Review Exercise Set 6

Exercise 1: Graph two periods of the given tangent function.

$$
y=-\tan \left(\frac{1}{3} x\right)
$$

Exercise 2: Graph two periods of the given cotangent function.

$$
y=3 \cot (x-\pi)
$$

Exercise 3: Graph two periods of the given secant function.

$$
y=\frac{2}{3} \sec \left(x+\frac{\pi}{4}\right)
$$

Exercise 4: Graph two periods of the given cosecant function.

$$
y=-2 \csc (3 x-\pi)
$$

Exercise 5: Graph the given trigonometric function over two complete periods.

$$
y=\frac{5}{4} \sec \left(x+\frac{\pi}{2}\right)-3
$$

Review Exercise Set 6 Answer Key

Exercise 1: Find the period of the tangent function and then graph it over two periods.

$$
y=-\tan \left(\frac{1}{3} x\right)
$$

Find the period

$$
\text { period }=\frac{\pi}{B}=\frac{\pi}{\frac{1}{3}}=\pi \times 3=3 \pi
$$

Find the asymptotes at the beginning and end of the first period

$$
\begin{aligned}
& -\frac{\pi}{2}<\frac{1}{3} x<\frac{\pi}{2} \\
& -\frac{3 \pi}{2}<x<\frac{3 \pi}{2}
\end{aligned}
$$

Find the asymptote at the end of the second period

$$
\begin{aligned}
& =\text { last asymptote }+ \text { period } \\
& \frac{3 \pi}{2}+3 \pi=\frac{3 \pi}{2}+\frac{6 \pi}{2}=\frac{9 \pi}{2}
\end{aligned}
$$

Find the x-intercepts in both periods

$$
\begin{aligned}
& x=\frac{-\frac{3 \pi}{2}+\frac{3 \pi}{2}}{2}=\frac{0}{2}=0 \\
& \text { 1st x-intercept }=(0,0) \\
& x=1 \text { st x-intercept }+ \text { period } \\
& x=0+3 \pi=3 \pi \\
& \text { 2nd } x \text {-intercept }=(3 \pi, 0)
\end{aligned}
$$

Find points that are $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the asymptotes

Since the coefficient of the tangent function is negative, the $\frac{1}{4}$ point will have a positive y-value and the $\frac{3}{4}$ point will have a negative y-value.

Exercise 1 (Continued):
1st period

One-quarter point	Three-quarter point
$x=-\frac{3 \pi}{2}+\frac{1}{4}(3 \pi)$	$x=-\frac{3 \pi}{2}+\frac{3}{4}(3 \pi)$
$=-\frac{6 \pi}{4}+\frac{3 \pi}{4}=-\frac{3 \pi}{4}$	$=-\frac{6 \pi}{4}+\frac{9 \pi}{4}=\frac{3 \pi}{4}$
$(x, A)=\left(-\frac{3 \pi}{4}, 1\right)$	$(x, A)=\left(\frac{3 \pi}{4},-1\right)$

2nd period

One-quarter point	Three-quarter point
$x=\frac{3 \pi}{2}+\frac{1}{4}(3 \pi)$	$x=\frac{3 \pi}{2}+\frac{3}{4}(3 \pi)$
$=\frac{6 \pi}{4}+\frac{3 \pi}{4}=\frac{9 \pi}{4}$	$=\frac{6 \pi}{4}+\frac{9 \pi}{4}=\frac{15 \pi}{4}$
$(x, A)=\left(\frac{9 \pi}{4}, 1\right)$	$(x, A)=\left(\frac{15 \pi}{4},-1\right)$

Graph the function

Exercise 2: Graph two periods of the given cotangent function.

$$
y=3 \cot (x-\pi)
$$

Find the period

$$
\text { period }=\frac{\pi}{B}=\frac{\pi}{1}=\pi
$$

Find the asymptotes at the beginning and end of the first period

$$
\begin{aligned}
& 0<x-\pi<\pi \\
& \pi<x<2 \pi
\end{aligned}
$$

Find the asymptote at the end of the second period

$$
\begin{aligned}
& =\text { last asymptote }+ \text { period } \\
& =2 \pi+\pi \\
& =3 \pi
\end{aligned}
$$

Find the x -intercepts in both periods

$$
\begin{aligned}
& x=\frac{\pi+2 \pi}{2}=\frac{3 \pi}{2} \\
& \text { 1st } x \text {-intercept }=\left(\frac{3 \pi}{2}, 0\right) \\
& x=1 \text { st } x \text {-intercept }+ \text { period } \\
& x=\frac{3 \pi}{2}+\pi=\frac{3 \pi}{2}+\frac{2 \pi}{2}=\frac{5 \pi}{2} \\
& \text { 2nd } x \text {-intercept }=\left(\frac{5 \pi}{2}, 0\right)
\end{aligned}
$$

Find points that are $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the asymptotes
Since the coefficient of the cotangent function is positive, the $\frac{1}{4}$ point will have a positive y-value and the $\frac{3}{4}$ point will have a negative y-value.

Exercise 2 (Continued):

1st period

One-quarter point	Three-quarter point
$x=\pi+\frac{1}{4}(\pi)$	$x=\pi+\frac{3}{4}(\pi)$
$=\frac{4 \pi}{4}+\frac{\pi}{4}=\frac{5 \pi}{4}$	$=\frac{4 \pi}{4}+\frac{3 \pi}{4}=\frac{7 \pi}{4}$
$(x, A)=\left(\frac{5 \pi}{4}, 3\right)$	$(x, A)=\left(\frac{7 \pi}{4},-3\right)$

2nd period

One-quarter point	Three-quarter point
$x=2 \pi+\frac{1}{4}(\pi)$	$x=2 \pi+\frac{3}{4}(\pi)$
$=\frac{8 \pi}{4}+\frac{\pi}{4}=\frac{9 \pi}{4}$	$=\frac{8 \pi}{4}+\frac{3 \pi}{4}=\frac{11 \pi}{4}$
$(x, A)=\left(\frac{9 \pi}{4}, 3\right)$	$(x, A)=\left(\frac{11 \pi}{4},-3\right)$

Graph the function

Exercise 3: Graph two periods of the given secant function.

$$
y=\frac{2}{3} \sec \left(x+\frac{\pi}{4}\right)
$$

Replace the secant function with its reciprocal function

$$
y=\frac{2}{3} \cos \left(x+\frac{\pi}{4}\right)=\frac{2}{3} \cos \left(x-\left(-\frac{\pi}{4}\right)\right)
$$

Find the amplitude, period, and phase shift

Amplitude	Period	Phase shift
amplitude $=\|A\|$ period $=\frac{2 \pi}{B}$ $=\left\|\frac{2}{3}\right\|$ phase shift$=\frac{C}{B}$		
$=\frac{2}{3}$	$=2 \pi$	$=\frac{-\frac{\pi}{4}}{1}$
$=-\frac{\pi}{4}$		

Find the x-values of the five key points

$$
\begin{aligned}
\text { interval width } & =\frac{\text { period }}{4} \\
& =\frac{2 \pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

The first key point will start at $x=-\frac{\pi}{4}$ and increase by $\frac{\pi}{2}$

$$
\begin{array}{lll}
x_{1}=-\frac{\pi}{4} & x_{2}=-\frac{\pi}{4}+\frac{\pi}{2} & x_{3}=\frac{\pi}{4}+\frac{\pi}{2} \\
x_{4}=\frac{3 \pi}{4}+\frac{\pi}{2} \quad x_{5}=\frac{5 \pi}{4}+\frac{\pi}{2} \\
x_{1}=-\frac{\pi}{4} & x_{2}=\frac{\pi}{4} & x_{3}=\frac{3 \pi}{4} \\
x_{5}=\frac{7 \pi}{4} & & x_{4}=\frac{5 \pi}{4}
\end{array}
$$

Exercise 3 (Continued):

Find the y-values of the five key points

x-value	y-value	key point
$-\frac{\pi}{4}$	$\begin{aligned} y & =\frac{2}{3} \cos \left(x+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos \left(-\frac{\pi}{4}+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos (0)=\frac{2}{3} \end{aligned}$	$\left(-\frac{\pi}{4}, \frac{2}{3}\right)$
$\frac{\pi}{4}$	$\begin{aligned} y & =\frac{2}{3} \cos \left(x+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos \left(\frac{\pi}{4}+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos \left(\frac{\pi}{2}\right)=0 \end{aligned}$	$\left(\frac{\pi}{4}, 0\right)$
$\frac{3 \pi}{4}$	$\begin{aligned} y & =\frac{2}{3} \cos \left(x+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos \left(\frac{3 \pi}{4}+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos (\pi)=-\frac{2}{3} \end{aligned}$	$\left(\frac{3 \pi}{4},-\frac{2}{3}\right)$
$\frac{5 \pi}{4}$	$\begin{aligned} y & =\frac{2}{3} \cos \left(x+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos \left(\frac{5 \pi}{4}+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos \left(\frac{3 \pi}{2}\right)=0 \end{aligned}$	$\left(\frac{5 \pi}{4}, 0\right)$
$\frac{7 \pi}{4}$	$\begin{aligned} y & =\frac{2}{3} \cos \left(x+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos \left(\frac{7 \pi}{4}+\frac{\pi}{4}\right) \\ & =\frac{2}{3} \cos (2 \pi)=\frac{2}{3} \end{aligned}$	$\left(\frac{7 \pi}{4}, \frac{2}{3}\right)$

Graph the reciprocal function of $y=\frac{2}{3} \cos \left(x+\frac{\pi}{4}\right)$
The vertical asymptotes for the secant function will occur where the cosine function is equal to zero (crosses the x -axis)

Once the first period is graph repeat the pattern over the second period.

Graph the secant function using the graph of the cosine function as a guide

Exercise 4: Graph two periods of the given cosecant function.

$$
y=-2 \csc (3 x-\pi)
$$

Replace the cosecant function with its reciprocal function

$$
y=-2 \sin (3 x-\pi)
$$

Find the amplitude, period, and phase shift

Amplitude	Period	Phase shift
amplitude $=\|A\|$ $=\|-2\|$ $=2$	period $=\frac{2 \pi}{B}$	phase shift $=\frac{C}{B}$
$=\frac{2 \pi}{3}$	$=\frac{\pi}{3}$	

Find the x-values of the five key points

$$
\begin{aligned}
\text { interval width } & =\frac{\text { period }}{4} \\
& =\frac{\frac{2 \pi}{3}}{4}=\frac{2 \pi}{3} \times \frac{1}{4}=\frac{\pi}{6}
\end{aligned}
$$

The first key point will start at $\mathrm{x}=\frac{\pi}{3}$ and increase by $\frac{\pi}{6}$

$$
\begin{array}{lllll}
x_{1}=\frac{\pi}{3} & x_{2}=\frac{\pi}{3}+\frac{\pi}{6} & x_{3}=\frac{\pi}{2}+\frac{\pi}{6} & x_{4}=\frac{2 \pi}{3}+\frac{\pi}{6} & x_{5}=\frac{5 \pi}{6}+\frac{\pi}{6} \\
x_{1}=\frac{\pi}{3} & x_{2}=\frac{\pi}{2} & x_{3}=\frac{2 \pi}{3} & x_{4}=\frac{5 \pi}{6} & x_{5}=\pi
\end{array}
$$

Find the y-values of the five key points

x -value	y -value	key point
$\frac{\pi}{3}$	$y=-2 \sin \left(3\left(\frac{\pi}{3}\right)-\pi\right)$ $\frac{\pi}{3}$ $\frac{\pi}{2}$	$y=-2 \sin (0)=0$
	$=-2 \sin \left(3\left(\frac{\pi}{2}\right)-\pi\right)$	

Exercise 4 (Continued):

x-value	y-value	key point
$\frac{2 \pi}{3}$	$\begin{aligned} y & =-2 \sin \left(3\left(\frac{2 \pi}{3}\right)-\pi\right) \\ & =-2 \sin (\pi)=0 \end{aligned}$	$\left(\frac{2 \pi}{3}, 0\right)$
$\frac{5 \pi}{6}$	$\begin{aligned} y & =-2 \sin \left(3\left(\frac{5 \pi}{6}\right)-\pi\right) \\ & =-2 \sin \left(\frac{3 \pi}{2}\right)=2 \end{aligned}$	$\left(\frac{5 \pi}{6}, 2\right)$
π	$\begin{aligned} y & =-2 \sin (3(\pi)-\pi) \\ & =-2 \sin (2 \pi)=0 \end{aligned}$	$(\pi, 0)$

Graph the reciprocal function of $y=-2 \sin (3 x-\pi)$
The vertical asymptotes for the cosecant function will occur where the sine function is equal to zero (crosses the x-axis)

Once the first period is graph repeat the pattern over the second period.

Exercise 4 (Continued):

Graph the secant function using the graph of the cosine function as a guide

Exercise 5: Graph the given trigonometric function over two complete periods.

$$
y=\frac{5}{4} \sec \left(x+\frac{\pi}{2}\right)-3
$$

Replace the secant function with its reciprocal function

$$
\begin{aligned}
y & =\frac{5}{4} \cos \left(x+\frac{\pi}{2}\right)-3 \\
& =\frac{5}{4} \cos \left(x-\left(-\frac{\pi}{2}\right)\right)-3
\end{aligned}
$$

Find the amplitude, period, and phase shift

Amplitude	Period	Phase shift
$\begin{aligned} \text { amplitude } & =\|A\| \\ & =\left\|\frac{5}{4}\right\| \\ & =\frac{5}{4} \end{aligned}$	$\begin{aligned} \text { period } & =\frac{2 \pi}{B} \\ & =\frac{2 \pi}{1} \\ & =2 \pi \end{aligned}$	$\begin{aligned} \text { phase shift } & =\frac{C}{B} \\ & =\frac{-\frac{\pi}{2}}{1} \\ & =-\frac{\pi}{2} \end{aligned}$

Exercise 5 (Continued):

Find the x-values of the five key points

$$
\begin{aligned}
\text { interval width } & =\frac{\text { period }}{4} \\
& =\frac{2 \pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

The first key point will start at $x=-\frac{\pi}{2}$ and increase by $\frac{\pi}{2}$

$$
x_{1}=-\frac{\pi}{2} \quad x_{2}=-\frac{\pi}{2}+\frac{\pi}{2}=0 \quad x_{3}=0+\frac{\pi}{2}=\frac{\pi}{2} \quad x_{4}=\frac{\pi}{2}+\frac{\pi}{2}=\pi \quad x_{5}=\pi+\frac{\pi}{2}=\frac{3 \pi}{2}
$$

Find the y-values of the five key points

x-value	y-value	key point
$-\frac{\pi}{2}$	$\begin{aligned} y & =\frac{5}{4} \cos \left(x+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos \left(-\frac{\pi}{2}+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos (0)-3 \\ & =\frac{5}{4}-3=-\frac{7}{4} \end{aligned}$	$\left(-\frac{\pi}{2},-\frac{7}{4}\right)$
0	$\begin{aligned} y & =\frac{5}{4} \cos \left(x+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos (\pi)-3 \\ & =-3 \end{aligned}$	(0, -3)
$\frac{\pi}{2}$	$\begin{aligned} y & =\frac{5}{4} \cos \left(x+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos (\pi)-3 \\ & =-\frac{5}{4}-3=-\frac{17}{4} \end{aligned}$	$\left(\frac{\pi}{2},-\frac{17}{4}\right)$

Exercise 5 (Continued):

x-value	y-value	key point
π	$\begin{aligned} y & =\frac{5}{4} \cos \left(x+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos \left(\pi+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos \left(\frac{3 \pi}{2}\right)-3 \\ & =-3 \end{aligned}$	$(\pi,-3)$
$\frac{3 \pi}{2}$	$\begin{aligned} y & =\frac{5}{4} \cos \left(x+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos \left(\frac{3 \pi}{2}+\frac{\pi}{2}\right)-3 \\ & =\frac{5}{4} \cos (2 \pi)-3 \\ & =\frac{5}{4}-3=-\frac{7}{4} \end{aligned}$	$\left(\frac{3 \pi}{2},-\frac{7}{4}\right)$

Graph the reciprocal function of $y=\frac{5}{4} \cos \left(x+\frac{\pi}{2}\right)-3$

Exercise 5 (Continued):
Graph the secant function using the graph of the cosine function as a guide

