Review Exercise Set 6

Exercise 1: Graph two periods of the given tangent function.

$$y = -\tan\left(\frac{1}{3}x\right)$$

Exercise 2: Graph two periods of the given cotangent function.

$$y=3\cot\left(x-\pi\right)$$

Exercise 3: Graph two periods of the given secant function.

$$y = \frac{2}{3}\sec\left(x + \frac{\pi}{4}\right)$$

Exercise 4: Graph two periods of the given cosecant function.

 $y = -2\csc(3x - \pi)$

Exercise 5: Graph the given trigonometric function over two complete periods.

$$y = \frac{5}{4}\sec\left(x + \frac{\pi}{2}\right) - 3$$

Review Exercise Set 6 Answer Key

Exercise 1: Find the period of the tangent function and then graph it over two periods.

$$y = -\tan\left(\frac{1}{3}x\right)$$

Find the period

$$period = \frac{\pi}{B} = \frac{\pi}{\frac{1}{3}} = \pi \times 3 = 3\pi$$

Find the asymptotes at the beginning and end of the first period

$$-\frac{\pi}{2} < \frac{1}{3}x < \frac{\pi}{2}$$
$$-\frac{3\pi}{2} < x < \frac{3\pi}{2}$$

Find the asymptote at the end of the second period

= last asymptote + period $\frac{3\pi}{2} + 3\pi = \frac{3\pi}{2} + \frac{6\pi}{2} = \frac{9\pi}{2}$

Find the x-intercepts in both periods

$$x = \frac{-\frac{3\pi}{2} + \frac{3\pi}{2}}{2} = \frac{0}{2} = 0$$

1st x-intercept = (0, 0)
x = 1st x-intercept + period

$$x = 1$$
 st x-intercept + period
 $x = 0 + 3\pi = 3\pi$
2nd x-intercept = (3 π , 0)

Find points that are $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the asymptotes

Since the coefficient of the tangent function is negative, the $\frac{1}{4}$ point will have a positive y-value and the $\frac{3}{4}$ point will have a negative y-value.

Exercise 1 (Continued):

1st period

One-quarter point	Three-quarter point
$x = -\frac{3\pi}{2} + \frac{1}{4}(3\pi)$	$x = -\frac{3\pi}{2} + \frac{3}{4}(3\pi)$
$= -\frac{6\pi}{4} + \frac{3\pi}{4} = -\frac{3\pi}{4}$	$=-\frac{6\pi}{4}+\frac{9\pi}{4}=\frac{3\pi}{4}$
$(x,A) = \left(-\frac{3\pi}{4},1\right)$	$(x,A) = \left(\frac{3\pi}{4}, -1\right)$

2nd period

One-quarter point	Three-quarter point
$x = \frac{3\pi}{2} + \frac{1}{4}(3\pi)$	$x = \frac{3\pi}{2} + \frac{3}{4}(3\pi)$
$=\frac{6\pi}{4} + \frac{3\pi}{4} = \frac{9\pi}{4}$	$=\frac{6\pi}{4} + \frac{9\pi}{4} = \frac{15\pi}{4}$
$(x,A) = \left(\frac{9\pi}{4},1\right)$	$(x,A) = \left(\frac{15\pi}{4}, -1\right)$

Graph the function

Exercise 2: Graph two periods of the given cotangent function.

$$y = 3\cot\left(x - \pi\right)$$

Find the period

$$period = \frac{\pi}{B} = \frac{\pi}{1} = \pi$$

Find the asymptotes at the beginning and end of the first period

 $0 < x - \pi < \pi$ $\pi < x < 2\pi$

Find the asymptote at the end of the second period

= last asymptote + period = $2\pi + \pi$ = 3π

Find the x-intercepts in both periods

$$x = \frac{\pi + 2\pi}{2} = \frac{3\pi}{2}$$

1st x-intercept = $\left(\frac{3\pi}{2}, 0\right)$

x = 1st x-intercept + period

$$x = \frac{3\pi}{2} + \pi = \frac{3\pi}{2} + \frac{2\pi}{2} = \frac{5\pi}{2}$$
2nd x-intercept = $\left(\frac{5\pi}{2}, 0\right)$

Find points that are $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the asymptotes

Since the coefficient of the cotangent function is positive, the $\frac{1}{4}$ point will have a positive y-value and the $\frac{3}{4}$ point will have a negative y-value.

Exercise 2 (Continued):

1st period

One-quarter point	Three-quarter point
$x = \pi + \frac{1}{4}(\pi)$	$x = \pi + \frac{3}{4}(\pi)$
$=\frac{4\pi}{4}+\frac{\pi}{4}=\frac{5\pi}{4}$	$=\frac{4\pi}{4}+\frac{3\pi}{4}=\frac{7\pi}{4}$
$(x,A) = \left(\frac{5\pi}{4},3\right)$	$(x,A) = \left(\frac{7\pi}{4}, -3\right)$

2nd period

One-quarter point	Three-quarter point
$x = 2\pi + \frac{1}{4}(\pi)$	$x = 2\pi + \frac{3}{4}(\pi)$
$=\frac{8\pi}{4}+\frac{\pi}{4}=\frac{9\pi}{4}$	$=\frac{8\pi}{4} + \frac{3\pi}{4} = \frac{11\pi}{4}$
$(x,A) = \left(\frac{9\pi}{4},3\right)$	$(x,A) = \left(\frac{11\pi}{4}, -3\right)$

Graph the function

Exercise 3: Graph two periods of the given secant function.

$$y = \frac{2}{3}\sec\left(x + \frac{\pi}{4}\right)$$

Replace the secant function with its reciprocal function

$$y = \frac{2}{3}\cos\left(x + \frac{\pi}{4}\right) = \frac{2}{3}\cos\left(x - \left(-\frac{\pi}{4}\right)\right)$$

Find the amplitude, period, and phase shift

Amplitude	Period	Phase shift
$amplitude = A $ $= \left \frac{2}{3}\right $ $= \frac{2}{3}$	$period = \frac{2\pi}{B}$ $= \frac{2\pi}{1}$ $= 2\pi$	phase shift = $\frac{C}{B}$ = $\frac{-\frac{\pi}{4}}{1}$ = $-\frac{\pi}{4}$

Find the x-values of the five key points

interval width =
$$\frac{period}{4}$$

= $\frac{2\pi}{4} = \frac{\pi}{2}$
The first key point will start at x = $-\frac{\pi}{4}$ and increase by $\frac{\pi}{2}$

$$x_{1} = -\frac{\pi}{4} \qquad x_{2} = -\frac{\pi}{4} + \frac{\pi}{2} \qquad x_{3} = \frac{\pi}{4} + \frac{\pi}{2} \qquad x_{4} = \frac{3\pi}{4} + \frac{\pi}{2} \qquad x_{5} = \frac{5\pi}{4} + \frac{\pi}{2}$$
$$x_{1} = -\frac{\pi}{4} \qquad x_{2} = \frac{\pi}{4} \qquad x_{3} = \frac{3\pi}{4} \qquad x_{4} = \frac{5\pi}{4}$$
$$x_{5} = \frac{7\pi}{4}$$

Exercise 3 (Continued):

Find the y-values of the five key points

x-value	y-value	key point
$-\frac{\pi}{4}$	$y = \frac{2}{3}\cos\left(x + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos\left(-\frac{\pi}{4} + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos(0) = \frac{2}{3}$	$\left(-\frac{\pi}{4},\frac{2}{3}\right)$
$\frac{\pi}{4}$	$y = \frac{2}{3}\cos\left(x + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos\left(\frac{\pi}{4} + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos\left(\frac{\pi}{2}\right) = 0$	$\left(\frac{\pi}{4},0\right)$
$\frac{3\pi}{4}$	$y = \frac{2}{3}\cos\left(x + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos\left(\frac{3\pi}{4} + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos(\pi) = -\frac{2}{3}$	$\left(\frac{3\pi}{4},-\frac{2}{3}\right)$
$\frac{5\pi}{4}$	$y = \frac{2}{3}\cos\left(x + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos\left(\frac{5\pi}{4} + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos\left(\frac{3\pi}{2}\right) = 0$	$\left(\frac{5\pi}{4},0\right)$
$\frac{7\pi}{4}$	$y = \frac{2}{3}\cos\left(x + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos\left(\frac{7\pi}{4} + \frac{\pi}{4}\right)$ $= \frac{2}{3}\cos(2\pi) = \frac{2}{3}$	$\left(\frac{7\pi}{4},\frac{2}{3}\right)$

Graph the reciprocal function of $y = \frac{2}{3}\cos\left(x + \frac{\pi}{4}\right)$

The vertical asymptotes for the secant function will occur where the cosine function is equal to zero (crosses the x-axis)

Once the first period is graph repeat the pattern over the second period.

Graph the secant function using the graph of the cosine function as a guide

Exercise 4: Graph two periods of the given cosecant function.

$$y = -2\csc(3x - \pi)$$

Replace the cosecant function with its reciprocal function

$$y = -2\sin\left(3x - \pi\right)$$

Find the amplitude, period, and phase shift

Amplitude	Period	Phase shift
amplitude = A $= -2 $ $= 2$	$period = \frac{2\pi}{B}$ $= \frac{2\pi}{3}$	phase shift = $\frac{C}{B}$ = $\frac{\pi}{3}$

Find the x-values of the five key points

interval width =
$$\frac{period}{4}$$

= $\frac{\frac{2\pi}{3}}{4} = \frac{2\pi}{3} \times \frac{1}{4} = \frac{\pi}{6}$

The first key point will start at x = $\frac{\pi}{3}$ and increase by $\frac{\pi}{6}$

$$x_{1} = \frac{\pi}{3} \qquad x_{2} = \frac{\pi}{3} + \frac{\pi}{6} \qquad x_{3} = \frac{\pi}{2} + \frac{\pi}{6} \qquad x_{4} = \frac{2\pi}{3} + \frac{\pi}{6} \qquad x_{5} = \frac{5\pi}{6} + \frac{\pi}{6}$$
$$x_{1} = \frac{\pi}{3} \qquad x_{2} = \frac{\pi}{2} \qquad x_{3} = \frac{2\pi}{3} \qquad x_{4} = \frac{5\pi}{6} \qquad x_{5} = \pi$$

Find the y-values of the five key points

x-value	y-value	key point
$\frac{\pi}{3}$	$y = -2\sin\left(3\left(\frac{\pi}{3}\right) - \pi\right)$ $= -2\sin\left(0\right) = 0$	$\left(\frac{\pi}{3},0\right)$
$\frac{\pi}{2}$	$y = -2\sin\left(3\left(\frac{\pi}{2}\right) - \pi\right)$ $= -2\sin\left(\frac{\pi}{2}\right) = -2$	$\left(\frac{\pi}{2},-2\right)$

Exercise 4 (Continued):

x-value	y-value	key point
$\frac{2\pi}{3}$	$y = -2\sin\left(3\left(\frac{2\pi}{3}\right) - \pi\right)$ $= -2\sin(\pi) = 0$	$\left(\frac{2\pi}{3},0\right)$
$\frac{5\pi}{6}$	$y = -2\sin\left(3\left(\frac{5\pi}{6}\right) - \pi\right)$ $= -2\sin\left(\frac{3\pi}{2}\right) = 2$	$\left(\frac{5\pi}{6},2\right)$
π	$y = -2\sin(3(\pi) - \pi)$ $= -2\sin(2\pi) = 0$	$(\pi,0)$

Graph the reciprocal function of $y = -2 \sin (3x - \pi)$

The vertical asymptotes for the cosecant function will occur where the sine function is equal to zero (crosses the x-axis)

Once the first period is graph repeat the pattern over the second period.

Exercise 4 (Continued):

Graph the secant function using the graph of the cosine function as a guide

Exercise 5: Graph the given trigonometric function over two complete periods.

$$y = \frac{5}{4}\sec\left(x + \frac{\pi}{2}\right) - 3$$

Replace the secant function with its reciprocal function

$$y = \frac{5}{4} \cos\left(x + \frac{\pi}{2}\right) - 3$$
$$= \frac{5}{4} \cos\left(x - \left(-\frac{\pi}{2}\right)\right) - 3$$

Find the amplitude, period, and phase shift

Amplitude	Period	Phase shift
$amplitude = A $ $= \left \frac{5}{4}\right $ $= \frac{5}{4}$	$period = \frac{2\pi}{B}$ $= \frac{2\pi}{1}$ $= 2\pi$	phase shift = $\frac{C}{B}$ = $\frac{-\frac{\pi}{2}}{1}$ = $-\frac{\pi}{2}$

Exercise 5 (Continued):

Find the x-values of the five key points

interval width =
$$\frac{period}{4}$$

= $\frac{2\pi}{4} = \frac{\pi}{2}$

The first key point will start at x = $-\frac{\pi}{2}$ and increase by $\frac{\pi}{2}$

$$x_1 = -\frac{\pi}{2} \quad x_2 = -\frac{\pi}{2} + \frac{\pi}{2} = 0 \quad x_3 = 0 + \frac{\pi}{2} = \frac{\pi}{2} \quad x_4 = \frac{\pi}{2} + \frac{\pi}{2} = \pi \quad x_5 = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$$

Find the y-values of the five key points

x-value	y-value	key point
$-\frac{\pi}{2}$	$y = \frac{5}{4} \cos\left(x + \frac{\pi}{2}\right) - 3$ = $\frac{5}{4} \cos\left(-\frac{\pi}{2} + \frac{\pi}{2}\right) - 3$ = $\frac{5}{4} \cos(0) - 3$ = $\frac{5}{4} - 3 = -\frac{7}{4}$	$\left(-\frac{\pi}{2},-\frac{7}{4}\right)$
0	$y = \frac{5}{4}\cos\left(x + \frac{\pi}{2}\right) - 3$ $= \frac{5}{4}\cos\left(\frac{\pi}{2} + \frac{\pi}{2}\right) - 3$ $= \frac{5}{4}\cos(\pi) - 3$ $= -3$	(0, -3)
$\frac{\pi}{2}$	$y = \frac{5}{4} \cos\left(x + \frac{\pi}{2}\right) - 3$ = $\frac{5}{4} \cos\left(\frac{\pi}{2} + \frac{\pi}{2}\right) - 3$ = $\frac{5}{4} \cos(\pi) - 3$ = $-\frac{5}{4} - 3 = -\frac{17}{4}$	$\left(\frac{\pi}{2}, -\frac{17}{4}\right)$

Exercise 5 (Continued):

x-value	y-value	key point
π	$y = \frac{5}{4} \cos\left(x + \frac{\pi}{2}\right) - 3$ $= \frac{5}{4} \cos\left(\pi + \frac{\pi}{2}\right) - 3$ $= \frac{5}{4} \cos\left(\frac{3\pi}{2}\right) - 3$ $= -3$	(π, -3)
$\frac{3\pi}{2}$	$y = \frac{5}{4} \cos\left(x + \frac{\pi}{2}\right) - 3$ = $\frac{5}{4} \cos\left(\frac{3\pi}{2} + \frac{\pi}{2}\right) - 3$ = $\frac{5}{4} \cos(2\pi) - 3$ = $\frac{5}{4} - 3 = -\frac{7}{4}$	$\left(\frac{3\pi}{2}, -\frac{7}{4}\right)$

Graph the reciprocal function of
$$y = \frac{5}{4}\cos\left(x + \frac{\pi}{2}\right) - 3$$

Exercise 5 (Continued):

Graph the secant function using the graph of the cosine function as a guide