
CISC 879 : Software Support for Multicore Architectures

Chris Adamopoulos
Dept of Computer & Information Sciences

University of Delaware

EXOCHI: Architecture and Programming
Environment for A Heterogeneous Multi-

core Multithreaded System
By Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang,

Xinmin Tian, Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong
Wang.



CISC 879 : Software Support for Multicore Architectures

Outline

• MISP Background
• EXO Architecture
• CHI Runtime Environment
• Experiment Setup
• Performance Results
• Conclusion



CISC 879 : Software Support for Multicore Architectures

MISP

• Multiple Instruction Stream Processing
• An Multiple Instruction Multiple Data (MIMD) ISA
• Developed by Intel to efficiently utilize “heterogeneous”

cores

• Introduces two new types of resources:
• Shred: User-level thread
• Sequencers: abstract processing core capable in fetching

and executing shreds
• Two-types

• OMS: OS-managed sequencer
• AMS: Application-managed sequencer exposed by the

programmer



CISC 879 : Software Support for Multicore Architectures

MISP Processor

• MISP processor consists of two or more sequencers.

• One managed by OS and one or more by applications

• AMS are directly managed by applications

• Shreds are schedule by runtime environment, not by OS

• Achieves parallelism for shreds are run concurrently and asymmetrically

• OMS acts as interface between OS and MISP processor

• To the OS, it see the MISP processor as ONE processor



CISC 879 : Software Support for Multicore Architectures

EXOCHI
EXO Architecture:
• Extension of MISP

Architecture

• MISP Exoskeleton

• Address Translation
Remapping

• Collaborative Exception
Handling

CHI Environment:
• C for Heterogeneous

Integration

• Responsible for shred
scheduling at runtime.

• Inline Assembly Support

• OpenMP Pragma Extension

• Work-Queuing

• CHI Runtime Environment



CISC 879 : Software Support for Multicore Architectures

A Class of its Own

• Tightly-coupled: CPU manages threads for the co-
processor and waits until execution is finished.
• EXOCHI allows co-processors (AMS) to independently

sequence and concurrently execute multiple streams at
once.

• Loosely-coupled: CPU and co-processors
separated and managed by OS and device drivers
respectively
• EXOCHI’s sequencers are directly exposed to application

programs and do not require OS management
• Shred scheduling and communication supported by CHI

runtime and shared virtual memory.



CISC 879 : Software Support for Multicore Architectures

EXO Architecture Prototype

• Provides support to the hardware component to EXOCHI

• Compose with Intel Core 2 Duo coupled with Intel Graphics Media
Accelerator X3000 as heterogeneous co-processors.

• Intel Core 2 Duo acts as the OS-managed sequencers (OMS)

• X3000 are implemented as exosequencers supported by the MISP
exoskeleton.

• Exosequencers treated similar to application-managed sequencers.



CISC 879 : Software Support for Multicore Architectures

MISP Exoskeleton

• Support interaction with OMS and exosequencers
(AMS)

• Integrating AMS to MISP’s signaling and
communication mechanisms
• Exposing AMS to applications and the

programmer.
• OMS can create and dispatch shreds to be run on

the AMS
• No requirement from the OS



CISC 879 : Software Support for Multicore Architectures

Address Translation Remapping

• Allows the OS to fix page faults made by the AMS in shared virtual
memory

• Necessary as EXOCHI’s OMS and AMS have different ISA.

• When a TLB miss occurs:

• Shred execution suspends and calls OMS for proxy execution

• In MISP, OMS uses a proxy handler to contact and correct the page fault
in place of the AMS

• ATR recodes OMS page table entry to same format as the AMS.

• Inserts OMS table entry into the AMS TLB and it will point to the identical
physical page on the OMS to access the data.

• AMS continues shred execution



CISC 879 : Software Support for Multicore Architectures

Address Translation Remapping

• Benefits and support shared virtual memory space

• Performs data communication and synchronization between OMS and
AMS

• Shared data structures can be transferred between different cores

• Efficient as it does not heavily rely on data copying as with GPGPU

• ATR does not guarantee cache coherence

• For a shared variable on OMS to be process on an AMS, OMS must
flush its cache back to main memory

• The reverse is true for AMS

• Programmers utilize critical sections to prevent sequencers from reading
incorrect data.



CISC 879 : Software Support for Multicore Architectures

Collaborative Exception Handling

• Similar to ATR

• When an exception via instructions occurs on an AMS

• In MISP, shred execution halted and instruction is replayed by the OMS

• CEH allows the OS to directly handles the exception instruction by proxy
• Via OS services, such as, Structural Exception Handling

• When the exception is finished, AMS is updated with the results and
resumed execution



CISC 879 : Software Support for Multicore Architectures

C for Heterogeneous Integration

• Provides programming environment enabling AMS
to be managed by user-level applications

• As opposed to other architectures relying on the
CPU or OS to manage their threads

• The CHI runtime library is responsible for the
scheduling of shreds amongst AMS

• Support for CHI’s capabilities are a result for
extending OpenMP pragmas for heterogeneous
architectures.



CISC 879 : Software Support for Multicore Architectures

Inline Assembly Support

• Programmers are able to utilize instructions and features for AMS in
assembly

• These instructions are not recognized by the compiler.

• Allows the performance for many sections to be custom optimized by
the programmers.

• Compilers support can be extended to domain-specifics
programming languages.

• For CHI, OpenMP “target” clauses specifies the target machine for
which the assembly block should be assembled for.

#pragma omp parallel target(…)
__asm {
…….
}



CISC 879 : Software Support for Multicore Architectures

OpenMP Pragma Extension

• “Parallel” pragma reconfigure to generate shreds for specified target
machine.

• “Target” clause specifies target machine for which shreds will be
spawned for.

• Programmers can exploit thread-level parallelism without worrying
about how shreds are created, scheduled, and implemented.

• When “Parallel” pragma is encountered:

• OMS shred, acting as the master thread, spawns shreds for target
machine equal to num_threads

• A call is put to the CHI runtime layer to dispatch and schedule shreds
amongst the AMS.

• Assembly block specified for AMS are executed concurrently and
asymmetrically.



CISC 879 : Software Support for Multicore Architectures

OpenMP Work-Queuing

• CHI’s queuing model following producer-consumer method to
support inter-shred dependencies.

• Relies on taskq and task constructs to ensure dependencies
amongst shreds for the AMS.

• taskq pragma constructs an empty queue for each task construct of
code to be executed serially.

• When taskq is encountered:

• OMS call CHI runtime to pick one shred as a root shred.

• Root shred execute a loop within taskq construct.

• For each “task” encountered, CHI runtime created a child shred and
places it in the queue only associated with that specific taskq construct
and target machine.



CISC 879 : Software Support for Multicore Architectures

CHI Runtime Support

• The key factor to creating, scheduling, and parallel
execution of shreds.

• Responsible for handling exception instructions and
managing shared virtual memory objects between
OMS and AMS.

• Abstraction layer used to hide the detail in
managing AMS from programmer.

• Purpose: allow applications to direct utilization of
hardware features by calling to the source file
instead to change the compiler.



CISC 879 : Software Support for Multicore Architectures

CHI Runtime Support

• Descriptors are API’s interpreting the attributes of shared variables
by shreds.

• Efficient programming tool for AMS to successfully access shared
data.

• Applications can harness AMS capabilities.
• #1 chi_alloc_desc(targetISA,ptr,mode,width,height )

• Allocates and specify variable as input or output and its size

• #2 chi_free_desc(targetISA,desc)
• Deallocates variable

• #3 chi_modify_desc(targetISA,desc,attrib id,value)
• Modify variable attributes

• #4 chi_set_feature(targetISA,feature id,value)
• Change global state for AMS for all shreds

• #5 chi_set_feature pershred(targetISA,shr id,feature id,value)
• Change global state for AMS for one shred.



CISC 879 : Software Support for Multicore Architectures

A CHI Program Example



CISC 879 : Software Support for Multicore Architectures

Experiment Setup

• EXOCHI prototype was tested on Intel Santa Rosa platform
containing Intel Core 2 Duo as the OMS and 32 GMA X3000 as the
AMS.

• A selection of benchmarks were configured due to their hold
significant data and thread-level parallelism

• Compiled with –fast and –Qprof_use options for aggressive optimization
tuned to the Intel 2 Duo processor

• Auto-vectorization and profile-guided optimization.

• Key factors for better performance include:

• Wide SIMD instructions. (Vectors)

• Predication Support

• Large register file with 64 to 128 vector register on each AMS.

• CHI inline assembly to configure code for better utilization of instructions
and features for the X3000.



CISC 879 : Software Support for Multicore Architectures

Experiment Setup: Kernels



CISC 879 : Software Support for Multicore Architectures

Performance Speedup Over OMS
• Chart shows speedup factors for X3000 accelerators over Intel Core

2 Duo for all benchmarks.

• Two factors to the speedup performance:

• Abundant shred-level parallelism
• Stalls from context switch between shreds were covered up by numerous

concurrent shred execution

• Maximizing cache hit rate and bandwidth utilization with CHI runtime.
• Programmers are able to order shreds in accessing adjacent macroblocks to

take advantage of spatial and temporal localities.



CISC 879 : Software Support for Multicore Architectures

Performance Speedup Over OMS



CISC 879 : Software Support for Multicore Architectures

Data Copying vs Shared Space

• Charts show speedup factors for X3000 in three configurations for
data communication and synchronization.

• Testing how EXOCHI handles overhead.

• Three configurations:

• Data copying: EXOCHI act similar to a message-passing multi-core
machine

• Susceptible to numerous memory transfer with high overhead.

• Shared Virtual Address Space: All AMS have access to the same virtual
memory space.

• Must constantly flush dirty cache lines to memory.

• Shared Space with Cache Coherence: Similar to previous configuration,
but does not necessary rely on cache flushing or data copying.



CISC 879 : Software Support for Multicore Architectures

Data Copying vs Shared Space



CISC 879 : Software Support for Multicore Architectures

Data Copying vs Shared Space

• Observations:

• Significant degradation shown relying on data copying and using shared
space with cache coherence.

• Significant performance is preserved for most benchmark without cache
coherency

• Overhead and stall costs were covered up by the parellelization and
interleaved execution between data copying/cache flushing and shred
spawning.



CISC 879 : Software Support for Multicore Architectures

Working Together



CISC 879 : Software Support for Multicore Architectures

Working Together

• Chart indicating speedups when both OMS and AMS work together
over OMS working by itself.

• Tested on work balances with OMS processing 0%, 10%, 25%, and
oracle work split of shreds.

• Oracle work split divides the shred work number in a way that both OMS
and AMS finish at the same time.

• Performance speedup is severely lost mostly due to work imbalance.



CISC 879 : Software Support for Multicore Architectures

Conclusion

• Changing the role of processor management resources to application
and runtime

• Yield increased performance over architectures with OS-based.

• Programs has direct access and can take full advantage for better
optimization and performance.

• Most improvement was caused by the CHI runtime environment and
OpenMP extension to support heterogeneous cores.

• Shreds concurrently executed amongst a group of cores with little
interference from OS or tightly-coupled CPU.


