- Determine the size of a given matrix.
- Identify the row vectors and column vectors of a given matrix.
- Perform the arithmetic operations of matrix addition, subtraction, scalar multiplication, and multiplication.
- Determine whether the product of two given matrices is defined.
- Compute matrix products using the row-column method, the column method, and the row method.
- Express the product of a matrix and a column vector as a linear combination of the columns of the matrix.
- Express a linear system as a matrix equation, and identify the coefficient matrix.
- Compute the transpose of a matrix.
- Compute the trace of a square matrix.

Exercise Set 1.3

1. Suppose that A, B, C, D, and E are matrices with the following sizes:

A	B	C	D	E
(4×5)	(4×5)	(5×2)	(4×2)	(5×4)

In each part, determine whether the given matrix expression is defined. For those that are defined, give the size of the resulting matrix.
(a) $B A$
(b) $A C+D$
(c) $A E+B$
(d) $A B+B$
(e) $E(A+B)$
(f) $E(A C)$
(g) $E^{T} A$
(h) $\left(A^{T}+E\right) D$

Answer:
(a) Undefined
(b) 4×2
(c) Undefined
(d) Undefined
(e) 5×5
(f) 5×2
(g) Undefined
(h) 5×2
2. Suppose that A, B, C, D, and E are matrices with the following sizes:

$$
\begin{array}{ccccc}
A & B & C & D & E \\
(3 \times 1) & (3 \times 6) & (6 \times 2) & (2 \times 6) & (1 \times 3)
\end{array}
$$

In each part, determine whether the given matrix expression is defined. For those that are defined, give the size of the resulting matrix.
(a) $E A$
(b) $A B^{T}$
(c) $B^{T}\left(A+E^{T}\right)$
(d) $2 A+C$
(e) $\left(C^{T}+D\right) B^{T}$
(f) $C D+B^{T} E^{T}$
(g) $\left(B D^{T}\right) C^{T}$
(h) $D C+E A$
3. Consider the matrices

$$
A=\left[\begin{array}{rr}
3 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
4 & -1 \\
0 & 2
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 4 & 2 \\
3 & 1 & 5
\end{array}\right], \quad D=\left[\begin{array}{rrr}
1 & 5 & 2 \\
-1 & 0 & 1 \\
3 & 2 & 4
\end{array}\right], \quad E=\left[\begin{array}{rrr}
6 & 1 & 3 \\
-1 & 1 & 2 \\
4 & 1 & 3
\end{array}\right]
$$

In each part, compute the given expression (where possible).
(a) $D+E$
(b) $D-E$
(c) 5 A
(d) -7 C
(e) $2 B-C$
(f) $4 E-2 D$
(g) $-3(D+2 E)$
(h) $A-A$
(i) $\operatorname{tr}(D)$
(j) $\operatorname{tr}(D-3 E)$
(k) $4 \operatorname{tr}(7 B)$
(l) $\operatorname{tr}(A)$

Answer:
(a) $\left[\begin{array}{rrr}7 & 6 & 5 \\ -2 & 1 & 3 \\ 7 & 3 & 7\end{array}\right]$
(b) $\left[\begin{array}{rrr}-5 & 4 & -1 \\ 0 & -1 & -1 \\ -1 & 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{rr}15 & 0 \\ -5 & 10 \\ 5 & 5\end{array}\right]$
(d) $\left[\begin{array}{rrr}-7 & -28 & -14 \\ -21 & -7 & -35\end{array}\right]$
(e) Undefined
(f) $\left[\begin{array}{rrr}22 & -6 & 8 \\ -2 & 4 & 6 \\ 10 & 0 & 4\end{array}\right]$
(g) $\left[\begin{array}{rrr}-39 & -21 & -24 \\ 9 & -6 & -15 \\ -33 & -12 & -30\end{array}\right]$
(h) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
(i) 5
(j) -25
(k) 168
(l) Undefined
4. Using the matrices in Exercise 3, in each part compute the given expression (where possible).
(a) $2 A^{T}+C$
(b) $D^{T}-E^{T}$
(c) $(D-E)^{T}$
(d) $B^{T}+5 C^{T}$
(e) $\frac{1}{2} C^{T}-\frac{1}{4} A$
(f) $B-B^{T}$
(g) $2 E^{T}-3 D^{T}$
(h) $\left(2 E^{T}-3 D^{T}\right)^{T}$
(i) $(C D) E$
(j) $C(B A)$
(k) $\operatorname{tr}\left(D E^{T}\right)$
(l) $\operatorname{tr}(B C)$
5. Using the matrices in Exercise 3, in each part compute the given expression (where possible).
(a) $A B$
(b) $B A$
(c) $(3 E) D$
(d) $(A B) C$
(e) $A(B C)$
(f) $C C^{T}$
(g) $(D A)^{T}$
(h) $\left(C^{T} B\right) A^{T}$
(i) $\operatorname{tr}\left(D D^{T}\right)$
(j) $\operatorname{tr}\left(4 E^{T}-D\right)$
(k) $\operatorname{tr}\left(C^{T} A^{T}+2 E^{T}\right)$
(1) $\operatorname{tr}\left(\left(E C^{T}\right)^{T} A\right)$

Answer:
(a) $\left[\begin{array}{rr}12 & -3 \\ -4 & 5 \\ 4 & 1\end{array}\right]$
(b) Undefined
(c) $\left[\begin{array}{rrr}42 & 108 & 75 \\ 12 & -3 & 21 \\ 36 & 78 & 63\end{array}\right]$
(d) $\left[\begin{array}{rrr}3 & 45 & 9 \\ 11 & -11 & 17 \\ 7 & 17 & 13\end{array}\right]$
(e) $\left[\begin{array}{rrr}3 & 45 & 9 \\ 11 & -11 & 17 \\ 7 & 17 & 13\end{array}\right]$
(f) $\left[\begin{array}{ll}21 & 17 \\ 17 & 35\end{array}\right]$
(g) $\left[\begin{array}{rrr}0 & -2 & 11 \\ 12 & 1 & 8\end{array}\right]$
(h) $\left[\begin{array}{rrr}12 & 6 & 9 \\ 48 & -20 & 14 \\ 24 & 8 & 16\end{array}\right]$
(i) 61
(j) 35
(k) 28
(1) 99
6. Using the matrices in Exercise 3, in each part compute the given expression (where possible).
(a) $\left(2 D^{T}-E\right) A$
(b) $(4 B) C+2 B$
(c) $(-A C)^{T}+5 D^{T}$
(d) $\left(B A^{T}-2 C\right)^{T}$
(e) $B^{T}\left(C C^{T}-A^{T} A\right)$
(f) $D^{T} E^{T}-(E D)^{T}$
7. Let

$$
A=\left[\begin{array}{rrr}
3 & -2 & 7 \\
6 & 5 & 4 \\
0 & 4 & 9
\end{array}\right] \text { and } B=\left[\begin{array}{rrr}
6 & -2 & 4 \\
0 & 1 & 3 \\
7 & 7 & 5
\end{array}\right]
$$

Use the row method or column method (as appropriate) to find
(a) the first row of $A B$.
(b) the third row of $A B$.
(c) the second column of $A B$.
(d) the first column of $B A$.
(e) the third row of $A A$.
(f) the third column of $A A$.

Answer:
(a) $[674141]$
(b) $[636757]$
(c) $[41$

21
(d) $\left.\begin{array}{r}6 \\ 6 \\ 63\end{array}\right]$
(e) $[245697]$
(f) $\left[\begin{array}{l}76 \\ 98 \\ 97\end{array}\right]$
8. Referring to the matrices in Exercise 7, use the row method or column method (as appropriate) to find
(a) the first column of $A B$.
(b) the third column of $B B$.
(c) the second row of $B B$.
(d) the first column of $A A$.
(e) the third column of $A B$.
(f) the first row of $B A$.
9. Referring to the matrices A and B in Exercise 7, and Example 9,
(a) express each column vectorof $A A$ as a linear combination of the column vectors of A.
(b) express each column vector of $B B$ as a linear combination of the column vectors of B.

Answer:
(a) $\left[\begin{array}{r}-3 \\ 48 \\ 24\end{array}\right]=3\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]+6\left[\begin{array}{r}-2 \\ 5 \\ 4\end{array}\right] ;\left[\begin{array}{l}12 \\ 29 \\ 56\end{array}\right]=-2\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]+5\left[\begin{array}{r}-2 \\ 5 \\ 4\end{array}\right]+4\left[\begin{array}{l}7 \\ 4 \\ 9\end{array}\right] ;\left[\begin{array}{l}76 \\ 98 \\ 97\end{array}\right]=7\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]+4\left[\begin{array}{r}-2 \\ 5 \\ 4\end{array}\right]+9\left[\begin{array}{l}7 \\ 4 \\ 9\end{array}\right]$
(b) $\left[\begin{array}{l}64 \\ 21 \\ 77\end{array}\right]=6\left[\begin{array}{l}6 \\ 0 \\ 7\end{array}\right]+7\left[\begin{array}{l}4 \\ 3 \\ 5\end{array}\right] ;\left[\begin{array}{l}14 \\ 22 \\ 28\end{array}\right]=-2\left[\begin{array}{l}6 \\ 0 \\ 7\end{array}\right]+\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]+7\left[\begin{array}{l}4 \\ 3 \\ 5\end{array}\right] ;\left[\begin{array}{l}38 \\ 18 \\ 74\end{array}\right]=4\left[\begin{array}{l}6 \\ 0 \\ 7\end{array}\right]+3\left[\begin{array}{r}-2 \\ 1 \\ 7\end{array}\right]+5\left[\begin{array}{l}4 \\ 3 \\ 5\end{array}\right]$
10. Referring to the matrices A and B in Exercise 7, and Example 9,
(a) express each column vector of $A B$ as a linear combination of the column vectors of A.
(b) express each column vector of $B A$ as a linear combination of the column vectors of B.
11. In each part, find matrices A, \mathbf{x}, and \mathbf{b} that express the given system of linear equations as a single matrix equation $A \mathbf{x}=\mathbf{b}$, and write out this matrix equation.
(a) $2 x_{1}-3 x_{2}+5 x_{3}=7$

$$
\begin{array}{r}
9 x_{1}-x_{2}+x_{3}=-1 \\
x_{1}+5 x_{2}+4 x_{3}=0
\end{array}
$$

(b) $4 x_{1} \quad-3 x_{3}+x_{4}=1$
$5 x_{1}+x_{2}-8 x_{4}=3$
$2 x_{1}-5 x_{2}+9 x_{3}-x_{4}=0$
$3 x_{2}-x_{3}+7 x_{4}=2$

Answer:

(a) $\left[\begin{array}{rrr}2 & -3 & 5 \\ 9 & -1 & 1 \\ 1 & 5 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}7 \\ -1 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{rrrr}4 & 0 & -3 & 1 \\ 5 & 1 & 0 & -8 \\ 2 & -5 & 9 & -1 \\ 0 & 3 & -1 & 7\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 0 \\ 2\end{array}\right]$
12. In each part, find matrices A, \mathbf{x}, and \mathbf{b} that express the given system of linear equations as a single matrix equation $A \mathbf{x}=\mathbf{b}$, and write out this matrix equation.
(a) $x_{1}-2 x_{2}+3 x_{3}=-3$
$2 x_{1}+x_{2}=0$

$$
-3 x_{2}+4 x_{3}=1
$$

$$
x_{1}+x_{3}=5
$$

(b) $3 x_{1}+3 x_{2}+3 x_{3}=-3$

$$
-x_{1}-5 x_{2}-2 x_{3}=3
$$

$$
-4 x_{2}+x_{3}=0
$$

13. In each part, express the matrix equation as a system of linear equations.
(a) $\left[\begin{array}{rrr}5 & 6 & -7 \\ -1 & -2 & 3 \\ 0 & 4 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{rrr}1 & 1 & 1 \\ 2 & 3 & 0 \\ 5 & -3 & -6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}2 \\ 2 \\ -9\end{array}\right]$

Answer:

(a) $5 x_{1}+6 x_{2}-7 x_{3}=2$

$$
\begin{aligned}
-x_{1}-2 x_{2}+3 x_{3} & =0 \\
4 x_{2}-x_{3} & =3
\end{aligned}
$$

(b) $x_{1}+x_{2}+x_{3}=2$

$$
2 x_{1}+3 x_{2}=2
$$

$$
5 x_{1}-3 x_{2}-6 x_{3}=-9
$$

14. In each part, express the matrix equation as a system of linear equations.
(a) $\left[\begin{array}{rrr}3 & -1 & 2 \\ 4 & 3 & 7 \\ -2 & 1 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}2 \\ -1 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{rrrr}3 & -2 & 0 & 1 \\ 5 & 0 & 2 & -2 \\ 3 & 1 & 4 & 7 \\ -2 & 5 & 1 & 6\end{array}\right]\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

In Exercises 15-16, find all values of k, if any, that satisfy the equation.
15.

$$
\left[\begin{array}{lll}
k & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -3
\end{array}\right]\left[\begin{array}{c}
k \\
1 \\
1
\end{array}\right]=0
$$

Answer:

-1
16.
$\left[\begin{array}{lll}2 & 2 & k\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 3 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 2 \\ k\end{array}\right]=0$
In Exercises 17-18, solve the matrix equation for a, b, c, and d.
17. $\left[\begin{array}{cc}a & 3 \\ -1 & a+b\end{array}\right]=\left[\begin{array}{cc}4 & d-2 c \\ d+2 c & -2\end{array}\right]$

Answer:

$$
a=4, b=-6, c=-1, d=1
$$

18. $\left[\begin{array}{cc}a-b & b+a \\ 3 d+c & 2 d-c\end{array}\right]=\left[\begin{array}{ll}8 & 1 \\ 7 & 6\end{array}\right]$
19. Let A be any $m \times n$ matrix and let 0 be the $m \times n$ matrix each of whose entries is zero. Show that if $k A=0$, then $k=0$ or $A=0$.
20. (a) Show that if $A B$ and $B A$ are both defined, then $A B$ and $B A$ are square matrices.
(b) Show that if A is an $m \times n$ matrix and $A(B A)$ is defined, then B is an $n \times m$ matrix.
21. Prove: If A and B are $n \times n$ matrices, then $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
22. (a) Show that if A has a row of zeros and B is any matrix for which $A B$ is defined, then $A B$ also has a row of zeros.
(b) Find a similar result involving a column of zeros.
23. In each part, find a 6×6 matrix $\left[a_{i j}\right]$ that satisfies the stated condition. Make your answers as general as possible by using letters rather than specific numbers for the nonzero entries.
(a) $a_{i j}=0$ if $i \neq j$
(b) $a_{i j}=0$ if $i>j$
(c) $a_{i j}=0$ if $i<j$
(d) $a_{i j}=0$ if $|i-j|>1$

Answer:

(a) $\left[\begin{array}{cccccc}a_{11} & 0 & 0 & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & a_{66}\end{array}\right]$
(b) $\left[\begin{array}{cccccc}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ 0 & 0 & a_{33} & a_{34} & a_{35} & a_{36} \\ 0 & 0 & 0 & a_{44} & a_{45} & a_{46} \\ 0 & 0 & 0 & 0 & a_{55} & a_{56} \\ 0 & 0 & 0 & 0 & 0 & a_{66}\end{array}\right]$
(c) $\left[\begin{array}{cccccc}a_{11} & 0 & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 & 0 & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} & 0 & 0 \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & 0 \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66}\end{array}\right]$
(d) $\left[\begin{array}{cccccc}a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & 0 \\ 0 & a_{32} & a_{33} & a_{34} & 0 & 0 \\ 0 & 0 & a_{43} & a_{44} & a_{45} & 0 \\ 0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\ 0 & 0 & 0 & 0 & a_{65} & a_{66}\end{array}\right]$
24. Find the 4×4 matrix $A=\left[a_{i j}\right]$ whose entries satisfy the stated condition.
(a) $a_{i j}=i+j$
(b) $a_{i j}=i^{j-1}$
(c) $a_{i j}=\left\{\begin{array}{rll}1 & \text { if } & |i-j|>1 \\ -1 & \text { if } & |i-j| \leq 1\end{array}\right.$
25. Consider the function $y=f(x)$ defined for 2×1 matrices x by $y=A x$, where

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Plot $f(x)$ together with x in each case below. How would you describe the action of f ?
(a) $x=\binom{1}{1}$
(b) $x=\binom{2}{0}$
(c) $x=\binom{4}{3}$
(d) $x=\binom{2}{-2}$

Answer:

$f\binom{x_{1}}{x_{2}}=\binom{x_{1}+x_{2}}{x_{2}}$
(a) $f\binom{1}{1}=\binom{2}{1}$

(b) $f\binom{2}{0}=\binom{2}{0}$

(c) $f\binom{4}{3}=\binom{7}{3}$

(d) $f\binom{2}{-2}=\binom{0}{-2}$

26. Let I be the $n \times n$ matrix whose entry in row i and column j is

$$
\left\{\begin{array}{lll}
1 & \text { if } \quad i=j \\
0 & \text { if } \quad i \neq j
\end{array}\right.
$$

Show that $A I=I A=A$ for every $n \times n$ matrix A.
27. How many 3×3 matrices A can you find such that

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x+y \\
x-y \\
0
\end{array}\right]
$$

for all choices of x, y, and z ?

Answer:

One; namely, $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$
28. How many 3×3 matrices A can you find such that

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x y \\
0 \\
0
\end{array}\right]
$$

for all choices of x, y, and z ?
29. A matrix B is said to be a square root of a matrix A if $B B=A$.
(a) Find two square roots of $A=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$.
(b) How many different square roots can you find of $A=\left[\begin{array}{ll}5 & 0 \\ 0 & 9\end{array}\right]$?
(c) Do you think that every 2×2 matrix has at least one square root? Explain your reasoning.

Answer:
(a) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$
(b) Four; $\left[\begin{array}{cc}\sqrt{5} & 0 \\ 0 & 3\end{array}\right],\left[\begin{array}{cc}-\sqrt{5} & 0 \\ 0 & 3\end{array}\right],\left[\begin{array}{cc}\sqrt{5} & 0 \\ 0 & -3\end{array}\right],\left[\begin{array}{cc}-\sqrt{5} & 0 \\ 0 & -3\end{array}\right]$
30. Let 0 denote a 2×2 matrix, each of whose entries is zero.
(a) Is there a 2×2 matrix A such that $A \neq 0$ and $A A=0$? Justify your answer.
(b) Is there a 2×2 matrix A such that $A \neq 0$ and $A A=A$? Justify your answer.

True-False Exercises

In parts (a)-(o) determine whether the statement is true or false, and justify your answer.
(a) The matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ has no main diagonal.

Answer:

True
(b) An $m \times n$ matrix has m column vectors and n row vectors.

Answer:
False
(c) If A and B are 2×2 matrices, then $A B=B A$.

Answer:

False
(d) The i th row vector of a matrix product $A B$ can be computed by multiplying A by the i th row vector of B.

Answer:

False
(e) For every matrix A, it is true that $\left(A^{T}\right)^{T}=A$.

Answer:

True
(f) If A and B are square matrices of the same order, then $\operatorname{tr}(A B)=\operatorname{tr}(A) \operatorname{tr}(B)$.

Answer:
False
(g) If A and B are square matrices of the same order, then $(A B)^{T}=A^{T} B^{T}$.

Answer:

False
(h) For every square matrix A, it is true that $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$.

Answer:

True
(i) If A is a 6×4 matrix and B is an $m \times n$ matrix such that $B^{T} A^{T}$ is a 2×6 matrix, then $m=4$ and $n=2$.

Answer:

True
(j) If A is an $n \times n$ matrix and c is a scalar, then $\operatorname{tr}(c A)=c \operatorname{tr}(A)$.

Answer:
True
(k) If A, B, and C are matrices of the same size such that $A-C=B-C$, then $A=B$.

Answer:

True
(l) If A, B, and C are square matrices of the same order such that $A C=B C$, then $A=B$.

Answer:

False
(m) If $A B+B A$ is defined, then A and B are square matrices of the same size.

Answer:

True
(n) If B has a column of zeros, then so does $A B$ if this product is defined.

Answer:

True
(0) If B has a column of zeros, then so does $B A$ if this product is defined.

Answer:

False

