Exercise 1B

1

2 a

Further Pure Maths 3

2 b The curves $y=\operatorname{sech} x$ and $y=\sinh x$ meet when:

$$
\begin{aligned}
& \operatorname{sech} x=\sinh x \\
& \frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2} \\
& \frac{2 \mathrm{e}^{x}}{\mathrm{e}^{2 x}+1}=\frac{\mathrm{e}^{2 x}-1}{2 \mathrm{e}^{x}} \\
& 4 \mathrm{e}^{2 x}=\left(\mathrm{e}^{2 x}+1\right)\left(\mathrm{e}^{2 x}-1\right) \\
& 4 \mathrm{e}^{2 x}=\mathrm{e}^{4 x}-1 \\
& \mathrm{e}^{4 x}-4 \mathrm{e}^{2 x}-1=0
\end{aligned}
$$

Let $y=\mathrm{e}^{2 x}$:

$$
\begin{aligned}
& y^{2}-4 y-1=0 \\
& y \\
& y=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(-1)}}{2(1)} \\
& \\
& =\frac{4 \pm 2 \sqrt{5}}{2} \\
& \\
& =2 \pm \sqrt{5}
\end{aligned}
$$

Since $y=\mathrm{e}^{2 x}$:
$\mathrm{e}^{2 x}=2+\sqrt{5}$ or $\mathrm{e}^{2 x}=2-\sqrt{5}$
When $\mathrm{e}^{2 x}=2+\sqrt{5}$
$2 x=\ln (2+\sqrt{5})$
$x=\frac{1}{2} \ln (2+\sqrt{5})$ as required
When $\mathrm{e}^{2 x}=2-\sqrt{5}$
$\mathrm{e}^{2 x}<0$, which would be impossible so this gives no further solutions.

3 a $\mathrm{f}(x) \in \mathbb{R} \quad$ (All real numbers)
b $\mathrm{f}(x) \geqslant 1$
$-1<\mathrm{f}(x)<1$
c

$$
|\mathrm{f}(x)|<1
$$

d $\mathrm{f}(x)=\operatorname{sech} x, x \in \mathbb{R}$
$\operatorname{sech} x=\frac{1}{\cosh x}$
When $x=0, \operatorname{sech} x=\frac{1}{1}=1$
As $x \rightarrow \infty, \cosh x \rightarrow \infty$, so sech $x \rightarrow 0$
As $x \rightarrow-\infty, \cosh x \rightarrow-\infty$, so sech $x \rightarrow 0$
The x-axis is an asymptote to the curve.
Therefore $\mathrm{f}(x)=\operatorname{sech} x, x \in \mathbb{R}$ has the range:
$0<\mathrm{f}(x) \leq 1$
e $\mathrm{f}(x)=\operatorname{cosech} x, x \in \mathbb{R}, x \neq 0$
$\operatorname{cosech} x=\frac{1}{\sinh x}$
For positive x, as $x \rightarrow 0, \operatorname{cosech} x \rightarrow \infty$
For negative x, as $x \rightarrow 0, \operatorname{cosech} x \rightarrow-\infty$
As $x \rightarrow \infty, \sinh x \rightarrow \infty$, so $\operatorname{cosech} x \rightarrow 0$
As $x \rightarrow-\infty, \sinh x \rightarrow-\infty$, so $\operatorname{cosech} x \rightarrow 0$
The x-axis and y-axis are asymptotes to the curve.
Therefore $\mathrm{f}(x)=\operatorname{cosech} x, x \in \mathbb{R}, x \neq 0$ has the range:
$\mathrm{f}(x) \in \mathbb{R}, x \neq 0$
f $\mathrm{f}(x)=\operatorname{coth} x, x \in \mathbb{R}, x \neq 0$
$\operatorname{coth} x=\frac{1}{\tanh x}$
For positive x, as $x \rightarrow 0, \operatorname{coth} x \rightarrow \infty$
For negative x, as $x \rightarrow 0, \operatorname{coth} x \rightarrow-\infty$
As $x \rightarrow \infty, \tanh x \rightarrow 1$, so coth $x \rightarrow 1$
As $x \rightarrow-\infty, \tanh x \rightarrow-1$, so $\operatorname{coth} x \rightarrow-1$
So the y-axis is an asymptote to the curve as are the lines $y=-1$ and $y=1$
Therefore $\mathrm{f}(x)=\operatorname{coth} x, x \in \mathbb{R}, x \neq 0$ has the range:
$\mathrm{f}(x)<-1$ or $\mathrm{f}(x)>1$

Further Pure Maths 3

4 a $\mathrm{f}(x)=1+\operatorname{coth} x, x \in \mathbb{R}, x \neq 0$
$\operatorname{coth} x=\frac{1}{\tanh x}$
For positive x, as $x \rightarrow 0, \operatorname{coth} x \rightarrow \infty$, so $1+\operatorname{coth} x \rightarrow \infty$
For negative x, as $x \rightarrow 0$, $\operatorname{coth} x \rightarrow-\infty$, so $1+\operatorname{coth} x \rightarrow-\infty$
As $x \rightarrow \infty, \tanh x \rightarrow 1$, so $\operatorname{coth} x \rightarrow 1$, so $1+\operatorname{coth} x \rightarrow 2$
As $x \rightarrow-\infty, \tanh x \rightarrow-1$, so $\operatorname{coth} x \rightarrow-1$, so $1+\operatorname{coth} x \rightarrow 0$

b The curve has asymptotes at:
$x=0, y=0$ and $y=2$
5 a $y=3 \tanh x, x \in \mathbb{R}, x \neq 0$
$3 \tanh x=\frac{3 \sinh x}{\cosh x}$
When $x=0,3 \tanh x=\frac{0}{1}=0$
When x is large and positive, $3 \sinh x \approx \frac{3}{2} \mathrm{e}^{x}$ and $\cosh x \approx \frac{1}{2} \mathrm{e}^{x}$, so $\tanh x \approx 3$
When x is large and negative, $3 \sinh x \approx-\frac{3}{2} \mathrm{e}^{-x}$ and $\cosh x \approx-\frac{1}{2} \mathrm{e}^{-x}$, so $\tanh x \approx-3$
As $x \rightarrow \infty, 3 \tanh x \rightarrow 3$
As $x \rightarrow-\infty, 3 \tanh x \rightarrow-3$

b The curve has asymptotes at:
$y=-3$ and $y=3$

Further Pure Maths 3

Challenge

$$
\begin{aligned}
y & =\sinh x+\cosh x \\
& =\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2} \\
& =\mathrm{e}^{x} \\
& y_{0}
\end{aligned}
$$

