
Chapter 2

Existing Parallel and Distributed
Systems, Challenges, and Solutions

2.1 Modern Software Architectures, Systems, and APIs for Parallel
and Distributed Systems . 14
2.1.1 HPC Systems . 14

2.1.1.1 GPGPU and Accelerators 16
2.1.1.2 Clusters . 18

2.1.2 SOA . 20
2.1.3 Multitier Architectures . 23
2.1.4 Peer-to-Peer, Distributed Software Objects, and Agents 24
2.1.5 Grid Systems . 26
2.1.6 Volunteer Computing . 28
2.1.7 Cloud Computing . 31

2.1.7.1 Infrastructure as a Service 33
2.1.7.2 Software as a Service . 34
2.1.7.3 Platform as a Service . 34
2.1.7.4 Cloud vs. Grid Computing 34

2.1.8 Sky Computing . 35
2.1.9 Mobile Computing . 36

2.2 Complex Distributed Scenarios as Workflow Applications 37
2.2.1 Workflow Structure . 38
2.2.2 Abstract vs. Concrete Workflows . 38
2.2.3 Data Management . 39
2.2.4 Workflow Modeling for Scientific and Business

Computing . 39
2.2.5 Workflow Scheduling . 43
2.2.6 Static vs. Dynamic Scheduling . 44
2.2.7 Workflow Management Systems . 44

2.3 Challenges and Proposed Solutions . 46
2.3.1 Integration of Systems Implementing Various Software

Architectures . 46
2.3.2 Integration of Services for Various Target Application

Types . 48
2.3.3 Dynamic QoS Monitoring and Evaluation of

Distributed Software Services . 49
2.3.4 Dynamic Data Management with Storage Constraints

in a Distributed System . 51

13

Tay
lor

 an
d Fran

cis

Not
for

 D
ist

rib
uti

on

14 Existing Parallel and Distributed Systems, Challenges, and Solutions

2.3.5 Dynamic Optimization of Service-Based Workflow
Applications with Data Management in Distributed
Heterogeneous Environments . 52

2.1 Modern Software Architectures, Systems, and APIs

for Parallel and Distributed Systems

This chapter presents the most important of modern distributed software
architectures by outlining key components and the way the latter interact and
synchronize. Correspondingly, examples of representative implementations of
these architectures are given with discussions on the APIs available to the
client. Secondly, workflow management systems for various environments are
shown as a feasible way of integrating software components within particular
types of systems. This is done as a prerequisite to analysis and discussion
of future directions, challenges in dynamic integration of various types of
distributed software to which the author proposes solutions covered in depth
further in this book.

2.1.1 HPC Systems

High-performance computing [46, 47] has come a long way from dedicated,
extremely expensive supercomputers to machines equipped with multicore
CPUs and powerful GPU devices widely available even in our homes today.
As an example, Intel Xeon Processor E7-8890 v2 features 15 cores, Intel Xeon
Phi 7120 features 61 cores. NVIDIA GeForce GTX Titan features 2688 CUDA
cores. AMD Opteron 6380 Series Processors feature 16 cores. Figures 2.1 and
2.2 present the performance in Tflop/s and the number of cores of the first
cluster on the TOP500 [19] list over the last years. Figure 2.3 shows the average
processor frequency used in the ten most powerful clusters on the TOP500 list
in respective years. It can be seen that the growth in the clock frequency has
practically stopped and consequently the increase in the performance is mainly
due to a growing number of processor cores in the cluster as well as adoption of
new computing devices. Apparently, this will also be the tendency of cheaper
machines which can accommodate GPU devices easily assuming a powerful
enough power supply is installed.

Adoption of more computational devices (such as computers, cluster nodes
but also cores within devices) has crucial consequences for software. In order
to use the available processing capabilities, one or more of the following tech-
niques needs to be adopted:

1. launching more applications with processes/threads to use the available
processors and cores,

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 15

FIGURE 2.1: Performance of the first cluster on the TOP500 list, based on
data from [19].

FIGURE 2.2: Number of processing cores of the first cluster on the TOP500
list, based on data from [19].

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

16 Existing Parallel and Distributed Systems, Challenges, and Solutions

FIGURE 2.3: Average processor speed of the ten best clusters on the
TOP500 list, based on data from [19].

2. parallelize existing applications so that these launch more threads to
make use of the large numbers of cores.

In order to do this, a proper API and runtime systems are needed. The most
popular ones are discussed next along with access and management of the
parallel software.

2.1.1.1 GPGPU and Accelerators

NVIDIA CUDA [129, 188, 161] and OpenCL [38] allow General-Purpose
computing on Graphics Processor Units (GPGPU). NVIDIA CUDA offers
an API that allows programming GPU devices in the SIMT fashion. The
following concepts are distinguished regarding the application paradigm:

1. a 3D grid that is composed of blocks aligned in three dimensions X, Y,
and Z, in which

2. each block consists of threads aligned in dimensions X, Y, and Z.

The usual steps in application execution include the following:

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 17

FIGURE 2.4: Performance per Watt of the first cluster on the TOP500 list,
based on data from [19].

1. discovery of available GPU devices;

2. uploading input data from the RAM memory of the computer into the
global memory of the device;

3. specification of grid sizes, both in terms of block counts in three dimen-
sions as well as thread counts in three dimensions within a block;

4. launching a kernel, which is a function that is executed in parallel by
various threads that process data; and

5. downloading output data produced by the kernel from the global mem-
ory of the GPU to the RAM.

Advanced code will use several optimization techniques such as:

• data prefetching along with usage of faster but smaller shared memory
as well as registers;

• memory coalescing, which speeds up access to global memory;

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18531-3&iName=master.img-824.jpg&w=32&h=191

18 Existing Parallel and Distributed Systems, Challenges, and Solutions

• optimization of shared memory and register usage, which may increase
the parallelization level;

• loop unrolling;

• launching several kernels and overlapping communication and computa-
tions;

• using multiple GPUs.

OpenCL offers an API similar to that of NVIDIA CUDA but generalized
to run not only on GPUs but also on multicore CPUs. This allows us to use
a modern workstation with several multicore CPUs and one or possibly more
GPUs as a cluster of processing cores for highly parallel multithreaded codes.
Because of that, OpenCL requires some more management code related to
device discovery and handling but the kernel and grid concepts have remained
analogous to NVIDIA CUDA.

Development and execution of both NVIDIA CUDA- and OpenCL-based
applications involve the following:

1. logging into the computer equipped with CPU(s) and GPU(s), e.g., using
SSH,

2. compilation of the code using a proper compiler, e.g., nvcc for NVIDIA
CUDA and nvcc -lOpenCL for OpenCL programs, and

3. execution of the program.

As explained above, the aforementioned solutions require access to HPC re-
sources using, e.g., SSH as well as programming and operating system knowl-
edge to develop and run corresponding applications.

OpenACC [178, 217], on the other hand, allows us to extend sequential
code using directives and functions that allow subsequent parallelization of the
application when running on GPUs. This approach is aimed at making parallel
programming on GPUs easier similarly to parallelization using OpenMP [210,
49].

Intel Xeon Phi coprocessors allow us to use one of a few programming
APIs such as OpenMP [210, 49], OpenCL [38] or Message Passing Interface
(MPI) [36] described below.

2.1.1.2 Clusters

Traditionally, the Message Passing Interface (MPI) [36, 218] has been used
for multiprocess, multithreaded programming on clusters of machines, each of
which may use multiple, multicore CPUs. MPI is a standard API available to a
parallel application that consists of many processes that work on separate pro-
cessing units (possibly on different nodes of a cluster). Processes interact with
each other by exchanging messages. Moreover, a process can include several

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 19

threads that are allowed to invoke MPI functions provided the MPI imple-
mentation supports one of the multithreading levels. This, apart from MPI
non-blocking functions, allows overlapping computations and communication.
Furthermore, important features of MPI include:

• potentially hardware-optimized collective communication routines,

• parallel I/O allowing several processes to access and modify a file(s),

• dynamic spawning of processes,

• partitioning processes into groups and using various communicators,

• additional functions of certain MPI implementations such as transparent
checkpointing in LAM/MPI and BLCR [214].

Development of MPI programs, access and management usually involves
the following steps (after logging into the HPC system via SSH):

1. development of source code (e.g., in C/C++ or Fortran),

2. compilation using a compiler with MPI libraries (such as using mpicc),

3. submission into a queuing system such as Portable Batch System (PBS),
Load Sharing Facility (LSF), or LoadLeveler [141] or running from the
console,

4. checking status and browsing results of the application which can be
done using the respective commands of queuing systems.

There exist higher-level graphical interfaces that hide details of application
submission, checking status and browsing results. Usually these are interfaces
built on top of grid middleware able to access several HPC clusters as de-
scribed in Section 2.1.5. Examples of such interfaces include BeesyCluster,
co-developed by the author [69], or MigratingDesktop [12, 136], developed
within the CrossGrid project.

MPI programs can be combined with APIs for shared memory program-
ming such as OpenMP [112]. Furthermore, in clusters in which nodes are
equipped with GPUs, MPI can be used together with, e.g., NVIDIA CUDA
in order to exploit all parallelization levels. When nodes have Intel Xeon Phi
coprocessors installed, a single MPI application can be launched in such a
way that some processes run on CPU cores and others on cores of coproces-
sors. There are also other solutions that can help use the available resources
in cluster environments. For instance, rCUDA [17, 86] allows sharing GPUs
among nodes of a cluster in a transparent way. Many GPUs Package (MGP)
[39] through implementation of the OpenCL specification and OpenMP exten-
sions enable a program to use GPUs and CPUs in a cluster. KernelHive [79]
allows us to define, optimize and run a parallel application with OpenCL ker-
nels on a cluster with CPUs and GPUs. It is possible to use various optimizers
such as minimization of execution time and a bound on power consumption
of devices selected for computations.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

20 Existing Parallel and Distributed Systems, Challenges, and Solutions

2.1.2 SOA

Service Oriented Architecture (SOA) [88] assumes that a distributed ap-
plication can be built form distributed services. The service is a software
component that can be developed by any provider and made available from
a certain location through well-known interfaces and protocols. Such loosely
coupled services can be integrated into a complex application that uses various
services to accomplish particular tasks.

The popular Web Service technology can be viewed as an implementation
of SOA with the following key standards and protocols [185]:

1. SOAP [212]—a protocol that uses XML for representation of requests
and responses between the client and the service.

2. WSDL (Web Service Description Language) [213]—a language used to
represent a technical description of a Web Service. It contains operations
available within the service with specifications of input and output mes-
sages, used data types, the location of a service and protocol binding.

3. UDDI (Universal Description, Discovery and Integration) [21]—a stan-
dard aimed at development of service registries that could be used by
the community. It allows publishing data in a secure way and querying
the registry for business entities or services published by them. Providers
and services can be described by means of classification systems as well
as contain technical characteristics or links to WSDL documents.

The technology features:

• Self-contained services—each service is published by its provider and its
code is contained within the service and possibly other services it may
use. The client does not need any other software other than for encoding
a request so that it is accepted by the service and decoding its result,

• Loosely coupled services—services are published independently by their
providers and are interoperable thanks to SOAP.

The standard sequence that allows us to consume a Web Service involves the
following steps:

1. discovery of a service that performs a desired business function,

2. fetching the description of the service,

3. building a client and invoking the service.

Figure 2.5 presents a sequence which has been extended compared to the
one cited in the literature [185] by inclusion and application of additional stan-
dards and protocols to improve the discovery process with semantic search.
Semantic computing [196] is gaining much attention in distributed information
systems. The steps using these standards are as follows:

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 21

FIGURE 2.5: Publishing, semantic search for services, and service invocation
sequence.

1. Publishing information about the service using the OWL-S [82]. OWL-S
allows us to specify:

• Inputs,

• Outputs,

• Preconditions,

• Results.

Proper concepts/OWL-classes can be used in these fields. Next, the
OWL-S description can be mapped into an UDDI description [198].

2. The client sends a request to a UDDI server [185]. In the traditional
approach, it is the UDDI server that will search for the service among
its records. However, searching in UDDI has been limited to matching
keywords with no semantic relation between concepts present in the

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

22 Existing Parallel and Distributed Systems, Challenges, and Solutions

search request and the description in the registry. Thus, instead of the
UDDI server, the request can be routed to a more advanced semantic
engine that will consider an ontology for the search. Namely, for each
of the concepts on a particular field of the specification of the request,
the engine tries to match and find semantic links to the concepts of
the corresponding field of the service description. Paper [198] describes
how such semantic connections can be determined using inheritance of
concepts.

3. A list of services matching the client’s request is returned. The client
selects a service and fetches its description in WSDL.

4. The client invokes the service using SOAP, which is transferred using
one of many possible protocols, the most common being HTTP and
HTTPS.

5. After the service has processed the request, a response wrapped into
SOAP is sent back to the client.

The RESTful service [111] solution is an alternative to SOAP-based ser-
vices. REST (REpresentational State Transfer) [92] distinguishes resources
identified by URIs and uses HTTP methods to manipulate the resources. As
such, REST can be thought of as a technology allowing realization of Re-
source Oriented Architecture (ROA) [145]. ROA distinguishes the concept
of a resource that is accessible through certain interfaces. Such services can
be described by either WSDL 2.0 [151, 213] or Web Application Description
Language (WADL) [110]. Technically, REST can also be thought of as an
implementation of a (part of) SOA [89].

What is crucial is the possibility of invoking not only one service but
to combine outputs of several services and process these further in order to
produce output of a given service. This can also be done at more levels of such
a service invocation hierarchy. For instance, a travel agency could publish a
service for booking a package holiday. After placing a request by invocation of
the service, the service would need to find out what other services are available
out there to perform more concrete tasks such as:

• booking a flight,

• booking hotels,

• booking additional activities, attractions, events,

• checking weather forecasts for particular places.

Note that there may be several providers offering a particular service, e.g.,
booking a flight, in which case there will be several alternative services that
perform the requested function. Such services can differ in quality metrics such
as price, time to book, reservation period, reliability, conditions to cancel, etc.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 23

It can be noted that it may be the travel agency that selects the best flight
out of those offered by various airlines or it can further delegate this task by
invoking a service of another company that specializes in this very process
and does that better for a reasonable fee. Proper selection of such services
and execution of such a complex scenario is discussed in depth in Section 2.2.

2.1.3 Multitier Architectures

FIGURE 2.6: Multitier architecture.

The multitier approach in distributed system design distinguishes multiple,
functionally distinct layers that can be integrated into an application. This
has several advantages such as:

• independent development of layers,

• possibility of independent modification,

• possibility of invoking a certain layer from another application.

It is important to note that each layer of such a system exposes its own API
to its clients. Typical layers include:

1. The client can be a thin client (Web browser), application running in a
sandbox (such as a Java applet), or a desktop application.

2. Server layer that accepts user input, processes it, and sends results back.
In some technologies it can be further broken into more layers such as:

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

24 Existing Parallel and Distributed Systems, Challenges, and Solutions

• presentation—for verification, parsing input data passed by the
client of this layer and presentation of results,

• business—for actual processing of the request and performing the
requested function; this layer might contact other layers or other
cooperating systems to do its job.

3. Database for storage and retrieval of data. The database engine can
aggregate and return only results requested by the client of this layer.

Figure 2.6 depicts three multitier systems with popular technologies and pop-
ular APIs exposed by the layers.

2.1.4 Peer-to-Peer, Distributed Software Objects,

and Agents

Peer-to-peer computing is a concept of distributed computing in which
distributed components cooperate by being able to serve as providers and
clients at the same time. In principle, the components are equal and can divide
particular tasks of the scenario and management of data among themselves.

A

C

D

2

1
B

FIGURE 2.7: Distributed agents architecture.

The distributed software objects approach distinguishes distributed ob-
jects as components that can interact with each other by invoking exposed
methods that operate internally on object attributes. An example of such

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 25

type of computing is CORBA (Common Object Request Broker Architecture)
[194, 115], which allows communication between distributed objects using an
Object Request Broker (ORB) [164]. Objects can be implemented in various
languages and run on one of many operating systems, in particular using:

• VBOrb [23] for Visual Basic,

• MICO [175] for C++,

• omniORB [13] for C++ and Python,

• ORBit2 [15] for C and Perl, or

• IIOP.NET [8] implementation of IIOP for the .NET environment.

The publish and invocation sequence involves the following steps:

1. Specification of an object interface using the OMG Interface Definition
Language (IDL).

2. Translation of the interface to a skeleton on the server side or a stub
on the client side. These codes are generated in the language the corre-
sponding side will be implemented.

3. Augmenting the code with actual service implementation on the server
side or service invocation on the client side.

4. Creation of objects and storing and passing of Interoperable Object
References (IORs) to the client or object registration in the Naming
Service (see below).

5. Calling object methods by other objects.

Objects can use services [93] such as the Naming Service, Security Service,
Event Service, Persistent Object Service, Life Cycle Service, Concurrency
Control Service, Externalization Service, Relationship Service, Transaction
Service, Query Service, Licensing Service, Property Service, Time Service,
Trading Service, and Collection Service.

Distributed Software Agents [42] can be treated as further extension of
distributed objects and be applied on top of the peer-to-peer processing [155].
Particular agents are instances of agent classes and can communicate with each
other by sending messages. The following key features of multiagent systems
can be distinguished:

• Autonomous agents—agents act independently and can perform own
decisions,

• Global intelligence but local views of the agents—agents can cooperate
to achieve a global goal but each agent has its own perception of the
part of the environment it can observe. Together agents can acquire and
use knowledge that would not have been available for a single party,

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

26 Existing Parallel and Distributed Systems, Challenges, and Solutions

• Self-organization—cooperating agents can arrange parts of a complex
task themselves; on the other hand, agents may need to look for new
agents to fetch information, trade, etc., which requires:

– negotiation with other agents,

– ontology as a means of common understanding of used terms for
communication between agents that do not know each other.

• Migration—agents can migrate throughout a distributed system to
gather and use information; this approach might be more efficient than
multiple client-server calls; this approach can also cope with partitioning
of the system which would make calls from a distant client impossible.

Figure 2.7 presents the architecture of a distributed system which includes con-
tainers on which distributed agents work. The agents need a directory service
to find and communicate with other agents. An example of such a platform
is JADE [42] in which agents have defined behaviors and can communicate
with each other by sending ACL messages. Each agent can have its own logic.
Two special agents are available: AMS for enabling launching and control of
agents and a Directory Facilitator (DF) that allows agents to advertise their
services.

It should be noted that agents can be exposed to Web Service clients using
the JADE Web Services Integration Gateway (WSIG) [118].

2.1.5 Grid Systems

Grid computing [97, 98, 96] can be best defined as controlled resource
sharing. It was proposed as a means of integration of various resources so that
there is a uniform way and API for using these resources irrespective of where
the resources are, how they differ, or who has provided them. Theoretically,
computing resources could be used much like suppliers of electric energy, i.e.,
connect to the system and use it with the system taking care of which resources
are actually used for the request.

Grid computing specifies so-called Virtual Organizations (VOs) that are
separate units in different administrative domains. The VOs have certain com-
puting resources at their disposal that can use specific

1. operating systems,

2. storage systems,

3. user authentication and authorization mechanisms,

4. policies of how, when, and if the system can be accessed from outside;
the latter can also differ on whether the user belongs to a particular
group of users,

5. access protocols and APIs (e.g., WWW, SSH, etc.).

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 27

FIGURE 2.8: Interaction between the user and grid middleware and between
grid middleware and virtual organizations.

The grid system couples resources of two or more Virtual Organizations
into one system. This is done through a particular grid middleware that hides
all the aforementioned differences among VOs and offers a uniform API to the
client of the grid system. The client can use the API and the grid can take
care of where the task is executed (Figure 2.8).

Actual implementations of grid systems such as Globus Toolkit [7, 197]
offer APIs that allow the following:

1. execution of applications on the grid;

2. management of data on the grid including transfer of files to/from the
grid and between particular grid locations; input file staging and output
file staging, as well as cleanup after execution of a task;

3. security management including

• obtaining security credentials to access the grid,

• right delegation;

4. monitoring resources.

Globus Toolkit is probably the most popular grid middleware. Its version
5 features the following components:

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

28 Existing Parallel and Distributed Systems, Challenges, and Solutions

• Grid Resource Allocation Manager (GRAM) [206] for location, submis-
sion, canceling and monitoring jobs on the grid by communication with
various job schedulers.

• GridFTP [207] protocol for secure, reliable and high-performance data
movement in WANs.

• Grid Security Infrastructure (GSI) [208] for authentication, authoriza-
tion and management of certificates. It uses X.509 certificates and allows
delegation through proxy certificates.

• Common Runtime.

The previous Globus Toolkit 4.x version implemented the Open Grid Ser-
vices Architecture (OGSA) and Web Service Resource Framework (WSRF)
[53, 197] and additionally provided a Monitoring and Discovery System
(MDS).

Other available grid middleware include UNICORE [22, 35, 201], and gLite
[87, 138].

On top of grid middleware, several high-level interfaces and systems have
been developed that make running applications, management of data, and in-
formation services easier to use. These do allow us to run specialized parallel
applications in the grid environment, the former often tailored to the needs
of specific domain users. Examples include, among others, CrossGrid [105],
CLUSTERIX [219, 131, 134], EuroGrid [139], and more recently PL-Grid
[51, 43, 130] in Poland. These do require additional functionality compared to
stateless Web Services as the client-server interaction often requires a context
to be retained between successive calls for the identification of the client to
return, e.g., results of previous requests. Furthermore, the client must be pre-
vented from unauthorized access to resources they should not have access to.
Accounting, secure data transmission and resource discovery are crucial for
distributed computing between virtual organizations.

2.1.6 Volunteer Computing

Volunteer computing allows distributed execution of a project by a large
group of geographically distributed user volunteers. Similar to grid computing,
it is about integration of resources (especially computational) in a controlled
way. However, there are also key differences. Table 2.1 lists both similarities
as well as different solutions adopted in these approaches.

The simplest architecture of a distributed volunteer-based system can con-
tain one project server with multiple distributed volunteers connected to it.
The client computers perform the following steps in parallel:

1. Define usage details, i.e., CPU percentage/cores, RAM, and disk, that
can be used by the system.

2. Download computational code from the project server.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 29

TABLE 2.1: Grid vs volunteer computing.
Feature Grid Computing Volunteer Comput-

ing
Integration of resources in
controlled way

+ +

Participating parties
Virtual Organiza-
tions (VOs)

End users

Large-scale distributed pro-
cessing

+ +

Suitable only for compute-
intensive applications with-
out dense communication

+ +

Uniform job submission and
file management API for
clients who want to use re-
sources

+ —

Security and reliability of
computations

Trusted VOs End users cannot
be trusted; need for
replication

Social undertaking — +
Safe for the client + (Node code exe-

cuted on the client
side)

-/+ Needs setting up
a sandbox such as
a separate UNIX ac-
count for real safety

3. in a loop:

(a) download a packet(s) of input data,

(b) process the data,

(c) report results and effort in terms of CPU and memory used over
the processing period.

The aforementioned scheme is typical of volunteer-based systems such as
BOINC [30]. The BOINC system allows running several independent projects
that attract volunteers to donate processing power, memory and storage to
process data packets. Management of such a project, keeping the volunteers
active and attracting new ones becomes a socially oriented initiative. The
BOINC server may need to send two or more packets of data to various clients
to make sure that returned results are correct. This may allow us to assess
reliability of particular clients over time and rely on single processing requests.
Similarly, assessment of the reported effort is based on the minimum out of
reported efforts from two volunteers.

Comcute [6, 37, 75] is a system for volunteer computing in which the server
layer is extended compared to BOINC for purposes of reliability and security
of computations. Contrary to BOINC, computations on the client side are

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

30 Existing Parallel and Distributed Systems, Challenges, and Solutions

FIGURE 2.9: Volunteer computing architecture.

executed within a web browser, thus relieving the client from any installation
of any application. Figure 2.9 presents the architecture of the system with the
following layers:

1. Servers (W) for management of computations; within these servers a
group of servers is elected for handling the task in a collective manner
by distribution of data packets among S servers connected to the W
layer.

2. Distribution servers (S) to which volunteers connect in order to:

(a) Submit the capabilities of the client system, i.e., the computing
technologies it supports, e.g., JavaScript, Java, Flash, Silverlight.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 31

(b) Obtain computational code; the server can use the information pro-
vided in the previous step to provide the code in the most efficient
technology.

(c) Successively fetch input data and return results.

3. Access server (Z) that exposes the access API and a Web interface as an
indirect way to access W servers; for security reasons it is not possible
to connect to W servers directly.

In Comcute it is possible to define the logical structure of W servers, connec-
tions between S and W servers, redundancy used when sending requests to
particular volunteers, and the number of W servers in charge of a particular
project. From the API point of view, the programmer needs to provide code
for a data partitioner, computations and data merger.

2.1.7 Cloud Computing

Cloud computing [29] has become widespread and popular in recent years.
The client is offered various kinds of services that are made available from the
cloud and managed by providers. Be it infrastructure, particular software, or
a complete hardware, operating system, and a software platform, all options
are marketed as being:

1. cheaper than purchasing the necessary equipment and/or software li-
censes by the client, necessary maintenance, administration, introducing
software updates;

2. scalable because the client can often scale the configuration not only up
but also down depending on current needs;

3. convenient and easy to use as the client does not need to focus on hard-
ware and software management if the core business is not related to
computer science; in this scenario the client does not deal with any
hardware failures, software incompatibilities, etc.;

4. accessible as the cloud can be accessed from practically anywhere using
any device assuming the Internet is available.

On the other hand, the following should be noted:

1. The data is stored in the cloud and is handled by the provider and the
client does not always know where and how the data is stored. Depending
on where the provider offers their services and where the data is located,
various laws may govern; consequently the legal aspects might not be
clear for the client unless specified clearly in the agreement.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

32 Existing Parallel and Distributed Systems, Challenges, and Solutions

FIGURE 2.10: Cloud computing with private, public, and hybrid clouds.

2. Risk of vendor lock-in: If the vendor started changing conditions con-
siderably, the client may find it difficult to migrate to another cloud
provider if too invested; it might be time consuming and costly (how-
ever some providers use compatible solutions).

Based on available solutions and particular offers including parameters and
prices as well as specific functions, a client may create a configuration possibly
using services from many providers [189].

Alternatively, institutions my want to set up private clouds to mitigate
these issues. The following types of clouds can be distinguished in this respect:

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 33

• Public cloud, in which case an external provider offers access to a cloud
or clouds managed by them.

• Private cloud, which is maintained by the given institution and offered as
a service within this institution. If the latter is large, it may turn out to
be an efficient way of resource management for various geographically
distributed subsidiaries. At the same time, the cloud is managed and
controlled by the same institution. However, it is the institution that
needs to purchase and maintain both hardware and software in this
case.

• Hybrid cloud, in which particular services may be provided from such a
location as to optimize factors required by the client; as an example:

1. An application for which high security is required, may be provided
from a private cloud while infrastructure for time-consuming but
not that critical computations may be used from a public cloud.

2. An enterprise can continue to store sensitive data of its current
clients and contracts in a private cloud and offload less critical
archive data to a public cloud.

3. An enterprise interested in particular software typically offered by
a public cloud may use a private cloud for this software due to
security reasons.

The following sections present types of cloud services offered on the market.
Each of the services is provided based on a contract with a certain duration
and certain QoS terms, including the price.

2.1.7.1 Infrastructure as a Service

Infrastructure as a Service (IaaS) is a type of a cloud service that offers
clients the requested resources in a particular configuration. The client can
request particular parameters with respect to the following:

1. Number of requested nodes/computers

2. RAM size

3. Storage/disk space

4. CPU power

5. Operating system, e.g., Microsoft Windows, Linux etc.

6. Outgoing and incoming transfer per month

7. QoS parameters such as requested availability, e.g., 99.9%

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

34 Existing Parallel and Distributed Systems, Challenges, and Solutions

What is important is that the client can usually scale up and down the re-
quested configuration based on current needs and pay only for the config-
uration currently needed. Examples of particular cloud-based compute-type
solutions include Amazon Elastic Compute Cloud (Amazon EC2) [156] and
Google Compute Engine service [171]. Another solution is Eucalyptus (with
support for Amazon EC2 and Amazon S3 interfaces) which allows creation
of private and hybrid clouds [90]. OpenStack [14, 179] allows you to manage
compute, storage, and networking resources and is a platform for private and
public clouds. It also provides an API compatible with Amazon EC2.

2.1.7.2 Software as a Service

Software as a Service (SaaS) is a type of cloud service that offers clients
access to particular software. The software is maintained by the cloud provider
who performs all necessary updates while the client can use the service from
any location. Most often, flat payment for the services in the given configura-
tion is assumed and for the duration of the contract.

2.1.7.3 Platform as a Service

Platform as a Service (PaaS) is often referred to as exposing a complete
hardware and software platform as a service to clients. For instance, a partic-
ular complete programming environment with a requested operating system
may be offered on an appropriate hardware system to programmers with a
team work environment. Examples include Red Hat’s OpenShift [174] and
Aneka [135, 170].

2.1.7.4 Cloud vs. Grid Computing

There are a few important differences when compared to grid systems
[104]:

1. Business goals: While grid systems emerged as distributed systems for
integration of high-performance resources of mainly institutions, cloud
computing’s targets are both businesses and end users who outsource
hardware, software, or hardware and software platforms.

2. API: Grid systems use grid middleware that can use queuing systems
to access particular computational resources. Grid middleware expose
job management, file management, monitoring and security APIs as ex-
plained in Section 2.1.5. Cloud systems use specific APIs or interfaces
such as Amazon EC2 and Amazon S3.

3. Organizational: In grids: cooperation including allowing access to use
resources, authentication and authorization of users is agreed between
Virtual Organizations. In cloud computing, providers generally attract
clients independently.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Modern Software Architectures, Systems and APIs ... 35

FIGURE 2.11: Sky computing on top of multiple clouds.

2.1.8 Sky Computing

Obviously, there are many IaaS, SaaS and PaaS providers. This means
that, similarly to services in SOA, a client can select the best cloud providers
based on required QoS parameters. For instance, Cloudorado [5] allows users
to find the best IaaS offers based on the client’s requirements.

Sky computing [127] can be seen as an extension and generalization of cloud
computing to overcome the limitations of the latter. Namely, the client uses
an infrastructure that connects to multiple clouds to use required services as
shown in Figure 2.11. Thus sky computing leads to creation of a middleware on
top of cloud providers. The goal of this middleware is similar to the functions
of the grid middleware. Similarly, issues such as the following ones appear:

1. lack of a uniform interface to various clouds (some use the same interface
as explained in Section 2.1.7) as well as security management,

2. difficult communication and synchronization between clouds; there are
network restrictions for particular clouds related to configuration of
VMs, IPs, high numbers of hops between machines [95],

3. difficult data management across multiple clouds at the same time.

Compared to clouds, sky computing offers the following benefits:

1. Independence from a single cloud provider: In case one cloud changed
its conditions considerably, the client can simply select another cloud

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

36 Existing Parallel and Distributed Systems, Challenges, and Solutions

provider without much effort; this is obviously possible if the APIs for
the clouds are the same or similar.

2. Promotes increased competition from other cloud providers that can
be used by a particular client. Sky computing mitigates the problem
of vendor lock-in in this way. This is beneficial for the client and the
provider might be well aware of other options for the client.

3. Ability to offer a set of services on top of clouds that would not be
available from a single cloud provider

4. Ability to use various clouds from possibly various providers for partic-
ular parts of a complex scenario.

2.1.9 Mobile Computing

The recent years have marked fast growth of the mobile device market.
The following important software areas for mobile computing could be distin-
guished since mobile devices became popular recently:

1. personal information management, scheduler, office applications,

2. client to WWW servers and Web Services,

3. location-based services based on the position of the mobile device,

4. sensors used in smart homes/world such as GPS, acceleration, light,
temperature, etc.

The latter is also related to ubiquitous computing in which the distributed
system is filled in with sensors and proper services are invoked based on the
current context. For instance, when the owner of an apartment approaches,
the door is unlocked and music is turned on based on the current mood of
the owner, temperature, humidity and the time of day. Mobile devices with a
wide array of sensors may be used for this purpose as well.

Naturally, mobile devices can communicate with various services around
and even far away from them. Two types of services can be distinguished:

1. Those offered by other mobile devices using, e.g., Bluetooth.

2. Services offered from stationary servers, e.g., Web Services, servers (e.g.,
mail) allowing socket connections, POP, asynchronous notification us-
ing, e.g., Google Cloud Messaging (GCM) [114], etc. This can allow
integration of mobile devices with weather forecasts, HPC systems for
processing of digital media content from cameras, etc.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Complex Distributed Scenarios as Workflow Applications 37

FIGURE 2.12: Mobile computing.

2.2 Complex Distributed Scenarios as Workflow

Applications

Today’s distributed systems are all about service integration as this leads
to added value and possibilities compared to individual services. Workflow
management systems have been introduced to model, optimize, execute and
manage complex scenarios in information systems. In general, a complex sce-
nario is represented by a workflow application or a workflow which can be
modeled as a graph in which nodes correspond to tasks which are parts of
a complex process while the edges denote control and corresponding data
flows. This approach applies, with slight differences, to complex tasks in the
following areas:

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

38 Existing Parallel and Distributed Systems, Challenges, and Solutions

1. Business processing in which tasks can be performed by various services
offered on the market by various providers on different terms. Busi-
ness workflows are more about control flow rather than processing large
amounts of data; various control mechanisms should be predicted in-
cluding exceptions.

2. Scientific computing in which workflow tasks are usually to process large
amounts data; parallel paths of the workflow can be used in order to
parallelize processing; control flow is rather simple.

3. Ubiquitous computing in which the graph depicts sequences of invo-
cations of services based on the context, i.e., a set of conditions that
initiates a given service or services.

Workflow applications can be characterized in terms of many features.
Typical aspects applicable to many contexts are discussed in subsequent sec-
tions.

For applications run on certain system types, thorough taxonomies have
been proposed, e.g., for grid workflow applications in [216, 222].

2.2.1 Workflow Structure

Depending on the particular field of study, various constructs are allowed
in workflows which determine possible control and data flow as well as opti-
mization and execution. Typical constructs may include:

1. sequence (S)—tasks connected with a directed edge are executed in the
specified order,

2. choice (C)—one of alternative parallel paths can be executed,

3. parallel execution (P)—two or more parallel paths may be executed at
once,

4. iteration (I)—a part of a workflow may be executed many times.

The most popular formulation of a workflow is a directed acyclic graph
(DAG) which includes constructs S, C and P.

2.2.2 Abstract vs. Concrete Workflows

Given a particular workflow structure, there are two ways that executable
components can be assigned to particular workflow nodes. This determines
the type of workflow:

• Concrete: In this case it is specified a priori what executable code is
assigned to particular workflow tasks. This might be given in various
forms:

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Complex Distributed Scenarios as Workflow Applications 39

1. for each workflow node an application (executable) is assigned that
executes on a particular resource (computer),

2. an external concrete service is assigned to a workflow node.

• Abstract : In this case the workflow definition for each workflow node
contains specification of what task the node should do. This can include:

1. a functional description of what the particular workflow node
should perform; one of many possible executables or services can
be selected to accomplish this task,

2. non-functional (QoS) requirements imposed on the workflow task,
e.g., that it must finish within a specified time frame or must not
be more expensive than a given threshold.

2.2.3 Data Management

Data management is very important for workflow applications oriented on
both:

1. data flow, where options for partitioning of large amounts of data for
parallel processing are crucial,

2. control flow, where, e.g., making a choice based on input data is made.

The literature discusses several constructs and approaches: various ways
of data integration coming from various inputs [103], data representation such
as files, or data streams [60, 106].

It should be noted that workflow tasks may be assigned particular data
and correspondingly data sizes in advance. In such cases the problem is usually
to determine which service should perform the given task such that a function
of quality metrics is optimized.

Many other problems could be considered as well. For instance, if input
data of a given size needs to be partitioned among workflow paths for parallel
execution in such a way that capacity constraints need to be met and flow
conservation equations need to hold as well as the cost of processing is to be
minimized, we would consider the minimum cost flow problem [203].

2.2.4 Workflow Modeling for Scientific and Business

Computing

The most popular model of a workflow application used in scientific and
business applications is an abstract DAG workflow. This allows flexibility in
the definition of a complex task, allows selection of appropriate services, and
stating a practical optimization problem for subsequent execution. The process
involves a few, steps:

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

40 Existing Parallel and Distributed Systems, Challenges, and Solutions

1. Workflow definition

2. Finding services capable of executing workflow tasks

3. Selection of services for particular workflow tasks and scheduling service
execution at particular moments in time

4. Execution

5. Monitoring the status and fetching output results

Formally, an abstract DAG-based workflow considered in the literature
is represented as a directed acyclic graph G(T,E) where T is a set of tasks
(graph nodes) and E a set of directed edges connecting selected pairs of tasks.
For each task ti there is a set Si of services sijs each of which is capable of
executing task ti. The notation corresponding to this model is as follows:

• ti—task i (represented by a node in the workflow graph) of the workflow
application 1 ≤ i ≤ |T |

• Si = {si1 ... si|Si|}—a set of alternative services each of which can
perform functions required by task ti; only one service must be selected
to execute task ti 1 ≤ i ≤ |T |

• cij ∈ R—the cost of processing a unit of data by service sij 1 ≤ i ≤ |T |
1 ≤ j ≤ |Si|

• di = dini ∈ R—size of data processed by task ti 1 ≤ i ≤ |T |

• texecij = f exec
ij (dini)—execution time of service sij

• tsti ∈ R—starting time for service sij selected to execute ti 1 ≤ i ≤ |T |

• tworkflow ∈ R—wall time for the workflow i.e., the time when the last
service finishes processing the last data

• B ∈ R—budget available for the execution of a workflow

Examples of practical workflows for three application areas are as follows:

• Business—a workflow application that can be regarded as a template for
development and distribution of products out of components available on
the market; generalization of a use case considered in [66] and extended
with dependencies between services (Figure 2.13):

1. The first stage distinguishes parallel purchases of components from
the market; for each one there may be several sale services available
with different QoS terms such as delivery time and cost.

2. The product is integrated out of the collected components with the
know-how of the workflow owner (company).

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Complex Distributed Scenarios as Workflow Applications 41

FIGURE 2.13: Business workflow application example.

3. The product is distributed on several, potentially geographically
distributed markets; for each market there may be several distrib-
utors the product developer can choose from.

• Scientific—a workflow for parallel processing of input data shown in Fig-
ure 2.14 that can be used for a variety of applications such as parallel
processing of aerial images, signals from space, recognition of illnesses
based on patient’s images and a database of templates, voice recognition,
detection of unwanted events [74]. The author distinguished a general-
ized template with several stages that fit and can be adjusted to all these
applications:

1. Data acquisition—input data can be gathered in parallel from var-
ious sources such as cameras, audio input devices, etc. it can be
noted that there can be both concrete tasks for which there al-
ready known data acquisition services (such as a particular cam-
era) or abstract tasks; for the latter, there can be various services
that provide services, e.g., services from various market analysis
providers.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

42 Existing Parallel and Distributed Systems, Challenges, and Solutions

2. Data set preparation—acquired data is arranged into data sets for
parallel processing; note that both various data sets can be pro-
cessed in parallel as well as each individual data set may be paral-
lelized in the next stage.

3. Parallel processing of particular data sets. It should be noted that
in this workflow formulation it is possible to process various data
sets in parallel; in particular, acquisition of another data set (such
as from source C) does not synchronize with processing of data
from source A; parallel processing has been arranged into parallel
workflow paths which are realized by particular services installed
on supposedly various resources.

FIGURE 2.14: Scientific workflow application example.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Complex Distributed Scenarios as Workflow Applications 43

2.2.5 Workflow Scheduling

For abstract workflows that contain tasks with two or more services as-
signed to them, a workflow scheduling problem needs to be solved. Given
the aforementioned dependency constraints defined by the graph, using the
introduced notation, the workflow scheduling problem can be stated as
follows:

∀i find ti → (si sel(i), t
st
i) (2.1)

where si sel(i) denotes the service selected for execution of ti starting at time
tsti such that

∀i,k:(ti,tk)∈E tstk ≥ tsti + texeci sel(i) (2.2)

with constraints on the workflow execution time and cost. The workflow ex-
ecution time (not considering scheduling time) is the end time of the latest
task with no successor:

tworkflow = maxi:∄k(ti,tk)∈E{t
st
i + texeci sel(i)}. (2.3)

Typically, considered alternative optimization goals include one of the fol-
lowing:

• MIN T C BOUND—minimization of the workflow execution time with
a bound B (budget) on the total cost of selected services:

min tworkflow
∑

i

ci sel(i)di ≤ B. (2.4)

• MIN C T BOUND—minimization of the total cost spent with an upper
bound on the workflow execution time T:

min
∑

i

ci sel(i)di

tworkflow ≤ T. (2.5)

• MIN H C T—minimization of a function of cost and execution time (as-
suming certain units):

min h(
∑

i

ci sel(i)di, tworkflow). (2.6)

Formulation 2.6 might be useful if we consider a financial equivalent of time
which is a very practical approach applicable to, e.g., transportation [152].
Formulations such as 2.4 and 2.5 are NP-hard problems [225] which means that

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

44 Existing Parallel and Distributed Systems, Challenges, and Solutions

optimal solutions can be found in a reasonable time frame only for problems
of small size. For larger problems that show up in real-life situations, efficient
heuristic algorithms need to be adopted. Selected algorithms for solving these
problems are discussed in Section 4.2.

2.2.6 Static vs. Dynamic Scheduling

It should be noted that although the workflow scheduling problem con-
siders a set of services for optimization, availability of these services might
change. In general, in real environments, the following types of events might
occur and impact scheduling results:

1. Some services that were previously chosen for execution are no longer
available. This might be due to failure of a network, the server on which
the service is installed or possibly even maintenance.

2. Changes in service parameters unless a contract was put in place that
would guarantee expected values for QoS metrics such as execution time,
price, etc.

3. New services showing up on the market that would be capable of exe-
cuting workflow tasks on better terms.

In cases 1 or 2, rescheduling of the workflow has to be performed in order
to meet the optimization goal with possibly alternative services. In case 3, the
cost of rescheduling should be assessed as compared to potential gains from
using services with potentially better parameters.

It should be noted that there can be many more parameters/quality met-
rics assigned to services, apart from cost cij and time tij such as dependability,
reliability, security, being up-to-date, etc. These are discussed in Section 2.3.3.
All of these can also be incorporated into either the aforementioned or dedi-
cated constraints.

2.2.7 Workflow Management Systems

There are several workflow management systems available which can be
characterized in particular by [222]:

• Target application type—business, scientific, ubiquitous computing

• Underlying type of services—e.g., one of the following: Web Services,
grid or cloud services

• Manual composition of tasks into workflows or automatic based on ex-
isting rules and facts

• Optimization of a single criterion or multiple criteria at the same time

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Complex Distributed Scenarios as Workflow Applications 45

• Scheduling—using local or global knowledge

• Various ways of monitoring and learning about services and providers,
etc.

Exemplary workflow management systems that can be distinguished based on
the type of target systems include:

• Grid—usually built for grid systems on top of grid middleware such
as Globus Toolkit, Gridbus, etc. or services. Examples of such systems
include ASKALON [215], Taverna [18], Pegasus [83, 84], Triana [20, 150],
Kepler [11, 146], Conveyor [142], and METEOR-S [137], which allows
adding semantics to web service composition with quality of service [27,
176].

• Cloud—recently, cloud systems have become attractive platforms for
both business and scientific services [45, 63] with emphasis on the
payment-per-use policy for cloud systems compared to grid systems
[116, 211] and possibility of launching various configurations easily. An-
other related advantage is scaling resources as needed, which can be use-
ful for scientific workflow applications with a varying level of parallelism
such as different numbers of parallel paths in various stages. Dynamic
scaling is possible in the Aneka Cloud [170]. Cluster-based systems of-
fer better communication performance at the cost of flexibility [123].
Examples of systems include:

– Amazon Simple Workflow [40]—allows definition and management
of business workflows on clouds and/or traditional on-site systems.

– Tavaxy [26]—a system that integrates Taverna and Galaxy for
launching a part or a whole workflow in a cloud.

– A framework and workflow engine for execution of workflows on
many clouds [101].

• Ubiquitous computing—services are invoked in the given context. Fol-
lowMe [140] is an example of a platform for this type of computing.

Similarly, various languages and standards for representation of workflow
applications are used in various contexts [104], for example:

• Grid—Petri-Nets (e.g., Triana) [150], Abstract Grid Workflow Language
(AGWL) [91] used in ASKALON

• Business—Business Process Modelling Notation (BPMN) [165] with
XML Process Definition Language (XPDL), Web Services Business Pro-
cess Execution Language (WS-BPEL) [205], OWL-WS [41] (NextGrid).
Orchestra [16] is a solution for complex business processes with WS-
BPEL 2.0 support. BPELPower [221] was designed and implemented in

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

46 Existing Parallel and Distributed Systems, Challenges, and Solutions

Java as a solution that can run both typical BPEL and geospatial work-
flows with handling Geography Markup Language (GML) and geospa-
tial Web services. ApacheODE [2] is able to execute processes expressed
using WS-BPEL 2.0 and the legacy BPEL4WS 1.1. Activiti [1] is a
platform with a BPMN 2 process engine for Java. jBPM [10, 148] is a
Business Process Management (BPM) Suite with a Java workflow engine
for execution using BPMN 2.0. Execution using BPEL is considered in
various contexts such as grids [147] or mobile devices [109].

• Ubiquitous computing—Compact Process Definition Language (CPDL)
in FollowMe [140].

SHIWA (SHaring Interoperable Workflows for large-scale scientific simu-
lations on Available DCIs) [24] allows you to store various workflows in a
repository and run these on various Distributed Computing Infrastructures
(DCIs). What is novel is that the approach enables you to define higher-level
meta-workflows that consist of workflows run on various workflow manage-
ment systems. This greatly increases interoperability among workflow-based
solutions. Furthermore, Askalon was extended for use in grid-cloud environ-
ments [167] with an Amazon EC2-compliant interface. Launching a workflow
on various systems including clouds, grids and cluster-type systems is shown
in [170] with support for Aneka, PBS, and Globus.

2.3 Challenges and Proposed Solutions

2.3.1 Integration of Systems Implementing Various Software

Architectures

As described in Section 2.1, various software architectures of distributed
systems were designed for particular types of processing and applications.
Consequently, integration of various components within a single software ar-
chitecture and its actual implementation is straightforward. For example:

1. HPC: MPI allows parallel processing and synchronization of processes
running on various nodes or processors.

2. HPC: NVIDIA CUDA and OpenCL allow parallel processing using mul-
tiple threads running on many Streaming Multiprocessors (SM). The
same technologies allow parallel usage of multiple GPUs at the same
time.

3. SOA: By design, a Web Service can consume and integrate results of
other Web Services. Web Services are loosely coupled and can be offered
by various providers, from any place. Cooperation is possible using the
well-established SOAP-based or RESTful services.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Challenges and Proposed Solutions 47

4. Multitier Architectures: Within Java Enterprise Edition [120], compo-
nents of the presentation layer such as servlets and JSPs cooperate easily
with Enterprise Java Beans in the business layer. Furthermore, compo-
nents can interact across application servers thanks to clustering within
this technology [169].

5. Grid systems: By design, systems and software of distributed Virtual
Organizations (VOs) is coupled together and made available using a
uniform API and interface that is called grid middleware. As an example,
Globus Toolkit provides a uniform API for management of jobs (tasks)
on the grid such as clusters located in various VOs through GRAM, file
management through GridFTP, and security using GSI.

6. Cloud computing: Various resources offered by a cloud provider can be
used together seamlessly and in a way not visible to the client, e.g., in
Google Apps service.

7. Mobile computing: Well-established standards such as Bluetooth, and
HTTP serve as common communication protocols for various mobile
devices. Nevertheless, even though Bluetooth is a well-defined standard,
communication glitches including disconnecting, and problems when es-
tablishing communication are common when using devices such as mo-
bile phones and GPS navigation devices from various manufacturers.
Other standards such as Web Services, and communication over sockets
can be used as well-provided there is an implementation for the devices
in question.

Problem: Integration of applications or components running within soft-
ware systems implementing different software architectures is not always pos-
sible out-of-the-box. There do exist some approaches in various contexts. For
instance, sky computing [127] aims at integration of various clouds from var-
ious providers. In an enterprise environment, Enterprise Service Bus (ESB)
allows integration and communication between various applications and ser-
vices using various communication protocols and formats [182, 202]. Various
topologies are possible for integration of, e.g., separate subsidiaries: a unified
or separate ESBs [143]. A BPEL engine that integrates services can be either
independent from an ESB and can call services from various ESBs or operate
within an ESB [143]. As [182] suggests, extension of an ESB implementation
with new protocols is not easy as it demands a new port type. A concept of
the universal port is proposed along with protocol and format detectors and
processors for use with an ESB. Furthermore, it is always possible to use cer-
tain technologies such as Web Services in order to create a middleware hiding
differences between certain types of systems standing behind it.

However, at the level of the aforementioned software systems implementing
particular software architectures there is no solution that would address all
aspects of uniform integration. Such a solution requires integration at the
level of protocols, and data formats, but also authentication, authorization,

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

48 Existing Parallel and Distributed Systems, Challenges, and Solutions

potential queuing systems and potentially complex APIs exposed by those
software systems.

Rationale: For many modern applications, integration of various dis-
tributed systems is desirable. For instance:

1. business applications using services from various companies, entities in-
cluding government and local authorities,

2. scientific computing for gathering data from, e.g., distant radio tele-
scopes from all over the world and processing in parallel on various
clusters,

3. ubiquitous computing when local services are discovered and used dy-
namically in a workflow application based on the physical location of
the device.

As an example, the scientific workflow shown in Figure 2.14 may use ser-
vices for parallel processing of data, whether on an HPC system with the PBS
queuing system, available as a Web Service from a distant server, available
through Globus Toolkit, or processed in parallel by many volunteers attached
to BOINC. From the perspective of the workflow modeling, it does not af-
fect the structure or definition of the workflow in any way. Such mapping of
software implemented using various architectures could prove useful.

Proposed solution: The author proposes to use a generalized and uniform
concept of a service for any software components implementing these software
architectures to be able to integrate actual resulting services into complex
scenarios modeled by workflow applications. In fact, the concept of a service
is already present in, e.g.,:

1. SOA—as a basic software component and implementation through the
Web Service [88]

2. Grid computing—the concept of a grid service

3. Cloud computing—the concept of SaaS

Some other architectures and actual implementations require publishing
of selected legacy software components as services. The actual solution is
presented in Sections 3.1, 3.2, and 3.3.

2.3.2 Integration of Services for Various Target Application

Types

Essentially, software services can be divided into categories in terms of
target application types:

1. Business—when the functional goal of the service is customer oriented
with QoS metrics such as performance, cost, reliability, conformance,
etc. are very important for the client.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Challenges and Proposed Solutions 49

2. Scientific— when the primary goal of the service is to perform compu-
tations, data analysis, predictions, etc., that do not need to be directly
applicable or purchased by an average consumer. Usually such services
are performance oriented although the cost and power consumption are
gaining attention as shown in Section 2.1.1.

3. Ubiquitous— services oriented on consumers but usually responding to
frequent requests with fast replies and responding in the given context.

Problem: Provide a concept of a software component that would contain
a uniform description of the purpose, target environment, and handling a
request and response as well as offer a uniform API for client systems.

Rationale: Many modern interdisciplinary problems require services from
various fields of study. For instance, design of a modern aircraft would require
simulations related to strength, durability, reliability of various components
that would need to be performed on HPC resources, most likely in different, ge-
ographically distributed centers, purchase and service cost analysis, marketing
services and many others. This will certainly involve business, and scientific
services performed both by software and human specialists.

Proposed solution: The author proposes a uniform description of the ser-
vice as a component suitable for all these target uses. The description would
contain all details relevant for all these target applications. The actual solution
is presented in Sections 3.1, 3.2, and 3.3.

2.3.3 Dynamic QoS Monitoring and Evaluation

of Distributed Software Services

Uniform description of services targeting various applications and inter-
nally implemented using various software architectures does not make these
practical to use until one can reliably assess their qualities. What is more,
it can be seen clearly in today’s distributed software market that static as-
sessment of the service QoS is not enough. Table 2.2 lists QoS metrics for
which precise, reliable, and up-to-date assessment for particular service types
is crucial. Thus, the following can be stated:

TABLE 2.2: Important QoS metrics for particular types of services.

Service
Type

QoS Metric Notes

Performance Usually HPC is used to shorten the execution
time

HPC Dependability One expects to trust the returned results
cost Usually needs to be below the predefined

threshold

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

50 Existing Parallel and Distributed Systems, Challenges, and Solutions

Availability
and relia-
bility of a
service

What the customer expects from the service

SOA security All communication between the client and the
service should be encrypted and data pro-
cessed and/or stored in a secure way

Multi-
tier
Sys-
tems

Ease of use Clear and friendly API

Availability From the customer’s point of view

Ease of use Availability is supported by the grid middle-
ware that would make use of available services
on attached Virtual Organizations

Grid

Security Crucial when cooperating with other organi-
zations

Volunteer Performance The main reason to search for others’ comput-
ing resources

Reliability Results need verification against hardware/
software errors and potential harmful users’
intentions

Security Crucial for the client because the data is man-
aged by a third party

Cloud
Com-
puting

Availability
of alterna-
tives

To avoid vendor lock-in

cost The client wants to minimize it
reliability The customer expects the service (IaaS, SaaS,

PaaS) to be working at any time within Ser-
vice Level Agreement (SLA)

Performance The client wants to maximize it within the
cost constraint

Availability The customer expects the service to be mostly
accessible

Mobile
Sys-
tems

Cost May be a decisive factor for choosing the ser-
vice as there may be many alternatives

Location
awareness

May help optimize the result of the service

being up-to-
date

Must be based on up-to-date data, e.g., lat-
est maps, information about Points of Interest
(POI), etc.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Challenges and Proposed Solutions 51

Problem 1: Perform periodic, reliable monitoring and analysis of QoS met-
rics important for particular types of services. If needed, prepare forecasts for
QoS values in the future that result from the past values.

Problem 2: Perform periodic, up-to-date ranking of services (possibly im-
plemented on various architectures) that perform the given function consid-
ering past history of quality evaluation.

Rationale: Most of the aforementioned QoS metrics for the distinguished
types of services change in time. Thus, it is necessary to:

1. discover new services dynamically,

2. monitor QoS of services dynamically, which may hint that some previ-
ously preferred services are no longer available.

Furthermore, it is necessary to evaluate services that are capable of performing
the function requested by the user. This leads to ranking services. Depending
on particular needs, various algorithms may be necessary also considering the
history of QoS evaluations for the given service.

Moreover, from a global point of view, the ranking scheme may need to
assure that no single provider dominates the market with their services to
avoid the vendor lock-in problem in cloud computing.

Proposed solution: The suggested uniform definition of the service is ex-
tended with the procedure that describes how:

1. particular QoS metrics of the service will be measured, including dy-
namic measurements and application of digital filters;

2. aggregation of QoS measurements into a ranking of services in the given
category.

The actual solution is presented in Section 4.1.

2.3.4 Dynamic Data Management with Storage Constraints

in a Distributed System

Today, data handling becomes one of the key concerns. As computing
power is becoming available almost everywhere (clusters, servers, personal
computers, multicore tablets and smartphones), data management, storage
constraints and moving data toward compute devices to optimize QoS criteria,
especially in complex workflow applications becomes crucial. This holds true
not only for particular types of systems but especially for integration of the
aforementioned types of systems including sky computing.

Problem 1: Consider storage constraints in execution of complex scenarios
that incorporate distributed services. Consider data communication costs in
optimization of execution of the scenarios, especially location of management
units and data caching.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

52 Existing Parallel and Distributed Systems, Challenges, and Solutions

Problem 2: Consider different ways of handling data: synchronized or
streaming in various stages of a complex distributed scenario.

Rationale: Although larger and larger storage spaces are available and the
price per storage is reasonably low, it is not free. It may be especially impor-
tant for scenarios which handle large amounts of data, e.g., processing sales,
stock data in data centers, and multimedia data out of cameras installed in
malls, city centers, and along roads. Especially the latter would need transfers
of large amounts of data from distributed sources, staging to computational
resources, caching, parallel processing, and storage of data from a certain pe-
riod from the past. Big data processing is one of the directions on which the
current research in information systems is focused [153, 33].

Proposed solution: An integrated solution that distinguishes:

1. storage constraints of the resources on which services are installed,

2. storage constraints of the system that executes various services of a
complex scenario and transfers data from one resource to another, and

3. caching of intermediate data transferred by the workflow management
system in a dedicated cache storage.

The actual solution is presented in Chapter 5.

2.3.5 Dynamic Optimization of Service-Based Workflow

Applications with Data Management in Distributed

Heterogeneous Environments

Problem: Define a quality model, a dynamic optimization problem and
solutions for complex scenarios that would correspond to real-life, often inter-
disciplinary, complex tasks that couple services from various domains.

Rationale: Complex interdisciplinary tasks often require services from var-
ious fields of study. These services differ in terms of the

1. application domain,

2. implementation platform,

3. important QoS metrics, and

4. evaluation criteria of particular services.

Proposed solution: A workflow scheduling model that integrates all of the
following:

1. a model that considers a uniform concept of a service as indicated in
Section 2.3.1 with a description independent from the application target
as indicated in Section 2.3.2,

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

Challenges and Proposed Solutions 53

2. runtime monitoring and evaluation of services as suggested in Section
2.3.3,

3. definition of the workflow scheduling problem considering dynamic eval-
uation of services and rescheduling along with management of data pro-
cessed by services as hinted in Section 2.3.4.

The detailed solution is presented in Section 3.4 with algorithms presented in
Chapter 4.

D
ow

nl
oa

de
d

by
 [

C
R

C
N

et
ba

se
 T

&
F

O
ff

ic
es

]
at

 2
3:

57
 1

1
Se

pt
em

be
r

20
16

Tay
lor

 an
d F

ran
cis

Not
for

 D
ist

rib
uti

on

	2. Existing Parallel and Distributed Systems, Challenges, and Solutions
	2.1 Modern Software Architectures, Systems, and APIs for Parallel and Distributed Systems
	2.1.1 HPC Systems
	2.1.2 SOA
	2.1.3 Multitier Architectures
	2.1.4 Peer-to-Peer, Distributed Software Objects, and Agents
	2.1.5 Grid Systems
	2.1.6 Volunteer Computing
	2.1.7 Cloud Computing
	2.1.8 Sky Computing
	2.1.9 Mobile Computing

	2.2 Complex Distributed Scenarios as Workflow Applications
	2.2.1 Workflow Structure
	2.2.2 Abstract vs. Concrete Workflows
	2.2.3 Data Management
	2.2.4 Workflow Modeling for Scientific and Business Computing
	2.2.5 Workflow Scheduling
	2.2.6 Static vs. Dynamic Scheduling
	2.2.7 Workflow Management Systems

	2.3 Challenges and Proposed Solutions
	2.3.1 Integration of Systems Implementing Various Software Architectures
	2.3.2 Integration of Services for Various Target Application Types
	2.3.3 Dynamic QoS Monitoring and Evaluation of Distributed Software Services
	2.3.4 Dynamic Data Management with Storage Constraints in a Distributed System
	2.3.5 Dynamic Optimization of Service-Based Workflow Applications with Data Management in Distributed Heterogeneous Environments

