Exercise Sheet 6: Diagonalisation

David Carral

December 11, 2019

Exercise 1

Find the fault in the following proof of P # NP.

1.

©No R~ W

Suppose for a contradiction that P = NP.

By (1): since SAT € NP, we have that SAT € P.

By (2): there is some k € N with SAT € DT1ME(n).

Since SAT is NP-hard, we have that L <, SAT for every language L € NP.
By (3) and (4): NP C DTimE(nk).

By (1) and (5): P C DTmME(n¥).

By the Time Hierarchy Theorem, we have that DTIME(n¥) C DTME(nk+1).
Conclusions (6) and (7) result in a contradiction. Hence, P # NP.

Solution. In the previous argument, we cannot conclude (5) from (3) and (4).
a. By the Time Hierarchy Theorem, there is some A € DTIME(nk*1) \ DTimE(nk).
b. By (a): A € P C NP and hence, A <, SAT.

Exercise 2

Show the following.
1. TiME(2") = TiME(2™H)
2. TIMEL(2") C TIME,(22")
3. NTmME(n) C PSPACE

Exercise 2

Definition 5.7: Let f : N — R* be a function.

(1) DTime(f(n)) is the class of all languages L for which there is an O(f(n))-time
bounded Turing machine deciding L.

(2) DSpace(f(n)) is the class of all languages L for which there is an
O(f(n))-space bounded Turing machine deciding L.

\ Notation 5.8: Sometimes Time(f(n)) is used instead of DTime(f(n)). \

Solution 1. We show that TiME(2") = TiME(2"1).
1. Since 2" € O(2"*1), we have that L € O(2"*1) for all L € O(2").
2. Since 2"t € O(2"), we have that L € O(2") for all L € O(2"+1).

» Definition. g € O(f) iff there are some k, xp > 0 with g(x) < k- f(x) for all x < xp.
» 2XF1 < k. 2% for all x > xp with (e.g.) k =2 and xp = 0.

Exercise 2

Example 12.2: We will use, e.g., the following resources]|
e DTime time used by a deterministic 1-tape TM
e DTime, time used by a deterministic k-tape TM
e DTime. time used by a deterministic TM with any number of tapes

Solution 2. We show that TIME,(2") C TIME,(22").

1. Time Hierarchy Theorem. If f, g : N — N are such that f is time-constructible
and g - log g € o(f), then DTIME,(g) C DTIME.(f).

2. Definition. g € o(f) iff, for all £ > 0, there is some xp > 0 such that
g(x) <e-f(x) for all x > xg. Note that possibly ¢ < 1.

3. We have that 27 - log(2") € 0(22") since, for all ¢ > 0, there is some xp > 0 such
that 2% - x < & -22% for all x > xo. Note that 5% = x and 22~ = ¢ - 2%,

X

4. By (1) and (3), DTIME,(2") C DTIME,(22").

Exercise 2

(1) NTime(f(n)) is the class of all languages L for which there is an O(f(n))-time
bounded nondeterministic Turing machine deciding L.

(2) DSpace(f(n)) is the class of all languages L for which there is an
O(f (n))-space bounded Turing machine deciding L.

Solution 3. We show that NTIME(n) C PSPACE.

1. NTiME(n) C NSPACE(n) because any TM that operates in time n on every
computation branch can use at most n tape cells on every branch.

2. By Savitch's Theorem: NSPACE(n) C SPACE(n?).

3. Space Hierarchy Theorem. If f, g : N — N such that f is space-constructible and
g € o(f), then DSPACE(g) C DSPACE(f).

4. By (3): Space(n?) C SPACE(n3). Note that n? € o(n®).
5. By (1), (2), (4), and SpACE(n3) C PSPACE: NTIME(n) C PSPACE.

Exercise 3

Show that there exists a function that is not time-constructible.

Definition 12.5: A function r : N — N is time-constructible if #(n) > n for all n and
there exists a TM that computes #(n) in unary in time O(#(n)).

A function s : N — N is space-constructible if s(n) > logn and there exists a TM
that computes s(n) in unary in space O(s(n)).

Solution. The proof of the Gap Theorem explicitly constructs one.

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

MOaMlaM27"'

Definition 13.6: For arbitrary numbers i,a,b € N with a < b, we say that
Gap;(a, b) is true if:

e Given any TM M; with 0 <j <,
e and any input string w for M; of length |w| = i,

M; on input w will halt in less than a steps, in more than b steps, or not at all.

F.emma 13.7: Given i,a,b > 0 with a < b, it is decidable if Gap;(a, b) holds. \

Proof: We just need to ensure that none of the finitely many TMs M, ..., M; will halt

after a to b steps on any of the finitely many inputs of length i. This can be checked by
simulating TM runs for at most b steps. O

Find the Gap

We can now define the value f(n) of f for some n > 0:
Let in(n) denote the number of runs of TMs M, ..., M, on words of length n, i.e.,
inm) = |Zo|" +---+|Z,]" where X; is the input alphabet of M;

We recursively define a series of numbers ko, ky, ko, ... by setting ko = 2n and k;41 = 2ki
for i > 0, and we consider the following list of intervals:

[ko + 1, k1], ki + 1, k2], -+ [kingy + 1, Kingy+1]

Il Il Il
n 2n

2n+1,22], 22 +1,22"], -, [2° +1,22]

\ Let f(n) be the least number k; with 0 <i < in(n) such that Gap,(k; + 1, k;11) is true. \

Exercise 4

Consider the function pad: ¥* x N — *#* defined as pad(s, £) = s#/, where
J = max(0,¢ —|s|). In other words, pad(s,¢) adds enough copies of a fresh symbol #
to the end of s so that the length is at least /.

Examples.
» pad(01011,8) = O1011###

> pad(01011,12) = OL011## #4H 44
» pad(01011,3) = 01011

For a language A C ¥* and a function f: N — N, let

pad(A, f) = {pad(s,f(|s|)) | s€ A}.

Exercise 4
Let pad: ¥* x N — Z*#* be defined as pad(s,f) = s#/, where j = max(0,¢ — |s|).
For ACY*and f: N— N, let pad(A,f) = {pad(s,f(|s])) |s€ A}.
Solution 1. We show that, if A € DTME(n®), then pad(A, n?) € DTME(n?).

1. Let M be a DTM deciding A in O(n®°) time.
2. Let M’ be the TM that, on input w, performs the following computation:

2.1 Reject if w is not of the form w = s#* with |w| = |s|?.
2.2 Simulate M on input s and return the result of the simulation.

3. The check in (2.1) can be done in linear time using a 3-tape TM (discuss).
Hence, it can be done in O(n?) with a single tape TM.

4. Simulating M on s is O(|s|®) = O(|w|®) = O(n®).

5. M’ runs in O(nd).

6. M’ accepts s#! iff |s| = \/|s#¢| and s € A. That is, L(M’) = pad(A, n?).
Remarks:

» The choice of the particular numbers 2, 3, and 6 is arbitrary.

» We could make an analogous argument for space instead of time.

» The converse is also true.

Exercise 4

Let pad: X* x N — Y*#* be defined as pad(s,¢) = s#/, where j = max(0,¢ — |s]|).
For ACY*and f: N— N, let pad(A, f) = { pad(s,f(|s])) |s€ A}.

Solution 2. We show that if NExpTIME # EXPTIME, then P # NP.

A € DTIME(2™) = pad(A,2") € P,
pad(A,2") € DTIME(n¥) = A € ExpTIME

for all k,d € N. This also holds true for NTIME instead of DTIME.

Then, assuming P = NP, we can infer

A € NEXPTIME = A€ NTIME(Z”d) for some d € N
— pad(A,2”d) € NP for some d € N
= pad(A,2”d) € P for some d € N

— pad(A,2”d) € DTIME(n¥) for some d, k € N
—> A € EXPTIME

Exercise 4

Let pad: X* x N — Y*#* be defined as pad(s,¢) = s#/, where j = max(0,¢ — |s]).
For ACY¥*and f: N— N, let pad(A, f) = {pad(s,f(|s|])) | s€ A}.

Solution 3. We show that, for every A C ¥* and k € N, A € P iff pad(A, n¥) € P.

» A € P implies pad(A, n¥) € P.

1. Let ACX* and k € N.

2. If A€ P, then A € DTIME(n") for some £ € N.

3. pad(A, n¥) € DTiME(n/*k1) C P (analogous argument to the one from part 1).
» pad(A, nk) € P implies A € P.

1. If pad(A, n*) € P, then pad(A, nk) € DTiME(n?) for some £ € N.

2. Therefore, A € DTME(n" k) C P.

Exercise 4

Let pad: ©* x N — T*#* be defined as pad(s, /) = s#/, where j = max(0, £ — |s|).
For ACY*and f: N— N, let pad(A, f) = { pad(s, f(|s|)) | s€ A}.
Solution 4. We show that P # DSPACE(n).

1. Assume P = DSPACE(n).

2. By the space hierarchy theorem: There is some language
A € DSpacE(n?) \ DSPACE(n).

pad(A, n?) € DSPACE(n).
pad(A, n?) € P.

AcP.

A € DSPACE(n).

o kW

Exercise 4

Let pad: X* x N — Y*#* be defined as pad(s,¢) = s#/, where j = max(0,¢ — |s]).
For ACY*and f: N— N, let pad(A, f) = { pad(s,f(|s])) | s€ A}.

Solution 5. We show that NP # DSPACE(n).

1. We can make a similar argument to the one from (3) to show the following: for
every A C ¥* and k € N, we have that A € NP iff pad(A, n¥) € NP.

2. Then, make a similar argument to the one from (4) to show NP # DSPACE(n).

Exercise 5

You are given two oracles and one of them is the set TQBF, but you do not know
which one. Design a polynomial algorithm that decides TQBF using these oracles.

» Given a QBF formula ¢ = 3y1Vys ... Jym—1Yym- ¥ (y1, .., Ym)

> Query ¢ with both oracles. Accept ¢ if both answer “true”, reject ¢ if both
answer “false”, and otherwise play a game with two players: the 3-player, that
uses the accepting oracle, and the V-player, that uses the rejecting oracle.

» The 3-player plays in turns i € {1,3,..., m — 1} of the game. This player asks his
oracle both for b = 0 and b = 1 whether the formula
yiVyis1 ... QmYm-¥(x1, ..., Xi—1, b, Yi+1,---,¥m) is true or false. If both values
are “false” then reject ¢ (the oracle is acting inconsistently). Otherwise, let
Xx; = b for a value b for which the answer was “true”.

» The V-player plays in turns i € {2,4,..., m} of the game. This player asks his
oracle both for b = 0 and b = 1 whether the formula
Vyidyiv1 - Qmym-¥(Xx1, ..., Xi—1, b, ¥it1,--.,¥m) is true or false. If both values
are “true” then accept ¢ (the oracle is acting inconsistently). Otherwise, let
x; = b for a value b for which the answer was “false”.

» Accept ¢ iff ¥(x1,...,xm) evaluates to true (no need to use any oracles here!).

