Excel Spreadsheet in Mechanical Engineering Technology Education

Prof. Ti Lin, Liu

Department of Manufacturing & Mechanical Engineering Technology Rochester Institute of Technology, Rochester, NY 14623

ASEE Conference for Industry and Education Collaboration (CIEC) 2018 Feb 7 – 9, 2018, San Antonio, TX

Abstract:

In the last three decades Excel Spreadsheet has become a very popular and effective computational tool for performing engineering calculations. It is a great challenge on educators to apply this tool towards improving our engineering teaching and to provide high quality, learning-center education. Using spreadsheets provide a unique learning experience on the relationship between the component of an equation—an understanding that is essential in engineering analysis. However, the traditional teaching method and manual computation of equations and modelling do not always prove to be effective. Excel Spreadsheet has been successfully been used to promote conceptual change in mechanical system design and analysis. In Excel Spreadsheet Student can perform alternative design and analysis. Student can better understand and interpret the solution using fundamental theoretical and numerical concepts. In this paper, the author is going to introduce his experience how to teach the courses in mechanical engineering technology at RIT using Excel spreadsheets. The case study in engineering mechanics, vibration, machine design, and others will be discussed in this paper.

The case study in this paper is listing below.

Case Study 1. Strength of Materials for Beam (Shaft) Design and Analysis

Case Study 2. Strength of Materials for Combined Stress in unsymmetrical Bending

Case Study 3. Strength of Materials for Combined Stress in column with eccentric load.

Case Study 4. Strength of Materials for Combined Stress in I Beam to find the bending stresses in flange and web of I beam

Case Study 5. Damping Vibration analytical solution

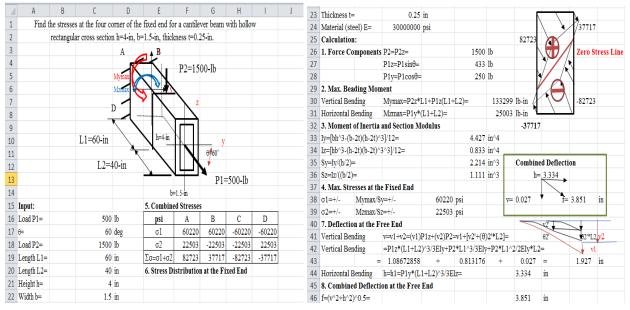
Case Study 6. Gear Box kinematic and shaft design in machine design Case Study

Case Study 7. Numerical Integration for Forced Vibration with Damping in Spring-Mass System.

Case Study 8. Numerical Differentiation for linkage analysis in Dynamics of Machinery.

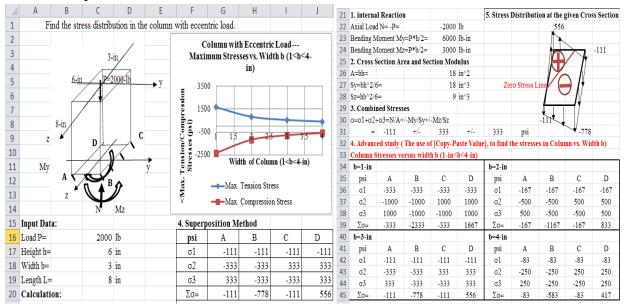
Case Study 9. Jet Engine Thermodynamic analysis

Case Study 10. Long-hand-calculation of Stiffness Matrix for two dimensional triangular threenode-element in CAE study.

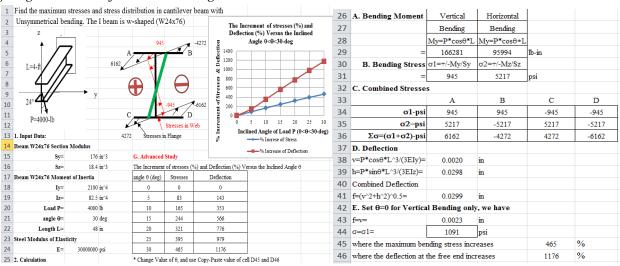

Case Study 1. Strength of Materials for Beam (Shaft) Design and Analysis

First, create an Input in excel. Which will drive all your calculation and create alternative design and solution by change the input data only. For example, if the value of concentrated force P or uniformly distributed load w change, the alternative solution can be found immediately in excel. Also, you can find the solution of stresses and deflection as functions of load P or w.

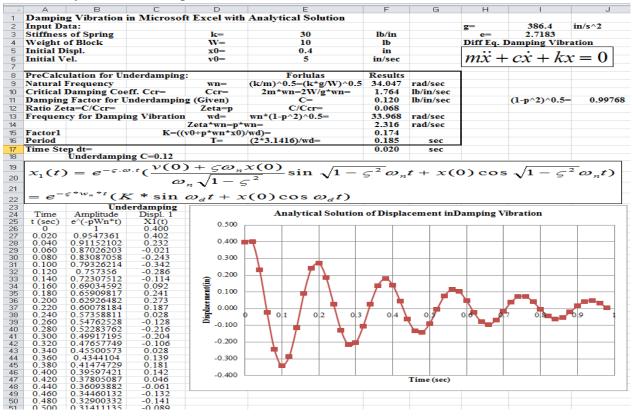
	A	B	C	D	E	F	G	H tinn (n) A	()()	J	К	L	М	N	0	Р	Q	R
	-	W-shaped I			-		the defied	tion (V)A,			47					.		
2	810	ope θA, θB				el A36.					on and Slope of Beam			vc1=5wL^4/(384EI)=			D 1()	
3			P=200 <u>0-1b</u>		<u>lb/n Kw</u>					on BCD Be	am	0.0.1		=-θD1=wL			Rad (cw)	
4			A ±	B	<u> </u>	C		vA1		0B1		0D1	vA1=0A1	*a=	0.065158	m		
5					→	,	a 🔰		θA1 📥		¥	A/(204EI)						
6 7			4 2-ft	→ ^{4-ft}	5-ft	6-1 5-1			0A1_0D1_	θD1=wL^		.^4/(384EI)						
	Solution:		2-π	RBy	5-п	5-1	n RDy		0A1=0B1=	0D1=wL^.	5/(24EI)							
8 9	Solution:			1815			КDУ		2 wand]	P load on Al	R Ream	for BCD Be	9m	vo2=[Mv([^?_v^?)/(6	FI*I)]v=I	0.051312	in 🖡
9 10		V(x)-lb		1813 A2					2. wallu	M=wa^2/2-		37800		θD2=ML/			Rad (cw)	ш
11		(A)-10	-1275	A1 x=	= 6.050		A3	-1185	5			L^2-x^2)/(6			=ML^2/(3E		0.002281	Rad (c
12				-1875				1105						vA2=0A2		0.054733		100 (0
13		M(x)-lb-ft			2340			vA2		θA2=θB2=	ML^2/(3	EI)					•	
14												θD2=ML/	2/(6EI)					
15	1. Input:		Mmax=	-3150			4. Deflec	tion and Slo	ope									
16	Length-a	a=	2	ft			1. BCD 1	Beam										
17	Length-L	L=	10	ft					3. Cantilev	ver Beam Al	3							
8	Load-P P= 1275 lb									vA3=Pa^	3/(3EI)+wa	^4/(8EI)=	0.010425	in 🗼				
	Load-w	w=	300	lb/ft							0A3=Pa^	2/(2EI)+wa	^3/6EI)	0.000641	Rad (ccw)			
		Stress σall=	8000	•				vA3	•	1								
_	Steel Mater		3000000	•														
		tionARea		V& M Dia				0A3	• •	ition Metho	d		. 1					
		Force Rw=(L		D* 0	3600	lb			vC=vC1+v			0.050498						
	ΣMB=0	-Rw*(L-a)			1185	11.			vA=vA1+v				in ♦) 0.011823	1			
25	ΣMD=0	RDy=(Rw* -RBy*L+P			1185	10			θA=θA1+6 θB=θB1+6) -0.02489	- · · ·			
20	21010-0	RBy=[P(a+			3690	lh			θD=θD1+() 0.090228	- · · ·			
	Double Ch	eck by ΣFy=	· · ·		0		5. Adva	nced study-		ns versus th	e Conce				ucg (cew)			
_	A1=	-3150	· ·					•			e e o nee							
								of [Copy-P		1	Deflec	tions versu	is the Coi	ncentrated	I Load P			
30	A2=	5490					Load P	Deflectio	ms-m		DUILU				Loud I			
31	A3=	-2340					1b	vC	vA			(0) <p<3000< td=""><td>-10)</td><td></td><td></td><td></td><td></td></p<3000<>	-10)				
32	Double Ch	eck by ΣAi=		0			0	0.09204	-0.05317	0.1	0000							
_										∂.0	9000 🟲		y:	=-3E-05x+	0.092			
_	3. Design l						500	0.07575	-0.03232	Ê 0.0	8000							
34	Section Mc	odulus S>Mr	nax/σall=	4.725	in^3		1000	0.05946	-0.01147		5000							
35	Select W6x	x12 Section I	Modulus S=	7.31	in^3		1500	0.04317	0.00938	3 0.0	4000 -							
36	Moment of	f Inertia I=		22.1	in^4		2000	0.02688	0.03023	Ų 0.0	3000							
												v = 4E-05	x _ 0.05		X			
	waximum	Bending Str	ess σmax=I	vimax/S=	5170.999	psi	2500	0.01059		₽ 0.0		,		J <u>4</u>				
38							3000	-0.00570	0.07193		2000 -	500	1000 1	500 200	0 2500	3000		
39	6. Conclus	sion of Adv	anced study	vDeflecti	ons versus	the Conc	entrated I	oad P		F -0.0	3000							
		inear Trend								-0.0	5000 📂							
		ise of Trail-a		• • •						-0.0	5000 -	Concer	ntrated Forc	eP-lb(0<₽<	<3000-1b)			
42 A. When P=1275-lb, (v)A=0, (v)C=0.0505-in 43 B. When P=2825-lb, (v)C=0, (v)A=0.06464-in									De	flection vC	-+	 Deflection 	vA					
	D WL T)_101# IL /	···/····		in													


Case Study 2. Strength of Materials for unsymmetrical Bending.

Which is the combination of vertical and horizontal bending. With superposition method, the stresses and deflection could be solved. The stress distribution at the fixed end provide the dangerous stresses for the beam. The combined deflection due to horizontal and vertical bending is solved as well.

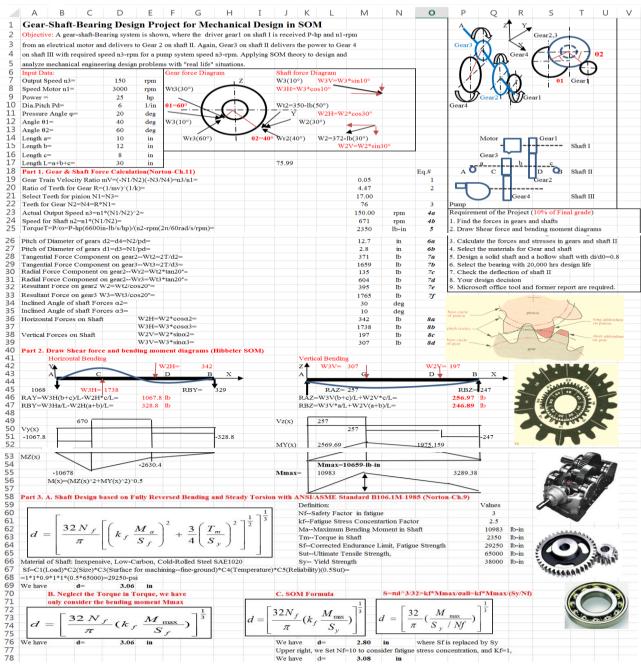

Case Study 3. Strength of column with eccentric load.

Where the stresses of two direction bending and axial compression are calculated separately, and then combined together. The summation of stresses provide the actual stress distribution for column with eccentric load. With the power of Excel, we find the solution of stresses as the function of column width b, which is changed from 1 to 4-in.Both tabular solution and chart form solution are provided.


Proceedings of the 2018 Conference for Industry and Education Collaboration Copyright ©2018 American Society for Engineering Education

Case Study 4. Strength of Materials for Combined Stress in I Beam to find the bending stresses in flange and web of I beam at dangerous cross section.

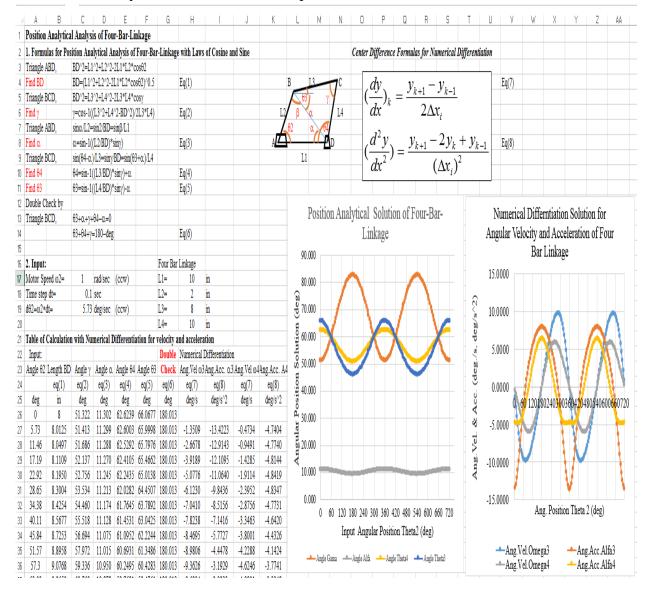
Case Study 5. Damping Vibration analytical solution.


By solving differential equation of damping vibration, the general solution of underdamping vibration of a spring-block system could be found. In Excel, the analytical solution could be solved in both tabular and chart form. By changing the value of damping factor C, the deduction of vibration amplitude as a function of time could be solved and to meet the requirement of industry. In this analysis, the time step 0.02-sec is selected.

Proceedings of the 2018 Conference for Industry and Education Collaboration Copyright ©2018 American Society for Engineering Education

Case Study 6. Gear Box kinematic and shaft design in machine design

Which involved 1. The kinematic design of gear box, 2. The three dimensional forces and stresses analysis of the shaft in gear box based on Formulas of American Society of mechanical engineers (ASME) and American National Standard Institute (ANSI). Based on reversed bending and steady torsion for both solid and hollow shaft. 3. The ball bearing selection to find the life of ball bearing Ld. 4. The spur gear design and analysis based on bending stress from AGMA Standard 908-B89 formula.

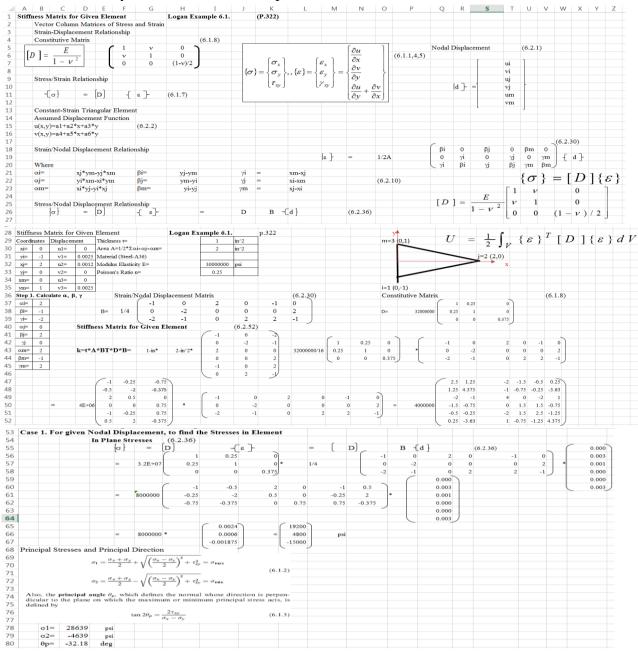

		ed Formula for Hollo					0.8	0	uter Diam	eter d0=		3.647	in			
81	Г	E a		. 2		× 2 7 ¹ / ₂	$\frac{1}{3}$			eter di=α*d		2.917	in			
82 83	$d_0 = $	$\frac{32N_f}{\pi(1-\alpha^4)} \Bigg[\Bigg($	$k_{f} \frac{M}{T}$	$\left(\frac{a}{a}\right)^{2} + \frac{a}{a}$	$\frac{3}{1}\left(\frac{T_n}{T_n}\right)$	<u>n</u>) [2		Se	lect d=		3.2	in	for Solid	Shaft		
84		$\pi(1-\alpha^{-1})$	` S	r) '	4(s)	ורי		an	d d0=	3	3.75	di=	3		for Hol	low Shaft
86	Part 4. Bear	ing SelectionSelec	t 6300 S	eries Ball B	earing f	or A only,	which has	the max. re	action for	rce (Norton	Ch.10)					
87	RA=	=(RAY^2+RAZ^2)^0.5	5=	=(1068^2+	+257^2)^	0.5=	109	98 lb								
		(in millions of revolut Bearing Number #6314		iversely prope	oruonal t	o the third	power of th			s ing Number	#6317					
90	Bore Diamete	er db=2.7559-in, Dyna	mic Load					Bore Dia	meter db=	3.3465-in (70	0mm), Dy			g C=21600-	-lb	
		A: L=(C/P)^3=(18000. s 24 hours a day, 24-h				tevs/day,				(C/P)^3=(21 3-months=22)^3=761	3e6 Revs			
93	We have the	life for Bearing A														
-		s=152-months=12.7-y			1000		1	9.							-	
NUM	BER*			DIMENSIC			D D	Inches	is.	MAX. FILLET RADIUS Shaft & Hise. Inch	WEIG	RAT	SPEED		AMIC AD TING	C. STATIC LOAD RATING
67		mmBORE		Diamen		THEN	H	5			15					
63 63	00 01 02	10 .3937 12 .4724 15 .5906	35 37 42	$1.3780 \\ 1.4567 \\ 1.6535$	11 12 13	.4331 .4724 .5118	.125 .125 .125	$1.562 \\ 1.625 \\ 1.821$.044 .044	.025 .040 .040	.13		22000 20000 18000	17	000	850 1040 1200
63	03 04 105	17 .6693 20 .7874 25 .9843	47 52 62	1.8504 2.0472 2.4409	14 15 17	.5512 .5906 .6693	.141 .141 .195	2.074 2.276 2.665	.044 .044	.040 .040 .040	.25		16000 14000 11000	23	200	1460 1930 2550
											.83 1.07 1.41	· · · · ·				
	106 107 108	30 1.1811 35 1.3780 40 1.5748	72 80 90	2.8346 3.1496 3.5433	19 21 23	.7480 .8268 .9055	.195 .195 .226	3.406 3.799	.067	.040 .060 .060			9500 8500 7500		200	3400 4000 5300
63	109 110	45 1.7717 50 1.9685 55 2.1654	100 110 120	3.9370 4.3307 4.7244	25 27 29	.9843 1.0630 1.1417	.226	4.193 4.587 5.104	.097 .097 .111	.060 .080 .080	1.95 2.50 3.30		6700 6000 5300	91 106 129	500	6700 8150 10000
	12 13 14	60 2.3622 65 2.5591 70 2.7559	130 140 150	5.1181 5.5118 5.9055	31 33 35	1.2205 1.2992 1.3780	.271 .304 .304	5.498 5.892 6.286	.111 .111 .111	.080 .080 .080	3.81 4.64 5.68		5000 4500 4300	140 160 180		10800
		Control Contro								.080			4000			12500 14000 16300
635	315 316 317	75 2.9528 80 3.1496 85 3.3465	160 170 180	6.2992 6.6929 7.0866	37 39 41	1.4567 1.5354 1.6142	.304 .346 .346	6.679 7.198 7.593	.111 .122 .122	.080	6.60 9.53 11.00		3800 3400	193 212 216		16300 18000 18600
63	818 319 320	90 3.5433 95 3.7402 100 3.9370	190 200 215	7.4803 7.8740 8.4646	43 45 47	1.6929 1.7717 1.8504	.346	7.986 8.380	:122	.100 .100 .100	11.60 13.38 16.34		3400 3200 3000	232 245 285	200 500	20000 22400 27000
					47 49 50 55		_		Ξ	.100 .100 .100	17.8 21.0 32.3		2800 2600 2400		500	3000C 3250C 3800C
	321 322 324			8.8582 9.4488 10.2362		1.9291 1.9685 2.1654	Ξ	=								
666	326 328 330	130 5.1181 140 5.5118 150 5.9055	280 300 320	11.0236 11.8110 12.5984	58 62 65	2.2835 2.4409 2.5590	=	Ξ	Ξ	.12 .12 .12	40.1 48.1 57.8		2200 2000 1900	440		4300C 5000C 6000C
	1	our Gear Bending St	tresses					Formulatio	n of Bend	ing Stress (I	ewis Fo) in Sp	ur Gear	1		Wr
		andard 908-B89 repla		a new geom	etrv		1	-		r. Point a, th						
120		cludes effects of stres								/t*h/(Ft^2)		, - 2 0 0 0				W
121		Many K factors are 1						where Ft	he width o	f tooth, tth	e height o	of teeth			1	
122	2 various co	nditions, includes dyr	namics, lo	oad distributio	on			the range of	of width of	tooth 8/pd<	<f<16 pd<="" td=""><td></td><td></td><td></td><td></td><td></td></f<16>					
123	application	n, size, rim thickness,	and idler	r factors. In				With simila	ar triangles	, (t/2)/x=h/(t	t/2), or t^2	2/h=4x	(b)			
		ximation, set the Proc			s 1.			Sub. (b) in	to (a), we	have						i \
		has the highest value						σ=6Wt/(4I	7x)=Wt*p	d/(F*Y)Le	wis Equa	tion '(c)			
126		ng geometry Factor fo						-		ential force of						x !
127		-tooth gear found fro				.3 (Juvinall)P.479	pd-the dia	netral pitcl	h, F-the wid	ith of too	th			*	
128 129		middle of the recomm		· ·	=	2									•	it 🔸
123		re bending stress at th σ= 165		psi												· ·
		heck the Maximum			t sectio	n C for S	haft (Hihl	eler SOM							F	
132		Vhere Elastic Modu			n seeno	E=	3E+07								-	t
133		olid Shaft Moment (a I=πd^4/64	-	I=	5.1446	•								
134	1 В	ollow Shaft Momen	t of Iner	rtia I=πd0^4	(1-α^4)	/64=	5.7282	in^4								
135	Б	ibbeler Deflection T	fable for	Simply Sup	ported	Beam with	h Concent	rated Load	1			Fo	rmulas:			
136		P		-Pab(1)	(+b)					Dhu			v_{c} –	lvev	$^{2} + v$	$c7^{2}$
137			6	$\theta_1 = \frac{1}{6F}$			Pha		v =	$\frac{-F \partial x}{6EIL}(L^2 -$	$-b^2 - x^2$	²)		VUCY		
138		14 1	o x	$ \theta_1 = \frac{-Pab(I)}{6EL} $ $ Pab(L) $	(a)	$v = -\frac{1}{6}$	$\frac{1}{EIL}(L^2$	$(-b^2 - a^2)$		OLI L				$\sqrt{(vcy)}$ tan ⁻¹ ($\frac{v}{-1}$	cy_{χ}	
139		a - b - b - b - b - b - b - b - b - b -	6	$\theta_2 = \frac{Fub(L)}{6EL}$		x=a			$0 \leq$	$x \leq a$			$ \theta = 1$	an '(–	$\frac{1}{2}$)	· 3 / .3
140				OEL										ı ı	, CZ	<u> </u>
L41		id Shaft:														
142		lection at C due to H		Bending												
L43		=(vcy)W3H+(vcy)W														
144		'3H*(b+c)a/(6EIL)*(I				v(6EIL)(L^					V	y= 0.0	040			
145		V3H-W2H)*((b+c)a)(SIL)=		0.0040	m								
46		lection at C due to V		ending						V	>			0.167 deş	g	
47		=(vcz)W3V+(vcz)W3		AAA + AAA + TTTT	T7/1- 1 1	a // (CT) TT \ / T	AD (1-1-2)	- 42		VCZ	= 0.0014	451		5 ⁷⁷		
.48 .49		'3V*(b+c)a/(6EIL)*(I				a/(oEIL)(L	~2-(b+c)^2	-a^2)		0.60						
.49 .50		$V_{3V+W_{2V}}^{(b+c)a}$			EIL)		0.0015			0.60						1000 Load app
.50 .51		VV3+WV2)/(WH3-W	- C		al Daffe	tion and th	0.0015			0.50					cear	85 highest p 50 single too
.51		ng Cartesian Vector M	vieuioa te	o mia the tot	ai Delleo	suon and it	s derectior	i al C		> 0.45				reeth in mating		25 17 (sharing)
		llow Shaft:)Hollow=(vc)Solid*(DScH4/	()Hollow-		0.0036	in			factor,			Number	0		
	(VC)Hollow=(vc)Solid*(iscussion: (Stud)			all the			ı in thie T)iscussi	0.35						Load applied a
L53	Part 7 D) [] ⁵ 0.30		1				tip of tooth (no sharing)
153 154		What is the relativ				i vonanno?		//mary 515	•	0.25		/				
153 154 155	1.	What is the relation How to reduce the					gear?			0.25		1				
153 154 155 156	1. 2. 1	How to reduce th	e stress	and defle	ction f		gear?			0.20		+			60	
153 154 155 156 157	1. 2.] 3.]	How to reduce th How to increase t	e stress he life	and defle of ball bea	ction f tring?	òr shaft,	gear?				12	15 17	20 24	35 45 30 40 5	60 1: 0 80	275 ∞
L53 L54 L55 L56	1. 2. 3. 4.	How to reduce th	e stress he life f impro	and defle of ball bea	ction f tring?	òr shaft,	gear?			0.20	12	15 17	20 24 Number of tee (a) 20-deg full	eth, N		275 ∞

Case Study 7. Numerical Integration for Forced Vibration with Damping in Spring-Mass System. Driven by Input Data sheet with different input mass m, spring stiffness k, damping coefficient c, intial displacement x0 and initial velocity v0, external force magnitude F0, frequency w0, and the time step dt for numerical integration, the solution of forced vibration with damping can be solved in a few second for different system. Where the first equation is the differential equation of forced vibration with damping, the second equation is the solution for acceleration at the given time. Then, the velocity and displacement of system could be solved numerically. The use smaller time step will have better numerical solution of the system. The accuracy and convergence of the solution should be considered. In this example, time step dt=0.05-sec. The chart solution shows the displacement, velocity and acceleration solutions in the first 6 min. But the tabular solution shows only in the first 1.2 min due to the space of this paper.

1 Force Vibration with Numerical Integration Imput Data: 2 $m\ddot{x} + c\dot{x} + kx = F_o \sin(\omega_0 t)$ Imput Data: Mass m= 10 kg 4 $\ddot{x} = -\frac{c}{x} - \frac{k}{x} + F_0 \sin(\omega_0 t)$ Imput Data: Imput Data: Imput Data: 7 Time Displ. Velocity Accel Initial x0= 0.15 N/m/sec 8 t x v a 9 sec m m/sec m/sec^2 Imput Data: Imput Data: 10 0 0.1 0.5 Initial x0= 0.1 Imput Data: 10 0 0.1 0.5 Initial x0= 0.1 Imput Data: 10 0 0.1 0.5 Initial x0= 0.1 Imput Data: 11 0.05 0.129906 0.419625 I.751736 Imput Data: Imput Data: Imput Data: 12 0.1 0.141829 0.339086 I.755736 Imput Data:		А	В	С	D	E	F	G	Н	Ι	J	K	L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Force Vi	ibration wi	ith Numer	ical Integ	ration							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	mÿ⊥c	$\dot{\mathbf{r}} \perp b\mathbf{r} -$	F sin((a, t)	Input Dat	a:						
6 <i>m m</i> 7 Time Displ. Velocity Accel Initial x0= 0.1 m 8 t x v a Initial x0= 0.1 m initial x0= 0.1 m 9 sec m m/sec m/sec 0.5 m/sec initial x0= 0.01 m 10 0 0.1 0.5 -1.6075 Force F0= 4 N initial x0=	3	$m_{\lambda} + c$	$\lambda \perp \mu \lambda -$		$\mathcal{D}_0 \mathcal{U}$	Mass m=		10	kg				
6 <i>m m</i> 7 Time Displ. Velocity Accel Initial x0= 0.1 m 8 t x v a Initial x0= 0.1 m initial x0= 0.1 m 9 sec m m/sec m/sec 0.5 m/sec initial x0= 0.01 m 10 0 0.1 0.5 -1.6075 Force F0= 4 N initial x0=	4	1	c k			Spring k=		160	N/m				
6 <i>m m</i> 7 Time Displ. Velocity Accel Initial x0= 0.1 m 8 t x v a Initial x0= 0.1 m initial x0= 0.1 m 9 sec m m/sec m/sec 0.5 m/sec initial x0= 0.01 m 10 0 0.1 0.5 -1.6075 Force F0= 4 N initial x0=	5	$ \ddot{x} =$	$-\dot{x}$	$x + F_0$ si	$in(\omega_0 t)$	Damp c=		0.15	N/m/sec				
8 t x v a Initial vo= 0.5 m/sec 9 sec m m/sec 10 0 0.1 0.5 -1.6075 10 0 0.1 0.5 -1.6075 Force F0= 4 N 11 0.05 0.1229906 0.419625 -1.714327 Force Freq w0= 1.3 rad/sec 12 0.1 0.141829 0.333908 -1.755736 13 0.15 0.1664734 0.1596268 -1.637647 15 0.25 0.1724077 0.0777444 -1.482455 16 0.3 0.174419 0.0036217 -1.270371 17 0.35 0.173035 -0.059897 -0.09812 18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1523694 -0.145951 -0.386924 22 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1233776 0.2123776 3.982490 <th>6</th> <th>1</th> <th>n m</th> <th></th>	6	1	n m										
9 sec m m/sec m/sec^22 Time Step dt= 0.05 sec 10 0 0.1 0.5 -1.6075 Force F0= 4 N 11 0.05 0.1229906 0.419625 -1.714327 Force Freq w0= 1.3 rad/sec 12 0.1 0.141829 0.3339086 -1.755736 -1.6075 Force Freq w0= 1.3 rad/sec 14 0.2 0.1664734 0.1596268 -1.637647 -1.720901 -1 -1 15 0.25 0.1724077 0.077444 -1.482455 -1 -0 -1 <th>7</th> <th>Time</th> <th>Displ.</th> <th>Velocity</th> <th>Accel</th> <th>Initial x0=</th> <th></th> <th>0.1</th> <th>m</th> <th></th> <th></th> <th></th> <th></th>	7	Time	Displ.	Velocity	Accel	Initial x0=		0.1	m				
10 0 0.1 0.5 -1.6075 Force $FO=$ 4 N 11 0.05 0.1229906 0.419625 -1.714327 Force $Freq w0=$ 1.3 rad/sec 12 0.1 0.141829 0.3339086 -1.755736 13 0.15 0.1563297 0.2461219 -1.729901 14 0.2 0.1664734 0.1596268 -1.637647 15 0.25 0.1724077 0.0777444 -1.482455 16 0.3 0.1744319 -0.0308217 -1.270371 17 0.35 0.173037 -0.059897 -1009812 18 0.4 0.163779 -0.110387 -0.71127 19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.15297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.123376 0.8928903 24 0.7 0.126250 1.3014572 1.408937 28 0.9 0.136165 0.	8	t	х	v	a	Initial vo=		0.5	m/sec				
11 0.05 0.1229906 0.419625 -1.714327 Force Freq w0= 1.3 rad/sec 12 0.1 0.141829 0.3339086 -1.755736 13 0.15 0.1563297 0.2461219 -1.729901 14 0.2 0.1664734 0.1596268 -1.637647 15 0.25 0.1724077 0.0777444 -1.482455 16 0.3 0.174419 0.0036217 -1.270371 17 0.35 0.173035 -0.059897 -1009812 18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1623694 -0.153566 0.6037998 20 0.5 0.1545882 -0.153566 0.6037998 21 0.5 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.123776 0.286767 1.408937 29 0.95 0.1477265 0.268767 1.408937	9	sec	m	m/sec	m/sec^2	Time Step	dt=	0.05	sec				
12 0.1 0.141829 0.3339086 -1.755736 13 0.15 0.1563297 0.2461219 -1.729901 14 0.2 0.1664734 0.1596268 -1.637647 15 0.25 0.1724077 0.0777444 -1.482455 16 0.3 0.1744419 0.0036217 -1.270371 17 0.35 0.173035 -0.059897 -1.009812 18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1233776 0.021771 1.3313331 26 0.8 0.1243132 0.447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136155 <th>10</th> <th>0</th> <th>0.1</th> <th>0.5</th> <th>-1.6075</th> <th>Force F0=</th> <th>=</th> <th>4</th> <th>Ν</th> <th></th> <th></th> <th></th> <th></th>	10	0	0.1	0.5	-1.6075	Force F0=	=	4	Ν				
13 0.15 0.1563297 0.2461219 -1.729901 14 0.2 0.1664734 0.1596268 -1.637647 15 0.25 0.1724077 0.0777444 -1.482455 16 0.3 0.1744419 0.0036217 -1.270371 17 0.35 0.173035 -0.059897 -1.009812 18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.153566 6.037998 23 0.65 0.1331028 -0.23376 0.8928903 24 0.7 0.1262501 -0.078731 1.391938 25 0.75 0.123776 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1380941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1	11	0.05	0.1229906	0.419625	-1.714327	Force Fre	q w0=	1.3	rad/sec				
14 0.2 0.1664734 0.1596268 -1.637647 15 0.25 0.1724077 0.0777444 -1.482455 16 0.3 0.1744419 0.0036217 -1.270371 17 0.35 0.173035 -0.059897 -1.009812 18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.123776 0.921771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 31 1.05 0.1814396 <th>12</th> <th>0.1</th> <th>0.141829</th> <th>0.3339086</th> <th>-1.755736</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	12	0.1	0.141829	0.3339086	-1.755736								
15 0.25 0.1724077 0.0777444 -1.482455 16 0.3 0.1744419 0.0036217 -1.270371 17 0.35 0.173035 -0.059897 -1.009812 18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.153566 0.6037998 23 0.65 0.1313028 -0.213376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 <th>13</th> <th>0.15</th> <th>0.1563297</th> <th>0.2461219</th> <th>-1.729901</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	13	0.15	0.1563297	0.2461219	-1.729901								
15 0.25 0.1724077 0.0777444 -1.482455 16 0.3 0.1744419 0.0036217 -1.270371 17 0.35 0.173035 -0.059897 -1.009812 18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.123776 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396	14	0.2	0.1664734	0.1596268	-1.637647					。			
17 0.35 0.173035 -0.059897 -1.009812 18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.153566 0.6037998 23 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.226234	15	0.25	0.1724077	0.0777444	-1.482455		\sim	\sim	\sim	-			
18 0.4 0.1687779 -0.110387 -0.71127 19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.153566 0.6037998 23 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1233776 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 <th>16</th> <th>0.3</th> <th>0.1744419</th> <th>0.0036217</th> <th>-1.270371</th> <th>1.°</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	16	0.3	0.1744419	0.0036217	-1.270371	1.°							
19 0.45 0.1623694 -0.145951 -0.386924 20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.153566 0.6037998 23 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 0.487128 0.3614651	17	0.35	0.173035	-0.059897	-1.009812			1	1			1	
20 0.5 0.1545882 -0.165297 -0.050187 21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.153566 0.6037998 23 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 0.487128 0.3614651	18	0.4	0.1687779	-0.110387	-0.71127		Num	erical So	lution of	Force Vi	bration	with	
21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.153566 0.6037998 23 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 0.487128 0.3614651	19	0.45	0.1623694	-0.145951	-0.386924				Damp	oing			
21 0.55 0.1462606 -0.167806 0.2848166 22 0.6 0.1382263 -0.153566 0.6037998 23 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 0.487128 0.3614651	20	0.5	0.1545882	-0.165297	-0.050187	5							
22 0.6 0.1382263 -0.153566 0.6037998 23 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 0.487128 0.3614651	21	0.55	0.1462606	-0.167806	0.2848166								
23 0.65 0.1313028 -0.123376 0.8928903 24 0.7 0.1262501 -0.078731 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 0.487128 0.3614651	22	0.6	0.1382263	-0.153566	0.6037998						A	F	ł
24 0.7 0.1262501 -0.0/8/31 1.1391938 25 0.75 0.1237376 -0.021771 1.3313331 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 0.487128 0.3614651	23	0.65	0.1313028	-0.123376	0.8928903				A		<i>f</i> 1	I	1
25 0.75 0.1257576 -0.021771 1.3515351 26 0.8 0.1243132 0.0447952 1.4599344 27 0.85 0.1283778 0.1177919 1.5180445 28 0.9 0.136165 0.1936941 1.5014572 29 0.95 0.1477265 0.268767 1.408937 30 1 0.162926 0.3392139 1.2423279 31 1.05 0.1814396 0.4013303 1.0065401 32 1.1 0.2027643 0.4516573 0.7094141 33 1.15 0.226234 0.487128 0.3614651	24	0.7	0.1262501	-0.078731	1.1391938			-					7
33 1.15 0.226234 0.487128 0.3614651	25	0.75	0.1237376	-0.021771	1.3313331	5 ¹		-					1
33 1.15 0.226234 0.487128 0.3614651	26	0.8	0.1243132	0.0447952	1.4599344	0 ati					Series .		
33 1.15 0.226234 0.487128 0.3614651	27	0.85	0.1283778	0.1177919	1.5180445	l -1		- \ -		17		-7-	-
33 1.15 0.226234 0.487128 0.3614651	28	0.9	0.136165	0.1936941	1.5014572	2 -2	*	- 1	/	-14-			_
33 1.15 0.226234 0.487128 0.3614651	29	0.95	0.1477265	0.268767	1.408937	3 -3		4		-		1	
33 1.15 0.226234 0.487128 0.3614651	30	1	0.162926	0.3392139	1.2423279	[]-4						¥—	
33 1.15 0.226234 0.487128 0.3614651	31	1.05	0.1814396	0.4013303	1.0065401	1 -5						_	
33 1.15 0.226234 0.487128 0.3614651	32	1.1	0.2027643	0.4516573	0.7094141	Disl			Tin	1e t (sec)			
34 1.2 0.2510422 0.5052012 -0.024486	33	1.15	0.226234	0.487128	0.3614651		T		nt	lacity	1 0 00 -1 -	ration	
	34	1.2	0.2510422	0.5052012	-0.024486		D	ispiaceme		elocity =	Accele	12000	

Case Study 8. Numerical Differentiation for linkage analysis in Dynamics of Machinery

In general, the displacement of a given linkage could be found analytically, where a four bar linkage is illustrated below for the mathematical formulas in the first six equations. Link 2 is driven by a constant motor, by selecting time steps, with the input angle of link 2, the angular displacement of Link 3, and 4 can be solved. Then, using center difference formulas equations 7 and 8 for numerical differentiation, the velocity and acceleration of output link 3 and 4 can be solved numerically in tabular form and then plot into chart forms as show.


Case Study 9. Jet Engine Thermodynamic analysis.

Jet engine thermodynamic analysis in both SI and English units is processed in Excel--Assume aircraft is stationary and the air is moving towards the aircraft at a velocity of V1=280-m/s. Ideally, the air will leave the diffuser with a negligible velocity (V=0). Air is treated as an ideal gas with constant specific heats Cp=1.005-kJ/kg-K. Student can change any input to find the alternative design in jet engine of aircraft.

A		C D	E		F G	Н	Ι	J	K	L	Μ	N
	-	aircraft is stationary a		-		aft at a veloc	ity of V1=	280-m/s				
		ave the diffuser with a						qin				
Air is t	treated as an io	leal gas with constant	specific he	eats Cp=1.0)5							
	SI Unit):						*	Combustor	4			
Air Inl	et Temp. T1=		26	50 K	V1 .	V2=0		3	-	-		
Air Inle	et Pressure p1=	=	43		~	1 2	Comp		Turbine	5	6	
	et velocity V1=		28	30 m/se	2							
Pressu	re Ratio PR=p	3/p2=	13	3								
Max. T	emp T4=		130	00 kpa								
Specifi	ic Heat Cp=		1.0	05 kJ/kg	-K							
Ratio (Cp/Cv=k=		1.	.4			T, h=Cp*T	14	ł			
Consta	nt Z=(k-1/k)=		0.2	86			•	qin /				
									5			
Solutio	on:						3	p=c 🖣				
Step 1	. Diffuser 1-2						T T		6			
qdot-W	Vdot=h2-h1+(V	/2^2-V1^2)/2	1st Law	v Thermody.			2 🕈					
where	qdot=Wdot=V2	2=0 in diffuser, we hav	e					p=c	qout			
Cp(T2-	-T1)-V1^2/2=0						1	S	5			
		260+(280-m/s)^2/(20	p)(1-kJ/kg/	/1000m^2/s^	2)=	Input (Engl	ish Unit):					
			299									
p2=P1	*(T2/T1)^(1/Z)=	78			Air Inlet T	emp. T1=			420	R	
•	. Compressor						ressure p1=			7	psia	
	=p2*PR=		101	7.8 kpa			-	craft Speed	V1=	900	ft/s	
	(p3/p2)^Z=		622				atio PR=p3			13		
	. Turbine 4-5					Max. Temp	-	-		2400	R	
-	=Wt,out	h3-h2=h4-h5				Specific H				0.24	Btu/lbm-H	2
		T3-T2=T4-T5				Ratio Cp/C				1.4		-
T5=T4	-T3+T2=		976	6.8 K.		Constant Z				0.286		
	*(T5/T4)^(1/Z))=	374			1-Btu/lbm				25037	ft^2/s^2	
	. Nozzle 5-6	p6=p1		1.2 1.04		Solution:				20007	10 2/0 2	
		po pi										
	5*(p6/p5)^Z=		543	3.2 K		Step 1. Di						
qdot-V	Wdot=h6-h5+(V	/6^2-V5^2)/2				-		2^2-V1^2)/		1st Law T	hermody.	
qdot='	Wdot=V5=0, w	e have Cp(T6-T5)-V6^	2/2=0			where qdot	=Wdot=V2	=0 in diffus	er, we have			
V6=((2*Cp(kJ/kg-K)	*(T5-T6)K(1000(m^2	/s^2)*(1-kJ	//kg))^(1/2)=		Cp(T2-T1)	-V1^2/2=0					
			933	3.5 m/s		T2=T1+V1	^2/(2Cp)=	420R+(850-	ft/s)^2/((2	*0.24)(Btu/	lbm-R))	
Step 5	5. Propulsive V	Vork and Propulsive	efficiency			*(1-Btu/lb	m/25037-F	t^2/S^2)=		487.4	K	
-	lsive Work						2/T1)^(1/Z)			11.8	psia	
		/aircraft=(V6-V1)(m/s)*V1(m/e)*	*(1_kI/kg/(1)	$100-m^{2/e^{2}}$	-	mpressor				point	
wp=(vexit-vimet)	182.99		·(1-KJ/Kg/(1)	00-m 2/s 2))	-	-	2-3		152.2	ante.	
-			kJ/kg			p3=p4=p2				153.2	psia	
-		ηp=Wp/qin=	0.2			T3=T2(p3/				1014.3	R	
	qin=h4-h3=Cp		681			Step 3. Tu	rbine 4-5					
The fi	uel comsumptio	on (mdot)fuel=Qdot/qF	IV= 0.01	158 kg		Wc,in=Wt	out,	h3-h2=h4-	h5			
qHV is	s the heating va	lue of the fuel (keroser	ie)= 43,0	000 kJ/kg				T3-T2=T4-	T5			
-	-	dot)=E42/1-kg mass of				T5=T4-T3-	+T2=			1873.1	R	
		opusive Work W* for					5/T4)^(1/Z)	=		64.3	psia	
W*=		4,000	kw			Step 4. No		 p6=p1		01.5	Point	
	a mass flow			250 1/-		-		P0-P1		002.8	D	
		ate of air mdot=	21.8			T6=T5*(p		CAO 175102 /		993.8	R	
	which need to design the of Jet Passage Area based on Ae				mics			6^2-V5^2)/:				
	The mass flow rate of fuel mfdot= 0.3463 kg/s qdot=Wdot=V5=0, w						-					
Total	Mass of fuel in	Tank Mf=	200	000 kg		V6=((2*0.	24(Btu/lbm	-R)*(1857.	8-965.8)R(25037-Ft^2	/S^2/1Btu/1	bm))^(1/2)=
Nonst	op fly Hours of	AirCraft H=	16	5.0 hour	3					3250.7	ft/s	
	-					Step 5. Pr	opulsive W	ork and Pr	opulsive et	ficiency		
						Propulsive	-					
								aircraft-(V4	5-V1)(m/c)	*V1(m/o)*(1_Rtu/lhm/(25037-ft^2/s
						wp-(vexi	- v met) · v				1-13(0/10111/(25057-It 2/8
						n	cc. :	84.50		Btu/lbm		
								ηp=Wp/qi	1=	0.254	25.40%	
							h4-h3=Cp(332.6	Btu/lbm	
								on (mdot)fi	~ .		0.017	lbm/s
						qHV is the	heating va	alue of the f	uel (kerose	ene)=	19300	Btu/lbm
	qHV is the heating value of the fuel (kero where (mdot)fuel/(mdot)=M58/1-lbm of A											

Case Study 10. Long-hand-calculation of Stiffness Matrix for two dimensional triangular threenode-element in CAE study.

There are three topics are show in this spreadsheet. 1. With matrix analysis tool in Excel, the calculation of stiffness matrix for a two dimensional triangular three-node-element is created. 2. For given nodal displacement of the element, to find the stresses in the element. 3. For given nodal forces of the element to find the stresses in the element. Which provides the basic formulation of finite element analysis in two dimensional problems.

81																	
	Case 2	. For gi	ven	Nodal	fore	es of el	ement to	find	the stre	Ses			•				
		-u3=v3-				b, $Fy2=$			the stre		1	m=3 (0	1)				
84														Fv2			
85	$\begin{bmatrix} f_{1x} \\ f_{1y} \end{bmatrix}$	[kı		12	. k1	6] [¹¹ V1	1							J-2 (2,)			
86	f_{2x}	k_2		22			1								Fx	2	
87	1 f2y				:		}		(6.2.5	5)							
88	f_{3x}	ke		62 · · ·	$. k_6$		1										
89	f3y)	L				U3 U3	J				i	=1 (0,-	1)				
90														_		_	
91				Fx1				2.5	1.25		-2	-1.5	-0.5	0.25		u1=0	
92				Fy1			1	.25	4.375		-1	-0.75	-0.25	-3.625	_	v1=0	
93			-	500	ξ		-	-2	-1		4	0	-2	1		u2=?	5
94				200	-	4E+0		1.5	-0.75		0	1.5	1.5	-0.75		v2=?	
95				Fx3				0.5	-0.25		-2	1.5	2.5	-1.25		u3=0	
96 97 :	C 1			Fy3	J			.25	-3.625		1	-0.75	-1.25	4.375		v3=0	
97 :	SOIVIN	g Sub-M	atris	500	Sub-l	4E+0		4	0	ſ.	12]						
99				200	}	4640	~	0	1.5		12						
	We hav	e .			-		C										
101	10	u2]		1/4E+	06	0.25	0			۲ <u>5</u>	00 J		1/4E+06	125.00		3.1E-05	in
102		v2			1	0	0.666	67			00			133.33		3.3E-05	
103 :	Substit	ting bac	k to t	find the	unkr	iown noo	al forces						0		1		
104				Fx1	1			2.5	1.25		-2	-1.5	-0.5	0.25		0	1
105				Fy1			1	.25	4.375		-1	-0.75	-0.25	-3.625		0	
106				500	l			-2	- 1		4	0	-2	1		J 3.1E-05	L
107				200	[=	4E+0		1.5	-0.75		0	1.5	1.5	-0.75		3.3E-05	ſ
108				Fx3				0.5	-0.25		-2	1.5	2.5	-1.25		0	
109				[Fy3]	J			.25	-3.625	-	1	-0.75	-1.25	4.375		0	J
110							-0.00011)	ſ	-450]							
111							-5.6E-05	5		-225							
112					=	4E+06	0.00013	=	-	500	1b						
113						1	0.00005	7	í	200	-						
114							-1.3E-05			-50							
115							6.3E-06	5		25							
116		y ≜Fy3	=25					,	L)							
117		•					Double (check	by ΣFx	=ΣΕ3	z=0						
	Fx3=-5			Fy2	Ev	2=200	Double			,							
119	142 -3			- 1 y 2	1 92	2 200											
119					> 17	x2=500	•										
_					F	x2=500											
121																	
	Fx1=-4	50 📕 Fy	y1=-2	225													
123							Go back		5.2.36) t	o find	the st	resses					
124		Stre	ss/Ne	odal Dis	splace	ement R	elationship	p									
125				σ}	=	D		-{ e	₅}_		=	I) В	-{ b }-		(6.2.36)
126				-		. ,		-	_								

Conclusion:

Excel spreadsheet in Microsoft Office allows the integration of computer based projects with traditional mechanical engineering topics. Student is enjoying their spreadsheet learning environment and will bring hundreds spreadsheet calculators to deal with their future engineering design and analysis problems. The easy learning Excel spreadsheets allows our student to get the alternative solution of their interested problems by simply changing the inputs in their Excel calculator. Where the most desirable solution for a given problem could be found by considering the given environment and to improve the design quality. With Excel spreadsheet background, MET student get better understanding and great confidence to deal with their future professional challenge.

Short Bio of author:

Ti-Lin Liu is an associate professor in the Manufacturing and Mechanical Engineering Technology Department at Rochester Institute of Technology. He has been teaching at RIT since 1987. Previously he was the Chair Professor of the Mechanics Department at Shanghai University of Technology. His areas of interest include finite element analysis, computer simulation with working model and Matlab/Simulink, numerical analysis, solid mechanics, heat transfer and system dynamics/vibration. He has been the recipient of teaching awards in China and was the sole recipient of the 2001 Annual Grant Reward from MSC Software Corporation, San Mateo, CA. Research interests include: Finite element analysis, computer simulation with working model and Matlab/Simulink.