- Determine the size of a given matrix.
- Identify the row vectors and column vectors of a given matrix.
- Perform the arithmetic operations of matrix addition, subtraction, scalar multiplication, and multiplication.
- Determine whether the product of two given matrices is defined.
- Compute matrix products using the row-column method, the column method, and the row method.
- Express the product of a matrix and a column vector as a linear combination of the columns of the matrix.
- Express a linear system as a matrix equation, and identify the coefficient matrix.
- Compute the transpose of a matrix.
- Compute the trace of a square matrix.

Exercise Set 1.3

**1.** Suppose that A, B, C, D, and E are matrices with the following sizes:

$$A$$
  $B$   $C$   $D$   $E$   $(4 \times 5)$   $(4 \times 5)$   $(5 \times 2)$   $(4 \times 2)$   $(5 \times 4)$ 

In each part, determine whether the given matrix expression is defined. For those that are defined, give the size of the resulting matrix.

- (a) *BA*
- (b) AC + D
- (c) AE + B
- (d) AB + B
- (e) E(A+B)
- (f) E(AC)
- (g)  $E^T A$
- (h)  $(A^T + E)D$

- (a) Undefined
- (b)  $4 \times 2$
- (c) Undefined
- (d) Undefined
- (e)  $5 \times 5$
- (f)  $5 \times 2$
- (g) Undefined
- (h)  $5 \times 2$
- **2.** Suppose that A, B, C, D, and E are matrices with the following sizes:

$$A$$
  $B$   $C$   $D$   $E$   $(3 \times 1)$   $(3 \times 6)$   $(6 \times 2)$   $(2 \times 6)$   $(1 \times 3)$ 

In each part, determine whether the given matrix expression is defined. For those that are defined, give the size of the resulting matrix.

- (a) *EA*
- (b)  $AB^T$

(c) 
$$B^T(A+E^T)$$

- (d) 2A + C
- (e)  $(C^T + D)B^T$
- (f)  $CD + B^T E^T$
- (g)  $(BD^T)C^T$
- (h) DC + EA

## 3. Consider the matrices

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, \quad E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

In each part, compute the given expression (where possible).

- (a) D+E
- (b) D-E
- (c) 5A
- (d) -7C
- (e) 2B C
- (f) 4E 2D
- (g) -3(D+2E)
- (h) A A
- (i) tr(*D*)
- (j) tr(D-3E)
- (k)  $4 \operatorname{tr}(7B)$
- (l) tr(A)

(a) 
$$\begin{bmatrix} 7 & 6 & 5 \\ -2 & 1 & 3 \\ 7 & 3 & 7 \end{bmatrix}$$

(b) 
$$\begin{bmatrix} -5 & 4 & -1 \\ 0 & -1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$

(c) 
$$\begin{bmatrix} 15 & 0 \\ -5 & 10 \\ 5 & 5 \end{bmatrix}$$

(c) 
$$\begin{bmatrix} 15 & 0 \\ -5 & 10 \\ 5 & 5 \end{bmatrix}$$
(d) 
$$\begin{bmatrix} -7 & -28 & -14 \\ -21 & -7 & -35 \end{bmatrix}$$

- (e) Undefined
- (f)  $\begin{bmatrix} 22 & -6 & 8 \\ -2 & 4 & 6 \\ 10 & 0 & 4 \end{bmatrix}$ (g)  $\begin{bmatrix} -39 & -21 & -24 \\ 9 & -6 & -15 \\ -33 & -12 & -30 \end{bmatrix}$
- $\begin{pmatrix}
  h \\
  0 & 0 \\
  0 & 0 \\
  0 & 0
  \end{pmatrix}$
- (i) 5
- (j) -25
- (k) 168
- (l) Undefined
- 4. Using the matrices in Exercise 3, in each part compute the given expression (where possible).
  - (a)  $2A^{T} + C$
  - (b)  $D^T E^T$
  - (c)  $(D-E)^T$
  - (d)  $B^T + 5C^T$
  - (e)  $\frac{1}{2}C^T \frac{1}{4}A$
  - (f)  $B B^T$
  - (g)  $2E^T 3D^T$
  - (h)  $(2E^T 3D^T)^T$
  - (i) (*CD*)*E*
  - (j) C(BA)
  - (k)  $tr(DE^T)$
  - (1) tr(BC)
- 5. Using the matrices in Exercise 3, in each part compute the given expression (where possible).
  - (a) AB
  - (b) *BA*
  - (c) (3E)D
  - (d) (AB)C
  - (e) A(BC)
  - (f)  $CC^T$

(g) 
$$(DA)^T$$

(h) 
$$(C^TB)A^T$$

(i) 
$$tr(DD^T)$$

(j) 
$$\operatorname{tr}\left(4E^{T}-D\right)$$

(k) 
$$\operatorname{tr}\left(C^{T}A^{T} + 2E^{T}\right)$$

(1) 
$$\operatorname{tr}\left(\left(EC^T\right)^TA\right)$$

(a) 
$$\begin{bmatrix} 12 & -3 \\ -4 & 5 \\ 4 & 1 \end{bmatrix}$$

- (b) Undefined
- (c) [42 108 75] 12 -3 21 36 78 63

(e) 
$$\begin{bmatrix} 3 & 45 & 9 \\ 11 & -11 & 17 \\ 7 & 17 & 13 \end{bmatrix}$$

$$\begin{array}{c|c}
(f) & 21 & 17 \\
17 & 35
\end{array}$$

$$(g) \begin{bmatrix} 0 & -2 & 11 \\ 12 & 1 & 8 \end{bmatrix}$$

(f) 
$$\begin{bmatrix} 21 & 17 \\ 17 & 35 \end{bmatrix}$$
(g) 
$$\begin{bmatrix} 0 & -2 & 11 \\ 12 & 1 & 8 \end{bmatrix}$$
(h) 
$$\begin{bmatrix} 12 & 6 & 9 \\ 48 & -20 & 14 \\ 24 & 8 & 16 \end{bmatrix}$$

- (i) 61
- (j) 35
- (k) 28
- (1) 99

**6.** Using the matrices in Exercise 3, in each part compute the given expression (where possible).

(a) 
$$(2D^T - E)A$$

(b) 
$$(4B)C + 2B$$

(c) 
$$(-AC)^T + 5D^T$$

(d) 
$$(BA^T - 2C)^T$$

(e) 
$$B^T (CC^T - A^T A)$$

(f) 
$$D^T E^T - (ED)^T$$

**7.** Let

$$A = \begin{bmatrix} 3 & -2 & 7 \\ 6 & 5 & 4 \\ 0 & 4 & 9 \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 & -2 & 4 \\ 0 & 1 & 3 \\ 7 & 7 & 5 \end{bmatrix}$$

Use the row method or column method (as appropriate) to find

- (a) the first row of AB.
- (b) the third row of AB.
- (c) the second column of AB.
- (d) the first column of BA.
- (e) the third row of AA.
- (f) the third column of AA.

#### Answer:

- (a) [67 41 41]
- (b) [63 67 57]
- (c) \[ \begin{aligned} 41 \\ 21 \\ 67 \end{aligned}
- (d) 6 6 6 63
- (e) [24 56 97]
- (f) [76] 98 97]
- 8. Referring to the matrices in Exercise 7, use the row method or column method (as appropriate) to find
  - (a) the first column of AB.
  - (b) the third column of BB.
  - (c) the second row of BB.
  - (d) the first column of AA.
  - (e) the third column of AB.
  - (f) the first row of BA.
- **9.** Referring to the matrices A and B in Exercise 7, and Example 9,
  - (a) express each column vector of AA as a linear combination of the column vectors of A.
  - (b) express each column vector of BB as a linear combination of the column vectors of B.

(a) 
$$\begin{bmatrix} -3 \\ 48 \\ 24 \end{bmatrix} = 3 \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} + 6 \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix}; \begin{bmatrix} 12 \\ 29 \\ 56 \end{bmatrix} = -2 \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix} + 4 \begin{bmatrix} 7 \\ 4 \\ 9 \end{bmatrix}; \begin{bmatrix} 76 \\ 98 \\ 97 \end{bmatrix} = 7 \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix} + 9 \begin{bmatrix} 7 \\ 4 \\ 9 \end{bmatrix}$$
(b)  $\begin{bmatrix} 64 \\ 21 \\ 77 \end{bmatrix} = 6 \begin{bmatrix} 6 \\ 0 \\ 7 \end{bmatrix} + 7 \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}; \begin{bmatrix} 14 \\ 22 \\ 28 \end{bmatrix} = -2 \begin{bmatrix} 6 \\ 0 \\ 7 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix} + 7 \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}; \begin{bmatrix} 38 \\ 18 \\ 74 \end{bmatrix} = 4 \begin{bmatrix} 6 \\ 0 \\ 7 \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix} + 5 \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}$ 

- 10. Referring to the matrices A and B in Exercise 7, and Example 9,
  - (a) express each column vector of AB as a linear combination of the column vectors of A.
  - (b) express each column vector of BA as a linear combination of the column vectors of B.
- 11. In each part, find matrices A,  $\mathbf{x}$ , and  $\mathbf{b}$  that express the given system of linear equations as a single matrix equation  $A\mathbf{x} = \mathbf{b}$ , and write out this matrix equation.

(a) 
$$2x_1 - 3x_2 + 5x_3 = 7$$
  
 $9x_1 - x_2 + x_3 = -1$   
 $x_1 + 5x_2 + 4x_3 = 0$   
(b)  $4x_1 - 3x_3 + x_4 = 1$   
 $5x_1 + x_2 - 8x_4 = 3$ 

$$2x_1 - 5x_2 + 9x_3 - x_4 = 0$$
$$3x_2 - x_3 + 7x_4 = 2$$

(a) 
$$\begin{bmatrix} 2 & -3 & 5 \\ 9 & -1 & 1 \\ 1 & 5 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \\ 0 \end{bmatrix}$$

(b) 
$$\begin{bmatrix} 4 & 0 & -3 & 1 \\ 5 & 1 & 0 & -8 \\ 2 & -5 & 9 & -1 \\ 0 & 3 & -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \\ 2 \end{bmatrix}$$

12. In each part, find matrices A,  $\mathbf{x}$ , and  $\mathbf{b}$  that express the given system of linear equations as a single matrix equation  $A\mathbf{x} = \mathbf{b}$ , and write out this matrix equation.

(a) 
$$x_1 - 2x_2 + 3x_3 = -3$$
  
 $2x_1 + x_2 = 0$   
 $-3x_2 + 4x_3 = 1$   
 $x_1 + x_3 = 5$ 

(b) 
$$3x_1 + 3x_2 + 3x_3 = -3$$
  
 $-x_1 - 5x_2 - 2x_3 = 3$   
 $-4x_2 + x_3 = 0$ 

13. In each part, express the matrix equation as a system of linear equations.

(a) 
$$\begin{bmatrix} 5 & 6 & -7 \\ -1 & -2 & 3 \\ 0 & 4 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$$

(b) 
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 5 & -3 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -9 \end{bmatrix}$$

(a) 
$$5x_1 + 6x_2 - 7x_3 = 2$$
  
 $-x_1 - 2x_2 + 3x_3 = 0$   
 $4x_2 - x_3 = 3$ 

$$4x_{2} - x_{3} = 3$$
(b)  $x_{1} + x_{2} + x_{3} = 2$ 

$$2x_{1} + 3x_{2} = 2$$

$$5x_{1} - 3x_{2} - 6x_{3} = -9$$

14. In each part, express the matrix equation as a system of linear equations.

(a) 
$$\begin{bmatrix} 3 & -1 & 2 \\ 4 & 3 & 7 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

(b) 
$$\begin{bmatrix} 3 & -2 & 0 & 1 \\ 5 & 0 & 2 & -2 \\ 3 & 1 & 4 & 7 \\ -2 & 5 & 1 & 6 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

In Exercises 15–16, find all values of k, if any, that satisfy the equation.

15. 
$$\begin{bmatrix} k & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix} = 0$$

**Answer:** 

$$-1$$

16. 
$$\begin{bmatrix} 2 & 2 & k \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ k \end{bmatrix} = 0$$

In Exercises 17–18, solve the matrix equation for a, b, c, and d.

17. 
$$\begin{bmatrix} a & 3 \\ -1 & a+b \end{bmatrix} = \begin{bmatrix} 4 & d-2c \\ d+2c & -2 \end{bmatrix}$$

$$a = 4$$
,  $b = -6$ ,  $c = -1$ ,  $d = 1$ 

**18.** 
$$\begin{bmatrix} a-b & b+a \\ 3d+c & 2d-c \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 7 & 6 \end{bmatrix}$$

- 19. Let A be any  $m \times n$  matrix and let 0 be the  $m \times n$  matrix each of whose entries is zero. Show that if kA = 0, then k = 0 or A = 0.
- **20.** (a) Show that if AB and BA are both defined, then AB and BA are square matrices.
  - (b) Show that if A is an  $m \times n$  matrix and A(BA) is defined, then B is an  $n \times m$  matrix.

- **21.** Prove: If A and B are  $n \times n$  matrices, then tr(A+B) = tr(A) + tr(B).
- **22.** (a) Show that if *A* has a row of zeros and *B* is any matrix for which *AB* is defined, then *AB* also has a row of zeros.
  - (b) Find a similar result involving a column of zeros.
- 23. In each part, find a  $6 \times 6$  matrix  $[a_{ij}]$  that satisfies the stated condition. Make your answers as general as possible by using letters rather than specific numbers for the nonzero entries.
  - (a)  $a_{ij} = 0$  if  $i \neq j$
  - (b)  $a_{ij} = 0$  if i > j
  - (c)  $a_{ij} = 0$  if i < j
  - (d)  $a_{ij} = 0$  if |i j| > 1

- $a_{11}$ 0 0 0 0 0 0 0  $a_{33}$ 0 0  $a_{44} = 0$ 0 0 0 0 0 0  $a_{66}$
- (b)  $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ 0 & 0 & a_{33} & a_{34} & a_{35} & a_{36} \\ 0 & 0 & 0 & a_{44} & a_{45} & a_{46} \\ 0 & 0 & 0 & 0 & a_{55} & a_{56} \\ 0 & 0 & 0 & 0 & 0 & a_{66} \end{bmatrix}$
- (c)  $\begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 & 0 & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} & 0 & 0 \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & 0 \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \end{bmatrix}$
- (d)  $\begin{bmatrix} a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & 0 \\ 0 & a_{32} & a_{33} & a_{34} & 0 & 0 \\ 0 & 0 & a_{43} & a_{44} & a_{45} & 0 \\ 0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\ 0 & 0 & 0 & 0 & a_{65} & a_{66} \end{bmatrix}$
- **24.** Find the  $4 \times 4$  matrix  $A = [a_{ij}]$  whose entries satisfy the stated condition.
  - (a)  $a_{ij} = i + j$
  - (b)  $a_{ij} = i^{j-1}$

$$a_{ij} = \begin{cases} 1 & \text{if} \quad |i-j| > 1 \\ -1 & \text{if} \quad |i-j| \le 1 \end{cases}$$

**25.** Consider the function y = f(x) defined for  $2 \times 1$  matrices x by y = Ax, where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Plot f(x) together with x in each case below. How would you describe the action of f?

(a) 
$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(b) 
$$x = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

(c) 
$$x = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

(d) 
$$x = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

$$f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2 \end{pmatrix}$$

(a) 
$$f \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$



(b) 
$$f\begin{pmatrix}2\\0\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}$$



(c) 
$$f\begin{pmatrix} 4\\3 \end{pmatrix} = \begin{pmatrix} 7\\3 \end{pmatrix}$$



$$(d) f \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$



**26.** Let I be the  $n \times n$  matrix whose entry in row i and column j is

$$\begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Show that AI = IA = A for every  $n \times n$  matrix A.

**27.** How many  $3 \times 3$  matrices A can you find such that

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + y \\ x - y \\ 0 \end{bmatrix}$$

for all choices of x, y, and z?

**Answer:** 

One; namely, 
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

**28.** How many  $3 \times 3$  matrices A can you find such that

$$A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xy \\ 0 \\ 0 \end{bmatrix}$$

for all choices of x, y, and z?

**29.** A matrix *B* is said to be a *square root* of a matrix *A* if BB = A.

(a) Find two square roots of  $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ .

(b) How many different square roots can you find of  $A = \begin{bmatrix} 5 & 0 \\ 0 & 9 \end{bmatrix}$ ?

(c) Do you think that every  $2 \times 2$  matrix has at least one square root? Explain your reasoning.

**Answer:** 

(a) 
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and  $\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$ 

(b) Four; 
$$\begin{bmatrix} \sqrt{5} & 0 \\ 0 & 3 \end{bmatrix}$$
,  $\begin{bmatrix} -\sqrt{5} & 0 \\ 0 & 3 \end{bmatrix}$ ,  $\begin{bmatrix} \sqrt{5} & 0 \\ 0 & -3 \end{bmatrix}$ ,  $\begin{bmatrix} -\sqrt{5} & 0 \\ 0 & -3 \end{bmatrix}$ 

**30.** Let  $\theta$  denote a  $2 \times 2$  matrix, each of whose entries is zero.

(a) Is there a  $2 \times 2$  matrix A such that  $A \neq 0$  and AA = 0? Justify your answer.

(b) Is there a  $2 \times 2$  matrix A such that  $A \neq 0$  and AA = A? Justify your answer.

# **True-False Exercises**

In parts (a)–(o) determine whether the statement is true or false, and justify your answer.

(a) The matrix  $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$  has no main diagonal.

#### **Answer:**

True

**(b)** An  $m \times n$  matrix has m column vectors and n row vectors.

#### **Answer:**

False

(c) If A and B are  $2 \times 2$  matrices, then AB = BA.

## Answer:

False

(d) The *i* th row vector of a matrix product *AB* can be computed by multiplying *A* by the *i*th row vector of *B*.

#### **Answer:**

False

(e) For every matrix A, it is true that  $(A^T)^T = A$ .

#### Answer:

True

(f) If A and B are square matrices of the same order, then tr(AB) = tr(A)tr(B).

## **Answer:**

False

(g) If A and B are square matrices of the same order, then  $(AB)^T = A^T B^T$ .

#### **Answer:**

False

**(h)** For every square matrix A, it is true that  $\operatorname{tr}(A^T) = \operatorname{tr}(A)$ .

## **Answer:**

True

(i) If A is a  $6 \times 4$  matrix and B is an  $m \times n$  matrix such that  $B^T A^T$  is a  $2 \times 6$  matrix, then m = 4 and n = 2.

| True (j) If A is an $n \times n$ matrix and c is a scalar, then $tr(cA) = c tr(A)$ .                  |
|-------------------------------------------------------------------------------------------------------|
| Answer:                                                                                               |
| True                                                                                                  |
| (k) If $A$ , $B$ , and $C$ are matrices of the same size such that $A - C = B - C$ , then $A = B$ .   |
| Answer:                                                                                               |
| True                                                                                                  |
| (1) If $A$ , $B$ , and $C$ are square matrices of the same order such that $AC = BC$ , then $A = B$ . |
| Answer:                                                                                               |
| False                                                                                                 |
| (m) If $AB + BA$ is defined, then A and B are square matrices of the same size.                       |
| Answer:                                                                                               |
| True                                                                                                  |
| (n) If B has a column of zeros, then so does AB if this product is defined.                           |
| Answer:                                                                                               |
| True                                                                                                  |
| (o) If B has a column of zeros, then so does BA if this product is defined.                           |
| Answer:                                                                                               |
| False                                                                                                 |
|                                                                                                       |
| Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.                                         |