EXERCISE-8 (A)

Question 1:

Find the each case, the remainder when:
(i) $x^{4}-3 x^{2}+2 x+1$ is divided by $x-1$
(ii) $x^{3}+3 x^{2}-12 x+4$ is divided by $x-2$
(iii) $x^{4}+1$ is divided by $x+1$

Solution 1:

By remainder theorem we know that when a polynomial $f(x)$ is divided by $x-a$, then the remainder is $f(a)$.
(i) $f(x)=x^{4}-3 x^{2}+2 x+1$

Remainder $=f(1)=(1)^{4}-3(1)^{2}+2(1)+1=1-3+2+1=1$
(ii) $f(x)=x^{3}+3 x^{2}-12 x+4$

Remainder $=f(2)=(2)^{3}+3(2)^{2}-12(2)+4$
$=8+12-24+4$
$=0$
(iii) $f(x)=x^{4}+1$

Remainder $=f(-1)=(-1)^{4}+1=1+1=2$
(iv) $f(x)=4 x^{3}-3 x^{2}+2 x-4$

Remainder $=f\left(\frac{-1}{2}\right)$
$=4\left(\frac{-1}{2}\right)^{3}-3\left(\frac{-1}{2}\right)^{2}+2\left(\frac{-1}{2}\right)-4$
$=\frac{-1}{2}-\frac{3}{4}-1-4$
$=\frac{-2-3-20}{4}$
$=\frac{-25}{4}=-6 \frac{1}{4}$
$(v) f(x)=4 x^{3}+4 x^{2}-27 x+16$
Remainder $=f\left(\frac{3}{2}\right)$
$=4\left(\frac{3}{2}\right)^{3}+4\left(\frac{3}{2}\right)^{2}-27\left(\frac{3}{2}\right)+16$

$$
\begin{aligned}
& =\frac{27}{2}+9-\frac{81}{2}+16 \\
& =-27+25 \\
& =-2 \\
& \text { (vi)f }(x)=2 x^{3}+9 x^{2}-x-15
\end{aligned}
$$

Remainder $=f\left(\frac{-3}{2}\right)$
$=2\left(\frac{-3}{2}\right)^{3}+9\left(\frac{-3}{2}\right)^{2}-\left(\frac{-3}{2}\right)-15$
$=\frac{-27}{4}+\frac{81}{4}+\frac{3}{2}-15$
$=\frac{27}{2}+\frac{3}{2}-15$
$=\frac{30}{2}-15=15-15=0$

Question 2:

Show that:
(i) $x-2$ is a factor of $5 x^{2}+15 x-50$.
(ii) $3 x+2$ is a factor of $3 x^{2}-x-2$

Solution 2:

$(x-a)$ is a factor of a polynomial $f(x)$ if the remainder, when $f(x)$ is divided by $(x-a)$, is 0 , i.e., if $f(a)=0$.
(i) $f(x)=5 x^{2}+15 x-50$
$f(2)=5(2)^{2}+15(2)-50=20+30-50=0$
Hence, $x-2$ is a factor of $5 x^{2}+15 x-50$
(ii) $f(x)=3 x^{2}-x-2$
$f\left(\frac{-2}{3}\right)=3\left(\frac{-2}{3}\right)^{2}-\left(\frac{-2}{3}\right)-2=\frac{4}{3}+\frac{2}{3}-2=2-2=0$
Hence, $3 x+2$ is a factor of $3 x^{2}-x-2$
(iii) $f(x)=x^{3}+3 x^{2}+3 x+1$
$f(-1)=(-1)^{3}+3(-1)^{2}+3(-1)+1=-1+3-3+1=0$
Hence, $x+1$ is a factor of $x^{3}+3 x^{2}+3 x+1$

Question 3:

Use the remainder Theorem to find which of the following is a factor of $2 x^{3}+3 x^{2}-5 x-6$.
(i) $\mathrm{x}+1$
(ii) $2 \mathrm{x}-1$
(iii) $\mathrm{x}+2$

Solution 3:

By remainder theorem we know that when a polynomial $\mathrm{f}(\mathrm{x})$ is divided by $\mathrm{x}-\mathrm{a}$, then the remainder is $f(a)$.
Let $f(x)=2 x^{3}+3 x^{2}-5 x-6$
(i) $\mathrm{f}(-1)=2(-1)^{3}+3(-1)^{2}-5(-1)-6=-2+3+5-6=0$

Thus, $(x+1)$ is a factor of the polynomial $f(x)$.
(ii)
$f\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}-5\left(\frac{1}{2}\right)-6$
$=\frac{1}{4}+\frac{3}{4}-\frac{5}{2}-6$
$=-\frac{5}{2}-5=\frac{-15}{2} \neq 0$
Thus, $(2 x-1)$ is not a factor of the polynomial $f(x)$.
(iii) $\mathrm{f}(-2)=2(-2)^{3}+3(-2)^{2}-5(-2)-6=-16+12+10-6=0$

Thus, $(x+2)$ is a factor of the polynomial $f(x)$.
(iv)
$f\left(\frac{2}{3}\right)=2\left(\frac{3}{2}\right)^{3}+3\left(\frac{3}{2}\right)^{2}-5\left(\frac{2}{3}\right)-6$
$=\frac{16}{27}+\frac{4}{3}-\frac{10}{3}-6$
$=\frac{16}{27}-2-6$
$=\frac{16}{27}-8 \neq 0$
Thus, $(3 x-2)$ is not a factor of the polynomial $f(x)$.
(v)
$f\left(\frac{3}{2}\right)=2\left(\frac{3}{2}\right)^{3}+3\left(\frac{3}{2}\right)^{2}-5\left(\frac{3}{2}\right)-6$
$=\frac{27}{4}+\frac{27}{4}-\frac{15}{2}-6$
$=\frac{27}{2}-\frac{15}{2}-6$
$=6-6=0$
Thus, $(2 x-3)$ is a factor of the polynomial $f(x)$.

Question 4:

(i) If $2 x+1$ is a factor of $2 x^{2}+a x-3$, find the value of a.
(ii) Find the value of k, if $3 x-4$ is a factor of expression $3 x^{2}+2 x-k$.

Solution 4:

(i) $2 x+1$ is a factor of $f(x)=2 x^{2}+a x-3$.
$\therefore f\left(\frac{-1}{2}\right)=0$
$\Rightarrow 2\left(\frac{-1}{2}\right)^{2}+a\left(\frac{-1}{2}\right)-3=0$
$\Rightarrow \frac{1}{2}-\frac{\mathrm{a}}{2}=3$
$\Rightarrow 1-\mathrm{a}=6$
$\Rightarrow a=-5$
(ii) $3 x-4$ is a factor of $g(x)=3 x^{2}+2 x-k$.
$\therefore \mathrm{f}\left(\frac{4}{3}\right)=0$
$\Rightarrow 3\left(\frac{4}{3}\right)^{2}+2\left(\frac{4}{3}\right)-\mathrm{k}=0$
$\Rightarrow \frac{16}{3}+\frac{8}{3}-\mathrm{k}=0$
$\Rightarrow \frac{24}{3}=\mathrm{k}$
$\Rightarrow \mathrm{k}=8$

Question 5:

Find the values of constants a and b when $x-2$ and $x+3$ both are the factors of expression $x^{3}+$ $a x^{2}+b x-12$

Solution 5:

Let $f(x)=x^{3}+a x^{2}+b x-12$
$x-2=0 \Rightarrow x=2$
$x-2$ is a factor of $f(x)$. So, remainder $=0$
$\therefore(2)^{3}+a(2)^{2}+b(2)-12=0$
$\Rightarrow 8+4 a+2 b-12=0$
$\Rightarrow 4 a+2 b-4=0$
$\Rightarrow 2 \mathrm{a}+\mathrm{b}-2=0$

$$
\begin{align*}
& x+3=0 \Rightarrow x=-3 \\
& x+3 \text { is a factor of } f(x) . \text { So, remainder }=0 \\
& \therefore(-3)^{3}+a(-3)^{2}+b(-3)-12=0 \\
& \Rightarrow-27+9 a-3 b-12=0 \\
& \Rightarrow 9 a-3 b-39=0 \\
& \Rightarrow 3 a-b-13=0 \tag{2}
\end{align*}
$$

Adding (1) and (2), we get,
$5 \mathrm{a}-15=0$
$\Rightarrow \mathrm{a}=3$
Putting the value of a in (1), we get,
$6+b-2=0$
$\Rightarrow b=-4$

Question 6:

Find the value of k, if $2 x+1$ is a factor of $(3 k+2) x^{3}+(k-1)$

Solution 6:

Let $f(x)=(3 k+2) x^{3}+(k-1)$
$2 x+1=0 \Rightarrow x=\frac{-1}{2}$
Since, $2 x+1$ is a factor of $f(x)$, remainder is 0 .
$\therefore(3 k+2)\left(\frac{-1}{2}\right)^{3}+(k-1)=0$
$\Rightarrow \frac{-(3 \mathrm{k}+2)}{8}+(\mathrm{k}-1)=0$
$\Rightarrow \frac{-3 \mathrm{k}-2+8 \mathrm{k}-8}{8}=0$
$\Rightarrow 5 \mathrm{k}-10=0$
$\Rightarrow \mathrm{k}=2$

Question 7:

Find the vaue of a, if $x-2$ is a factor of $2 x^{5}-6 x^{4}-2 a x^{3}+6 a x^{2}+4 a x+8$

Solution 7:

$$
\begin{aligned}
& f(x)=2 x^{5}-6 x^{4}-2 a x^{3}+6 a x^{2}+4 a x+8 \\
& x-2=0 \Rightarrow x=2
\end{aligned}
$$

Since, $x-2$ is a factor of $f(x)$, remainder $=0$.
$2(2)^{5}-6(2)^{4}-2 \mathrm{a}(2)^{3}+6 \mathrm{a}(2)^{2}+4 \mathrm{a}(2)+8=0$
$64-96-16 a+24 a+8 a+8=0$
$-24+16 \mathrm{a}=0$
$16 a=24$
$\mathrm{a}=1.5$

Question 8:

Find the value of m and n so that $x-1$ and $x+2$ both are factors of $x^{3}+(3 m+1) x^{2}+n x-18$
Solution 8:
Let $f(x)=x^{3}+(3 m+1) x^{2}+n x-18$
$\mathrm{x}-1=0 \Rightarrow \mathrm{x}=1$
$x-1$ is a factor of $f(x)$. So, remainder $=0$
$\therefore(1)^{3}+(3 m+1)(1)^{2}+n(1)-18=0$
$\Rightarrow 1+3 m+1+n-18=0$
$\Rightarrow 3 \mathrm{~m}+\mathrm{n}-16=0$
$x+2=0 \Rightarrow x=-2$
$x+2$ is a factor of $f(x)$. So, remainder $=0$
$\therefore(-2)^{3}+(3 m+1)(-2)^{2}+n(-2)-18=0$
$\Rightarrow-8+12 m+4-2 n-18=0$
$\Rightarrow 12 m-2 n-22=0$
$\Rightarrow 6 \mathrm{~m}-\mathrm{n}-11=0$
Adding (1) and (2), we get,
$9 \mathrm{~m}-27=0$
$\mathrm{m}=3$
Putting the value of m in (1), we get,
$3(3)+\mathrm{n}-16=0$
$9+\mathrm{n}-16=0$
$\mathrm{n}=7$

Question 9:

When $x^{3}+2 x^{2}-k x+4$ is divided by $x-2$, the remainder is k. Find the value of constant k.

Solution 9:

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-\mathrm{kx}+4$
$x-2=0 \Rightarrow x=2$
On dividing $f(x)$ by $x-2$, it leaves a remainder k.
$\therefore \mathrm{f}(2)=\mathrm{k}$
$(2)^{3}+2(2)^{2}-k(2)+4=k$
$8+8-2 k+4=k$
$20=3 k$
$\mathrm{k}=\frac{20}{3}=6 \frac{2}{3}$

Question 10:

Find the value of a, if the division of $a x^{3}+9 x^{2}+4 x-10$ by $x+3$ leaves a remainder 5 .

Solution 10:

Let $f(x)=a x^{3}+9 x^{2}+4 x-10$
$x+3=0 \Rightarrow x=-3$
On dividing $\mathrm{f}(\mathrm{x})$ by $\mathrm{x}+3$, it leaves a remainder 5 .
$\therefore f(-3)=5$
$a(-3)^{3}+9(-3)^{2}+4(-3)-10=5$
$-27 a+81-12-10=5$
$54=27 a$
$\mathrm{a}=2$

Question 11:

If $x^{3}+a x^{2}+b x+6$ has $x-2$ as a factor and leaves a remainder 3 when divided by $x-3$, find the values of a and b.

Solution 11:

Let $f(x)=x^{3}+a x^{2}+b x+6$
$x-2=0 \Rightarrow x=2$
Since, $x-2$ is a factor, remainder $=0$

$$
\begin{align*}
& \therefore f(2)=0 \\
& (2)^{3}+a(2)^{2}+b(2)+6=0 \\
& 8+4 a+2 b+6=0 \\
& 2 a+b+7=0 \tag{i}\\
& x-3=0 \Rightarrow x=3
\end{align*}
$$

On dividing $f(x)$ by $x-3$, it leaves a remainder 3 .
$\therefore \mathrm{f}(3)=3$
$(3)^{3}+a(3)^{2}+b(3)+6=3$
$27+9 a+3 b+6=3$
$3 a+b+10=0$
Subtracting (i) from (ii), we get,
$a+3=0$
$a=-3$
Substituting the value of a in (i), we get,
$-6+b+7=0$
$b=-1$

Question 12:

The expression $2 x^{3}+a x^{2}+b x-2$ leaves remainder 7 and 0 when divided by $2 x-3$ and $x+2$ respectively. Calculate the values of a and b.

Solution 12:

Let $f(x)=2 x^{3}+a x^{2}+b x-2$
$2 x-3=0 \quad x=\frac{3}{2}$
On dividing $f(x)$ by $2 x-3$, it leaves a remainder 7 .
$\therefore 2\left(\frac{3}{2}\right)^{3}+a\left(\frac{3}{2}\right)^{2}+b\left(\frac{3}{2}\right)-2=7$
$\frac{27}{4}+\frac{9 a}{4}+\frac{3 b}{2}=9$
$\frac{27+9 a+6 b}{4}=9$
$27+9 a+6 b=36$
$9 a+6 b-9=0$
$3 a+2 b-3=0$

$$
x+2=0 \Rightarrow x=-2
$$

On dividing $f(x)$ by $x+2$, it leaves a remainder 0 .
$\therefore 2(-2)^{3}+\mathrm{a}(-2)^{2}+\mathrm{b}(-2)-2=0$
$-16+4 a-2 b-2=0$
$4 a-2 b-18=0$
Adding (i) and (ii), we get,
$7 a-21=0$
$\mathrm{a}=3$
Substituting the value of a in (i), we get,

$$
\begin{aligned}
& 3(3)+2 b-3=0 \\
& 9+2 b-3=0 \\
& 2 b=-6 \\
& b=-3
\end{aligned}
$$

Question 13:

What number should be added to $3 x^{3}-5 x^{2}+6 x$ so that when resulting polynomial is divided by $x-3$, the remainder is 8 ?

Solution 13:

Let the number k be added and the resulting polynomial be $\mathrm{f}(\mathrm{x})$.
So, $f(x)=3 x^{3}-5 x^{2}+6 x+k$
It is given that when $\mathrm{f}(\mathrm{x})$ is divided by $(\mathrm{x}-3)$, the remainder is 8 .
$\therefore f(3)=8$
$3(3)^{3}-5(3)^{2}+6(3)+k=8$
$81-45+18+k=8$
$54+\mathrm{k}=8$
$k=-46$
Thus, the required number is -46

Question 14:

What number should be subtracted from $x^{3}+3 x^{2}-8 x+14$ so that on dividing it by $x-2$, the remainder is 10 .

Solution 14:

Let the number to be subtracted be k and the resulting polynomial be $\mathrm{f}(\mathrm{x})$.

So, $f(x)=x^{3}+3 x^{2}-8 x+14-k$
It is given that when $\mathrm{f}(\mathrm{x})$ is divided by $(\mathrm{x}-2)$, the remainder is 10 .
$\therefore \mathrm{f}(2)=10$
$(2)^{3}+3(2)^{2}-8(2)+14-k=10$
$8+12-16+14-k=10$
$18-k=10$
$\mathrm{k}=8$
Thus, the required number is 8 .

Question 15:

The polynimials $2 x^{3}-7 x^{2}+a x-6$ and $x^{3}-8 x^{2}+(2 a+1) x-16$ leave the same remainder when divided by $x-2$. Find the value of ' a '

Solution 15:

Let $f(x)=2 x^{3}-7 x^{2}+a x-6$
$\mathrm{x}-2=0 \Rightarrow \mathrm{x}=2$
When $f(x)$ is divided by $(x-2)$, remainder $=f(2)$
$\therefore f(2)=2(2)^{3}-7(2)^{2}+a(2)-6$
$=16-28+2 a-6$
$=2 a-18$
Let $g(x)=x^{3}-8 x^{2}+(2 a+1) x-16$
When $g(x)$ is divided by $(x-2)$, remainder $=g(2)$
$\therefore g(2)=(2)^{3}-8(2)^{2}+(2 a+1)(2)-16$
$=8-32+4 a+2-16$
$=4 a-38$
By the given condition, we have:
$\mathrm{f}(2)=\mathrm{g}(2)$
$2 a-18=4 a-38$
$4 a-2 a=38-18$
$2 \mathrm{a}=20$
$\mathrm{a}=10$
Thus, the value of a is 10 .

EXERCISE. 8(B)

Question 1:

Using the factor Theorem, show that:
(i) ($x-2$) is a factor of $x^{3}-2 x^{2}-9 x+18$. hence, factorise the expression. $x^{3}-2 x^{2}-9 x+18$ Completely.
(ii) $(x+5)$ is a factor of $2 x^{3}+5 x^{2}-28 x-15$. Hence, factorise the expression $2 x^{3}+5 x^{2}-28 x-$ 15 completely.
(iii) $(3 x+2)$ is a factor is $3 x^{3}+2 x^{2}-3 x-2$. Hence, factorise the expression $3 x^{3}+2 x^{2}-3 x-2$ completely.
(iv) $2 \mathrm{x}+7$ is a factor $2 \mathrm{x}^{3}+5 \mathrm{x}^{2}-11 \mathrm{x}-14$. Hence, factorise the given expression completely.

Solution 1:

(i) Let $f(x)=x^{3}-2 x^{2}-9 x+18$
$x-2=0 \Rightarrow x=2$
\therefore Remainder $=\mathrm{f}(2)$
$=(2)^{3}-2(2)^{2}-9(2)+18$
$=8-8-18+18$
$=0$
Hence, $(x-2)$ is a factor of $f(x)$.
Now, we have:

$$
\begin{array}{r}
x^{2}-9 \\
x - 2 \longdiv { x ^ { 3 } - 2 x ^ { 2 } - 9 x + 1 8 } \\
\frac{x^{3}-2 x^{2}}{} \\
\frac{-9 x+18}{0}
\end{array}
$$

$\therefore \mathrm{x}^{3}-2 \mathrm{x}^{2}-9 \mathrm{x}+18=(\mathrm{x}-2)\left(\mathrm{x}^{2}-9\right)=(\mathrm{x}-2)(\mathrm{x}+3)(\mathrm{x}-3)$
(ii) Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+5 \mathrm{x}^{2}-28 \mathrm{x}-15$
$x+5=0 \Rightarrow x=-5$
\therefore Remainder $=\mathrm{f}(-5)$
$=2(-5)^{3}+5(-5)^{2}-28(-5)-15$
$=-250+125+140-15$
$=-265+265$
$=0$
Hence, $(x+5)$ is a factor of $f(x)$.
Now, we have:

$$
\begin{aligned}
& x + 5 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } - 2 8 x - 1 5 } \\
& \frac{2 x^{3}+10 x^{2}}{-5 x^{2}-28 x} \\
& \frac{-5 x^{2}-25 x}{-3 x-15} \\
& \frac{-3 x-15}{0} \\
& =2 x^{3}+5 x^{2}-28 x-15=(x+5)\left(2 x^{2}-5 x-3\right) \\
& =(x+5)\left[2 x^{2}-6 x+x-3\right] \\
& =(x+5)[2 x(x-3)+1(x-3)] \\
& =(x+5)(2 x+1)(x-3)
\end{aligned}
$$

(iii) Let $f(x)=3 x^{3}+2 x^{2}-3 x-2$
$3 x+2=0 \Rightarrow x=\frac{-2}{3}$
\therefore Remainder $=\mathrm{f}\left(\frac{-2}{3}\right)$
$=3\left(\frac{-2}{3}\right)^{3}+2\left(\frac{-2}{3}\right)^{2}-3\left(\frac{-2}{3}\right)-2$
$=\frac{-8}{9}+\frac{8}{9}+2-2$
$=0$
Hence, $(3 x+2)$ is a factor of $f(x)$.
Now, we have:

$$
\begin{array}{r}
x^{2}-1 \\
\frac{3 x + 2 \longdiv { 3 x ^ { 3 } + 2 x ^ { 2 } - 3 x - 2 }}{\frac{-3 x-2}{0}}
\end{array}
$$

$\therefore 3 x^{3}+2 x^{2}-3 x-2=(3 x+2)\left(x^{2}-1\right)=(3 x+2)(x+1)(x-1)$
(iv) $f(x)=2 x^{3}+5 x^{2}-11 x-14$

$$
2 x+7=0 \Rightarrow x=\frac{-7}{2}
$$

\therefore Remainder $=f\left(\frac{-7}{2}\right)$

$$
\begin{aligned}
& =2\left(\frac{-7}{2}\right)^{3}+5\left(\frac{-7}{2}\right)^{2}-11\left(\frac{-7}{2}\right)-14 \\
& =\frac{-343}{4}+\frac{245}{4}+\frac{77}{2}-14 \\
& =\frac{-49}{2}+\frac{77}{2}-14 \\
& =\frac{28}{2}-14 \\
& =14-14=0
\end{aligned}
$$

Hence, $(2 x+7)$ is a factor of $f(x)$.
Now, we have:

$$
\begin{array}{r}
2 x + 7 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } - 1 1 x - 1 4 } \\
\frac{2 x^{3}+7 x^{2}}{-2 x^{2}-11 x} \\
\frac{-2 x^{2}-7 x}{-4 x-14} \\
\frac{-4 x-14}{0}
\end{array}
$$

$$
\therefore 2 x^{3}+5 x^{2}-11 x-14=(2 x+7)\left(x^{2}-x-2\right)
$$

$$
=(2 x+7)\left(x^{2}-2 x+x-2\right)
$$

$$
=(2 x+7)[x(x-2)+(x-2)]
$$

$$
=(2 x+7)(x-2)(x+1)
$$

Question 2:

Using the Reminder Theorem, factorise each of the following completely.
(i) $3 x^{3}+2 x^{2}-19 x+6$
(ii) $2 x^{3}+x^{2}-13 x+6$
(iii) $3 x^{3}+2 x^{2}-23 x-30$
(iv) $4 x^{3}+7 x^{2}-36 x-63$
(v) $x^{3}+x^{2}-4 x-4$

Solution 2:

(i)

For $x=2$, the value of the given
expression $3 x^{3}+2 x^{2}-19 x+6$
$=3(2)^{3}+2(2)^{2}-19(2)+6$
$=24+8-38+6$
$=0$
$\Rightarrow x-2$ is a factor of $3 x^{3}+2 x^{2}-19 x+6$
Now let us do long division.

$$
\begin{array}{r}
\frac{3 x^{2}+8 x-3}{x-2} \begin{array}{|r}
3 x^{3}+2 x^{2}-19 x+6 \\
\frac{3 x^{3}-6 x^{2}}{8 x^{2}-19 x} \\
\frac{8 x^{2}-16 x}{-3 x+6} \\
\frac{-3 x+6}{0}
\end{array}
\end{array}
$$

Thus we have,
$3 x^{3}+2 x^{2}-19 x+6=(x-2)\left(3 x^{2}+8 x-3\right)$
$=(x-2)\left(3 x^{2}+9 x-x-3\right)$
$=(x-2)(3 x(x+3)-(x-3))$
$=(x-2)(3 x-1)(x+3)$
(ii) Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+\mathrm{x}^{2}-13 \mathrm{x}+6$

For $x=2$,
$f(x)=f(2)=2(2)^{3}+(2)^{2}-13(2)+6=16+4-26+6=0$
Hence, $(x-2)$ is a factor of $f(x)$.

$$
\begin{array}{r}
\frac{2 x^{2}+5 x-3}{x - 2 \longdiv { 2 x ^ { 3 } + x ^ { 2 } - 1 3 x + 6 }} \\
\frac{2 x^{3}-4 x^{2}}{5 x^{2}-13 x} \\
\frac{5 x^{2}-10 x}{-3 x+6} \\
\frac{-3 x+6}{0}
\end{array}
$$

$$
\begin{aligned}
& \therefore 2 x^{3}+x^{2}-13 x+6=(x-2)\left(2 x^{2}+5 x-3\right) \\
& =(x-2)\left(2 x^{2}+6 x-x-3\right) \\
& =(x-2)[2 x(x+3)-(x-3)] \\
& =(x-2)[2 x(x+3)-(x+3)] \\
& \text { (iii) } f(x)=3 x^{3}+2 x^{2}-23 x-30
\end{aligned}
$$

For $x=-2$,
$\mathrm{f}(\mathrm{x})=\mathrm{f}(-2)=3(-2)^{3}+2(-2)^{2}-23(-2)-30$
$=-24+8+46-30=-54+54=0$
Hence, $(x+2)$ is a factor of $f(x)$.

$$
\begin{aligned}
& \frac{3 x^{2}-4 x-15}{x + 2 \longdiv { 3 x ^ { 3 } + 2 x ^ { 2 } - 2 3 x - 3 0 }} \\
& \frac{3 x^{3}+6 x^{2}}{-4 x^{2}-23 x} \\
& \frac{-4 x^{2}-8 x}{-15 x-30} \\
& \frac{-15 x-30}{0} \\
& =(x+2)\left(3 x^{2}+5 x-9 x-15\right) \\
& =(x+2)[x(3 x+5)-3(3 x+5)] \\
& =(x+2)(3 x+5)(x-3)
\end{aligned}
$$

(iv) $f(x)=4 x^{3}+7 x^{2}-36 x-63$

For $x=3$,
$f(x)=f(3)=4(3)^{3}+7(3)^{2}-36(3)-63$
$=108+63-108-63=0$
Hence, $(x+3)$ is a factor of $f(x)$.

$$
\begin{array}{r}
4 x^{2}-5 x-21 \\
x + 3 \longdiv { 4 x ^ { 3 } + 7 x ^ { 2 } - 3 6 x - 6 3 } \\
\frac{4 x^{3}+12 x^{2}}{-5 x^{2}-36 x} \\
\frac{-5 x^{2}-15 x}{-21 x-63} \\
\frac{-21 x-63}{0}
\end{array}
$$

$$
\begin{aligned}
& \therefore 4 x^{3}+7 x^{2}-36 x-63=(x+3)\left(4 x^{2}-5 x-21\right) \\
& =(x+3)\left(4 x^{2}-12 x+7 x-21\right) \\
& =(x+3)[4 x(x-3)+7(x-3)] \\
& =(x+3)(4 x+7)(x-3)
\end{aligned}
$$

(v) $f(x)=x^{3}+x^{2}-4 x-4$

For $\mathrm{x}=-1$,

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{f}(-1)=(-1)^{3}+(-1)^{2}-4(-1)-4 \\
& =-1+1+4-4=0
\end{aligned}
$$

Hence, $(x+1)$ is a factor of $f(x)$.

$$
\begin{array}{r}
x^{2}-4 \\
x+1 \begin{array}{r}
x^{3}+x^{2}-4 x-4 \\
\frac{x^{3}+x^{2}}{-4 x-4} \\
\frac{-4 x-4}{0}
\end{array}
\end{array}
$$

$\therefore \mathrm{x}^{3}+\mathrm{x}^{2}-4 \mathrm{x}-4=(\mathrm{x}+1)\left(\mathrm{x}^{2}-4\right)$
$=(x+1)(x+2)(x-2)$

Question 3:

Using the remainder Theorem, factorise the expression $3 x^{3}+10 x^{2}+x-6$. Hence, solve the equation $3 x^{3}+10 x^{2}+x-6=0$

Solution 3:

Let $f(x)=3 x^{3}+10 x^{2}+x-6$
For $\mathrm{x}=-1$,
$\mathrm{f}(\mathrm{x})=\mathrm{f}(-1)=3(-1)^{3}+10(-1)^{2}+(-1)-6=-3+10-1-6=0$
Hence, $(x+1)$ is a factor of $f(x)$.

$$
\begin{array}{r}
3 x^{2}+7 x-6 \\
x + 1 \longdiv { 3 x ^ { 3 } + 1 0 x ^ { 2 } + x - 6 } \\
\frac{3 x^{3}+3 x^{2}}{7 x^{2}+x} \\
\frac{7 x^{2}+7 x}{-6 x-6} \\
\frac{-6 x-6}{0}
\end{array}
$$

$$
\begin{aligned}
& \therefore 3 x^{3}+10 x^{2}+x-6=(x+1)\left(3 x^{2}+7 x-6\right) \\
& =(x+1)\left(3 x^{2}+9 x-2 x-6\right) \\
& =(x+1)[3 x(x+3)-2(x+3)] \\
& =(x+1)(x+3)(3 x-2)
\end{aligned}
$$

Now, $3 x^{3}+10 x^{2}+x-6=0$
$\Rightarrow(x+1)(x+3)(3 x-2)=0$
$\Rightarrow x=-1,-3, \frac{2}{3}$

Question 4:

Factorise the expression
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-7 \mathrm{x}^{2}-3 \mathrm{x}+18$
Hence, find all possible values of x for which $\mathrm{f}(\mathrm{x})=0$

Solution 4:

$f(x)=2 x^{3}-7 x^{2}-3 x+18$
For $\mathrm{x}=2$,
$f(x)=f(2)=2(2)^{3}-7(2)^{2}-3(2)+18$
$=16-28-6+18=0$
Hence, $(x-2)$ is a factor of $f(x)$.

$$
\begin{array}{r}
2 x^{2}-3 x-9 \\
x - 2 \longdiv { 2 x ^ { 3 } - 7 x ^ { 2 } - 3 x + 1 8 } \\
\frac{2 x^{3}-4 x^{2}}{-3 x^{2}-3 x} \\
\frac{-3 x^{2}+6 x}{-9 x+18} \\
\frac{-9 x+18}{0}
\end{array}
$$

$\therefore 2 \mathrm{x}^{3}-7 \mathrm{x}^{2}-3 \mathrm{x}+18=(\mathrm{x}-2)\left(2 \mathrm{x}^{2}-3 \mathrm{x}-9\right)$
$=(x-2)\left(2 x^{2}-6 x+3 x-9\right)$
$=(x-2)[2 x(x-3)+3(x-3)]$
$=(x-2)(x-3)(2 x+3)$
Now, $f(x)=0$

$$
\begin{aligned}
& \Rightarrow 2 x^{3}-7 x^{2}-3 x+18=0 \\
& \Rightarrow(x-2)(x-3)(2 x+3)=0 \\
& \Rightarrow x=2,3, \frac{-3}{2}
\end{aligned}
$$

Question 5:

Given that $x-2$ and $x+1$ are factors of $f(x)=x^{3}+3 x^{2}+a x+b$; calculate the values of a and b.
Hence, find all the factors of $f(x)$

Solution 5:

$f(x)=x^{3}+3 x^{2}+a x+b$
Since, $(x-2)$ is a factor of $f(x), f(2)=0$
$\Rightarrow(2)^{3}+3(2)^{2}+a(2)+b=0$
$\Rightarrow 8+12+2 \mathrm{a}+\mathrm{b}=0$
$\Rightarrow 2 a+b+20=0$
Since, $(x+1)$ is a factor of $f(x), f(-1)=0$
$\Rightarrow(-1)^{3}+3(-1)^{2}+\mathrm{a}(-1)+\mathrm{b}=0$
$\Rightarrow-1+3-\mathrm{a}+\mathrm{b}=0$
$\Rightarrow-a+b+2=0$
Subtracting (ii) from (i), we get,
$3 a+18=0$
$\Rightarrow a=-6$
Substituting the value of a in (ii), we get,
$\mathrm{b}=\mathrm{a}-2=-6-2=-8$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}-6 \mathrm{x}-8$
Now, for $\mathrm{x}=-1$,
$f(x)=f(-1)=(-1)^{3}+3(-1)^{2}-6(-1)-8=-1+3+6-8=0$
Hence, $(x+1)$ is a factor of $f(x)$.

$$
\begin{array}{r}
x + 1 \longdiv { x ^ { 2 } + 2 x - 8 } \\
\frac{x^{3}+x^{2}-6 x-8}{2 x^{2}-6 x} \\
\frac{2 x^{2}+2 x}{-8 x-8} \\
\frac{-8 x-8}{0}
\end{array}
$$

$$
\begin{aligned}
& \therefore \mathrm{x}^{3}+3 \mathrm{x}^{2}-6 \mathrm{x}-8=(\mathrm{x}+1)\left(\mathrm{x}^{2}+2 \mathrm{x}-8\right) \\
& =(\mathrm{x}+1)\left(\mathrm{x}^{2}+4 \mathrm{x}-2 \mathrm{x}-8\right) \\
& =(\mathrm{x}+1)[\mathrm{x}(\mathrm{x}+4)-2(\mathrm{x}+4)] \\
& =(\mathrm{x}+1)(\mathrm{x}+4)(\mathrm{x}-2)
\end{aligned}
$$

Question 6:

The expression $4 x^{3}-b x^{2}+x-c$ leaves remainders 0 and 30 when divided by $x+1$ and $2 x-3$ respectively. Calculate the values of b and c. Hence, factorise the expression completely.

Solution 6:

Let $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}-\mathrm{bx} \mathrm{x}^{2}+\mathrm{x}-\mathrm{c}$
It is given that when $f(x)$ is divided by $(x+1)$, the remainder is 0 .

$$
\begin{aligned}
& \mathrm{f}(-1)=0 \\
& 4(-1)^{3}-\mathrm{b}(-1)^{2}+(-1)-\mathrm{c}=0 \\
& -4-\mathrm{b}-1-\mathrm{c}=0 \\
& \mathrm{~b}+\mathrm{c}+5=0 \ldots \text { (i) }
\end{aligned}
$$

It is given that when $\mathrm{f}(\mathrm{x})$ is divided by $(2 \mathrm{x}-3)$, the remainder is 30 .
$\therefore f\left(\frac{3}{2}\right)=30$
$4\left(\frac{3}{2}\right)^{3}-b\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)-c=30$
$\frac{27}{2}-\frac{9 b}{4}+\frac{3}{2}-c=30$
$54-9 b+6-4 c-120=0$
$9 b+4 c+60=0$
Multiplying (i) by 4 and subtracting it from (ii), we get,
$5 \mathrm{~b}+40=0$
$b=-8$
Substituting the value of b in (i), we get,
$\mathrm{c}=-5+8=3$
Therefore, $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}+8 \mathrm{x}^{2}+\mathrm{x}-3$
Now, for $x=-1$, we get,
$\mathrm{f}(\mathrm{x})=\mathrm{f}(-1)=4(-1)^{3}+8(-1)^{2}+(-1)-3=-4+8-1-3=0$
Hence, $(x+1)$ is a factor of $f(x)$.

$$
\begin{aligned}
& \frac{4 x^{2}+4 x-3}{x+1} \begin{array}{l}
4 x^{3}+8 x^{2}+x-3 \\
\frac{4 x^{3}+4 x^{2}}{4 x^{2}+x} \\
\frac{4 x^{2}+4 x}{-3 x-3} \\
\frac{-3 x-3}{0} \\
=(x+1)\left(4 x^{2}+6 x-2 x-3\right) \\
=(x+1)[2 x(2 x+3)-(2 x+3)] \\
=(x+1)(2 x+3)(2 x-1)
\end{array} \\
& \therefore 4 x^{3}+8 x^{2}+x-3=(x+1)\left(4 x^{2}+4 x-3\right) \\
& =(x)(2)
\end{aligned}
$$

Question 7:

If $x+a$ is a common factor of expressions $f(x)=x^{2}+p x+q$ and $g(x)=x^{2}+m x+n$;
Show that : $a=\frac{n-q}{m-p}$

Solution 7:

$f(x)=x^{2}+p x+q$
It is given that $(x+a)$ is a factor of $f(x)$.
$\therefore \mathrm{f}(-\mathrm{a})=0$
$\Rightarrow(-\mathrm{a})^{2}+\mathrm{p}(-\mathrm{a})+\mathrm{q}=0$
$\Rightarrow \mathrm{a}^{2}-\mathrm{pa}+\mathrm{q}=0$
$\Rightarrow \mathrm{a}^{2}=\mathrm{pa}-\mathrm{q}$
$g(x)=x^{2}+m x+n$
It is given that $(x+a)$ is a factor of $g(x)$.
$\therefore \mathrm{g}(-\mathrm{a})=0$
$\Rightarrow(-\mathrm{a})^{2}+\mathrm{m}(-\mathrm{a})+\mathrm{n}=0$
$\Rightarrow \mathrm{a}^{2}-\mathrm{ma}+\mathrm{n}=0$
$\Rightarrow \mathrm{a}^{2}=\mathrm{ma}-\mathrm{n}$
From (i) and (ii), we get,
$\mathrm{pa}-\mathrm{q}=\mathrm{ma}-\mathrm{n}$
$\mathrm{n}-\mathrm{q}=\mathrm{a}(\mathrm{m}-\mathrm{p})$
$a=\frac{n-q}{m-p}$
Hence, proved.

Question 8:

The polynomials $a x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+a$, when divided by $x-4$, leave the same remainder in each case. Find the value of a.

Solution 8:

Let $\mathrm{f}(\mathrm{x})=\mathrm{ax}{ }^{3}+3 \mathrm{x}^{2}-3$
When $f(x)$ is divided by $(x-4)$, remainder $=f(4)$
$\mathrm{f}(4)=\mathrm{a}(4)^{3}+3(4)^{2}-3=64 a+45$
Let $g(x)=2 x^{3}-5 x+a$
When $\mathrm{g}(\mathrm{x})$ is divided by $(\mathrm{x}-4)$, remainder $=\mathrm{g}(4)$
$\mathrm{g}(4)=2(4)^{3}-5(4)+\mathrm{a}=\mathrm{a}+108$
It is given that $\mathrm{f}(4)=\mathrm{g}(4)$
$64 a+45=a+108$
$63 \mathrm{a}=63$
$\mathrm{a}=1$

Question 9:

Find the value of ' a ', if $(x-a)$ is factor of $x^{3}-a x^{2}+x+2$.

Solution 9:

Let $f(x)=x^{3}-a x^{2}+x+2$
It is given that $(x-a)$ is a factor of $f(x)$.
\therefore Remainder $=\mathrm{f}(\mathrm{a})=0$
$a^{3}-a^{3}+a+2=0$
$a+2=0$
$\mathrm{a}=-2$

Question 10:

Find the number that must be subtracted from the polynomial $3 y^{3}+y^{2}-22 y+15$, so that the resulting polynomial is completely divisible by $\mathrm{y}+3$.

Solution 10:

Let the number to be subtracted from the given polynomial be k .
Let $\mathrm{f}(\mathrm{y})=3 \mathrm{y}^{3}+\mathrm{y}^{2}-22 \mathrm{y}+15-\mathrm{k}$
It is given that $f(y)$ is divisible by $(y+3)$.
Remainder $=f(-3)=0$
$3(-3)^{3}+(-3)^{2}-22(-3)+15-\mathrm{k}=0$
$-81+9+66+15-k=0$
$9-\mathrm{k}=0$
$\mathrm{k}=9$

EXERCISE. 8 (C)

Question 1:

Show that $(x-1)$ is a factor of
$x^{3}-7 x^{2}+14 x-8$
Hence, completely factorise that given expression

Solution 1:

Let $f(x)=x^{3}-7 x^{2}+14 x-8$
$\mathrm{f}(1)=(1)^{3}-7(1)^{2}+14(1)-8=1-7+14-8=0$
Hence, $(x-1)$ is a factor of $f(x)$.

$$
\begin{array}{r}
\frac{x^{2}-6 x+8}{x - 1 \longdiv { x ^ { 3 } - 7 x ^ { 2 } + 1 4 x - 8 }} \\
\frac{x^{3}-x^{2}}{-6 x^{2}+14 x} \\
\frac{-6 x^{2}+6 x}{8 x-8} \\
\frac{8 x-8}{0}
\end{array}
$$

$\therefore \mathrm{x}^{3}-7 \mathrm{x}^{2}+14 \mathrm{x}-8=(\mathrm{x}-1)\left(\mathrm{x}^{2}-6 \mathrm{x}+8\right)$
$=(x-1)\left(x^{2}-2 x-4 x+8\right)$
$=(x-1)[x(x-2)-4(x-2)]$
$=(x-1)(x-2)(x-4)$

Question 2:

Using remainder Theorem, factorise:
$2 x^{3}+7 x^{2}-8 \mathrm{x}-28$ Completely.

Solution 2:

Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+7 \mathrm{x}^{2}-8 \mathrm{x}-28$
For $\mathrm{x}=2$,
$\mathrm{f}(\mathrm{x})=\mathrm{f}(2)=2(2)^{3}+7(2)^{2}-8(2)-28=16+28-16-28=0$
Hence, $(x-2)$ is a factor of $f(x)$.

$$
\begin{array}{r}
\frac{2 x^{2}+11 x+14}{x - 2 \longdiv { 2 x ^ { 3 } + 7 x ^ { 2 } - 8 x - 2 8 }} \\
\frac{2 x^{3}-4 x^{2}}{11 x^{2}-8 x} \\
\frac{11 x^{2}-22 x}{14 x-28} \\
\frac{14 x-28}{0}
\end{array}
$$

$\therefore 2 \mathrm{x}^{3}+7 \mathrm{x}^{2}-8 \mathrm{x}-28=(\mathrm{x}-2)\left(2 \mathrm{x}^{2}+11 \mathrm{x}+14\right)$
$=(x-2)\left(2 x^{2}+4 x+7 x+14\right)$
$=(x-2)[2 x(x+2)+7(x+2)]$
$=(x-2)(x+2)(2 x+7)$

Question 3:

When $x^{3}+3 x^{2}-m x+4$ is divided by $x-2$, the remainder is $m+3$. Find the value of m.

Solution 3:

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}-\mathrm{mx}+4$
According to the given information,
$\mathrm{f}(2)=\mathrm{m}+3$
$(2)^{3}+3(2)^{2}-m(2)+4=m+3$
$8+12-2 m+4=m+3$
$24-3=m+2 m$
$3 \mathrm{~m}=21$
$\mathrm{m}=7$

Question 4:

What should be subtracted from $3 x^{3}-8 x^{2}+4 x-3$, so that the resulting expression has $x+2$ as a factor?

Solution 4:

Let the required number be k.
Let $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{3}-8 \mathrm{x}^{2}+4 \mathrm{x}-3-\mathrm{k}$
According to the given information,
$\mathrm{f}(-2)=0$
$3(-2)^{3}-8(-2)^{2}+4(-2)-3-k=0$
$-24-32-8-3-\mathrm{k}=0$
$-67-\mathrm{k}=0$
$\mathrm{k}=-67$
Thus, the required number is -67 .

Question 5:

If $(x+1)$ and $(x-2)$ are factors of $x^{3}+(a+1) x^{2}-(b-2) x-6$, find the values of a and b. And then, factorise the given expression completely.

Solution 5:

Let $f(x)=x^{3}+(a+1) x^{2}-(b-2) x-6$
Since, $(x+1)$ is a factor of $f(x)$.
\therefore Remainder $=\mathrm{f}(-1)=0$
$(-1)^{3}+(a+1)(-1)^{2}-(b-2)(-1)-6=0$
$-1+(a+1)+(b-2)-6=0$
$a+b-8=0 \ldots$ (i)
Since, $(x-2)$ is a factor of $f(x)$.
\therefore Remainder $=\mathrm{f}(2)=0$
$(2)^{3}+(a+1)(2)^{2}-(b-2)(2)-6=0$
$8+4 a+4-2 b+4-6=0$
$4 a-2 b+10=0$
$2 \mathrm{a}-\mathrm{b}+5=0$
Adding (i) and (ii), we get,
$3 a-3=0$
$\mathrm{a}=1$
Substituting the value of a in (i), we get,
$1+b-8=0$
$\mathrm{b}=7$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-5 \mathrm{x}-6$

Now, $(x+1)$ and $(x-2)$ are factors of $f(x)$. Hence, $(x+1)(x-2)=x^{2}-x-2$ is a factor of $f(x)$.

$$
\begin{array}{r}
x+3 \\
x ^ { 2 } - x - 2 \longdiv { x ^ { 3 } + 2 x ^ { 2 } - 5 x - 6 } \\
\frac{x^{2}-x^{2}-2 x}{3 x^{2}-3 x-6} \\
\frac{3 x^{2}-3 x-6}{0}
\end{array}
$$

$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-5 \mathrm{x}-6=(\mathrm{x}+1)(\mathrm{x}-2)(\mathrm{x}+3)$

Question 6:

If $x-2$ is a factor of $x^{2}+a x+b$ and $a+b=1$, find the values of a and b.

Solution 6:

Let $f(x)=x^{2}+a x+b$
Since, $(x-2)$ is a factor of $f(x)$.
\therefore Remainder $=\mathrm{f}(2)=0$
$(2)^{2}+a(2)+b=0$
$4+2 a+b=0$
$2 \mathrm{a}+\mathrm{b}=-4 \ldots$ (i)
It is given that:
$a+b=1$
Subtracting (ii) from (i), we get, $a=-5$
Substituting the value of a in (ii), we get,
$\mathrm{b}=1-(-5)=6$

Question 7:

Factorise $x^{3}+6 x^{2}+11 x+6$ completely using factor theorem.

Solution 7:

Let $f(x)=x^{3}+6 x^{2}+11 x+6$
For $\mathrm{x}=-1$
$f(-1)=(-1)^{3}+6(-1)^{2}+11(-1)+6$
$=-1+6-11+6=12-12=0$
Hence, $(x+1)$ is a factor of $f(x)$.

$$
\begin{aligned}
& \frac{x^{2}+5 x+6}{x + 1 \longdiv { x ^ { 3 } + 6 x ^ { 2 } + 1 1 x + 6 }} \\
& \frac{x^{3}+x^{2}}{5 x^{2}+11 x} \\
& \frac{5 x^{2}+5 x}{6 x+6} \\
& \frac{6 x+6}{0} \\
& =(x+1)\left(x^{2}+2 x+3 x+6\right) \\
& =(x+1)[x(x+2)+3(x+2)] \\
& =(x+1)(x+2)(x+3)
\end{aligned}
$$

Question 8:

Find the value of ' m ', if $m x^{3}+2 x^{2}-3$ and $x^{2}-m x+4$ leave the same remainder when each is divided by $\mathrm{x}-2$.

Solution 8:

Let $\mathrm{f}(\mathrm{x})=\mathrm{mx}^{3}+2 \mathrm{x}^{2}-3$
$\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{mx}+4$
It is given that $f(x)$ and $g(x)$ leave the same remainder when divided by $(x-2)$. Therefore, we have:
$\mathrm{f}(2)=\mathrm{g}(2)$
$\mathrm{m}(2)^{3}+2(2)^{2}-3=(2)^{2}-\mathrm{m}(2)+4$
$8 m+8-3=4-2 m+4$
$10 \mathrm{~m}=3$
$\mathrm{m}=\frac{3}{10}$

Question 9:

The polynominal $p x^{3}+4 x^{2}-3 x+q$ is completely divisible by $x^{2}-1$; find the values of p and q. Also, for these values of p and q factorize the given polynominal completely.

Solution 9:

Let $f(x)=p x^{3}+4 x^{2}-3 x+q$

It is given that $f(x)$ is completely divisible by $\left(x^{2}-1\right)=(x+1)(x-1)$.
Therefore, $\mathrm{f}(1)=0$ and $\mathrm{f}(-1)=0$
$\mathrm{f}(1)=\mathrm{p}(1)^{3}+4(1)^{2}-3(1)+\mathrm{q}=0$
$\mathrm{p}+\mathrm{q}+1=0 \ldots$ (i)
$\mathrm{f}(-1)=\mathrm{p}(-1)^{3}+4(-1)^{2}-3(-1)+\mathrm{q}=0$
$-\mathrm{p}+\mathrm{q}+7=0$
Adding (i) and (ii), we get,
$2 q+8=0$
$\mathrm{q}=-4$
Substituting the value of q in (i), we get,
$\mathrm{p}=-\mathrm{q}-1=4-1=3$
$\therefore \mathrm{f}(\mathrm{x})=3 \mathrm{x}^{3}+4 \mathrm{x}^{2}-3 \mathrm{x}-4$
Given that $\mathrm{f}(\mathrm{x})$ is completely divisible by $\left(\mathrm{x}^{2}-1\right)$

$$
\begin{array}{r}
3 x+4 \\
x ^ { 2 } - 1 \longdiv { 3 x ^ { 3 } + 4 x ^ { 2 } - 3 x - 4 } \\
\frac{3 x^{3}-3 x}{4 x^{2}-4} \\
\frac{4 x^{2}-4}{0}
\end{array}
$$

$\therefore 3 x^{3}+4 x^{2}-3 x-4=\left(x^{2}-1\right)(3 x-4)$

$$
=(x-1)(x+1)(3 x+4)
$$

Question 10:

Find the number which should be added to $\mathrm{x}^{2}+\mathrm{x}+3$ so that the resulting polynomial is completely divisible by $(x+3)$

Solution 10:

Let the required number be k.
Let $f(x)=x^{2}+x+3+k$
It is given that $\mathrm{f}(\mathrm{x})$ is divisible by $(\mathrm{x}+3)$.
\therefore Remainder $=0$
$\mathrm{f}(-3)=0$
$(-3)^{2}+(-3)+3+\mathrm{k}=0$
$9-3+3+\mathrm{k}=0$
$9+\mathrm{k}=0$
$\mathrm{k}=-9$
Thus, the required number is -9 .

Question 11:

When the polynominal $x^{3}+2 x^{2}-5 a x-7$ is divided by $(x-1)$, the remainder is A and when the polynomial $x^{3}+a x^{2}-12 x+16$ is divided by $(x+2)$, the remainder is B. Find the value of ' a ' if $2 \mathrm{~A}+\mathrm{B}=0$

Solution 11:

It is given that when the polynomial $x^{3}+2 x^{2}-5 a x-7$ is divided by $(x-1)$, the remainder is A.
$\therefore(1)^{3}+2(1)^{2}-5 \mathrm{a}(1)-7=\mathrm{A}$
$1+2-5 \mathrm{a}-7=\mathrm{A}$
$-5 \mathrm{a}-4=\mathrm{A} . .$. (i)
It is also given that when the polynomial $x^{3}+a x^{2}-12 x+16$ is divided by $(x+2)$, the remainder is B.
$\therefore \mathrm{x}^{3}+\mathrm{ax}^{2}-12 \mathrm{x}+16=\mathrm{B}$
$(-2)^{3}+a(-2)^{2}-12(-2)+16=B$
$-8+4 a+24+16=B$
$4 a+32=B$
It is also given that $2 \mathrm{~A}+\mathrm{B}=0$
Using (i) and (ii), we get,
$2(-5 a-4)+4 a+32=0$
$-10 a-8+4 a+32=0$
$-6 a+24=0$
$6 \mathrm{a}=24$
$\mathrm{a}=4$

Question 12:

$(3 x+5)$ is a factor of the polynomial $(a-1) x^{3}+(a+1) x^{2}-(2 a+1) x-15$. Find the value of ' a '. For this value of ' a ', factorise the given polynominal completely.

Solution 12:

Let $f(x)=(a-1) x^{3}+(a+1) x^{2}-(2 a+1) x-15$
It is given that $(3 x+5)$ is a factor of $f(x)$.
\therefore Remainder $=0$
$\mathrm{f}\left(\frac{-5}{3}\right)=0$
$(a-1)\left(\frac{-5}{3}\right)^{3}+(a+1)\left(\frac{-5}{3}\right)^{2}-(2 a+1)\left(\frac{-5}{3}\right)-15=0$

$$
\begin{aligned}
& (a-1)\left(\frac{-125}{27}\right)+(a+1)\left(\frac{25}{9}\right)-(2 a+1)\left(\frac{-5}{3}\right)-15=0 \\
& \frac{-125(a-1)+75(a+1)+45(2 a+1)-405}{27}=0 \\
& -125 a+125+75 a+75+90 a+45-405=0 \\
& 40 a-160=0 \\
& 401=160 \\
& \begin{array}{l}
a=4 \\
\therefore f(x)=(a-1) x^{3}+(a+1) x^{2}-(2 a+1) x-15 \\
=3 x^{3}+5 x^{2}-9 x-15
\end{array} \\
& \quad x^{2}-3 \\
& 3 x+5) 3 x^{3}+5 x^{2}-9 x-15 \\
& \quad \frac{3 x^{3}+5 x^{2}}{-9 x-15} \\
& \quad \frac{-9 x-15}{0} \\
& \therefore 3 x^{3}+5 x^{2}-9 x-15=(3 x+5)\left(x^{2}-3\right) \\
& =(3 x+5)(x+\sqrt{3})(x-\sqrt{3})
\end{aligned}
$$

Question 13:

When divided by $x-3$ the polynomials $x^{3}-\mathrm{px}^{2}+x+6$ and $2 x^{3}-x^{2}-(p+3) x-6$ leave the same remainder. Find the value of ' p '.

Solution 13:

If $(x-3)$ divides $f(x)=x^{3}-\mathrm{px}^{2}+x+6$, then,
Remainder $=f(3)=3^{3}-p(3)^{2}+3+6=36-9 p$
If $(x-3)$ divides $g(x)=2 x^{3}-x^{2}-(p+3) x-6$, then
Remainder $=g(3)=2(3)^{3}-(3)^{2}-(p+3)(3)-6=30-3 p$
Now, $f(3)=g(3)$
$\Rightarrow 36-9 p=30-3 p$
$\Rightarrow-6 \mathrm{p}=-6$
$\Rightarrow \mathrm{p}=1$

Question 14:

Use the Remainder Theorem to factorise the following expression:
$2 x^{3}+x^{2}-13 x+6$

Solution 14:

$f(x)=2 x^{3}+x^{2}-13 x+6$
Factors of constant term 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.
Putting $\mathrm{x}=2$, we have:
$f(2)=2(2)^{3}+2^{2}-13(2)+6=16+4-26+6=0$
Hence $(x-2)$ is a factor of $f(x)$.

$$
\begin{array}{r}
2 x^{2}+5 x-3 \\
\frac{2 x^{3}+x^{2}-13 x+6}{2 x^{3}-4 x^{2}} \\
\frac{5 x^{2}-13 x}{5 x^{2}-10 x} \\
\frac{-3 x+6}{-3 x+6} \\
0
\end{array}
$$

$$
2 x^{3}+x^{2}-13 x+6=(x-2)\left(2 x^{2}+5 x-3\right)
$$

$$
=(x-2)\left(2 x^{2}+6 x-x-3\right)
$$

$$
=(x-2)(2 x(x+3)-1(x+3))
$$

$$
=(x-2)(2 x-1)(x+3)
$$

