
Exercise Physiology

Kristin M Burkart, MD, MSc
Assistant Professor of Clinical Medicine
Division of Pulmonary, Allergy, & Critical Care Medicine
College of Physicians & Surgeons
Columbia University

Outline

- Basics of Exercise Physiology
 - Cellular respiration
 - Oxygen utilization (QO₂)
 - Oxygen consumption (VO₂)
 - Cardiovascular responses
 - Ventilatory responses
- Exercise Limitations
 - In normal healthy individuals
- Cardiopulmonary Exercise Testing

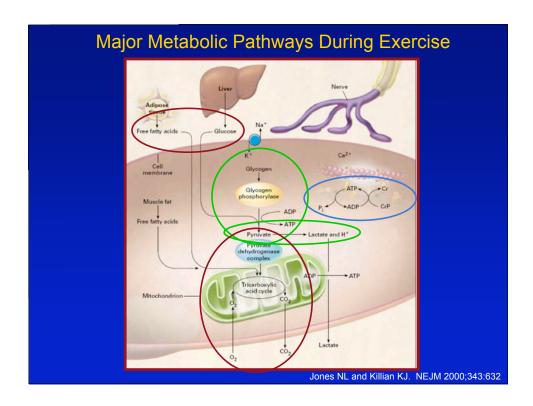
Gas Transport Mechanisms: coupling of cellular (internal) respiration to pulmonary (external) respiration

- Wasserman K: Circulation 1988;78:1060

- The major function of the cardiovascular as well as the ventilatory system is to support cellular respiration.
- Exercise requires the coordinated function of the heart, the lungs, and the peripheral and pulmonary circulations to match the increased cellular respiration.

Exercise and Cellular Respiration

from the terminal phosphate bond of adenosine triphosphate (ATP) for the muscles to contract.


Cellular Respiration

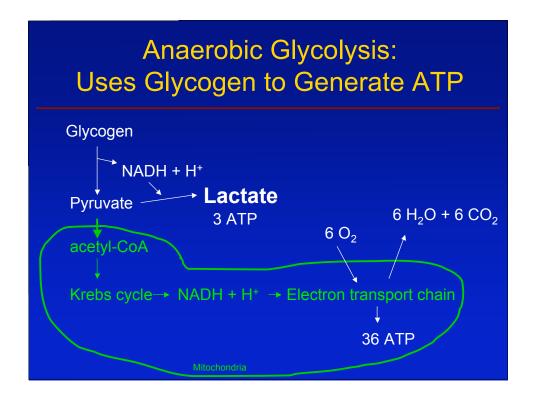
Cellular Respiration: Mechanisms Utilized by Muscle to Generate ATP

Mechanisms for ATP generation in the muscle

- 1. Aerobic oxidation of substrates (carbohydrates and fatty acids)
- 2. The anaerobic hydrolysis of phosphocreatine (PCr)
- 3. Anaerobic glycolysis produces lactic acid

Each is critically important for normal exercise response and each has a different role

Aerobic Oxidation of CHO and FA to Generate ATP


- The major source of ATP production
- Only source of ATP during sustained exercise of moderate intensity

Anaerobic Hydrolysis of Phosphocreatine (PCr) to Generate ATP

- Provides most of the high energy phosphate needed in the early phase of exercise
- This is used to regenerate ATP at the myofibril during early exercise
- PCr is an immediate source of ATP regeneration

The Glycolytic Pathway: Uses Glycogen to Generate ATP

- Produces ATP from glycogen without the need for O₂ → results in production of lactic acid
- The energy produced by anaerobic glycolysis is relatively small for the amount of glycogen consumed
- The consequence is lactate accumulation

During exercise, when does anaerobic glycolysis occur?

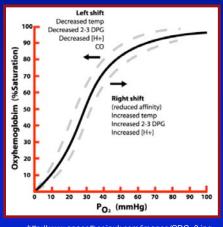
- Exercising muscle energy needs cannot be met entirely by O₂ and PCr-linked ATP generation
- Exercising muscles cells are critically O₂-poor
- Exercising muscle fibers have different balances of oxidative versus glycolytic enzymes
 - Low intensity: recruit fibers that are primarily oxidative
 - High intensity: recruit fibers that primarily rely on glycolytic pathway

Oxygen Utilization (QO₂)

Exercise results in increased oxygen utilization (QO₂) by muscles

Increased extraction of O₂ from the blood

Exercise results in increased oxygen utilization (QO₂) by muscles

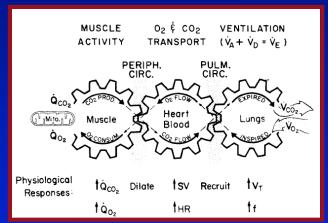

Increased extraction of O₂ from the blood

During exercise the muscle has

- Increase in temperature
- Increase in [H+]

Bohr Effect:

- Right shift on dissociation curve
- Decrease Hb-O2 affinity at muscle
- Augments O₂ diffusion into the exercising muscles


http://www.anaesthesiauk.com/images/ODC 3.jpg

Exercise results in increased oxygen utilization (QO₂) by muscles

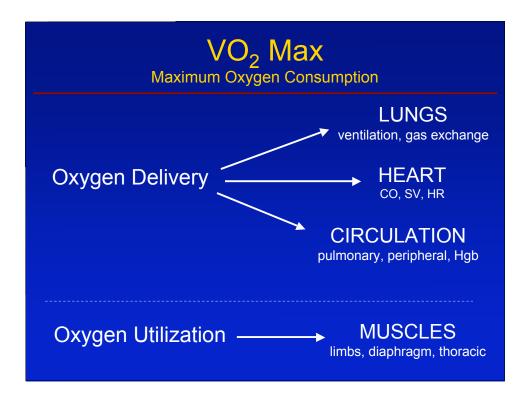
- Increased extraction of O₂ from the blood
- Dilation of peripheral vascular beds
- Increased cardiac output
- Increase in pulmonary blood flow
 - recruitment and vasodilation of pulmonary bed
- Increase in ventilation

In Steady State Conditions $QO_2 = VO_2$

Coupling of cellular (internal) respiration to pulmonary (external) respiration

At steady-state: oxygen consumption per unit time (VO_2) and carbon dioxide output (VCO_2) = oxygen utilization (QO_2) and carbon dioxide production (QO_2) . Thus, external respiration measured at the mouth represents internal respiration.

Wasserman K: Circulation 1988;78:1060

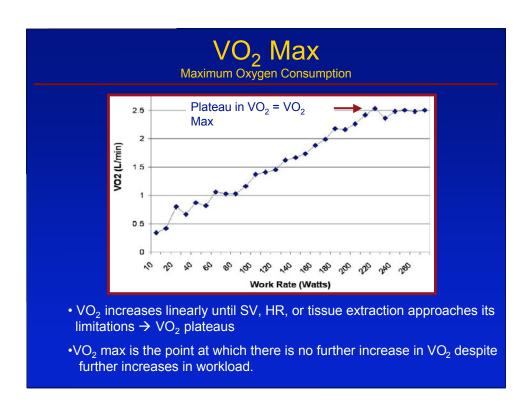

Oxygen Consumption (VO₂)

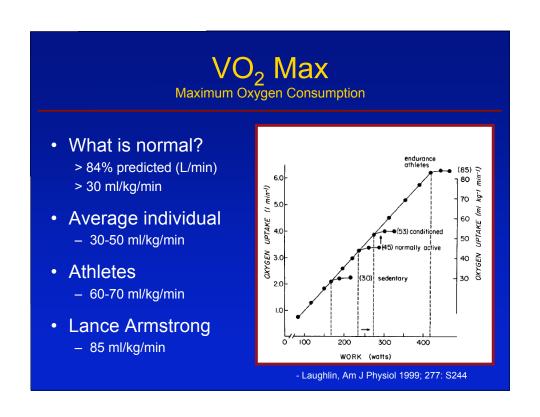
Oxygen Consumption (VO₂)

 VO₂ is the difference between the volume of gas inhaled and the volume of gas exhaled per unit of time

$$VO_2 = [(V_1 \times F_{I_{O_2}}) - (V_E \times F_{E_{O_2}})]/t$$

- VI and VE = volumes of inhaled and exhaled gas
- t = time period of gas volume measurements
- FI_{O2} and FE_{O2} = O₂ concentration in the inhaled and mixed gas




Determinants of VO₂

- VO₂ is interrelated to blood flow and O₂ extraction
- Fick Equation

$$VO_2 = CO \times (CaO_2 - CvO_2)$$

- VO₂ = oxygen consumption
- CO = cardiac output
- CaO₂ = arterial oxygen saturation
- CvO₂ = venous oxygen saturation
- CaO₂ CvO₂ = arteriovenous O₂ content difference → is related to O₂ extraction by tissues
- $CaO_2 = (1.34 \text{ x Hb x SaO}_2) + (0.003 \text{ x PaO}_2)$
- $CvO_2 = (1.34 \text{ x Hb x SvO}_2) + (0.003 \text{ x PvO}_2)$

A Reduced VO₂ Max

(less than 84% predicted (L/min) or less than 30 ml/kg/min)

- Oxygen transport
 - CO, O₂-carrying capacity of the blood
- Pulmonary limitations
 - mechanical, gas exchange
- Oxygen extraction at the tissues
 - tissue perfusion, tissue diffusion
- Neuromuscular or musculoskeletal limitations

Decreased Exercise Capacity

Anaerobic Threshold

The VO₂ at which anaerobic metabolism contributes significantly towards the production of ATP

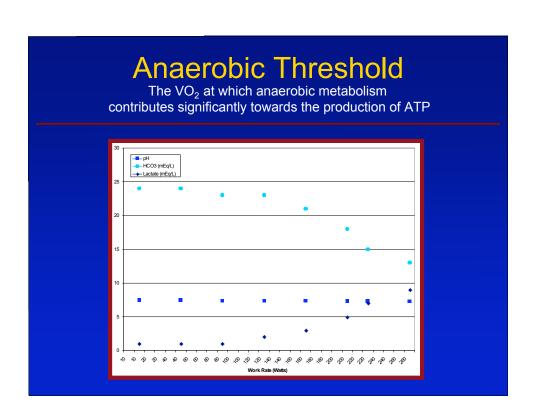
Anaerobic Threshold

The VO₂ at which anaerobic metabolism contributes significantly towards the production of ATP

- A non-invasive estimate of cardiovascular function
- Normal AT: > 40% of predicted max VO₂ max
- Average individual AT: 50-60% predicted VO₂ max
- Low AT (< 40% predicted max VO₂ max)
 - Indicates early hypoxia of exercising muscles
 - Suggests cardiovascular or pulmonary vascular limitation

Anaerobic Threshold

The VO₂ at which anaerobic metabolism contributes significantly towards the production of ATP

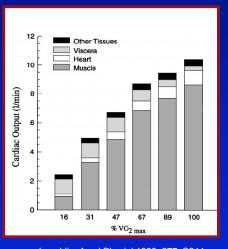

- AT demarcates the upper limit of a range of exercise intensities that can be accomplished almost entirely aerobically
- Work rates below AT can be sustained indefinitely
- Work rate above AT is associated with progressive decrease in exercise tolerance

VCO₂ Carbon Dioxide Output

- The body uses CO₂ regulation to compensate for acute metabolic acidosis
- CO₂ increases due to bicarbonate buffering of increased lactic acid production seen at high work rates (anaerobic metabolism).

$$H^+ + HCO3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O$$

 As tissue lactate production increases [H⁺] the reaction is driven to the right


Cardiovascular Responses to Dynamic Exercise

Cardiovascular Responses to Dynamic Exercise

- Increase in cardiac output (CO= HR x SV)
 - Increase in heart rate (HR)
 - Increase in stroke volume (SV)
- Increase in SBP
- DBP remains stable +/- decreased

Cardiac Output Increases with Dynamic Exercise

- As work intensity rises, the proportion of CO distributed
 - skeletal muscle increases
 - viscera decreases
- Exercise Hyperemia
 - Increased blood flow to cardiac and skeletal muscles during exercise

- Laughlin, Am J Physiol 1999; 277: S244

Predicted Maximum Heart Rate

Standard equation

Max HR = 220 - age

Alternative equation

Max HR = $210 - (age \times 0.65)$

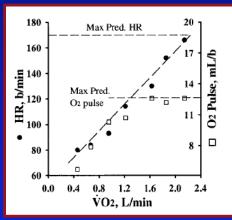
- Both have similar values for < 40 years old
- Standard method underestimates peak HR in older people

Oxygen Pulse(O₂ pulse)

- Oxygen pulse = VO₂ max/max HR
- Reflects the amount of oxygen extracted per heart beat
- Estimator of stroke volume (SV)*
 - Modified Fick Equation: VO₂/HR = SV x C(a-v)O₂

*Assumption that at max work rate, $C(a-v)O_2$ is constant, thus change in O_2 pulse represents change in SV

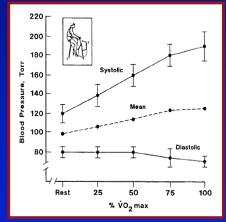
Heart Rate, Stroke Volume and Cardiac Output Increase with Dynamic Exercise


Increase in cardiac output (CO= HR x SV)

Early in exercise:

- Increase in HR and SV

Late in exercise:


- Primarily due to HR
- SV plateaus

- ATS / ACCP Statement of CPET; AJRCCM 2003;167:211-77

Effects of Dynamic Exercise on Blood Pressure

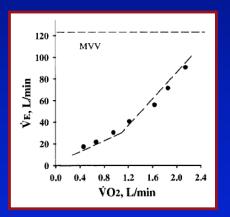
- Marked Rise in SBP
 - Linear increase
 - Nml ≤ 200 mmHg
- · Minimal Change in DBP
 - May decrease a little
- Moderate rise in MAP

- Laughlin, Am J Physiol 1999; 277: S244

SBP increase is due to increased cardiac output, NOT increased peripheral resistance

Abnormal Blood Pressure Responses to Dynamic Exercise

- Abnormal patterns of SBP response to exercise
 - Fall, reduced rise, excessive rise
 - Increase to > 200 mmHg
- Most alarming → FALL in SBP
 - Indicates a potential serious cardiac limitation
 - CHF, ischemia, aortic stenosis, central venous obstruction


Respiratory System Responses to Dynamic Exercise

Pulmonary Responses to Exercise

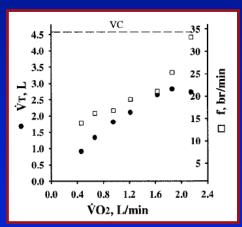
- Ventilation (VE) increases
 - VE = tidal volume (VT) + respiratory rate (RR)
 - Increase in VT (depth of breath)
 - Increase in RR
- Arterial oxygen pressure (PaO₂)
 Does not significantly change
- Arterial oxygen saturation (SaO₂)
 - Does not significantly change
- Alveolar-Arterial O₂ Pressure Difference [P(A-a) O₂]
 - Gradient widens

Ventilation Increases with Dynamic Exercise (VE = VT + RR)

- Ventilatory demand is dependent on:
 - Metabolic requirements
 - Degree of lactic acidosis
 - Dead space
- In healthy adults:
 - Peak exercise VE ≈ 70%
 of the Maximum Voluntary
 Ventilation (MVV)

ATS / ACCP Statement of CPET; AJRCCM 2003;167:211-77

Respiratory Rate, Tidal Volume and Ventilation Increase with Dynamic Exercise

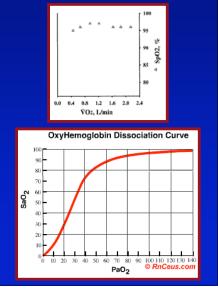

Increase in ventilation (VE = VT + RR)

Early in exercise:

Increase in RR and VT

Late in exercise:

- Primarily due to RR
- V⊤ plateaus


- ATS / ACCP Statement of CPET; AJRCCM 2003;167:211-77

Pulmonary Gas Exchange

- Efficient pulmonary gas exchange is critical for a normal exercise response
- Pulmonary gas exchange indices
 - -PaO₂
 - P(A-a)O₂ difference

PaO₂ and SaO₂ Response to Dynamic Exercise

- PaO₂ response to exercise
 - Normal Individuals
 - · No significant change
 - Endurance-trained athletes
 - Can see significant decrease in PaO₂ at maximal exercise
- SaO₂ response to exercise
 - Normal individuals
 - · No significant change

Alveolar-Arterial O₂ Pressure Difference P(A-a)O₂

- Difference between alveolar oxygen pressure (PAO₂) and the arterial oxygen pressure (PaO₂)
- "A-a gradient"
- · Normal A-a gradient at rest
 - Normal is 4 16, usually < 10 mm Hg*
 - Increases with age due to increase in V/Q mismatch
 - Age correction

*This range from ATS CPET guidelines, multiple different normal ranges exist

Defer to ranges provided earlier in course

Response of A-a gradient to Dynamic exercise

- In normal individuals
 - A-a gradient increases with exercise
 - May increase to > 20 mm Hg during exercise
- P(A-a)O₂ increased during exercise due to
 - V/Q mismatching
 - O₂ diffusion limitation
 - Low mixed venous O₂
- · Abnormal A-a gradients with exercise
 - Greater than 35 mm Hg indicates pulmonary abnormality

What mechanism limits exercise in healthy individuals?

What mechanism limits exercise in healthy individuals?

- VE is not the limiting factor
 - at maximal exercise there is ample ventilatory reserve
- Pulmonary gas exchange is not the limiting factor
 - At maximal exercise SaO₂ and PaO₂ are near baseline
- Metabolic and contractile properties of the skeletal muscles are not the limiting factors
- Maximal exercise is limited by CARDIAC OUTPUT

Cardiopulmonary Exercise Testing

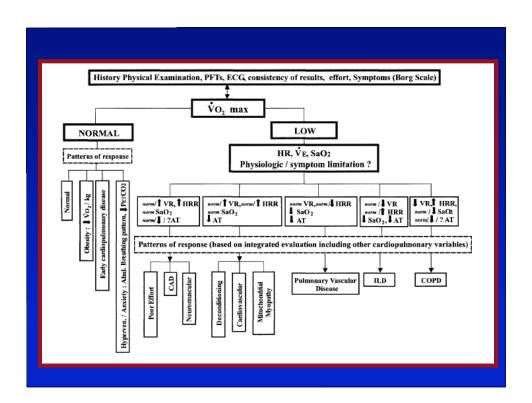
What is a Cardiopulmonary Exercise Test (CPET)?

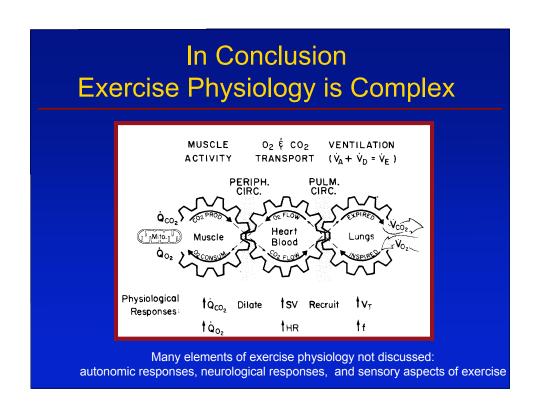
Simultaneous study of the cardiovascular and ventilatory systems response to known exercise stress via measurement of gas exchange at the airway.

Cardiopulmonary Exercise Testing

Why do we perform CPETs?

- · Distinguish between normal and diseased state
- Determine etiology of exercise intolerance
 Isolate system(s) responsible for the patient's symptoms
- Assess severity of disease
- Assess the effect of therapy
- Pre-operative assessment of thoracotomy


What physiologic parameters are obtained during a CPET?


- VO₂ max (maximum oxygen consumption)
- Continuous electrocardiogram (ECG), HR
- BP measurements every 1-2 minutes
- Continuous SaO₂ (arterial O₂ saturation)
- Maximum minute ventilation (VE max)
- O₂ pulse (calculated)

Two Key Values Obtained During a CPET

Oxygen Consumption (VO₂)

Anaerobic Threshold (AT)

