EXOCHI: Architecture and Programming
Environment for A Heterogeneous Multi-
core Multithreaded System

By Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang,
Xinmin Tian, Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong
Wang.

Chris Adamopoulos

Dept of Computer & Information Sciences
University of Delaware

CISC 879 : Software Support for Multicore Architectures

MISP Background

EXO Architecture

CHI Runtime Environment
Experiment Setup
Performance Results
Conclusion

CISC 879 : Software Support for Multicore Architectures

Multiple Instruction Stream Processing

An Multiple Instruction Multiple Data (MIMD) ISA

Developed by Intel to efficiently utilize “heterogeneous”
cores

Introduces two new types of resources:

Shred: User-level thread

Sequencers: abstract processing core capable in fetching
and executing shreds

Two-types

- OMS: OS-managed sequencer

- AMS: Application-managed sequencer exposed by the
programmer

CISC 879 : Software Support for Multicore Architectures

Uniprocessor OS os Sequencers: MIMD Function Units

MISP
Uniprocessor

MISP ISA :
+ SIGNAL (SID, INIT, EIP, ESP)
* PROXY Execution on System calls, Interrupts, and Exceptions

MISP processor consists of two or more sequencers.
One managed by OS and one or more by applications
AMS are directly managed by applications

Shreds are schedule by runtime environment, not by OS
Achieves parallelism for shreds are run concurrently and asymmetrically

OMS acts as interface between OS and MISP processor

To the OS, it see the MISP processor as ONE processor

CISC 879 : Software Support for Multicore Architectures

EXO Architecture:

Extension of MISP
Architecture

MISP Exoskeleton

Address Translation
Remapping

Collaborative Exception
Handling

CHI Environment:

C for Heterogeneous
Integration

Responsible for shred
scheduling at runtime.

Inline Assembly Support
OpenMP Pragma Extension
Work-Queuing

CHI Runtime Environment

CISC 879 : Software Support for Multicore Architectures

Tightly-coupled: CPU manages threads for the co-
processor and waits until execution is finished.

EXOCHI allows co-processors (AMS) to independently
sequence and concurrently execute multiple streams at
once.

Loosely-coupled: CPU and co-processors

separated and managed by OS and device drivers
respectively

EXOCHI's sequencers are directly exposed to application
programs and do not require OS management

Shred scheduling and communication supported by CHI
runtime and shared virtual memory.

CISC 879 : Software Support for Multicore Architectures

—— =" OS-managed Exo-
I 0g I saquencer sequeancer
I Exception Exception
L—— ! handlers TLBE TLBE handlers
F 3 I_ —— — ey F 1 F 1
T J ATR :..
L o — —
J T T,
7 CEH T

ko e - —

Figure 2. ATE and CEH between Heterogeneous Sequencers

Provides support to the hardware component to EXOCHI

Compose with Intel Core 2 Duo coupled with Intel Graphics Media
Accelerator X3000 as heterogeneous co-processors.

Intel Core 2 Duo acts as the OS-managed sequencers (OMS)

X3000 are implemented as exosequencers supported by the MISP
exoskeleton.

Exosequencers treated similar to application-managed sequencers.

CISC 879 : Software Support for Multicore Architectures

. Support interaction with OMS and exosequencers
(AMS)

Integrating AMS to MISP’s signaling and
communication mechanisms

. Exposing AMS to applications and the
programmer.

. OMS can create and dispatch shreds to be run on
the AMS

. No requirement from the OS

CISC 879 : Software Support for Multicore Architectures

Allows the OS to fix page faults made by the AMS in shared virtual
memory

Necessary as EXOCHI's OMS and AMS have different ISA.
When a TLB miss occurs:

Shred execution suspends and calls OMS for proxy execution

In MISP, OMS uses a proxy handler to contact and correct the page fault
in place of the AMS

ATR recodes OMS page table entry to same format as the AMS.

Inserts OMS table entry into the AMS TLB and it will point to the identical
physical page on the OMS to access the data.

AMS continues shred execution

CISC 879 : Software Support for Multicore Architectures

Benefits and support shared virtual memory space

Performs data communication and synchronization between OMS and
AMS

Shared data structures can be transferred between different cores
Efficient as it does not heavily rely on data copying as with GPGPU
ATR does not guarantee cache coherence

For a shared variable on OMS to be process on an AMS, OMS must
flush its cache back to main memory

The reverse is true for AMS

Programmers utilize critical sections to prevent sequencers from reading
incorrect data.

CISC 879 : Software Support for Multicore Architectures

Similar to ATR
When an exception via instructions occurs on an AMS
In MISP, shred execution halted and instruction is replayed by the OMS

CEH allows the OS to directly handles the exception instruction by proxy

. Via OS services, such as, Structural Exception Handling

When the exception is finished, AMS is updated with the results and
resumed execution

CISC 879 : Software Support for Multicore Architectures

Provides programming environment enabling AMS
to be managed by user-level applications

. As opposed to other architectures relying on the

CPU or OS to manage their threads

. The CHI runtime library is responsible for the

scheduling of shreds amongst AMS

Support for CHI's capabilities are a result for
extending OpenMP pragmas for heterogeneous
architectures.

CISC 879 : Software Support for Multicore Architectures

Programmers are able to utilize instructions and features for AMS in
assembly

These instructions are not recognized by the compiler.

Allows the performance for many sections to be custom optimized by
the programmers.

Compilers support can be extended to domain-specifics
programming languages.

For CHI, OpenMP “target” clauses specifies the target machine for
which the assembly block should be assembled for.

pragma omp parallel target(...)
_asm{

CISC 879 : Software Support for Multicore Architectures

“Parallel” pragma reconfigure to generate shreds for specified target
machine.

“Target” clause specifies target machine for which shreds will be
spawned for.

Programmers can exploit thread-level parallelism without worrying
about how shreds are created, scheduled, and implemented.

When “Parallel” pragma is encountered:

OMS shred, acting as the master thread, spawns shreds for target
machine equal to num_threads

A call is put to the CHI runtime layer to dispatch and schedule shreds
amongst the AMS.

Assembly block specified for AMS are executed concurrently and
asymmetrically.

CISC 879 : Software Support for Multicore Architectures

CHI’'s queuing model following producer-consumer method to
support inter-shred dependencies.

Relies on taskq and task constructs to ensure dependencies
amongst shreds for the AMS.

taskg pragma constructs an empty queue for each task construct of
code to be executed serially.

When taskq is encountered:

OMS call CHI runtime to pick one shred as a root shred.
Root shred execute a loop within taskq construct.

For each “task” encountered, CHI runtime created a child shred and
places it in the queue only associated with that specific taskq construct
and target machine.

CISC 879 : Software Support for Multicore Architectures

. The key factor to creating, scheduling, and parallel
execution of shreds.

Responsible for handling exception instructions and

managing shared virtual memory objects between
OMS and AMS.

. Abstraction layer used to hide the detail in

managing AMS from programmer.

Purpose: allow applications to direct utilization of
hardware features by calling to the source file
iInstead to change the compiller.

CISC 879 : Software Support for Multicore Architectures

Descriptors are API’s interpreting the attributes of shared variables
by shreds.

Efficient programming tool for AMS to successfully access shared
data.

Applications can harness AMS capabilities.
#1 chi_alloc_desc(targetlSA,ptr,mode,width,height)

Allocates and specify variable as input or output and its size
#2 chi_free desc(targetlSA,desc)

Deallocates variable
#3 chi_modify desc(targetlSA,desc,attrib id,value)

Modify variable attributes
#4 chi_set_feature(targetlSA,feature id,value)

Change global state for AMS for all shreds
#5 chi_set_feature pershred(targetlSA,shr id,feature id,value)

Change global state for AMS for one shred.

CISC 879 : Software Support for Multicore Architectures

[Tt B o T T S s T e Y

21.

A_desc = chi_alloc_desc(¥3000, &, CHI_INPUT, n, 1);
B_desc = chi_allec_desc(X3000, B, CHI_INPUT, n, 1);
C_desc = chi_alloc_desc(X3000, C, CHI_OUTPUT, n, 1);

#pragma omp parallel target(X3000) shared(d, B, C)
descriptor (A_desc,B_desc,C_desc) private(i) master_nowait
{
for (1=0; 1<n/8; i++)
asm

{
shl.1.w wvrl =1, 3
1d.8.dw [vr2..vr8]
1d.8.dw [vri0..vri7] = (B, vril, O}
add.8.dw [vril8..r25] [vr2..vr9], [vri0..vriT]
st.8.dw (C, wvrl, 0) = [vri8..vr2t]

(A, vri, 0)

o}

I
. #pragma omp parallel for shared(D,E,F) private(i)

A

for (1=0; 1i<n; 1++)
F[i] = D[i] + E[i];
1

Figure 6. CHI Code Example with GMA X3000 Pseudo-code

CISC 879 : Software Support for Multicore Architectures

EXOCHI prototype was tested on Intel Santa Rosa platform
containing Intel Core 2 Duo as the OMS and 32 GMA X3000 as the
AMS.

A selection of benchmarks were configured due to their hold
significant data and thread-level parallelism

Compiled with —fast and —Qprof _use options for aggressive optimization
tuned to the Intel 2 Duo processor

. Auto-vectorization and profile-guided optimization.
Key factors for better performance include:
Wide SIMD instructions. (Vectors)
Predication Support
Large register file with 64 to 128 vector register on each AMS.

CHI inline assembly to configure code for better utilization of instructions
and features for the X3000.

CISC 879 : Software Support for Multicore Architectures

kernel
{Ahbreviation)

Data size

Description

#GMA
3000 Shreds

Linear Filter 640x480 1image Compute output pixel as average of input 6,480
(LinearFilter) 2000x2000 image pixel and eight surrounding pixels 83,500
Sepia Tone 640x%4R0 image Modify RGB values to artificially age image 4,800
{SepiaTone) 2000x2000 1mage 62,500
G CCNNOIOEY AN TER APPLY artine K el [1c 26
Film Gr unj"uhnuh o 1024x768 image Apply artinicial film gran filter from H. 264 9%
(FGT) j standard
Bicubic Scaling Scale 30 frames Scale video using bicubic filter 3 700
(Bicubic) 360x240 to 720x480 o
Kalman 30 frames 312x256 Video noise reduction filter 4,096
{Kalman) 30 frames 2048x1024 63,536
Film Mode Detection 60 frames 7205480 Detect video cadence so inverse telecine can [976
(FMD) be applied
Alpha Blending Blend 64x32 image Bi-linear scale 64x32 image up to 720x430 3 700
(AlphaBlend) onto 720x480 and blend with 720x480 image S
De-interlace BOB Avg 30 frames 720x480 D}u][ﬂ'l;_u‘c video by averaging nearby pixels 3700
(BOB) within a field to compute missing scanlines
Advanced De-interlacing 30 frames 720x480 C ﬂmlelu[]cn]_l;lll}-' intensive advanced de- 3700
(ADVDI) interlacing filter with motion detection
ProcAmp 30 frames 720x480 S-l]ﬂ]?l{‘. linear modification to YUV values 2700
(ProcAmp) for color correction

Table 2. Media-Processing Kemels

CISC 879 : Software Support for Multicore Architectures

. Chart shows speedup factors for X3000 accelerators over Intel Core
2 Duo for all benchmarks.

. Two factors to the speedup performance:

Abundant shred-level parallelism

Stalls from context switch between shreds were covered up by numerous
concurrent shred execution

Maximizing cache hit rate and bandwidth utilization with CHI runtime.

Programmers are able to order shreds in accessing adjacent macroblocks to
take advantage of spatial and temporal localities.

CISC 879 : Software Support for Multicore Architectures

)
-
»
-
-

—
no

e
o -

©w

Factor Speedup over IA32 Sequencer
- N W s 0N O~ @

Figure 7. Speedup from Execution on GMA X3000 Exo-
sequencers over [A32 Sequencer

CISC 879 : Software Support for Multicore Architectures

Charts show speedup factors for X3000 in three configurations for
data communication and synchronization.

Testing how EXOCHI handles overhead.

Three configurations:

Data copying: EXOCHI act similar to a message-passing multi-core
machine

Susceptible to numerous memory transfer with high overhead.

Shared Virtual Address Space: All AMS have access to the same virtual
memory space.

Must constantly flush dirty cache lines to memory.

Shared Space with Cache Coherence: Similar to previous configuration,
but does not necessary rely on cache flushing or data copying.

CISC 879 : Software Support for Multicore Architectures

T

B Data Copy (3.1GB/s)
| BEHMon-CC Sharsd
J OCC Shared

"y
-

=]

Factor Speadup over |1A32 Sequencer

L R LR R N < I = A = =
1 1 1 1

& S @uyf*-ﬁ ¥ o
s@iﬁ‘ﬁﬁﬁ# “’iﬁ‘ﬁ

CISC 879 : Software Support for Multicore Architectures

Observations:

Significant degradation shown relying on data copying and using shared
space with cache coherence.

Significant performance is preserved for most benchmark without cache
coherency

Overhead and stall costs were covered up by the parellelization and
interleaved execution between data copying/cache flushing and shred
spawning.

CISC 879 : Software Support for Multicore Architectures

15 yomopuQ
pomaysz beg Zem
oM %0} bog 28y
om0 beg ZEm)

)
¥ 3 - f e
WW 5 . %, %
EEINANE=— N
RN =5 %,
o @»ﬁe .

A 192uenbaeg zey) 1ano dnpeads 10064 oovv

CISC 879 : Software Support for Multicore Architectures

Chart indicating speedups when both OMS and AMS work together
over OMS working by itself.

Tested on work balances with OMS processing 0%, 10%, 25%, and
oracle work split of shreds.

Oracle work split divides the shred work number in a way that both OMS
and AMS finish at the same time.

Performance speedup is severely lost mostly due to work imbalance.

CISC 879 : Software Support for Multicore Architectures

Changing the role of processor management resources to application
and runtime

Yield increased performance over architectures with OS-based.

Programs has direct access and can take full advantage for better
optimization and performance.

Most improvement was caused by the CHI runtime environment and
OpenMP extension to support heterogeneous cores.

Shreds concurrently executed amongst a group of cores with little
interference from OS or tightly-coupled CPU.

CISC 879 : Software Support for Multicore Architectures

