
30 Chapter 3 Relational Model

person owns car

participated accident

address

damage-amount

model

yearlicensename

report-number
date

location

driver-id

driver

Figure 3.38. E-R diagram.

Exercises

3.1 Design a relational database for a university registrar’s office. The office main-
tains data about each class, including the instructor, the number of students
enrolled, and the time and place of the class meetings. For each student–class
pair, a grade is recorded.
Answer: Underlined attributes indicate the primary key.

student (student-id, name, program)
course (courseno, title, syllabus, credits)
course-offering (courseno, secno, year, semester, time, room)

instructor (instructor-id, name, dept, title)
enrols (student-id, courseno, secno, semester, year, grade)

teaches (courseno, secno, semester, year, instructor-id)

requires (maincourse, prerequisite)

3.2 Describe the differences in meaning between the terms relation and relation schema.
Illustrate your answer by referring to your solution to Exercise 3.1.
Answer: A relation schema is a type definition, and a relation is an instance of
that schema. For example, student (ss#, name) is a relation schema and

ss# name

123-45-6789 Tom Jones
456-78-9123 Joe Brown

is a relation based on that schema.

3.3 Design a relational database corresponding to the E-R diagram of Figure 3.38.
Answer: The relational database schema is given below.

person (driver-id, name, address)
car (license, year, model)
accident (report-number, location, date)

owns (driver-id, license)
participated (report-number driver-id, license, damage-amount)

Exercises 31

employee (person-name, street, city)

works (person-name, company-name, salary)

company (company-name, city)

manages (person-name, manager-name)

Figure 3.39. Relational database for Exercises 3.5, 3.8 and 3.10.

3.4 In Chapter 2, we saw how to represent many-to-many, many-to-one, one-to-
many, and one-to-one relationship sets. Explain how primary keys help us to
represent such relationship sets in the relational model.
Answer: Suppose the primary key of relation schema R is {Ai1 , Ai2 , ..., Ain}
and the primary key of relation schema S is {Bi1 , Bi2 , ..., Bim}. Then a re-
lationship between the 2 sets can be represented as a tuple (Ai1 , Ai2 , ..., Ain
Bi1 , Bi2 , ..., Bim). In a one-to-one relationship, each value on {Ai1 , Ai2 , ..., Ain}
will appear in exactly one tuple and likewise for {Bi1 , Bi2 , ..., Bim}. In a many-
to-one relationship (e.g., many A - one B), each value on {Ai1 , Ai2 , ..., Ain}will
appear once, and each value on {Bi1 , Bi2 , ..., Bin}may appear many times. In a
many-to-many relationship, values on both {Ai1 , Ai2 , ..., Ain} and {Bi1 , Bi2 , ...,
Bim}will appear many times. However, in all the above cases {Ai1 , Ai2 , ..., Ain ,
Bi1 , Bi2 , ..., Bim} is a primary key, so no tuple on (Aj1 , ..., Ajn

Bk1
, ..., Bkm

) will
appear more than once.

3.5 Consider the relational database of Figure 3.39, where the primary keys are un-
derlined. Give an expression in the relational algebra to express each of the fol-
lowing queries:

a. Find the names of all employees who work for First Bank Corporation.
b. Find the names and cities of residence of all employees who work for First

Bank Corporation.
c. Find the names, street address, and cities of residence of all employees who

work for First Bank Corporation and earn more than $10,000 per annum.
d. Find the names of all employees in this database who live in the same city

as the company for which they work.
e. Find the names of all employees who live in the same city and on the same

street as do their managers.
f. Find the names of all employees in this database who do not work for First

Bank Corporation.
g. Find the names of all employees who earn more than every employee of

Small Bank Corporation.
h. Assume the companies may be located in several cities. Find all companies

located in every city in which Small Bank Corporation is located.

Answer:

a. Πperson-name (σcompany-name = “First Bank Corporation” (works))

b. Πperson-name, city (employee
�

(σ
company-name = “First Bank Corporation” (works)))

32 Chapter 3 Relational Model

c. Πperson-name, street, city

(σ
(company-name = “First Bank Corporation” ∧ salary > 10000)

works � employee)
d. Πperson-name (employee � works � company)
e. Πperson-name ((employee � manages)

� (manager-name= employee2.person-name∧ employee.street= employee2.street

∧ employee.city = employee2.city)(ρemployee2 (employee)))
f. The following solutions assume that all people work for exactly one com-

pany. If one allows people to appear in the database (e.g. in employee) but
not appear in works, the problem is more complicated. We give solutions for
this more realistic case later.

Πperson-name (σcompany-name �= “First Bank Corporation”(works))

If people may not work for any company:
Πperson-name(employee) − Πperson-name

(σ
(company-name = “First Bank Corporation”)(works))

g. Πperson-name (works) − (Πworks.person-name (works
�
(works.salary ≤works2.salary∧works2.company-name=“Small Bank Corporation”)
ρworks2(works)))

h. Note: Small Bank Corporation will be included in each answer.
Πcompany-name (company ÷

(Πcity (σcompany-name=“Small Bank Corporation” (company))))

3.6 Consider the relation of Figure 3.21, which shows the result of the query “Find
the names of all customers who have a loan at the bank.” Rewrite the query
to include not only the name, but also the city of residence for each customer.
Observe that now customer Jackson no longer appears in the result, even though
Jackson does in fact have a loan from the bank.

a. Explain why Jackson does not appear in the result.
b. Suppose that you want Jackson to appear in the result. How would you

modify the database to achieve this effect?
c. Again, suppose that you want Jackson to appear in the result. Write a query

using an outer join that accomplishes this desire without your having to
modify the database.

Answer: The rewritten query is
Πcustomer-name,customer-city,amount(borrower � loan � customer)

a. Although Jackson does have a loan, no address is given for Jackson in the
customer relation. Since no tuple in customer joins with the Jackson tuple of
borrower, Jackson does not appear in the result.

b. The best solution is to insert Jackson’s address into the customer relation. If
the address is unknown, null values may be used. If the database system
does not support nulls, a special value may be used (such as unknown) for
Jackson’s street and city. The special value chosen must not be a plausible
name for an actual city or street.

Exercises 33

c. Πcustomer-name,customer-city,amount((borrower � loan) � customer)

3.7 The outer-join operations extend the natural-join operation so that tuples from
the participating relations are not lost in the result of the join. Describe how the
theta join operation can be extended so that tuples from the left, right, or both
relations are not lost from the result of a theta join.
Answer:

a. The left outer theta join of r(R) and s(S) (r � θ s) can be defined as
(r � θ s) ∪ ((r − ΠR(r � θ s)) × (null, null, . . . , null))
The tuple of nulls is of size equal to the number of attributes in S.

b. The right outer theta join of r(R) and s(S) (r � θ s) can be defined as
(r � θ s) ∪ ((null, null, . . . , null) × (s − ΠS(r � θ s)))
The tuple of nulls is of size equal to the number of attributes in R.

c. The full outer theta join of r(R) and s(S) (r � θ s) can be defined as
(r � θ s) ∪ ((null, null, . . . , null) × (s − ΠS(r � θ s))) ∪
((r − ΠR(r � θ s)) × (null, null, . . . , null))
The first tuple of nulls is of size equal to the number of attributes in R, and
the second one is of size equal to the number of attributes in S.

3.8 Consider the relational database of Figure 3.39. Give an expression in the rela-
tional algebra for each request:

a. Modify the database so that Jones now lives in Newtown.
b. Give all employees of First Bank Corporation a 10 percent salary raise.
c. Give all managers in this database a 10 percent salary raise.
d. Give all managers in this database a 10 percent salary raise, unless the salary

would be greater than $100,000. In such cases, give only a 3 percent raise.
e. Delete all tuples in the works relation for employees of Small Bank Corpora-

tion.

Answer:

a. employee ← Πperson-name,street,“Newtown′′

(σ
person-name=“Jones”(employee))

∪ (employee − σ
person-name=“Jones”(employee))

b. works ← Πperson-name,company-name,1.1∗salary(
σ
(company-name=“First Bank Corporation”)(works))

∪ (works − σ
company-name=“First Bank Corporation”(works))

c. The update syntax allows reference to a single relation only. Since this up-
date requires access to both the relation to be updated (works) and the man-
ages relation, we must use several steps. First we identify the tuples of works
to be updated and store them in a temporary relation (t1). Then we create
a temporary relation containing the new tuples (t2). Finally, we delete the
tuples in t1, from works and insert the tuples of t2.

t1 ← Πworks.person-name,company-name,salary

(σworks.person-name=manager-name(works ×manages))

34 Chapter 3 Relational Model

t2 ← Πperson-name,company-name,1.1∗salary(t1)

works ← (works − t1) ∪ t2
d. The same situation arises here. As before, t1, holds the tuples to be updated

and t2 holds these tuples in their updated form.

t1 ← Πworks.person-name,company-name,salary
(σworks.person-name=manager-name(works ×manages))

t2 ← Πworks.person-name,company-name,salary∗1.03
(σt1.salary ∗ 1.1 > 100000(t1))

t2 ← t2 ∪ (Πworks.person-name,company-name,salary∗1.1
(σt1.salary ∗ 1.1 ≤ 100000(t1)))

works ← (works − t1) ∪ t2
e. works ← works − σ

company−name=“Small Bank Corporation”(works)

3.9 Using the bank example, write relational-algebra queries to find the accounts
held by more than two customers in the following ways:

a. Using an aggregate function.
b. Without using any aggregate functions.

Answer:

a. t1 ← account-numberGcount customer-name(depositor)
Πaccount-number

(

σnum-holders>2
(

ρaccount-holders(account-number,num-holders)(t1)
))

b. t1 ← (ρd1(depositor) × ρd2(depositor) × ρd3(depositor))
t2 ← σ(d1.account-number=d2.account-number=d3.account-number)(t1)
Πd1.account-number(σ(d1.customer-name�=d2.customer-name ∧
d2.customer-name�=d3.customer-name ∧d3.customer-name�=d1.customer-name)(t2))

3.10 Consider the relational database of Figure 3.39. Give a relational-algebra expres-
sion for each of the following queries:

a. Find the company with the most employees.
b. Find the company with the smallest payroll.
c. Find those companies whose employees earn a higher salary, on average,

than the average salary at First Bank Corporation.

Answer:

a. t1 ← company-nameGcount-distinct person-name(works)

t2 ← maxnum-employees(ρcompany-strength(company-name,num-employees)(t1))
Πcompany-name(ρt3(company-name,num-employees)(t1) � ρt4(num-employees)(t2))

b. t1 ← company-nameGsum salary(works)
t2 ← minpayroll(ρcompany-payroll(company-name,payroll)(t1))
Πcompany-name(ρt3(company-name,payroll)(t1) � ρt4(payroll)(t2))

c. t1 ← company-nameGavg salary(works)
t2 ← σ

company-name = “First Bank Corporation”(t1)

Exercises 35

Πt3.company-name((ρt3(company-name,avg-salary)(t1))
�

t3.avg-salary > first-bank.avg-salary (ρfirst-bank(company-name,avg-salary)(t2)))

3.11 List two reasons why we may choose to define a view.
Answer:

a. Security conditions may require that the entire logical database be not visi-
ble to all users.

b. We may wish to create a personalized collection of relations that is better
matched to a certain user’s intuition than is the actual logical model.

3.12 List two major problems with processing update operations expressed in terms
of views.
Answer: Views present significant problems if updates are expressed with them.
The difficulty is that a modification to the database expressed in terms of a view
must be translated to a modification to the actual relations in the logical model
of the database.

a. Since the view may not have all the attributes of the underlying tables, in-
sertion of a tuple into the view will insert tuples into the underlying tables,
with those attributes not participating in the view getting null values. This
may not be desirable, especially if the attribute in question is part of the
primary key of the table.

b. If a view is a join of several underlying tables and an insertion results in
tuples with nulls in the join columns, the desired effect of the insertion will
not be achieved. In other words, an update to a view may not be expressible
at all as updates to base relations. For an explanatory example, see the loan-
info updation example in Section 3.5.2.

3.13 Let the following relation schemas be given:

R = (A,B,C)

S = (D,E, F)

Let relations r(R) and s(S) be given. Give an expression in the tuple relational
calculus that is equivalent to each of the following:

a. ΠA(r)
b. σB=17 (r)
c. r × s

d. ΠA,F (σC =D(r × s))

Answer:

a. {t | ∃ q ∈ r (q[A] = t[A])}
b. {t | t ∈ r ∧ t[B] = 17}
c. {t | ∃ p ∈ r ∃ q ∈ s (t[A] = p[A] ∧ t[B] = p[B]∧ t[C] = p[C] ∧ t[D] = q[D]

∧ t[E] = q[E] ∧ t[F] = q[F])}
d. {t | ∃ p ∈ r ∃ q ∈ s (t[A] = p[A] ∧ t[F] = q[F] ∧ p[C] = q[D]}

36 Chapter 3 Relational Model

3.14 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give
an expression in the domain relational calculus that is equivalent to each of the
following:

a. ΠA(r1)
b. σB =17 (r1)
c. r1 ∪ r2
d. r1 ∩ r2
e. r1 − r2
f. ΠA,B(r1) � ΠB,C(r2)

Answer:

a. {< t > | ∃ p, q (< t, p, q > ∈ r1)}
b. {< a, b, c > | < a, b, c > ∈ r1 ∧ b = 17}
c. {< a, b, c > | < a, b, c > ∈ r1 ∨ < a, b, c > ∈ r2}
d. {< a, b, c > | < a, b, c > ∈ r1 ∧ < a, b, c > ∈ r2}
e. {< a, b, c > | < a, b, c > ∈ r1 ∧ < a, b, c > �∈ r2}
f. {< a, b, c > | ∃ p, q (< a, b, p > ∈ r1 ∧ < q, b, c > ∈ r2)}

3.15 Repeat Exercise 3.5 using the tuple relational calculus and the domain relational
calculus.
Answer:

a. Find the names of all employees who work for First Bank Corporation:-
i. {t | ∃ s ∈ works (t[person-name] = s[person-name]

∧ s[company-name] = “First Bank Corporation”)}
ii. { < p > | ∃ c, s (< p, c, s > ∈ works ∧ c = “First Bank Corporation”)}

b. Find the names and cities of residence of all employees who work for First
Bank Corporation:-

i. {t | ∃ r ∈ employee ∃ s ∈ works (t[person-name] = r[person-name]
∧ t[city] = r[city] ∧ r[person-name] = s[person-name]
∧ s[company-name] = “First Bank Corporation”)}

ii. {< p, c > | ∃ co, sa, st (< p, co, sa > ∈ works

∧ < p, st, c > ∈ employee ∧ co = “First Bank Corporation”)}
c. Find the names, street address, and cities of residence of all employees who

work for First Bank Corporation and earn more than $10,000 per annum:-
i. {t | t ∈ employee ∧ (∃ s ∈ works (s[person-name] = t[person-name]

∧ s[company-name] = “First Bank Corporation” ∧ s[salary] >

10000))}
ii. {< p, s, c > | < p, s, c > ∈ employee ∧ ∃ co, sa (< p, co, sa > ∈ works

∧ co = “First Bank Corporation” ∧ sa > 10000)}
d. Find the names of all employees in this database who live in the same city

as the company for which they work:-
i. {t | ∃ e ∈ employee ∃ w ∈ works ∃ c ∈ company

(t[person-name] = e[person-name]
∧ e[person-name] = w[person-name]
∧ w[company-name] = c[company-name] ∧ e[city] = c[city])}

Exercises 37

ii. {< p > | ∃ st, c, co, sa (< p, st, c > ∈ employee

∧ < p, co, sa > ∈ works ∧ < co, c > ∈ company)}
e. Find the names of all employees who live in the same city and on the same

street as do their managers:-
i. { t | ∃ l ∈ employee ∃m ∈ manages ∃ r ∈ employee

(l[person-name] = m[person-name] ∧ m[manager-name] =
r[person-name]

∧ l[street] = r[street] ∧ l[city] = r[city] ∧ t[person-name] =
l[person-name])}

ii. {< t > | ∃ s, c, m (< t, s, c > ∈ employee ∧ < t,m > ∈ manages ∧ <

m, s, c > ∈ employee)}
f. Find the names of all employees in this database who do not work for First

Bank Corporation:-
If one allows people to appear in the database (e.g. in employee) but not ap-
pear in works, the problem is more complicated. We give solutions for this
more realistic case later.

i. { t | ∃ w ∈ works (w[company-name] �= “First Bank Corporation”
∧ t[person-name] = w[person-name])}

ii. { < p > | ∃ c, s (< p, c, s > ∈ works ∧ c �= “First Bank Corporation”)}
If people may not work for any company:

i. { t | ∃ e ∈ employee (t[person-name] = e[person-name] ∧ ¬ ∃ w ∈
works

(w[company-name] = “First Bank Corporation”
∧w[person-name] = t[person-name]))}

ii. { < p > | ∃ s, c (< p, s, c > ∈ employee) ∧ ¬ ∃ x, y

(y = “First Bank Corporation”∧ < p, y, x > ∈ works)}
g. Find the names of all employees who earn more than every employee of

Small Bank Corporation:-
i. {t | ∃ w ∈ works (t[person-name] = w[person-name] ∧ ∀ s ∈ works

(s[company-name] = “Small Bank Corporation” ⇒ w[salary] >

s[salary]))}
ii. {< p > | ∃ c, s (< p, c, s > ∈ works ∧ ∀ p2, c2, s2

(< p2, c2, s2 > �∈ works ∨ c2 �= “Small Bank Corporation” ∨ s >

s2))}
h. Assume the companies may be located in several cities. Find all companies

located in every city in which Small Bank Corporation is located.
Note: Small Bank Corporation will be included in each answer.

i. {t | ∀ s ∈ company (s[company-name] = “Small Bank Corporation” ⇒
∃ r ∈ company (t[company-name] = r[company-name]∧ r[city] =

s[city]))}

ii. {< co > | ∀ co2, ci2 (< co2, ci2 > �∈ company

∨ co2 �= “Small Bank Corporation” ∨ < co, ci2 > ∈ company)}

3.16 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write
relational-algebra expressions equivalent to the following domain-relational-
calculus expressions:

38 Chapter 3 Relational Model

a. {< a > | ∃ b (< a, b > ∈ r ∧ b = 17)}
b. {< a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s}
c. {< a > | ∃ b (< a, b > ∈ r) ∨ ∀ c (∃ d (< d, c > ∈ s) ⇒ < a, c > ∈ s)}
d. {< a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 >

∈ r ∧ b1 > b2))}

Answer:

a. ΠA (σB = 17 (r))
b. r � s

c. ΠA(r) ∪ (r ÷ σB(ΠC(s)))
d. Πr.A ((r � s) � c= r2.A∧ r.B >r2.B (ρr2

(r)))
It is interesting to note that (d) is an abstraction of the notorious query

“Find all employees who earn more than their manager.”Let R = (emp, sal),
S = (emp, mgr) to observe this.

3.17 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Using
the special constant null, write tuple-relational-calculus expressions equivalent
to each of the following:

a. r � s

b. r � s

c. r � s

Answer:

a. {t | ∃r ∈ R ∃s ∈ S (r[A] = s[A] ∧ t[A] = r[A] ∧ t[B] = r[B] ∧ t[C] = s[C]) ∨
∃s ∈ S(¬∃r ∈ R(r[A] = s[A]) ∧ t[A] = s[A] ∧ t[C] = s[C] ∧ t[B] = null)}

b. {t | ∃r ∈ R ∃s ∈ S (r[A] = s[A] ∧ t[A] = r[A] ∧ t[B] = r[B] ∧ t[C] = s[C]) ∨
∃r ∈ R(¬∃s ∈ S(r[A] = s[A]) ∧ t[A] = r[A] ∧ t[B] = r[B] ∧ t[C] = null) ∨
∃s ∈ S(¬∃r ∈ R(r[A] = s[A]) ∧ t[A] = s[A] ∧ t[C] = s[C] ∧ t[B] = null)}

c. {t | ∃r ∈ R ∃s ∈ S (r[A] = s[A] ∧ t[A] = r[A] ∧ t[B] = r[B] ∧ t[C] = s[C]) ∨
∃r ∈ R(¬∃s ∈ S(r[A] = s[A]) ∧ t[A] = r[A] ∧ t[B] = r[B] ∧ t[C] = null)}

3.18 List two reasons why null values might be introduced into the database.
Answer: Nulls may be introduced into the database because the actual value
is either unknown or does not exist. For example, an employee whose address
has changed and whose new address is not yet known should be retained with
a null address. If employee tuples have a composite attribute dependents, and
a particular employee has no dependents, then that tuple’s dependents attribute
should be given a null value.

3.19 Certain systems allow marked nulls. A marked null ⊥i is equal to itself, but if
i �= j, then⊥i �=⊥j . One application of marked nulls is to allow certain updates
through views. Consider the view loan-info (Section 3.5). Show how you can use
marked nulls to allow the insertion of the tuple (“Johnson”, 1900) through loan-
info.
Answer: To insert the tuple (“Johnson”, 1900) into the view loan-info, we can do

