Exercise Sheet 6: Diagonalisation

David Carral

December 11, 2019

Find the fault in the following proof of $\mathrm{P}\neq\mathrm{NP}.$

- 1. Suppose for a contradiction that P = NP.
- 2. By (1): since $SAT \in NP$, we have that $SAT \in P$.
- 3. By (2): there is some $k \in \mathbb{N}$ with **SAT** $\in DTIME(n^k)$.
- 4. Since **SAT** is NP-hard, we have that $L \leq_p SAT$ for every language $L \in NP$.
- 5. By (3) and (4): NP \subseteq DTIME (n^k) .
- 6. By (1) and (5): $P \subseteq DTIME(n^k)$.
- 7. By the Time Hierarchy Theorem, we have that $DTIME(n^k) \subset DTIME(n^{k+1})$.
- 8. Conclusions (6) and (7) result in a contradiction. Hence, $P \neq NP$.

Solution. In the previous argument, we cannot conclude (5) from (3) and (4).

- a. By the Time Hierarchy Theorem, there is some $\mathbf{A} \in \text{DTIME}(n^{k+1}) \setminus \text{DTIME}(n^k)$.
- b. By (a): $\mathbf{A} \in P \subseteq NP$ and hence, $\mathbf{A} \leq_p \mathbf{SAT}$.

Show the following.

- 1. $TIME(2^n) = TIME(2^{n+1})$
- 2. $\operatorname{TIME}_*(2^n) \subset \operatorname{TIME}_*(2^{2n})$
- 3. NTIME(n) \subset PSPACE

Definition 5.7: Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- DTime(f(n)) is the class of all languages L for which there is an O(f(n))-time bounded Turing machine deciding L.
- (2) DSpace(f(n)) is the class of all languages L for which there is an O(f(n))-space bounded Turing machine deciding L.

Notation 5.8: Sometimes Time(f(n)) is used instead of DTime(f(n)).

Solution 1. We show that $TIME(2^n) = TIME(2^{n+1})$.

- 1. Since $2^n \in O(2^{n+1})$, we have that $\mathbf{L} \in O(2^{n+1})$ for all $\mathbf{L} \in O(2^n)$.
- 2. Since $2^{n+1} \in O(2^n)$, we have that $\mathbf{L} \in O(2^n)$ for all $\mathbf{L} \in O(2^{n+1})$.
 - ▶ Definition. $g \in O(f)$ iff there are some $k, x_0 \ge 0$ with $g(x) \le k \cdot f(x)$ for all $x \le x_0$.
 - $2^{x+1} \leq k \cdot 2^x$ for all $x \geq x_0$ with (e.g.) k = 2 and $x_0 = 0$.

Example 12.2: We will use, e.g., the following resources:

- DTime time used by a deterministic 1-tape TM
- DTime_k time used by a deterministic k-tape TM
- DTime_{*} time used by a deterministic TM with any number of tapes

Solution 2. We show that $TIME_*(2^n) \subset TIME_*(2^{2n})$.

- 1. Time Hierarchy Theorem. If $f, g : \mathbb{N} \to \mathbb{N}$ are such that f is time-constructible and $g \cdot \log g \in o(f)$, then $\mathrm{DTIME}_*(g) \subset \mathrm{DTIME}_*(f)$.
- 2. Definition. $g \in o(f)$ iff, for all $\varepsilon \ge 0$, there is some $x_0 \ge 0$ such that $g(x) \le \varepsilon \cdot f(x)$ for all $x \ge x_0$. Note that possibly $\varepsilon < 1$.
- 3. We have that $2^n \cdot \log(2^n) \in o(2^{2n})$ since, for all $\varepsilon \ge 0$, there is some $x_0 \ge 0$ such that $2^x \cdot x \le \varepsilon \cdot 2^{2x}$ for all $x \ge x_0$. Note that $\frac{2^x \cdot x}{2^x} = x$ and $\frac{\varepsilon \cdot 2^{2x}}{2^x} = \varepsilon \cdot 2^x$.
- 4. By (1) and (3), $DTIME_*(2^n) \subset DTIME_*(2^{2n})$.

 NTime(f(n)) is the class of all languages L for which there is an O(f(n))-time bounded nondeterministic Turing machine deciding L.

(2) DSpace(f(n)) is the class of all languages L for which there is an O(f(n))-space bounded Turing machine deciding L.

Solution 3. We show that $NTIME(n) \subset PSPACE$.

- 1. $NTIME(n) \subseteq NSPACE(n)$ because any TM that operates in time *n* on every computation branch can use at most *n* tape cells on every branch.
- 2. By Savitch's Theorem: $NSPACE(n) \subseteq SPACE(n^2)$.
- 3. Space Hierarchy Theorem. If $f, g : \mathbb{N} \to \mathbb{N}$ such that f is space-constructible and $g \in o(f)$, then $DSPACE(g) \subset DSPACE(f)$.
- 4. By (3): $SPACE(n^2) \subset SPACE(n^3)$. Note that $n^2 \in o(n^3)$.
- 5. By (1), (2), (4), and $\text{SPACE}(n^3) \subseteq \text{PSPACE}$: $\text{NTIME}(n) \subset \text{PSPACE}$.

Show that there exists a function that is not time-constructible.

Definition 12.5: A function $t : \mathbb{N} \to \mathbb{N}$ is time-constructible if $t(n) \ge n$ for all n and there exists a TM that computes t(n) in unary in time O(t(n)).

A function $s : \mathbb{N} \to \mathbb{N}$ is space-constructible if $s(n) \ge \log n$ and there exists a TM that computes s(n) in unary in space O(s(n)).

Solution. The proof of the Gap Theorem explicitly constructs one.

We consider an (effectively computable) enumeration of all Turing machines:

 $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \dots$

Definition 13.6: For arbitrary numbers $i, a, b \in \mathbb{N}$ with $a \leq b$, we say that $\operatorname{Gap}_i(a, b)$ is true if:

- Given any TM \mathcal{M}_j with $0 \le j \le i$,
- and any input string *w* for \mathcal{M}_j of length |w| = i,

 \mathcal{M}_{i} on input w will halt in less than a steps, in more than b steps, or not at all.

Lemma 13.7: Given $i, a, b \ge 0$ with $a \le b$, it is decidable if $\text{Gap}_i(a, b)$ holds.

Proof: We just need to ensure that none of the finitely many TMs $\mathcal{M}_0, \ldots, \mathcal{M}_i$ will halt after *a* to *b* steps on any of the finitely many inputs of length *i*. This can be checked by simulating TM runs for at most *b* steps.

Find the Gap

We can now define the value f(n) of f for some $n \ge 0$:

Let in(n) denote the number of runs of TMs $\mathcal{M}_0, \ldots, \mathcal{M}_n$ on words of length *n*, i.e.,

 $in(n) = |\Sigma_0|^n + \cdots + |\Sigma_n|^n$ where Σ_i is the input alphabet of \mathcal{M}_i

We recursively define a series of numbers $k_0, k_1, k_2, ...$ by setting $k_0 = 2n$ and $k_{i+1} = 2^{k_i}$ for $i \ge 0$, and we consider the following list of intervals:

$$[k_0 + 1, k_1], [k_1 + 1, k_2], \cdots, [k_{in(n)} + 1, k_{in(n)+1}]$$

$$\| \| \| \|$$

$$[2n + 1, 2^{2n}], [2^{2n} + 1, 2^{2^{2n}}], \cdots, [2^{\frac{2^n}{2^n}} + 1, 2^{2^{\frac{2^n}{2^n}}}]$$

Let f(n) be the least number k_i with $0 \le i \le in(n)$ such that $\text{Gap}_n(k_i + 1, k_{i+1})$ is true.

Consider the function pad: $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ defined as $pad(s, \ell) = s \#^j$, where $j = max(0, \ell - |s|)$. In other words, $pad(s, \ell)$ adds enough copies of a fresh symbol # to the end of s so that the length is at least ℓ .

Examples.

- ▶ pad(01011,8) = 01011###
- ▶ pad(01011,12) = 01011#######
- ▶ pad(01011, 3) = 01011

For a language $\mathbf{A} \subseteq \Sigma^*$ and a function $f : \mathbb{N} \to \mathbb{N}$, let

$$\mathsf{pad}(\mathbf{A}, f) = \{ \mathsf{pad}(s, f(|s|)) \mid s \in \mathbf{A} \}.$$

Let pad: $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ be defined as pad $(s, \ell) = s \#^j$, where $j = \max(0, \ell - |s|)$. For $\mathbf{A} \subseteq \Sigma^*$ and $f : \mathbb{N} \to \mathbb{N}$, let pad $(\mathbf{A}, f) = \{ pad(s, f(|s|)) \mid s \in \mathbf{A} \}$.

Solution 1. We show that, if $\mathbf{A} \in DTIME(n^6)$, then $pad(\mathbf{A}, n^2) \in DTIME(n^3)$.

- 1. Let \mathcal{M} be a DTM deciding **A** in $O(n^6)$ time.
- 2. Let \mathcal{M}' be the TM that, on input w, performs the following computation: 2.1 Reject if w is not of the form $w = s \#^{\ell}$ with $|w| = |s|^2$.
 - 2.2 Simulate ${\cal M}$ on input ${\it s}$ and return the result of the simulation.
- 3. The check in (2.1) can be done in linear time using a 3-tape TM (discuss). Hence, it can be done in $O(n^2)$ with a single tape TM.
- 4. Simulating \mathcal{M} on s is $O(|s|^6) = O(|w|^3) = O(n^3)$.
- 5. \mathcal{M}' runs in $O(n^3)$.

6. \mathcal{M}' accepts $s \#^{\ell}$ iff $|s| = \sqrt{|s \#^{\ell}|}$ and $s \in \mathbf{A}$. That is, $\mathcal{L}(\mathcal{M}') = \mathsf{pad}(\mathbf{A}, n^2)$.

Remarks:

- ► The choice of the particular numbers 2, 3, and 6 is arbitrary.
- ▶ We could make an analogous argument for space instead of time.
- The converse is also true.

Let pad: $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ be defined as pad $(s, \ell) = s \#^j$, where $j = \max(0, \ell - |s|)$. For $\mathbf{A} \subseteq \Sigma^*$ and $f : \mathbb{N} \to \mathbb{N}$, let pad $(\mathbf{A}, f) = \{ pad(s, f(|s|)) \mid s \in \mathbf{A} \}$.

Solution 2. We show that if NEXPTIME \neq EXPTIME, then $P \neq NP$.

$$\begin{split} \textbf{A} \in \mathrm{DTIME}(2^{n^d}) \implies \mathsf{pad}(\textbf{A}, 2^{n^d}) \in \mathrm{P}, \\ \mathsf{pad}(\textbf{A}, 2^{n^d}) \in \mathrm{DTIME}(n^k) \implies \textbf{A} \in \mathrm{ExpTIME} \end{split}$$

for all $k, d \in \mathbb{N}$. This also holds true for NTIME instead of DTIME. Then, assuming P = NP, we can infer

$$\begin{array}{l} \mathbf{A} \in \operatorname{NExpTIME} \implies \mathbf{A} \in \operatorname{NTIME}(2^{n^d}) \text{ for some } d \in \mathbb{N} \\ \implies \operatorname{pad}(\mathbf{A}, 2^{n^d}) \in \operatorname{NP} \text{ for some } d \in \mathbb{N} \\ \implies \operatorname{pad}(\mathbf{A}, 2^{n^d}) \in \operatorname{P} \text{ for some } d \in \mathbb{N} \\ \implies \operatorname{pad}(\mathbf{A}, 2^{n^d}) \in \operatorname{DTIME}(n^k) \text{ for some } d, k \in \mathbb{N} \\ \implies \mathbf{A} \in \operatorname{ExpTIME} \end{array}$$

Let pad: $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ be defined as pad $(s, \ell) = s \#^j$, where $j = \max(0, \ell - |s|)$. For $\mathbf{A} \subseteq \Sigma^*$ and $f : \mathbb{N} \to \mathbb{N}$, let pad $(\mathbf{A}, f) = \{ pad(s, f(|s|)) \mid s \in \mathbf{A} \}$.

Solution 3. We show that, for every $\mathbf{A} \subseteq \Sigma^*$ and $k \in \mathbb{N}$, $\mathbf{A} \in \mathcal{P}$ iff $pad(\mathbf{A}, n^k) \in \mathcal{P}$.

Let pad: $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ be defined as pad $(s, \ell) = s \#^j$, where $j = \max(0, \ell - |s|)$. For $\mathbf{A} \subseteq \Sigma^*$ and $f : \mathbb{N} \to \mathbb{N}$, let pad $(\mathbf{A}, f) = \{ pad(s, f(|s|)) \mid s \in \mathbf{A} \}$.

Solution 4. We show that $P \neq DSPACE(n)$.

- 1. Assume P = DSPACE(n).
- By the space hierarchy theorem: There is some language
 A ∈ DSPACE(n²) \ DSPACE(n).
- 3. $pad(\mathbf{A}, n^2) \in DSPACE(n)$.
- 4. $pad(\mathbf{A}, n^2) \in \mathbf{P}$.
- 5. $\mathbf{A} \in \mathbf{P}$.
- 6. $\mathbf{A} \in \mathrm{DSPACE}(n)$.

Let pad: $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ be defined as pad $(s, \ell) = s \#^j$, where $j = \max(0, \ell - |s|)$. For $\mathbf{A} \subseteq \Sigma^*$ and $f : \mathbb{N} \to \mathbb{N}$, let pad $(\mathbf{A}, f) = \{ pad(s, f(|s|)) \mid s \in \mathbf{A} \}$.

Solution 5. We show that $NP \neq DSPACE(n)$.

- 1. We can make a similar argument to the one from (3) to show the following: for every $\mathbf{A} \subseteq \Sigma^*$ and $k \in \mathbb{N}$, we have that $\mathbf{A} \in \text{NP}$ iff $\text{pad}(\mathbf{A}, n^k) \in \text{NP}$.
- 2. Then, make a similar argument to the one from (4) to show $NP \neq DSPACE(n)$.

You are given two oracles and one of them is the set **TQBF**, but you do not know which one. Design a polynomial algorithm that decides **TQBF** using these oracles.

- Given a QBF formula $\phi = \exists y_1 \forall y_2 \dots \exists y_{m-1} \forall y_m . \psi(y_1, \dots, y_m)$
- Query φ with both oracles. Accept φ if both answer "true", reject φ if both answer "false", and otherwise play a game with two players: the ∃-player, that uses the accepting oracle, and the ∀-player, that uses the rejecting oracle.
- The ∃-player plays in turns i ∈ {1,3,...,m-1} of the game. This player asks his oracle both for b = 0 and b = 1 whether the formula ∃y_i∀y_{i+1}...Q_my_m.ψ(x₁,...,x_{i-1}, b, y_{i+1},...,y_m) is true or false. If both values are "false" then reject φ (the oracle is acting inconsistently). Otherwise, let x_i = b for a value b for which the answer was "true".
- The ∀-player plays in turns i ∈ {2,4,...,m} of the game. This player asks his oracle both for b = 0 and b = 1 whether the formula
 ∀y_i∃y_{i+1}...Q_my_m.ψ(x₁,...,x_{i-1}, b, y_{i+1},...,y_m) is true or false. If both values are "true" then accept φ (the oracle is acting inconsistently). Otherwise, let x_i = b for a value b for which the answer was "false".
- Accept ϕ iff $\psi(x_1, \ldots, x_m)$ evaluates to true (no need to use any oracles here!).