Exercise Sheet 6: Diagonalisation

David Carral

December 11, 2019

Exercise 1

Find the fault in the following proof of $\mathrm{P} \neq \mathrm{NP}$.

1. Suppose for a contradiction that $\mathrm{P}=\mathrm{NP}$.
2. By (1): since $\mathbf{S A T} \in N P$, we have that $\mathbf{S A T} \in P$.
3. By (2): there is some $k \in \mathbb{N}$ with $\operatorname{SAT} \in \operatorname{DTime}\left(n^{k}\right)$.
4. Since SAT is NP-hard, we have that $\mathbf{L} \leq_{p}$ SAT for every language $\mathbf{L} \in N P$.
5. By (3) and (4): NP $\subseteq \operatorname{DTime}\left(n^{k}\right)$.
6. By (1) and (5): P $\subseteq \operatorname{DTime}\left(n^{k}\right)$.
7. By the Time Hierarchy Theorem, we have that $\operatorname{DTime}\left(n^{k}\right) \subset \operatorname{DTime}\left(n^{k+1}\right)$.
8. Conclusions (6) and (7) result in a contradiction. Hence, $\mathrm{P} \neq \mathrm{NP}$.

Solution. In the previous argument, we cannot conclude (5) from (3) and (4).
a. By the Time Hierarchy Theorem, there is some $\mathbf{A} \in \operatorname{DTime}\left(n^{k+1}\right) \backslash \operatorname{DTime}\left(n^{k}\right)$.
b. By (a): $\mathbf{A} \in \mathrm{P} \subseteq \mathrm{NP}$ and hence, $\mathbf{A} \leq_{p}$ SAT.

Exercise 2

Show the following.

1. $\operatorname{Time}\left(2^{n}\right)=\operatorname{Time}\left(2^{n+1}\right)$
2. $\operatorname{Time}_{*}\left(2^{n}\right) \subset \operatorname{Time}_{*}\left(2^{2 n}\right)$
3. $\operatorname{NTime}(n) \subset$ PSpace

Exercise 2

Definition 5.7: Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function.
(1) $\operatorname{DTime}(f(n))$ is the class of all languages \mathbf{L} for which there is an $O(f(n))$-time bounded Turing machine deciding \mathbf{L}.
(2) DSpace $(f(n))$ is the class of all languages \mathbf{L} for which there is an $O(f(n))$-space bounded Turing machine deciding \mathbf{L}.

Notation 5.8: Sometimes $\operatorname{Time}(f(n))$ is used instead of $\operatorname{DTime}(f(n))$.

Solution 1. We show that $\operatorname{Time}\left(2^{n}\right)=\operatorname{Time}\left(2^{n+1}\right)$.

1. Since $2^{n} \in O\left(2^{n+1}\right)$, we have that $\mathbf{L} \in O\left(2^{n+1}\right)$ for all $\mathbf{L} \in O\left(2^{n}\right)$.
2. Since $2^{n+1} \in O\left(2^{n}\right)$, we have that $\mathbf{L} \in O\left(2^{n}\right)$ for all $\mathbf{L} \in O\left(2^{n+1}\right)$.

- Definition. $g \in O(f)$ iff there are some $k, x_{0} \geq 0$ with $g(x) \leq k \cdot f(x)$ for all $x \leq x_{0}$.
- $2^{x+1} \leq k \cdot 2^{x}$ for all $x \geq x_{0}$ with (e.g.) $k=2$ and $x_{0}=0$.

Exercise 2

Example 12.2: We will use, e.g., the following resources:

- DTime time used by a deterministic 1-tape TM
- DTime ${ }_{k}$ time used by a deterministic k-tape TM
- DTime * time used by a deterministic TM with any number of tapes

Solution 2. We show that $\operatorname{Time}_{*}\left(2^{n}\right) \subset \operatorname{Time}_{*}\left(2^{2 n}\right)$.

1. Time Hierarchy Theorem. If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are such that f is time-constructible and $g \cdot \log g \in o(f)$, then $\mathrm{DTime}_{*}(g) \subset \operatorname{DTime}_{*}(f)$.
2. Definition. $g \in o(f)$ iff, for all $\varepsilon \geq 0$, there is some $x_{0} \geq 0$ such that $g(x) \leq \varepsilon \cdot f(x)$ for all $x \geq x_{0}$. Note that possibly $\varepsilon<1$.
3. We have that $2^{n} \cdot \log \left(2^{n}\right) \in o\left(2^{2 n}\right)$ since, for all $\varepsilon \geq 0$, there is some $x_{0} \geq 0$ such that $2^{x} \cdot x \leq \varepsilon \cdot 2^{2 x}$ for all $x \geq x_{0}$. Note that $\frac{2^{x} \cdot x}{2^{x}}=x$ and $\frac{\varepsilon \cdot 2^{2 x}}{2^{x}}=\varepsilon \cdot 2^{x}$.
4. By (1) and (3), $\mathrm{DTime}_{*}\left(2^{n}\right) \subset \mathrm{DTime}_{*}\left(2^{2 n}\right)$.

Exercise 2

(1) $\mathrm{NTime}(f(n))$ is the class of all languages \mathbf{L} for which there is an $O(f(n)$)-time bounded nondeterministic Turing machine deciding \mathbf{L}.
(2) DSpace $(f(n))$ is the class of all languages \mathbf{L} for which there is an $O(f(n))$-space bounded Turing machine deciding \mathbf{L}.

Solution 3. We show that $\operatorname{NTime}(n) \subset$ PSpace.

1. $\operatorname{NTimE}(n) \subseteq \operatorname{NSpACE}(n)$ because any TM that operates in time n on every computation branch can use at most n tape cells on every branch.
2. By Savitch's Theorem: NSpace $(n) \subseteq \operatorname{Space}\left(n^{2}\right)$.
3. Space Hierarchy Theorem. If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that f is space-constructible and $g \in o(f)$, then DSpace $(g) \subset \operatorname{DSpace}(f)$.
4. $\operatorname{By}(3): \operatorname{Space}\left(n^{2}\right) \subset \operatorname{Space}\left(n^{3}\right)$. Note that $n^{2} \in o\left(n^{3}\right)$.
5. $\operatorname{By}(1),(2),(4)$, and $\operatorname{Space}\left(n^{3}\right) \subseteq \operatorname{PSpace}: \operatorname{NTime}(n) \subset \operatorname{PSpace}$.

Exercise 3

Show that there exists a function that is not time-constructible.

Definition 12.5: A function $t: \mathbb{N} \rightarrow \mathbb{N}$ is time-constructible if $t(n) \geq n$ for all n and there exists a TM that computes $t(n)$ in unary in time $O(t(n))$.

A function $s: \mathbb{N} \rightarrow \mathbb{N}$ is space-constructible if $s(n) \geq \log n$ and there exists a TM that computes $s(n)$ in unary in space $O(s(n))$.

Solution. The proof of the Gap Theorem explicitly constructs one.

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

$$
\mathcal{M}_{0}, \mathcal{M}_{1}, \mathcal{M}_{2}, \ldots
$$

Definition 13.6: For arbitrary numbers $i, a, b \in \mathbb{N}$ with $a \leq b$, we say that $\operatorname{Gap}_{i}(a, b)$ is true if:

- Given any TM \mathcal{M}_{j} with $0 \leq j \leq i$,
- and any input string w for \mathcal{M}_{j} of length $|w|=i$,
\mathcal{M}_{j} on input w will halt in less than a steps, in more than b steps, or not at all.

Lemma 13.7: Given $i, a, b \geq 0$ with $a \leq b$, it is decidable if $\operatorname{Gap}_{i}(a, b)$ holds.
Proof: We just need to ensure that none of the finitely many $\mathrm{TMs} \mathcal{M}_{0}, \ldots, \mathcal{M}_{i}$ will halt after a to b steps on any of the finitely many inputs of length i. This can be checked by simulating TM runs for at most b steps.

Find the Gap

We can now define the value $f(n)$ of f for some $n \geq 0$:

Let in (n) denote the number of runs of TMs $\mathcal{M}_{0}, \ldots, \mathcal{M}_{n}$ on words of length n, i.e.,

$$
\operatorname{in}(n)=\left|\Sigma_{0}\right|^{n}+\cdots+\left|\Sigma_{n}\right|^{n} \quad \text { where } \Sigma_{i} \text { is the input alphabet of } \mathcal{M}_{i}
$$

We recursively define a series of numbers $k_{0}, k_{1}, k_{2}, \ldots$ by setting $k_{0}=2 n$ and $k_{i+1}=2^{k_{i}}$ for $i \geq 0$, and we consider the following list of intervals:

$$
\begin{array}{cccc}
{\left[k_{0}+1, k_{1}\right],} & {\left[k_{1}+1, k_{2}\right],} & \cdots, & {\left[k_{\mathrm{in}(n)}+1, k_{\mathrm{in}(n)+1}\right]} \\
{ }^{\prime \prime} & \text { ॥ } & & \text { ॥ } \\
{\left[2 n+1,2^{2 n}\right],} & {\left[2^{2 n}+1,2^{2^{2 n}}\right],} & \cdots, & {\left[2^{2 n}+1,2^{22^{2 n}}\right]}
\end{array}
$$

Let $f(n)$ be the least number k_{i} with $0 \leq i \leq \operatorname{in}(n)$ such that $\operatorname{Gap}_{n}\left(k_{i}+1, k_{i+1}\right)$ is true.

Exercise 4

Consider the function pad: $\Sigma^{*} \times \mathbb{N} \rightarrow \Sigma^{*} \#^{*}$ defined as $\operatorname{pad}(s, \ell)=s \#^{j}$, where $j=\max (0, \ell-|s|)$. In other words, pad (s, ℓ) adds enough copies of a fresh symbol \# to the end of s so that the length is at least ℓ.

Examples.

- $\operatorname{pad}(01011,8)=01011 \# \# \#$
- $\operatorname{pad}(01011,12)=01011 \# \# \# \# \# \# \#$
- $\operatorname{pad}(01011,3)=01011$

For a language $\mathbf{A} \subseteq \Sigma^{*}$ and a function $f: \mathbb{N} \rightarrow \mathbb{N}$, let

$$
\operatorname{pad}(\mathbf{A}, f)=\{\operatorname{pad}(s, f(|s|)) \mid s \in \mathbf{A}\} .
$$

Exercise 4

Let pad: $\Sigma^{*} \times \mathbb{N} \rightarrow \Sigma^{*} \#^{*}$ be defined as $\operatorname{pad}(s, \ell)=s \#^{j}$, where $j=\max (0, \ell-|s|)$.
For $\mathbf{A} \subseteq \Sigma^{*}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$, let $\operatorname{pad}(\mathbf{A}, f)=\{\operatorname{pad}(s, f(|s|)) \mid s \in \mathbf{A}\}$.
Solution 1. We show that, if $\mathbf{A} \in \operatorname{DTime}\left(n^{6}\right)$, then $\operatorname{pad}\left(\mathbf{A}, n^{2}\right) \in \operatorname{DTime}\left(n^{3}\right)$.

1. Let \mathcal{M} be a DTM deciding \mathbf{A} in $O\left(n^{6}\right)$ time.
2. Let \mathcal{M}^{\prime} be the TM that, on input w, performs the following computation:
2.1 Reject if w is not of the form $w=s \#^{\ell}$ with $|w|=|s|^{2}$.
2.2 Simulate \mathcal{M} on input s and return the result of the simulation.
3. The check in (2.1) can be done in linear time using a 3-tape TM (discuss). Hence, it can be done in $O\left(n^{2}\right)$ with a single tape TM.
4. Simulating \mathcal{M} on s is $O\left(|s|^{6}\right)=O\left(|w|^{3}\right)=O\left(n^{3}\right)$.
5. \mathcal{M}^{\prime} runs in $O\left(n^{3}\right)$.
6. \mathcal{M}^{\prime} accepts $s \#^{\ell}$ iff $|s|=\sqrt{\left|s \#^{\ell}\right|}$ and $s \in \mathbf{A}$. That is, $\mathcal{L}\left(\mathcal{M}^{\prime}\right)=\operatorname{pad}\left(\mathbf{A}, n^{2}\right)$.

Remarks:

- The choice of the particular numbers 2,3 , and 6 is arbitrary.
- We could make an analogous argument for space instead of time.
- The converse is also true.

Exercise 4

Let pad: $\Sigma^{*} \times \mathbb{N} \rightarrow \Sigma^{*} \#^{*}$ be defined as $\operatorname{pad}(s, \ell)=s \#^{j}$, where $j=\max (0, \ell-|s|)$. For $\mathbf{A} \subseteq \Sigma^{*}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$, let $\operatorname{pad}(\mathbf{A}, f)=\{\operatorname{pad}(s, f(|s|)) \mid s \in \mathbf{A}\}$.

Solution 2. We show that if NExpTime \neq ExpTime, then $\mathrm{P} \neq \mathrm{NP}$.

$$
\begin{aligned}
\mathbf{A} \in \operatorname{DTime}\left(2^{n^{d}}\right) & \Longrightarrow \operatorname{pad}\left(\mathbf{A}, 2^{n^{d}}\right) \in \mathrm{P} \\
\operatorname{pad}\left(\mathbf{A}, 2^{n^{d}}\right) \in \operatorname{DTime}\left(n^{k}\right) & \Longrightarrow \mathbf{A} \in \operatorname{ExPTimE}
\end{aligned}
$$

for all $k, d \in \mathbb{N}$. This also holds true for NTime instead of DTime.
Then, assuming $\mathrm{P}=\mathrm{NP}$, we can infer

$$
\begin{aligned}
\mathbf{A} \in \operatorname{NExpTimE} & \Longrightarrow \mathbf{A} \in \operatorname{NTimE}\left(2^{n^{d}}\right) \text { for some } d \in \mathbb{N} \\
& \Longrightarrow \operatorname{pad}\left(\mathbf{A}, 2^{n^{d}}\right) \in \operatorname{NP} \text { for some } d \in \mathbb{N} \\
& \Longrightarrow \operatorname{pad}\left(\mathbf{A}, 2^{n^{d}}\right) \in \mathrm{P} \text { for some } d \in \mathbb{N} \\
& \Longrightarrow \operatorname{pad}\left(\mathbf{A}, 2^{n^{d}}\right) \in \operatorname{DTime}\left(n^{k}\right) \text { for some } d, k \in \mathbb{N} \\
& \Longrightarrow \mathbf{A} \in \operatorname{ExpTimE}
\end{aligned}
$$

Exercise 4

Let pad: $\Sigma^{*} \times \mathbb{N} \rightarrow \Sigma^{*} \#^{*}$ be defined as $\operatorname{pad}(s, \ell)=s \#^{j}$, where $j=\max (0, \ell-|s|)$. For $\mathbf{A} \subseteq \Sigma^{*}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$, let $\operatorname{pad}(\mathbf{A}, f)=\{\operatorname{pad}(s, f(|s|)) \mid s \in \mathbf{A}\}$.

Solution 3. We show that, for every $\mathbf{A} \subseteq \Sigma^{*}$ and $k \in \mathbb{N}, \mathbf{A} \in \mathrm{P}$ iff $\operatorname{pad}\left(\mathbf{A}, n^{k}\right) \in \mathrm{P}$.

- $\mathbf{A} \in \mathrm{P}$ implies $\operatorname{pad}\left(\mathbf{A}, n^{k}\right) \in \mathrm{P}$.

1. Let $\mathbf{A} \subseteq \Sigma^{*}$ and $k \in \mathbb{N}$.
2. If $\mathbf{A} \in \mathrm{P}$, then $\mathbf{A} \in \operatorname{DTime}\left(n^{\ell}\right)$ for some $\ell \in \mathbb{N}$.
3. $\operatorname{pad}\left(\mathbf{A}, n^{k}\right) \in \operatorname{DTimE}\left(n^{\lceil\ell / k\rceil}\right) \subseteq \mathrm{P}$ (analogous argument to the one from part 1).
$-\operatorname{pad}\left(\mathbf{A}, n^{k}\right) \in \mathrm{P}$ implies $\mathbf{A} \in \mathrm{P}$.
4. If $\operatorname{pad}\left(\mathbf{A}, n^{k}\right) \in \mathrm{P}$, then $\operatorname{pad}\left(\mathbf{A}, n^{k}\right) \in \operatorname{DTime}\left(n^{\ell}\right)$ for some $\ell \in \mathbb{N}$.
5. Therefore, $\mathbf{A} \in \operatorname{DTime}\left(n^{\ell \cdot k}\right) \subseteq \mathrm{P}$.

Exercise 4

Let pad: $\Sigma^{*} \times \mathbb{N} \rightarrow \Sigma^{*} \#^{*}$ be defined as $\operatorname{pad}(s, \ell)=s \#^{j}$, where $j=\max (0, \ell-|s|)$. For $\mathbf{A} \subseteq \Sigma^{*}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$, let $\operatorname{pad}(\mathbf{A}, f)=\{\operatorname{pad}(s, f(|s|)) \mid s \in \mathbf{A}\}$.

Solution 4. We show that $\mathrm{P} \neq \mathrm{DSpace}(n)$.

1. Assume $\mathrm{P}=\mathrm{DSpace}(n)$.
2. By the space hierarchy theorem: There is some language $\mathbf{A} \in \operatorname{DSpace}\left(n^{2}\right) \backslash \operatorname{DSpace}(n)$.
3. $\operatorname{pad}\left(\mathbf{A}, n^{2}\right) \in \operatorname{DSpace}(n)$.
4. $\operatorname{pad}\left(\mathbf{A}, n^{2}\right) \in \mathrm{P}$.
5. $\mathbf{A} \in \mathrm{P}$.
6. $\mathbf{A} \in \operatorname{DSpace}(n)$.

Exercise 4

Let pad: $\Sigma^{*} \times \mathbb{N} \rightarrow \Sigma^{*} \#^{*}$ be defined as $\operatorname{pad}(s, \ell)=s \#^{j}$, where $j=\max (0, \ell-|s|)$. For $\mathbf{A} \subseteq \Sigma^{*}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$, let $\operatorname{pad}(\mathbf{A}, f)=\{\operatorname{pad}(s, f(|s|)) \mid s \in \mathbf{A}\}$.

Solution 5. We show that $\mathrm{NP} \neq \mathrm{DSpace}(n)$.

1. We can make a similar argument to the one from (3) to show the following: for every $\mathbf{A} \subseteq \Sigma^{*}$ and $k \in \mathbb{N}$, we have that $\mathbf{A} \in \operatorname{NP}$ iff $\operatorname{pad}\left(\mathbf{A}, n^{k}\right) \in \mathrm{NP}$.
2. Then, make a similar argument to the one from (4) to show NP $\neq \operatorname{DSPACE}(n)$.

Exercise 5

You are given two oracles and one of them is the set TQBF, but you do not know which one. Design a polynomial algorithm that decides TQBF using these oracles.

- Given a QBF formula $\phi=\exists y_{1} \forall y_{2} \ldots \exists y_{m-1} \forall y_{m} \cdot \psi\left(y_{1}, \ldots, y_{m}\right)$
- Query ϕ with both oracles. Accept ϕ if both answer "true", reject ϕ if both answer "false", and otherwise play a game with two players: the \exists-player, that uses the accepting oracle, and the \forall-player, that uses the rejecting oracle.
- The \exists-player plays in turns $i \in\{1,3, \ldots, m-1\}$ of the game. This player asks his oracle both for $b=0$ and $b=1$ whether the formula $\exists y_{i} \forall y_{i+1} \ldots Q_{m} y_{m} \cdot \psi\left(x_{1}, \ldots, x_{i-1}, b, y_{i+1}, \ldots, y_{m}\right)$ is true or false. If both values are "false" then reject ϕ (the oracle is acting inconsistently). Otherwise, let $x_{i}=b$ for a value b for which the answer was "true".
- The \forall-player plays in turns $i \in\{2,4, \ldots, m\}$ of the game. This player asks his oracle both for $b=0$ and $b=1$ whether the formula $\forall y_{i} \exists y_{i+1} \ldots Q_{m} y_{m} \cdot \psi\left(x_{1}, \ldots, x_{i-1}, b, y_{i+1}, \ldots, y_{m}\right)$ is true or false. If both values are "true" then accept ϕ (the oracle is acting inconsistently). Otherwise, let $x_{i}=b$ for a value b for which the answer was "false".
- Accept ϕ iff $\psi\left(x_{1}, \ldots, x_{m}\right)$ evaluates to true (no need to use any oracles here!).

