
This file contains the exercises, hints, and solutions for Chapter 6 of the
book ”Introduction to the Design and Analysis of Algorithms,” 2nd edition, by
A. Levitin. The problems that might be challenging for at least some students
are marked by �; those that might be difficult for a majority of students are
marked by � .

Exercises 6.1

1. Recall that the median of a list of n numbers is defined as its �n/2�
smallest element. (The median is larger than one half the elements and
is smaller than the other half.) Design a presorting-based algorithm for
finding the median and determine its efficiency class.

2. Consider the problem of finding the distance between the two closest num-
bers in an array of n numbers. (The distance between two numbers x and
y is computed as |x− y|.)

a. Design a presorting-based algorithm for solving this problem and de-
termine its efficiency class.

b. Compare the efficiency of this algorithm with that of the brute-force
algorithm (see Problem 9 in Exercises 1.2).

3. Let A = {a1,..., an} and B = {b1, ..., bm} be two sets of numbers. Consider
the problem of finding their intersection, i.e., the set C of all the numbers
that are in both A and B.

a. Design a brute-force algorithm for solving this problem and deter-
mine its efficiency class.

b. Design a presorting-based algorithm for solving this problem and de-
termine its efficiency class.

4. Consider the problem of finding the smallest and largest elements in an
array of n numbers.

a. Design a presorting-based algorithm for solving this problem and de-
termine its efficiency class.

b. Compare the efficiency of the three algorithms: (i) the brute-force
algorithm, (ii) this presorting-based algorithm, and (iii) the divide-and-
conquer algorithm (see Problem 2 in Exercises 4.1).

5. Show that the average-case efficiency of one-time searching by the algo-
rithm that consists of the most efficient comparison-based sorting algo-
rithm followed by binary search is inferior to the average-case efficiency of
sequential search.

1

6. Estimate how many searches will be needed to justify time spend on pre-
sorting an array of 103 elements if sorting is done by mergesort and search-
ing is done by binary search. (You may assume that all searches are for
elements known to be in the array.) What about an array of 106 elements?

7. To sort or not to sort? Design a reasonably efficient algorithm for solving
each of the following problems and determine its efficiency class.

a. You are given n telephone bills and m checks sent to pay the bills
(n ≥ m). Assuming that telephone numbers are written on the checks,
find out who failed to pay. (For simplicity, you may also assume that
only one check is written for a particular bill and that it covers the bill in
full.)

b. You have a file of n student records indicating each student’s num-
ber, name, home address, and date of birth. Find out the number of
students from each of the 50 U.S. states.

8. � Given a set of n ≥ 3 points in the Cartesian plane, connect them in a
simple polygon, i.e., a closed path through all the points so that its line
segments (the polygon’s edges) do not intersect (except for neighboring
edges at their common vertex). For example,

P
5

P
3

P
6

P
1

P
2

P
4

=⇒

P5

P
3

P
6

P
1

P
4

P
2

a. Does the problem always have a solution? Does it always have a unique
solution?

b. Design a reasonably efficient algorithm for solving this problem and
indicate its efficiency class.

9. � You have an array of n numbers and a number s. Find out whether
the array contains two elements whose sum is s. (For example, for the
array 5, 9, 1, 3 and s = 6, the answer is yes, but for the same array and
s = 7, the answer is no.) Design an algorithm for this problem with a
better than quadratic time efficiency.

10. � You have a list of n open intervals (a1, b1), (a2, b2),..., (an, bn) on the

2

real line. (An open interval (a, b) comprises all the points strictly between
its endpoints a and b, i.e., (a, b) = {x| a < x < b}.) Find the maximal
number of these intervals that have a common point. For example, for
the intervals (1, 4), (0, 3), (-1.5, 2), (3.6, 5), this maximal number is 3.
Design an algorithm for this problem with a better than quadratic time
efficiency.

11. a. Design an efficient algorithm for finding all sets of anagrams in a large
file such as a dictionary of English words [Ben00]. For example, eat, ate,
and tea belong to one such a set.

b. Write a program implementing the algorithm.

3

Hints to Exercises 6.1

1. The algorithm is suggested by the problem’s statement. Its analysis is
similar to the examples discussed in this section.

2. This problem is similar to one of the examples in this section.

3. a. Compare every element in one set with all the elements in the other.

b. In fact, you can use presorting in three different ways: sort elements of
just one of the sets, sort elements of each of the sets separately, and sort
elements of the two sets together.

4. a. How do we find the smallest and largest elements in a sorted list?

b. The brute-force algorithm and the divide-and-conquer algorithm are
both linear.

5. Use the known results about the average-case efficiencies of the algorithms
in this question.

6. Assume that sorting requires about n log2 n comparisons. Use the known
results about the number of comparisons made, on the average, in a suc-
cessful search by binary search and by sequential search.

7. a. The problem is similar to one of the preceding problems in these exer-
cises.

b. How would you solve this problem if the student information were
written on index cards? Better yet, think how somebody else, who has
never taken a course on algorithms but possesses a good dose of common
sense, would solve this problem.

8. a. Many problems of this kind have exceptions for one particular config-
uration of points. As to the question about a solution’s uniqueness, you
can get the answer by considering a few small “random” instances of the
problem.

b. Construct a polygon for a few small “random” instances of the problem.
Try to construct polygons in some systematic fashion.

9. It helps to think about real numbers as ordered points on the real line.
Considering the special case of s = 0, with a given array containing both
negative and positive numbers, might be helpful, too.

10. After sorting the ai’s and bi’s, the problem can be solved in linear time.

11. Use the presorting idea twice.

4

Solutions to Exercises 6.1

1. Sort the list and then simply return the �n/2�th element of the sorted list.
Assuming the efficiency of the sorting algorithm is in O(n logn), the time
efficiency of the entire algorithm will be in

O(n logn) + Θ(1) = O(n logn).

2. a. Sort the array first and then scan it to find the smallest difference
between two successive elements A[i] and A[i+ 1] (0 ≤ i ≤ n− 2).

b. The time efficiency of the brute-force algorithm is in Θ(n2) because
the algorithm considers n(n− 1)/2 pairs of the array’s elements. (In the
crude version given in Problem 9 of Exercises 1.2, the same pair is con-
sidered twice but this doesn’t change the efficiency’s order, of course.) If
the presorting is done with a O(n logn) algorithm, the running time of
the entire algorithm will be in

O(n logn) + Θ(n) = O(n logn).

3. a. Initialize a list to contain elements of C = A ∩B to empty. Compare
every element ai in A with successive elements of B: if ai = bj , add this
value to the list C and proceed to the next element in A. (In fact, if
ai = bj , bj need not be compared with the remaining elements in A and
may be deleted from B.) In the worst case of input sets with no common
elements, the total number of element comparisons will be equal to nm,
putting the algorithm’s efficiency in O(nm).

b. First solution: Sort elements of one of the sets, say, A, stored in
an array. Then use binary search to search for each element of B in the
sorted array A: if a match is found, add this value to the list C. If sorting
is done with a O(n logn) algorithm, the total running time will be in

O(n logn) +mO(logn) = O((m+ n) logn).

Note that the efficiency formula implies that it is more efficient to sort the
smaller one of the two input sets.

Second solution: Sort the lists representing sets A and B, respectively.
Scan the lists in the mergesort-like manner but output only the values
common to the two lists. If sorting is done with a O(n logn) algorithm,
the total running time will be in

O(n logn) +O(m logm) +O(n+m) = O(s log s) where s = max{n,m}.

5

Third solution: Combine the elements of both A and B in a single list
and sort it. Then scan this sorted list by comparing pairs of its consec-
utive elements: if Li = Li+1, add this common value to the list C and
increment i by two. If sorting is done with an n logn algorithm, the total
running time will be in

O((n+m) log(n+m)) + Θ(n+m) = O(s log s) where s = max{n,m}.

4. a. Sort the list and return its first and last elements as the values of
the smallest and largest elements, respectively. Assuming the efficiency
of the sorting algorithm used is in O(n logn), the time efficiency of the
entire algorithm will be in

O(n logn) + Θ(1) + Θ(1) = O(n logn).

b. The brute-force algorithm and the divide-and-conquer algorithm are
both linear, and, hence, superior to the presorting-based algorithm.

5. Since the average-case efficiency of any comparison-based sorting algo-
rithm is known to be in Ω(n logn) while the average-case efficiency of
binary search is in Θ(logn), the average-case efficiency of the searching
algorithm combining the two will be in

Ω(n logn) + Θ(logn) = Ω(n logn).

This is inferior to the average-case efficiency of sequential search, which is
linear (see Section 2.1).

6. Let k be the smallest number of searches needed for the sort—binary search
algorithm to make fewer comparisons than k searches by sequential search
(for average successful searches). Assuming that a sorting algorithm
makes about n logn comparisons on the average and using the formulas
for the average number of key comparisons for binary search (about log2 n)
and sequential search (about n/2), we get the following inequality

n log2 n+ k log2 n ≤ kn/2.

Thus, we need to find the smallest value of k so that

k ≥
n log2 n

n/2− log2 n
.

Substituting n = 103 into the right-hand side yields kmin = 21; substitut-
ing n = 106 yields kmin = 40.

6

Note: For large values of n, we can simplify the last inequality by elimi-
nating the relatively insignificant term log2 n from the denominator of the
right-hand side to obtain

k ≥
n log2 n

n/2
or k ≥ 2 log2 n.

This inequality would yield the answers of 20 and 40 for n = 103 and
n = 106, respectively.

7. a. The following algorithm will beat the brute-force comparisons of the
telephone numbers on the bills and the checks: Using an efficient sorting
algorithm, sort the bills and sort the checks. (In both cases, sorting has
to be done with respect to their telephone numbers, say, in increasing or-
der.) Then do a merging-like scan of the two sorted lists by comparing the
telephone numbers bi and cj on the current bill and check, respectively:
if bi < cj , add bi to the list of unpaid telephone numbers and increment
i; if bi > cj , increment j; if bi = cj , increment both i and j. Stop as
soon as one of the two lists becomes empty and append all the remain-
ing telephone numbers on the bill list, if any, to the list of the unpaid ones.

The time efficiency of this algorithm will be in

O(n logn) +O(m logm) +O(n+m) =
n≥m

O(n logn).

This is superior to the O(nm) efficiency of the brute-force algorithm (but
inferior, for the average case, to solving this problem with hashing dis-
cussed in Section 7.3).

b. Initialize 50 state counters to zero. Scan the list of student records and,
for a current student record, increment the corresponding state counter.
The algorithm’s time efficiency will be in Θ(n), which is superior to any
algorithm that uses presorting of student records by a comparison-based
algorithm.

8. a. The problem has a solution if and only if all the points don’t lie on the
same line. And, if a solution exists, it may not be unique.

b. Find the lowest point P ∗, i.e., the one with the smallest y coordi-
nate. in the set. (If there is a tie, take, say, the leftmost among them,
i.e., the one with the smallest x coordinate.) For each of the other n− 1
points, compute its angle in the polar coordinate system with the origin
at P ∗ and sort the points in increasing order of these angles, breaking ties
in favor of a point closer to P ∗. (Instead of the angles, you can use the

7

line slopes with respect to the horizontal line through P ∗.) Connect the
points in the order generated, adding the last segment to return to P ∗.

P *

Finding the lowest point P ∗ is in Θ(n), computing the angles (slopes)
is in Θ(n), sorting the points according to their angles can be done with a
O(n logn) algorithm. The efficiency of the entire algorithm is inO(n logn).

9. Assume first that s = 0. Then A[i] +A[j] = 0 if and only if A[i] = −A[j],
i.e., these two elements have the same absolute value but opposite signs.
We can check for presence of such elements in a given array in several dif-
ferent ways. If all the elements are known to be distinct, we can simply
replace each element A[i] by its absolute value |A[i]| and solve the element
uniqueness problem for the array of the absolute values in O(n logn) time
with the presorting based algorithm. If a given array can have equal ele-
ments, we can modify our approach as follows: We can sort the array in
nondecreasing order of their absolute values (e.g., -6, 3, -3, 1, 3 becomes
1, 3, -3, 3, -6), and then scan the array sorted in this fashion to check
whether it contains a consecutive pair of elements with the same absolute
value and opposite signs (e.g., 1, 3, -3, 3, -6 does). If such a pair of
elements exists, the algorithm returns yes, otherwise, it returns no.

The case of an arbitrary value of s is reduced to the case of s = 0 by the fol-
lowing substitution: A[i]+A[j] = s if and only if (A[i]−s/2)+(A[j]−s/2) =
0. In other words, we can start the algorithm by subtracting s/2 from
each element and then proceed as described above.

(Note that we took advantage of the instance simplification idea twice:
by reducing the problem’s instance to one with s = 0 and by presorting
the array.)

10. Sort all the ai’s and bj ’s by a O(n logn) algorithm in a single nondecreas-
ing list, treating bj as if it were smaller than ai in case of the tie ai = bj .
Scan the list left to right computing the running difference D between
the number of ai’s and bj ’s seen so far. In other words, initialize D to 0

8

and then increment or decrement it by 1 depending on whether the next
element on the list is a left endpoint ai or a right endpoint bj , respectively.
The maximum value of D is the number in question.

Note 1: One can also implement this algorithm by sorting ai’s and bj ’s
separately and then computing the running difference D by merging-like
processing of the two sorted lists.

Note 2: This solution is suggested by D. Ginat in his paper "Algorith-
mic Pattern and the Case of the Sliding Delta," SIGCSE Bulletin, vol 36,
no. 2, June 2004, pp. 29-33.

11. First, attach to every word in the file–as another field of the word’s
record, for example–its signature defined as the string of the word’s let-
ters in alphabetical order. (Obviously, words belong to the same anagram
set if and only if they have the same signature.) Sort the records in al-
phabetical order of their signatures. Scan the list to identify contiguous
subsequences, of length greater than one, of records with the same signa-
ture.

Note: Jon Bentley describes a real system where a similar problem oc-
curred in [Ben00], p.17, Problem 6.

9

Exercises 6.2

1. Solve the following system by Gaussian elimination.

x1 + x2 + x3 = 2

2x1 + x2 + x3 = 3

x1 − x2 + 3x3 = 8.

2. a. Solve the system of the previous question by the LU decomposition
method.

b. From the standpoint of general algorithm design techniques, how would
you classify the LU -decomposition method?

3. Solve the system of Problem 1 by computing the inverse of its coefficient
matrix and then multiplying it by the right-hand side vector.

4. Would it be correct to get the efficiency class of the elimination stage of
Gaussian elimination as follows?

C(n) =
n−1∑
i=1

n∑
j=i+1

n+1∑
k=i

1 =
n−1∑
i=1

(n+ 2− i)(n− i)

=
n−1∑
i=1

[(n+ 2)n− i(2n+ 2) + i2]

=
n−1∑
i=1

(n+ 2)n−
n−1∑
i=1

(2n+ 2)i+
n−1∑
i=1

i2.

Since s1(n) =
∑n−1

i=1 (n + 2)n ∈ Θ(n3), s2(n) =
∑n−1

i=1 (2n + 2)i ∈ Θ(n3),

and s3(n) =
∑n−1

i=1 i2 ∈ Θ(n3), s1(n)− s2(n) + s3(n) ∈ Θ(n3).

5. Write a pseudocode for the back-substitution stage of Gaussian elimination
and show that its running time is in Θ(n2).

6. Assuming that division of two real numbers takes three times longer than
their multiplication, estimate how much faster BetterGaussElimination

is than GaussElimination. (Of course, you should also assume that a
compiler is not going to eliminate the inefficiency in GaussElimination.)

7. a. Give an example of a system of two linear equations in two unknowns
that has a unique solution and solve it by Gaussian elimination.

b. Give an example of a system of two linear equations in two unknowns
that has no solution and apply Gaussian elimination to it.

c. Give an example of a system of two linear equations in two unknowns
that has infinitely many solutions and apply Gaussian elimination to it.

10

8. The Gauss-Jordan elimination method differs from Gaussian elimina-
tion in that the elements above the main diagonal of the coefficient matrix
are made zero at the same time and by the same use of a pivot row as the
elements below the main diagonal.

a. Apply the Gauss-Jordan method to the system of Problem 1 of these
exercises.

b. What general design technique is this algorithm based on?

c.� In general, how many multiplications are made by this method while
solving a system of n equations in n unknowns? How does this compare
with the number of multiplications made by the Gaussian elimination
method in both its elimination and its back-substitution stages?

9. A system Ax = b of n linear equations in n unknowns has a unique solution
if and only if detA �= 0. Is it a good idea to check this condition before
applying Gaussian elimination to a system?

10. a. Apply Cramer’s rule to solve the system of Problem 1 of these exercises.

b. Estimate how many times longer it will take to solve a system of n
linear equations in n unknowns by Cramer’s rule than by Gaussian elimi-
nation. (Assume that all the determinants in Cramer’s rule formulas are
computed independently by Gaussian elimination.)

11. � Lights out This one-person game is played on an n-by-n board com-
posed of 1-by-1 light panels. Each panel has a switch that can be turned
on and off, thereby toggling the on/off state of this and four vertically and
horizontally adjacent panels. (Of course, toggling a corner square affects
the total of three panels, and toggling a noncorner panel on the board’s
border affects the total of four squares.) Given an initial subset of lighted
squares, the goal is to turn all the lights off.

(a) Show that an answer can be found by solving a system of linear
equations with 0/1 coefficients and right-hand sides using modulo 2
arithmetic.

(b) Use Gaussian elimination to solve the 2-by-2 “all-ones” instance of
this problem, where all the panels of the 2-by-2 board are initially
lit.

(c) Use Gaussian elimination to solve the 3-by-3 “all-ones” instance of
this problem, where all the panels of the 3-by-3 board are initially
lit.

11

Hints to Exercises 6.2

1. Trace the algorithm as we did in solving another system in the section.

2. a. Use the Gaussian elimination results as explained in the text.

b. It is one of the varieties of the transform-and-conquer technique. Which
one?

3. To find the inverse, you can either solve the system with three simul-
taneous right-hand side vectors representing the columns of the 3-by-3
identity matrix or use the LU decomposition of the system’s coefficient
matrix found in Problem 2.

4. Though the final answer is correct, its derivation contains an error you
have to find.

5. The pseudocode of this algorithm is quite straightforward. If you are
in doubt, see the section’s example tracing the algorithm. The order of
growth of the algorithm’s running time can be estimated by following the
standard plan for the analysis of nonrecursive algorithms.

6. Estimate the ratio of the algorithm running times, by using the approxi-
mate formulas for the number of divisions and the number of multiplica-
tions in both algorithms.

7. a. This is a “normal” case: one of the two equations should not be pro-
portional to the other.

b. The coefficients of one equation should be the same or proportional
to the corresponding coefficients of the other equation while the right-
hand sides should not.

c. The two equations should be either the same or proportional to each
other (including the right-hand sides).

8. a. Manipulate the matrix rows above a pivot row the same way the rows
below the pivot row are changed.

b. Are the Gauss-Jordan method and Gaussian elimination based on the
same algorithm design technique or on different ones?

c. Derive the formula for the number of multiplications in the Gauss-
Jordan method the same way it was done for Gaussian elimination in
Section 6.2.

9. How long will it take to compute the determinant compared to the time
needed to apply Gaussian elimination to the system?

12

10. a. Apply Cramer’s rule to the system given.

b. How many distinct determinants are there in the Cramer’s rule for-
mulas?

11. a. If xij is the number of times the panel in the ith row and jth column
needs to be toggled in a solution, what can be said about xij? After you
answer this question, show that the binary matrix representing an initial
state of the board can be represented as a linear combination (in modulo
2 arithmetic) of n2 binary matrices each representing the affect of toggling
an individual panel.

b. Set up a system of four equations in four unknowns (see part a) and
solve it by Gaussian elimination performing all operations in modulo-2
arithmetic.

c. If you believe that a system of nine equations in nine unknowns is too
large to solve by hand, write a program to solve the problem.

13

Solutions to Exercises 6.2

1. a. Solve the following system by Gaussian elimination

x1 + x2 + x3 = 2

2x1 + x2 + x3 = 3

x1 − x2 + 3x3 = 8

 1 1 1 2

2 1 1 3
1 −1 3 8

 row 2 - 2

1row 1
row 3 - 1

1row 1

 1 1 1 2

0 −1 −1 −1
0 −2 2 6

row 3 - −2
−1row 2

 1 1 1 2

0 −1 −1 −1
0 0 4 8

Then, by backward substitutions, we obtain the solution as follows:

x3 = 8/4= 2, x2 = (− 1+x3)/(−1) = −1, and x1 = (2−x3−x2)/1 = 1.

2. a. Repeating the elimination stage (or using its results obtained in Prob-
lem 1), we get the following matrices L and U :

L =

 1 0 0

2 1 0
1 2 1

 , U =

 1 1 1

0 −1 −1
0 0 4

 .

On substituting y = Ux into LUx = b, the system Ly = b needs to be
solved first. Here, the augmented coefficient matrix is:

 1 0 0 2

2 1 0 3
1 2 1 8

Its solution is

y1 = 2, y2 = 3− 2y1 = −1, y3 = 8− y1 − 2y2 = 8.

Solving now the system Ux = y, whose augmented coefficient matrix is

 1 1 1 2

0 −1 −1 −1
0 0 4 8

 ,

14

yields the following solution to the system given:

x3 = 2, x2 = (−1 + x3)/(−1) = −1, x1 = 2− x3 − x2 = 1.

b. The most fitting answer is the representation change technique.

3. Solving simultaneously the system with the three right-hand side vectors:

 1 1 1 1 0 0

2 1 1 0 1 0
1 −1 3 0 0 1

 row 2 - 2

1 row 1
row 3 - 1

1 row 1

 1 1 1 1 0 0

0 −1 −1 −2 1 0
0 −2 2 −1 0 1

row 3 - −2
−1 row 1

 1 1 1 1 0 0

0 −1 −1 −2 1 0
0 0 4 3 −2 1

Solving the system with the first right-hand side column

 1

−2
3

yields the following values of the first column of the inverse matrix:

 −1

5
4
3
4

 .

Solving the system with the second right-hand side column

 0

1
−2

yields the following values of the second column of the inverse matrix:

 1

−1
2

−1
2

 .

Solving the system with the third right-hand side column

 0

0
1

15

yields the following values of the third column of the inverse matrix:
 0

−1
4
1
4

 .

Thus, the inverse of the coefficient matrix is
 −1 1 0

5
4 −1

2 −1
4

3
4 −1

2
1
4

 ,

which leads to the following solution to the original system

x = A−1b =

 −1 1 0

5
4 −1

2 −1
4

3
4 −1

2
1
4

 2

3
8

 =

 1

−1
2

 .

4. In general, the fact that f1(n) ∈ Θ(n3), f2(n) ∈ Θ(n3), and f3(n) ∈ Θ(n3)
does not necessarily imply that f1(n)−f2(n)+f3(n) ∈ Θ(n3), because the
coefficients of the highest third-degree terms can cancel each other. As a
specific example, consider f1(n) = n3 + n, f2(n) = 2n3, and f3(n) = n3.
Each of this functions is in Θ(n3), but f1(n)− f2(n) + f3(n) = n ∈ Θ(n).

5. Algorithm GaussBackSub(A[1..n, 1..n+ 1])
//Implements the backward substitution stage of Gaussian elimination
//by solving a given system with an upper-triangular coefficient matrix
//Input: Matrix A[1..n, 1, ..n+ 1], with the first n columns in the upper-
//triangular form
//Output: A solution of the system of n linear equations in n unknowns
//whose coefficient matrix and right-hand side are the first n columns
//of A and its (n+ 1)st column, respectively
for i ← n downto 1 do

temp ← 0.0
for j ← n downto i+ 1

temp ← temp+A[i, j] ∗ x[j]
x[i] ← (A[i, n+ 1]− temp)/A[i, i]

return x

The basic operation is multiplication of two numbers. The number of
times it will be executed is given by the sum

M(n) =
n∑

i=1

n∑
j=i+1

1 =
n∑

i=1

(n− (i+ 1) + 1) =
n∑

i=1

(n− i)

= (n− 1) + (n− 2) + ...+ 1 =
(n− 1)n

2
∈ Θ(n2).

16

6. Let D(G)(n) and M (G)(n) be the numbers of divisions and multiplications
made by GaussElimination, respectively. Using the count formula derived
in Section 6.2, we obtain the following approximate counts:

D(G)(n) = M (G)(n) ≈
n−1∑
i=1

n∑
j=i+1

n+1∑
k=i

1 ≈

1

3
n3.

Let D(BG)(n) and M (BG)(n) be the numbers of divisions and multiplica-
tions made by BetterGaussElimination, respectively. We have the follow-
ing approximations:

D(BG)(n) ≈
n−1∑
i=1

n∑
j=i+1

1 ≈

1

2
n2 and M (BG)(n) = M (G)(n) ≈

1

3
n3.

Let cd and cm be the times of one division and of one multiplication,
respectively. We can estimate the ratio of the running times of the two
algorithms as follows:

T (G)(n)

T (BG)(n)
≈

cdD
(G)(n) + cmM (G)(n)

cdD(BG)(n) + cmM (BG)(n)
≈

cd
1
3n

3 + cm
1
3n

3

cd
1
2n

2 + cm
1
3n

3

≈

cd
1
3n

3 + cm
1
3n

3

cm
1
3n

3
=

cd + cm
cm

=
cd
cm

+ 1 = 4.

7. a. The elimination stage should yield a 2-by-2 upper-triangular matrix
with nonzero coefficients on its main diagonal.

b. The elimination stage should yield a 2-by-2 matrix whose second row
is 0 0 α where α �= 0.

c. The elimination stage should yield a 2-by-2 matrix whose second row
is 0 0 0.

8. a. Solve the following system by the Gauss-Jordan method

x1 + x2 + x3 = 2

2x1 + x2 + x3 = 3

x1 − x2 + 3x3 = 8

 1 1 1 2

2 1 1 3
1 −1 3 8

 row 2 −2

1row 1
row 3 −1

1row 1

 1 1 1 2

0 −1 −1 −1
0 −2 2 6

 row 1 − 1

−1row 2

row 3 −−2
−1row 2

 1 0 0 1
0 −1 −1 −1
0 0 4 8

 row 1 − 0

4row 3
row 2 −−1

4 row 3

 1 0 0 1

0 −1 0 1
0 0 4 8

17

We obtain the solution by dividing the right hand side values by the cor-
responding elements of the diagonal matrix:

x1 = 1/1 = 1, x2 = 1/− 1 = −1, x3 = 8/4 = 2.

b. The Gauss-Jordan method is also an example of an algorithm based

on the instance simplification idea. The two algorithms differ in the kind
of a simpler instance to which they transfer a given system: Gaussian
elimination transforms a system to an equivalent system with an upper-
triangular coefficient matrix whereas the Gauss-Jordan method transforms
it to a system with a diagonal matrix.

c. Here is a basic pseudocode for the Gauss-Jordan elimination:

Algorithm GaussJordan(A[1..n, 1..n], b[1..n])
//Applies Gaussian-Jordan elimination to matrix A of a system’s
//coefficients, augmented with vector b of the system’s right-hand sides
//Input: Matrix A[1..n, 1, ..n] and column-vector b[1..n]
//Output: An equivalent diagonal matrix in place of A with the
//corresponding right-hand side values in its (n+ 1)st column
for i ← 1 to n do A[i, n+ 1] ← b[i] //augment the matrix
for i ← 1 to n do

for j ← 1 to n do

if j �= i
temp ← A[j, i] / A[i, i] //assumes A[i, i] �= 0
for k ← i to n+ 1 do

A[j, k] ← A[j, k]−A[i, k] ∗ temp

The number of multiplications made by the above algorithm can be com-
puted as follows:

M(n) =
n∑

i=1

n∑
j=1
j �=i

n+1∑
k=i

1 =
n∑

i=1

n∑
j=1
j �=i

(n+ 1− i+ 1) =
n∑

i=1

n∑
j=1
j �=i

(n+ 2− i)

=
n∑

i=1

(n+ 2− i)(n− 1) = (n− 1)
n∑

i=1

(n+ 2− i)

= (n− 1)[(n+ 1) + n+ ...+ 2] = (n− 1)[(n+ 1) + n+ ...+ 1− 1]

= (n− 1)[
(n+ 1)(n+ 2)

2
− 1] =

(n− 1)n(n+ 3)

2
≈

1

2
n3.

The total number of multiplications made in both elimination and back-
ward substitution stages of the Gaussian elimination method is equal to

n(n− 1)(2n+ 5)

6
+

(n− 1)n

2
=

(n− 1)n(n+ 4)

3
≈

1

3
n3,

which is about 1.5 smaller than in the Gauss-Jordan method.

18

Note: The Gauss-Jordan method has an important advantage over Gaussian
elimination: being more uniform, it is more suitable for efficient implemen-
tation on a parallel computer.

9. Since the time needed for computing the determinant of the system’s coef-
ficient matrix is about the same as the time needed for solving the system
(or detecting that the system does not have a unique solution) by Gaussian
elimination, computing the determinant of the coefficient matrix to check
whether it is equal to zero is not a good idea from the algorithmic point
of view.

10. a. Solve the following system by Cramer’s rule:

x1 + x2 + x3 = 2

2x1 + x2 + x3 = 3

x1 − x2 + 3x3 = 8

|A| =

∣∣∣∣∣∣
1 1 1
2 1 1
1 −1 3

∣∣∣∣∣∣ = 1 · 1 · 3 + 1 · 1 · 1 + 2 · (−1) · 1− 1 · 1 · 1− 2 · 1 · 3− (−1) · 1 · 1 = −4,

|A1| =

∣∣∣∣∣∣
2 1 1
3 1 1
8 −1 3

∣∣∣∣∣∣ = 2 · 1 · 3 + 1 · 1 · 8 + 3 · (−1) · 1− 8 · 1 · 1− 3 · 1 · 3− (−1) · 1 · 2 = −4,

|A2| =

∣∣∣∣∣∣
1 2 1
2 3 1
1 8 3

∣∣∣∣∣∣ = 1 · 3 · 3 + 2 · 1 · 1 + 2 · 8 · 1− 1 · 3 · 1− 2 · 2 · 3− 8 · 1 · 1 = 4,

|A3| =

∣∣∣∣∣∣
1 1 2
2 1 3
1 −1 8

∣∣∣∣∣∣ = 1 · 1 · 8 + 1 · 3 · 1 + 2 · (−1) · 2− 1 · 1 · 2− 2 · 1 · 8− (−1) · 3 · 1 = −8.

Hence,

x1 =
|A1|

|A|
=

−4

−4
= 1, x2 =

|A2|

|A|
=

4

−4
= −1, x3 =

|A3|

|A|
=

−8

−4
= 2.

b. Cramer’s rule requires computing n+ 1 distinct determinants. If each
of them is computed by applying Gaussian elimination, it will take about
n+1 times longer than solving the system by Gaussian elimination. (The
time for the backward substitution stage was not accounted for in the
preceding argument because of its quadratic efficiency vs. cubic efficiency
of the elimination stage.)

19

11. a. Any feasible state of the board can be described by an n-by-n binary
matrix, in which the element in the ith row and jth column is equal to
1 if and only if the corresponding panel is lit. Let S and F be such
matrices representing the initial and final (all-zeros) boards, respectively.
The impact of toggling the panel at (i, j) on a board represented by a
binary matrix M can be interpreted as the modulo-2 matrix addition
M +Aij , where Aij is the matrix in which the only entries equal to 1 are
those that are in the (i, j) and adjacent to it positions. For example, if
M is a 3-by-3 all-ones matrix representing a 3-by-3 board of all-lit panels,
then the impact of turning off the (2,2) panel can be represented as

M +A22 =

 1 1 1

1 1 1
1 1 1

+

 0 1 0

1 1 1
0 1 0

 =

 1 0 1

0 0 0
1 0 1

 .

Let xij is the number of times the (i, j) panel is toggled in a solution that
transforms the board from a starting state S to a final state F. Since the
ultimate impact of toggling this panel depends only on whether xij is even
or odd, we can assume with no loss in generality that xij is either 0 or 1.
Then a solution to the puzzle can be expressed by the matrix equation

S +
n∑

i,j=1

xijAij = F,

where all the operations are assumed to be performed modulo 2. Taking
into account that F = 0, the all-zeros n-by-n matrix, the last equation is
equivalent to

n∑
i,j=1

xijAij = S.

(The last equation can also be interpreted as transforming the final all-
zero board to the initial board S.)

Note: This solution follows Eric W. Weisstein et al. "Lights Out Puzzle"
fromMathWorld—AWolframWeb Resource at http://mathworld.wolfram.com/LightsOutPuzzle.html

b. The system of linear equations for the instance in question (see part a)
is

x11

[
1 1
1 0

]
+ x12

[
1 1
0 1

]
+ x21

[
1 0
1 1

]
+ x22

[
0 1
1 1

]
=

[
1 1
1 1

]

or

1 · x11 + 1 · x12 + 1 · x21 + 0 · x22 = 1

1 · x11 + 1 · x12 + 0 · x21 + 1 · x22 = 1

1 · x11 + 0 · x12 + 1 · x21 + 1 · x22 = 1

0 · x11 + 1 · x12 + 1 · x21 + 1 · x22 = 1.

20

Solving this system in modulo-2 arithmetic by Gaussian elimination pro-
ceeds as follows:

1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

1 1 1 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 1 1

1 1 1 0 1
0 1 0 1 0
0 0 1 1 0
0 1 1 1 1

1 1 1 0 1
0 1 0 1 0
0 0 1 1 0
0 0 1 0 1

1 1 1 0 1
0 1 0 1 0
0 0 1 1 0
0 0 0 1 1

 .

The backward substitutions yield the solution: x11 = 1, x12 = 1, x21 = 1,
x22 = 1, i.e., each of the four panel switches should be toggled once (in
any order).

c. The solution to this instance of the puzzle is x11 = x13 = x22 =
x31 = x33 = 1 (with all the other components being 0).

21

Exercises 6.3

1. Which of the following binary trees are AVL trees?

5

3

2

6

8

5

4

2

6

8

5

3

1 2

6

97

(a)

1 3 7 9

(b) (c)

2. a. For n = 1, 2, 3, 4, and 5, draw all the binary trees with n nodes that
satisfy the balance requirement of AVL trees.

b. Draw a binary tree of height 4 that can be an AVL tree and has
the smallest number of nodes among all such trees.

3. Draw diagrams of the single L-rotation and of the double RL-rotation in
their general form.

4. For each of the following lists, construct an AVL tree by inserting their
elements successively, starting with the empty tree.

a. 1, 2, 3, 4, 5, 6

b. 6, 5, 4, 3, 2, 1

c. 3, 6, 5, 1, 2, 4

5. a. For an AVL tree containing real numbers, design an algorithm for
computing the range (i.e., the difference between the largest and smallest
numbers in the tree) and determine its worst-case efficiency.

b.� True or false: The smallest and the largest keys in an AVL tree
can always be found on either the last level or the next-to-last level?

6. Write a program for constructing an AVL tree for a given list of n distinct
integers.

7. a. Construct a 2-3 tree for the list C, O, M, P, U, T, I, N, G. (Use the
alphabetical order of the letters and insert them successively starting with
the empty tree.)

b. Assuming that the probabilities of searching for each of the keys (i.e.,
the letters) are the same, find the largest number and the average number
of key comparisons for successful searches in this tree.

22

8. Let TB and T2-3 be, respectively, a classical binary search tree and a 2-3
tree constructed for the same list of keys inserted in the corresponding
trees in the same order. True or false: Searching for the same key in T2-3

always takes fewer or the same number of key comparisons as searching
in TB?

9. For a 2-3 tree containing real numbers, design an algorithm for computing
the range (i.e., the difference between the largest and smallest numbers in
the tree) and determine its worst-case efficiency.

10. Write a program for constructing a 2-3 tree for a given list of n integers.

23

Hints to Exercises 6.3

1. Use the definition of AVL trees. Do not forget that an AVL tree is a
special case of a binary search tree.

2. For both questions, it is easier to construct the required trees bottom up,
i.e., for smaller values of n first.

3. The single L-rotation and the double RL-rotation are the mirror images
of the single R-rotation and the double LR-rotation, whose diagrams can
be found in this section.

4. Insert the keys one after another doing appropriate rotations the way it
was done in the section’s example.

5. a. An efficient algorithm immediately follows from the definition of the
binary search tree of which the AVL tree is a special case.

b. The correct answer is opposite to the one that immediately comes
to mind.

6. n/a

7. a. Trace the algorithm for the input given (see Figure 6.8) for an example.

b. Keep in mind that the number of key comparisons made in search-
ing for a key in a 2-3 tree depends not only on its node’s depth but also
whether the key is the first or second one in the node.

8. False; find a simple counterexample.

9. Where will the smallest and largest keys be located?

10. n/a

24

Solutions to Exercises 6.3

1. Only (a) is an AVL tree; (b) has a node (in fact, there are two of them:
4 and 6) that violates the balance requirement; (c) is not a binary search
tree because 2 is in the right subtree of 3 (and 7 is in the left subtree of
6).

2. a . Here are all the binary trees with n nodes (for n = 1, 2, 3, 4, and 5)
that satisfy the balance requirement of AVL trees.

n = 1 n = 2 n = 3

n = 4

n =5

25

b. A minimal AVL tree (i.e., a tree with the smallest number of nodes) of
height 4 must have its left and right subtrees being minimal AVL trees of
heights 3 and 2. Following the same recursive logic further, we will find,
as one of the possible examples, the following tree with 12 nodes built
bottom up:

h = 0

h =1

h =2

h =3

h =4

26

3. a. Here is a diagram of the single L-rotation in its general form:

r

v

>

single L-rotation

T2

v

T3

r

T
3

T1

T1
T

2

b. Here is a diagram of the double RL-rotation in its general form:

T

r

w

T2 3

>

double RL-rotation

T

v

1

or

T

v

r

2

T1

w

T
3

or

T4T4

27

4. a. Construct an AVL tree for the list 1, 2, 3, 4, 5, 6.

1

2

0

1 1

-2

2

-1

3

0

>
2

0

3

0

1

0

L(1)
-10

2

-1

3

-1

1

0

2

-2

3

-2

1

4

-1

5

0

>
L(3)

2

-1

4

0

1

0

5

0

3

0

4

0

2

-2

4

-1

1

5

-1

3

0

6

0

0

>
L(2)

4

0

5

-1

2

0

6

0

1

0

3

0

0

b. Construct an AVL tree for the list 6, 5, 4, 3, 2, 1.

6

5

0

6

10

6

5

1

2

4

0

R(6)
>

5

4

0

0

6

0

5

4

1

0

6

0

3

0

5

4

2

2

6

0

3

1

2

0

R(4)
>

5

3

1

6

0

2

0

4

0

0

5

3

1

2

6

0

2

1

R(5)
>

3

2

1

5

1

0

6

0

1

4

01

0

4

0

0

28

c. Construct an AVL tree for the list 3, 6, 5, 1, 2, 4.

3

6

0

3 3

-2

6

1

5

0

>
5

0

6

0

3

0

RL(3)
-1

5

1

63

1

1

0

0

5

62

1 3

1

>
LR(3)

5

63

1

2

2

2 0

-1

0

00

00

3

52

1 6

>
LR(5)

5

62

1 3

2

0 1

00

4

2

-1

0 -1

0
4

0

0

0

5. a. The simple and efficient algorithm is based on the fact that the smallest
and largest keys in a binary search tree are in the leftmost and rightmost
nodes of the tree, respectively. Therefore, the smallest key can be found
by starting at the root and following the chain of left pointers until a node
with the null left pointer is reached: its key is the smallest one in the tree.
Similarly, the largest key can be obtained by following the chain of the
right pointers. Finally, the range is computed as the difference between
the largest and smallest keys found.

In the worst case, the leftmost and rightmost nodes will be on the last
level of the tree. Hence, the worst-case efficiency will be in Θ(logn) +
Θ(logn) + Θ(1) = Θ(logn).

b. False. Here is a counterexample in which neither the smallest nor
the largest keys are on the last, or the next-to-last, level of an AVL tree:

29

3

51

64

7

8

13

1511

122 10 14

9

6. n/a

7. a. Construct a 2-3 tree for the list C, O, M, P, U, T, I, N, G.

C >
M

OC

C, O C, M, O

M

C O, P

M

C O, P, U
>

M, P

UC O

M, P

C O T, U

M, P

O T, UC, I

M, P

T, UC, I N, O

M, P

T, UN, O

M

PG

I T, U

G, M, P

T, UN, OC, G, I

> >

C I N, OC

b. The largest number of key comparisons in a successful search will be
in the searches for O and U; it will be equal to 4. The average number
of key comparisons will be given by the following expression:

1

9
C(C) + 1

9
C(O) + 1

9
C(M) + 1

9
C(P) + 1

9
C(U) + 1

9
C(T) + 1

9
C(I) + 1

9
C(N) + 1

9
C(G)

= 1

9
· 3 + 1

9
· 4 + 1

9
· 1 + 1

9
· 2 + 1

9
· 4 + 1

9
· 3 + 1

9
· 3 + 1

9
· 3 + 1

9
· 2 = 25

9
≈ 2.8.

8. False. Consider the list B, A. Searching for B in the binary search tree
requires 1 comparison while searching for B in the 2-3 tree requires 2
comparisons.

30

9. The smallest and largest keys in a 2-3 tree are the first key in the leftmost
leaf and the second key in the rightmost leaf, respectively. So searching
for them requires following the chain of the leftmost pointers from the
root to the leaf and of the rightmost pointers from the root to the leaf.
Since the height of a 2-3 tree is always in Θ(logn), the time efficiency of
the algorithm for all cases is in Θ(logn) + Θ(logn) + Θ(1) = Θ(logn).

10. n/a

31

Exercises 6.4

1. a. Construct a heap for the list 1, 8, 6, 5, 3, 7, 4 by the bottom-up algo-
rithm.

b. Construct a heap for the list 1, 8, 6, 5, 3, 7, 4 by successive key
insertions (top-down algorithm).

c. Is it always true that the bottom-up and top-down algorithms yield
the same heap for the same input?

2. Outline an algorithm for checking whether an array H[1..n] is a heap and
determine its time efficiency.

3. a. Find the minimum and the maximum number of keys that a heap of
height h can contain.

b.� Prove that the height of a heap with n nodes is equal to �log2 n�.

4. � Prove the following equation used in Section 6.4

h−1∑
i=0

2(h− i)2i = 2(n− log2(n+ 1)) where n = 2h+1 − 1.

5. a. Design an efficient algorithm for finding and deleting an element of the
smallest value in a heap and determine its time efficiency.

b. Design an efficient algorithm for finding and deleting an element of
a given value v in a given heap H and determine its time efficiency

6. Sort the following lists by heapsort by using the array representation of
heaps.

a. 1, 2, 3, 4, 5 (in increasing order)

b. 5, 4, 3, 2, 1 (in increasing order)

c. S, O, R, T, I, N, G (in alphabetical order)

7. Is heapsort a stable sorting algorithm?

8. What variety of the transform-and-conquer technique does heapsort rep-
resent?

9. Which sorting algorithm other than heapsort uses a priority queue?

32

10. Implement three advanced sorting algorithms–mergesort, quicksort, and
heapsort–in the language of your choice and investigate their performance
on arrays of sizes n = 102, 103, 104, 105, and 106. For each of these sizes
consider:

a. randomly generated files of integers in the range [1..n].

b. increasing files of integers 1, 2, ..., n.

c. decreasing files of integers n, n− 1, ..., 1.

11. Spaghetti sort Imagine a handful of uncooked spaghetti, individual rods
whose lengths represent numbers that need to be sorted.

a. Outline a “spaghetti sort”–a sorting algorithm that takes advantage
of this unorthodox representation.

b. What does this example of computer science folklore (see [Dew93])
have to do with the topic of this chapter in general and heapsort in par-
ticular?

33

Hints to Exercises 6.4

1. a. Trace the two algorithms outlined in the text on the inputs given.

b. Trace the two algorithms outlined in the text on the inputs given.

c. A mathematical fact may not be established by checking its validity for
a few examples.

2. For a heap represented by an array, only the parental dominance require-
ment needs to be checked.

3. a. What structure does a complete tree of height h with the maximum
number of nodes have? What about a complete tree with the minimum
number of nodes?

b. Use the results established in part (a).

4. First, express the right-hand side as a function of h. Then prove the
obtained equality by either using the formula for the sum

∑
i2i given in

Appendix A or by mathematical induction on h.

5. a. Where in a heap should we look for its smallest element?

b. Deleting an arbitrary element of a heap can be done by generalizing
the algorithm for deleting its root.

6. Trace the algorithm on the inputs given (see Figure 6.14 for an example).

7. As a rule, sorting algorithms that can exchange far apart elements are not
stable.

8. One can claim that the answers are different for the two principal repre-
sentations of heaps.

9. This algorithm is less efficient than heapsort because it uses the array
rather than the heap to implement the priority queue.

10. n/a

11. Pick the spaghetti rods up in a bundle and place them end-down (i.e.,
vertically) onto a tabletop.

34

Solutions to Exercises 6.4

1. a. Constructing a heap for the list 1, 8, 6, 5, 3, 7, 4 by the bottom-up
algorithm (a root of a subtree being heapified is shown in bold):

1 8 6 5 3 7 4 ⇒ 1 8 7 5 3 6 4
1 8 7 5 3 6 4
1 8 7 5 3 6 4 ⇒ 8 5 7 1 3 6 4

b. Constructing a heap for the list 1, 8, 6, 5, 3, 7, 4 by the top-down
algorithm (a new element being inserted into a heap is shown in bold):

1

1 8 ⇒ 8 1
8 1 6

8 1 6 5 ⇒ 8 5 6 1
8 5 6 1 3

8 5 6 1 3 7 ⇒ 8 5 7 1 3 6
8 5 7 1 3 6 4

c. False. Although for the input to questions (a) and (b) the constructed
heaps are the same, in general, it may not be the case. For example,
for the input 1, 2, 3, the bottom-up algorithm yields 3, 2, 1 while the
top-down algorithm yields 3, 1, 2.

2. For i = 1, 2, ..., �n/2�, check whether

H[i] ≥ max{H[2i], H[2i+ 1]}.

(Of course, if 2i + 1 > n, just H[i] ≥ H[2i] needs to be satisfied.) If
the inequality doesn’t hold for some i, stop–the array is not a heap; if it
holds for every i = 1, 2, ..., �n/2�, the array is a heap.

Since the algorithm makes up to 2�n/2� key comparisons, its time effi-
ciency is in O(n).

3. a. A complete binary tree of height h with the minimum number of nodes
has the maximum number of nodes on levels 0 through h−1 and one node
on the last level. The total number of nodes in such a tree is

nmin(h) =
h−1∑
i=0

2i + 1 = (2h − 1) + 1 = 2h.

A complete binary tree of height h with the maximum number of nodes
has the maximum number of nodes on levels 0 through h. The total

35

number of nodes in such a tree is

nmax(h) =
h∑

i=0

2i = 2h+1 − 1.

b. The results established in part (a) imply that for any heap with n
nodes and height h

2h ≤ n < 2h+1.

Taking logarithms to base 2 yields

h ≤ log2 n < h+ 1.

This means that h is the largest integer not exceeding log2 n, i.e., h =
�log2 n�.

4. We are asked to prove that
∑h−1

i=0
2(h− i)2i = 2(n− log2(n+ 1)) where

n = 2h+1 − 1.

For n = 2h+1 − 1, the right-hand side of the equality in question becomes

2(2h+1−1− log2(2
h+1−1+1)) = 2(2h+1−1− (h+1)) = 2(2h+1−h−2).

Using the formula
∑h−1

i=1
i2i = (h−2)2h+2 (see Appendix A), the left-hand

side can be simplified as follows:

h−1∑
i=0

2(h− i)2i = 2
h−1∑
i=0

(h− i)2i = 2[
h−1∑
i=0

h2i −
h−1∑
i=0

i2i]

= 2[h(2h − 1)− (h− 2)2h − 2]

= 2(h2h − h− h2h + 2h+1 − 2) = 2(2h+1 − h− 2).

5. a. The parental dominance requirement implies that we can always find
the smallest element of a heap H[1..n] among its leaf positions, i.e., among
H[�n/2� + 1], ..H[n]. (One can easily prove this assertion by contradic-
tion.) Therefore, we can find the smallest element by simply scanning
sequentially the second half of the array H. Deleting this element can
be done by exchanging the found element with the last element H[n],
decreasing the heap’s size by one, and then, if necessary, sifting up the
former H[n] from its new position until it is not larger than its parent.

The time efficiency of searching for the smallest element in the second
half of the array is in Θ(n); the time efficiency of deleting it after it has

36

been found is in Θ(1) + Θ(1) +O(logn) = O(logn).

b. Searching for v by sequential search in H[1..n] takes care of the search-
ing part of the question. Assuming that the first matching element is
found in position i, the deletion of H[i] can be done with the following
three-part procedure (which is similar to the ones used for deleting the
root and the smallest element): First, exchange H[i] with H[n]; second,
decrease n by 1; third, heapify the structure by sifting the former H[n]
either up or down depending on whether it is larger than its new parent
or smaller than the larger of its new children, respectively.

The time efficiency of searching for an element of a given value is in O(n);
the time efficiency of deleting it after it has been found is in Θ(1)+Θ(1)+
O(logn) = O(logn).

6. a. Sort 1, 2, 3, 4, 5 by heapsort

Heap Construction
1 2 3 4 5
1 5 3 4 2
1 5 3 4 2
5 4 3 1 2

Maximum Deletions
5 4 3 1 2
2 4 3 1 5

4 2 3 1
1 2 3 4

3 2 1
1 2 3

2 1
1 2

1

b. Sort 5, 4, 3, 2, 1 (in increasing order) by heapsort

Heap Construction
5 4 3 2 1
5 4 3 2 1

Maximum Deletions
5 4 3 2 1
1 4 3 2 5

4 2 3 1
1 2 3 4

3 2 1
1 2 3

2 1
1 2

1

37

c. Sort S, O, R, T, I, N, G (in alphabetic order) by heapsort

Heap Construction
1 2 3 4 5 6 7

S O R T I N G
S O R T I N G
S T R O I N G
S T R O I N G
T S R O I N G

Maximum Deletions
1 2 3 4 5 6 7

T S R O I N G
G S R O I N T

S O R G I N
N O R G I S

R O N G I
I O N G R

O I N G
G I N O

N I G
G I N

I G
G I

G

7. Heapsort is not stable. For example, it sorts 1′, 1′′ into 1′′, 1′.

8. If the heap is thought of as a tree, heapsort should be considered a
representation-change algorithm; if the heap is thought of as an array with
a special property, heapsort should be considered an instance-simplification
algorithm.

9. The answer is selection sort. Note that selection sort is less efficient
than heapsort because it uses the array, which is an inferior (to the heap)
structure for implementing the priority queue.

10. n/a

11. a. After the bunch of spaghetti rods is put in a vertical position on a
tabletop, repeatedly take the tallest rod among the remaining ones out
until no more rods are left. This will sort the rods in decreasing order of
their lengths.

b. The method shares with heapsort its principal idea: represent the items
to be sorted in a way that makes finding and deleting the largest item a
simple task. From a more general perspective, the spaghetti sort is an
example, albeit a rather exotic one, of a representation-change algorithm.

38

Exercises 6.5

1. Consider the following brute-force algorithm for evaluating a polynomial.

Algorithm BruteForcePolynomialEvaluation(P [0..n], x)
//The algorithm computes the value of polynomial P at a given point x
//by the “highest to lowest term” brute-force algorithm
//Input: An array P [0..n] of the coefficients of a polynomial of degree n,
// stored from the lowest to the highest and a number x
//Output: The value of the polynomial at the point x
p ← 0.0
for i ← n downto 0 do

power ← 1
for j ← 1 to i do

power ← power ∗ x
p ← p+ P [i] ∗ power

return p

Find the total number of multiplications and the total number of additions
made by this algorithm.

2. Write a pseudocode for the brute-force polynomial evaluation that stems
form substituting a given value of the variable into the polynomial’s for-
mula and evaluating it from the lowest term to the highest one. Determine
the number of multiplications and the number of additions made by this
algorithm.

3. a. Estimate how much faster Horner’s rule is compared to the “lowest-
to-highest term” brute-force algorithm of Problem 2 if (i) the time of one
multiplication is significantly larger than the time of one addition; (ii) the
time of one multiplication is about the same as the time of one addition.

b. Is Horner’s rule more time efficient at the expense of being less space
efficient than the brute-force algorithm?

4. a. Apply Horner’s rule to evaluate the polynomial

p(x) = 3x4 − x3 + 2x+ 5 at x = −2.

b. Use the results of the above application of Horner’s rule to find the
quotient and remainder of the division of p(x) by x+ 2.

5. Compare the number of multiplications and additions/subtractions needed
by the “long division” of a polynomial p(x) = anx

n + an−1x
n−1 + ...+ a0

by x − c, where c is some constant, with the number of these operations
in the “synthetic division.”

39

6. a. Apply the left-to-right binary exponentiation algorithm to compute a17.

b. Is it possible to extend the left-to-right binary exponentiation algo-
rithm to work for every nonnegative integer exponent?

7. Apply the right-to-left binary exponentiation algorithm to compute a17.

8. Design a nonrecursive algorithm for computing an that mimics the right-
to-left binary exponentiation but does not explicitly use the binary repre-
sentation of n.

9. Is it a good idea to use a general-purpose polynomial evaluation algorithm
such as Horner’s rule to evaluate the polynomial p(x) = xn + xn−1 + ...+
x+ 1?

10. According to the corollary of the Fundamental Theorem of Algebra, every
polynomial

p(x) = anx
n + an−1x

n−1 + ...+ a0

can be represented in the form

p(x) = an(x− x1)(x− x2)...(x− xn)

where x1, ..., xn are the roots of the polynomial (generally, complex and
not necessarily distinct). Discuss which of the two representations is more
convenient for each of the following operations:

a. Polynomial evaluation at a given point

b. Addition of two polynomials

c. Multiplication of two polynomials

11. � Polynomial puzzle Given that a polynomial p(x) of degree eight is such
that p(i) = 1/i for i = 1, 2, ..., 9, find p(10).

40

Hints to Exercises 6.5

1. Set up a sum and simplify it by using the standard formulas and rules for
sum manipulation. Do not forget to include the multiplications outside
the inner loop.

2. Take advantage of the fact that the value of xi can be easily computed
from the previously computed xi−1.

3. a. Use the formulas for the number of multiplications (and additions) for
both algorithms.

b. Does Horner’s rule use any extra memory?

4. Apply Horner’s rule to the instance given the same way it is applied to
another one in the section.

5. If you implement the algorithm for long division by x − c efficiently, the
answer might surprise you.

6. a. Trace the left-to-right binary exponentiation algorithm on the instance
given the same way it is done for another instance in the section.

b. The answer is yes: the algorithm can be extended to work for the
zero exponent as well. How?

7. Trace the right-to-left binary exponentiation algorithm on the instance
given the same way it is done for another instance in the section.

8. Compute and use the binary digits of n “on the fly”.

9. Use a formula for the sum of the terms of this special kind of a polynomial.

10. Compare the number of operations needed to implement the task in ques-
tion.

11. Transform p(x) to a polynomial with roots at xi = i for i = 1, 2, ..., 9 and
represent it in the form mentioned in Problem 10.

41

Solutions to Exercises 6.5

1. The total number of multiplications made by the algorithm can be com-
puted as follows:

M(n) =
n∑

i=0

(
i∑

j=1

1 + 1) =
n∑

i=0

(i+ 1) =
n∑

i=0

i+
n∑

i=0

1

=
n(n+ 1)

2
+ (n+ 1) =

(n+ 1)(n+ 2)

2
∈ Θ(n2).

The number of additions is obtained as

A(n) =
n∑

i=0

1 = n+ 1.

2. Algorithm BetterBruteForcePolynomialEvaluation(P [0..n], x)
//Computes the value of polynomial P at a given point x
//by the “lowest-to-highest term” algorithm
//Input: Array P [0..n] of the coefficients of a polynomial of degree n,
// from the lowest to the highest and a number x
//Output: The value of the polynomial at the point x
p ← P [0]; power ← 1
for i ← 1 to n do

power ← power ∗ x
p ← p+ P [i] ∗ power

return p

The number of multiplications made by this algorithm is

M(n) =
n∑

i=1

2 = 2n.

The number of additions is

A(n) =
n∑

i=1

1 = n.

3. a. If only multiplications need to be taken into account, Horner’s rule
will be about twice as fast because it makes just n multiplications vs. 2n
multiplications required by the other algorithm. If one addition takes
about the same amount of time as one multiplication, then Horner’s rule
will be about (2n+ n)/(n+ n) = 1.5 times faster.

b. The answer is no, because Horner’s rule doesn’t use any extra memory.

42

4. a. Evaluate p(x) = 3x4 − x3 + 2x+ 5 at x = −2.

coefficients 3 -1 0 2 5

x = −2 3 (-2)·3+(-1)= -7 (-2)·(-7)+0=14 (-2)·14+2= -26 (-2)·(-26)+5=57

b. The quotient and the remainder of the division of 3x4 −x3 +2x+5 by
x+ 2 are 3x3 − 7x2 + 14x− 26 and 57, respectively.

5. The long division by x− c is done as illustrated below

anx
n−1 + ...

x− c anx
n + an−1x

n−1 +...+ a1x+ a0
−anx

n − canx
n−1

(can+an−1)x
n−1 + ...+ a1x+ a0

This clearly demonstrates that the first iteration–the one needed to get
rid of the leading term anx

n–requires one multiplication (to get can)
and one addition (to add an−1). After this iteration is repeated n − 1
more times, the total number of multiplications and the total number of
additions will be n each–exactly the same number of operations needed
by Horner’s rule. (In fact, it does exactly the same computations as
Horner’s algorithm would do in computing the value of the polynomial at
x = c.) Thus, the long division, though much more cumbersome than the
synthetic division for hand-and-pencil computations, is actually not less
time efficient from the algorithmic point of view.

6. a. Compute a17 by the left-to-right binary exponentiation algorithm.
Here, n = 17 = 100012. So, we have the following table filled left-to-right:

binary digits of n 1 0 0 0 1
product accumulator a a2 (a2)2 = a4 (a4)2 = a8 (a8)2 · a = a17

b. Algorithm LeftRightBinaryExponentiation will work correctly for n = 0
if the variable product is initialized to 1 (instead of a) and the loop starts
with I (instead of I − 1).

7. Compute a17 by the right-to-left binary exponentiation algorithm.
Here, n = 17 = 100012. So, we have the following table filled right-to-left:

1 0 0 0 1 binary digits of n

a16 a8 a4 a2 a terms a2
i

a · a16 = a17 a product accumulator

43

8. Algorithm ImplicitBinaryExponentiation(a, n)
//Computes an by the implicit right-to-left binary exponentiation
//Input: A number a and a nonnegative integer n
//Output: The value of an

product ← 1; term ← a
while n
= 0 do

b ← nmod2; n ← �n/2�
if b = 1

product ← product ∗ term
term ← term ∗ term

return product

9. Since the polynomial’s terms form a geometric series,

p(x) = xn + xn−1 + ...+ x+ 1 =

xn+1−1

x−1
if x
= 1

n+ 1 if x = 1

Its value can be computed faster than with Horner’s rule by computing
the right-hand side formula with an efficient exponentiation algorithm for
evaluating xn+1.

10. a. With Horner’s rule, we can evaluate a polynomial in its coefficient form
with n multiplications and n additions. The direct substitution of the
x value in the factorized form requires the same number of operations,
although these may be operations on complex numbers even for a polyno-
mial with real coefficients.

b. Addition of two polynomials is incomparably simpler for polynomi-
als in their coefficient forms, because, in general, knowing the roots of
polynomials p(x) and q(x) helps little in deducing the root values of their
sum p(x) + q(x).

c. Multiplication of two polynomials is trivial when they are represented
in their factorized form. Indeed, if

p(x) = a′n(x− x′

1)...(x− x′

n) and q(x) = a′′m(x− x′′

1)...(x− x′′

m),

then
p(x)q(x) = a′na

′′

n(x− x′

1)...(x− x′

n)(x− x′′

1)...(x− x′′

m).

To multiply two polynomials in their coefficient form, we need to multiply
out

p(x)q(x) = (a′nx
n + ...+ a′0)(a

′′

mxm + ...+ a′′0)

and collect similar terms to get the product represented in the coefficient
form as well.

44

11. Consider q(x) = xp(x)− 1. For every xi = i (i = 1, 2, ..., 9), we have

q(xi) = xip(xi)− 1 = ip(i)− 1 = i(1/i)− 1 = 0.

Using the factorized form mentioned in Problem 10,

q(x) = c(x− 1)(x− 2)...(x− 9).

Since, on the one hand, q(0) = 0p(0)− 1 = −1, and, on the other, q(0) =
c(0−1)(0−2)...(0−9) = −c9!, we have the following equation to determine
the value of constant c:

−c9! = −1.

Hence c = 1/9! and q(10) = (1/9!)(10− 1)(10− 2)...(10− 9) = 1. Since

q(10) = 10p(10)− 1 = 1,

p(10) = 2/10.

Note: The problem of finding a polynomial of degree not higher than n
from its values at n+1 points is one of the fundamental problems in numerical
analysis, called interpolation. Although there exists exactly one such polyno-
mial, there are several different ways to represent it. For example, you may
look up Lagrange’s interpolation formula and apply it to the polynomial in
question.

45

Exercises 6.6

1. a. Prove the equality

lcm(m,n) =
m · n

gcd(m,n)

that underlies the algorithm for computing lcm(m,n).

b. Euclid’s algorithm is known to be in O(logn). If it is the algorithm that
is used for computing gcd(m,n), what is the efficiency of the algorithm
for computing lcm(m,n)?

2. You are given a list of numbers for which you need to construct a min-heap.
(A min-heap is a complete binary tree in which every key is less than or
equal to the keys in its children.) How would you use an algorithm for
constructing a max-heap (a heap as defined in Section 6.4) to construct a
min-heap?

3. Prove that the number of different paths of length k > 0 from the ith
vertex to the jth vertex in a graph (undirected or directed) equals the
(i, j)th element of Ak where A is the adjacency matrix of the graph.

4. a.� Design an algorithm with a time efficiency better than cubic for check-
ing whether a graph with n vertices contains a cycle of length 3 [Man89].

b. Consider the following algorithm for the same problem. Starting
at an arbitrary vertex, traverse the graph by depth-first search and check
whether its depth-first search forest has a vertex with a back edge leading
to its grandparent. If it does, the graph contains a triangle; if it does not,
the graph does not contain a triangle as its subgraph. Is this algorithm
correct?

5. Given n > 3 points P1 = (x1, y1), ..., Pn = (xn, yn) in the coordinate
plane, design an algorithm to check whether all the points lie within a
triangle with its vertices at three of the points given. (You can either
design an algorithm from scratch or reduce the problem to another one
with a known algorithm.)

6. Consider the problem of finding, for a given positive integer n, the pair of
integers whose sum is n and whose product is as large as possible. Design
an efficient algorithm for this problem and indicate its efficiency class.

7. The assignment problem introduced in Section 3.4 can be stated as follows.
There are n people who need to be assigned to execute n jobs, one person
per job. (That is, each person is assigned to exactly one job and each job
is assigned to exactly one person.) The cost that would accrue if the ith
person is assigned to the jth job is a known quantity C[i, j] for each pair
i, j = 1, ..., n. The problem is to assign the people to the jobs to minimize

46

the total cost of the assignment. Express the assignment problem as a
0—1 linear programming problem.

8. Solve the instance of the linear programming problem given in Section 6.6

maximize 0.10x+ 0.07y + 0.03z

subject to x+ y + z = 100

x ≤ 1

3
y

z ≥ 0.25(x+ y)

x ≥ 0, y ≥ 0, z ≥ 0.

9. The graph-coloring problem is usually stated as the vertex-coloring prob-
lem: assign the smallest number of colors to vertices of a given graph so
that no two adjacent vertices are the same color. Consider the edge-

coloring problem: assign the smallest number of colors possible to edges
of a given graph so that no two edges with the same endpoint are the
same color. Explain how the edge-coloring problem can be reduced to a
vertex-coloring problem.

10. Consider the two-dimensional post-office location problem : Given n
points (x1, y1), (x2, y2), ..., (xn, yn) in the Cartesian plane, find a location
(x, y) for a post office that minimizes 1

n

∑n

i=1
(|xi−x|+|yi−y|), the average

Manhattan distance from the post office to these points. Explain how
the problem can be efficiently solved by the problem reduction technique,
provided the post office does not have to be located at one of the input
points.

11. Jealous husbands There are n ≥ 2 married couples who need to cross
a river. They have a boat that can hold no more than two people at a
time. To complicate matters, all the husbands are jealous and will not
agree on any crossing procedure that would put a wife on the same bank
of the river with another woman’s husband without the wife’s husband
being there too, even if there are other people on the same bank. Can
they cross the river under such constraints?

a. Solve the problem for n = 2.

b.� Solve the problem for n = 3, which is the classical version of this
problem.

c.� Does the problem have a solution for every n ≥ 4? If it does, explain
how and indicate how many river crossings it will take; if it does not,
explain why.

47

Hints to Exercises 6.6

1. a. Use the rules for computing lcm(m,n) and gcd(m,n) from the prime
factors of m and n.

b. The answer immediately follows from the formula for computing lcm(m,n).

2. Use a relationship between minimization and maximization problems.

3. Prove the assertion by induction on k.

4. a. Base your algorithm on the following observation: a graph contains a
cycle of length 3 if and only if it has two adjacent vertices i and j that are
also connected by a path of length 2.

b. Do not jump to a conclusion in answering this question.

5. An easier solution is to reduce the problem to another one with a known
algorithm. Since we did not discuss many geometric algorithms in the
book, it should not be difficult to figure out to which one this problem
needs to be reduced.

6. Express this problem as a maximization problem of a function in one
variable.

7. Introduce double-indexed variables xij to indicate an assignment of the
ith person to the jth job.

8. Take advantage of the specific features of this instance to reduce the prob-
lem to one with fewer variables.

9. Create a new graph.

10. Solve first the one-dimensional version of this problem (Problem 2(a) in
Exercises 3.3).

11. a, b. Create a state-space graph for the problem as it is done for the
river-crossing puzzle in the section.

c. Look at the state obtained after the first six river crossings in the
solution to part (b).

48

Solutions to Exercises 6.6

1. a. Since

lcm(m,n) = the product of the common prime factors of m and n

· the product of the prime factors of m that are not in n

· the product of the prime factors of n that are not in m

and

gcd(m,n) = the product of the common prime factors of m and n,

the product of lcm(m,n) and gcd(m,n) is equal to

the product of the common prime factors of m and n

· the product of the prime factors of m that are not in n

· the product of the prime factors of n that are not in m

· the product of the common prime factors of m and n.

Since the product of the first two terms is equal tom and the product of the
last two terms is equal to n, we showed that lcm(m,n) · gcd(m,n) = m ·n,
and, hence,

lcm(m,n) =
m · n

gcd(m,n)
.

b. If gcd(m,n) is computed in O(logn) time, lcm(m,n) will also be com-
puted in O(logn) time, because one extra multiplication and one extra
division take only constant time.

2. Replace every key Ki of a given list by −Ki and apply a max-heap con-
struction algorithm to the new list. Then change the signs of all the keys
again.

3. The induction basis: For k = 1, A1[i, j] is equal to 1 or 0 depending on
whether there is an edge from vertex i to vertex j. In either case, it is
also equal to the number of paths of length 1 from i to j. For the general
step, assume that for a positive integer k, Ak[i, j] is equal to the number of
different paths of length k from vertex i to vertex j. Since Ak+1 = AkA,
we have the following equality for the (i, j) element of Ak+1:

Ak+1[i, j] = Ak[i, 1]A[1, j] + ...+Ak[i, t]A[t, j] + ...+Ak[i, n]A[n, j],

where Ak[i, t] is equal to the number of different paths of length k from
vertex i to vertex t according to the induction hypothesis and A[t, j] is
equal to 1 or 0 depending on whether there is an edge from vertex t to

49

vertex j for t = 1, ..., n. Further, any path of length k + 1 from vertex
i to vertex j must be made up of a path of length k from vertex i to
some intermediate vertex t and an edge from that t to vertex j. Since for
different intermediate vertices t we get different paths, the formula above
yields the total number of different paths of length k + 1 from i to j.

4. a. For the adjacency matrix A of a given graph, compute A2 with an al-
gorithm whose time efficiency is better than cubic (e.g., Strassen’s matrix
multiplication discussed in Section 4.5). Check whether there exists a
nonzero element A[i, j] in the adjacency matrix such that A2[i, j] > 0: if
there is, the graph contains a triangle subgraph, if there is not, the graph
does not contain a triangle subgraph.

b. The algorithm is incorrect because the condition is sufficient but not
necessary for a graph to contain a cycle of length 3. Consider, as a coun-
terexample, the DFS tree of the traversal that starts at vertex a of the
following graph and resolves ties according to alphabetical order of ver-
tices:

a b c d e

It does not contain a back edge to a grandparent of a vertex, but the graph
does have a cycle of length 3: a− b− e− a.

5. The problem can be reduced to the question about the convex hull of a
given set of points: if the convex hull is a triangle, the answer is yes,
otherwise, the answer is no. There are several algorithms for finding the
convex hull for a set of points; quickhull, which was discussed in section
4.6, is particularly appropriate for this application.

6. Let x be one of the numbers in question; hence, the other number is n−x.
The problem can be posed as the problem of maximizing f(x) = x(n−x)
on the set of all integer values of x. Since the graph of f(x) = x(n − x)
is a parabola with the apex at x = n/2, the solution is n/2 if n is even
and �n/2� (or �n/2�) if n is odd. Hence, the numbers in question can
be computed as �n/2� and n − �n/2�, which works both for even and
odd values of n. Assuming that one division by 2 takes a constant time
irrespective of n’s size, the algorithm’s time efficiency is clearly in Θ(1).

7. Let xij be a 0-1 variable indicating an assignment of the ith person to
the jth job (or, in terms of the cost matrix C, a selection of the matrix

50

element from the ith row and the jth column). The assignment problem
can then be posed as the following 0—1 linear programming problem:

minimize
∑n

i=1

∑n

j=1
cijxij (the total assignment cost)

subject to
∑n

j=1
xij = 1 for i = 1, ...n (person i is assigned to one job)∑n

i=1
xij = 1 for j = 1, ...n (job j is assigned to one person)

xij ∈ {0, 1} for i = 1, ..., n and j = 1, ..., n

8. We can exploit the specific features of the instance in question to solve it
by the following reasoning. Since the expected return from cash is the
smallest, the value of cash investment needs to be minimized. Hence,
z = 0.25(x+ y) in an optimal solution. Substituting z = 0.25(x+ y) into
x + y + z = 100, yields x + y = 80 and hence z = 20. Similarly, since
the expected return on stocks is larger than that of bonds, the amount
invested in stocks needs to be maximized. Hence, in an optimal allocation
x = y/3. Substituting this into x+y = 80 yields y = 60 and x = 20. Thus,
the optimal allocation is to put 20 million in stocks, 60 millions in bonds,
and 20 million in cash.

Note: This method should not be construed as having a power beyond
this particular instance. Generally speaking, we need to use general
algorithms such as the simplex method for solving linear programming
problems with three or more unknowns. A special technique applicable
to instances with only two variables is discussed in Section 10.1 (see also
the solution to Problem 10 in Exercises 3.3).

9. Create a new graph whose vertices represent the edges of the given graph
and connect two vertices in the new graph by an edge if and only if these
vertices represent two edges with a common endpoint in the original graph.
A solution of the vertex-coloring problem for the new graph solves the
edge-coloring problem for the original graph.

10. The problem is obviously equivalent to minimizing independently 1

n

∑n

i=1
|xi−

x| and 1

n

∑n

i=1
|yi − y|. Thus we have two instances of the same problem,

whose solution is the median of the numbers defining the instance (see the
solution to Problem 2a in Exercises 3.3). Thus, x and y can be found by
computing the medians of x1, x2, ..., xn and y1, y2, ..., yn, respectively.

11. a. Here is a state-space graph for the two jealous husbands puzzle: Hi, Wi

denote the husband and wife of couple i (i = 1, 2), respectively; the two
bars | | denote the river; the arrow indicates the direction of the next trip,
which is defined by the boat’s location. (For the sake of simplicity, the
graph doesn’t include crossings that differ by obvious index substitutions
such as starting with the first couple H1W1 crossing the river instead of

51

the second one H2W2.) The vertices corresponding to the initial and final
states are shown in bold.

H H

W W

1 2

1 2

H H

W W

1 2

1 2

H H

W W

1 2

1 2

H

W

2

1

H H

W

1 2

2

H1

W2 W1

H H

 W

1 2

2

H H

W

1 2

2

H

W

1

2

H H

W W

1 2

1 2

H H

W W

1 2

1 2

W1

W1

W1

H2

W W1 2 H W2 2 W2

H2W 1

W2H1

H H1 2

W W1 2H W1 1

H H1 2

There are four simple paths from the initial-state vertex to the final-state
vertex, each five edges long, in this graph. If specified by their edges,
they are:

W1W2 W1 H1H2 H1 H1W1

W1W2 W1 H1H2 W2 W1W2

H2W2 H2 H1H2 H1 H1W1

H2W2 H2 H1H2 W2 W1W2

Hence, there are four (to within obvious symmetric substitutions) optimal
solutions to this problem, each requiring five river crossings.

52

b. Here is a state-space graph for the three jealous husbands puzzle:
Hi, Wi denote the husband and wife of couple i (i = 1, 2, 3), respectively;
b stands for the boat; the two bars | | denote the river; the arrow indi-
cates the possible direction of the next trip, which is defined by the boat’s
location. (For the sake of simplicity, the graph doesn’t include cross-
ings that differ by obvious index substitutions such as starting with the
first or second couple crossing the river instead of the third one H3W3.)
The vertices corresponding to the initial and final states are shown in bold.

1

H H H

W W

1 2

1 2

W W W1 2 W

3 H H H

W W

1 2

1 2

3

3 W 1

H H H1 2 3

W3

H H H1 2 3

W3

H H H1 2 3

W3 W

H H1 2 H H H H1 2 3

W1 W2W3W

3

3 W1

H 1

H H H1 2 3

H H H1 2 3

W1 W3

H1 H3

W1 W3

H H2 3 H H1 2

W W W1 2 3W W1 2W W2 3

W W2 3W W1 2 W W1 2

W W W1 2 3 W W W1 2 3

W W2 3

W W2 3 W W1 2

W W1 2

H H H1 2 3

H H H1 2 3

H H H1 2 3

H H H1 2 3

H H2 3

W3

There are four simple paths from the initial-state vertex to the final-state
vertex, each eleven edges long, in this graph. If specified by their edges,

53

they are:

W2W3 W2 W1W2 W1 H2H3 H2W2 H1H2 W3 W2W3 W2 W1W2

W2W3 W2 W1W2 W1 H2H3 H2W2 H1H2 W3 W2W3 H1 H1W1

H3W3 H3 W1W2 W1 H2H3 H2W2 H1H2 W3 W2W3 W2 W1W2

H3W3 H3 W1W2 W1 H2H3 H2W2 H1H2 W3 W2W3 H1 H1W1

Hence, there are four (to within obvious symmetric substitutions) optimal
solutions to this problem, each requiring eleven river crossings.

c. The problem doesn’t have a solution for the number of couples n ≥
4. If we start with one or more extra (i.e., beyond 3) couples, no new
qualitatively different states will result and after the first six river crossings
(see the solution to part (b)), we will arrive at the state with n−1 couples
and the boat on the original bank and one couple on the other bank. The
only allowed transition from that state will be going back to its predecessor
by ferrying a married couple to the other side.

54

