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Preface

1.1 Outlook

The International Master program in Civil Engineering attracts students with a consid-

erable variety of backgrounds. In particular, regarding the structural mechanics, stu-

dents have been generally trained on different topics, considering different methods

and using different syntax and nomenclatures.

As instructors of the course Advanced Structural Mechanics (ASM), delivered in

the first semester of the first year, it is our interest to establish a common level of

understanding on some structural mechanics problems at the outset of the course.

To this purpose, these handouts list a series of topics in structural mechanics whose

knowledge is recommended to successfully attend the course Advanced Structural

Mechanics. Each section presents one or more solved examples. As a self evaluation

of the required standards, you are encouraged to attempt their solution.

1.2 Supporting textbook

The exercises considered in this handout have been taken from the textbook "Statics

and Mechanics of Structures" by S. Krenk and J. Høgsberg, Springer Netherlands,

2013. The textbook can be used as a reference for those students who needs to

strengthen their knowledge on the fundamentals of structural mechanics.

1.3 Course notes

Once enrolled in the Master Program you will have access to the repository of ASM

(https://iol.unibo.it/) in which you can find the slides of the course, some suggested

readings as well as some solved midterm and final exams. The slides are only meant
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to point the main topics that will be covered during the course and do not pretend to be

comprehensive.

1.4 Course bibliography

Below you can find the textbooks useful for students looking to do further reading on

the topics of ASM and more in general on structural mechanics and mechanics of

materials.

• Matrix Structural Analysis, W. McGuire, R.H. Gallagher, R.D. Ziemian, John Wiley

Sons, 2000.

• Fundamentals of Structural Stability, G.J. Simitses, D.H. Hodges, Elsevier, 2006.

• Advanced Structural Mechanics. A. Carpinteri, Taylor Francis, 1997.
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Truss structures

2.1 Fundamentals

• Notion of force, moment of a force.

• Definition of support condition.

• Notion of statically determined vs. statically indetermined structure.

• Equilibrium via method of joints and via method of sections.

• Notion of axial force, stress and strain.

2.2 Example E1: V-truss structure

2.2.1 Analysis of the structure

Let us analyse the equilibrium of a simply supported V-truss structure 1, loaded by

a concentrated force at node B (see Fig. 2.1). The truss structure is planar and can

deform in the x − y plane only. It consists of seven truss elements which count for a

total of 21 degrees of freedoms (DoF ), DoF = 7 × 3 = 21, connected via five internal

hinges in A, B, C, D, and E.

Each internal hinge (h) provides a number of internal degrees of restraints (DoR)

equal to DoRh
int = 2 × (n − 1), where n is the number of truss elements joining at the

hinge. For instance the internal hinge at node E provides DoRE
int = 2× (3− 1) = 4. It

follows that the total number of degree of restraints of the internal hinges is DoRint =

4 + 4 + 6 + 2 + 2 = 18.

The support at node A, termed external hinge, restrains both the horizontal and the

vertical translations of node A. Conversely, the support in C, termed slider, restrains

the vertical translation of node C only. As a result, the support in A can express both

1Adapted from the Example 2.2 in Ref. [1]
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vertical, VA, and horizontal, HA, reaction components, while the support in C can ex-

press a vertical reaction VC only. Hence, the number of external degrees of restraints,

namely those between the structure and the external reference, is equal DoRext = 3,

and the overall degree of restraint is DoR = DoRint + DoRext = 21. As the num-

ber of DoR pairs the number of DoF , the necessary condition for having a statically

determinate problem is satisfied.

In addition, since the restraints in A and C have no common centers of rotation

and the internal structure is formed by simple triangles connected together, no kine-

matic mechanisms are allowed, i.e., there are DoRext = 21 which are effective. As the

number of effective restrains pairs the number of degrees of freedom, the structure is

statically determined. Hence, its reactions forces in A and C, as well as the internal

forces in the seven truss elements, can be determined from equilibrium equations of

forces and/or moments only.

2.2.2 Internal forces and external reactions via method of joints.

For instance, by considering the global equilibrium in terms of horizontal forces we get:

FH : HA = 0.

The equilibrium of moments in C (clockwise direction) yields:

MC : VA4L− P2L = 0→ VA =
1

2
P.

Finally, imposing the global vertical force equilibrium:

FV : VA + VC − P = 0→ VC =
1

2
P.

Fig. 2.1: V-truss. Global equilibrium.
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Note that the same result could be quickly obtained by observing that the structure and

the loading are symmetric with respect to a vertical line through B. Since the horizontal

reaction componentHA is null, also the reactions forces inA and C must be symmetric.

Due to symmetry, also the internal axial forces (Ni) in the truss elements present

the same symmetry, for instance the axial force in the element AB must be equal the

one in the element BC, i.e., NAB = NBC .

For this reason, only the right half of the structure, namely nodes B, C and D need

to be considered to determine the axial force in all the truss elements of the structure.

These forces can be calculated by applying the equilibrium at the truss joints (see Fig.

2.2).

Let us consider the equilibrium of joint C. The node equilibrium contains two unknown

forces, the truss forces NBC and NCD
2.

Fig. 2.2: V-truss. Equilibrium of nodes.

Imposing the equilibrium of node C along the vertical (V) and horizontal (H) direction

yields, respectively3:

FV : NCD sin(45o) + VC = 0→ NCD sin(45o) +
1

2
P = 0→ NCD = −1

2

√
2P.

FH : NBC +NCD cos(45o) = 0→ NBC =
1

2
P

Similarly, for the joint D, the equilibrium along the vertical and horizontal direction

yields:
2We suggest to take the unknown axial forces in the truss elements always as tensile forces. For

instance, with reference to the Fig. 2.2, the unknown axial force in the truss element CD has been taken

as a tensile force NCD. Alike the axial forces in the others truss elements BD and BC have been taken

as tensile forces.
3As you are writing an equilibrium equation, there is not an absolute reference system for positive and

negative forces. The only requirement is to be consistent within the same equation.
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FV : NBD sin(45o) +NCD sin(45o) = 0→ NBD =
1

2

√
2P.

FH : NED +NBD cos(45o)−NCD cos(45o) = 0→ NED = −P

The rest of the bar forces are defined due to symmetry, e.g., NBE = NBD and NAB

= NBC . The diagram of the axial forces in the bar is provided in Fig. 2.3 and the values

of the internal forces Ni are collected in Table 2.1.

Fig. 2.3: V-truss. Axial force diagram.

2.2.3 Computation of displacements by Principle of Virtual Work.

Let us recall some fundamental notions related to the Principle of Virtual Work (PVW).

By definition, the virtual work δW is the work done by a distribution of real forces F

acting through a system of virtual displacements δu or a distribution of virtual forces

δF acting through a system of real displacements u. A virtual displacement is any dis-

placement consistent with the constraints of the structure, i.e., that satisfy the boundary

conditions at the supports. A virtual force is any system of forces in equilibrium.

The PVW states that for any deformable structure in equilibrium the external work

δWext equates the internal one δWint, i.e., δWext = δWint, namely:

δFu =

∫
V
δσεdV

where δσ is the stress distribution in equilibrium with δF, ε is the strain distribution

compatible with the displacement field u, and V is the volume of the structure. For a

truss structure loaded at the nodes only, the equality between external and internal

virtual work can be written as:
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n∑
j=1

δFjuj =
m∑
i=1

δNiεi

where δFj and uj are, respectively, the virtual force and the real displacement at node

j = 1, . . . , n, while δNi and εi are the internal virtual force and real strain at the i =

1, . . . ,m truss element, with:

εi =
NiLi

EiAi

being Ei, Li, Ai and Ni the Young modulus, the length, the cross section area and real

internal force of the i−th truss element, respectively. The above equation is used in the

unit load method to find redundant forces or reactions, as well as to find real structural

displacements, as will be shown in the following.

Let us calculate the vertical displacement of node B, here labelled as vB. To such

purpose, we consider an auxiliary truss structure, also called unitary load configuration

’1’, identical to one of the given problem, but now loaded with a single unitary load

acting at the node of interest along the direction of the sought displacement, in this

case a unitary vertical force applied at node B, i.e. δFB = P 1 = 1 (see Fig. 2.4).

Fig. 2.4: V-truss subjected to a unitary vertical load at node B.

The concentrated load δFB = P 1 = 1 yields to a distribution of virtual internal forces

in the structure δNi = N1
i (see Table 2.1). Again, Ni and uj are the internal forces and

displacements associated to the real load configuration (Fig. 2.1).

Due to the assumed unitary load consisting of a single force, the external virtual

work counts only one term δWext = P 1vB = 1vB. As a result, an explicit formula for the

displacement vB in the direction of the unit test force is obtained:
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1vB =
m∑
i=1

N1
i

NiLi

EiAi

In table 2.1 are reported the values of the internal forces Ni, N1
i associated to the

actual and unitary load configurations, respectively.

truss element Ni N1
i

AB P
2

1
2

BC P
2

1
2

AE −
√
2P
2

−
√
2

2

CD −
√
2P
2

−
√
2

2

BE
√
2P
2

√
2
2

BD
√
2P
2

√
2
2

ED −P −1

Table 2.1: Bar internal forces associated to the real load configuration (Ni) and to the unitary vertical load

(N1
i ) applied at node B.

Substitution of the values of the bar forces yields a vertical displacement vB =

(3 + 2
√

2)PL
EA

4.

The reader can replicate the procedure for any node of the truss and verify, for

example, that the horizontal displacement of node C is uC = 2PL
EA . For the calculation

of this displacement, a unitary load P 1 = 1 should be applied at node C along the

horizontal direction (see Fig. 2.5). This load generates the set of bar forcesN1
i collected

in table 2.2.

Fig. 2.5: V-truss subjected to a unitary horizontal load at node C.

4Following the principle of virtual work, a positive displacement is directed towards the same direction

of the applied P 1 force, regardless the positive directions of the axes of the assumed reference system.
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truss element N1
i

AB 1

BC 1

AE 0

CD 0

BE 0

BD 0

ED 0

Table 2.2: Bar internal forces associated to the unitary vertical load at node C.

The truss deformed shape under the actual load configuration is shown in Fig. 2.6.

Fig. 2.6: V-truss deformed configuration under actual load.





3

Statics of Beams and Frames

3.1 Fundamentals

• Statically determined beams and frames: solution via equilibrium equations and by

virtual work.

• Notion and calculation of internal forces and moments.

• Deformation of beams and frames. Euler Bernoulli beam model.

• Statically indetermined beams and frames: solution via the force method.

3.2 Example E1: Two beams with an internal hinge

3.2.1 Analysis of the structure

The system of interest1 consists of two beams AD and DB, connected at node D by

an internal hinge (see Fig. 3.1). The structure is restrained through a fixed external

hinge in C and two sliders in A and B. The external hinge expresses vertical, VC , and

horizontal, HC , reactions, while the sliders in A and B allow for horizontal translation

and exert only vertical reactions, VA and VB, respectively. The structure is subjected to

a concentrated force P acting at cross-section E placed at the mid-span of the beam

DB.

Being the system formed by two elements the total number of degrees of freedom is

DoF = 6. The sum of the external and internal degrees of restraints, DoRext = 4 and

DoRint = 2 respectively, is DoR = DoRext + DoRint = 6, which pairs the number of

DoF . As the restraints in A and C do not share a common center of rotation, the beam

AD has no allowed kinematic mechanisms. It follows that the node D does not move

due to kinematic mechanisms and the beam DB, restrained in B, cannot move as well.

Therefore, the DoR = 6 are effective, and the structure is statically determined.
1Adapted from the example 1.5 in Ref. [1]
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Fig. 3.1: Beam with an hinge. Global equilibrium.

3.2.2 Equilibrium equations

First, we can observed that the bending moment vanishes at the internal hinge in D

while both vertical and horizontal forces can be transmitted. In addition, as the hinge

is unloaded, the internal forces on its left hand side must be equal in modulus and

opposite in sign w.r.t. those on its right hand side as illustrated in Fig. 3.2.

Let us determine the reactions on the beam DB. From the horizontal force equilib-

rium:

FH : HD = 0.

Thus, the hinge at D only transmits a vertical force VD. The vertical reaction in D is

obtained by equilibrium of moments in B (clockwise):

MB :
2L

3
VD −

L

3
P = 0→ VD =

1

2
P.

From the vertical force equilibrium of the beam BD:

FV : VD + VB − P = 0→ VB =
1

2
P.

The same results by observing the symmetry of the beam DB that carries a concen-

trated force P at its center. Due to symmetry, the two reactions VD and VB are equal,

so that VD = VB = 1
2P .
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Fig. 3.2: Beam with an hinge. Global equilibrium. Reactions and hinge forces.

The remaining reactions are determined by considering the equilibrium of the beam

AD , simply supported at A and C and loaded by VD = 1
2P , as shown in Fig. 3.2.

Horizontal force equilibrium yields:

FH : HC +HD = 0→ HC = 0.

Counterclockwise moment about A gives:

MA : LVC −
4L

3
VD = 0→ VC =

2

3
P.

while clockwise moment about C yields:

MC : LVA +
L

3
VD = 0→ VA = −1

6
P.

As a proof, one can verify that the vertical equilibrium equation of the whole struc-

ture is satisfied:

FV : VA + VB + VC − P = 0

Internal forces

The internal forces (or internal reactions) for a given beam section are the elemen-

tary internal reactions transmitted by the section itself. For a plane beam with load

acting in the plane (as in Fig. 3.3), there are three internal forces which fully charac-

terize the equilibrium of the section, namely axial force N , shear force Q and bending

moment M . The internal forces are related to the external loads via the indefinite equa-

tions of equilibrium, which for a plane beam read (see Fig.3.3):

dN

dx
+ p(x) = 0
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dQ

dx
+ q(x) = 0

dM

dx
+Q(x) = 0

Fig. 3.3: Plane beam loaded with axial p and transverse q distributed loads in the plane. A detail on the

cross-section equilibrium.

In the equilibrium equations, the assumed conventions regarding the positive signs

of the internal forces are:

• the axial force is positive when giving tension in the beam;

• the shear force is positive when it tends to rotate the infinitesimal portion of beam

where it acts in a counter-clockwise direction;

• the bending moment is positive when it stretches the lower beam fibres and com-

presses the upper beam fibres (lower and upper are related to the positive direction

defined by the y-axis).

Given the above sign convention, the internal forces in the example of interest (Fig.

3.1) are determined by imposing the equilibrium across suitable sections along the

beam axis. First, one can note that the axial force at any section of the beam is N = 0,

since no horizontal load and reactions are exerted.
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Fig. 3.4: Shear force and bending moment.

Additionally, no distributed loads are applied along the beam, thus the shear force

is constant between the location where transverse forces are applied (e.g., supports

and point loads). For this reason, the shear force distribution is determined by the

values QAC , QCE and QEB and the external force P . Moving from right to the left

along the beam axis, the shear forces QEB, QCE , QAC are determined by vertical

force equilibrium equations (see Figs. 3.4a,b,c):

FV : −QEB + VB = 0→ QEB =
1

2
P.

FV : −QCE − P + VB = 0→ QCE = −1

2
P.

FV : VA +QAC = 0→ QAC =
1

6
P.

The moment can be determined from its value at the four location A, B, C, D since

its distribution is piecewise linear between the points where the transverse forces are

applied. The moment is null at the end points A and B due to the support conditions.

Thus, its distribution is fully determined from the two values MC and ME . The moment

about C for the left part of the beam shown in Fig. 3.4d gives:

MC : MC − VAL = 0→MC = −PL
6
.

Similarly, considering a section at E, the moment about E for the right part of the

beam (see Fig. 3.4e) yields:
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ME : ME −
1

3
VBL = 0→ME =

PL

6
.

The diagrams of internal forces, as per the calculation provided above, are provided

in Fig. 3.5.

Fig. 3.5: Diagrams of the internal forces.

Note that the bending moment diagram is displayed on the side of the structure

where the fibers of the beams are in tension. This is the convention generally used in

the European countries.

3.2.3 Computation of displacements

Displacements via principle of virtual work

Similarly to what shown for a truss structure, the computation of the displacements for

an elastic beam can be performed utilizing the principle of virtual works.

For slender beams and frames under bending, the work contributions due to axial

and shear deformation of the beam elements can be neglected. As a result, the virtual

internal work can be computed by considering the curvature of the beam element and

the related bending moment only.

Let us compute the vertical displacement ηD of the cross section in D utilizing the

principle of virtual work. To this purpose, we consider the beam of interest subjected to
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the unitary vertical load P 1 = 1 in D (see Fig. 3.6a).

The reader can easily verify that the corresponding bending moment distribution M1 is

the one shown in Fig. 3.6b.

Fig. 3.6: a) Beam subjected to unitary vertical load in D. b) Bending moment diagram.

By exploiting the identity of the internal work and the external work given by the

combination of the displacement field associated to the actual load configuration in

Fig. 3.1, and the static field generated by the unitary force P 1 = 1, it is possible to

calculate the vertical displacement of interest:

ηDP1 =

∫
S

M(s)

EI
M1(s)ds =

∫
AC

MAC(s)

EI
M1

AC(s)ds +

∫
CD

MCD(s)

EI
M1

CD(s)ds

+

∫
DE

MDE(s)

EI
M1

DE(s)ds +

∫
EB

MEB(s)

EI
M1

EB(s)ds

where s is the abscissa of a local reference system defined along each beam portion,

e.g., from the generic cross-section X to the cross-section Y with MXY (s) the related

bending moment. For the beam of interest the bending moments read:

MAC(s) = −Ps
6
, M1

AC(s) = −s
3
, MCD(s) =

P

2

(
s− L

3

)
, M1

CD(s) = s− L

3
,

MDE(s) =
Ps

2
, M1

DE(s) = 0, MEB(s) =
Ps

2

(
L

3
− s
)
, M1

EB(s) = 0.
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Substituting the above expressions of the bending moments, the vertical displacement2

at node D reads:

ηD =
2

81

PL3

EI
.

The procedure can be replicated to calculate the rotation of the left and right cross

sections at the internal hinge in D, φD,DB and , φD,CD. The positive sign of the rotation

φ is chosen according to the convention provided in Fig. 3.5. The unitary load configu-

rations and the related moment distributions utilized for this purpose are shown in Fig.

3.3.

Fig. 3.7: a) Beam subjected to unitary moment at the right section of the internal hinge in D with the related

b) bending moment diagram. c) Beam subjected to unitary moment at the left section of the internal hinge

in D with the related d) bending moment diagram.

The reader can verify that the rotation φD,DB and φD,CD are, respectively:

φD,DB =

∫
AB

M(s)

EI
M1(s)ds =

1

108

PL2

EI

φD,CD =

∫
AB

M(s)

EI
M1(s)ds = − PL2

12EI

Displacements via elastic coefficients

The calculation of displacements and rotations can be often performed by exploiting

the knowledge of some fundamentals beam deflection formulas. As an Appendix of

2Following the principle of virtual work, a positive displacement is directed towards the same direction

of the applied unitary load, regardless the positive directions of the axes of the assumed reference system

for the displacements.
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these handouts, we have provided a short selection of these formulas which can be

used during the ASM course for the calculation of displacements in beams and frames.

Let us compute the rotations at node A, B, C utilizing such formulas. To calculate

the rotation in A and C, we consider the moment acting in C and utilize the beam

deflection for a simply supported beam subjected to end moments (see Fig 3.8b).

The cross section rotations at the supports can be calculated as function of the ends

moment (see Appendix).

Fig. 3.8: a) Calculation of rotation via beam deflection formulas. b) Rotation a A and C. c) Rotation in B.

Thus, the rotation in A reads3:

φA =
MCL

6EI
=

PL2

36EI

Similarly the rotation in C reads:

φC =
MCL

3EI
= − PL2

18EI

To calculate the rotation in B, we first account for the vertical displacement of the

internal hinge in D (see Fig. 3.8c). This vertical displacement contributes as a rigid

mechanism to the rotation of node B. In addition we evaluate the contribution of the

vertical load P to the rotation in B utilizing the beam deflection formulas for a simply

3The rotation in A is positive according to the reference system for displacements defined in Fig. 3.3
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supported beam subjected to a mid-span point load (see Appendix). As a result, the

rotation in B reads:

φB =
3

2L
ηD +

P

48EI

4L2

9
=

7PL2

108EI

The deformed shape of the beam is shown in Fig. 3.9.

Fig. 3.9: Beam deformed shape.

3.3 Example E2: Frame with distributed loads

3.3.1 Analysis of the structure

The structure of interest is the simply supported angle frame4 shown in Fig. 3.10a. As a

single body in the x−y plane, the frame has DoF = 3 and it is restrained by two hinges

for a total of DoRext = 4. As the four external degrees of restraints are all effective, i.e.,

DoRext = DoR = 4, the structure is one time statically indeterminate (DoF < DoR).

As such, its solution, namely the calculation of support reactions and internal forces,

cannot rely on equilibrium equations only but it must consider a further equation based

on the deformation of the structure.

The solution via method of forces requires the definition of an equivalent statically

determinate structure. This structure can be obtained by releasing, for example, the

rotation at node C, namely by inserting an internal hinge in C (see Fig. 3.10b). The

true unknown internal moment at the cross-section C, i.e., MC , is now represented by

the unknown internal moment X at both sides of the hinge, the cross-sections C ′ and

C ′′. The statically determined structure in Fig. 3.10b is equivalent to the one in Fig.

3.10a only if the two cross-sections C ′ and C ′′ rotate of the same amount:

φC′ = φC′′

4Adapted from the example 6.4 in Ref. [1].
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This compatibility equation is exploited to find the equilibrium of the equivalent statically

determined structure.

Fig. 3.10: a) Angle frame with distributed load. b) Associated statically determined structure.

3.3.2 Solution via Principle of Virtual Works

First, the moment distributions and the reaction forces are calculated for (i) the external

load q without considering the unknown X, and (ii) for a unit moment X = 1 without

considering the external load q. These two partial schemes are generally labeled as

the ′′0′′ configuration and the ′′1′′ configuration, so the the related moment distributions

are labeled as M0(s) and M1(s), respectively. Figures 3.11a and 3.11b shows these

two load cases while the related moment distributions are displayed in Figures 3.11c

and 3.11d.

For the configuration ′′0′′, e.g., structure loaded with the distributed load q, one can

easily verify that the horizontal reaction in A and in B are null and the vertical reaction

in A and B are V 0
A = V 0

B = 1
2qL. As a result, the moment M0 along AC is null while the

moment M0 along CB reads:

M0
CB(s) = V 0

As−
qs2

2
=
q(L− s)s

2

where s is the abscissa of a local reference system defined along the beam CB moving

from C to B.

For the configuration ′′1′′, e.g., structure loaded with the unitary load X = 1, one

can easily obtain the reaction forces:

V 1
A =

X

L
=

1

L
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Fig. 3.11: a) Statically determined structure loaded with distributed load q. b) Statically determined struc-

ture loaded with unitary couple X = 1. c) Moment distribution M0(s) due to q. d) Moment distribution

M1(s) due to X = 1.

H1
A =

X

L
=

1

L

Thus, the moment M1 along AC reads:

M1
AC(s) = −H1

As = − 1

L
s

while the moment M1 along CB reads:

M1
CB(s) = −L− s

L

By superposition, we can evaluate the actual moment in the equivalent isostatic

structure as the sum of the moment given by the distributed load q and the one given

by the couple X:

M(s) = M0(s) +XM1(s)
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At this stage, we impose the identity of the external work and internal work δWext =

δWint, which in this case reads:

−1φC′ + 1φC′′ =

∫
S
M1(s)

M(s)

EI
ds

where the rotations φC′ and φC′′ are associated to the actual load configuration of the

equivalent isostatic structure, namely distributed load q plus unknown couple X.

Imposing the compatibility of rotations at node C, φC′ = φC′′ , yields:∫
S
M1(s)

M(s)

EI
ds = 0

which can be rewritten as:∫
S
M1M

0

EI
ds+

∫
S
M1XM

1

EI
ds = 0

where: ∫
S
M1M

0

EI
dx =

∫
AB

−q(L− s)2s
2EIL

ds = − qL3

24EI

and: ∫
S
M1

XM1

EI
dx =

∫
AC

X
s2

EIL2
ds+

∫
CB

X
(L− s)2

EIL2
dx =

2XL

3EI

Solving the equation for the unknown couple X, we obtain:

− qL3

24EI
+

2XL

3EI
= 0→ X =

qL2

16

Knowledge of X allows calculating the reaction forces as the superposition of the indi-

vidual load cases:

VA = V 0
A +XV 1

A =
9qL

16

VB = V 0
B +XV 1

B =
7qL

16

HA = H0
A +XH1

A =
qL

16

with:

HB = HA

From the reaction forces, the distribution of the internal forces are easily found:

NAC = −VA = −9qL

16
QAC = HA =

qL

16
MAC(s) = −HAs = −qLs

16
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NCB = −HA = −qL
16

QCB(s) = −VA+qs = −9qL

16
+qs MCB = −qL

2

16
+

9qLs

16
−qs

2

2

The internal force distributions are shown in Fig. 3.12.

Fig. 3.12: a) Axial force b) Shear Force and c) Moment distribution.

Note that the moment distribution is linear in the vertical beam AC, while it is parabolic

in the horizontal beam CB. The parabolic part shows a local maximum where the shear

force is null:

QCB(s) = 0→ − VA + qs = 0→ s̄ =
9L

16

with:

MCB

(
9L

16

)
=

49

512
qL2.
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3.3.3 Computation of generalized displacements via elastic coefficients

Let us calculate the rotations at some relevant cross-sections of the frame by exploiting

the beam deflection formulas given in Appendix. Since the axial deformation of the

frame can be neglected, we assume the node in C to be fixed. Hence, the rotation at

nodeA, C andB can be calculated by resorting to known results for a simply supported

beam. According to the schemes reported in Fig. 3.13, the rotation at node A reads:

φA =
MCL

6EI
=

qL3

96EI

Similarly the rotation in C ′ reads:

φC′ = −MCL

3EI
= − qL3

48EI

which equates the rotation in C ′′, given by the contribution of the moment in C and the

distributed load:

φC′′ =
MCL

3EI
− qL3

24EI
=

qL3

48EI
− qL3

24EI
= − qL3

48EI

Finally the rotation in B is given as:

φB = −MCL

6EI
+

qL3

24EI
= − qL3

96EI
+

qL3

24EI
=

3qL3

96EI

Fig. 3.13: a) Simply supported column AC subjected to moment MC and simply supported beam CB

subjected to moment MC and distributed load q. b) Frame deformed shape

The deformed shape of the frame is shown in Fig. 3.13b.
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Flexure, shear and torsion of beams

4.1 Fundamentals

• Axial stresses in beams under pure bending.

• Shear flow and shear stress due to bending: compact and thin-walled beams.

• Axial stresses for general bending.

• Shear stresses due to torsion: compact and thin-walled beams.

4.2 Examples

4.2.1 E1. Axial and shear stresses in a cantilever beam with thin-walled I-profile

Figure 4.1a shows a cantilever beam with a constant I-profile section and elastic mod-

ulus E1. The cross-section has height h and width w with h = w = a and thickness

t and 2t, for the web and flanges, respectively. The cross-section is assumed to be

thin-walled, i.e., t << a. The cross-section is double-symmetric with respect to the

principal axes of inertia y − z which intersect at cross-section centroid G. As such, the

shear center C of the cross-section coincides with the centroid C ≡ G. The beam is

loaded by a tip force P , acting in the y direction, and passing through the cross-section

centroid. As a result, no torque is generated in the beam.

The distribution of strain and stress is determined at the cross-section placed at

fixed support x = 0, where the axial force, shear force and bending moment values

are:

N = 0, Qy = −P, Mz = −PL

1Adapted from Example 11.4 in Ref. [1]
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Fig. 4.1: a) Cantilever beam with a tip load P . Cross section details. b) Stress distribution due to bending

at the fixed-support cross-section.

Normal stress

According to the Navier formula, the normal stress distribution over the beam cross-

section induced by the bending moment is:

σ(y, z) = −Mz

Iz
y

with Iz being the moment of inertia with respect to the z axis:

Iz =
1

12
a3t+ 2

(
2ta

(
1

2
a

)2
)

=
13

12
a3t

Thus, the normal stress distribution reads:

σ(y, z) = −Mz

Iz
y =

12

13

PL

a3t
y

Figure 4.1b shows the variation of the normal stress σ(y, z) over the cross-section.

The negative stress indicates that the bottom flange is in compression. The maximum

positive (negative) value is reached at the uppermost (lowermost) fiber of the flange.

Shear stress

According to Grashof’s formula (or Jourawsky’s formula) for a cross-section subjected

to a shear force Qy the shear flow at a given cord of the cross-section is:

q =
SA′
z

Iz
Qy

where SA′
z is the static moment (first moment calculated with respect to the z axis) of

the segment area A′ of the cross-section delimited by the cord.
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For the cross-section of interest, the shear flow is calculated by defining generic cords

both in the flanges and in the web as shown in Fig. 4.2a. The cords are always orthog-

onal to the middle line of the cross-section, marked in black in Fig. 4.2a and Fig. 4.2b.

First, a vertical cord is considered in the left part of the top flange at distance d1 from

the left end of the flange, as shown in Fig. 4.2a. The relative segment area A′ is high-

lighted in blue.

The static moment of this segment with respect to the z-axis is:

SA′
z = 2td1

a

2
= atd1

Fig. 4.2: a) Shear flow along the left flange. b) Shear flow along the web

Thus, the shear flow at the cord reads:

q1(d1) =
SA′
z

Iz
Qy = − 12P

13a2
d1

The minus sign indicates that the shear flow exits the segments area A′. The shear flow

variation is linear with respect to the local coordinate d1, and reaches its maximum at

the flange center:

q1

(a
2

)
=
SA′
z

Iz
Qy = − 6

13a
P

The shear flow in the web is determined by taking a horizontal cord in the web, at

distance d2 from the centerline of the top flange, as shown in Fig. 4.2b. The static

moment of this segment area contains contributions from the top flange and part of the

web, namely:

SA′
z = 2ta

a

2
+ td2

(
a

2
− d2

2

)
= ta2

(
1− d2(d2 − a)

2a2

)
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It can be observed that the contribution of the web to the static moment presents a

quadratic dependence with d2, and that for d2 = 0 and d2 = a, namely at top and

bottom locations of the web, this contribution vanishes.

As a result, the expression for the shear flow in the web is:

q2(d2) =
SA′
y

Iy
Qz = −12P

13a

(
1− d2(d2 − a)

2a2

)
The shear flow at the center of the web is:

q2

(a
2

)
=
SA′
z

Iz
Qy = −27

26

P

a

The shear flow distribution along the whole section is provided in Fig. 4.3a.

Fig. 4.3: a) Shear flow b) and shear stress distribution

The distribution of stress along the flanges and web section (Fig. 4.3b) is obtained by

dividing the shear flow by the cord thicknesses.

4.2.2 E1. Torsion in a thin-walled C-profile.

A beam with a C-profile of height h = 4a and width w = 3a is subjected to torsion2. The

thickness of the vertical web is tw = t, while the thickness of the horizontal flanges is

tf = 2t. The cross-section is assumed to be thin-walled, so that tw, tf << h,w.

2Adapted from Example 11.12 in Ref. [1])
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Fig. 4.4: a) C-Profile section. b) Maximum stress due to torsional moment M.

For the thin-walled section of interest, the torsional factor Jt is found by summation of

the contribution from the two flanges and the web:

Jt =
1

3
(2(3a(2t)3) + 4at3) =

52

3
at3

The torsional stiffness is given by the product of the torsional factor and the shear

modulus G. The maximum stress in the flange is calculated as follows:

τmaxf
=
Mx

GJt
tf =

3

26

Mx

at2

Similarly, the maximum stress in the web is calculated as

τmaxw =
Mx

GJt
tw =

3

52

Mx

at2
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Appendix - Beam Deflection Formulas. 

Simply-supported beam 

 

 

Cantilever beam  

 

𝐿 

𝐿 

𝐵 
𝐴 

𝑀 
𝜙𝐵 =

𝑀𝐿

𝐸𝐼
 

𝜂𝐵 =
𝑀𝐿2

2𝐸𝐼
 

𝜙𝐵 

𝜂𝐵  

𝐵 𝐴 

𝑎 𝑏 

𝜙
𝐴
=
𝑀(3𝑏2 − 𝐿2)

6𝐿𝐸𝐼
 

𝜙
𝐵
=
𝑀(3𝑎 − 𝐿2)

6𝐿𝐸𝐼
 

𝑎 = 0 → 𝜙𝐴 =
𝑀𝐿

3𝐸𝐼
, 𝜙𝐵 =

𝑀𝐿

6𝐸𝐼
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𝑎 𝑏 

𝜙
𝐴
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𝑞𝑎2(𝑎 + 2𝑏)2

24𝐿𝐸𝐼
 

𝜙
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24𝐿𝐸𝐼
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𝑞𝐿3

24𝐸𝐼
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384𝐸𝐼
 

𝑀 
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𝜙
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𝜂
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3𝐸𝐼𝐿 
; 

𝑎 = 𝑏 =
𝐿

2
→ 𝜙𝐴 = 𝜙𝐵 =

𝑃𝐿2

16𝐸𝐼
; 

𝑎 = 𝑏 =
𝐿

2
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𝑃𝐿3

48𝐸𝐼
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Guided support-support beam  
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