Exercise 6A

Question 1:

Solution:

Distance formula: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(i) A $(9,3)$ and $B(15,11)$
$A B=\sqrt{(15-9)^{2}+(11-3)^{2}}$
$=\sqrt{(6)^{2}+8^{2}}$
$=\sqrt{100}$
$=10$ units
(ii) $\mathrm{A}(7,-4)$ and $\mathrm{B}(-5,1)$
$A B=\sqrt{(-5-7)^{2}+(1-(-4))^{2}}$
$=\sqrt{(-12)^{2}+5^{2}}$
$=\sqrt{169}$
$=13$ units
(iii) $\mathrm{A}(-6,-4)$ and $\mathrm{B}(9,-12)$
$A B=\sqrt{(9-(-6))^{2}+((-12)-(-4))^{2}}$
$=\sqrt{(15)^{2}+(-8)^{2}}$
$=\sqrt{289}$
$=17$ units
(iv) A (1, -3) and $B(4,-6)$

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(4-1)^{2}+((-6)-(-3))^{2}} \\
& =\sqrt{(3)^{2}+(-3)^{2}} \\
& =\sqrt{18} \\
& =3 \sqrt{2} \text { units }
\end{aligned}
$$

(v) $P(a+b, a-b)$ and $Q(a-b, a+b)$
$\mathrm{PQ}=\sqrt{((a-b)-(a+b))^{2}+((a+b)-(a-b))^{2}}$
$=\sqrt{(2 b)^{2}+(2 b)^{2}}$
$=\sqrt{8 b^{2}}$
$=2 \mathrm{~b} \sqrt{2}$ units
(vi) $P(a \sin \alpha, a \cos \alpha)$ and $Q(a \cos \alpha,-a \sin \alpha)$

$$
\begin{aligned}
& \mathrm{PQ}=\sqrt{(\mathrm{a} \cos \alpha-\mathrm{a} \sin \alpha)^{2}+(-\mathrm{a} \sin \alpha-\mathrm{a} \cos \alpha)^{2}} \\
& =\sqrt{a^{2}(\cos \alpha-\sin \alpha)^{2}+a^{2}(\sin \alpha-\cos \alpha)^{2}} \\
& =a \sqrt{2 \sin ^{2} \alpha+2 \cos ^{2} \alpha} \\
& =a \sqrt{2} \text { units }
\end{aligned}
$$

Question 2:

Solution:

Distance formula: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Distance from origin $O(0,0)$ and the given points (x, y) is
Distance formula: $\sqrt{x^{2}+y^{2}}$
(i) $\mathrm{A}(5,-12)$
$\mathrm{OA}=\sqrt{(5)^{2}+(-12)^{2}}$
$=\sqrt{25+144}$
$=\sqrt{ } 169$
$=13$ units
(ii) $B(-5,5)$
$\mathrm{OB}=\sqrt{(-5)^{2}+(5)^{2}}$
$=\sqrt{25+25}$
$=\sqrt{ } 50$
$=5 \mathrm{~V} 2$ units
(iii) C (-4, -6

$$
\begin{aligned}
& \mathrm{OC}=\sqrt{(-4)^{2}+(-6)^{2}} \\
& =\sqrt{16+36} \\
& =\sqrt{ } 52 \\
& =2 \sqrt{ } 13 \text { units }
\end{aligned}
$$

Question 3:

Solution:

Given: Points $\mathrm{A}(\mathrm{x},-1), \mathrm{B}(5,3)$ and $\mathrm{AB}=5$ units
Distance formula: $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
5=\sqrt{(5-x)^{2}+(3+1)^{2}}
$$

Squaring both sides:
$25-10 x+x^{2}+16=25$
$x^{2}-10 x+16=0$
$x^{2}-2 x-8 x+16=0$
$x(x-2)-8(x-2)=0$
$(x-2)(x-8)=0$
Either $(x-2)=0$ or $(x-8)-0$
$x=2$ or $x=8$

Question 4:

Solution:

$$
\begin{aligned}
& \text { Given: Points } \mathrm{A}(2,-3), \mathrm{B}(10, \mathrm{y}) \text { and } \mathrm{AB}=10 \\
& \text { Distance formula: } A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \mathrm{AB}^{\wedge} 2=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& (10)^{2}=(10-2)^{2}+(y+3)^{2} \\
& 100=(8)^{2}+y^{2}+6 y+9 \\
& y^{2}+6 y+9+64=100 \\
& y^{2}+6 y+73-100=0 \\
& y^{2}+6 y-27=0 \\
& y^{2}+9 y-3 y-27=0 \\
& y(y+9)-3(y+9)=0 \\
& (y+9)(y-3)=0 \\
& \text { Either, } y+9=0 \text {, then } y=-9 \\
& \text { or } y-3=0 \text {, then } y=3 \\
& y=3,-9
\end{aligned}
$$

Question 5:

Solution:

Given: Points $P(x, 4), Q(9,10)$ and $P Q=10$
Distance formula: $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\mathrm{PQ}^{\wedge} 2=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$100=(9-x)^{\wedge} 2+(10-4)^{\wedge} 2$
$=81+x^{\wedge} 2-18 x+36$
$=117+x^{\wedge} 2-18 x$
$100=117+x^{\wedge} 2-18 x$
$x^{\wedge} 2-18 x+17 x=0$ (Solve this equation)
$(x-1)(x-17)$
$x=1$ or $x=17$

Question 6:

Solution:

Given: Point $\mathrm{A}(\mathrm{x}, 2)$ is equidistant from $\mathrm{B}(8,-2)$ and $\mathrm{C}(2,-2)$
Which implies:
$A B=A C$
Squaring both sides
$A B^{\wedge} 2=A C^{\wedge} 2$
Using distance formula:

Distance formula: $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
We have,

$$
(8-x)^{2}+(-2-2)^{2}=(2-x)^{2}+(-2-2)^{2}
$$

$$
(8-x)^{2}+(-4)^{2}=(2-x)^{2}+(-4)^{2}
$$

$$
64-16 x+x^{2}=4-4 x+x^{2}
$$

$$
64-4=-4 x+16 x
$$

$$
12 x=60 \Rightarrow x=\frac{60}{12}=5
$$

$$
\mathrm{AB}=\sqrt{(8-5)^{2}+(-4)^{2}}
$$

$$
=\sqrt{3^{2}+(-4)^{2}}=\sqrt{9+16}
$$

$$
=\sqrt{25}=5 \text { units }
$$

$$
x=5, \mathrm{AB}=5 \text { units }
$$

Question 7:

Solution:

Given: $A(0,2)$ is equidistant from $B(3, p)$ and $C(p, 5)$ which implies: $A B=A C$
or $A B^{\wedge} 2=A C^{\wedge} 2$
Using distance formula:
Distance formula: $P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
We have,

$$
(3-0)^{2}+(p-2)^{2}=(p-0)^{2}+(5-2)^{2}
$$

$$
(3)^{2}+(p-2)^{2}=p^{2}+(3)^{2}
$$

$$
p^{2}=p^{2}-4 p+4
$$

$$
4 p=4 \Rightarrow p=\frac{4}{4}=1
$$

and $\mathrm{AB}=\sqrt{(3-0)^{2}+(1-2)^{2}}$
$=\sqrt{9+1}=\sqrt{10}$ units

Question 8:

Solution:

Let point $P(x, 0)$ is on x-axis and equidistant from $A(2,-5)$ and $B(-2,9)$
$P A=P B$
or $\mathrm{PA}^{\wedge} 2=\mathrm{PB}^{\wedge} 2$
$(2-x)^{\wedge} 2+(-5-0)^{\wedge} 2=(-2-x)^{\wedge} 2+(9-0)^{\wedge} 2$
$(2-x)^{\wedge} 2+(-5)^{\wedge} 2=(-2-x)^{\wedge} 2+(9)^{\wedge} 2$
$29+x^{\wedge} 2-4 x=85+x^{\wedge} 2+4 x$
$56=-8 x$
or $x=-7$
The point on x-axis is $(-7,0)$

Question 9:

Solution:

Let the points on x-axis be $P(x, 0)$ and $Q(y, 0)$ which are at distance of 10 units from point $A(11,-8)$.
Which implies:
$\mathrm{PA}=\mathrm{QA}$
or $\mathrm{PA}^{\wedge} 2=\mathrm{QA}^{\wedge} 2$

$$
\begin{aligned}
& \left(11-x_{1}\right)^{2}+(-8)^{2}=\left(11-x_{2}\right)^{2}+(-8)^{2}=10^{2} \\
& (11-x)^{2}+(-8)^{2}=10^{2} \\
& 121-22 x+x^{2}+64=100 \\
& x^{2}-22 x+85=0 \\
& x^{2}-12 x-5 x+85=0 \\
& x(x-17)-5(x-17)=0 \\
& (x-17)(x-5)=0
\end{aligned}
$$

Either $(x-17)=0$ or $(x-5)=0$
$x=17$ or $x=5$
So, the points are : $(17,0)$ and $(5,0)$
Question 10:

Solution:

Let point $P(0, y)$ is on the y-axis, then
$P A=P B$
or $\mathrm{PA}^{\wedge} 2=\mathrm{PB}^{\wedge} 2$
$(6-0)^{2}+(5-y)^{2}=(-4-0)^{2}+(3-y)^{2}$
$36+25-10 y+y^{2}=16+9-6 y+y^{2}$
$61-10 y=25-6 y$
$61-25=-6 y+10 y$
$36=4 y$
or $y=9$
The required point is $(0,9)$.

Question 11.

Solution:

Since $P(x, y)$ is equidistant from $A(5,1)$ and $B(-1,5)$, then
$P A=P B$
or $\mathrm{PA}^{\wedge} 2=\mathrm{PB}^{\wedge} 2$
$(5-x)^{\wedge} 2+(1-y)^{\wedge} 2=(-1-x)^{\wedge} 2+(5-y)^{\wedge} 2$
$\left(25+x^{\wedge} 2-10 x\right)+\left(1+y^{\wedge} 2-2 y\right)=\left(1+x^{\wedge} 2+2 x+25+y^{\wedge} 2-10 y\right)$
$26+x^{\wedge} 2-10 x+y^{\wedge} 2-2 y=\left(26+x^{\wedge} 2+2 x+y^{\wedge} 2-10 y\right)$
$12 \mathrm{x}=8 \mathrm{y}$
$3 x=2 y$
Hence proved.

Question 12:

Solution:

Since $P(x, y)$ is equidistant from $A(6,-1)$ and $B(2,3)$, then
$P A=P B$
or $\mathrm{PA}^{\wedge} 2=\mathrm{PB}^{\wedge} 2$
$(6-x)^{\wedge} 2+(-1-y)^{\wedge} 2=(2-x)^{\wedge} 2+(3-y)^{\wedge} 2$
$\left(36+x^{\wedge} 2-12 x\right)+\left(1+y^{\wedge} 2+2 y\right)=\left(4+x^{\wedge} 2-4 x+9+y^{\wedge} 2-6 y\right)$
$37-12 x+2 y=13-4 x-6 y$
$8 x=8 y+24$
$x-y=3$
Hence proved.

Question 13:

Solution:

Let the coordinates of the point be $O(x, y)$, then
$O A=O B=O C$
or $\mathrm{OA}^{\wedge} 2=\mathrm{OB}^{\wedge} 2=\mathrm{OC}^{\wedge} 2$

$$
\begin{aligned}
& \mathrm{OA}^{2}=(5-x)^{2}+(3-y)^{2} \\
& \mathrm{OB}^{2}=(5-x)^{2}+(-5-y)^{2} \\
& \mathrm{OC}^{2}=(1-x)^{2}+(-5-y)^{2} \\
& (5-x)^{2}+(3-y)^{2}=(5-x)^{2}+(-5-y)^{2} \\
& 9-6 y+y^{2}=25+10 y+y^{2} \\
& 9-25=10 y+6 y \Rightarrow 16 y=-16 \\
& y=\frac{-16}{16}=-1 \\
& \text { and }(5-x)^{2}+(-5-y)^{2} \\
& \quad=(1-x)^{2}+(-5-y)^{2} \\
& 25-10 x+x^{2}=1-2 x+x^{2} \\
& -10 x+2 x=1-25
\end{aligned}
$$

$$
-8 x=-24
$$

$$
\text { or } x=3
$$

So, coordinates of the point is $(3,-1)$.

Question 14:

Solution:

Given: Points $A(4,3)$ and $B(x, 5)$ lie on a circle with centre $O(2,3)$
To find: value of x
$O A=O B$
or $\mathrm{OA}^{\wedge} 2=\mathrm{OB}^{\wedge} 2$

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OB} \Rightarrow \mathrm{OA}^{2}=\mathrm{OB}^{2} \\
& \mathrm{OA}^{2}=(2-4)^{2}+(3-3)^{2} \text { and } \\
& \mathrm{OB}^{2}=(2-x)^{2}+(3-5)^{2} \\
& (2-4)^{2}+(3-3)^{2}=(2-x)^{2}+(3-5)^{2} \\
& (-2)^{2}+0^{2}=4-4 x+x^{2}+(-2)^{2} \\
& 4=4-4 x+x^{2}+4 \\
& x^{2}-4 x+4=0 \Rightarrow(x-2)^{2}=0 \\
& x=2
\end{aligned}
$$

The value of x is 2 .

Question 15:

Solution:

Given: Point $C(-2,3)$ is equidistant from points $A(3,-1)$ and $B(x, 8)$.
Then

$$
\begin{aligned}
& \mathrm{CA}=\mathrm{CB} \\
& \text { or } \mathrm{CA}^{\wedge} 2=\mathrm{CB}^{\wedge} 2 \\
& \mathrm{CB}^{2}=(x+2)^{2}+(8-3)^{2} \\
& \mathrm{CA}^{2}=(3+2)^{2}+(-1-3)^{2} \\
& (x+2)^{2}+(8-3)^{2}=(3+2)^{2}+(-1-3)^{2} \\
& (x+2)^{2}+5^{2}=5^{2}+(-4)^{2} \\
& x^{2}+4 x+4+25=25+16 \\
& x^{2}+4 x+29-41=0 \\
& x^{2}+4 x-12=0 \\
& x^{2}+6 x-2 x-12=0 \\
& x(x+6)-2(x+6)=0 \\
& (x+6)(x-2)=0
\end{aligned}
$$

This implies: $x=2$ or $x=-6$
NOW: $A C=\sqrt{5^{2}+(-4)^{2}}=\sqrt{41}$
Therefore: $A C=\sqrt{41}$ units

Question 16:

Solution:

Given: Point $P(2,2)$ is equidistant from the two points $A(-2, k)$ and $B(-2 k,-3)$

$$
\begin{aligned}
& \mathrm{PA}=\mathrm{PB} \text { or } \mathrm{PA}^{\wedge} 2=\mathrm{PB}^{\wedge} 2 \\
& (2+2)^{2}+(2-k)^{2}=(2+2 k)^{2}(2+3)^{2} \\
& 4^{2}+4-4 k+k^{2}=4+8 k+4 k^{2}+5^{2} \\
& 16+4-4 k+k^{2}=4+8 k+4 k^{2}+25 \\
& 4 k^{2}+8 k+29-20+4 k-k^{2}=0 \\
& 3 k^{2}+12 k+9=0 \\
& k^{2}+4 k+3=0 \\
& k^{2}+k+3 k+3=0 \\
& \mathrm{k}(\mathrm{k}+1)+3(\mathrm{k}+1)=0 \\
& (\mathrm{k}+1)(\mathrm{k}+3)=0 \\
& \text { thus, } \mathrm{k}=-1 \text { or } \mathrm{k}=-3 \\
& \text { If } \mathrm{k}=-1 \\
& \mathrm{AP} \wedge 2=20-4 \mathrm{k}+\mathrm{k}^{\wedge} 2 \\
& =20+4+1 \\
& =25 \\
& \text { AP }=5 \text { units } \\
& \text { If } \mathrm{k}=-3 \\
& \text { AP } 2=20-4 \mathrm{k}+\mathrm{k}^{\wedge} 2 \\
& =20+12+9 \\
& =41 \mathrm{AP}=\mathrm{V} 41 \text { units }
\end{aligned}
$$

Question 17:

Solution:

(i)

Let point $P(x, y)$ is equidistant from $A(a+b, b-a)$ and $B(a-b, a+b)$, then
$A P=B P$ or $A P^{\wedge} 2=B P^{\wedge} 2$
$((a+b)-x)^{\wedge} 2+((a-b)-y)^{\wedge} 2=((a-b)-x)^{\wedge} 2+((a+b)-y)^{\wedge} 2$
$(a+b)^{\wedge} 2+x^{\wedge} 2-2(a+b) x+(a-b)^{\wedge} 2+y^{\wedge} 2-2(a-b) y=(a-b)^{\wedge} 2+x^{\wedge} 2-2(a-b) x+(a+b)^{\wedge} 2+y^{\wedge} 2-2(a$ $+b) y$
$\left(a^{\wedge} 2+b^{\wedge} 2+2 a b+x^{\wedge} 2-2(a+b) x+b^{\wedge} 2+a^{\wedge} 2-2 a b+y^{\wedge} 2-2(a-b) y=\left(a^{\wedge} 2+b^{\wedge} 2-2 a b+x^{\wedge} 2-2(a-b) x\right.\right.$ $+b^{\wedge} 2+a^{\wedge} 2+2 a b+y^{\wedge} 2-2(a+b) y$
$=>-2(a+b) x-2(a-b) y=-2(a-b) x-2(a+b) y$
$=>a x+b x+a y-b y=a x-b x+a y+b y$
=> bx = ay
(ii)

Point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is equidistant from the points $\mathrm{A}(5,1)$ and $\mathrm{B}(-1,5)$, means $\mathrm{PA}=\mathrm{PB}$ or $\mathrm{PA}^{\wedge} 2=\mathrm{PB}^{\wedge} 2$
$(5-x)^{\wedge} 2+(1-y)^{\wedge} 2=(-1-x)^{\wedge} 2+(5-y)^{\wedge} 2$
$\left(25+x^{\wedge} 2-10 x\right)+\left(1+y^{\wedge} 2-2 y\right)=\left(1+x^{\wedge} 2+2 x+25+y^{\wedge} 2-10 y\right)$
$26+x^{\wedge} 2-10 x+y^{\wedge} 2-2 y=\left(26+x^{\wedge} 2+2 x+y^{\wedge} 2-10 y\right)$
$12 x=8 y$
$3 x=2 y$
Hence proved.

Question 18:

Solution:

Points are collinear if sum of any two of distances is equal to the distance of the third.
(i)Let $\mathrm{A}(1,-1), \mathrm{B}(5,2), \mathrm{C}(9,5)$
A, B and C are collinear if $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(5-1)^{2}+(2+1)^{2}}=\sqrt{4^{2}+3^{2}} \\
& =16+9=\sqrt{25}=5 \text { units }
\end{aligned}
$$

$\mathrm{BC}=\sqrt{(9-5)^{2}+(5-2)^{2}}=\sqrt{4^{2}+3^{2}}$
$=\sqrt{16+9}=\sqrt{25}=5$ units
$\mathrm{AC} \sqrt{(9-1)^{2}+(5+1)^{2}}$
$=\sqrt{8^{2}+6^{2}}=\sqrt{64+36}=\sqrt{100}$
$=10$ units
From above, we can see that
$A B+B C=10=A C$
Therefore, A, B and C are collinear
(ii) Let $\mathrm{A}(6,9), \mathrm{B}(0,1)$ and $\mathrm{C}(-6,-7)$
A, B and C are collinear if $A B+B C=A C$

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(0-6)^{2}+(1-9)^{2}}=\sqrt{(-6)^{2}+(-8)^{2}} \\
&=\sqrt{36+64}=\sqrt{100}=10 \text { units } \\
& \mathrm{BC}=\sqrt{(-6-0)^{2}+(-7-1)^{2}} \\
&=\sqrt{(-6)^{2}+(-8)^{2}}=\sqrt{36+64} \\
&=\sqrt{100}=10 \text { units }
\end{aligned}
$$

$$
\mathrm{CA}=\sqrt{(6+6)^{2}+(9+7)^{2}}=\sqrt{12^{2}+16^{2}}
$$

$$
=\sqrt{144+256}=\sqrt{400}=20 \text { units }
$$

From above, we can see that
$A B+B C=10+10=20=C A$
Therefore, A, B and C are collinear.
(iii) let $A(-1,-1), B(2,3)$ and $C(8,11)$
A, B and C are collinear if $A B+B C=A C$
$\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(2+1)^{2}+(3+1)^{2}}=\sqrt{3^{2}+4^{2}}$
$=\sqrt{9+16}=\sqrt{25}=5$ units
$\mathrm{BC}=\sqrt{(8-2)^{2}+(11-3)^{2}}=\sqrt{6^{2}+8^{2}}$
$=\sqrt{36+64}=\sqrt{100}=10$ units
$\mathrm{CA}=\sqrt{(8+1)^{2}+(11+1)^{2}}=\sqrt{9^{2}+12^{2}}$
$=\sqrt{81+144}=\sqrt{225}=15$ units
From above, we can see that
$A B+B C=5+10=15=A C$
Therefore, A, B and C are collinear.
(iv) Let $\mathrm{A}(-2,5), \mathrm{B}(0,1)$ and $\mathrm{C}(2,-3)$.
A, B and C are collinear if $A B+B C=A C$

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0+2)^{2}+(1-5)^{2}}=\sqrt{2^{2}+(-4)^{2}} \\
& =\sqrt{4+16}=\sqrt{20} \\
& \mathrm{BC}=\sqrt{(2-0)^{2}+(-3-1)^{2}}=\sqrt{2^{2}+(-4)^{2}} \\
& =\sqrt{4+16}=\sqrt{20} \\
& =\sqrt{4 \times 5}=2 \sqrt{5} \text { untis } \\
& \mathrm{CA}=\sqrt{(2+2)^{2}+(-3-5)^{2}}=\sqrt{4^{2}+(-8)^{2}} \\
& =\sqrt{16+64}=\sqrt{80}=\sqrt{16 \times 5}=4 \sqrt{5}
\end{aligned}
$$

From above, we can see that
$A B+B C=\sqrt{ } 20+2 \sqrt{ } 5=2 \sqrt{ } 5+2 \sqrt{ } 5=4 \sqrt{ } 5=A C$
Therefore, A, B and C are collinear.

Question 19:

Solution:

Given points are $A(7,10), B(-2,5)$ and $C(3,-4)$

$$
\begin{aligned}
& \mathrm{AB}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =(-2-7)^{2}+(5-10)^{2}=(-9)^{2}+(-5)^{2} \\
& =81+25=106 \\
& \mathrm{BC}^{2}=(3+2)^{2}+(-4-5)^{2}=(5)^{2}+(-9)^{2} \\
& =25+81=106 \\
& \mathrm{CA}^{2}=(7-3)^{2}+(10+4)^{2}=(4)^{2}+(14)^{2} \\
& =16+196=212 \\
& \mathrm{AB}^{2}+\mathrm{BC}^{2}=106 \Rightarrow \mathrm{AB}=\mathrm{BC}
\end{aligned}
$$

From above, two of the sides are of equal length, so triangle ABC is an isosceles triangle.
Check for: Isosceles right triangle
Sum of square of two sides = Square of third side
$\mathrm{AB}^{\wedge} 2+\mathrm{BC}^{\wedge} 2=106+106=212=\mathrm{CA}^{\wedge} 2$

Hence given points are vertices of an isosceles right triangle.

Question 20:

Solution:

Given points are $A(3,0), B(6,4)$ and $C(-1,3)$

$$
\begin{aligned}
& \mathrm{AB}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =(6-3)^{2}+(4-0)^{2}=3^{2}+4^{2} \\
& =9+16=25 \\
& \mathrm{BC}^{2}=(-1-6)^{2}+(3-4)^{2}=(-7)^{2}+(-1)^{2} \\
& =49+1=50 \\
& \mathrm{CA}^{2}=(3+1)^{2}+(0-3)^{2}=4^{2}+3^{2} \\
& =16+9=25 \\
& \mathrm{AB}^{2}=\mathrm{CA}^{2}=25 \\
& \mathrm{AB}=\mathrm{CA}
\end{aligned}
$$

From above, two of the sides are of equal length, so triangle ABC is an isosceles triangle.
Check for : Isosceles right triangle
Sum of square of two sides = Square of third side
$A B^{\wedge} 2+A C^{\wedge} 2=25+25=50=C B^{\wedge} 2$
Hence given points are vertices of an isosceles right triangle.

Exercise 6B

Question 1:

Solution:

If a point $P(x, y)$ divides a line segment having end points coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then coordinates of the point P can be find using below formula:
$\mathrm{x}=\mathrm{m} 1 \mathrm{x} 2+\mathrm{m} 2 \mathrm{x} 1 \mathrm{~m} 1+\mathrm{m} 2 \mathrm{y}=\mathrm{m} 1 \mathrm{y} 2+\mathrm{m} 2 \mathrm{y} 1 \mathrm{~m} 1+\mathrm{m} 2$
(i) Let $P(x, y)$ be the point which divides the line joining the points $A(-1,7)$ and $B(4,-3)$ in the ratio $2: 3$. then
$x=(2 \times 4+3 \times(-1)) /(2+3)$
$=(8-3) / 5$
$=5 / 5$
$=1$
$x=1$.
$y=(2 \times-3+3 \times 7) / 5$
$=(-6+21) / 5$
$=15 / 5$
$=3$
$y=3$
Therefore, required point is $(1,3)$.
$x=(7 \times 4+2 \times(-5)) /(7+2)$
$=(28-10) / 9$
$=18 / 9$
$=2$
$y=(7 \times(-7)+2 \times 11) / 9$
$=(-49+22) / 9$
$=-27 / 9$
$=-3$
Therefore, required point is $(2,-3)$

Question 2:

Solution:

Let $A(7,-2)$ and $B(1,-5)$ be the given points and $P(x, y)$ and $Q\left(x^{\prime}, y^{\prime}\right)$ are the points of trisection.

Step 1: Find the coordinate of P
Point P divides $A B$ internally in the ratio 1:2
$(x, y)=\left[\frac{1(1)+2(7)}{1+2}, \frac{1(-5)+1(-2)}{1+2}\right]$
$=\left(\frac{1+14}{3}, \frac{-5-4}{3}\right)=\left(\frac{15}{3}, \frac{-9}{3}\right)=(5,-3)$
Step 2: Find the coordinate of Q
Point Q is the mid-point PB.
$\left(x^{\prime}, y^{\prime}\right)=((5+1) / 2,(-3-5) / 2)=(3,-4)$
Therefore, the coordinates of the points of trisection are $(5,-3)$ and $(3,-4)$

Question 3

Solution:

Coordinate of point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ can be calculated by using below formula:
Now,
$\mathrm{x}=\mathrm{m} 1 \mathrm{x} 2+\mathrm{m} 2 \mathrm{x} 1 \mathrm{~m} 1+\mathrm{m} 2 \mathrm{y}=\mathrm{m} 1 \mathrm{y} 2+\mathrm{m} 2 \mathrm{y} 1 \mathrm{~m} 1+\mathrm{m} 2$
$x=((3 \times 2)+4(-2)) /(3+4)$
$=(6-8) / 7$
$=-2 / 7$
$y=(3(-4)+4(-2)) / 7$
$=(-12-8) / 7$
$=-20 / 7$
Point P is $(-2 / 7,-20 / 7)$

Question 4:

Solution:

Let the point $A(x, y)$ which lies on line joining $P(6,-6)$ and $Q(-4,-1)$ such that $P A / P Q=2 / 5$
Line segment $P Q$ is divided by the point A in the ratio 2:3.
$\mathrm{X}=\mathrm{m} 1 \mathrm{x} 2+\mathrm{m} 2 \mathrm{x} 1 \mathrm{~m} 1+\mathrm{m} 2 \mathrm{y}=\mathrm{m} 1 \mathrm{y} 2+\mathrm{m} 2 \mathrm{y} 1 \mathrm{~m} 1+\mathrm{m} 2$
Step 1: Find coordinates of $A(x, y)$
$x=(2(-4)+3(6)) /(2+3)$
$=(-8+18) / 5$
$=10 / 5=2$
$y=(2(-1)+3(-6)) / 5$
$=(-2-18) / 5$
$=-20 / 5$
$=-4$
Step 2: Point A also lies on the line $3 x+k(y+1)=0$
$3(2)+k(-4+1)=0$
$6-3 k=0$
or $k=2$

Question 5:

Solution:

Given: Points P, Q, R and S divides a line segment joining the points $A(1,2)$ and $B(6,7)$ in 5 equal parts.
We know that:
$\mathrm{X}=\mathrm{m} 1 \mathrm{x} 2+\mathrm{m} 2 \mathrm{x} 1 \mathrm{~m} 1+\mathrm{m} 2 \mathrm{y}=\mathrm{m} 1 \mathrm{y} 2+\mathrm{m} 2 \mathrm{y} 1 \mathrm{~m} 1+\mathrm{m} 2$
Now,
Step 1: Find coordinates of P.
$P(x, y)$ divides $A B$ in the ratio 1:4
$x=(1 \times 6+4 \times 1) / 1+4$
$=(6+4) / 5$
$=10 / 5$
$=2$
$y=(1 x 7+4 \times 2) / 5$
$=(7+8) / 5$
$=15 / 5$
$=3$
So, $P(x, y)=P(2,3)$
Step 2: Find coordinates of Q.
Q divides the segment $A B$ in ratio 2:3
$x=(2 \times 6+3 \times 1) / 5$
$=(12+3) / 5$
$=15 / 5=3$
$y=(2 \times 7+3 \times 2) / 5$
$=(14+6) / 5$
$=20 / 5=4$
So, $Q(x, y)=Q(3,4)$
Step 3: Find coordinates of R.
R divides the segment $A B$ in ratio $3: 2$
$x=(3 \times 6+2 \times 1) / 5$
$=(18+2) / 5$
= 20/5
$=4$
$y=(3 \times 7+2 \times 2) / 5$
$=(21+4) / 5$
$=25 / 5$
$=5$
So, $R(x, y)=R(4,5)$

Question 6:

Solution:

Given: Points P, Q and R in order divide a line segment joining the points $A(1,6)$ and $B(5,-2)$ in four equal parts.

Using formulas:
$\mathrm{x}=\mathrm{m} 1 \mathrm{x} 2+\mathrm{m} 2 \mathrm{x} 1 \mathrm{~m} 1+\mathrm{m} 2 \mathrm{y}=\mathrm{m} 1 \mathrm{y} 2+\mathrm{m} 2 \mathrm{y} 1 \mathrm{~m} 1+\mathrm{m} 2$
Step 1: Find coordinates of P.
$P(x, y)$ divides $A B$ in the ratio of $1: 3$
$x=(5+3) / 4=8 / 4=2$
$y=(-2+18)=16 / 4=4$
So $P(x, y)=P(2,4)$
Step 2: Find coordinates of Q.
Q divides the segment $A B$ in ratio 2:2 or 1:1. So Q ia midpoint of $A B$
So $Q((1+5) / 2,(6-2) / 2)=(3,2)$
So, $Q(x, y)=Q(3,2)$
Step 3: Find coordinates of R.
R divides the segment $A B$ in ratio 3:1
$x=(3 \times 5+1 \times 1) / 4$
$=4$
$y=(3 x(-2)+1 \times 6) / 4$
$=0$
So, $R(x, y)=R(4,0)$

Question 7:

Solution:

The line segment joining the point $A(3,-4)$ and $B(1,2)$ is trisected by the points $P(p,-2)$ and $Q(1 / 2, q)$. (given)

Step 1: Find x coordinate of P which is p
$P(p,-2)$ divides $A B$ in the ratio of $1: 2$
$\mathrm{p}=(1+6) / 3=7 / 3$
Step 2: Find coordinates of Q
Q divides the segment $A B$ in ratio 2:1
$x=(2 \times 1+1 \times 3) / 3$
$=(2+3) / 3$
$=5 / 3$
$y=(2 \times 2+1(-4)) / 3$
$=(4-4) / 3$
$=0 / 3$
$=0$
$=q$
Therefore, $p=7 / 3$ and $q=0$

Question 8:

Solution:

(i) Midpoint of the line segment joining $A(3,0)$ and $B(-5,4)$:

Midpoint $=\left(\left(x _1+x _2\right) / 2,\left(y _1+y _2\right) / 2\right)$
$=((3-5) / 2,(0+4) / 2)$
$=(-1,2)$
(ii) Midpoint of the line segment joining $P(-11,-8)$ and $Q(8,-2)$

PQ midpoint $=((-11+8) / 2,(-8-2) / 2)$
$=(-3 / 2,-5)$

Question 9:

Solution:

Given: $(2, p)$ is the mid point of the line segment joining the points $A(6,-5), B(-2,11)$
To find: the value of p
$p=(-5+11) / 2=6 / 2=3$

Question 10:

Solution:

Mid point of the line segment joining the points $A(2 a, 4)$ and $B(-2,3 b)$ is $C(1,2 a+1)$
Mid point of $A B=((2 a-2) / 2,(4+3 b) / 2) \ldots(1)$
Mid point of $A B=(1,2 a+1) \ldots(2)$ (given)
Now, from (1) and (2)
$1=(2 a-2) / 2$
=> $\mathrm{a}=2$
and $2 \mathrm{a}+1=(4+3 \mathrm{~b}) / 2$
$10-4=3 b$
or $b=2$
Answer: $\mathrm{a}=2$ and $\mathrm{b}=2$
Question 11:

Solution:

The line segment joining the points $A(-2,9)$ and $B(6,3)$ is a diameter of a circle with centre C.
Which means C is the midpoint of $A B$.
let (x, y) be the coordinates of C, then
$x=(-2+6) / 2=2$ and
$y=(9+3) / 2=6$
So, coordinates of C are $(2,6)$.

Question 12:

Solution:

Given:

$A B$ is diameter of a circle with centre C.

Coordinates of $C(2,-3)$ and other point is $B(1,4)$
Point C is the midpoint of $A B$.
Let (x, y) be the coordinates of A, then
$2=(x+1) / 2$
$4=x+1$
$x=3$
and
$-3=(y+4) / 2$
$-6=y+4$
or $y=-10$
So, coordinates of A are (3, -10).

Question 13:

Given: $P(2,5)$ divides the line segment joining the points $A(8,2)$ and $B(-6,9)$.
Let P divides the $A B$ in the ratio $m: n$

$$
\begin{aligned}
& 2=\frac{m x_{2}+n x_{1}}{m+n}=\frac{m(-6)+n \times 8}{m+n} \\
& 2 m+2 n=-6 m+8 n \\
& 2 m+6 m=8 n-2 n \Rightarrow 8 m=6 n
\end{aligned}
$$

$$
\frac{m}{n}=\frac{6}{8}=\frac{3}{4}
$$

Ratio $=3: 4$
Question 14:

Solution:

Let P divides the line segment joining the points A and B in the ratio m:n.

$$
\frac{3}{4}=\frac{m x_{2}+n x_{1}}{m+n}=\frac{m \times 2+n \times \frac{1}{2}}{m+n}
$$

$\frac{3}{4}=\frac{2 m+\frac{n}{2}}{m+n}$
$3 m+3 n=8 m+2 n$
$3 n-2 n=8 m-3 n$
or $m / n=1 / 5$
Therefore, required ratio is $1: 5$.
Question 15:

Solution:

Let P divides the join of A and B in the ratio $k: 1$, then
Step 1: Find coordinates of P:
$6=(k \times 8+1 \times 3) /(k+1)$
$=>6 \mathrm{k}+6=8 \mathrm{k}+3$
or $k=3 / 2$
P divides the join of A and B in the ratio $3: 2$
Step 2: Find the value of m
$m=(2 k-4) /(k+1)=(2 \times 3 / 2-4) /(3 / 2+1)$
$=-1 /(5 / 2)$
$=-2 / 5$

Question 16:

Solution:

Let point P divides the join of A and B in the ratio $m: n$, then

$$
\begin{aligned}
& -3=\frac{m(-2)+n(-5)}{m+n} \\
& -3 m-3 n=-2 m-5 n \\
& -5 n+3 n=-3 m+2 m
\end{aligned}
$$

$$
-2 n=-m \Rightarrow \frac{m}{n}=\frac{-2}{-1}=\frac{2}{1}
$$

ratio $=m: n=2: 1$
Now,

$$
\begin{aligned}
k & =\frac{m \times 3+n \times(-4)}{m+n} \\
& =\frac{2 \times 3+1 \times(-4)}{2+1} \\
& =\frac{6-4}{3}=\frac{2}{3}
\end{aligned}
$$

The value of k is $2 / 3$.

Question 17:

Solution:

Let point P on the x-axis divides the line segment joining the points A and B the ratio $m: n$
Consider P lies on x -axis having coordinates ($\mathrm{x}, 0$).
$x=(m \times 5+n \times 2) /(m+n)$
$x=(5 m+2 n) /(m+n)$
$5 m+2 n=x(m+n)$
$(5-x) m+(2-x) n=0$
And,
$y=0=(m \times 6+n(-3)) /(m+n)$
$0=(6 m-3 n) /(m+n)$
$6 m-3 n=0$
$6 m=3 n$
or $m / n=3 / 6=1 / 2$
P divides $A B$ in the ratio 1:2.
=> $m=1$ and $n=2$

From (2)

$(5-x)+(2-x)(2)=0$
$5-x+4-2 x=0$
$3 x=9$
$x=3$
Hence coordinates are $(3,0)$

Question 18:

Solution:

Given: A $(-2,-3)$ and $B(3,7)$ divided by the y-axis
Let P lies on y-axis and dividing the line segment $A B$ in the ratio $m: n$
So, the coordinates of P be $(0, \mathrm{y})$

$$
0=\frac{m \times 3+n \times(-2)}{m+n} \Rightarrow 0=3 m-2 n
$$

$$
3 m=2 n \Rightarrow \frac{m}{n}=\frac{2}{3}
$$

Ratio $=2: 3$

$$
\text { and } y=\frac{2 \times 7+3 \times(-3)}{2+3}=\frac{14-9}{5}=\frac{5}{5}=1
$$

Therefore, the coordinates of P be $(0,1)$.

Question 19:

Solution:

Given: A line segment joining the points $A(3,-1)$ and $B(8,9)$ and another line $x-y-2=0$.
Let a point $P(x, y)$ on the given line $x-y-2=0$ divides the line segment $A B$ in the ratio $m: n$ To find: ratio m:n

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1}}{m+n}=\frac{m \times 8+n \times 3}{m+n}=\frac{8 m+3 n}{m+n} \\
& \text { and } y=\frac{m y_{2}+n y_{1}}{m+n}=\frac{m \times 9+n \times(-1)}{m+n} \\
& =\frac{9 m-n}{m+n}
\end{aligned}
$$

Since point P lies on $x-y-2=0$, so

$$
\begin{aligned}
& \frac{8 m+3 n}{m+n}-\frac{9 m-n}{m+n}-2=0 \\
& \frac{8 m+3 n}{m+n}-\frac{9 m-n}{m+n}=2 \\
& 8 m+3 n-9 m+n=2 m+2 n \\
& -m+4 n=2 m+2 n \\
& -m-2 m=+2 n-4 n \\
& -3 m=-2 n \\
& \frac{m}{n}=\frac{-2}{-3}=\frac{2}{3}
\end{aligned}
$$

The required ratio is $2: 3$.

Question 20:

Solution:

Given: Vertices of $\triangle A B C$ are $A(0,-1), B(2,1)$ and $C(0,3)$
Let $A D, B E$ and $C F$ are the medians of sides $B C, C A$ and $A B$ respectively, then

Step 1: Find Coordinates of D, E and F
Coordinates of D:
$=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\left(\frac{2+0}{2}, \frac{1+3}{2}\right)$
$=\left(\frac{2}{2}, \frac{4}{2}\right)=(1,2)$
Coordinates of E :

$$
\left(0, \frac{2}{2}\right)=(0,1)
$$

Coordinates of F :

$$
\left(\frac{2}{2}, 0\right)=(1,0)
$$

Step 2: Find the length of $A D, B E$ and $C F$
Using
Distance formula $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

length of $A D$

$=\sqrt{(1-0)^{2}+(2+1)^{2}}=\sqrt{1^{2}+3^{2}}$
$=\sqrt{1+9}=\sqrt{10}$ units
Length of BE

$$
\begin{aligned}
& =\sqrt{(2-0)^{2}+(1-1)^{2}} \\
& =\sqrt{2^{2}+(0)^{2}} \\
& =2 \text { units }
\end{aligned}
$$

Length of CF

$$
\begin{aligned}
& =\sqrt{(1-0)^{2}+(0-3)^{2}} \\
& =\sqrt{1+9}=\sqrt{10} \text { units }
\end{aligned}
$$

Exercise 6C

Question 1:

Solution:

Area of $\triangle A B C$ whose vertices are is $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$
(i) In $\triangle A B C$, vertices are $A(1,2), B(-2,3)$ and $C(-3,-4)$

Area of triangle $=1 / 2(1(3+4)-2(-4-2)-3(2-3))$
$=1 / 2(7+12+3)=22 / 2$
$=11$ sq units
(ii) $\mathrm{A}(-5,7), \mathrm{B}(-4,-5)$ and $\mathrm{C}(4,5)$

Area of triangle $=1 / 2(-5(-5-5)-4(5-7)+4(7+5))$
$=1 / 2(-50+8+48)$
$=5 \mathrm{sq}$ units
(iii) A (3, 8), B (-4, 2) and C (5, -1)

Area of triangle $=1 / 2(3(2+1)-4(-1-8)+5(8-2))$
$=1 / 2(9+36+30)$
$=1 / 2(75)$
$=37.5$ sq units
(iv) A (10, -6), B $(2,5)$ and $C(-1,3)$

Area of triangle $=1 / 2(10(5-3)+2(3+6)-1(-6-5))$
$=1 / 2(20+18+11)$
$=1 / 2(49)$
$=24.5$ sq units

Question 2:

Solution: Vertices of quadrilateral ABCD are $A(3,-1), B(9,-5), C(14,0)$ and $D(9,19)$
Construction: Join diagonal AC.
We know that:
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$

Area of triangle $A B C$:

$$
\begin{aligned}
& =\frac{1}{2}[3(-5-0)+9(0+1)+14(-1+5)] \\
& =\frac{1}{2}[-15+9+14(4)] \\
& =\frac{1}{2}[-15+9+56] \\
& =1 / 2 \times 50 \\
& =25 \text { sq. units }
\end{aligned}
$$

Area of triangle ADC:
$=\frac{1}{2}[3(0-19)+14(19+1)+9(-1+0)]$
$=\frac{1}{2}[3(-19)+14 \times 20+9 \times(-1)]$
$=\frac{1}{2}[-57+280-9]$
$=1 / 2 \times 214$
$=107$ sq. units

Now, Area of quadrilateral $A B C D=$ Area of triangle $A B C+$ Area of triangle $A D C$
$=25+107$
$=132$ sq. units

Question 3:

Given: PQRS is a quadrilateral whose vertices are $P(-5,-3), Q(-4,-6), R(2,-3)$ and $S(1,2)$
Construction: Join PR
We know that:
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$
Area of triangle PQR:

$$
\begin{aligned}
& =\frac{1}{2}[-5(-6+3)+(-4)(-3+3)+2(-3+6)] \\
& =\frac{1}{2}[-5(-3)+(-4)(0)+2(3)] \\
& =\frac{1}{2}[15+0+6]=\frac{21}{2} \text { sq. units }
\end{aligned}
$$

Area of triangle PSR.

$$
\begin{aligned}
& =\frac{1}{2}[-5(-3-2)+2(2+3)+1(-3+3)] \\
& =\frac{1}{2}[-5(-5)+2 \times 5+1 \times 0] \\
& =\frac{1}{2}[25+10+0]=\frac{35}{2} \text { sq. units }
\end{aligned}
$$

Now, Area of quadrilateral PQRS = Area of triangle PQR + Area of triangle PSR
$=21 / 2+35 / 2$
$=28$ sq. units

Question 4:

Solution:

Given: ABCD is a quadrilateral whose vertices are $A(-3,-1), B(-2,-4), C(4,-1)$ and $D(3,4)$.
By Joining AC, we get two triangles ABC and ADC

We know that:
Area of $\Delta \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Area of triangle $A B C$:
$=\frac{1}{2}[-3(-4+1)+(-2)(-1+1)+4(-1+4)]$
$=\frac{1}{2}[-3(-5)+(-2) \times 0+4 \times 3]$
$=\frac{1}{2}[15-0+12]=\frac{1}{2} \times 27=\frac{27}{2}$ sq. units
Area of triangle ADC.
$=\frac{1}{2}[-3(-4)+4(4+1)+(3)(-1+1)]$
$=\frac{1}{2}[-3(-3)+4 \times 5+3 \times(0)]$
$=\frac{1}{2}[9+20-0]=\frac{1}{2} \times 29=\frac{29}{2}$ sq. units
Now, Area of quadrilateral PQRS = Area of triangle ABC + Area of triangle ADC
$=27 / 2+29 / 2$
$=28$ sq. units

Question 5:

Solution:

Given: $A B C D$ is a quadrilateral whose vertices are $A(-7,5), B(-6,-7), C(-3,-8)$ and $D(2,3)$. By Joining $A C$, we get two triangles $A B C$ and $A D C$

We know that:

$$
\text { Area of } \Delta \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
$$

Area of triangle $A B C$:

$$
\begin{aligned}
& =\frac{1}{2}[-7(-7-(-8)]+(-6)[(-8)-5]+(-3)[5-(-7)] \\
& =\frac{1}{2}[-7 \times(1)+(-6) \times(-13)+(-3) \times 12] \\
& =\frac{1}{2}[-7+78-36] \\
& =\frac{1}{2} \times 35=\frac{35}{2} \text { sq. units }
\end{aligned}
$$

Area of triangle ADC.

$$
=\frac{1}{2}[-7(-8-3)+(-3)(3-5)+(2)(-5(-8)]
$$

$$
=\frac{1}{2}[(-7) \times(-11)+(-3) \times(-2)+2 \times 13]
$$

$$
=\frac{1}{2}[77+6+26]=\frac{109}{2} \text { sq. units }
$$

Now, Area of quadrilateral PQRS = Area of triangle $A B C+$ Area of triangle $A D C$
$=35 / 2+109 / 2$
$=72$ sq. units

Question 6:

Solution:

Given: A triangle whose vertices are $\mathrm{A}(2,1), \mathrm{B}(4,3)$ and $\mathrm{C}(2,5)$
Let D, E and F are the midpoints of the sides $C B, C A$ and $A B$ respectively of $\triangle A B C$, as shown in the below figure.

Find vertices of D, E and F:

Midpoint formula: $(\mathrm{x}, \mathrm{y})=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Vertices of D :
$=\left(\frac{4+2}{2}, \frac{3+5}{2}\right)$
$=\left(\frac{6}{2}, \frac{8}{2}\right)=(3,4)$
Vertices of E :
$=\left(\frac{2+2}{2}, \frac{5+1}{2}\right)$
$=\left(\frac{4}{2}, \frac{6}{2}\right)=(2,3)$
Vertices of F :
$=\left(\frac{2+4}{2}, \frac{1+3}{2}\right)$
$=\left(\frac{6}{2}, \frac{4}{2}\right)=(3,2)$

Area of triangle DEF:

We know that:

$$
\text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
$$

Area of triangle $D E F=$
$=\frac{1}{2}[3(3-2)+2(2-4)+3(4-3)]$
$=\frac{1}{2}[3 \times 1+2 \times(-2)+3 \times 0]$
$=\frac{1}{2} \times 2=1$ sq. units

Question 7:

Solution:

D is midpoint of $B C$, So find its coordinates using below:
Midpoint formula: $(\mathrm{x}, \mathrm{y})=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$D=\left((3+5) / 2_{2}(3-1) / 2\right)=(4,1)$
Find area of triangle ABD:
We know that:
Area of a triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

So,
Area of triangle $A B D$:
$=1 / 2(7(3-1)+5(1+3)+4(-3-3))$
$=1 / 2(14+20-24)$
$=1 / 2(10)$
$=5$ sq. units
Area of triangle ACD:
$=1 / 2(7(-1-1)+3(1+3)+4(-3+1))$
$=1 / 2(-14+12-8)$
$=1 / 2(10)$
$=5$ sq. units(2)
From (1) and (2), we conclude that Area of triangle ABD and ACD is equal.
Hence proved.

Question 8:

Solution:

Given: $A \triangle A B C$ with $A(1,-4)$

Let F and E are the midpoints of $A B$ and $A C$ respectively Let Coordinates of F are $(2,-1)$ and Coordinates of E are $(0,-1)$
Let coordinates of B be (x_{1}, y_{1}) and Coordinates of C be $\left(x_{2}, y_{2}\right)$
Find coordinate of B :
using section formula:

$$
\begin{aligned}
& 2=\frac{1+x_{1}}{2} \Rightarrow x_{1}=4-1=3 \\
& -1=\frac{4+y_{1}}{2} \Rightarrow y_{1}=-2+4=2
\end{aligned}
$$

Coordinate of B are $(3,2)$
Find coordinate of C :
using section formula:

$$
\begin{aligned}
& 0=\frac{1+x_{2}}{2} \Rightarrow 1+x_{2}=0 \Rightarrow x_{2}=-1 \\
& -1=\frac{-4+y_{2}}{2} \Rightarrow-4+y_{2}=-2 \\
& \Rightarrow y_{2}=-2+4=2
\end{aligned}
$$

Coordinate of C are $(-1,2)$
Now,

$$
\text { Area of } \Delta \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
$$

Area of triangle ABC:

$$
\begin{aligned}
& =\frac{1}{2}[1(2-2)+3(2+4)+(-1)(-4-2)] \\
= & \frac{1}{2}[1 \times 0+3 \times 6+(-1) \times(-6)] \\
= & \frac{1}{2}[0+18+6]=\frac{24}{2}=12 \text { sq. units }
\end{aligned}
$$

Question 9:

Solution:

$A(6,1), B(8,2)$ and $C(9,4)$ are the three vertices of a parallelogram $A B C D$.
E is the midpoint of $D C$.
Join $A E, A C$ and $B D$ which intersects at O, where O is midpoint of $A C$.

Midpoint formula: $(\mathrm{x}, \mathrm{y})=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Find coordinates of midpoints D and E :

$$
\begin{aligned}
& \frac{x+8}{2}=\frac{15}{2} \Rightarrow x+8=15 \\
& x=15-8=7 \\
& \text { and } \\
& \frac{y+2}{2}=\frac{5}{2} \Rightarrow y+2=5 \\
& y=5-2=3 \\
& \text { Coordinate of } D \text { are }(7,3)
\end{aligned}
$$

And
$=\left(\frac{7+9}{2}, \frac{3+4}{2}\right)$

$$
=\left(8, \frac{7}{2}\right)
$$

Coordinate of E are $(7,3)$

Now, We know that:
Area of $\triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Area of $\triangle A D E$

$$
\begin{aligned}
& =\frac{1}{2}\left[6\left(3-\frac{7}{2}\right)+7\left(\frac{7}{2}-1\right)+8(1-3)\right] \\
& =\frac{1}{2}\left[6 \times\left(\frac{-1}{2}\right)+7 \times \frac{5}{2}+8(-2)\right] \\
& =\frac{5}{2}\left[-3+\frac{35}{2}-16\right] \\
& =\frac{1}{2} \times \frac{3}{2}=\frac{3}{4} \text { sq. units }
\end{aligned}
$$

Question 10:
(ii) The area of a triangle is 5 sq units. Two of its vertices are $(2,1)$ and $(3,-2)$. If the third vertex is (7/2, y), find the value of y.

Solution:
We know that:

Area of $\triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
(i) Vertices of a $\triangle A B C$ are $A(1,-3), B(4, p)$ and $C(-9,7)$ and

Area $=15$ sq. units

$$
\begin{aligned}
& 15=\frac{1}{2}[1(p-7)+4(7+3)+(-9)(-3-p)] \\
& 30=(p-7+40+27+9 p) \\
& 30=10 p+60 \\
& 10 p=30-60=-30 \Rightarrow p=\frac{-30}{10}=-3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 5=\frac{1}{2}\left[2(-2-y)+3(y-1)+\frac{7}{2}(1+2)\right] \\
& 10=\left[-4-2 y+3 y-3 y+\frac{7}{2}+7\right] \\
& 10=\left[y+\frac{7}{2}\right] \quad 10-\frac{7}{2}=y \Rightarrow y=\frac{13}{2}
\end{aligned}
$$

Question 11:
Solution:

$$
\begin{aligned}
& \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& 6=\frac{1}{2}[(k+1)(-3+k)+4(-k-1)+7(1+3)] \\
& 6 \times 2=\left[-3 k+k^{2}-3+k-4 k-4+28\right] \\
& 12=\left[k^{2}-6 k+21\right] \\
& k^{2}-6 k+21-12=0 \Rightarrow k^{2}-6 k+9=0 \\
& (k-3)^{2}=0 \Rightarrow k-3=0 \\
& k=3
\end{aligned}
$$

The value of k is 3 .

Question 12:

Solution:

Area of triangle $=53$ square units

$$
\begin{aligned}
& \text { Area of } \Delta \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& 53=\frac{1}{2}[-2(-4-10)+k(10-5)+(2 k+1)(5+4)] \\
& 53=\frac{1}{2}[-2 \times(-14)+k \times 5+(2 k+1) \times 9] \\
& 106=23 k+37 \\
& k=\frac{69}{23}=3
\end{aligned}
$$

The value of k is 3 .

Question 13:

Solution:

Points are collinear if the area of a triangle is equal to zero.
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$
(i) $\mathrm{A}(2,-2), \mathrm{B}(-3,8)$ and $\mathrm{C}(-1,4)$
$\Delta=1 / 2\{2(8-4)+(-3)(4+2)-1(2-8)\}$
$\Delta=1 / 2\{8-18+10\}$
$\Delta=0$
Hence points are collinear.
(ii) $\mathrm{A}(-5,1), \mathrm{B}(5,5)$ and $\mathrm{C}(10,7)$
$\Delta=1 / 2\{-5(5-7)+5(7-1)+10(1-5)\}$
$\Delta=1 / 2\{10+30-40\}$
$\Delta=0$
Hence points are collinear.
(iii) $\mathrm{A}(5,1), \mathrm{B}(1,-1)$ and $\mathrm{C}(11,4)$
$\Delta=1 / 2\{5(-1-4)+1(4-1)+11(1+1)\}$
$=1 / 2\{-25+3+22\}$
$=0$
Hence points are collinear.
(iv) $\mathrm{A}(8,1), \mathrm{B}(3,-4)$ and $\mathrm{C}(2,-5)$
$\Delta=1 / 2\{8(-4+5)+3(-5-1)+2(1+4)\}$
$=1 / 2\{8-18+10\}$
$=0$
Hence points are collinear.

Question 14:

Solution:

Points are $A(x, 2), B(-3,-4)$ and $C(7,-5)$ are collinear.
Which means area of triangle $\mathrm{ABC}=0$

$$
\begin{aligned}
& \text { Areaof } \triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)] \\
& =\frac{1}{2}[x(-4+5)+(-3)(-5-2)+7(2+4)]
\end{aligned}
$$

$$
=\frac{1}{2}[x \times 1+(-3) \times(-7)+7 \times 6]
$$

$$
=\frac{1}{2}[x+21+42]=\frac{1}{2}(x+63)
$$

Since points are collinear:
$1 / 2(x+63)=0$
Or $x=-63$

Question 15:

Solution:

Points are $A(-3,12), B(7,6)$ and $C(x, 9)$ are collinear.
Which means area of triangle $A B C=0$
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$

$$
\begin{aligned}
& =\frac{1}{2}[-3(6-9)+7(9-12)+x(12-6)] \\
& =\frac{1}{2}[-3 \times(-3)+7 \times(-3)+x \times 6] \\
& =\frac{1}{2}[9-21+6 x] \\
& =\frac{1}{2}[6 x-12]
\end{aligned}
$$

Since points are collinear:
$1 / 2(6 x-12)=0$
Or $x=2$
Question 16:

Solution:

Points are $P(1,4), Q(3, y)$ and $R(-3,16)$ are collinear.
Which means area of triangle $\mathrm{PQR}=0$

$$
\begin{aligned}
& \text { Areaof } \triangle \mathrm{ABC}=12\left[x 1\left(y_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(y_{3}-\mathrm{y}_{1}\right)+\mathrm{x} 3\left(\mathrm{y} 1-\mathrm{y}_{2}\right)\right] \\
& =\frac{1}{2}[1(y-16)+3(16-4)+(-3)(4-y)] \\
& =\frac{1}{2}[y-16+3 \times 12-12+3 y] \\
& =\frac{1}{2}[4 y-16+36-12]=\frac{1}{2}[4 y+8]
\end{aligned}
$$

Since points are collinear:
$1 / 2(4 y+8)=0$
Or $y=-2$
Question 17:

Solution:

Points are $A(-3,9), B(2, y)$ and $C(4,-5)$ are collinear.

Which means area of triangle $A B C=0$
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$
$=\frac{1}{2}[-3(y+5)+2(-5-9)+4(9-y)]$
$=\frac{1}{2}[-3 y-15+2 \times(-14)+36-4 y]$
$=\frac{1}{2}[-7 y-15-28+36]$
$=\frac{1}{2}[-7 y-7]$
Since points are collinear:
$1 / 2(-7 y-7)=0$
Or $y=-1$
Question 18:

Solution:

Points are $A(8,1), B(3,-2 k)$ and $C(k,-5)$ are collinear.
Which means area of triangle $A B C=0$
Areaof $\triangle \mathrm{ABC}={ }_{12}[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$
$=\frac{1}{2}[8(-2 k+5)+3(-5-1)+k(1+2 k)]$
$=\frac{1}{2}\left[-16 k+40+3(-6)+k+2 k^{2}\right]$
$=\frac{1}{2}\left[-16 k+40-18+k+2 k^{2}\right]$
$=\frac{1}{2}\left[22-15 k+2 k^{2}\right]$
Since points are collinear:
$1 / 2\left(2 k^{\wedge} 2-15 k+22\right)=0$

Or $2 k^{\wedge} 2-15 k+22=0$
$2 k^{\wedge} 2-11 k-4 k+22=0$
$k(2 k-11)-2(2 k-11)=0$
$(k-2)(2 k-11)=0$
$k=2$ or $k=11 / 2$. Answer.

Question 19:

Solution:

Points are $A(2,1), B(x, y)$ and $C(7,5)$ are collinear.
Which means area of triangle $A B C=0$
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$

$$
=\frac{1}{2}[2(y-5)+x(5-1)+7(1-y)]
$$

$$
=\frac{1}{2}[2 y-10+4 x+7-7 y]
$$

$$
=\frac{1}{2}[4 x-5 y-3]
$$

Since points are collinear:
$1 / 2(4 x-5 y-3)=0$
$4 x-5 y-3=0$
Relationship between x and y .

Question 20:

Solution:

Points are $A(x, y), B(-5,7)$ and $C(-4,5)$ are collinear.
Which means area of triangle $A B C=0$
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$

$$
\begin{aligned}
& =\frac{1}{2}[x(7-5)+(-5)(5-y)+(-4)(y-7)] \\
& =\frac{1}{2}[x \times 2-25+5 y-4 y+28] \\
& =\frac{1}{2}[2 x+y+3]
\end{aligned}
$$

Since points are collinear:
$1 / 2(2 x+y+3)=0$
$2 x+y+3=0$
Relationship between x and y .

Question 21:

Solution:

Points are $A(a, 0), B(0, b)$ and $C(1,1)$ are collinear.
Which means area of triangle $A B C=0$
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$
$=1 / 2[(a(b-1)+0(1-0)+1(0-b)]$
$=1 / 2[a b-a+0-b]$
Since points are collinear:
$1 / 2(a b-a-b)=0$
$a b-a-b=0$
Divide each term by "ab", we get
$1-1 / b-1 / a=0$
or $1 / a+1 / b=1$. hence proved.

Question 22:

Solution:

Points are $P(-3,9), Q(a, b)$ and $R(4,-5)$ are collinear.
Which means area of triangle $=0$
Areaof $\triangle \mathrm{ABC}=12[\mathrm{x} 1(\mathrm{y} 2-\mathrm{y} 3)+\mathrm{x} 2(\mathrm{y} 3-\mathrm{y} 1)+\mathrm{x} 3(\mathrm{y} 1-\mathrm{y} 2)]$

$$
\begin{aligned}
& =\frac{1}{2}[-3(b+5)+a(-5-9)+4(9-b)] \\
& =\frac{1}{2}[-3 b-15-5 a-9 a+36-4 b] \\
& =\frac{1}{2}[-14 a-7 b+21]
\end{aligned}
$$

Since points are collinear, we have
$1 / 2(-14 a-7 b+21)=0$
$-14 a-7 b+21=0$
$2 a+b=3 \ldots . .(1)$
$\mathrm{a}+\mathrm{b}=1$.....(2) (given)
From (1) and (2)
$\mathrm{a}=2$ and $\mathrm{b}=-1$
Question 23:

Solution:

Vertices of $\triangle A B C$ are $A(0,-1), B(2,1)$ and $C(0,3)$

Area of $\triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Area of triangle $A B C$:
$=\frac{1}{2}[O(1-3)+2(3+1)+O(-1-1)]$
$=\frac{1}{2}[0+2 \times 4+0]=\frac{1}{2} \times 8=4$ sq. units
From figure: Points D, E and F are midpoints of sides $B C, C A$ and $A B$ respectively.
Find the coordinates of \mathbf{D}, E and \mathbf{F}
coordinates of D
$=\left(\frac{2+0}{2}, \frac{1+3}{2}\right)$
$=(1,2)$
coordinates of E
$=\left(\frac{0+0}{2}, \frac{3-1}{2}\right)$
$=(0,1)$
coordinates of F
$=\left(\frac{0+2}{2}, \frac{-1+1}{2}\right)$
$=(1,0)$

Area of triangle DEF:
$=1 / 2[1+0+1]$
$=1$ sq. units
Therefore,
Ratio in the area of triangles ABC and $\mathrm{DEF}=4 / 1=4: 1$.

Question 24:

Solution:

Let $A\left(a, a^{2}\right), B\left(b, b^{2}\right)$ and $C(0,0)$ are the vertices of a triangle.
Let us assume that that points are collinear, then area of $\triangle A B C$ must be zero.
Now, area of $\triangle A B C$

$$
\begin{aligned}
& =\frac{1}{2}\left[a\left(b^{2}-0\right)+b\left(0-a^{2}\right)+0\left(a^{2}-b^{2}\right)\right] \\
& =\frac{1}{2}\left(a b^{2}-b c^{2}\right) \\
& =\frac{a b}{2}(b-a) \\
& \neq 0
\end{aligned}
$$

Which is contraction to our assumption.
This implies points are not be collinear. Hence proved.

Exercise 6D

Question 1:

Solution:

Points $A(-1, y)$ and $B(5,7)$ lie on a circle with centre $O(2,-3 y)$.
Which means: OA = OB or OA^2 = OB^2
using distance formula, we get
$(-1-2)^{\wedge} 2+(y-(-3 y))^{\wedge} 2=(5-2)^{\wedge} 2+(7-(-3 y))^{\wedge} 2$
$9+16 y^{\wedge} 2=9+(7+3 y)^{\wedge} 2$
$16 y^{\wedge} 2=49+42 y+9 y^{\wedge} 2$
$7 y^{\wedge} 2-42 y-49=0$
$7\left(y^{\wedge} 2-6 y-7\right)=0$
$y^{\wedge} 2-7 y+y-7=0$
$y(y-7)+1(y-7)=0$
$(y+1)(y-7)=0$
Therefore, $\mathrm{y}=7$ or $\mathrm{y}=-1$
Possible values of y are 7 or -1 .

Question 2:

Solution:

A $(0,2)$ is equidistant from the points $B(3, p)$ and $C(p, 5)$
Which means: $A B=A C$ or $A B^{\wedge} 2=A C^{\wedge} 2$
using distance formula, we get
$(0-3)^{\wedge} 2+(2-p)^{\wedge} 2=(0-p)^{\wedge} 2+(2-5)^{\wedge} 2$
$9+4+p^{\wedge} 2-4 p=p^{\wedge} 2+9$
$4 \mathrm{p}-4=0$
$p=1$
Therefore, the value of p is 1 .

Question 3:

Solution:

$A B C D$ is a rectangle whose three vertices are $B(4,0), C(4,3)$ and $D(0,3)$.
Find length of one of its diagonal, say BD: using distance formula, we get

$$
\begin{aligned}
& \mathrm{BD}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(4-0)^{2}+(0-3)^{2}} \\
& =\sqrt{(4)^{2}+(-3)^{2}}=\sqrt{16+9} \\
& =\sqrt{25}=5 \text { units }
\end{aligned}
$$

Therefore, length of one of its diagonal is 1 .
Question 4:

Solution:

Point $P(k-1,2)$ is equidistant from the points $A(3, k)$ and $B(k, 5)$.
$\mathrm{PA}=\mathrm{PB}$ or $\mathrm{PA}^{\wedge} 2=\mathrm{PB}^{\wedge} 2$

$$
\begin{aligned}
& (3-k+1)^{2}+(k-2)^{2}=(k-k+1)^{2}+(5-2)^{2} \\
& (4-k)^{2}+(k-2)^{2}=1^{2}+3^{2} \\
& 16-8 k+k^{2}+k^{2}-4 k+4=1+9 \\
& 2 k^{2}-12 k+20=10 \\
& 2 k^{2}-12 k+20-10=0 \\
& 2 k^{2}-12 k+10=0 \\
& k^{2}-6 k+5=0 \\
& k^{2}-k-5 k+5=0
\end{aligned}
$$

$k(k-1)-5(k-1)=0$
$(k-5)(k-1)=0$
$k=1$ or $k=5$

Question 5:

Solution:

If point $P(x, 2)$ divides the join of $A(12,5)$ and $B(4,-3)$, then
using section formula, we get
$2=(m \times(-3)+n \times(5)) /(m+n)$

$$
\begin{aligned}
& 2 m+2 n=-3 m+5 n \\
& 5 m=3 n \\
& m / n=m: n=3: 5
\end{aligned}
$$

The required ratio is $3: 5$.

Question 6:

Solution:

Vertices f a rectangle $A B C D$ are $A(2,-1), B(5,-1), C(5,6)$ and $D(2,6)$
To prove: Diagonals of the rectangle are equal and bisect each other.

Diagonal AC

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(5-2)^{2}+(6+1)^{2}} \\
& =\sqrt{9+49}=\sqrt{58}
\end{aligned}
$$

Diagonal BD

$$
\begin{aligned}
& \sqrt{(5-2)^{2}+(-1-6)^{2}} \\
= & \sqrt{3^{2}+(-7)^{2}} \\
= & \sqrt{58}
\end{aligned}
$$

$A C$ and $B D$ are equal in length. Thus, Diagonals are equal.
Now,
Consider that O is the midpoint of AC then its coordinate are Midpoint formula:

$$
\begin{aligned}
& (\mathrm{x}, \mathrm{y})=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =((2+5) / 2,(-1+6) / 2) \\
& =(7 / 2,5 / 2)
\end{aligned}
$$

If point O divides $A C$ in the ratio $m: n$, then

$$
\begin{aligned}
& \frac{7}{2}=\frac{m x_{2}+n x_{1}}{m+n}=\frac{m \times 2+n \times 5}{m+n} \\
& =\frac{2 m+5 n}{m+n} \\
& 7 m+7 n=4 m+10 n \\
& 7 m-4 m=10 n-7 n \Rightarrow 3 m=3 n \\
& m=n
\end{aligned}
$$

Which shows, O is the midpoint of diagonals.

Question 7:

Solution:

Vertices of $\triangle A B C$ are $A(7,-3), B(5,3)$ and $C(3,-1)$

From figure: $B E$ and $A D$ are the medians of triangle.

Find Coordinates of E and D:
Coordinates of $\mathrm{E}=$
$\left(\frac{3+7}{2}, \frac{-1-3}{2}\right)$
$=(5,-2)$

Coordinates of $\mathrm{D}=$
$\left(\frac{3+5}{2}, \frac{-1+3}{2}\right)$
$=(4,1)$

Find $A D$ and $B E$ using distance formula:

$$
\begin{aligned}
& \mathrm{AD}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(7-4)^{2}+(3+1)^{2}}=\sqrt{3^{2}+4^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5 \text { units } \\
& \text { and } \mathrm{BE}=\sqrt{(5-5)^{2}+(3+2)^{2}}=\sqrt{0^{2}+5^{2}} \\
& =\sqrt{25}=5 \text { units }
\end{aligned}
$$

Therefore, $\mathrm{BE}=5$ units and $\mathrm{AD}=5$ units (both are equal)

Question 8:

Solution:

$C(k, 4)$ divides the join of $A(2,6)$ and $B(5,1)$ in the ratio $2: 3$.
Using Section Formula:

$$
\mathrm{k}=\frac{\frac{2}{3} \times(5)+1 \times(2)}{\frac{2}{3}+1}
$$

After simplifying, we get $k=16 / 5$
The value of k is $16 / 5$.

Question 9:

Solution:

Since point lies on x-axis, y-coordinate of the point will be zero.
Let $P(x, 0)$ be on x-axis which is equidistant from $A(-1,0)$ and $B(5,0)$
Using section formula:

$$
\mathrm{x}=\frac{1 \times(5)+1 \times(-1)}{1+1}
$$

Or $x=2$
Thus, the required point is $(2,0)$.

Question 10:

Solution:

Using distance formula, we have

$$
\begin{aligned}
& =\sqrt{\left(\frac{2}{5}+\frac{8}{5}\right)^{2}+(2-2)^{2}} \\
& =\sqrt{\left(\frac{10}{5}\right)^{2}+0^{2}} \\
& =\sqrt{2^{2}+0^{2}} \\
& =\sqrt{4}=2 \text { units }
\end{aligned}
$$

Question 11:

Solution:

The points $(3, a)$ lies on the line $2 x-3 y=5$.
Put value of $x=3$ and $y=a$ in given equation,
$2 \times 3-3 \times a=5$
$6-3 a=5$
$3 a=6-5$
$a=1 / 3$

Question 12:

Solution:

Points $A(4,3)$ and $B(x, 5)$ lie on the circle with centre $O(2,3)$
Which means: $O A=O B$
$\Rightarrow \mathrm{OA}^{\wedge} 2=\mathrm{OB}^{\wedge} 2$
$(2-4)^{2}+(3-3)^{2}=(2-x)^{2}+(3-5)^{2}$
$(-2)^{2}+0^{2}=(2-x)^{2}+(-2)^{2}$
$(2-x)^{2}=0$
$2-x=0$
$x=2$
The value of x is 2 .
Question 13:

Solution:

```
\(P(x, y)\) is equidistant from the point \(A(7,1)\) and \(B(3,5)\)
\(P A=P B\)
\(\Rightarrow P A^{\wedge} 2=P^{\wedge} 2\)
\((x-7)^{2}+(y-1)^{2}=(x-3)^{2}+(y-5)^{2}\)
\(x^{2}-14 x+49+y^{2}-2 y+1=x^{2}-6 x+9+y^{2}-10 y+25\)
\(-8 x+8 y=-16\)
\(x-x=2\)
Relation between \(x\) and \(y\) is \(x-y=2\)
```


Question 14:

Solution:

Centroid of $\triangle A B C$ having vertices $A(a, b), B(b, c)$ and $C(c, a)$ is the origin.
Let $O(0,0)$ is the centroid of $\triangle A B C$.
$a+b+c=0$
And
Centroid $=\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}$

Question 15:

Centroid of $\triangle A B C$ whose vertices are $A(2,2), B(-4,-4)$ and $C(5,-8)$.

$$
\begin{aligned}
& \text { Centroid }=\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3} \\
& =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right) \\
& =\left(\frac{2-4+5}{3}, \frac{2-4-8}{3}\right) \\
& =\left(\frac{3}{3}, \frac{-10}{3}\right) \\
& =\left(1, \frac{-10}{3}\right)
\end{aligned}
$$

Question 16:

Solution:

Point $C(4,5)$ divide the join of $A(2,3)$ and $B(7,8)$
Let point $C(4,5)$ divides the $A B$ in the ratio $m: n$
Using section formula:

$$
\begin{aligned}
& x=\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{m+n} \\
& 4=\frac{m(7)+n(2)}{m+n} \\
& 4 m+4 n=7 m+2 n \\
& 3 m=2 n \\
& m: n=2: 3
\end{aligned}
$$

The required ratio is 2:3.

Question 17:

Solution:

Points $A(2,3), B(4, k)$ and $C(6,-3)$ are collinear.
Area of triangle having vertices A, B and $C=0$
Area of a triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Area of given $\triangle \mathrm{ABC}=0$
$=\frac{1}{2}[(2(k-(-3))+4(-3-3)+6(3-k))]=0$
$2 k+6-24+18-6 k=0$
$-4 \mathrm{k}=0$
or $\mathrm{k}=0$
The value of k is zero.

