
Exceptional Control Flow

Alan L. Cox

alc@rice.edu

Some slides adapted from CMU 15.213 slides

Objectives

Be exposed to different types of exceptional
control flow: hardware, system software,
application software

Be able to use software exceptional control
flow to create simple concurrent programs

Cox Exceptional Control Flow 2

Cox Exceptional Control Flow 3

Processor Control Flow

Processor executes sequence of instructions

 From start-up to shutdown

 Called system’s physical control flow

 One instruction at a time (or the illusion of it)

We have seen two “normal” ways to alter
control flow:

 Conditional & unconditional branches

 Calls & returns

Cox Exceptional Control Flow 4

Exceptional Control Flow

Hardware:

 Exceptions (interrupts)

System software:

 Signals

 Thread context switch

 Process context switch

Application software (varies by language):

 Non-local jumps

 Exceptions – same name, similar idea

 …

Cox Exceptional Control Flow 5

Hardware Exceptions

Exception = A transfer of control to the OS in response
to some event (i.e., a change in processor state)

exception return
(optional)

exception processing
by exception handler

exception
event

User Process OS

T
im

e

Cox Exceptional Control Flow 6

Some Exceptions

Divide by zero

Page fault

Memory access violations

Breakpoints

System calls

Interrupts from I/O devices

etc.

Cox Exceptional Control Flow 7

Exception Table (Interrupt Vector)

How to find appropriate handler?

Initialized by OS at boot time

1. Each event type has an
exception number k0…n-1

2. Interrupt vector (a jump
table) entry k points to an
exception handler

3. Handler k is called each time
exception k occurs

Interrupt vector
Exception
numbers

0

1

2

n-1 Address of handler n-1

Address of handler 2

Address of handler 1

Address of handler 0

……

Cox Exceptional Control Flow 8

Exception Classes

Asynchronous (not caused by an instruction)
 Interrupt

• Signal from an I/O device (i.e. network packet)

• Always return to the next instruction

Synchronous (caused by an instruction)
 Trap

• Intentional exception (i.e. system call)

• Always return to the next instruction

 Fault
• Potentially recoverable error (i.e. page fault)

• Might return to the current instruction (if problem is
fixed) to allow it to re-execute

 Abort
• Non-recoverable error (i.e. machine check error)

• Terminates the application

Cox Exceptional Control Flow 9

Processes

A process is an instance of a running program

Each program in the system runs in the
context of a process
 Appears to be the only program running on the

system

 Appears to have exclusive use of both the
processor and the memory

 Appears to execute instructions of the program one
after the other without interruption

 Program’s instructions and data appear to be the
only objects in the system’s memory

Exceptions help make this possible!

Cox Exceptional Control Flow 10

Process Address Space

Every program believes it
has exclusive use of the
system’s address space

Process address space is
private

 Can not be read/written
by any other process

 I.e., address 0x400000 is
different for every
process

User Stack

Shared Libraries

Heap

Read/Write Data

Read-only Code and Data

Unused

0x7FFFFFFFFFFF

%rsp

0x000000000000

0x000000400000

Cox Exceptional Control Flow 11

User and Kernel Mode

Process isolation

 Hardware restricts the instructions an application
can execute

Mode bit: user vs. kernel mode

 In kernel mode, everything is accessible

 In user mode, cannot execute privileged
instructions

• Halt the processor

• Change the mode bit

• Initiate I/O

• Access data outside process address space

• etc.

Exceptions switch from user to kernel mode

Cox Exceptional Control Flow 12

Trap Example

Opening a File
 User calls open(filename, options)

 Function open executes syscall instruction

 OS must find or create file

 Returns integer file descriptor

User Process OS

exception

Open file

return

syscall

cmp

0000000000000000 <__libc_open>:

…

9: b8 02 00 00 00 mov $0x2,%eax

e: 0f 05 syscall

10: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

%eax used to store

system call number
(/usr/include/sys/
syscall.h)

Cox Exceptional Control Flow 13

Fault Example #1

Memory Reference

 User writes to memory location

 Address is not valid

 Page handler detects invalid address

 Send SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

int main(void) {

a[5000] = 23;

return (0);

}

0x400448 <main>: movl $0x17,0x2051ee(%rip) # 0x605640

page fault

Detect invalid address

event
movl

Signal process

User Process OS

Cox Exceptional Control Flow 14

Fault Example #2

Memory Reference

 User reads from memory location

 That portion of user’s memory is currently on disk

 Page handler must load page into physical memory

 Returns to faulting instruction

 Successful on second try

User Process OS

page fault

Load page into memory

return

event
mov

int a[1000] = {

0, 1, 2, … };

int main(void) {

printf(“%d\n”,
a[500]);

return (0);

}

0x40049c <main+4>: mov 0x200bae(%rip),%esi # 0x601050 <a+2000>

Cox Exceptional Control Flow 15

Logical Control Flow

Processes must share the processor with
other processes as well as the OS

 Logical control flow is the illusion that each
process has exclusive use of the processor

Processes take turns using the processor

 Processes are periodically preempted to allow
other processes to run

 Only evidence that a process is preempted is if you
are precisely measuring time

Time

Process A Process B Process C

Cox Exceptional Control Flow 16

Concurrent Processes

Two processes run concurrently (are
concurrent) if their flows overlap in time

Otherwise, they are sequential

Examples:

 Concurrent: A & B, A & C

 Sequential: B & C

Time

Process A Process B Process C

Cox Exceptional Control Flow 17

User View of Concurrent Processes

Control flows for concurrent processes are
physically disjoint in time

However, we can think of concurrent
processes are running in parallel with each
other

Time

Process A Process B Process C

Cox Exceptional Control Flow 18

Context Switching

Processes are managed by OS kernel

 Important: the kernel is not a separate process,
but rather runs as part of some user process

Control flow passes from one process to
another via a context switch

Process A

code

Process B

code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

Cox Exceptional Control Flow 19

Creating a Process

int fork(void)

 Creates new child process identical to calling
parent process

 Returns 0 to the child process

 Returns child’s pid to the parent process

 Returns -1 to the parent process upon error (no
child is created)

if (fork() == 0)

printf("hello from child\n");

else

printf("hello from parent\n");

Interesting & confusing –
called once, but returns twice!

Cox Exceptional Control Flow 20

Process IDs

Each process is assigned a unique process ID
(PID)

 Positive, non-zero identifier

 Used by many functions to indicate a particular
process

 Visible with ps command

Obtaining process IDs

 PID of calling process:

pid_t getpid(void);

 PID of parent process:

pid_t getppid(void);

Cox Exceptional Control Flow 21

Fork Example 1

void

fork1(void)

{

pid_t pid;

int x = 1;

if (fork() == 0) {

x++;

pid = getpid();

printf("Child (%d) has x = %d\n",

(int)pid, x);

} else {

x--;

pid = getpid();

printf("Parent (%d) has x = %d\n",

(int)pid, x);

}

printf("Process %d exiting.\n",

(int)pid);

exit(0);

}

Call once, return twice
 Parent/child run same

code

 Different return values

Concurrent execution
 Parent/child different

processes which run
concurrently

Duplicate, but separate
address spaces

 Child copies parents
address space at time of
fork call

Shared files
 Child inherits all of the

parent’s open files

UNIX% ./fork1

Parent (26152) has x = 0

Child (26153) has x = 2

Process 26153 exiting.

Process 26152 exiting.

Cox Exceptional Control Flow 22

Fork Example 2

void fork2(void)

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("L2\n");

fork();

printf("Bye\n");

}
L0

Both parent & child can continue forking

What happens? ??

L1

L1

L2

L2

L2

L2

Bye

Bye

Bye

Bye

Bye

Bye

Bye

Bye

Cox Exceptional Control Flow 23

Fork Example 3

Both parent & child can continue forking

What happens? ??

void fork3(void)

{

printf("L0\n");

if (fork() != 0) {

printf("L1\n");

if (fork() != 0) {

printf("L2\n");

fork();

}

}

printf("Bye\n");

}

L0 L1

Bye

Bye

Bye

Bye

L2

Cox Exceptional Control Flow 24

Fork Example 4

Both parent & child can continue forking

What happens? ??

void fork4(void)

{

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

fork();

}

}

printf("Bye\n");

}

L0

L1

L2

Bye

Bye

Bye

Bye

Changed != to ==

Cox Exceptional Control Flow 25

Processes Form a Tree

[0]

init [1]

childchildchild

grandchildgrandchild

shellDaemons
e.g., sshd

Cox Exceptional Control Flow 26

Destroying a Process

void exit(int status)

 Exits current process

 Does not kill child processes

 atexit() registers functions to be executed upon
exit

void cleanup(void) {

printf("cleaning up\n");

}

int main(void) {

atexit(cleanup);

if (fork() == 0)

printf("hello from child\n");

else

printf("hello from parent\n");

exit(0);

}

Cox Exceptional Control Flow 27

Process States

Running

 The process is either executing or waiting to
execute (because another process is using the
processor)

Stopped

 The process is suspended and will not be scheduled

 May later be resumed

 Process is suspended/resumed via signals (more
later)

Terminated

 The process is stopped permanently

 Terminated via signal, return from main(), or call to
exit()

Cox Exceptional Control Flow 28

Zombie Processes

When process terminates, still consumes
system resources
 Various tables maintained by OS

 Called a zombie – half alive & half dead

Reaping
 Performed by parent on terminated child

 Parent is given exit status information

 Kernel discards process

What if Parent Doesn’t Reap?
 When parent terminates, its children reaped by init

process – part of OS

 Only need explicit reaping of children for long-
running processes
• E.g., shells, servers

Cox Exceptional Control Flow 29

Zombie Example

 ps shows child process

as “defunct”

 Killing parent allows
child to be reaped

void example(void)

{

if (fork() == 0) {

/* Child */

printf("Terminating Child, PID = %d\n“, getpid());
exit(0);

} else {

printf("Running Parent, PID = %d\n", getpid());

while (1) ; /* Infinite loop */

}

}

UNIX% ./example &

[1] 11299

Running Parent, PID = 11299

Terminating Child, PID = 11300

UNIX% ps x

PID TTY STAT TIME COMMAND

11263 pts/7 Ss 0:00 –tcsh

11299 pts/7 R 0:07 ./example

11300 pts/7 Z 0:00 […] <defunct>

11307 pts/7 R+ 0:00 ps x

UNIX% kill 11299

[1] Terminated

UNIX% ps x

PID TTY STAT TIME COMMAND

11263 pts/7 Ss 0:00 –tcsh

11314 pts/7 R+ 0:00 ps x

Z: zombie

S: sleeping

R: running/runnable

T: stopped

Cox Exceptional Control Flow 30

Nonterminating Child Example

 Child process still active
even though parent has
terminated

 Must kill child explicitly,
or it will keep running
indefinitely

void example(void)

{

if (fork() == 0) {

/* Child */

printf("Running Child, PID = %d\n", getpid());

while (1) ; /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n", getpid());

exit(0);

}

}

UNIX% ./example

Terminating Parent, PID = 11396

Running Child, PID = 11397

UNIX% ps x

PID TTY STAT TIME COMMAND

11263 pts/7 Ss 0:00 -tcsh

11397 pts/7 R 0:01 ./example

11398 pts/7 R+ 0:00 ps x

UNIX% kill 11397

UNIX% ps x

PID TTY STAT TIME COMMAND

11263 pts/7 Ss 0:00 -tcsh

11399 pts/7 R+ 0:00 ps x

Cox Exceptional Control Flow 31

Synchronizing Processes

int wait(int *child_status)

 Suspends current process until any child
terminates

 Return value is the pid of the terminated child

 If child_status != NULL, then the object it points to

will be set to a status indicating why the child
terminated

Process can only synchronize with its own
children using wait!

 Other synchronization functions exist

Cox Exceptional Control Flow 32

Synchronizing Processes

int main(void) {

int child_status;

if (fork() == 0)

printf("hello from child\n");

else {

printf("hello from parent\n");

wait(&child_status);

printf("child has terminated\n");

}

printf("Bye\n");

exit(0);

}

HP

HC Bye

CT Bye

Cox Exceptional Control Flow 33

wait() Example

void example(void)

{

pid_t pid[N], wpid;

int child_status, i;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100 + i); /* Child */

for (i = 0; i < N; i++) {

wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

}

Macros to get info
about exit status

If multiple children completed,
will take in arbitrary order

Cox Exceptional Control Flow 34

waitpid()

waitpid(pid, &status, options)

void example(void)

{

pid_t pid[N], wpid;

int child_status, i;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100 + i); /* Child */

for (i = 0; i < N; i++) {

wpid = waitpid(pid[i], &child_status, 0);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

}

Waits for specific process

Cox Exceptional Control Flow 35

wait/waitpid Example Outputs

Child 3565 terminated with exit status 103

Child 3564 terminated with exit status 102

Child 3563 terminated with exit status 101

Child 3562 terminated with exit status 100

Child 3566 terminated with exit status 104

Child 3568 terminated with exit status 100

Child 3569 terminated with exit status 101

Child 3570 terminated with exit status 102

Child 3571 terminated with exit status 103

Child 3572 terminated with exit status 104

Using wait

Using waitpid

Cox Exceptional Control Flow 36

Running a New Program

int execl(char *path,

char *arg0, …, char *argn,

char *null)

 Loads & runs executable:

• path is the complete path of an executable

• arg0 becomes the name of the process

• arg0, …, argn  argv[0], …, argv[n]

• Argument list terminated by a NULL argument

 Returns -1 if error, otherwise doesn’t return!

if (fork() == 0)

execl("/usr/bin/cp", "cp", "foo", "bar", NULL);

else

printf("hello from parent\n");

Cox Exceptional Control Flow 37

Interprocess Communication

Synchronization allows very limited
communication

Pipes:

 One-way communication stream that mimics a file
in each process: one output, one input

 See man 7 pipe

Sockets:

 A pair of communication streams that processes
connect to

 See man 7 socket

How many “hello”?

Cox Exceptional Control Flow 38

#include "csapp.h"

int

main()

{

int i;

for (i = 0; i < 2; i++)

Fork();

printf("hello\n");

exit(0);

}

How many “hello”?

Cox Exceptional Control Flow 39

#include "csapp.h"

void

doit()

{

Fork();

Fork();

printf("hello\n");

return;

}

int

main()

{

doit();

printf("hello\n");

exit(0);

}

What do the parent/child print?

Cox Exceptional Control Flow 40

#include "csapp.h"

int

main()

{

int x = 3;

if (Fork() != 0)

printf("x = %d\n", ++x);

printf("x = %d\n", --x);

exit(0);

}

How many “hello”?

Cox Exceptional Control Flow 41

#include "csapp.h"

void doit()

{

if (Fork() == 0) {

Fork();

printf("hello\n");

exit(0);

}

return;

}

int main()

{

doit();

printf("hello\n");

exit(0);

}

#include "csapp.h"

void doit()

{

if (Fork() == 0) {

Fork();

printf("hello\n");

return;

}

return;

}

int main()

{

doit();

printf("hello\n");

exit(0);

}

What’s the output?

Cox Exceptional Control Flow 42

#include "csapp.h"

int counter = 1;

int

main()

{

if (fork() == 0) {

counter--;

exit(0);

} else {

Wait(NULL);

printf("counter = %d\n", ++counter);

}

exit(0);

}

What are the possible outputs?

Cox Exceptional Control Flow 43

#include "csapp.h”

int

main()

{

if (fork() == 0) {

printf("a");

exit(0);

} else {

printf("b");

waitpid(-1, NULL, 0);

}

printf("c");

exit(0);

}

Cox Exceptional Control Flow 44

The World of Multitasking

System Runs Many Processes Concurrently

 Process: executing program

• State consists of memory image + register values +
program counter

 Continually switches from one process to another

• Suspend process when it needs I/O resource or timer
event occurs

• Resume process when I/O available or given
scheduling priority

 Appears to user(s) as if all processes executing
simultaneously

• Even though most systems can only execute one
process at a time

• Except possibly with lower performance than if
running alone

Cox Exceptional Control Flow 45

Programmer’s Model of Multitasking

Basic Functions
 fork() spawns new process

• Called once, returns twice

 exit() terminates own process

• Called once, never returns

• Puts process into “zombie” status

 wait() and waitpid() wait for and reap terminated
children

 execl() and execve() run a new program in an existing
process
• Called once, (normally) never returns

Programming Challenge
 Understanding the nonstandard semantics of the

functions

 Avoiding improper use of system resources
• E.g., “Fork bombs” can disable a system

Cox Exceptional Control Flow 46

UNIX Startup: 1

Pushing reset button loads the PC with the address of a small
bootstrap program

Bootstrap program loads the boot block (disk block 0)

Boot block program loads kernel from disk

Boot block program passes control to kernel

Kernel handcrafts the data structures for process 0

[0] Process 0: handcrafted kernel process

init [1]
Process 1: user mode process
fork() and exec(/sbin/init)

Cox Exceptional Control Flow 47

UNIX Startup: 2

init [1]

[0]

Forks getty (get tty or get terminal)

for the console
getty

init forks new processes as per
the /etc/inittab file

Daemons
e.g., sshd

Cox Exceptional Control Flow 48

UNIX Startup: 3

init [1]

[0]

loginDaemons
e.g., sshd

getty execs a login program

Cox Exceptional Control Flow 49

UNIX Startup: 4

init [1]

[0]

shellDaemons
e.g., sshd

login gets user’s uid & password

• If OK, it execs appropriate shell

• If not OK, it execs getty

Cox Exceptional Control Flow 50

Shell Programs

A shell is an application program that runs
programs on behalf of user

 sh – Original Unix Bourne Shell

 csh – BSD Unix C Shell, tcsh – Enhanced C Shell

 bash – Bourne-Again Shell

 ksh – Korn Shell int main(void)

{

char cmdline[MAXLINE];

while (true) {

/* read */

printf("> ");

Fgets(cmdline, MAXLINE, stdin);

if (feof(stdin))

exit(0);

/* evaluate */

eval(cmdline);

}

}

Read-evaluate loop:

an interpreter!

Cox Exceptional Control Flow 51

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* argv for execve() */

bool bg; /* should the job run in bg or fg? */

pid_t pid; /* process id */

int status; /* child status */

bg = parseline(cmdline, argv);

if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */

if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);

exit(0);

}

}

if (!bg) { /* parent waits for fg job to terminate */

if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");

}

else /* otherwise, don’t wait for bg job */
printf("%d %s", pid, cmdline);

}

}

Cox Exceptional Control Flow 52

Problem with Simple Shell Example

Correctly waits for & reaps foreground jobs

But what about background jobs?

 Will become zombies when they terminate

 Will never be reaped because shell (typically) will
not terminate

 Creates a process leak that will eventually prevent
the forking of new processes

Solution: Reaping background jobs requires a
mechanism called a signal

Cox Exceptional Control Flow 53

Signals

A signal is a small message that notifies a process that
an event of some type has occurred in the system

 Kernel abstraction for exceptions and interrupts

 Sent from the kernel (sometimes at the request of
another process) to a process

 Different signals are identified by small integer ID’s

 Typically, the only information in a signal is its ID and
the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate Keyboard interrupt (ctrl-c)

9 SIGKILL Terminate Kill program

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

18 SIGCHLD Ignore Child stopped or terminated

Cox Exceptional Control Flow 54

Signals: Sending

OS kernel sends a signal to a destination
process by updating some state in the OS
context for that process

Reasons:

 OS detected an event

 Another process used the kill system call to
explicitly request the kernel to send a signal to the
destination process

Cox Exceptional Control Flow 55

Process Groups

Fore-

ground

job

Back-

ground

job #1

Back-

ground

job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp() – Return process

group of current process

setpgid() – Change process
group of a process

Each process
belongs to exactly
one process group

One group in foreground

Cox Exceptional Control Flow 56

Sending Signals with /bin/kill

UNIX% fork2anddie

Child1: pid=11662 pgrp=11661

Child2: pid=11663 pgrp=11661

UNIX% ps x

PID TTY STAT TIME COMMAND

11263 pts/7 Ss 0:00 -tcsh

11662 pts/7 R 0:18 ./fork2anddie

11663 pts/7 R 0:16 ./fork2anddie

11664 pts/7 R+ 0:00 ps x

UNIX% kill -9 -11661

UNIX% ps x

PID TTY STAT TIME COMMAND

11263 pts/7 Ss 0:00 -tcsh

11665 pts/7 R+ 0:00 ps x

UNIX%

kill –9 –11661

Send SIGKILL to every
process in process group
11661

kill –9 11662

Send SIGKILL to process
11662

Sends arbitrary signal to a
process or process group

Cox Exceptional Control Flow 57

kill()

void kill_example(void)

{

pid_t pid[N], wpid;

int child_status, i;

for (i = 0; i < N; i++)

if ((pid[i] = Fork()) == 0)

while (true); /* Child infinite loop */

/* Parent terminates the child processes. */

for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);

Kill(pid[i], SIGINT);

}

/* Parent reaps terminated children. */

for (i = 0; i < N; i++) {

wpid = Wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

}

Cox Exceptional Control Flow 58

Sending Signals from the Keyboard

Typing ctrl-c (ctrl-z) sends SIGINT (SIGTSTP)
to every job in the foreground process group

 SIGINT – default action is to terminate each
process

 SIGTSTP – default action is to stop (suspend) each
process

Cox Exceptional Control Flow 59

Example of ctrl-c and ctrl-z

UNIX% ./fork1

Child: pid=24868 pgrp=24867

Parent: pid=24867 pgrp=24867

<typed ctrl-z>

Suspended

UNIX% ps x

PID TTY STAT TIME COMMAND

24788 pts/2 Ss 0:00 -tcsh

24867 pts/2 T 0:01 fork1

24868 pts/2 T 0:01 fork1

24869 pts/2 R+ 0:00 ps x

UNIX% fg

fork1

<typed ctrl-c>

UNIX% ps x

PID TTY STAT TIME COMMAND

24788 pts/2 Ss 0:00 -tcsh

24870 pts/2 R+ 0:00 ps x

S=Sleeping

R=Running or Runnable

T=Stopped

Z=Zombie

Cox Exceptional Control Flow 60

Signals: Receiving

Destination process receives a signal when it
is forced by the kernel to react in some way
to that signal

Three ways to react:

 Ignore the signal

 Terminate the process (& optionally dump core)

 Catch the signal with a application-level signal
handler

Cox Exceptional Control Flow 61

Signals: Pending & Blocking

Signal is pending if sent, but not yet received

 At most one pending signal of any particular type

 Important: Signals are not queued

• If process has pending signal of type k, then process
discards subsequent signals of type k

 A pending signal is received at most once

Process can block the receipt of most signals

 Blocked signals can be delivered, but will not be
received until the signal is unblocked

Cox Exceptional Control Flow 62

Signals: Pending & Blocking

Kernel maintains pending & blocked bit vectors

in each process context

pending – represents the set of pending

signals

 Signal type k sent  kernel sets kth bit

 Signal type k received  kernel clears kth bit

blocked – represents the set of blocked signals

 Application sets & clears bits via sigprocmask()

Cox Exceptional Control Flow 63

Receiving Signals: How It Happens

Suppose kernel is returning from an exception handler
& is ready to pass control to process p

Kernel computes pnb = pending & ~blocked

 The set of pending nonblocked signals for process p

If pnb == 0

 Pass control to next instruction in the logical control flow
for p

Else

 Choose least nonzero bit k in pnb and force process p to

receive signal k

 The receipt of the signal triggers some action by p

 Repeat for all nonzero k in pnb

 Pass control to next instruction in the logical control flow
for p

Cox Exceptional Control Flow 64

Signals: Default Actions

Each signal type has predefined default action

One of:

 Process terminates

 Process terminates & dumps core

 Process stops until restarted by a SIGCONT signal

 Process ignores the signal

Cox Exceptional Control Flow 65

Signal Handlers

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

Two args:
 signum – Indicates which signal, e.g.,

• SIGSEGV, SIGINT, …

 handler – Signal “disposition”, one of

• Pointer to a handler routine, whose int argument is the kind
of signal raised

• SIG_IGN – ignore the signal

• SIG_DFL – use default handler

Returns previous disposition for this signal
 Details: man signal and man 7 signal

Cox Exceptional Control Flow 66

Signal Handlers: Example 1

#include <signal.h>

#include <stdbool.h>

#include <stdlib.h>

#include “csapp.h"

void sigint_handler(int sig) {

Sio_puts("Control-C caught.\n");

_exit(0);

}

int main(void) {

signal(SIGINT, sigint_handler);

while (true) {

}

}

Cox Exceptional Control Flow 67

Signal Handlers: Example 2

#include <signal.h>

#include <stdbool.h>

#include <stdlib.h>

#include "csapp.h"

void sigalrm_handler(int sig)

{

static int ticks = 5;

Sio_puts("tick\n");

ticks -= 1;

if (ticks > 0) {

signal(SIGALRM,

sigalrm_handler);

alarm(1);

} else {

Sio_puts("*BOOM!*\n");

_exit(0);

}

}

int main(void) {

signal(SIGALRM,

sigalrm_handler);

alarm(1); /* send SIGALRM in

1 second */

while (true) {

/* handler returns here */

}

}

UNIX% ./alrm

tick

tick

tick

tick

tick

BOOM!

UNIX%

signal resets

handler to default
action each time

handler runs, sigset,
sigaction do not

Cox Exceptional Control Flow 68

Signal Handlers (POSIX)

Modern UNIX/Linux allow more control:

int sigaction(int sig,

const struct sigaction *act,

struct sigaction *oact);

struct sigaction includes a handler:

void sa_handler(int sig);

Signal from csapp.c is a wrapper around
sigaction

Cox Exceptional Control Flow 69

Pending Signals Not Queued

volatile int ccount = 0;

void child_handler(int sig) {

int child_status;

pid_t pid = wait(&child_status);

ccount -= 1;

Sio_puts("Received signal "); Sio_putl(sig);

Sio_puts(" from process "); Sio_putl(pid); Sio_puts("\n");

}

void example(void)

{

pid_t pid[N];

int child_status, i;

ccount = N;

Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i+=1)

if ((pid[i] = fork()) == 0) {

/* Child: Exit */

exit(0);

}

while (ccount > 0)

pause();/* Suspend until signal occurs */

}

For each signal type,
single bit indicates
whether a signal is

pending

Will probably lose
some signals:

ccount never reaches 0

Cox Exceptional Control Flow 70

Living With Non-Queuing Signals

void child_handler2(int sig) {

int child_status;

pid_t pid;

while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {

ccount -= 1;

Sio_puts("Received signal "); Sio_putl(sig);

…

}

}

void example(void)

{

…

Signal(SIGCHLD, child_handler2);

…

}

Must check for all terminated jobs:

typically loop with wait

Cox Exceptional Control Flow 71

More Signal Handler Funkiness

Consider signal arrival during long system
calls, e.g., read

Signal handler interrupts read() call

 Some flavors of Unix (e.g., Solaris):

• read() fails with errno==EINTER

• Application program may restart the slow system call

 Some flavors of Unix (e.g., Linux):

• Upon return from signal handler, read() restarted

automatically

Subtle differences like these complicate
writing portable code with signals
 Signal wrapper in csapp.c helps, uses sigaction to

restart system calls automatically

Cox Exceptional Control Flow 72

Signal Handlers (POSIX)

Handler can get extra information in siginfo_t when using
sigaction to set handlers

E.g., for SIGSEGV:

• Whether virtual address didn’t map to any physical address, or
whether the address was being accessed in a way not permitted (e.g.,
writing to read-only space)

• Address of faulty reference

Details: man siginfo

static void segv_handler(int sig, siginfo_t *sip, ucontext_t *uap)

{

Sio_puts("Segmentation fault caught!\n");

Sio_puts("Caused by access of invalid address ");

Sio_putl((long)sip->si_addr);

Sio_puts(".\n");

_exit(1);

}

What value for counter is printed?

Cox Exceptional Control Flow 73

#include "csapp.h"

volatile int

counter = 0;

void

handler(int sig)

{

counter++;

/*

* Do some work in

* the handler.

*/

sleep(1);

return;

}

int

main(void)

{

int i;

Signal(SIGUSR2, handler);

if (Fork() == 0) { /* Child */

for (i = 0; i < 5; i++) {

Kill(getppid(), SIGUSR2);

printf(

"sent SIGUSR2 to parent\n");

}

exit(0);

}

Wait(NULL);

printf("counter=%d\n", counter);

exit(0);

}

Cox Exceptional Control Flow 74

Other Types of Exceptional Control Flow

Non-local Jumps

 C mechanism to transfer control to any program
point higher in the current stack

f1

f2 f3

f1 eventually
calls f2 and f3.

When can non-local jumps be used:

• Yes: f2 to f1

• Yes: f3 to f1

• No: f1 to either f2 or f3

• No: f2 to f3, or vice versa

Cox Exceptional Control Flow 75

Non-local Jumps

setjmp()

 Identify the current program point as a place to
jump to

longjmp()

 Jump to a point previously identified by setjmp()

Cox Exceptional Control Flow 76

Non-local Jumps: setjmp()

int setjmp(jmp_buf env)

 Identifies the current program point with the name
env

• jmp_buf is a pointer to a kind of structure

• Stores the current register context, stack pointer, and
PC in jmp_buf

 Returns 0

Cox Exceptional Control Flow 77

Non-local Jumps: longjmp()

void longjmp(jmp_buf env, int val)

 Causes another return from the setjmp() named by
env

• This time, setjmp() returns val

– (Except, returns 1 if val==0)

• Restores register context from jump buffer env

• Sets function’s return value register (%rax) to val

• Jumps to the old PC value stored in jump buffer env

 longjmp() doesn’t return!

Cox Exceptional Control Flow 78

Non-local Jumps

From the UNIX man pages:

WARNINGS

If longjmp() or siglongjmp() are called even though env was

never primed by a call to setjmp() or sigsetjmp(), or when

the last such call was in a function that has since

returned, absolute chaos is guaranteed.

Cox Exceptional Control Flow 79

Non-local Jumps: Example 1

#include <setjmp.h>

jmp_buf buf;

int main(void)

{

if (setjmp(buf) == 0)

printf("First time through.\n");

else

printf("Back in main() again.\n");

f1();

}

f1()

{

…

f2();

…

}

f2()

{

…

longjmp(buf, 1);

…

}

Cox Exceptional Control Flow 80

Non-local Jumps: Example 2

#include <stdio.h>

#include <signal.h>

#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig)

{

siglongjmp(buf, 1);

}

int main(void)

{

Signal(SIGINT, handler);

if (sigsetjmp(buf, 1) == 0)

printf("starting\n");

else

printf("restarting\n");

…

…

while(1) {

sleep(5);

printf(" waiting...\n");

}

}

> a.out

starting

waiting...

waiting...

restarting

waiting...

waiting...

waiting...

restarting

waiting...

restarting

waiting...

waiting...

Control-c

Control-c

Control-c

Cox Exceptional Control Flow 81

Application-level Exceptions

Similar to non-local jumps

 Transfer control to other program points outside
current block

 More abstract – generally “safe” in some sense

 Specific to application language

Outside the scope of this course

 COMP 215, 310: Java exceptions

 COMP 411: Scheme continuations

Cox Exceptional Control Flow 82

Summary: Exceptions & Processes

Exceptions

 Events that require nonstandard control flow

 Generated externally (interrupts) or internally
(traps & faults)

Processes

 At any given time, system has multiple active
processes

 Only one can execute at a time on a processor
(core), though

 Each process appears to have total control of
processor & private memory space

Cox Exceptional Control Flow 83

Summary: Processes

Spawning
 fork – one call, two returns

Terminating
 exit – one call, no return

Reaping
 wait or waitpid

Replacing Program Executed
 execl (or variant) – one call, (normally) no return

Cox Exceptional Control Flow 84

Summary: Signals & Jumps

Signals – process-level exception handling
 Can generate from user programs

 Can define effect by declaring signal handler

 Some caveats

• Very high overhead

– >10,000 clock cycles

– Only use for exceptional conditions

• Don’t have queues

– Just one bit for each pending signal type

Non-local jumps – exceptional control flow
within process

 Within constraints of stack discipline

Cox Exceptional Control Flow 85

Next Time

Dynamic Memory Allocation

