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1 Advection equations with FD

Reading

• Spiegelman (2004), chap. 5

• Press et al. (1993), sec. 19.1

1.1 The diffusion-advection (energy) equation for temperature in con-
vection

So far, we mainly focused on the diffusion equation in a non-moving domain. This is
maybe relevant for the case of a dike intrusion or for a lithosphere which remains un-
deformed. However, more often, we want to consider problems where material moves
during the time period under consideration and takes temperature anomalies with it. An
example is a plume rising through a convecting mantle. The plume is hot and hence its
density is low compared to the colder mantle around it. The hot material rises with a
velocity that depends on the density anomaly and viscosity (see Stokes velocity, sec. ??).
If the numerical grid remains fixed in the background, the hot temperatures should be
moved to different grid points at each time step (see Figure 1 for an illustration of this
effect).

More generally speaking, mantle convection is an example of a system where heat is
transported by diffusion (temperature changes without moving mass, particularly impor-
tant in the boundary layers) and advection (temperature changes by material transport,
dominant in the interior the domain). How strongly these two effects are partitioned is
indicated globally by the Rayleigh number, and locally by the Peclet number (sec. ??).

Mathematically, the temperature equation gets an additional term for advection in a
Eulerian (fixed grid) system, and the partial time derivative, ∂/∂t, is replaced by the total
derivative

D
Dt

=
∂

∂t
+ v · ∇, (1)

where this is equation is for an operator, that applies to a quantity, such as temperature.
In 1-D and in the absence of heat sources, the diffusion-advection equation becomes

(sec. ??)
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or in 2-D
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where vx, vz are velocities in x-, respectively z-direction. If k is constant, the general equa-
tion can be written as

∂T
∂t

+ v · ∇T = κ∇2T. (4)
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Figure 1: Snapshots of a bottom heated thermal convection model with a Rayleigh-number of
5 × 105 and constant viscosity (no internal heating). Temperature is advected through a fixed
(Eulerian) grid (circles) with a velocity (arrows) that is computed with a Stokes solver.

Heat sources would lead to additional terms on the right hand side. Since temperature
variations lead to buoyancy forces, the energy equation is coupled with the Stokes (con-
servation of momentum) equation from which velocities v can be computed to close the
system needed for a convection algorithm.

Mantle convection codes typically deal with advection of a temperature field assum-
ing that there is significant diffusion at the same time, κ > 0, and will at times produce
non-physical artifacts (e.g. temperature ringing, overshoot “waves” or “halos” around
advected strong temperature contrast) in cases that are advection-dominated.

One example would be if a chemical composition C is to be treated akin to T with a
typical field method,

∂C
∂t

+ v · ∇C = κc∇2C. (5)

Chemical diffusivities are for mantle purposes zero (i.e. compositional mixing happens
by stirring, not molecular diffusion), κc ≈ 0, and special tricks are required to use field
methods to solve

∂C
∂t

+ v · ∇C = 0 (6)

(e.g. Lenardic and Kaula, 1993; Kronbichler et al., 2012), as discussed below (cf. sec. 7.05.5.1
of Zhong et al., 2007).

1.2 Particle-based methods

Often, one therefore uses tracer-based, or “particle methods” where some original compo-
sition, ci, is assigned to a typically very large number of virtual particles (or “markers”),
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at originally randomly distributed locations xi(t = t0). Those are then advected with an
ODE approach (to be solved with, e.g., Runge Kutta, sec. ??)

dxi

dt
= v (7)

where xi is the location of the i-th tracer moving through the fluid.
While 4th order Runge-Kutta may be the preferred approach for tracer advection (e.g.

van Keken et al., 1997), practical limitation (e.g. storage of several different velocity fields)
are often a concern. Some implementation mix inaccurate Euler steps with a Predictor-
Corrector step (e.g. Zhong and Hager, 2003), with good results, and for simpler applica-
tions (e.g. single convective overturn), the related midpoint method may be sufficiently
accurate. It is best to proceed with caution, and standard tests involve advecting tracers
by a certain amount of time in a steady (complicated) velocity field, then reversing veloc-
ities (or time), and see if the original positions are recaptured within sufficient numerical
accuracy.

After numerous convective overturns, regions may become devoid of tracer particles,
requiring very high (& 100 per unit finite difference cell, or finite element) initial distri-
butions of tracers (which in turn requires good random number generators), or insertion
of tracers during the model run. The demands that are posed by the requirements of
large tracer numbers for studies of compositional fluxes, e.g. the entrainment of different
species in plume upwellings, can be handled with modern computers in 2-D, but are, at
present, still a challenge for 3-D, spherical mantle convection computations, for example.

The conversion of tracer fields for properties of interest, e.g. the density or viscosity
that may be attached to composition, also has to be treated with caution. Tackley and King
(2003) provide a helpful discussion of different tracer (averaging) approaches; the ratio
method (Figure 2) is generally preferred.

A related method to using distributed tracers is based on marker chains (e.g. van Keken
et al., 1997) where one only tracks tracers that lie along certain polygons. This works well
if we are mainly interested in tracking a single interface between different materials with
C = c1 and C = c2. For the latter problem, “level set” methods are also promising (e.g.
Suckale et al., 2010; Samuel and Evonuk, 2010).

If two materials with different viscosities η1 and η2 at fractions f1 and f2 = 1− f1 are
present within a single unit cell, the effective viscosity, ηe f f , is bound at the low (“weak”)
end by the harmonic mean viscosity,

ηe f f =

(
f1

η1
+

f2

η2

)−1

, (8)

and at the high (“strong”) end by the artihmetic mean viscosity,

ηe f f = f1η1 + f2η2. (9)

Those two correspond to the horizontal simple and pure shear deformation of a horizon-
tally layered η1 and η2 sandwich, respectively. The 1-D rheological element models are
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Figure 2: Exploration of different tracer averaging and processing schemes (from Tackley and King,
2003). Figure shows composition, C, and temperature, T, of a simple, thermo-chemical convection
test akin to van Keken et al. (1997), for different methods of estimating composition. (Colorbars
for C and T go from 0 (blue) to 1 (red).) The absolute method uses Ci = ANi/Vi to compute the
composition of each unit volume, Vi, from the number of particles of the “special” (e.g. dense)
species, Ni, within the element. Here, A is a constant, and tracers are originally only placed in
the region where C = 1 (here, the dense lower layer). Truncated absolute indicates filtering of
unphysical values which may arise following Lenardic and Kaula (1993). The ratio method assigns
tracers everywhere and defines their original composition, c, as unity or zero depending on tracers
being with the material of interest or outside. Then, Ci = Ni(1)/ (Ni(0) + Ni(1)), where the Ni(x)
are the number of tracers within Vi of composition c = x. Number of tracers per element increases
with each row. Note that the ratio method is generally preferred and appears to allow for much
smaller number of tracers per element (Tackley and King, 2003).
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dashpots in series (with constant stress and additive strain-rates, eq. 8) and dashpots in
parallel (with constant-strain rate and additive stress, eq. 9), respectively.

Since it is usually impractical to decide on the deformation state a priori, the interme-
diate case of the geometric mean viscosity, or, equivalenty the log-average viscosity,

ηe f f = η
f1
1 η

f2
2 (10)

log ηe f f = f1 log η1 + f2 log η2 (11)

(in practice, use eq. 11) is preferred, as explored by Schmeling et al. (2008). Different choices
in averaging methods at an elemental level can have drastically different effects for cer-
tain problems (Schmeling et al., 2008). The question of an appropriate average viscosity
also arises in the case of defining an average Rayleigh number, e.g. for temperature and
strain-rate dependent viscosity. In these cases, the log-average of eq. (11) is also generally
preferred (Christensen, 1984).

Tracer approaches have gotten more popular over the last decades since they combine
intuitively appealing aspects such as the transport of different material (e.g. crust vrs.
peridotite in thermo-chemically convecting mantle with fractionation) with natural im-
plementation of path dependence (“memory”, as required, e.g., for visco-elasticity) with
the benefits of allowing a finite difference or finite element mesh to remain fixed in an
Eulerian frame (“marker in cell” methods, e.g. Gerya and Yuen, 2003; Moresi et al., 2003).

However, the book keeping that is involved in efficiently conducting the operations
that are involved in the numerical implementation (e.g. “find all markers within this unit
cell”) and other necessary steps such as visualization are somewhat involved, particu-
larly on distributed, multi-processor approaches, which is why we do not discuss them at
length here. Existing implementations and libraries for standard computations should be
consulted. However, we will return to a hybrid field/tracer approach for advection (the
semi-Lagrangian scheme) below.

1.3 Advection (transport equations)

We will return to the combined (“combo”) solution of both diffusion and advection below,
but for now focus on the advection part. In the absence of diffusion (i.e. k, κ = 0), the 1-D
equations are

∂T
∂t

+ vx
∂T
∂x

= 0 (12)

and
∂T
∂t

+ vx
∂T
∂x

+ vz
∂T
∂z

= 0. (13)

We will now evaluate some options on how to solve these equations with a finite differ-
ence scheme on a fixed grid. Even though the equations appear simple, it is quite tricky
to solve them accurately, more so than for the diffusion problem. This is particularly the
case if there are large gradients in the quantity that is to be advected. If not done care-
fully, one can easily end up with strong numerical artifacts such as wiggles (oscillatory
artifacts) and numerical diffusion (artificial smoothing of the solution).
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1.3.1 FTCS method

In 1-D, the simplest way to discretize eq. (12) is by employing a central difference scheme
in space, and go forward in time (another example of a forward-time, central space, FTCS,
scheme):

Tn+1
i − Tn

i
∆t

= −vx,i
Tn

i+1 − Tn
i−1

2∆x
, (14)

where vx,i is the vx velocity at location i.

Exercise 1 We will consider a 1-D problem, with constant vx velocity in which an ex-
ponential pulse of temperature is getting advected along the x axis (see Figure 3 and
exercise_1_ftcs.m).

• Program the FTCS method in the code of Figure 3 and watch what happens.

• Change the sign of the velocity.

• Change the time step and grid spacing and compute the non-dimensional parameter
|vx|∆t/∆x.

• When do unstable results occur? Put differently, can you find a ∆t small enough to
avoid blow-up?

As you can see from the exercise, the FTCS method does not work so well . . . In fact, it is
a nice example of a scheme that looks logical on paper, but looks can be deceiving. The
FTCS method is unconditionally unstable, blows up for any ∆t, as can be shown by von
Neumann stability analysis (cf. chap 5 of Spiegelman, 2004). The instability is related to the
fact that this scheme produces negative diffusion, which is numerically unstable.

1.3.2 Lax method

The Lax approach consists of replacing the Tn
i in the time-derivative of eq. (14) with

(Tn
i+1 + Tn

i−1)/2. The resulting equation is

Tn+1
i − (Tn

i+1 + Tn
i−1)/2

∆t
= −vx,i

Tn
i+1 − Tn

i−1
2∆x

(15)

Exercise 2

• Program the Lax method by modifying the script of the last exercise.

• Try different velocities and ∆t settings and compute the Courant number, α, which is
given by the following equation:

α =
vx∆t
∆x

(16)
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%

% FTCS advection schem

%

clear all

nx = 201;

W = 40; % width of domain

Vel = -4; % velocity

sigma = 1;

Ampl = 2;

nt = 500; % number of timesteps

dt = 1e-2; % timestep

dx = W/(nx-1);

x = 0:dx:W;

% Initial Gaussian T-profile

xc = 20;

T = Ampl*exp(-(x-xc).^2/sigma^2);

% Velocity

Vx = ones(1,nx)*Vel;

abs(Vel)*dt/dx

cfac = dt/(2*dx);

% Central finite difference discretization

for itime=1:nt

% central fin. diff

for ix=2:nx-1

Tnew(ix) = ???

end

% BCs

Tnew(1) = ???

Tnew(nx) = ???

% Update Solution & time incremement

T = Tnew;

time = itime*dt;

% Analytical solution for this case

T_anal = ???

figure(1),clf, plot(x,T,x,T_anal), ...

legend(’Numerical’,’Analytical’)

xlabel(’x’)

ylabel(’temperature’)

drawnow

end

Figure 3: MATLAB script to be used with FTCS exercise 1.

• Is the numerical scheme stable for all Courant numbers?

• What is the physical meaning of α? What happens for α = 1 and why?

• Bonus question: Implement a generalized Galerkin-Lax-Wendroff method using the
following equation:[

Mx −
α2

(∆x)2
∂2

∂x2

]
(Tn+1

i − Tn
i ) + α∆x

∂

∂x
Tn

i −
α2(∆x)2

2
∂

∂x
Tn

i = 0 (17)

where Mx = { 1
6 , 2

3 , 1
6} and spatial derivatives are discretized using second order

central differences:

1
6

(
1− c2(∆x)2

)
(Tn+1

i+1 − Tn+1
i−1 ) +

2
3

(
1 + c2(∆x)2

)
Tn+1

i

=

[
1
6
− α

2
+

α2(∆x)2

3

]
Tn

i+1 +
2
3

(
1− α2(∆x)2

)
Tn

i +

[
1
6
− α

2
+

α2(∆x)2

3

]
Tn

i−1

(18)

This formulation gives us much better accuracy (O(∆t2, (∆x)2) by using a higher or-
der discretization in both time and space. But what is its stability range in terms of
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Figure 4: Illustration of the Courant criterion (from Press et al., 1993, chap 19.1).

Courant number? Notice the difference in terms of artificial diffusion, and oscilla-
tions with respect to the simple Lax method.

As you saw from exercise 2, the Lax method does not blow up, but does have a lot
of numerical diffusion for α 6= 1 (which is hard to attain for realistic problems, as v will
vary in space and time). In fact, the Lax criterion stabilized the discretized advection
equation by adding some artificial diffusion. So, it is an improvement but it is far from
perfect, since you may now lose the plumes of Figure 1 around mid-mantle purely due to
numerical diffusion. As for the case of the implicit versus explicit solution of the diffusion
equation, you see that there are trade-offs between stability and accuracy. There is no free
lunch, and numerical modeling is also a bit of an art.

The stability requirement

α =
|V|∆t

∆x
≤ 1 (19)

is called the Courant criterion (Figure 4).
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1.3.3 Streamline upwind scheme

A popular scheme is the so-called (streamline) upwind approach (Figure 5a). Here, the
spatial finite difference scheme depends on the sign of the velocity:

Tn+1
i − Tn

i
∆t

= −vx,i

{
Tn

i −Tn
i−1

∆x , if vx,i > 0
Tn

i+1−Tn
i

∆x , if vx,i < 0
(20)

Note that we have replaced central with forward or backward derivatives, depending on
the flow direction. The idea is that the flux into the local cell at xi will only depend on the
gradient of temperature in the direction “upstream”, i.e. where the inflowing velocity is
coming from.

Exercise 3

• Program the upwind scheme method.

• Try different velocity distributions (not just constant) and compute the Courant
numbers α.

• Is the numerical scheme stable for all Courant numbers?

The upwind scheme also suffers from numerical diffusion, and it is only first order
accurate in space. For some applications, particularly if there’s also diffusion, it might
just be good enough because the simple trick of doing FD forward or backward is closer
to the underlying physics of transport than, say, FTCS. There are some mantle convection
codes that use streamline upwind schemes.

So far, we employed explicit discretizations. You are probably wondering whether
implicit discretizations will save us again this time. Bad news: they are not well-suited
for this type of problem (try it and see). Implicit schemes behave like parabolic partial
differential equations (e.g. the diffusion equation) in that a perturbation at node (j, n)
will affect the solution at all nodes at time level n + 1. With hyperbolic PDEs like the
advection equation or the wave equation, disturbances travel at a finite speed (the speed
of the material displacement) and will not affect all nodes at time level n + 1. So we have
to come up with something else.

1.3.4 Modified Crank-Nicolson

One approach to solving the advection equation is the previously introduced Crank-
Nicolson semi-implicit scheme. Here we modify it slightly by introducing a general mass
operator Mx = {δ, 1− 2 δ, δ}.

Mx

[
Tn+1

i − Tn
i

∆t
+

v
2
(Tn

i+1 − Tn
i−1) + (Tn+1

i+1 − Tn+1
i−1 )

2∆t

]
= 0 (21)
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(a) (b)

Figure 5: Illustration of the upwind (a) and leapfrog (b) schemes (from Press et al., 1993, chap 19.1).

Setting the mass operator to δ = 0 gives us the previously seen Crank-Nicolson semi-
implicit finite difference discretization, while setting δ = 1

6 gives us the finite element
formulation. Below is eq. (21) written out with δ = 1

6 .

[
1
6
− 1

4

(
v

∆t
∆x

)]
Tn+1

i−1 −
(

1− 1
3

)
Tn+1

i +

[
1
6
+

1
4

(
v

∆t
∆x

)]
Tn+1

i+1

=

[
1
6
+

1
4

(
v

∆t
∆x

)]
Tn

i−1 +

(
1− 1

3

)
Tn

i +

[
1
6
− 1

4

(
v

∆t
∆x

)]
Tn

i+1

(22)

The finite element Crank-Nicolson advection scheme is stable for α ≤ 1 and provides
an improvement over previous schemes in that it is accurate to O(∆t, (∆x)3). This allows
us to reduce the number of grid points to reach the same accuracy as the other schemes
presented, as long as ∆t is kept small enough.

1.3.5 Staggered leapfrog

The explicit discretizations discussed so far were second order accurate in time, but only
first order in space. We can also come up with a scheme that is second order in time and
space

Tn+1
i − Tn−1

i
2∆t

= −vx,i
Tn

i+1 − Tn
i−1

2∆x
, (23)

called staggered leapfrog because of the way it is centered in shifted space-time (Figure 5b).
The computational inconvenience in this scheme is that two time steps have to be stored,
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Tn−1 and Tn.

Exercise 4

• Program the staggered leapfrog method (assume that at the first time step Tn−1 =
Tn).

• Try with different values of the Courant number α and compare the accuracy and
stability of the different methods.

• Also, make the width of the Gaussian curve smaller.

• Bonus: Also program the two formulations of the Crank-Nicolson method with δ =
0 and δ = 1

6 .

The staggered leapfrog method works quite well regarding the amplitude and trans-
port phase as long as α is close to one. If, however, α � 1 and the length scale of the
to-be-transported quantity is small compared to the number of grid points (e.g. we have a
thin plume), numerical oscillations again occur (those are due to the lack of communica-
tion between cells, which can be remedied by artificial diffusion). The conditions where
leapfrog does not work well are typically the case in mantle convection simulations (cf.
Figure 1). Onward ever, backward never.

Similarly, the Crank-Nicolson method works well for v ≤ 0.1 and α ≤ 0.1, and elim-
inates the staggered problem. But what happens for α ≥ 0.1? What about the finite
element formulation? What about computational time? Is Crank-Nicolson’s increased
accuracy worth the extra work? Is it well-suited for mantle convection problems?

1.3.6 MPDATA

This is a technique that is frequently applied in (older) mantle convection codes. The idea
is based on Smolarkiewicz (1983) and represents an attempt to improve on the upwind
scheme by adding some anti-diffusion, which requires iterative corrections. The results
are pretty good, but MPDATA is somewhat more complicated to implement. Moreover
we still have a restriction on the time step (given by the Courant criterion), for details see
Spiegelman (2004).

1.3.7 Semi-Lagrangian approaches

What we want is a scheme that is stable, has only small numerical diffusion and is not
limited by the Courant criterion. A contender is the semi-Lagrangian method, which
is often used for climate modeling. The method is related to tracer-based advection by
solving ODEs and has little to do with the finite difference schemes we discussed so far.
Since this scheme could be the one that is most important for practical purposes we will go
in more detail. It has few drawbacks, one being that it is not necessarily flux conserving.
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Basic idea The basic idea of the semi-Lagrangian method is illustrated in Figure 6A and
is given by the following, simplified scheme. Instead of allowing the numerical scheme
to transport noise in from unknown regions, the semi-Lagrangian method uses transport
by going back one (e.g. Euler) step.

For each point i at xi and time tn:

1. Assume that the future velocity vx(tn+1, xi) at xi is known. Under the assumption
that the velocity at the old time step is close to the future velocity

vx(tn+1, xi) ≈ vx(tn, xi) (24)

and that velocity does not vary spatially

vx(tn, xi−1) ≈ vx(tn, xi) ≈ vx(tn, xi+1), (25)

we can compute the location X where the particle came from by

X = xi −∆tvx(tn+1, xi). (26)

2. Interpolate temperature from grid points {xi} to the location X at time tn, T(tn, X).
For example, use cubic interpolation (in MATLAB use the command
interp1(x, T, X, ’cubic’)

for interpolation, where x is supposed to be the vector that holds the {xi}).
Note 1: Be careful with interpolation. For smooth functions, polynomial interpolation, say of
cubic order, is often a good idea. However, at edges, or if the function is otherwise discon-
tinuous, “ringing”, i.e. large, wiggly excursions, can occur. Linear, or spline, interpolation
may be preferred.

Note 2: Most of the MATLAB interpolation functions will by default not extrapolate outside
the

[min(xi), max(xi)]

range and return NaN (not a number). If extrapolation is desired, ’extrap’ needs to be set
as an option when calling the interp1 function.

3. Assume that T(tn+1, xi) = T(tn, X), i.e. temperature has been transported (along
“characteristics”) without any modification (e.g. due to diffusion).

This scheme assumes that no heat-sources were active during the advection of T from
T(tn, X) to T(tn+1, xi). If heat sources are present and are spatially variable, some extra
care needs to be taken (Spiegelman, 2004, sec. 5.6.1).

Exercise 5

• Program the semi-Lagrangian advection scheme illustrated in Figure 6A. Is there a
Courant criterion for stability?
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Figure 6: Basics of the semi-Lagrangian method. See text for explanation.

Some improvements The algorithm described in Figure 6A illustrates the basic idea of
the semi-Lagrangian scheme. However, it has two problems. First it assumes that velocity
is spatially constant (which is clearly not the case in mantle convection simulations). Sec-
ond, it assumes that velocity does not change between time n and n+ 1. We can overcome
both problems by using a more accurate time stepping algorithm (see the ODE section).
An example is an iterative mid-point scheme which works as follows (cf. Figure 6B):

For each point i

1. Use the velocity vx(tn+1, xi) to compute the location X′ at time tn+1/2 (i.e. take half
a time step backward in time).

2. Find the velocity at the location X′ at half time step tn+1/2. Assume that the velocity
at the half time step can be computed as

vx(tn+1/2, xi) =
vx(tn+1, xi) + vx(tn, xi)

2
. (27)

Use linear interpolation for the spatial interpolation of velocity vx(tn+1/2, X′).

3. Go back to point 1, but use the velocity vx(tn+1/2, X′) instead of vx(tn+1, xi) to move
the point xi(tn+1) backward in time. Repeat this process a number of times (e.g. 5
times). This gives a fairly accurate centered velocity.

4. Compute the location X at tn with the centered velocity X = xi −∆tvx(tn+1/2, X′).

5. Use cubic interpolation to find the temperature at point X as before.

Other ODE-motivated methods such as 4th order Runge Kutta are also possible (but
take a bit more work). Note that the various velocity interpolation and iteration schemes
add overhead that is, however, typically made up for by not needing to obey the Courant
criterion.

Exercise 6
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• Program the semi-Lagrangian advection scheme with the centered midpoint method
as illustrated in Figure 6B (cf. Spiegelman, 2004, p. 67).

Some care has to be taken if point X is outside of the computational domain, since
MATLAB will return NaN for the velocity (or temperature) of this point. If no extrap-
olation is desired, use the velocity vx(tn+1, xi) in this case. A pseudo-code is given
by
if isnan(Velocity)

Velocity = Vx(i)

end

1.3.8 2D advection example

The semi-Lagrangian method is likely a good, general advection algorithm (except in the
case of pseudo spectral methods), so this is the one we will implement in 2D.

Assume that velocity is given by

vx(x, z) = z (28)
vz(x, z) = −x (29)

Moreover, assume that the initial temperature distribution is Gaussian and given by

T(x, z) = 2 exp
(
(x + 0.25)2 + z2

0.12

)
(30)

with x ∈ [−0.5, 0.5], z ∈ [−0.5, 0.5].

Exercise 7

• Program advection in 2D using the semi-Lagrangian advection scheme with the
centered midpoint method.

Use the MATLAB routine interp2 for interpolation and employ linear interpolation
for velocity and cubic interpolation for temperature. A MATLAB script that will get
you started is shown on Figure 7 (semi_lagrangian_2D_1.m).

1.4 Advection and diffusion: operator splitting

In geodynamics, we often want to solve the coupled advection-diffusion equation, which
is given by eq. (2) in 1-D and by eq. (3) in 2-D. We can solve this pretty easily by taking the
equation apart and by computing the advection part separately from the diffusion part.
This is called operator-splitting, and what is done in 1-D is, for example: First solve the
advection equation

T̃n+1 − Tn

∆t
+ vx

∂T
∂x

= 0 (31)

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 14
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% semi_lagrangian_2D: 2D semi-lagrangian with center midpoint time stepping method

%

clear all

W = 40; % width of domain

sigma = .1;

Ampl = 2;

nt = 500; % number of timesteps

dt = 5e-1;

% Initial grid and velocity

[x,z] = meshgrid(-0.5:.025:0.5,-0.5:.025:0.5);

nz = size(x,1);

nx = size(x,2);

% Initial gaussian T-profile

T = Ampl*exp(-((x+0.25).^2+z.^2)/sigma^2);

% Velocity

Vx = z;

Vz = -x;

for itime=1:nt

Vx_n = Vx; % Velocity at time=n

Vx_n1 = Vx; % Velocity at time=n+1

% Vx_n1_2 = ??; % Velocity at time=n+1/2

% Vz_n = ??; % Velocity at time=n

% Vz_n1 = ??; % Velocity at time=n+1

% Vz_n1_2 = ??; % Velocity at time=n+1/2

Tnew = zeros(size(T));

for ix=2:nx-1

for iz=2:nz-1

Vx_cen = Vx(iz,ix);

Vz_cen = Vz(iz,ix);

% for ??

% X =?

% Z = ?

%linear interpolation of velocity

% Vx_cen = interp2(x,z,?,?, ?, ’linear’);

% Vz_cen = interp2(x,z,?,?, ?, ’linear’);

if isnan(Vx_cen)

Vx_cen = Vx(iz,ix);

end

if isnan(Vz_cen)

Vz_cen = Vz(iz,ix);

end

% end

% X = ?;

% Z = ?;

% Interpolate temperature on X

% T_X = interp2(x,z,?,?,?, ’cubic’);

if isnan(T_X)

T_X = T(iz,ix);

end

Tnew(iz,ix) = T_X;

end

end

Tnew(1,:) = T(1,:);

Tnew(nx,:) = T(nx,:);

Tnew(:,1) = T(:,1);

Tnew(:,nx) = T(:,nx);

T = Tnew;

time = itime*dt;

figure(1),clf

pcolor(x,z,T), shading interp, hold on, colorbar

contour(x,z,T,[.1:.1:2],’k’),

hold on, quiver(x,z,Vx,Vz,’w’)

axis equal, axis tight

drawnow

pause

end

Figure 7: MATLAB script to be used with exercise 7.

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 15
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for example by using a semi-Lagrangian advection scheme. Then solve the diffusion
equation

ρcp
∂T̃
∂t

=
∂

∂x

(
k

∂T̃
∂x

)
+ Q. (32)

For this, we assumed that Q is spatially constant; if not, one should consider to slightly
improve the advection scheme by introducing source terms. A good general method
would be to combine Crank-Nicolson for diffusion with a semi-Lagrangian solver for
advection (Spiegelman, 2004, sec. 7.2), but we will try something simpler first:

Exercise 8

• Program diffusion-advection in 2D using the semi-Lagrangian advection scheme
coupled with an implicit 2D diffusion code (from last section’s exercise). Base your
code on the script of Figure 7.

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 16
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