
Exercise Sheet 6: Diagonalisation

David Carral

December 11, 2019

Exercise 1

Find the fault in the following proof of P 6= NP.

1. Suppose for a contradiction that P = NP.

2. By (1): since SAT ∈ NP, we have that SAT ∈ P.

3. By (2): there is some k ∈ N with SAT ∈ DTime(nk).

4. Since SAT is NP-hard, we have that L ≤p SAT for every language L ∈ NP.

5. By (3) and (4): NP ⊆ DTime(nk).

6. By (1) and (5): P ⊆ DTime(nk).

7. By the Time Hierarchy Theorem, we have that DTime(nk) ⊂ DTime(nk+1).

8. Conclusions (6) and (7) result in a contradiction. Hence, P 6= NP.

Solution. In the previous argument, we cannot conclude (5) from (3) and (4).

a. By the Time Hierarchy Theorem, there is some A ∈ DTime(nk+1) \DTime(nk).

b. By (a): A ∈ P ⊆ NP and hence, A ≤p SAT.

Exercise 2

Show the following.

1. Time(2n) = Time(2n+1)

2. Time∗(2n) ⊂ Time∗(22n)

3. NTime(n) ⊂ PSpace

Exercise 2

Solution 1. We show that Time(2n) = Time(2n+1).

1. Since 2n ∈ O(2n+1), we have that L ∈ O(2n+1) for all L ∈ O(2n).

2. Since 2n+1 ∈ O(2n), we have that L ∈ O(2n) for all L ∈ O(2n+1).
I Definition. g ∈ O(f) iff there are some k , x0 ≥ 0 with g(x) ≤ k · f (x) for all x ≤ x0.
I 2x+1 ≤ k · 2x for all x ≥ x0 with (e.g.) k = 2 and x0 = 0.

Exercise 2

Solution 2. We show that Time∗(2n) ⊂ Time∗(22n).

1. Time Hierarchy Theorem. If f , g : N→ N are such that f is time-constructible
and g · log g ∈ o(f), then DTime∗(g) ⊂ DTime∗(f).

2. Definition. g ∈ o(f) iff, for all ε ≥ 0, there is some x0 ≥ 0 such that
g(x) ≤ ε · f (x) for all x ≥ x0. Note that possibly ε < 1.

3. We have that 2n · log(2n) ∈ o(22n) since, for all ε ≥ 0, there is some x0 ≥ 0 such

that 2x · x ≤ ε · 22x for all x ≥ x0. Note that 2x ·x
2x = x and ε·22x

2x = ε · 2x .

4. By (1) and (3), DTime∗(2n) ⊂ DTime∗(22n).

Exercise 2

Solution 3. We show that NTime(n) ⊂ PSpace.

1. NTime(n) ⊆ NSpace(n) because any TM that operates in time n on every
computation branch can use at most n tape cells on every branch.

2. By Savitch’s Theorem: NSpace(n) ⊆ Space(n2).

3. Space Hierarchy Theorem. If f , g : N→ N such that f is space-constructible and
g ∈ o(f), then DSpace(g) ⊂ DSpace(f).

4. By (3): Space(n2) ⊂ Space(n3). Note that n2 ∈ o(n3).

5. By (1), (2), (4), and Space(n3) ⊆ PSpace: NTime(n) ⊂ PSpace.

Exercise 3

Show that there exists a function that is not time-constructible.

Solution. The proof of the Gap Theorem explicitly constructs one.

Exercise 4

Consider the function pad: Σ∗ × N→ Σ∗#∗ defined as pad(s, `) = s#j , where
j = max(0, `− |s|). In other words, pad(s, `) adds enough copies of a fresh symbol #
to the end of s so that the length is at least `.

Examples.

I pad(01011, 8) = 01011###

I pad(01011, 12) = 01011#######

I pad(01011, 3) = 01011

For a language A ⊆ Σ∗ and a function f : N→ N, let

pad(A, f) = { pad(s, f (|s|)) | s ∈ A }.

Exercise 4
Let pad: Σ∗ × N→ Σ∗#∗ be defined as pad(s, `) = s#j , where j = max(0, `− |s|).
For A ⊆ Σ∗ and f : N→ N, let pad(A, f) = { pad(s, f (|s|)) | s ∈ A }.
Solution 1. We show that, if A ∈ DTime(n6), then pad(A, n2) ∈ DTime(n3).

1. Let M be a DTM deciding A in O(n6) time.

2. Let M′ be the TM that, on input w , performs the following computation:

2.1 Reject if w is not of the form w = s#` with |w | = |s|2.
2.2 Simulate M on input s and return the result of the simulation.

3. The check in (2.1) can be done in linear time using a 3-tape TM (discuss).
Hence, it can be done in O(n2) with a single tape TM.

4. Simulating M on s is O(|s|6) = O(|w |3) = O(n3).

5. M′ runs in O(n3).

6. M′ accepts s#` iff |s| =
√
|s#`| and s ∈ A. That is, L(M′) = pad(A, n2).

Remarks:

I The choice of the particular numbers 2, 3, and 6 is arbitrary.

I We could make an analogous argument for space instead of time.

I The converse is also true.

Exercise 4
Let pad: Σ∗ × N→ Σ∗#∗ be defined as pad(s, `) = s#j , where j = max(0, `− |s|).
For A ⊆ Σ∗ and f : N→ N, let pad(A, f) = { pad(s, f (|s|)) | s ∈ A }.

Solution 2. We show that if NExpTime 6= ExpTime, then P 6= NP.

A ∈ DTime(2n
d
) =⇒ pad(A, 2n

d
) ∈ P,

pad(A, 2n
d
) ∈ DTime(nk) =⇒ A ∈ ExpTime

for all k , d ∈ N. This also holds true for NTime instead of DTime.

Then, assuming P = NP, we can infer

A ∈ NExpTime =⇒ A ∈ NTime(2n
d
) for some d ∈ N

=⇒ pad(A, 2n
d
) ∈ NP for some d ∈ N

=⇒ pad(A, 2n
d
) ∈ P for some d ∈ N

=⇒ pad(A, 2n
d
) ∈ DTime(nk) for some d , k ∈ N

=⇒ A ∈ ExpTime

Exercise 4

Let pad: Σ∗ × N→ Σ∗#∗ be defined as pad(s, `) = s#j , where j = max(0, `− |s|).
For A ⊆ Σ∗ and f : N→ N, let pad(A, f) = { pad(s, f (|s|)) | s ∈ A }.

Solution 3. We show that, for every A ⊆ Σ∗ and k ∈ N, A ∈ P iff pad(A, nk) ∈ P.

I A ∈ P implies pad(A, nk) ∈ P.

1. Let A ⊆ Σ∗ and k ∈ N.
2. If A ∈ P, then A ∈ DTime(n`) for some ` ∈ N.
3. pad(A, nk) ∈ DTime(nd`/ke) ⊆ P (analogous argument to the one from part 1).

I pad(A, nk) ∈ P implies A ∈ P.

1. If pad(A, nk) ∈ P, then pad(A, nk) ∈ DTime(n`) for some ` ∈ N.
2. Therefore, A ∈ DTime(n`·k) ⊆ P.

Exercise 4

Let pad: Σ∗ × N→ Σ∗#∗ be defined as pad(s, `) = s#j , where j = max(0, `− |s|).
For A ⊆ Σ∗ and f : N→ N, let pad(A, f) = { pad(s, f (|s|)) | s ∈ A }.

Solution 4. We show that P 6= DSpace(n).

1. Assume P = DSpace(n).

2. By the space hierarchy theorem: There is some language
A ∈ DSpace(n2) \DSpace(n).

3. pad(A, n2) ∈ DSpace(n).

4. pad(A, n2) ∈ P.

5. A ∈ P.

6. A ∈ DSpace(n).

Exercise 4

Let pad: Σ∗ × N→ Σ∗#∗ be defined as pad(s, `) = s#j , where j = max(0, `− |s|).
For A ⊆ Σ∗ and f : N→ N, let pad(A, f) = { pad(s, f (|s|)) | s ∈ A }.

Solution 5. We show that NP 6= DSpace(n).

1. We can make a similar argument to the one from (3) to show the following: for
every A ⊆ Σ∗ and k ∈ N, we have that A ∈ NP iff pad(A, nk) ∈ NP.

2. Then, make a similar argument to the one from (4) to show NP 6= DSpace(n).

Exercise 5
You are given two oracles and one of them is the set TQBF, but you do not know
which one. Design a polynomial algorithm that decides TQBF using these oracles.

I Given a QBF formula φ = ∃y1∀y2 . . . ∃ym−1∀ym.ψ(y1, . . . , ym)

I Query φ with both oracles. Accept φ if both answer “true”, reject φ if both
answer “false”, and otherwise play a game with two players: the ∃-player, that
uses the accepting oracle, and the ∀-player, that uses the rejecting oracle.

I The ∃-player plays in turns i ∈ {1, 3, . . . ,m− 1} of the game. This player asks his
oracle both for b = 0 and b = 1 whether the formula
∃yi∀yi+1 . . .Qmym.ψ(x1, . . . , xi−1, b, yi+1, . . . , ym) is true or false. If both values
are “false” then reject φ (the oracle is acting inconsistently). Otherwise, let
xi = b for a value b for which the answer was “true”.

I The ∀-player plays in turns i ∈ {2, 4, . . . ,m} of the game. This player asks his
oracle both for b = 0 and b = 1 whether the formula
∀yi∃yi+1 . . .Qmym.ψ(x1, . . . , xi−1, b, yi+1, . . . , ym) is true or false. If both values
are “true” then accept φ (the oracle is acting inconsistently). Otherwise, let
xi = b for a value b for which the answer was “false”.

I Accept φ iff ψ(x1, . . . , xm) evaluates to true (no need to use any oracles here!).

