink object, 759, 760, 761
Hyperlink property, Shape object, 882
Hyperlinks collection, 759–761
Hyperlinks property
Range object, 854
Worksheet object, 956

HyperlinkType property, CommandBarButton
object, 1004

HypGeomDist, 964

I
IAssistance object, 1038–1039
IBlogExtensibility object, 1039–1041
IBlogPictureExtensibility object, 1039–1041
Icon object, 761–762
IconCriteria collection, 762, 763
IconCriterion collection, 762
Icons button, 306
IconSet collection, 762–763
IconSet object, 762
IconSetCondition object, 763–765
IconSets property, Workbook object, 940
ICTPFactory object, 1041
ICustomTaskPaneConsumer interface, 404
ICustomTaskPaneConsumer object, 1041–1042
Id attribute, 302

1104

HelpContextId property

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1104

Id property
CommandBarButton object, 1004
CommandBarComboBox object, 1007
CommandBarControl object, 1011
CommandBarPopup object, 1014
CustomXMLPart object, 1021
IRibbonControl object, 1042
MetaProperty object, 1045
overview, 322–324
PolicyItem object, 1051
Range object, 854
ServerPolicy object, 1050
Shape object, 882
ShapeRange object, 888
SignatureSetup object, 1066
WorkflowTask object, 1077
WorkflowTemplate object, 1078

idMso attribute, 302
IDocumentInspector object, 1042
idQ attribute, 302
IDTExtensibility2 interface, 388–394
IF function, 47, 276, 546
If statements, 47–48
IfError method, 964
IgnoreBlank property, Validation object, 923
IgnoreCaps property, SpellingOptions collection, 900
IgnoreFile Names property, SpellingOptions

collection, 900
IgnoreMixedDigits property, SpellingOptions

collection, 900
IgnoreRemoteRequests property, Application

object, 650
IIf function, 47, 48
ImAbs method, 964
Image attribute, 302
Image control, 233, 235, 237
imageMso attribute, 302
Imaginary method, 964
ImArgument method, 964
ImConjugate method, 964
ImCos method, 964
ImDiv method, 964
IMEMode property, Validation object, 923
ImExp method, 964
ImLn method, 964
ImLog10 method, 964
ImLog2 method, 964
Immediate window, 29–30, 71, 95, 260, 375, 441, 580,

981, 989, 993
Immediate Window button, 29
Implements keyword, 767
implicit conversion, 539, 541, 561
Import file, 363

Import method
importing data into XML map, 257
SoundNote object, 898
VBcomponents collection, 988
XmlMap object, 969

ImportXml method, XmlMap object, 969
ImPower method, 964
ImProduct method, 964
ImReal method, 964
ImSin method, 964
ImSqrt method, 964
ImSub method, 965
ImSum method, 965
inactive worksheets, 96, 99
InactiveListBorder property, Workbook object, 940
Inbox folder, 413
InCell Dropdown property, Validation object, 923
Inches parameter, 659
InchesToPoints method, Application object, 659
Include Protection property, Style object, 902
IncludeAlignment property, Style object, 901
IncludeBorder property, Style object, 902
IncludeFont property, Style object, 902
IncludeLayout property, Axis object Title, 674
IncludeNumber property, Style object, 902
IncludePatterns property, Style object, 902
IncrementLeft method
Shape object, 885
ShapeRange object, 890

IncrementOffsetX method, ShadowFormat object, 879
IncrementOffsetY method, ShadowFormat object, 879
IncrementRotation method
Shape object, 885
ShapeRange object, 890

IncrementRotationHorizontal method,
ThreeDFormat object, 912

IncrementRotationVertical method, ThreeDFormat
object, 912

IncrementRotationX method, ThreeDFormat
object, 913

IncrementRotationY method, ThreeDFormat
object, 913

IncrementRotationZ method, ThreeDFormat
object, 913

IncrementTop method
Shape object, 885
ShapeRange object, 890

IndentLevel property
CellFormat object, 683
ParagraphFormat2 object, 1048
Range object, 854
Style object, 902

Index method, 965

1105

Index method

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1105

Index parameter, 636, 640, 664, 666, 721, 771, 801
Index property
Chart object, 688
Clear Contents control, 341
CommandBar object, 1001
CommandBarButton object, 1004
CommandBarComboBox object, 1007
CommandBarControl object, 1011
CommandBarPopup object, 1014
DocumentLibraryVersion object, 1027
RecentFile object, 868
Scenario object, 871
Trendline object, 918
Window object, 931
Worksheet object, 84, 85, 956

IndexedValue property, Property object, 982
InitialFileName property, FileDialog object, 1032
Initialization controls, 496
Initialize event, 279, 284, 369, 461, 575, 576, 577,

629, 633
Initialize routine, 617
InitializeChart events, 367
InitialView property, FileDialog object, 1032
input and output, 30–35

constants, 33
InputBox, 34–35
parameters specified by name, 31–33
parameters specified by position, 31
return values, 33–34

Input statement, 226, 227
InputBox function, 36, 62, 68–69, 273
InputBox method, 68, 69, 659
InputMessage property, Validation object, 923
InputTitle property, Validation object, 923
Insert button, 12, 13, 209
Insert dialog box, 182
Insert method
Characters object, 685
GradientStops collection, 1038
Range object, 862
ShapeNodes Collection, 886

INSERT statement, 434, 453, 467
InsertAfter method, TextRange2 object, 1071
InsertBefore method, TextRange2 object, 1071
InsertIndent method, Range object, 862
InsertLines method, CodeModule object, 977
InsertNodesBefore method, CustomXMLNode

object, 1018
InsertSubtreeBefore method, CustomXMLNode

object, 1018
InsertSymbol method, TextRange2 object, 1071

Inspect button, 501
Inspect method
IDocumentInspector object, 505, 1026, 1042

Installed property, Add-In, 639
installing Add-ins, 379–381
InstallManifest, 969
Instancing property, 383, 384, 389
InStr function, 195
Int C data type, 605
int FAR * C data type, 605
IntegralHeight property, 634
Interactive property, Application object, 650
Intercept method, 965
Intercept parameter, 917
Intercept property, Trendline object, 918
InterceptIsAuto property, Trendline object, 918
Interior object, 26, 765–767, 774, 869
Interior property
AboveAverage object, 637
AxisTitle object, 674
CellFormat object, 683
Range object, 854
Style object, 902
TableStyleElement object, 906
Top10 object, 915
UniqueValues object, 919

InteriorPattern property, 869
international issues, 537–569

exceptions to rules, 554–560
= TEXT() worksheet function, 558–560
OpenText function, 555–556
pasting text, 557
PivotTable calculated fields and items, 557–558
SaveAs function, 556
ShowDataForm sub procedure, 556
web queries, 558

helpful functions, 565–568
bWinToDate function, 566–567
bWinToNum function, 565–566
ReplaceHolders function, 568
sFormatDate function, 567

interacting with Excel, 545–548
reading data from Excel, 548
rules for working with Excel, 548
sending data to Excel, 545–547

interacting with users, 549–551
displaying data, 549
interpreting data, 550
paper sizes, 549
rules for working with users, 551
xxxLocal properties, 550–551

1106

Index parameter

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1106

international options, 552–554
Office 2007 language settings, 560–565

creating multilingual application, 562–564
identifying Office UI language settings, 561–562
rules for developing multilingual application, 565
where text comes from, 560–561
working in multilingual environment, 564–565

regional settings and Office 2007 UI language, 537–538
regional settings and Windows language, 538–545

identifying user’s regional settings and Windows
language, 538–539

VBA conversion functions, 539–545
International options, 558, 566
International property, Application object, 650
Internet, 525–536

overview, 526
using as communication channel, 533–536
using as data source, 527–531

opening web pages as workbooks, 528
parsing web pages for specific information, 530–531
using web queries, 528–530

using for storing workbooks, 526–527
using to publish results, 531–533

creating interactive web pages, 533
saving worksheets as web pages, 532–533
setting up web server, 532

Internet Transfer control, 525, 534–536, 601
Intersect method, Application object, 115, 659
IntRate method, 965
Introduction property, MsoEnvelope object, 1046
invalidate ContentOnDrop attribute, 302
Invalidate method, 309, 1043
InvalidateControl method, 309, 310, 1043
InvertIfNegative property, Series object, 874
IPicture object, 306, 317
Ipmt method, 965
IQY (Web Query) files, 486–487
IQY files, 484, 486, 487
IRibbon control, 303–305, 310, 311, 316, 403
IRibbon parameter, 309
IRibbonControl object, 1042
IRibbonExtensibility object, 1043
IRibbonUI object, 1043
Irr method, 965
IRtdServer object, 767–768
IrtdServer object, 870
IRTDUpdate event, 768
IRTDUpdateEvent object, 768
IsAddin property, 375, 380–382
IsAddin property, Workbook object, 940
ISBLANK function, 67
IsBoolean function, 541

IsBroken property, Reference object, 984
IsCertificateExpired property, SignatureInfo

object, 1063
IsCertificateRevoked property, SignatureInfo

object, 1063
IsCertificateUntrusted property, SignatureInfo

object, 1064
IsDate function, 541
IsDateUS function, 544
IsEmptyWorksheet function, 323, 324
IsErr method, 965
IsError method, 544, 965
IsEven method, 965
IsInplace property, Workbook object, 940
IsLogical method, 965
IsMember property, Boolean Read-only, 820
IsNA method, 965
IsNameIn workbook, 133, 134, 135
IsNonText method, 965
IsNumeric function, 541, 965
IsOdd method, 965
Ispmt method, 965
IsPriorityDropped property
CommandBarButton object, 1004
CommandBarComboBox object, 1007
CommandBarControl object, 1011
CommandBarPopup object, 1014

IsReadOnly property, MetaProperty object, 1045
IsRequired property, MetaProperty object, 1045
IsSignatureLine property, Signature object, 1062
IsSigned property, Signature object, 1062
IsText method, 965
IsValid property
CalculatedMember object, 678
SignatureInfo object, 1064

Italic buttons, 4, 8
Italic property, Font2 object, 1036
<item .../> control type, 300
Item method
Add-ins collection, 974
COMAddins collection, 997
FileDialogFilters collection, 1034
FileDialogSelectedItems collection, 1034
overview, 636
RulerLevels2 collection, 1052
TabStops2 collection, 1069
TextRange2 object, 1071
ThemeFonts collection, 1073

Item property, 101
Adjustments object, 640
AllowEditRanges collection, 641
Areas collection, 664

1107

Item property

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1107

Item property (continued)
Borders collection, 676
CalculatedMembers collection, 678
Chart object, 686
CommandBarControls collection, 1010
CommandBars collection, 1000
DocumentProperties collection, 1029
Errors Collection object, 741
FileDialog object, 1032
FileTypes collection, 1035
GradientStops collection, 1037
MetaProperties collection, 1044
MsoEnvelope object, 1046
Pages collection, 797
Permission object, 1049
Range object, 97, 100
ScopeFolder collection, 1052
SearchFolders collection, 1053
SearchScopes collection, 1054
ServerPolicy object, 1050
SharedWorkspaceFiles collection, 1056
SharedWorkspaceFolders collection, 1057
SharedWorkspaceLinks collection, 1058
SharedWorkspaceMembers collection, 1059
SharedWorkspaceTasks collection, 1060
Sheetviews collection, 893
SignatureSet collection, 1062
UserAccessList object, 921, 922
WebPageFonts collection, 1076
Windows Collection, 929
Workbook object, 935
WorkflowTasks collection, 1076
WorkflowTemplates collection, 1077

ItemAdded event
Reference collection, 985
ReferenceEvent object, 986

ItemCountExceeded property
SharedWorkspaceFiles collection, 1056
SharedWorkspaceFolders collection, 1057
SharedWorkspaceLinks collection, 1058
SharedWorkspaceMembers collection, 1059
SharedWorkspaceTasks collection, 1060

ItemHeight attribute, 302
ItemID parameter, 317
ItemIndex parameter, 317
ItemRemoved event
Reference collection, 985
ReferenceEvent object, 986

Items combo box, 721
Items parameter, 390, 953
Items property, 363
ItemSize attribute, 302

ItemWidth attribute, 302
Iteration property, Application object, 650
IXMLDOMNode object, 262, 264
IXMLDOMNodeList object, 262

J
Justify method, Range object, 862

K
KeepChangeHistory property, Workbook object, 940
KernedPairs property, TextEffectFormat object, 907
KERNEL32.DLL file, 602
Kerning property, Font2 object, 1036
Key parameter, 660
Key property, SortFields object, 897
Keys parameter, 660
keytip attribute, 302
Kill statement, 60, 61
KoreanCombineAux property, SpellingOptions

collection, 900
KoreanProcessCompound property, SpellingOptions

collection, 900
KoreanUseAutoChangeList property, Spelling

Options collection, 900
Kurt method, 965

L
Label controls, 276, 289
Label filters, 820
label group attribute, 302
labelControl, 299
<labelControl .../> control type, 299
Labels formatting, 703
Labels group, 186, 195
language version of Windows, 561
LanguageID property, TextRange2 object, 1070
LanguagePreferredForEditing property, Language

Settings object, 1044
LanguageSettings object, 1043–1044
LanguageSettings property, Application object, 650
LanuguageID property, LanguageSettings object, 1044
LARGE INTEGER C data type, 605
Large method, 965
LargeButtons property, CommandBars collection, 1000
LargeOperationCellThousandCount property,

Application object, 650
LargeScroll method, Windows object, 933
Last cell, 8, 105, 106, 110, 123
LastChild property, CustomXMLNode object, 1017

1108

Item property (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1108

LastRefreshed property, SharedWorkspace object, 1055
LastSyncTime property, Sync object, 1068
late binding, 412–414
Launcher button, 300
Layout option, 837
Layouts group, 182
LBound functions, 57, 109, 190
Lcm method, 965
LeaderLines object, 769, 771, 772
LeaderLines property, Series object, 874
Left property
Application object, 650
Axis object, 672
AxisTitle object, 675
ChartArea object, 697
CommandBar object, 1002
CommandBarButton object, 1004
CommandBarComboBox object, 1007
CommandBarControl object, 1011
CommandBarPopup object, 1014
Range object, 855
Shape object, 882
ShapeRange object, 888
Window object, 931, 993

LeftIndent property, ParagraphFormat2 object, 1048
Legend object, 770–771
Legend property, Chart object, 688
LegendEntries collection, 771–773
LegendEntry object, 771–773
LegendKey object, 773–774
Len function, 54, 79
Length parameter, 681, 684
Length property
CalloutFormat object, 680
TextRange2 object, 1070

Level object, 520
Levels property, Ruler2 object, 1051
LibraryPath property, Application object, 650
LightAngle property, ThreeDFormat object, 912
Line charts, 671, 702
Line Input statement, 226, 227
Line property
ChartFormat object, 700
Font2 object, 1036
Shape object, 882
ShapeRange object, 888

LinearGradient object, 774, 869
LineFormat object, 700, 775–776
LineRuleAfter property, ParagraphFormat2

object, 1048
LineRuleBefore property, ParagraphFormat2

object, 1048

LineRuleWithin property, ParagraphFormat2
object, 1048

Lines property
CodeModule object, 975
TextRange2 object, 1070

LinEst method, 965
LineStyle property
Border collection, 677
Borders collection, 676

LinkedCell property, 211
LinkedWindowFrame property, Window object, 993
LinkedWindows collection, 982
LinkedWindows property, Window object, 993
LinkFormat object, 776–777
LinkFormat property, Shape object, 883
LinkInfo method, Workbook object, 946
Links property, SharedWorkspace object, 1055
LinkSource property, DocumentProperty object, 1030
LinkSources method, Workbook object, 946
LinkToContent property, DocumentProperty

object, 1030
List controls, 326, 327
List field, 157, 827
List files, 55
list management tools, 141
List object, 145, 147, 148, 151–154, 164, 256, 469,

472, 475, 476, 484, 487, 489, 499, 778–781, 804
List property, 150, 216, 279, 285, 338, 1007
ListAll controls, 279, 341
ListAllFaces, 329
ListBox control, 276
ListChangesOnNewSheet property, Workbook object, 940
ListColumn collection, 777
ListColumn methods, 778
ListColumn object, 777, 778
ListColumns collection, 777–778
ListColumns object, 777
ListControls function, 326
ListCount property, CommandBarComboBox object, 1007
ListDataFormat object, 778–779
ListFirstLevel controls, 322, 323, 327, 338, 340
ListHeaderCount property, CommandBarComboBox

object, 1007
ListHeaderRows property, Range object, 855
ListID property, WorkflowTask object, 1077
ListIndex property, 152, 216, 237, 338, 1008
Listing files, 55
ListNames method, Range object, 862
ListObject collection

methods, 781
properties, 779–780
QueryTables associated with, 475–476

1109

ListObject collection

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1109

ListObject object, 143, 145–148, 155, 160,
779–781, 846

ListObject property
QueryTable object, 847
Range object, 855

ListObjects collection, 779–781
ListObjects property, Worksheet object, 956
ListPopups, 340
ListRows collection, 781
ListRows object, 782
Lists items, 830
ListSelection property, SmartTagAction object, 895
Ln method, 965
Load method
CustomXMLPart object, 1021
ThemeColorsScheme object, 1073
ThemeEffectScheme object, 1073
ThemeFontScheme object, 1074

Load statement, 273
LoadBehavior value, 396
loadImage callback, 306
LoadPicture function, 235, 306
LoadPictureGDI function, 306
LoadSettings method, XmlDataBinding object, 967
LoadXML method, CustomXMLPart object, 1021
Local parameter, 555, 556, 560
LocalConnection property, 790, 809
Locals Window, 580
Location property
CustomXMLSchema object, 1023
VPageBreak object, 925

LocationInTable property, Range object, 855
LocationOfComponents property, WebOptions

object, 928
LocationXLChart method, Chart object, 692
LockAspectRatio property
Shape object, 883
ShapeRange object, 888

Locked property
CellFormat object, 683
Range object, 855
Scenario object, 871
Shape object, 883
Style object, 902

LockServerFile method, Workbook object, 946
Log method, 965
Log10 method, 965
LogBase property, Axis object, 672
LogEst method, 965
LogInv method, 965
LogNormDist method, 965
LONG C data type, 605

Long method, 692
Lookup method, 965
Lookup Namespace method, CustomXMLPrefixMapping

collection, 1022
LookupPrefix method, CustomXMLPrefixMapping

collection, 1022
Loop statement, 51, 52
looping, 50–55

Do...loop, 50–53
For Each...Next loop, 54–55
For...Next loop, 53–54

LPARAM C data type, 605
LPCSTR C data type, 605
LPCTSTR C data type, 605
lpRect parameter, 607
LPSTR C data type, 605
LPTSTR C data type, 605
LPVOID C data type, 605
LRESULT C data type, 605
LtrRun method, TextRange2 object, 1071

M
Macro dialog box, 3, 4, 6, 7, 9, 12, 151, 216, 377
Macro options, 659
Macro parameter, 660
macro recorder, 2–17

embedded charts using, 186
other ways to run macros, 11–17
ActiveX controls, 13–15
event procedures, 16–17
Forms controls, 12–13
Quick Access Toolbar, 15–16
worksheet buttons, 12

recording macros, 2–6
macro security, 5
Personal Macro Workbook, 5–6

running macros, 6–8
absolute and relative recording, 7–8
shortcut keys, 6–7

Visual Basic Editor (VBE), 8–11
code modules, 9–10
procedures, 10
Project Explorer, 10–11
Properties window, 11

Macro Security button, 5
Macro Settings, 5
Macro settings category, 497
Macro settings dialog, 571
macro settings, Trust Center user interface, 497–498
Macro-Enabled workbook, 5
MacroOptions method, Application object, 659

1110

ListObject object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1110

Macros button, 6, 9
MailEnvelope property
Chart object, 688
Worksheet object, 956

Mailer object, 782
Mailer property, Workbook object, 940
MailLogoff method, Application object, 659
MailLogon method, Application object, 659
MailSession property, Application object, 650
MailSystem property, Application object, 650
MaintainConnection property, 790, 847
MainWindow property, VBE, 989
Major property, Reference object, 984
MajorFont property, ThemeFontScheme object, 1074
MajorGridlines property, Axis object, 672
MajorTickMark property, Axis object, 672
MajorUnit property, Axis object, 672
MajorUnitIsAuto property, Axis object, 672
MajorUnitScale property, Axis object, 672
MakeCompiledFile method, VBproject object, 991
Manage Connections group, 471–472
Map property, XPath object, 970
MapPaperSize property, Application object, 651
maps, XML. See XML, XML maps
MarginBottom property
TextFrame object, 908
TextFrame2 object, 910

MarginLeft property
TextFrame object, 908
TextFrame2 object, 910

MarginRight property
TextFrame object, 908
TextFrame2 object, 910

MarginTop property
TextFrame object, 908
TextFrame2 object, 910

MarkerBackgroundColor property, Series object, 874
MarkerBackgroundColorIndex property, Series

object, 874
MarkerForegroundColor property, Series object, 874
MarkerForegroundColorIndex property, Series

object, 874
MarkerSize property, Series object, 875
MarkerStyle property, Series object, 875
Mask property, CommandBarButton object, 1004
MatchCase property, Sort object, 896
MathCoprocessorAvailable property, Application

object, 651
Max property, 285, 287
MaxChange property, Application object, 651
Maximize box, 623
Maximum property, 868

MaximumScale property, Axis object, 672
MaxIterations property, Application object, 651
maxLength attribute, 302
MDX (Multidimensional Expression)

behind OLAP-based pivot tables, 512–517
creating MDX log, 515–517
deciphering MDX queries, 515

MDX property, Range object, 855
MDX query, 512–518, 521–523
MDX statement, 513, 515, 516
Me keyword, 152
MeasurementUnit property, Application object, 651
Members property, SharedWorkspace object, 1055
<menu ...> contents </menu> container

control, 301
menu bars, 320–322, 579
Menu item, Click events, 575
MenuAnimationStyle property, CommandBars

collection, 1000
MenuKey menu, 654
menus

creating, 330–333
deleting, 334
popup, 338–341

menuSeparator, 300, 301, 303
<menuSeparator .../> control type, 300
Merge method
Range object, 863
Scenarios collection, 871

MergeArea property, Range object, 855
MergeCells property
CellFormat object, 683
Range object, 855
Style object, 902

MergeWorkbook method, Workbook object, 946
Message Bar, 494, 496–500
Message box, 24, 32, 78, 356, 403, 505, 513, 550, 609
Message property, RoutingSlip object, 870
MetaProperties collection, 1044–1045
MetaProperty object, 1044–1045
methods, 25
Microsoft Access. See Access, and ADO
Microsoft Access database, 448, 449
Microsoft Internet controls, 530
Microsoft Office button, 3, 5, 373, 374, 379, 380, 489, 491
Microsoft Outlook. See Outlook
Microsoft Word. See Word
Mid function, 54, 195
Min function, 212
Mini toolbar, 317
Minimize box, 623
MinimumScale property, Axis object, 672

1111

MinimumScale property, Axis object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1111

Minor property, Reference object, 984
MinorFont property, ThemeFontScheme object, 1074
MinorGridlines property, Axis object, 672
MinorTickMark property, Axis object, 672
MinorUnit property, Axis object, 672
MinorUnitIsAuto property, Axis object, 672
MinorUnitScale property, Axis object, 672
MOD function, 73
Mod operator, 73, 74, 204
Mode property, VBproject object, 991
Modeless UserForm, 288–291
Modified property, DocumentLibraryVersion

object, 1027
ModifiedBy property
DocumentLibraryVersion object, 1027
SharedWorkspaceFile object, 1056
SharedWorkspaceLink object, 1058
SharedWorkspaceTask object, 1061

ModifiedDate property
SharedWorkspaceFile object, 1056
SharedWorkspaceLink object, 1058
SharedWorkspaceTask object, 1061

Modify button, 15, 493
Modify method, Validation object, 924
ModifyAppliesToRange method
AboveAverage object, 638
Top10 object, 916
UniqueValues object, 920

ModifyKey method, SortFields object, 898
module-level variable, 42, 45, 72, 91, 307, 309,

404, 405, 576
Modules collection, 83
MouseAvailable property, Application object, 651
MouseDown event, Chart object, 695
MouseMove event, Chart object, 695
MouseUp event, Chart object, 695
Move method
Chart object, 686, 692
CommandBarButton object, 1005
CommandBarComboBox object, 1009
CommandBarControl object, 1012
CommandBarPopup object, 1015
Recordset object, 444
Sheets collection, 893
Worksheet object, 85–87, 959
Worksheets collection, 954

MoveAfterReturn property, Application object, 651
MoveAfterReturnDirection property, Application

object, 651
MPR.DLL file, 602
MSDN documentation, 606, 623

MSDN library, 634
MSDN Library menu, 602
MSForms Control, 579
MSForms Control Group, 579
MSForms DragDrop, 580
MSForms MPC, 579
MSForms object library, 594
MSForms Palette, 579
MSForms Toolbox, 580
MsgBox function, 30, 33, 62, 273, 561
MsgBox statements, 360, 363
msoBarPopup, 343
msoBarTypeMenuBar constant, 321
msoBarTypeNormal constant, 321
msoBarTypePopup, 321, 338–340
MsoEnvelope object, 1045–1046
msoFileDialogFilePicker constant, msoFileDialog

object, 234
msoFileDialogFolderPicker constant, msoFile

Dialog object, 234
msoFileDialogOpen constant, msoFileDialog

object, 234
msoFileDialogSaveAs constant, msoFileDialog

object, 234
MsoSync event type, 663
Multi page control, 496
multi-column ListBox, 279
multi-dimensional arrays, 57
Multidimensional Expression (MDX)

behind OLAP-based pivot tables, 512–517
creating MDX log, 515–517
deciphering MDX queries, 515

MultiLevel property, TickLabels object, 914
multilingual application, 562–564
multilingual environment

allowing extra space, 564
using Excel’s objects, 564
using RibbonX, 565
using SendKeys, 565

MultiNomial, 965
multiple recordsets, 460–461
MultiSelect, 236–238, 658
MultiSelect property, 236–237
MultiThreadedCalculation object, 651, 783
MultiThreadedCalculationCalculation property,

Application object, 651
MultiUserEditing property, Workbook object, 940
My Network checkbox, 493
MyMap object, 257
MyTable element, 241–243
MyTableroot element, 242

1112

Minor property, Reference object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1112

N
Name box, 3, 125, 126, 185, 186
Name dialog box, 652
Name Manager dialog box, 125, 126, 129, 132
Name object, 126, 127, 132, 134, 135, 137, 783–785
Name parameter, 603, 692, 833, 835, 841, 868, 901, 917
Name property
Action object, 639
Add-In, 639
Application object, 651
AxisTitle object, 675
CalculatedMember object, 678
Chart object, 688
ChartArea object, 697
CodeModule object, 976
CommandBar object, 1002
CustomXMLValidationError, 1024
DocumentProperty object, 1030
Employee object, 356, 360
Font2 object, 1036
IDocumentInspector object, 1026
MetaProperty object, 1045
Name object, 127, 137
NewMonth object, 87
OLEObjects collection, 218
PolicyItem object, 1051
Property object, 983
QueryTable object, 847
Range object, 128, 132–135, 855
RecentFile object, 868
Reference object, 984
Scenario object, 871
ScopeFolder object, 1053
Series object, 875
SeriesLines object, 877
ServerPolicy object, 1050
Shape object, 883
ShapeRange object, 888
SharedWorkspace object, 1055
SharedWorkspaceMember object, 1060
SmartTag object, 894
SmartTagAction object, 895
Style object, 902
TableStyle object, 905
ThemeFont object, 1074
TickLabels object, 914
Trendline object, 918
UpBars object, 921
UserAccess Collection, 921
VBcomponent object, 987
VBproject object, 991
Walls object, 926
Workbook object, 23, 75, 79, 940

WorkflowTask object, 1077
WorkflowTemplate object, 1078
Worksheet object, 956
XmlMap object, 968
XMLSchema object, 970

Name Table, 783
NameAscii property, Font2 object, 1036
NameComplex Script property, Font2 object, 1036
NameFarEast property, Font2 object, 1036
NameIsAuto property, Trendline object, 918
NameLocal property
CommandBar object, 1002
Style object, 902
TableStyle object, 905

NameOther property, Font2 object, 1036
names, 125–139

hiding names, 131–132
naming ranges, 127–128
searching for, 133–139
special names, 128–129
storing arrays, 130–131
storing values in, 129
storing values in names, 129–130
working with named ranges, 132–133

Names collection, 67, 126–129, 783–785
Names dialog box, 784
Names procedure, 58
Names property
Application object, 651
Workbook object, 940
Worksheet object, 956

Namespace Manager property, CustomXMLPart
object, 1021

NameSpace object, 413
NameSpace property, XMLSchema object, 970
namespaces, 243–245, 266, 267, 296, 308, 412, 415,

423, 968–970, 1017, 1018, 1020–1023, 1039
NameSpaces, XML, 243–245
NameSpaceURI property
CustomXMLNode object, 1017
CustomXMLPart object, 1021
CustomXMLPrefixMapping collection, 1023
CustomXMLSchema object, 1023

naming conventions, variables, 44–45
NavigateArrow method, Range object, 863
NavigKeys, 654
NegBinomDist, 965
Neither method, 11
NETAPI32.DLL file, 602
Network Library connection, 455
NetworkDays, 965
NetworkTemplatesPath property, Application

object, 651

1113

NetworkTemplatesPath property, Application object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1113

New button, 126
New keyword, 415–417, 430, 643
New operator, 598
NewFile object, 1046
NewSeries method, 190, 192, 197
NewSession method, EncryptionProvider object, 1031
NewSheet event, Workbook object, 952
NewWindow method
Window object, 933
Workbook object, 946

NewWorkbook object event, Application object, 661
NewWorkbook property, Application object, 651
Next property
Chart object, 688
Range object, 855
Worksheet object, 956

Next statement, 53, 69, 87, 106, 134
NextLetter method, Application object, 660
NextRecordset method, 444–445, 461
Nextsibling property, CustomXMLNode object, 1017
Node property, CustomXMLValidationError object, 1024
NodeAfterDelete event, CustomXMLPart object, 1022
NodeAfterInsert event, CustomXMLPart object, 1022
NodeAfterReplace event, CustomXMLPart object, 1022
Nodes property
Shape object, 883
ShapeRange object, 888

NodeType property, CustomXMLNode object, 1017
NodeValue property, CustomXMLNode object, 1017
Nominal, 965
NON EMPTY keyword, 516
non-contiguous range, 95, 113, 114, 852
non-standard data sources, using ADO with, 463–468

inserting and updating records in workbooks, 466–467
querying text files, 467–468
querying workbooks, 464–466

NormalizedHeight property, TextEffectFormat
object, 907

Norwegian number format character, 558
Norwegian number formats, 556
Norwegian settings, 541, 542, 544
Norwegian-formatted date, 540
NOT operators, 443
Notepad document, 70
Notes property, SharedWorkspaceLink object, 1059
NoteText method, Range object, 863
Notification option, 496, 497
NotifySignatureAdded method, SignatureProvider

object, 1065
Now function, 616
Number format, 25, 153, 169, 170, 420, 547, 548, 551,

558, 637, 683, 730, 732, 751, 816
Number format dialog box, 542, 547

Number format groups, 297
Number property
BulletFormat2 object, 996
TextColumn2 object, 1069

NumberFormat Local property, CellFormat object, 683
NumberFormat property, 15, 24, 153, 168, 548, 637, 902,

914, 915, 919
NumberFormatLinked property, TickLabels object, 914
NumberFormatLocal property
Range object, 855
Style object, 902
TickLabels object, 914

numbers, deleting, 107
NumIndices property, Property object, 983

O
Object Browser, 27–29, 62, 63, 186, 208, 214, 345, 412,

430, 539, 562, 580, 595
Object Browser button, 27
Object data type, 43
object model, Excel 2007
AboveAverage object, 636–638
Action object, 638–639
Actions collection, 638–639
Add-In object, 639
Addins collection, 639
Adjustments object, 640–641
AllowEditRange object, 642
AllowEditRanges collection, 641
Application object, 642–664

events, 661–663
example, 664
methods, 656–661
properties, 643–656

Areas collection, 664–665
AutoCorrect object, 665–667
AutoFilter object, 667–669
AutoRecover object, 669–670
Axis object and Axes collection, 670–674
AxisTitle object, 674–675
Border object and Borders collection, 676–677
CalculatedFields collection, 677
CalculatedItems collection, 678
CalculatedMember object, 678–679
CalculatedMembers collection, 679–680
CalloutFormat object, 680–682
CellFormat object, 682–684
Characters object, 684–685
Chart object

events, 694–695
example, 696

1114

New button

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1114

methods, 690–694
properties, 687–690

ChartArea object, 696–697
ChartColorFormat object, 698
ChartFillFormat object, 698–700
ChartFormat object, 700–701
ChartGroup object, 701–704
ChartObject object, 706–708
ChartObjects collection, 704–706
Charts collection, 686–687
ChartTitle object, 708–710
ChartView object, 710
collection methods, 636
collection properties, 635
ColorFormat object, 710–711
ColorScale object, 711–713
ColorScaleCriteria collection, 713
Comment object and Comments collection, 714–716
Comment object and Comments collection, 714–716
ConditionValue object, 716
Connections object, 716–717
ConnectorFormat object, 717–719
ControlFormat object, 719–721
CubeField object and CubeFields collection, 721–724
CustomProperty object and CustomProperties

collection, 724–726
CustomView object and CustomViews collection, 726–727
Databar object, 727–729
DataLabel object and DataLabels collection, 729–734
DataTable object, 734–735
DefaultWebOptions object, 735–737
Dialog object and Dialogs collection, 737–738
DisplayUnitLabel object, 738–739
DownBars object, 740
DropLines object, 740–741
Error object and Errors collection, 741–742
ErrorBars object, 742–743
ErrorCheckingOptions collection object, 743–744
FillFormat object, 744–746
Filter object and Filters collection, 746–747
Floor object, 747–748
Font object, 748–749
FormatColor object, 749–750
FormatCondition object and FormatConditions

collection, 750–753
FreeformBuilder object, 753–754
Graphic object, 754–756
Gridlines object, 756–757
GroupShapes collection, 757
HeaderFooter object, 757–758
HiLoLines object, 758
HPageBreak object and HPageBreaks collection,

758–759

Hyperlink object and Hyperlinks collection, 759–761
Icon object, 761–762
IconCriterion and IconCriteria collection, 762
IconSet and IconSets collection, 762–763
IconSetCondition object, 763–765
Interior object, 765–767
IRtdServer object, 767–768
IRTDUpdateEvent object, 768
LeaderLines object, 769
Legend object, 770–771
LegendEntry object and LegendEntries collection,

771–773
LegendKey object, 773–774
LinearGradient object, 774
LineFormat object, 775–776
LinkFormat object, 776–777
ListColumn and ListColumns collection, 777
ListColumns Common Properties, 777–778
ListDataFormat object, 778–779
ListObject object and ListObjects collection,

779–781
Mailer object, 782
MultiThreadedCalculation object, 783
Name object and Names collection, 783–785
object properties, 636
ODBCConnection object, 785–787
ODBCError object and ODBCErrors collection, 787–788
OLEDBConnection object, 788–790
OLEDBError object and OLEDBErrors collection,

790–791
OLEFormat object, 791–792
OLEObject object and OLEObjects collection, 792–796
Outline object, 796–797
Page object and Pages collection, 797–798
PageSetup object, 798–801
Pane object and Panes collection, 802–803
Parameter object and Parameters collection, 803–804
Phonetic object and Phonetics collection, 804–805
PictureFormat object, 806–807
PivotAxis object, 807
PivotCache object and PivotCaches collection,

807–811
PivotCell object, 811–812
PivotField object, PivotFields collection, and

CalculatedFields collection, 812–819
PivotFilter object and PivotFilters collection,

819–821
PivotFormula object and PivotFormulas collection,

821–822
PivotItem object, PivotItems collection, and

CalculatedItems collection, 822–823
PivotItemList object, 824
PivotLayout object, 824–825

1115

object model, Excel 2007

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1115

object model, Excel 2007 (continued)
PivotLine object, PivotLines collection, and

PivotLinesCells collection, 825
PivotTable object and PivotTables collection,

825–837
PlotArea object, 838–839
Point object and Points collection, 839–842
Protection object, 842–844
PublishObject object and PublishObjects collection,

844–846
QueryTable object and QueryTables collection,

846–852
Range object and Ranges collection object, 852–868

methods, 858–868
overview, 852
properties, 852–857

Real-Time Data (RTD) object, 870
RecentFile object and RecentFiles collection,

868–869
RectangularGradient object, 869
RoutingSlip object, 869–870
Scenario object and Scenarios collection, 871–872
Series object and SeriesCollection collection,

872–877
SeriesLines object, 877
ServerViewableItems collection, 878
ShadowFormat object, 878–879
Shape object and Shapes collection, 880–885
ShapeNode object and ShapeNodes collection, 886–887
ShapeRange object collection, 887–891
Sheets collection, 891–893

overview, 891
Sheets common properties, 891
Sheets methods, 892–893
Sheets properties, 892

SheetViews object, 893
SmartTag object and SmartTags collection object,

893–894
SmartTagAction object and SmartTagActions

collection object, 894–895
SmartTagOptions collection object, 895
SmartTagRecognizer object and SmartTag

Recognizers collection object, 895–896
Sort object, 896–897
SortField object and SortFields collection, 897–898
SoundNote object, 898
Speech object, 898–899
SpellingOptions collection object, 899–901
Style object and Styles collection, 901–903
Tab object, 903–904
TableStyle object and TableStyles collection object,

904–906

TableStyleElement object and TableStyleElements
collection object, 906

TextEffectFormat object, 907–908
TextFrame object, 908–909
TextFrame2 object, 909–911
ThreeDFormat object, 911–913
TickLabels object, 913–915
Top10 object, 915–917
TreeviewControl object, 917
Trendline object and Trendlines collection, 917–919
UniqueValues object, 919–920
UpBars object, 920–921
UsedObjects collection object, 921–922
UserAccessList collection object, 922
Validation object, 923–924
VPageBreak object and VPageBreaks collection,

924–925
Walls object, 925–926
Watch object and Watches collection object, 926–928
WebOptions object, 928–929
Window object and Windows collection, 929–935
Workbook object and Workbooks collection, 935–953

events, 951–953
methods, 935–937, 944–951
overview, 935
properties, 935–943

WorkbookConnection object, 953
Worksheet object, 953–963

events, 962–963
methods, 958–962
properties, 955–958

WorksheetFunction object, 963–966
Worksheets collection, 954–955
WorksheetView object, 966–967
XmlDataBinding object, 967
XmlMap object and XMLMaps collection, 967–969
XmlNameSpace object and XMLNameSpaces

collection, 969
XmlSchema object and XmlSchemas collection, 969–970
XPath object, 970

object model, Office 2007, 995–1078
BulletFormat2 object, 996–997
COMAddinObject and COMAddins collection object,

997–999
CommandBar object and CommandBars collection object,

999–1002
CommandBarButton object, 1003–1006
CommandBarComboBox object, 1006–1009
CommandBarControl object and CommandBar

Controls collection object, 1010–1013
CommandBarPopup object, 1013–1015
common properties, 995–996
CustomTaskPane object, 1016

1116

object model, Excel 2007 (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1116

CustomXMLNode object and CustomXMLNodes collection
object, 1017–1020

CustomXMLPart object and CustomXMLParts collection
object, 1020–1022

CustomXMLPrefixMapping object and CustomXML
PrefixMappings collection object, 1022–1023

CustomXMLSchema object and CustomXMLSchema
Collection object, 1023–1024

CustomXMLValidationError object and CustomXML
ValidationErrors collection object, 1024–1025

DocumentInspector object and DocumentInspectors
collection object, 1025–1026

DocumentLibraryVersion object and Document
LibraryVersions collection object, 1027

DocumentProperty object and DocumentProperties
collection object, 1028–1030

EncryptionProvider object, 1030–1031
FileDialog object, 1031–1033
FileDialogFilter object and FileDialogFilters

collection object, 1033–1034
FileDialogSelectedItems collection object, 1034
FileTypes object, 1034–1035
Font2 object, 1035–1037
GlowFormat object, 1037
GradientStop object and GradientStops collection

object, 1037–1038
IAssistance object, 1038–1039
IBlogExtensiblity and IBlogPicture

Extensibility objects, 1039–1041
ICTPFactory object, 1041
ICustomTaskPaneConsumer object, 1041–1042
IDocumentInspector object, 1042
IRibbonControl object, 1042
IRibbonExtensiblity object, 1043
IRibbonUI object, 1043
LanguageSettings object, 1043–1044
MetaProperty object and MetaProperties collection

object, 1044–1045
MsoEnvelope object, 1045–1046
NewFile object, 1046
ODSOColumn object and ODSOColumns collection

object, 1047
ODSOFilter object and ODSOFilters collection

object, 1047
OfficeDataSourceObject object, 1047
OfficeTheme object, 1047
ParagraphFormat2 object, 1048–1049
Permission object, 1049–1050
PolicyItem object and ServerPolicy collection

object, 1050–1051
ReflectionFormat object, 1051
Ruler2 object, 1051
RulerLevel2 object and RulerLevels2 collection

object, 1052

ScopeFolder object and ScopeFolders collection
object, 1052–1053

SearchFolders collection object, 1053
SearchScope object and SearchScopes collection

object, 1054
SharedWorkspace object, 1054–1055
SharedWorkspaceFile object and Shared

WorkspaceFiles collection object, 1055–1056
SharedWorkspaceFolder object and Shared

WorkspaceFolders collection object, 1057
SharedWorkspaceLink object and Shared

WorkspaceLinks collection object, 1058–1059
SharedWorkspaceMember object and Shared

WorkspaceMembers collection object, 1059–1060
SharedWorkspaceTask object and SharedWorkspace

Tasks collection object, 1060–1061
Signature object and SignatureSet collection object,

1061–1063
SignatureInfo object, 1063–1064
SignatureProvider object, 1064–1066
SignatureSetup object, 1066
SmartDocument object, 1066–1067
SoftEdgeFormat object, 1067
Sync object, 1067–1068
TabStop2 object and TabStops2 collection object,

1068–1069
TextColumn2 object and TextColumns2 collection

object, 1069
TextRange2 object, 1070–1072
ThemeColor object, 1072
ThemeColorsScheme object, 1072–1073
ThemeEffectScheme object, 1073
ThemeFont object and ThemeFonts collection object,

1073–1074
ThemeFontScheme object, 1074
UserPermission object, 1074–1075
WebPageFont object and WebPageFonts collection

object, 1075–1076
WorkflowTask object and WorkflowTasks collection

object, 1076–1077
WorkflowTemplate object and WorkflowTemplates

collection object, 1077–1078
object model, VBE, 971–994
AddIn object and Add-Ins collection, 973–974
CodeModule object, 974–978
CodePane object and CodePanes collection, 978–980
CommandBarEvents object, 980–981
common properties and methods, 972–973
End FunctionReferencesEvents object, 986
Events object, 981–982
LinkedWindows collection, 982
links between Excel and, 971–972
overview, 971

1117

object model, VBE

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1117

object model, VBE (continued)
Property object and Properties collection, 982–983
Reference object and References collection, 984–986
VBComponent object and VBComponents collection,

986–989
VBE object, 989–990
VBProject object and VBProjects collection, 990–992
Window object and Windows collection, 992–994

object properties, 636
Object property, 218, 401, 408, 437, 973, 983, 998
Object statement, 91
Object type, 44, 45, 276, 306, 415, 639, 690
Object types, 90, 371, 413, 417, 430
object variables, 45–47
objectinput argument, 413
objects, 22–27

collections, 22–23
events, 26–27
methods, 25
properties, 23–25

Obscured property, ShadowFormat object, 879
ODBC driver, 476
ODBC query, 786, 787
ODBCConnection methods, 787
ODBCConnection object, 489, 785–787, 790
ODBCError object, 787–788, 790
ODBCErrors collection, 787–788
ODBCErrors property, Application object, 651
ODBCTimeout property, Application object, 651
ODC (Office Data Connect) files, 484–486
ODSOColumn object and ODSOColumns collection, 1047
ODSOFilter object and ODSOFilters collection, 1047
Office 2007

Custom UI editor, 294–296, 305, 306
Office 2007 language settings

creating multilingual application, 562–564
identifying, 561–562
and regional settings, 537–538
rules for developing multilingual application, 565
where text comes from, 560–561

language version of Windows, 561
Office UI language settings, 561
Regional Settings location, 560–561

working in multilingual environment, 564–565
allowing extra space, 564
using Excel’s objects, 564
using RibbonX, 565
using SendKeys, 565

Office 2007 object model, 995–1078
BulletFormat2 object, 996–997
COMAddinObject and COMAddins collection object,

997–999

CommandBar object and CommandBars collection object,
999–1002

CommandBarButton object, 1003–1006
CommandBarComboBox object, 1006–1009
CommandBarControl object and CommandBarControls

collection object, 1010–1013
CommandBarPopup object, 1013–1015
common properties, 995–996
CustomTaskPane object, 1016
CustomXMLNode object and CustomXMLNodes collection

object, 1017–1020
CustomXMLPart object and CustomXMLParts collection

object, 1020–1022
CustomXMLPrefixMapping object and CustomXML

PrefixMappings collection object, 1022–1023
CustomXMLSchema object and CustomXMLSchema

Collection object, 1023–1024
CustomXMLValidationError object and CustomXML

ValidationErrors CollectionObject, 1024–1025
DocumentInspector object and DocumentInspectors

collection object, 1025–1026
DocumentLibraryVersion object and Document

LibraryVersions collection object, 1027
DocumentProperty object and DocumentProperties

collection object, 1028–1030
EncryptionProvider object, 1030–1031
FileDialog object, 1031–1033
FileDialogFilter object and FileDialogFilters

collection object, 1033–1034
FileDialogSelectedItems collection object, 1034
FileTypes object, 1034–1035
Font2 object, 1035–1037
GlowFormat object, 1037
GradientStop object and GradientStops collection

object, 1037–1038
IAssistance object, 1038–1039
IBlogExtensibility and

IBlogPictureExtensibility objects,
1039–1041

ICTPFactory object, 1041
ICustomTaskPaneConsumer object, 1041–1042
IDocumentInspector object, 1042
IRibbonControl object, 1042
IRibbonExtensibility object, 1043
IRibbonUI object, 1043
LanguageSettings object, 1043–1044
MetaProperty object and MetaProperties collection

object, 1044–1045
MsoEnvelope object, 1045–1046
NewFile object, 1046
ODSOColumn object and ODSOColumns collection

object, 1047

1118

object model, VBE (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1118

ODSOFilter object and ODSOFilters collection
object, 1047

OfficeDataSourceObject object, 1047
OfficeTheme object, 1047
ParagraphFormat2 object, 1048–1049
Permission object, 1049–1050
PolicyItem object and ServerPolicy collection

object, 1050–1051
ReflectionFormat object, 1051
Ruler2 object, 1051
RulerLevel2 object and RulerLevels2 collection

object, 1052
ScopeFolder object and ScopeFolders collection

object, 1052–1053
SearchFolders collection object, 1053
SearchScope object and SearchScopes collection

object, 1054
SharedWorkspace object, 1054–1055
SharedWorkspaceFile object and

SharedWorkspaceFiles collection object,
1055–1056

SharedWorkspaceFolder object and
SharedWorkspaceFolders collection object, 1057

SharedWorkspaceLink object and
SharedWorkspaceLinks collection object,
1058–1059

SharedWorkspaceMember object and
SharedWorkspaceMembers collection object,
1059–1060

SharedWorkspaceTask object and SharedWorkspace
Tasks collection object, 1060–1061

Signature object and SignatureSet collection object,
1061–1063

SignatureInfo object, 1063–1064
SignatureProvider object, 1064–1066
SignatureSetup object, 1066
SmartDocument object, 1066–1067
SoftEdgeFormat object, 1067
Sync object, 1067–1068
TabStop2 object and TabStops2 collection object,

1068–1069
TextColumn2 object and TextColumns2 collection

object, 1069
TextRange2 object, 1070–1072
ThemeColor object, 1072
ThemeColorsScheme object, 1072–1073
ThemeEffectScheme object, 1073
ThemeFont object and ThemeFonts collection object,

1073–1074
ThemeFontScheme object, 1074
UserPermission object, 1074–1075
WebPageFont object and WebPageFonts collection

object, 1075–1076

WorkflowTask object and WorkflowTasks collection
object, 1076–1077

WorkflowTemplate object and WorkflowTemplates
collection object, 1077–1078

Office Data Connect (ODC) files, 484–486
Office language pack, 545
Office language version, 542
Office library folder, 492
Office Menu, 294–296, 312, 527, 552
Office menu, customizing, 312
Office UI Language, 549, 557, 561–564, 568
Office XP setting, 648
OfficeDataSourceObject object, 1047
OfficeTheme object, 1047
Offline Cube file, 521, 717, 788, 808
offline cubes, creating, 521–523

manually, 521
using CreateCubeFile method, 521–522

Offset parameters, 102
Offset property, 102–103, 124, 855, 914
OffsetX property, ShadowFormat object, 879
OffsetY property, ShadowFormat object, 879
OLAP cube, 509–512, 515, 519, 721
OLAP data sources, 507–523

analyzing OLAP data via pivot tables, 508–512
browsing OLAP data source, 510–512
connecting to OLAP data source, 508–509

browsing without pivot tables, 517–520
creating inventory of dimensions, hierarchies, and levels,

519–520
using ADO MD to get cube schema information, 518–519
using ADO to return flattened recordsets, 517–518

creating offline cubes, 521–523
creating offline cube using ADO MD and VBA, 522–523
manually, 521
using CreateCubeFile method, 521–522

MDX behind OLAP-based pivot tables, 512–517
creating MDX log, 515–517
deciphering MDX queries, 515

OLAP database, 507, 508, 513
OLAP server, 512, 515, 517–519, 789, 790, 808, 816
OLAP-based pivot tables, 512, 515, 517, 521, 522, 523
OLE DB providers, 436, 438–440, 448, 452, 455, 460, 464,

466, 476, 790, 791
OLE object, 880
OLEDB connection, 651
OLEDBConnection object, 489, 788–790
OLEDBError object, 790–791
OLEDBErrors collection, 790–791
OLEDBErrors property, Application object, 651
OLEFormat object, 791–792
OLEFormat property, Shape object, 883
OLEMenuGroup property, CommandBarPopup object, 1014

1119

OLEMenuGroup property, CommandBarPopup object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1119

OLEObject collection, 218, 792, 793
OLEObject methods, 796
OLEObject object, 217, 218, 219, 221, 676, 692, 754,

765, 776, 792–796
OLEObjects collection, 792–796
OLEObjects method
Chart object, 692
Worksheet object, 959

OLEUsage property
CommandBarButton object, 1004
CommandBarComboBox object, 1008
CommandBarControl object, 1011
CommandBarPopup object, 1014

OLTP database, 507
On Error Resume Next statement, 61–62
On Error statement, 59, 60, 62, 107, 170
OnAction callback, 304
OnAction macros, 332–333
OnAction property, 210, 216, 220, 322, 332, 333, 349,

398, 576, 577, 578, 579, 883, 999, 1004, 1008,
1012, 1014

OnAddInsUpdate method, 395
OnBeginShutdown method, 395
onChange callback, 304
OnConnection method, 388, 395, 397, 399
OnDisconnection event, 400
OnDisconnection method, 395, 397, 400
OneColorGradient method, ChartFillFormat

object, 699
OnKey method, 72–73
onLoad callback, 309, 310
OnRepeat method, Application object, 660
OnStartupComplete method, 395
OnTime method, 71–72, 660, 767
OnUndo method, Application object, 660
OnUpdate event, CommandBars collection, 1001
OnWindow property
Application object, 652
Window object, 931

Open button, 235
Open dialog box, 233–236, 584, 658, 664, 755
Open event, 16, 150, 206, 338, 346, 351, 365,

577, 584, 952
Open method, 78, 80, 179, 417, 429, 439, 443, 450, 451,

462, 868, 936, 1027, 1040
Open statement, 223
Open XML files, using VBA to program, 265–272
OpenDatabase method, Workbook object, 936
opening text files, 223
OpenLinks method, Workbook object, 946
OpenText method, 482, 555–556, 560, 561, 937
OpenVersion method, Sync object, 1068

OpenXML method, 253, 937
OperatingSystem property, Application object, 652
Operator property, 751, 923
operator text, 752
Optimize memory checkbox, 512
option Base setting, 118, 190
option Base statement, 55, 56, 216
Option Button controls, 212–214
option buttons, 12, 210, 211, 213, 214, 221, 275, 276,

281, 590
Option Explicit statement, 39–40, 41, 278, 362,

575–577, 581, 583, 591, 599, 611, 616, 618,
620, 628

OptionButton control, 276
options Base statement, 56
options button, 489, 491, 499, 500, 648, 666
OR operator, 157, 440
Order parameter, 917
Order property
SortFields collection, 897
Trendline object, 918

OrganizationName property, Application object, 652
OrganizeInFolder property, WebOptions object, 928
Orientation property
AxisTitle object, 675
CellFormat object, 683
Range object, 855
Sort object, 896
Style object, 902
TextFrame object, 908
TextFrame2 object, 910
TickLabels object, 914

OUT parameters, 605
Outline object, 796–797
Outline property, Worksheet object, 956
OutlineLevel property, Range object, 855
Outlook, 21, 411–413, 415, 420–423, 659, 971, 997,

1039, 1045, 1054
Overwrite parameter, 715
overwriting, Workbook object, 81–82
OwnerDocument property, CustomXMLNode object, 1017
OwnerPart property, CustomXMLNode object, 1018

P
page Break view, 340, 341
page fields, 164, 166, 167, 813, 828, 829, 831, 832, 836
page object, 797
Page object and Pages collection, 797–798
Page Setup command, 754
PageBreak property, Range object, 855
pages collection, 797, 800
PageSetup object, 53, 549, 798–801

1120

OLEObject collection

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1120

PageSetup property
Chart object, 688
Worksheet object, 957

Pane object, 802–803
Panes collection, 802–803
Panes property, Windows object, 932
paper sizes, 549
Paragraph Format property, TextRange2 object, 1070
ParagraphFormat2 object, 1048–1049
Paragraphs property, TextRange2 object, 1070
Parameter data type, 603
Parameter method, 447
Parameter object, 446, 447, 477, 478, 803
Parameter object and Parameters collection, 803–804
Parameter properties, 332
Parameter property, 332, 333, 345, 349, 399, 400, 1004,

1008, 1012, 1014
parameter queries, 476–479, 484
parameter types, declaring, 44
Parameter value, 333, 337
ParameterDirectionEnum value, 446
parameters
passing parameter values, 333–334
specified by name, 31–33
specified by position, 31

Parameters argument, 447
Parameters collection, 446, 447, 457, 460, 477, 803
Parameters property, QueryTable object, 847
Parent property, 635, 636, 995, 996
ParentGroup property
Shape object, 883
ShapeRange object, 888

parentheses, 34, 37, 38
ParentNode property, CustomXMLNode object, 1018
Parse method, Range object, 863
PartAfterAdd event, CustomXMLPart objects

collection, 1020
PartAfterLoad event, CustomXMLPart objects

collection, 1020
PartBeforeDelete event, CustomXMLPart objects

collection, 1020
Password property, Workbook object, 940
PasswordEncryptionAlgorithm property, Workbook

object, 940
PasswordEncryptionFileProperties property,

Workbook object, 941
PasswordEncryptionKeyLength property, Workbook

object, 941
PasswordEncryptionProvider property, Workbook

object, 941
Paste method
Chart object, 693
SeriesCollection object, 873, 876

TextRange2 object, 1071
Walls object, 926
Worksheet object, 959

PasteFace method, CommandBarButton object, 1005
PasteSpecial method
Range object, 863
TextRange2 object, 1071
Worksheet object, 959

pasting text, 557
Path property
Add-In, 639
Application object, 652
AutoRecover object, 669
RecentFile object, 868
ScopeFolder object, 1053
Workbook object, 941

Pathdoubled property, Workbook object, 941
PathFormat property, TextFrame object2, 910
paths, getting filename from, 78–80
PathSeparator property, Application object, 652
Pattern property, ChartFillFormat object, 699
Patterned method, ChartFillFormat object, 699
Percent property, Top10 object, 915
Percentage format, 644
Period parameter, 917
Period property, Trendline object, 918
Periods parameter array, 174
Permission object, 1049–1050
Permission property
UserPermission object, 1075
Workbook object, 941

PermissionFromPolicy property, Permission
object, 1049

Personal Macro Workbook, 5–6
PersonalViewListSettings property, Workbook

object, 941
PersonalViewPrintSettings property, Workbook

object, 941
Personal.xlsb, 5, 6
Perspective property
Chart object, 688
ThreeDFormat object, 912

Phonetic, 965
Phonetic object, 804–805
Phonetic property, Range object, 855
PhoneticCharacters property, 685
Phonetics collection, 804–805
Phonetics property, Range object, 856
PickSolution method, SmartDocument object, 1067
PickUp method
Shape object, 885
ShapeRange object, 890

Picture bulletformat2 methods, 997

1121

Picture bulletformat2 methods

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1121

Picture buttons, 754
Picture file format, 700, 746
Picture format object, 700, 806
Picture object, 348, 758, 880, 1041
Picture property, CommandBarButton object, 1004
Picture type property, 774, 841
PictureFormat object, 806–807
PictureFormat property
ChartFormat object, 700
Shape object, 883
ShapeRange object, 888

PictureType property
Series object, 875
Walls object, 926

PictureUnit property, Walls object, 926
PictureUnit2 property, Series object, 875
Pivot cache, methods, 810
Pivot cache object, 164, 165, 487, 807, 809, 810
Pivot caches collection, 164, 165, 807
Pivot field object, 166, 167, 168, 170, 171, 174, 677,

812, 816, 819, 822
Pivot field property, 815
Pivot fields collection, 166, 170, 677, 723, 812, 819
Pivot item object, 678, 817, 822
Pivot itemList object, 824
Pivot items collection, 171, 176, 678, 822, 823
pivot tables

analyzing OLAP data via, 508–512
browsing OLAP data source, 510–512
connecting to OLAP data source, 508–509

browsing without, 517–520
creating inventory of dimensions, hierarchies, and levels,

519–520
using ADO MD to get cube schema information, 518–519
using ADO to return flattened recordsets, 517–518

OLAP-based, MDX behind, 512–517
creating MDX log, 515–517
deciphering MDX queries, 515

PivotAxis object, 807, 829
PivotCache object, 807–811
PivotCaches collection, 165, 807–811
PivotCaches method, Workbook object, 946
PivotCell object, 811–812, 824
PivotCell property, Range object, 856
PivotCells collection, 825
PivotCharts, 177–178
PivotField object, 166, 812–819
PivotField property, Range object, 856
PivotFields, 166–171
PivotFields collection, 677, 812–819
PivotFilter methods, 821
PivotFilter object, 819–821
PivotFilter properties, 820

PivotFilters collection, 818, 819–821, 832
PivotFormula methods, 822
PivotFormula object, 821–822
PivotFormulas collection, 821
PivotItem object, 822–823
PivotItem property, Range object, 856
PivotItemList object, 824
PivotItems, 171–176
CalculatedItems collection, 176
grouping, 171–175
Visible property, 175–176

PivotItems collection, 678, 822–823
PivotLayout object, 177, 180, 824–825
PivotLayout property, Chart object, 689
PivotLine object, 825
PivotLines collection, 825
PivotLinesCells collection, 825
PivotTable button, 162
PivotTable cache, 808, 823, 825, 826
PivotTable calculated fields and items, 557–558
PivotTable chart, 637, 712, 728, 752, 764
PivotTable data, 177
PivotTable item, 811, 813, 815–817, 819, 822
PivotTable methods, 832, 833, 835
PivotTable object, 166, 177, 512, 516, 721, 807, 811,

812, 821, 825–837
PivotTable property, Range object, 856
PivotTable Query, 808
PivotTable report, 162, 166, 509, 512, 521, 637, 651, 662,

663, 679, 721–723, 807, 809, 810, 812–814, 816,
821, 825–835, 837

creating, 162
PivotTable Wizard, 827
PivotTableCloseConnection event, Workbook

object, 952
PivotTableOpenConnection event, Workbook

object, 952
PivotTables, 161–180

creating reports, 162–166
PivotCaches, 165
PivotTables collection, 165–166

external data sources, 178–180
PivotCharts, 177–178
PivotFields, 166–171
PivotItems, 171–176
CalculatedItems collection, 176
grouping, 171–175
Visible property, 175–176

PivotTables collection, 165–166, 825, 837
PivotTables method, Worksheet object, 960
PivotTableSelection property, Application

object, 652

1122

Picture buttons

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1122

PivotTableUpdate event, Worksheet object, 963
PivotTableWizard method, Worksheet object, 960
PixelsPerInch property, WebOptions object, 928
Placement property, Shape object, 883
plain text queries, retrieving data from Access using,

449–450
Platform SDK section of MSDN Library, 602
Play Macro button, 9
Play method, SoundNote, 898
PlotArea object, 696, 838–839
PlotArea property, Chart object, 689
PlotBy parameter, 694
PlotBy property, 184, 689
PlotOrder property, Series object, 875
PlotVisibleOnly property, Chart object, 689
Ply command bar, 340
Point object, 196, 197, 839–842
Points collection, 196, 197, 839–842
Points method, Series object, 876
Points property, ShapeNode object, 886
PointsToPixelsX method, Windows object, 934
PointsToPixelsY method, Windows object, 934
PolicyDescription property, Permission object, 1049
PolicyItem object and ServerPolicy collection,

1050–1051
PolicyName property, Permission object, 1049
popup command bars, 342–353
popup menus, 319, 338–341, 345, 354, 373, 382, 398
popups, 320–322
Portable Network Graphics, 306, 736
Position parameter, 343, 934
Position property, 164
AxisTitle object, 675
CommandBar object, 1002
GradientStop object, 1038
TabStop2 object, 1069

POST field, 535
POST format, 535
POST mechanism, 535–536
Post method, Workbook object, 946
POSTing data, 535
PostText property, QueryTable object, 847
PowerPoint, 21, 395, 411, 971, 1017, 1039, 1061
Precedents property, Range object, 856
PrecisionAsDisplayed property, Workbook object, 941
Prefix property
CustomXMLPrefixMapping collection, 1023
XmlNameSpace object, 969

PrefixCharacter property, Range object, 856
PresentInPane property, SmartTagAction object, 895
Preserve keyword, 58
PreserveColumn Info property, QueryTable object, 848
PreserveColumnFilter property, XmlMap object, 968

PreserveFormatting property, QueryTable object, 848
PreserveNumberFormatting property, XmlMap

object, 968
PresetCamera property, ThreeDFormat object, 912
PresetDrop method, CalloutFormat object, 681
PresetExtrusionDirection property, ThreeDFormat

object, 912
PresetGradient method, ChartFillFormat object, 699
PresetGradientType property, ChartFillFormat

object, 699
PresetLighting property, ThreeDFormat object, 912
PresetLightingDirection property, ThreeDFormat

object, 912
PresetLightingSoftness property, ThreeDFormat

object, 912
PresetMaterial property, ThreeDFormat object, 912
PresetShape property, TextEffectFormat object, 907
PresetTextEffect property, TextEffectFormat

object, 907
PresetTexture method, ChartFillFormat object, 699
PresetTexture property, ChartFillFormat

object, 699
PresetThreeDFormat property, ThreeDFormat

object, 912
Pressing Tab, 93
Preview commands, 365
Previous property
Chart object, 689
Range object, 856
Worksheet object, 957

PreviousSelections property, Application
object, 652

PreviousSibling property, CustomXMLNode
object, 1018

Print dialog, 590–593
Print method, 590
Print Preview method, Sheets, 893
Print settings, 727
Print statement, writing to text files using, 227–233

flexible separators and delimiters, 230–233
reading data strings, 229–230

Print_Area, 8, 129, 759, 783, 925
Print_Titles, 128, 129
PrintDataList, 331, 332
PrintOut method
Chart object, 693
Charts collection, 686
Range object, 863
Sheets collection, 893
Window object, 934
Workbook object, 947
Worksheet object, 960
Worksheets collection, 954

1123

PrintOut method

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1123

PrintPreview method
Chart object, 693
Charts collection, 687
Range object, 864
Window object, 934
Workbook object, 947
Worksheet object, 961
Worksheets collection, 955

PrintTo file parameters, 686
Priority buttons, 415
Priority property
AboveAverage object, 637
CommandBarButton object, 1004
CommandBarComboBox object, 1008
CommandBarControl object, 1012
CommandBarPopup object, 1015
SharedWorkspaceTask object, 1061
SortFields collection, 897
Top10 object, 915
UniqueValues object, 919

Privacy Options category, 501
privacy options, Trust Center user interface, 501–503
Private function, 632
ProcBodyLine property, CodeModule object, 976
ProcCountLine property, CodeModule object, 976
ProcCountLines method, 219
ProcOfLine Line property, CodeModule object, 976
ProcOfLine method, 593
ProcStartLine method, 219
ProcStartLine property, CodeModule object, 976
Product field, 171
ProductCode property, Application object, 652
ProgId property
Add-In, 639, 973
COMAddin object, 998
SmartTagRecognizer object, 896

programmatic name, 150, 215, 291, 376, 687
progress indicator, 288–291, 445
Progressinput parameter, 290
Project Explorer, Visual Basic Editor (VBE), 10–11
Project Explorer window, 9–11, 18, 150, 363, 374
Project option buttons, 590
Project options, 590
Project References dialog, 406
Project Window, 580, 582, 583
PromptForSummaryInfo property, Application

object, 652
properties, 23–25
properties button, 185, 486
Properties collection, 441, 445, 447, 574, 596,

982–983
properties dialog box, 250, 251, 486, 588
properties group, 144

Properties property, SmartTag object, 894
Properties property, VBcomponent, 987
Properties window, 9, 11, 150, 275, 284, 345, 375, 376,

384, 397, 407, 574, 575, 580, 982
Property Browser, 580
Property Get items procedure, 361
Property Get procedure, 357, 358, 371
Property Let procedure, 357, 358, 371
Property object, 982–983
property procedures, 357
Property Set procedures, 357
ProportionalFont property, WebPageFont object, 1076
ProportionalFontSize property, WebPageFont

object, 1076
Protect method
Chart object, 693
Workbook object, 947
Worksheet object, 961

ProtectContents property
Chart object, 689
Worksheet object, 957

ProtectData property, Chart object, 689
ProtectDrawingObjects property
Chart object, 689
Worksheet object, 957

ProtectFormatting property, Chart object, 689
ProtectGoalSeek property, Chart object, 689
Protection object, 842–844
Protection options, 842, 843
Protection property
CommandBar object, 1002
VBproject object, 991
Worksheet object, 957

ProtectionMode property
Chart object, 689
Worksheet object, 957

ProtectScenarios property, Worksheet object, 957
ProtectSelection property, Chart object, 689
ProtectSharing method, Workbook object, 947
ProtectStructure property, Workbook object, 941
ProtectWindows property, Workbook object, 941
PrTo fileName parameter, 686
PTCondition property
AboveAverage object, 637
Top10 object, 916
UniqueValues object, 920

Public property, 397, 407
public variable, 45, 281, 563
Publish method, 844, 845
PublishObject collection, 844
PublishObject object, 844–846
PublishObjects collection, 844–846
PublishObjects property, Workbook object, 941

1124

PrintPreview method

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1124

PublishPost method, IBlogExtensibility
object, 1040

PurgeChangeHistoryNow method, Workbook object, 948
PutUpdate method, Sync object, 1068

Q
QAT, 297, 307, 313, 556
qualified IDs, 308
Query add-in, 639
Query operations, 787
Query Refresh operations, 790
QueryClose event, 281, 282, 594, 597, 633
querying

text files, 467–468
workbooks, 464–466

QueryTable object, 143, 470, 472, 473, 475, 476, 480,
483, 490, 780, 803, 846–852

QueryTable property, Range object, 856
QueryTables, 472–487

and parameter queries, 476–479
associated with ListObject, 475–476
creating and using connection files, 484–489

Office Data Connect (ODC) files, 484–486
Web Query (IQY) files, 486–487

from relational database, 472–475
from text file, 482–483
from web queries, 479–482

QueryTables collection, 476
QueryTables property, Worksheet object, 957
QueryType property, QueryTable object, 848
Quick Access Menu, 74, 158
Quick Access Toolbar, 11, 15–16, 158
Quick Layout Button, 182
QuickSort routine, 392
Quit method, Application object, 660

R
radio buttons, 275
RadioGroupSelection property, SmartTagAction

object, 895
Radius property, GlowFormat, 1037
Randomize statement, 390
RandUnique function, 390, 392, 394, 401
RandUnique Wizard, 399
Range object, 22, 23, 66, 76, 93, 95, 97, 101, 112, 113,

128, 144, 165, 195, 450, 659, 664, 684, 714, 805,
852–868, 901, 923

Range property
AllowEditRange object, 642
Application object, 652
AutoFilter object, 668
Cells property, 97–98, 99–101

cells used in range, 98
GroupShapes collection, 757
ListObject object, 147
overview, 95–99
Range object, 97, 856
ranges of inactive worksheets, 99
ranges on inactive worksheets, 96
Shapes collection, 880
shortcut Range object references, 96
single-parameter Range object reference, 101–102
SmartTag object, 894
Worksheet object, 957

RangeFromPoint method, Windows object, 934
ranges, 93–124
Activate and Select methods, 93–94
Columns and Rows properties, 112–114
CurrentRegion property, 108–110
direct reference to, 20–21
empty cells, 115–118
End property, 110–111
named, 132–133
naming, 127–128
Offset property, 102–103
Range property, 102–103
Cells property, 97–98, 99–101
cells used in range, 98
of Range object, 97
ranges of inactive worksheets, 99
ranges on inactive worksheets, 96
shortcut Range object references, 96
single-parameter Range object reference, 101–102

Resize property, 103–105
sorting, 142–144
SpecialCells method, 105–107

deleting numbers, 107
last cell, 105–107

summing, 111
transferring values between arrays and ranges, 118–123
Union and Intersect methods, 115
used in charts, determining, 194–195

RangeSelection property, Windows object, 932
Rank property, Top10 object, 916
Rate property, 355
ReadingOrder property
AxisTitle object, 675
Range object, 856
Style object, 902
TextFrame object, 909
TickLabels object, 914

ReadOnly property
SignatureInfo object, 1064
SignatureSetup object, 1066
Workbook object, 941

1125

ReadOnly property

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1125

ReadOnlyRecommended property, Workbook object, 941
Ready property, Application object, 652
Real-Time Data (RTD) object, 870
RecentFile object, 868–869
RecentFiles collection, 868–869
RecentFiles property, Application object, 652
RecheckSmartTags method, Workbook object, 948
Recipients property, RoutingSlip object, 870
Recognize property, SmartTagOptions collection, 896
Record button, 283
Record method, SoundNote, 898
Record object, 436
recording macros. See macro recorder
RecordMacro method, Application object, 660
RecordRelative property, Application object, 652
RecordsAffected argument, 439
RecordsAffectedand options, 447
Recordset filter, 463
Recordset object

collections, 445
Fields collection, 445
overview, 445
Properties collection, 445

Connection object, 462
disconnected recordset, 461–463
events, 445
methods, 443–445
close method, 444
move methods, 444
nextrecordset method, 444–445
open method, 443
overview, 443

PivotCache, 809
properties, 441–443
ActiveConnection property, 441–442
BOF and EOF properties, 442
CursorLocation property, 442
Filter property, 442–443
overview, 441
State property, 443

Recordset property, QueryTable object, 848
recordsets

disconnected, 461–463
multiple, 460–461

RectangleBottom property, RectangleGradient, 869
RectangleGradient property, RectangleGradient, 869
RectangleLeft property, RectangleGradient, 869
RectangleRight property, RectangleGradient, 869
RectangleTop property, RectangleGradient, 869
RectangularGradient object, 869
recursion, 200, 201, 630, 632
recursive function, 327
ReDim statement, 58

Reference object and References collection, 984–986
Reference parameter, 659
references, 598–599
References collection, 984–986
References dialog box, 259, 406, 448, 594, 598
References property, VBproject object, 991
ReferencesEvents property, Events object, 982
ReferenceStyleStyle property, Application object,

652
RefersTo property, 62, 135
Reflection property
Font2 object, 1036
Shape object, 883
ShapeRange object, 889

ReflectionFormat object, 1051
Refresh All button, 472
Refresh button, 472
Refresh Data button, 247
Refresh method
Chart object, 693
QueryTable object, 473–475, 851
SharedWorkspace object, 1055
XmlDataBinding, 967

Refresh property, QueryTable object, 848
RefreshAll method, Workbook object, 948
RefreshData method, RDT, 870
Refreshing property, QueryTable object, 848
RefreshOnFileOpen property, QueryTable object, 848
RefreshPane method, SmartDocument object, 1067
RefreshPeriod property, QueryTable object, 848
Regional options, 538
regional settings

and Office 2007 UI language, 537–538
and Windows language, 538–545

identifying, 538–539
VBA conversion functions, 539–545

Regional Settings applet, 538, 560
Regional Settings location, 560–561
RegionIndex parameter, 759
RegisteredFunctions property, Application

object, 652
RegisterXLL method, Application object, 660
Regroup method, ShapeRange object, 890
RejectAllChanges method, Workbook object, 948
relational databases, 419, 470, 472, 473, 482, 490
relative recording, 7–8
RelativeSize property, BulletFormat2 object, 996
ReleaseFocus method, CommandBars collection, 1001
Reload method, CustomXMLSchema, 1024
ReloadAs method, Workbook object, 948
RelyOnCSS property, WebOptions object, 928
RelyOnVML property, WebOptions object, 928
Remove All button, 501

1126

ReadOnlyRecommended property, Workbook object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1126

Remove button, 493
Remove method
FileTypes collection, 1035
LinkedWindows Collection, 982
NewFile object, 1046
Reference collection, 985
SearchFolders collection, 1053
UserPermission object, 1075
VBcomponents collection, 988
VBprojects collection, 992

RemoveAll method, Permission object, 1050
RemoveChild method, 265, 1018
RemoveCustomUI method, 317
RemoveDocument method, SharedWorkspace

object, 1055
RemoveDocument properties method, 504
RemoveDocumentInformation method, 503–505,

506, 948
RemoveDuplicates method, Range object, 864
RemoveItem method, CommandBarComboBox object, 1009
RemoveMenus procedure, 348, 351
RemovePeriods method, TextRange2 object, 1071
RemovePersonalInformation property, Workbook

object, 941
RemoveSubtotal method, Range object, 864
RemoveUser method, Workbook object, 948
Repeat method, Application object, 660
Repeating property, XPath object, 970
Replace format, 653, 682, 683, 684
Replace method, 649, 682, 864, 1072
Replace parameter, 88
ReplaceChildNode method, CustomXMLNode

object, 1018
ReplaceChildSubtree method, CustomXMLNode

object, 1019
ReplaceFormat property, Application object, 653
ReplaceHolders function, 564, 568
ReplaceLine method, 218, 977
Replacement parameter, 666
ReplacementList property, AutoCorrect object, 666
ReplaceText property, AutoCorrect object, 666
Reply method, Workbook object, 948
ReplyAll method, Workbook object, 948
ReplyWithChanges method, Workbook object, 948
RepublishPost method, IBlogExtensibility

object, 1040
RequestPermissionURL property, Permission

object, 1049
Requirements section, 606
RerouteConnections method
Shape object, 885
ShapeRange object, 890

Research property, Workbook object, 941

Reset method
CommandBar object, 1002
CommandBarButton object, 1006
CommandBarComboBox object, 1009
CommandBarControl object, 1013
CommandBarPopup object, 1015
RoutingSlip object, 870

ResetAllPageBreaks method, Worksheet object, 961
ResetColors method, Workbook object, 948
ResetPositionsSideBySide method, Windows

object, 930
ResetRotation method, ThreeDFormat object, 913
ResetTimer method, QueryTable object, 851
resizable UserForms, 625
Resize event, 625–627, 695
Resize property, 103–105, 124, 133, 856
ResolveConflict method, Sync object, 1068
RestartServers method, RTD, 870
Restore method, DocumentLibraryVersion

object, 1027
ResultRange property, QueryTable object, 848
Resume statement, 60
return values, 33–34
ReturnWhenDone property, RoutingSlip object, 870
ReversePlotOrder property, Axis object, 673
RevisionNumber property, Workbook object, 942
RGB function, 676, 677, 748, 750, 766, 840, 841
RGB property
ChartColorFormat object, 698
ThemeColor object, 1072

Ribbon buttons, 15, 62, 274
Ribbon controls, 312, 402–403
RibbonX, 293–318

adding customizations, 294–295
CommandBar extensions for, 316
control attributes, 301–303
control callbacks, 303–305
control types, 299–301
basic controls, 299–300
container controls, 300–301

controlling tabs, tab sets, and groups, 313–314
customizing Office menu, 312
customizing QAT, 313
in dictator applications, 312
dynamic controls, 314–316
comboBox control, 315
dropDown control, 315
dynamicMenu control, 315–316
gallery, 315

hooking built-in controls, 311–312
limitations, 317
managing control images, 305–307
overview, 293–294

1127

RibbonX

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1127

RibbonX (continued)
prerequisites, 294
sharing controls among multiple workbooks, 308
updating controls at run time, 309–311
and VBA, 298–299
XML structure, 295–298

RibbonX document, 296
RibbonX toggle button, 407
Right function, 79
RightAngleAxes property, 688, 689
RightClick event, 200
RightIndent property, ParagraphFormat2 object, 1048
Rng property, Sort object, 896
RobustConnect property, 786, 789, 848
RollZoom property, Application object, 653
root element, XML, 241–242
RootElementName property, XmlMap object, 968
RootElementNamespace property, XmlMap object, 968
RotateBounds method, TextRange2 object, 1072
RotatedChars property, TextEffectFormat object, 907
RotateWithShape property, ShadowFormat object, 879
Rotation property
Chart object, 689
Shape object, 883
ShapeRange object, 889

RotationX property, ThreeDFormat object, 912
RotationY property, ThreeDFormat object, 912
RotationZ property, ThreeDFormat object, 912
Route method, Workbook object, 948
Routed property, Workbook object, 942
RoutingSlip object, 869–870
RoutingSlip property, Workbook object, 942
Row fields, 166, 167, 170, 179, 652, 830, 832
Row object, 112, 113
Row property, Range object, 856
RowCol settings, 727
RowDifferences method, Range object, 864
RowHeight property, 23, 856
RowIndex property, CommandBar object, 1002
RowItems properties, 811, 824
RowLevels parameter, 797
RowNumbers property, QueryTable object, 848
rows

deleting, 121–123, 661
visible

copying, 153–154
finding, 154–156

rows attribute, 302
Rows property
Application object, 112–114, 653
Range object, 112–114, 856
Worksheet object, 112–114, 957

RowSetComplete event, Workbook object, 952

RowSource property, 276
RTD function, 767
RTD property, Application object, 653
RTD (Real-Time Data) object, 870
RTD server, 653, 767, 768
RtlRun method, TextRange2 object, 1072
Ruler2 object, 1051
RulerLevel2 object and RulerLevels2 collection, 1052
Run method
Application object, 660
Range object, 864

RunAutoMacros method, Workbook object, 949
Runs property, TextRange2 object, 1070
run-time error-handling, 59–62

S
Sales.xlsx workbook, 464, 467
SatelliteDllName value, 396
Save As dialog box, 5, 233, 235, 238, 295, 527,

625, 658, 663
Save button, 235
Save method
EncryptionProvider object, 1031
SharedWorkspaceLink object, 1059
SharedWorkspaceTask object, 1061
ThemeColorsScheme object, 1073
ThemeFontScheme object, 1074
Workbook object, 949

Save Query button, 486
Save tab, 669
Save Workspace dialog box, 486
SaveAs filename, 46, 47, 59, 61, 65, 77, 81, 82, 693
SaveAs method
Chart object, 693
VBproject object, 991
Workbook object, 556, 949
Workbooks collection, 77
Worksheet object, 961

SaveAsODC method, QueryTable object, 851
SaveAsXMLData method, Workbook object, 949
SaveChartTemplate method, Chart object, 694
SaveCopyAs method, Workbook object, 949
Saved property
VBcomponent object, 987
VBproject object, 991
Workbook object, 942

SaveData property, QueryTable object, 848
SaveDataSourceDefinition property, XmlMap

object, 968
SaveLinkValues property, Workbook object, 942
SavePassword property, QueryTable object, 848
SaveWorkspace method, Application object, 660

1128

RibbonX (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1128

ScaleHeight method
Shape object, 885
ShapeRange object, 890

ScaleType property, Axis object, 673
ScaleWidth method
Shape object, 885
ShapeRange object, 891

Scenario object, 871–872
Scenarios collection, 871–872
Scenarios method, Worksheet object, 962
Schema Collection property, CustomXMLPart

object, 1021
Schemas property, XmlMap object, 968
SchemaXLM property, MetaProperties collection, 1044
SchemeColor property, ChartColorFormat, 698
ScopeFolder object, 1052–1053
ScopeFolder property
ScopeFolder object, 1053
SearchScope, 1054

ScopeFolders collection, 1052–1053
ScopeType Condition Scope property, AboveAverage

object, 637
ScopeType property, UniqueValues object, 920
screen updating, 66
ScreenRefresh method, 653
ScreenSize property, WebOptions object, 929
screentip attribute, 302
ScreenUpdating property, Application object, 653
Script property, Shape object, 883
Scroll event, 211
Scroll parameter, 659
ScrollArea property, 11, 957
Scrollbar control, 211
ScrollColumn property, Windows object, 932
ScrollIntoView method, Windows object, 934
ScrollRow property, Windows object, 932
ScrollWorkbookTabs method, Windows object, 934
sealed integer (Currency) data type, 43
Search Results window, 27
SearchFolders collection, 1053
SearchFormat argument, 682, 684, 843
SearchHelp method, IAssistance object, 1038
searching for names, 133–139
SearchScope object and SearchScopes

collection, 1054
security, macro, 5
Security settings, 489–491, 493, 494, 499, 500
SegmentType property, ShapeNode object, 886
Select Case, 49–50
Select event, Chart object, 695
Select Excel add-ins, 379, 385
Select file, 246

Select method
Axis object, 673
AxisTitle object, 675
Chart object, 694
ChartArea object, 697
Charts collection, 687
Range object, 25, 93–94, 864
Series object, 876
SeriesLines object, 877
Shape object, 885
ShapeRange object, 891
Sheets collection, 893
TextRange2 object, 1072
TickLabels object, 914
Trendline object, 918
UpBars object, 921
Walls object, 926
Worksheet object, 88
Worksheets collection, 87, 955, 962

SELECT statement, 432–434, 441, 460
SelectAll method, Shapes collection, 881
SelectByID method, CustomXMLPart objects

collection, 1020
SelectByNamespace method, CustomXMLPart objects

collection, 1020
SelectCertificateDetailByThumbprint method,

SignatureInfo object, 1064
SelectedItems property, 235, 1032
SelectedSheets property, Windows object, 932
SelectedVBComponent property, VBE, 990
Selection property
Application object, 653
Window object, 932

SelectionChange event, 26, 963
SelectNodes method
CustomXMLNode object, 1019
CustomXMLPart object, 1021
DOMDocument, 262, 263

SelectSignatureCertificate method,
SignatureInfo object, 1064

SelectSingleNode method
CustomXMLNode object, 1019
CustomXMLPart object, 1021

Send menu, 312
Send method, 423
SendFaxOverInternet method, Workbook object, 949
SendForReview method, Workbook object, 949
SendKeys method, 70–71, 660
SendMail method, Workbook object, 950
SendMailer method, Workbook object, 950
Sentences property, TextRange2 object, 1070
<separator .../> control type, 300
Sequence function, 385, 394, 401, 407

1129

Sequence function

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1129

Sequence Wizard, 399, 401
Series collection, 188, 189, 192–194, 196, 203, 204,

220, 221, 366, 422, 694, 695, 703, 734, 742, 769,
839, 842, 876

Series formats, 691
SERIES function, 191, 193–195, 197
Series object, 187, 197, 694, 703, 729, 769, 840,

872–877, 917
SeriesChange event, Chart object, 695
SeriesCollection collection, 872–877
SeriesCollection method
Chart object, 694
SeriesCollection object, 873

SeriesCollection object, 187, 197, 742
SeriesLines object, 877
ServerActions property, Range object, 856
ServerPolicy property, Workbook object, 942
ServerViewableItems collection, 878
ServerViewableItems property, Workbook object, 942
Set statement, 20, 45, 69, 134, 356
SetBackgroundPicture method, Worksheet object, 962
SetBackgroundPictureString method, Chart

object, 694
SetDefaultChartString method, Chart object, 694
SetDefaultContext method, IAssistance object, 1039
SetEditingType method, ShapeNode objects

collection, 886
SetElement method, 186, 187, 694
SetExtrusionDirection method, ThreeDFormat

object, 913
SetFirstPriority method
AboveAverage object, 638
Top10 object, 916
UniqueValues object, 920

SetFocus method
CommandBarButton object, 1006
CommandBarComboBox object, 1009
CommandBarControl object, 1013
CommandBarPopup object, 1015
Window object, 993

SetIcon method, SortFields object, 898
SetLastPriority method
AboveAverage object, 638
Top10 object, 916
UniqueValues object, 920

SetLinkOnData method, Workbook object, 950
SetParam method, 479
SetPasswordEncryptionOptions method, Workbook

object, 950
SetPhonetic method, Range object, 864
SetPosition method, ShapeNode objects collection, 886
SetPresetCamera method, ThreeDFormat object, 913
SetRange method, 143, 146, 897

SetSegmentType method, ShapeNode objects
collection, 886

SetSelection method, CodePane object, 979
SetShapesDefaultProperties method
Shape object, 885
ShapeRange object, 891

SetSourceData method, 177, 184, 187
SetSourceDataRange method, Chart object, 694
SetThreeDFormat method, ThreeDFormat object, 913
Setup buttons, 687, 693
Setup property, Signature object, 1062
SetupBlog Account method, IBlogExtensibility

object, 1040
SetUpMenus procedure, 351
SetValue method, XPath object, 970
SetWindowLong function, 623
SFI controls, 496
sFormatDate function, 567
Shadow format, 700, 710
Shadow property
AxisTitle object, 675
ChartArea object, 697
Font2 object, 1036
Series object, 875
ShapeRange object, 889

Shadow property, Shape object, 883
ShadowFormat object, 878–879
Shape object, 65, 177, 178, 184, 186, 187, 640, 680,

707, 715, 717, 719, 744, 753, 757, 775, 776, 791,
793, 795, 806, 878, 880–885, 907, 911

ShapeNode object, 886–887
ShapeNodes collection, 886–887
ShapeRange object collection, 887–891
ShapeRange objects, 908
Shapes collection, 177, 181, 192, 196, 757, 880–885
Shapes property
Chart object, 689
Worksheet object, 957

ShapeStyle property
Shape object, 883
ShapeRange object, 889

sharedStrings XML file, 268–269
SharedWorkspace object, 1054–1055
SharedWorkspace property, Workbook object, 942
SharedWorkspaceFile object, 1055–1056
SharedWorkspaceFiles collection, 1055–1056
SharedWorkspaceFolder object, 1057
SharedWorkspaceFolders collection, 1057
SharedWorkspaceLink object, 1058–1059
SharedWorkspaceLinks collection, 1058–1059
SharedWorkspaceMember object, 1059–1060
SharedWorkspaceMembers collection, 1059–1060
SharedWorkspaceTask object, 1060–1061

1130

Sequence Wizard

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1130

SharedWorkspaceTasks collection, 1060–1061
Sheet object, 77, 90
Sheet property
PublishObject object, 845
WorksheetView object, 967

SheetActivate event
Application object, 661
Workbook object, 952

SheetBeforeDoubleClick event
Application object, 661
Workbook object, 952

SheetBeforeRightClick event
Application object, 661
Workbook object, 952

SheetCalculate event
Application object, 661
Workbook object, 952

SheetChange event, 206, 661
SheetChangeRange event, Workbook object, 952
SheetDeactivate event
Application object, 662
Workbook object, 952

SheetFollowHyperlink event
Application object, 662
Workbook object, 953

SheetPivotTableUpdate event
Application object, 662
Workbook object, 953

Sheets collection
Copy and Move methods, 85–87
grouping worksheets, 87–88
overview, 891
Sheets common properties, 891
Sheets methods, 892–893
Sheets properties, 892
Worksheets collection, 83–85

Sheets property
Application object, 653
Workbook object, 942

SheetSelectionChange event
Application object, 662
Workbook object, 953

SheetsInNewWorkbook property, Application
object, 653

SheetViews object, 893
SheetViews property, Windows object, 932
SHELL32.DLL file, 602
Shift Button parameter, 695
Shift parameter, 695
ShipperID field, 458
shortcut keys, for macros, 6–7
Shortcut menus, 319, 338, 340, 352

shortcut Range object references, 96
ShortcutText property, CommandBarButton object, 1004
ShortDate format, 539, 541, 549
Show Dependents method, Range object, 865
Show method
CodePane object, 979
DialogSelected items object, 235
FileDialog object, 1033
UserForm, 273
WorkflowTask object, 1077
WorkflowTemplate object, 1078

Show pages command, 512
Show parameter, 690
ShowAllData method
AutoFilter object, 668
Worksheet object, 962

ShowAsAvailable property, TableStyle object, 905
ShowAsAvailableTableStyle property, TableStyle

object, 905
ShowAutoFilter property, 148
ShowChartTipNames property, Application object, 653
ShowChartTipValues property, Application

object, 653
ShowConflictHistory property, Workbook object, 942
ShowDataForm method, 128, 159, 556, 962
ShowDataLabelsOverMaximum property, Chart

object, 689
ShowDetail property, 828, 856
ShowDetails method, Signature object, 1063
ShowDevTools property, Application object, 653
ShowError property, Validation object, 923
ShowErrors method, Range object, 865
ShowHelp method, IAssistance object, 1039
showImage attribute, 302
ShowImportExportValidationErrors property,

XmlMap object, 968
ShowInput property, Validation object, 923
showItemImage attribute, 302, 305
showItemLabel attribute, 302
showLabel attribute, 303
ShowMenuFloaties property, Application object, 653
ShowPivotChartActiveFields property, Workbook

object, 942
ShowPivotTableFieldList property, Workbook

object, 942
ShowPopup method, 342, 1002
ShowPrecedents method, Range object, 865
ShowSelectionFloaties property, Application

object, 653
ShowSettings method, EncryptionProvider

object, 1031

1131

ShowSettings method, EncryptionProvider object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1131

ShowSignatureAdded method, SignatureProvider
object, 1065

ShowSignatureCertificate method, SignatureInfo
object, 1064

ShowSignatureDetails method, SignatureProvider
object, 1065

ShowSignatureSetup method, SignatureProvider
object, 1065

ShowSignaturesPane property, SignatureSet
collection, 1062

ShowSignDate property, SignatureSetup object, 1066
ShowSigningCeremony method, SignatureProvider

object, 1065
ShowStartupDialog property, Application object, 653
ShowToolTips property, Application object, 653
ShowWindow function, 623
ShowWindowsInTaskbar property, Application

object, 653
ShrinkToFit property
CellFormat object, 683
Range object, 857
Style object, 902

Sht As object, 89, 90, 324
Sht parameter, 91
SideWall property, Chart object, 690
Sign method, Signature object, 1063
Signature object, 1061–1063
SignatureComment property, SignatureInfo

object, 1064
SignatureImage property, SignatureInfo object, 1064
SignatureInfo object, 1063–1064
SignatureLineShape property, Signature object, 1063
SignatureProvider object, 1064–1066
SignatureProvider property
SignatureInfo object, 1064
SignatureSetup object, 1066

Signatures property, Workbook object, 942
SignatureSet collection, 1061–1063
SignatureSetup object, 1066
SignatureText property, SignatureInfo object, 1064
SigningInstructions property, SignatureSetup

object, 1066
SignXmlDsig method, SignatureProvider object,

1065
Simple class, 384, 385, 401, 408
single-parameter Range object reference, 101–102
size attribute, 303
Size parameter, 691, 708
Size property
Font2 object, 1036
ShadowFormat object, 879

Sizeable property, 625

sizeString attribute, 303
Smallcaps property, Font2 object, 1036
SmallScroll method, Windows object, 935
SmartDocument object, 1066–1067
SmartDocument property, Workbook object, 942
SmartTag object, 893–894
SmartTagAction object, 894–895
SmartTagActions collection, 894–895
SmartTagActions property, SmartTag object, 894
SmartTagOptions collection, 895
SmartTagOptions property, Workbook object, 942
SmartTagRecognizersRecognizers property,

Application object, 653
SmartTagReconizer object and SmartTagRecognizers

collection, 895–896
SmartTags collection, 893–894
SmartTags property
Range object, 857
Worksheet object, 957

Smooth property, Series object, 875
sNumToUS function, 542–543
SoftEdge Format property, Font2 object, 1036
SoftEdge property
Shape object, 883
ShapeRange object, 889

SoftEdgeFormat object, 1067
Solid method, ChartFillFormat object, 699
SolutionID property, SmartDocument object, 1067
SolutionURL property, SmartDocument object, 1067
SolveOrder property, CalculatedMember object, 679
Sort fields collection, 143
Sort method, Range object, 144, 865
Sort object, 143, 144, 146, 896–897
Sort property
AutoFilter object, 668
Worksheet object, 957

SortField object, 143, 146, 897–898
SortFields collection, 897–898
SortFields property, Sort object, 896
SortHint property, Signature object, 1063
sorting

ranges, 142–144
tables, 145–146

SortMethod property, Sort object, 896
SortOn property, SortFields object, 897
SortOnValue property, SortFields object, 897
Sort property, QueryTable object, 848
SortSpecial method, Range object, 866
SoundNote object, 898
SoundNote property, Range object, 857
Source argument, 443
Source file, 270, 271

1132

ShowSignatureAdded method, SignatureProvider object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1132

Source parameter, 694
Source property
PublishObject object, 845
Watch object, 927

Source type parameter, 180
SourceConnection File property, QueryTable

object, 848
SourceDataFile property, QueryTable object, 848
SourceName property, CalculatedMember object, 679
SourceType property, PublishObject object, 845
SourceURL property, 967, 1055
SpaceAfter property, ParagraphFormat2 object, 1048
SpaceBefore property, ParagraphFormat2 object, 1048
SpaceWithin property, ParagraphFormat2 object, 1048
Spacing property
Font2 object, 1036
TextColumn2 object, 1069

Speak method
Range object, 866
Speech object, 899

SpeakCellOnEnter property, Speech object, 898
special names, 128–129
SpecialCells method, 87, 105–107, 113, 123, 124
SpecialCells method, Range object, 866
Speech object, 898–899
Speech property, Application object, 654
SpellingOptions collection, 899–901
SpellingOptions property, Application object, 654
Spin Button control, 211–212
SpinDown event, 211, 212
SpinUp event, 211, 212
Split function, 230
Split property, Windows object, 932
SplitColumn property, Windows object, 932
SplitHorizontal property, Windows object, 932
SplitRow property, Windows object, 932
SplitVertical property, Windows object, 932
SQL (Structured Query Language) overview
DELETE statement, 435
INSERT statement, 434
UPDATE statement, 434–435

SQL command, 440, 808
SQL property, 785, 788
SQL Server, using ADO with, 454–463

connecting to SQL Server, 455–456
disconnected recordsets, 461–463
multiple recordsets, 460–461
stored procedures, 456–460

SSO database, 786, 790
Standard toolbar, 9, 27, 320, 321, 580
StandardFont property, Application object, 654
StandardFontSize property, Application object, 654

StandardHeight property, Worksheet object, 957
StandardWidth property, Worksheet object, 957
Start parameter, 174, 684, 715, 805
Start property, TextRange2 object, 1070
Start Recording button, 4
StartupPath property, Application object, 654
StartValue property, BulletFormat2 object, 996
State property
CommandBarButton object, 1004
Connection object, 438
Recordset object, 443

Statement property, ServerPolicy object, 1050
Static statement, 41
Status property
RoutingSlip object, 870
SharedWorkspaceTask object, 1061
Sync object, 1068

StatusBar property, 70, 654
Step option, 53
Stop Recording button, 4
StopifTrue property
AboveAverage object, 637
Top10 object, 916
UniqueValues object, 920

stored procedures, 456–460
StoreLicenses property, Permission object, 1049
Str function, 542
Stream object, 436
Strike property, Font2 object, 1036
StrikeThrough property, Font2 object, 1036
String (fixed-length) data type, 43
String (variable-length) data type, 43
StripeSize property, TableStyleElement, 906
Structured Query Language (SQL) overview
DELETE statement, 435
INSERT statement, 434
UPDATE statement, 434–435

structures, 606–609
structuring data, 141–142
Style method, Style object, 903
Style object, 676, 901–903
Style property
BulletFormat2 object, 997
CommandBarButton object, 1005
CommandBarComboBox object, 1008
Range object, 857
ShadowFormat object, 879

Styles collection, 901–903
Styles property, Workbook object collection, 942
sub procedures, calling, 35–36
Subject property, RoutingSlip object, 870
SubscribeTo method, Range object, 866

1133

SubscribeTo method, Range object

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1133

Subscript property, Font2 object, 1037
Subset property, SignatureSet collection, 1062
Subtotal method, Range object, 867
SuggestedSigner property, SignatureSetup

object, 1066
SuggestedSignerEmail property, SignatureSetup

object, 1066
SuggestedSignerLine2 property, SignatureSetup

object, 1066
SuggestMainOnly property, SpellingOptions

collection, 900
SUM function, 111
Sum Wizard, 639
Summary property, Range object, 857
supertip, 303, 1001
supertip attribute, 303
Switch Row/Column button, 182
Sync object, 1067–1068
Sync property, Workbook object, 943
SyncEvent event, Workbook object, 953
synchronizing worksheets, 90–91
SynchScrollingSideBySide property, Windows

object, 929

T
Tab object, 690, 903–904
Tab property
Chart object, 690
Worksheet object, 957

tab sets, controlling using RibbonX, 313–314
Table button, 144
Table feature, 129
Table method, Range object, 867
table-driven command bar creation, 344–353
TableName parameter, 165
tables

creating, 144–145, 417
sorting, 145–146

Tables group, 144, 162
TableStyle element, 748, 765
TableStyle object, 904–906
TableStyleElement object, 906
TableStyleElements collection, 906
TableStyleElements property, TableStyle

object, 905
TableStyles collection, 904–906
TableStyles property, Workbook object, 943
TabRatio property, Windows object, 932
tabs, controlling using RibbonX, 313–314
TabStop2 object, 1068–1069

TabStops property
ParagraphFormat2 object, 1048
Ruler2 object, 1051

TabStops2 collection, 1068–1069
tag attribute, 303
Tag property

and Click events, 398, 577
CommandBarButton object, 1005
CommandBarComboBox object, 1008
CommandBarControl object, 1012
CommandBarPopup object, 1015
and Parameter property, 333

Tag property, IRIbbonControl object, 1042
TakeFocusOnClick property, 15
TargetBrowser property, WebOptions object, 929
TargetFile variable, 266
task panes, showing UserForms as, 405–406
Tasks property, SharedWorkspace object, 1055
Tax function, 47
template letter, 425, 427, 429
TemplateRemoveExtData property, Workbook

object, 943
TemplatesPath property, Application object, 654
Temporary parameter, 400
Terminate code, 614
Terminate event, 577, 615, 619
= TEXT() worksheet function, 559
Application.ConvertFormula function, 560
Application.Evaluate function, 560
Application.ExecuteExcel4Macro function, 560
Range.AdvancedFilter method, 559–560
Range.Formula property, 559
Range.FormulaArray property, 559
Range.Value property, 559

Text Box control, 276
text files

importing, 223, 849, 850
opening, 223
querying, 467–468
reading, 226–227
writing to, 224–233, 227

Text for Boolean True setting, 538
Text Import Wizard, 555, 560, 561
Text object, 758
Text parameter, 658, 715, 720
Text property
AxisTitle object, 675
Characters object, 685
CommandBarComboBox object, 1008
CustomXMLNode object, 1018
CustomXMLValidationError, 1024
Range object, 857

1134

Subscript property, Font2 object

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1134

TextEffectFormat, 907
TextRange2 object, 1070

TextBox control, 371
TextBox object, 369
TextboxText property, SmartTagAction object, 895
TextCode page, 693
TextColumn2 object and TextColumns2 collection, 1069
TextDirection property
ParagraphFormat2 object, 1049
TextColumn2 object, 1069

TextEffect property
Shape object, 883
ShapeRange object, 889

TextEffectFormat object, 907–908
TextFileColumnDataTypes property, QueryTable

object, 849
TextFileCommaDelimiter property, QueryTable

object, 849
TextFileConsecutiveDelimiter property,

QueryTable object, 849
TextFileDecimalSeparator property, QueryTable

object, 849
TextFileFixedColumnWidths property, QueryTable

object, 849
TextFileOtherDelimiter property, QueryTable

object, 849
TextFileParseType property, QueryTable object, 849
TextFilePlatform property, QueryTable object, 849
TextFilePromptOnRefresh property, QueryTable

object, 849
TextFileSemicolonDelimiter property, QueryTable

object, 849
TextFileSpaceDelimiter property, QueryTable

object, 849
TextFileStartRow property, QueryTable object, 849
TextFileTabDelimiter property, QueryTable

object, 850
TextFileTextQualifier property, QueryTable

object, 850
TextFileThousandsSeparator property, QueryTable

object, 850
TextFileTrailingMinusNumbers property,

QueryTable object, 850
TextFileVisualLayout property, QueryTable

object, 850
TextFrame object, 908–909
TextFrame property
Shape object, 883
ShapeRange object, 889

TextFrame2 object, 909–911
TextFrame2 property, ShapeRange object, 889
TextRange property, TextRange2 object, 910

TextRange2 object, 1070–1072
TextToColumns method, Range object, 867
TextureName property, ChartFillFormat object, 699
TextureType property, ChartFillFormat object, 699
Theme property, Workbook object, 943
ThemeColor object, 1072
ThemeColor property, 676, 677, 749, 750, 766, 904
ThemeColorScheme property, OfficeTheme object, 1047
ThemeColorSchemeIndex property, ThemeColor, 1072
ThemeColorsScheme object, 1072–1073
ThemeEffectScheme object, 1073
ThemeEffectScheme property, OfficeTheme object, 1047
ThemeFont object and ThemeFonts collection, 1073–1074
ThemeFontScheme object, 1074
ThemeFontScheme property, OfficeTheme object, 1047
Thickness property, Walls object, 926
ThisCell property, Application object, 654
ThisWorkbook property, Application object, 654
Thousand Separator setting, 538
ThousandsSeparator property, Application object, 654
ThreeD format object, 701, 710
ThreeD property
Shape object, 883
ShapeRange object, 889
TextFrame2 object, 910

ThreeDFormat object, 911–913
ThrottleInterval property, RTD, 870
ThunderDFrame class, 608
ThunderRT6DFrame class, 608
ThunderXFrame class, 608
TickLabelPosition property, Axis object, 673
TickLabels object, 913–915
TickLabels property, Axis object, 673
TickLabelSpacing property, Axis object, 673
TickLabelSpacingIsAuto property, Axis object, 673
TickMarkSpacing property, Axis object, 673
Time parameter, 661
Time property, AutoRecover object, 669
Timer function, 616
TimeSerial function, 71, 413
TintAndShade property
Border object, 677
Borders collection, 676

TintAndShade property, Tab object, 904
title attribute, 303
Title button, 186
Title property
Add-In, 639
AllowEditRange object, 642
CustomTaskPane object, 1016
FileDialog object, 1032
SharedWorkspaceTask object, 1061

1135

Title property

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1135

TODAY function, 73
<toggleButton .../> control type, 299
ToggleFormsDesign method, Workbook object, 950
ToggleVerticalText method, TextEffectFormat

object, 907
toolbars, 320–322, 335–338
toolkit add-in, 571
Tools menu, 5
TooltipText property
CommandBarButton object, 1005
CommandBarComboBox object, 1008
CommandBarControl object, 1012
CommandBarPopup object, 1015

Top property
Application object, 654
Axis object, 673
AxisTitle object, 675
ChartArea object, 697
CommandBar object, 1002
CommandBarButton object, 1005
CommandBarComboBox object, 1008
CommandBarControl object, 1012
CommandBarPopup object, 1015
Range object, 857
Shape object, 883
ShapeRange object, 889
Window object, 932, 993

Top10 object, 915–917
TopBottom property, Top10 object, 916
TopLeftCell property, Shape object, 884
TopLine property, CodePane object, 978
ToReferenceStyle parameter, 657
Tracking property, TextEffectFormat object, 907
TrackStatus property, RoutingSlip object, 870
Training method, 355
TransitionExpEval property, Worksheet object, 958
TransitionFormEntry property, Worksheet object, 958
TransitionMenuKey property, Application object, 654
TransitionMenuKeyAction property, Application

object, 654
TransitionNavigKey property, Application object, 654
Transparency property
GradientStop object, 1038
ShadowFormat object, 879

TrapApplication events procedure, 365
TreeviewControl object, 917
Trendline object, 917–919
Trendlines collection, 917–919
Trendlines method, Series object, 876
TrimText method, TextRange2 object, 1072
Trust Center dialog box, 5, 489, 491
Trust Center settings, 489, 491, 571

Trust Center user interface, 491–503
ActiveX settings, 495–496
Add-ins category, 494
External Content category, 499–500
macro settings, 497–498
Message Bar, 498–499
privacy options, 501–503
trusted locations, 492–493
trusted publishers, 492

Trusted Locations category, 492
Trusted Locations settings, 496
TwoColorGradient method, ChartFillFormat

object, 699
TwoInitialCapitals property, AutoCorrect object, 666
type libraries, 411, 412, 414, 430
Type parameter, 68, 670, 690, 693, 841, 917
Type property
Action object, 639
Axis object, 673
BulletFormat2 object, 997
CalculatedMember object, 679
CalloutFormat object, 680
ChartColorFormat object, 698
ChartFillFormat object, 699
CommandBar object, 1002
CommandBarButton object, 1005
CommandBarComboBox object, 1008
CommandBarControl object, 1012
CommandBarPopup object, 1015
CustomXMLValidationError, 1025
DocumentProperty object, 1030
MetaProperty object, 1045
Reference object, 984
ReflectionFormat, 1051, 1067
SearchScope, 1054
Series object, 875
ShadowFormat object, 879
Shape object, 884
ShapeRange object, 889
SmartTagAction object, 895
TabStop2 object, 1069
Top10 object, 916
Trendline object, 918
UniqueValues object, 920
Validation object, 923
VBcomponent object, 987
VBproject object, 991
VPageBreak object, 925
Window object, 932, 993
Worksheet object, 958

TypeConditionType property, AboveAverage
object, 637

1136

TODAY function

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1136

U
UBound function, 57, 109, 190
UDFs (user-defined functions), 1, 18–21, 44,

333, 373, 384
creating, 18–21
limitations, 21

UFI controls, 496
UINT C data type, 605
UINT FAR * C data type, 605
UK settings, 148, 540
Underline Color property, Font2 object, 1037
Underline Style property, Font2 object, 1037
Undo method, Application object, 660
Ungroup method
Range object, 868
Shape object, 885
ShapeRange object, 891

Unhide button, 6
Union method, 115, 661
UniqueValues object, 919–920
Unload statement, 273, 277, 282
Unmerge method, Range object, 868
Unprotect method
AllowEditRange object, 642
Chart object, 694
Workbook object, 950
Worksheet object, 962

UnprotectSharing method, Workbook object, 950
Unsuspend method, Sync object, 1068
Until statement, 52
unzipping Excel containers, 266–267
UpBars object, 920–921
Update method
Add-ins collection, 974
COMAddins collection, 997

UPDATE statement, 434–435, 453
UpdateFromFile method, Workbook object, 950
UpdateLink method, 71, 950
UpdateLinks property, Workbook object, 943
UpdateRemoteReferences property, Workbook

object, 943
Uri property, XMLNameSpace, 969
URL encoding, 535
URL property
SharedWorkspace object, 1055
SharedWorkspaceFile object, 1056
SharedWorkspaceLink object, 1059

U.S. settings, 148, 546, 549, 829
UsableHeight property
Application object, 654
Window object, 932

UsableWidth property
Application object, 655
Window object, 932

Use Advanced Filter, 156, 160
UseCommandObject procedure, 459
UseDefaultFolderSuffix method, WebOptions

object, 929
UsedObjects collection, 921–922
UsedObjects property, Application object, 655
UsedRange property, Worksheet object, 958
UseLegacyKeyboardShortcuts property, Application

object, 655
UseLongFileNames property, WebOptions

object, 929
User key, 396
User Table, 844
User_Form resize event, 630
USER32.EXE file, 602
UserAccessList collection, 922
UserAccessList object, 921
UserControl property, Application object, 655
User-defined (using Type) data type, 43
user-defined functions (UDFs), 1, 18–21, 44,

333, 373, 384
creating, 18–21
limitations, 21

User-defined menus, 319
UserDict property, SpellingOptions collection, 900
UserForm control, 298, 368
UserForm module, 289
UserForm object, 26, 273, 277, 406, 594, 597, 622,

623, 624, 625, 628, 629, 633
UserForm styles, 622
UserForm text boxes, 370
UserForm window, 618
UserForm_Initialize event, 284, 369, 629, 633
UserForm_Resize event, 626, 627, 633
UserForms

creating, 275–277
directly accessing controls, 277–281
displaying, 273–274
freezing, 618
maintaining data lists, 282–288
modeless, 288–291
overview, 594–598
resizable, 625–634

absolute changes, 626–627
CFormResizer class, 628–634
relative changes, 627–628

showing as task panes, 405–406
stopping Close button, 281–282

1137

UserForms

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1137

UserForms (continued)
styles, modifying, 622–625
CFormChanger class, 624–625
Window styles, 623–624

variable UserForm name, 291
UserId property, UserPermission object, 1075
UserLibraryPath property, Application object, 655
UserName property, Application object, 655
UserPermission object, 1074–1075
UserPicture method, ChartFillFormat object, 700
Users property, AllowEditRange object, 642
UserStatus property, Workbook object, 943
UserTextured method, ChartFillFormat object, 700
UseStandardFormula parameters, 812, 821, 822
UseStandardHeight property, Range object, 857
UseStandardWidth property, Range object, 857
UseSystemSeparators property, Application

object, 655
UseTextColor property, BulletFormat2 object, 997
UseTextFont property, BulletFormat2 object, 997

V
Val function, 543–544
Val(“6 My St.”) expression, 544
Validate method, CustomXMLSchemaCollection

object, 1023
Validate property
MetaProperties collection, 1044
MetaProperty object, 1045

Validation object, 923–924
Validation property, Range object, 857
Val(myDate) expression, 544
Val(myDbl) expression, 544
Val(“SomeText”) expression, 544
Val(True) expression, 544
Value property
ActiveCell object, 29
Application object, 655
Borders collection, 676
ComboBox object, 216
control, 279
DocumentProperty object, 1030
Error object, 741
MetaProperty object, 1045
Property object, 983
Range object, 24, 67, 559, 857
scbNavigator, 284–287
Style object, 903
Validation object, 923
XPath object, 970

Value2 property, Range object, 857

values
returning, 33–34
storing in names, 129–130

Values property, 190, 192, 197, 871, 875
variable types, 42–45

constants, 44
declaring, 43–44
declaring function and parameter types, 44
variable naming conventions, 44–45

variables
declaring, 38–40
naming conventions, 44–45
object variables, 45–47
scope and lifetime of, 40–42

Variant (with characters) data type, 43
Variant (with numbers) data type, 43
Vb method, 383
VBA Extensibility library, 598
VBA language

arrays, 55–58
dynamic arrays, 58
multi-dimensional arrays, 57

basic input and output, 30–35
constants, 33
InputBox, 34–35
parameters specified by name, 31–33
parameters specified by position, 31
return values, 33–34
returning values, 33–34

calling functions and sub procedures, 35–36
creating offline cube using, 522–523
looping, 50–55

Do...loop, 50–53
For Each...Next loop, 54–55
For...Next loop, 53–54

making decisions, 47–50
block If structure, 48–49
If statements, 47–48
Select Case, 49–50

object variables, 45–47
With...End With structure, 46–47

parentheses and argument lists, 37–38
with Call statement, 38
without Call statement, 37

run-time error-handling, 59–62
scope and lifetime of variables, 40–42
variable declaration, 38–40
variable type, 42–45

constants, 44
declaring, 43–44
declaring function and parameter types, 44
variable naming conventions, 44–45

VBA MsgBox function, 561

1138

UserForms (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1138

vbAbortRetryIgnore constant, 32
vbApplicationModal constant, 32
vbAppTaskManager constant, 282
vbAppWindows constant, 282
VBASigned property, Workbook object, 943
VBComponent object, 573–574, 596, 986–989
VBComponent.Properties(“<Other Properties>”)

VBE property, 972
VBComponent.Properties(“Name”) VBE property, 972
VBComponents collection, 986–989
VBComponents property, VBproject object, 991
vbCritical constant, 32
vbDefaultButton1 constant, 32
vbDefaultButton2 constant, 32
vbDefaultButton3 constant, 32
vbDefaultButton4 constant, 32
VBE (Visual Basic Editor), 8–11

adding menu items to, 576–580
code modules, 9–10
COM Add-ins, 599–600
identifying VBE objects in code, 572–575
CodeModule object, 574
CodePane object, 574
Designer object, 574–575
VBComponent object, 573–574
VBE object, 572
VBProject object, 572–573

procedures, 10
Project Explorer, 10–11
Properties window, 11
starting up, 575–576
UserForms, 594–598
workbooks, 580–589
working with code, 589–593
working with references, 598–599

VBE command bars, 319, 326, 350
VBE object model, 971–994
AddIn object and Add-Ins collection, 973–974
CodeModule object, 974–978
CodePane object and CodePanes collection, 978–980
CommandBarEvents object, 980–981
common properties and methods, 972–973
End FunctionReferencesEvents object, 986
Events object, 981–982
LinkedWindows collection, 982
links between Excel and, 971–972
overview, 971
Property object and Properties collection, 982–983
Reference object and References collection, 984–986
VBComponent object and VBComponents collection,

986–989
VBE object, 989–990

VBProject object and VBProjects collection, 990–992
Window object and Windows collection, 992–994

VBE Print dialog box, 591
VBE property, Application object, 655
VBE toolbar, 579, 581
VBE Toolkit add-in, 575
vbExclamation constant, 32
vbFormCode constant, 282
vbFormControlMenu constant, 282
vbInformation constant, 32
vbMsgBoxHelpButton constant, 32
vbMsgBoxRight constant, 32
vbMsgBoxRtlReading constant, 32
vbMsgBoxSetForeground constant, 32
vbOKCancel constant, 32
vbOKOnly constant, 32
VBProject object, 571, 572–573, 585, 589, 971, 972,

990–992
VBProject property, Workbook object, 943
VBProject.FileName VBE property, 972
VBProjects collection, 572, 990–992
VBProjects property, VBE, 990
vbQuestion constant, 32
vbRetryCancel constant, 32
vbSystemModal constant, 32
vbYesNo constant, 32
vbYesNoCancel constant, 32
Vector Markup Language, 736
VerifyXmlDsig method, SignatureProvider object,

1066
Version property, Application object, 655
Version property, VBE, 990
VerticalAlignment property
AxisTitle object, 675
CellFormat object, 683
Range object, 857
Style object, 903
TextFrame object, 909

VerticalAnchor property, TextFrame2 object, 910
VerticalFlip property
Shape object, 884
ShapeRange object, 889

Vertices property
Shape object, 884
ShapeRange object, 889

View property, Windows object, 932
View tab, 5, 6, 402, 403
ViewName parameter, 727
visible attribute, 303
Visible property
Application object, 655
BulletFormat2 object, 997

1139

Visible property

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1139

Visible property (continued)
ChartFillFormat object, 699
Charts collection, 686
and ClearManualFilter method, 724, 818
CommandBar object, 1002
CommandBarButton object, 1005
CommandBarComboBox object, 1008
CommandBarControl object, 1012
CommandBarPopup object, 1015
CustomTaskPane object, 1016
ensuring Excel window is active with, 218
hiding names with, 131, 175–176
ShadowFormat object, 879
Shape object, 884
ShapeRange object, 889
Sheets collection, 892
ThreeDFormat object, 912
and toolbar creation, 337
Window object, 932, 993
Worksheets collection, 954, 958

visible rows
copying, 153–154
finding, 154–156

VisibleRange property, Windows object, 933
VisibleStateChange customtaskpane events, 1016
VisibleVisibility property, Chart object, 690
Visual Basic 6, 384, 402
Visual Basic button, 8
Visual Basic Editor. See VBE (Visual Basic Editor)
Visual Basic Editor (VBE), 8–11

adding menu items to, 576–580
code modules, 9–10
COM Add-ins, 599–600
identifying VBE objects in code, 572–575
CodeModule object, 574
CodePane object, 574
Designer object, 574–575
VBComponent object, 573–574
VBE object, 572
VBProject object, 572–573

procedures, 10
Project Explorer, 10–11
Properties window, 11
starting up, 575–576
UserForms, 594–598
workbooks, 580–589
working with code, 589–593
working with references, 598–599

Visual Basic for Applications Extensibility, 571, 572,
600, 971

Visual Basic language, 1, 73
VK_ control, 583

VLookup function, 19, 563
Volatile method, Application object, 661
Volatile parameter, 661
VPageBreak object, 924–925
VPageBreaks collection, 924–925
VPageBreaks property
Charts collection, 686
Sheets collection, 892
Worksheet object, 958
Worksheets collection, 954

W
Wait method, Application object, 661
Walls object, 687, 690, 765, 925–926
Walls property, Chart object, 690
WarnOnFunctionNameConflict property, Application

object, 655
WarpFormat property, TextFrame2 object, 910
Watch object, 926–928
Watch Window, 580
Watches collection, 926–928
Watches object, 655
Watches property, Application object, 655
Web Browser control, 404, 405, 525
Web formatting argument, 487
web pages. See Internet
Web Queries, 470, 472, 479, 481, 484, 525, 528, 530,

536, 554, 558, 569
Web Query (IQY) files, 486–487
WebConsecutiveDelimitersAsOne property,

QueryTable object, 850
WebDisableDateRecognition option, 558
WebDisableDateRecognition property, QueryTable

object, 850
WebDisableRedirections property, QueryTable

object, 850
WebFormatting property, QueryTable object, 850
WebOptions object, 928–929
WebOptions property, Workbook object, 943
WebPageFont object, 1075–1076
WebPageFonts collection, 1075–1076
WebPagePreview method, Workbook object, 951
WebPreFormattedTextToColumns property,

QueryTable object, 850
WebSelectionType property, 480, 850
WebSingleBlockTextImport property, QueryTable

object, 850
WebTables property, 480, 482, 851
Weekday function, 116
WeeklyPay function, 358
Weight property, Border object, 677

1140

Visible property (continued)

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1140

WeightWeight property, Borders collection, 676
What parameter, 666
Where parameter, 692
Width property
Application object, 656
Axis object, 673
ChartArea object, 697
CommandBar object, 1002
CommandBarButton object, 1005
CommandBarComboBox object, 1008
CommandBarControl object, 1012
CommandBarPopup object, 1015
CustomTaskPane object, 1016
Range object, 857
Shape object, 884
ShapeRange object, 889
Window object, 933, 993

Window list, 314
Window menu, 314
Window object, 77, 89–91, 92, 802, 929–935
Window property
CodePane object, 978
CustomTaskPane object, 1016

WindowActivate event
Application object, 662
Workbook object, 953

WindowDeactivate event
Application object, 662
Workbook object, 953

WindowNumber property, Windows object, 933
WindowResize event
Application object, 662
Workbook object, 953

Windows API, 601–634
anatomy of API call, 602–603
constants, structures, handles, and classes, 606–609
example classes, 616–622
CFreezeForm class, 618–619
class module CHighResTimer, 616–618
high-resolution timer class, 616
System Info class, 619–622

if something goes wrong, 609–611
interpreting C-style declarations, 603–606
modifying UserForm styles, 622–625
CFormChanger class, 624–625
Window styles, 623–624

resizable UserForms, 625–634
absolute changes, 626–627
CFormResizer class, 628–634
relative changes, 627–628

wrapping API calls in class modules, 611–616
Windows applications, 591, 608
Windows collection, 929–935

Windows Control Panel, 159, 538, 655
Windows File Manager, 373
Windows language

and regional settings, 538–545
identifying, 538–539
VBA conversion functions, 539–545

version of, 561
Windows property
Application object, 656
VBE, 990
Workbook object, 943

Windows Regional settings, 528, 537–539, 544, 546, 549,
552–556, 558, 559, 561, 565–568, 601

Windows Scripting Runtime, 601
Windows settings, 541, 545
Windows Sharepoint Server, 781
Windows Task Manager, 282
Windows TEMPdirectory, 602, 612
Windows temporary path, 612
Windows XP, 266, 611
WindowsForPens property, Application object, 656
WindowState property
Window object, 933, 993

WindowStateXlWindow property, Application
object, 656

WININET.DLL file, 602
WINMM.DLL file, 602
WINSPOOL.DRV file, 602
With statement, 190, 281
With...End With structure, 46–47
WithEvents keyword, 363, 398
WithEvents object, 399, 406
Wizard dialog box, 397
Wizard form, 401
Word

accessing active document, 417
creating new document, 418
opening documents in, 416–417

WORD C data type, 605
Word object, 411
Word window, 418
WordArt Format property, Font2 object, 1037
WordArt objects, 907
WordArtFormat property, TextFrame object2, 910
Words property, TextRange2 object, 1070
WordWrap property
ParagraphFormat2 object, 1049
TextFrame2 object, 910

Workbook object and Workbooks collection, 935–953
events, 951–953
methods, 935–937, 944–951
overview, 935
properties, 935–943

1141

Workbook object and Workbooks collection

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1141

Workbook object Connections dialog, 471, 486
Workbook object events, 92, 199, 205–207, 208, 363,

573, 951
Workbook object level, 126
Workbook object Links, 500
Workbook object tabs command bar, 340
Workbook_BeforeClose event, 206, 338, 351, 377, 576
Workbook_Open event, 16, 150, 338, 346, 351, 365, 577
Workbook_Open procedure, 577, 581
Workbook_Open routine, 589
Workbook_SheetActivate event, 91
Workbook_SheetDeactivate event, 91
WorkbookActivate event, Application object, 662
WorkbookAddinInstall event, Application

object, 662
WorkbookAddinUninstall event, Application

object, 662
WorkbookAfterXMLExport event, Application

object, 662
WorkbookAfterXMLImport event, Application

object, 662
WorkbookBefore XMLExport event, Application

object, 663
WorkbookBefore XMLImport event, Application

object, 663
WorkbookBeforeClose event, Application object, 663
WorkbookBeforePrint event, 364, 371
WorkbookBeforePrint event, Application object, 663
WorkbookBeforeSave event, Application object, 663
Workbook.CodeName Excel property, 972
WorkbookConnection object, 469, 487–489, 490,

717, 953
WorkbookConnection property, QueryTable object, 851
WorkbookConnection property, XmlMap object, 968
WorkbookDeactivate event, Application object, 663
WorkbookNewSheet event, Application object, 663
WorkbookOpen event, Application object, 663
WorkbookPivotTableCloseConnection event,

Application object, 663
WorkbookPivotTableOpenConnection event,

Application object, 663
WorkbookRowsetComplete event, Application

object, 663
workbooks and worksheets

inserting and updating records in, 466–467
opening web pages as, 528
querying, 464–466
Sheets collection, 83–88
Copy and Move methods, 85–87
grouping worksheets, 87–88
Worksheets collection, 83–85

synchronizing worksheets, 90–91
using Internet for storing, 526–527

Window object, 89–91
Workbooks collection, 77–83

files in same directory, 81
getting filename from a path, 78–80
overwriting existing workbook, 81–82
saving changes, 82–83

Workbooks collection
files in same directory, 81
getting filename from a path, 78–80
overwriting workbooks, 81–82
saving changes, 82–83

Workbooks object, 46, 380, 589
Workbooks property, Application object, 656
Workbook.VBProject Excel property, 972
WorkflowID property, WorkflowTask object, 1077
WorkflowTask object, 1076–1077
WorkflowTasks collection, 1076–1077
WorkflowTemplate object, 1077–1078
WorkflowTemplates collection, 1077–1078
Worksheet Change event, 200
Worksheet DATE function, 87
worksheet events, 199–202, 962
Worksheet function, 19, 20, 56, 57, 74, 76, 96, 103, 121,

150, 192, 211, 212, 304, 324, 358
Worksheet Index property, 85
Worksheet Max function, 212
Worksheet menu bar, 320–322, 330, 332, 334, 341,

347, 351, 999
Worksheet object

events, 962–963
methods, 958–962
properties, 955–958

Worksheet property, Range object, 857
Worksheet Range object, 23
Worksheet Transpose function, 121, 150
Worksheet_Activate event, 199
Worksheet_BeforeRightClick event, 200
Worksheet_Calculate event, 200, 201–202, 208, 958
Worksheet_Deactivate event, 199, 200
Worksheet_SelectionChange event, 26, 115, 199, 200
Worksheet.CodeName Excel property, 972
WorksheetFunction object, 963–966
WorksheetFunction property, Application

object, 656
WorksheetName function, 75
worksheets. See workbooks and worksheets
Worksheets collection, 23, 53, 83–85, 87, 355, 635,

954–955
Worksheets object, 23, 46
Worksheets property
Application object, 656
Workbook object, 943

1142

Workbook object Connections dialog

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1142

WorksheetView object, 966–967
WorkspaceLastChangedBy property,

Sync object, 1068
WPARAM C data type, 605
WrapText property
Range object, 857
Style object, 903

WrapText property, CellFormat object, 683
Write statement, 224, 227
WritePassword property, Workbook object, 943
WriteReserved property, Workbook object, 943
WriteReservedBy property, Workbook object, 943
WRS language, 539, 541, 542, 551
WRS number formats, 557

X
X values property, 190, 193
XlBuiltinDialog constants, 737
XlChart item, 202, 692, 694, 695
XlClipboard format, 646
XlCountry setting, 538, 561
xlCredentials method, 786, 789
XLDESK class, 608
XLL extension, 639
XLM format, 5
XLMAIN class, 608
XlMouse chart, 695
XlMouse mouse button, 695
XlPicture clipboard, 691
XlPicture type constants, 773
XlPivotTableSource type constants, 807
XML (eXtensible Markup Language), 239–272

attributes, 242–243
comments, 241
consuming XML data directly, 246–249
elements and root element, 241–242
namespaces, 243–245
processing instructions, 241
using VBA to program Open XML files, 265–272

programmatically unzipping Excel containers, 266–267
programmatically zipping Excel containers, 267–272

using VBA to program XML processes, 253–265
Document Object Model (DOM), 258–265
programming XML maps, 253–258
XPath, 262–264

viewing and editing XML documents, 245
XML declaration, 240–241

XML maps, 249–253
creating, 251–253
creating XML schema description, 249–251

XML Maps button, 251
XML property
CustomXMLNode object, 1018
CustomXMLPart object, 1021
SmartTag object, 894
XMLSchema object, 970

XML Workbook object file, 402
XML-based format, 736
XmlDataBinding object, 967
XmlDataQuery method, Worksheet object, 962
XmlImport method, Workbook object, 951
XmlImportXml method, Workbook object, 951
XmlMap object and XMLMaps collection, 967–969
XmlMapQuery method, Worksheet object, 962
XmlMaps collection, 251, 254, 256, 257
XMLMaps property, Workbook object, 943
XmlNameSpace object and XMLNameSpaces collection, 969
XMLNamespaces property, Workbook object, 943
XMLSample files folder, 246, 260
XmlSchema object and XmlSchemas collection, 969–970
XPath, traversing and modifying XML files with, 262–265
XPath object, 257, 777
XPath property
CustomXMLNode object, 1018
Range object, 857

XSD files, 247, 249, 251, 255
XValues property, Series object, 875
xxxLocal functions, 554

Z
Z method, ThreeDFormat object, 912
zero-length string, 35, 36, 40, 51, 52, 58, 68, 82, 117, 118,

138, 369, 417, 418, 427
zipping Excel containers, 267–272

editing sharedStrings XML file to implement mass updates
to text, 268–269

unprotecting worksheet via Open XML manipulation,
269–270

updating connection strings, 270–272
Zoom property, Windows object, 933
ZOrder method
Shape object, 885
ShapeRange object, 891

ZOrderPosition property, 884, 889

1143

ZOrderPosition property

In
de

x

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1143

35_046432 bindex.qxp 2/16/07 10:07 PM Page 1144

Get more Wrox

Programmer to ProgrammerTM

at Wrox.com!
Special Deals
Take advantage of special offers
every month

Free Chapter Excerpts
Be the first to preview chapters from
the latest Wrox publications

Unlimited Access. . .
. . . to over 70 of our books in the
Wrox Reference Library (see more
details online)

Forums, Forums, Forums
Take an active role in online
discussions with fellow programmers

Meet Wrox Authors!
Read running commentaries from authors on their programming experiences
and whatever else they want to talk about

Join the community!

Sign-up for our free monthly newsletter at

newsletter.wrox.com

BROWSE BOOKS P2P FORUM FREE NEWSLETTER ABOUT WROX

Browse Books

.NET
SQL Server
Java

XML
Visual Basic
C#/C++

36_046432 bob1.qxp 2/16/07 10:07 PM Page 1145

37_046432 bob2.qxp 2/16/07 10:08 PM Page 1146

	Excel 2007 VBA Programmer's Reference
	About the Authors
	Credits
	Contents
	Acknowledgments
	Introduction
	Early Spreadsheet Macros
	The XLM Macro Language
	Excel 5
	Excel 97
	Excel 2000
	Excel 2002
	Excel 2003
	Excel 2007
	Excel 2007 VBA Programmer’s Reference
	Version Issues
	What You Need to Use this Book
	Conventions Used
	In Case of a Crisis...
	Feedback
	Questions?

	Chapter 1: Primer in Excel VBA
	Using the Macro Recorder
	User-Defined Functions
	The Excel Object Model
	The VBA Language
	Summary

	Chapter 2: The Application Object
	Globals
	The Active Properties
	Display Alerts
	Screen Updating
	Evaluate
	InputBox
	StatusBar
	SendKeys
	OnTime
	OnKey
	Worksheet Functions
	Caller
	Summary

	Chapter 3: Workbooks and Worksheets
	The Workbooks Collection
	The Sheets Collection
	The Window Object
	Summary

	Chapter 4: Using Ranges
	Activate and Select
	Range Property
	Offset Property
	Resize Property
	SpecialCells Method
	CurrentRegion Property
	End Property
	Summing a Range
	Columns and Rows Properties
	Union and Intersect Methods
	Empty Cells
	Transferring Values between Arrays and Ranges
	Summary

	Chapter 5: Using Names
	Naming Ranges
	Special Names
	Storing Values in Names
	Storing Arrays
	Hiding Names
	Working with Named Ranges
	Searching for a Name
	Summary

	Chapter 6: Data Lists
	Structuring the Data
	Sorting a Range
	Creating a Table
	Sorting a Table
	AutoFilter
	Advanced Filter
	Data Form
	Summary

	Chapter 7: PivotTables
	Creating a PivotTable Report
	PivotFields
	PivotItems
	PivotCharts
	External Data Sources
	Summary

	Chapter 8: Charts
	Chart Sheets
	Embedded Charts
	Editing Data Series
	Defining Chart Series with Arrays
	Converting a Chart to Use Arrays
	Determining the Ranges Used in a Chart
	Chart Labels
	Summary

	Chapter 9: Event Procedures
	Worksheet Events
	Chart Events
	Workbook Events
	Headers and Footers
	Summary

	Chapter 10: Adding Controls
	Form and ActiveX Controls
	ActiveX Controls
	Forms Controls
	Dynamic ActiveX Controls
	Controls on Charts
	Summary

	Chapter 11: Text Files and File Dialog
	Opening Text Files
	Writing to Text Files
	Reading Text Files
	Writing to Text Files Using Print
	FileDialog
	Summary

	Chapter 12: Working with XML and the Open XML File Formats
	The Basics of Using XML Data in Excel
	Using VBA to Program XML Processes
	Using VBA to Program Open XML Files
	Summary

	Chapter 13: UserForms
	Displaying a UserForm
	Creating a UserForm
	Directly Accessing Controls in UserForms
	Stopping the Close Button
	Maintaining a Data List
	Modeless UserForms
	Variable UserForm Name
	Summary

	Chapter 14: RibbonX
	Overview
	Prerequisites
	Adding the Customizations
	XML Structure
	RibbonX and VBA
	Control Types
	Control Attributes
	Control Callbacks
	Managing Control Images
	Other RibbonX Elements, Attributes, and Callbacks
	Dynamic Controls
	CommandBar Extensions for the Ribbon
	RibbonX Limitations
	Summary

	Chapter 15: Command Bars
	Toolbars, Menu Bars, and Popups
	Excel’s Built-in Command Bars
	Controls at All Levels
	Creating New Menus
	Passing Parameter Values
	Deleting a Menu
	Creating a Toolbar
	Popup Menus
	Showing Popup Command Bars
	Summary

	Chapter 16: Class Modules
	Creating Your Own Objects
	Property Procedures
	Creating Collections
	Encapsulation
	Trapping Application Events
	Embedded Chart Events
	A Collection of UserForm Controls
	Referencing Classes Across Projects
	Summary

	Chapter 17: Add-ins
	Hiding the Code
	Creating an Add-in
	Closing Add-ins
	Code Changes
	Saving Changes
	Interface Changes
	Installing an Add-in
	AddinInstall Event
	Removing an Add-in from the Add-ins List
	Summary

	Chapter 18: Automation Add-Ins and COM Add-Ins
	Automation Add-Ins
	COM Add-Ins
	Summary

	Chapter 19: Interacting with Other Office Applications
	Establishing the Connection
	Opening a Document in Word
	Accessing an Active Word Document
	Creating a New Word Document
	Access and ADO
	Access, Excel, and, Outlook
	Better than Mail Merge
	Summary

	Chapter 20: Data Access with ADO
	An Introduction to Structured Query Language (SQL)
	An Overview of ADO
	Summary

	Chapter 21: Managing External Data
	The External Data User Interface
	The QueryTable and ListObject
	The WorkbookConnection Object and the Connections Collection
	External Data Security Settings
	Summary

	Chapter 22: The Trust Center and Document Security
	The Trust Center
	Automating Document Inspection
	Summary

	Chapter 23: Browsing OLAP Data Sources with Excel
	Analyzing OLAP Data via Pivot Tables
	Understanding the MDX behind OLAP-based Pivot Tables
	Browsing OLAP Data Sources without Pivot Tables
	Creating Offline Cubes
	Summary

	Chapter 24: Excel and the Internet
	What Can the Internet Do for You?
	Using the Internet for Storing Workbooks
	Using the Internet as a Data Source
	Using the Internet to Publish Results
	Using the Internet as a Communication Channel
	Summary

	Chapter 25: International Issues
	Changing Windows Regional Settings and the Office 2007 UI Language
	Responding to Regional Settings and the Windows Language
	Interacting with Excel
	Interacting with Users
	Excel 2007’s International Options
	Features That Don’t Play by the Rules
	The Range. Value, Range. Formula, and Range. FormulaArray Properties
	The Range. AutoFilter Method
	The Range. AdvancedFilter Method
	The Application. Evaluate, Application. ConvertFormula, and Application. ExecuteExcel4Macro Functions
	Responding to Office 2007 Language Settings
	Some Helpful Functions
	Summary

	Chapter 26: Programming the VBE
	Identifying VBE Objects in Code
	Starting Up
	Adding Menu Items to the VBE
	Working with Workbooks
	Working with Code
	Working with UserForms
	Working with References
	COM Add-ins
	Summary

	Chapter 27: Programming with the Windows API
	Anatomy of an API Call
	Interpreting C-Style Declarations
	Constants, Structures, Handles, and Classes
	What If Something Goes Wrong?
	Wrapping API Calls in Class Modules
	Some Example Classes
	Modifying UserForm Styles
	Resizable UserForms
	Summary

	Appendix A: Excel 2007 Object Model
	Common Properties with Collections and Associated Objects
	Excel Objects and Their Properties, Methods, and Events

	Appendix B: VBE Object Model
	Links between the Excel and VBE Object Models
	Common Properties and Methods
	AddIn Object and Add-Ins Collection
	CodeModule Object
	CodePane Object and CodePanes Collection
	CommandBarEvents Object
	Events Object
	LinkedWindows Collection
	Property Object and Properties Collection
	Reference Object and References Collection
	End FunctionReferencesEvents Object
	VBComponent Object and VBComponents Collection
	VBE Object
	VBProject Object and VBProjects Collection
	Window Object and Windows Collection

	Appendix C: Office 2007 Object Model
	Common Properties with Collections and Associated Objects
	Office Objects and Their Properties and Events

	Index

