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The expenditure minimisation problem (EMP) looks at the reverse side of the utility maximisa-
tion problem (UMP). The UMP considers an agent who wishes to attain the maximum utility
from a limited income. The EMP considers an agent who wishes to find the cheapest way to
attain a target utility. This approach complements the UMP and has several rewards:

• It enables us to analyse the effect of a price change, holding the utility of the agent
constant.

• It enables us to decompose the effect of a price change on an agent’s Marshallian demand
into a substitution effect and an income effect. This decomposition is called the Slutsky
equation.

• It enables us to calculate how much we need to compensate a consumer in response to a
price change if we wish to keep her utility constant.

1 Model

We make several assumptions:

1. There are N goods. For much of the analysis we assume N = 2 but nothing depends on
this.

2. The agent takes prices as exogenous. We normally assume prices are linear and denote
them by {p1, . . . , pN}.
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3. Preferences satisfy completeness, transitivity and continuity. As a result, a utility func-
tion exists. We normally assume preferences also satisfy monotonicity (so indifference
curves are well behaved) and convexity (so the optima can be characterised by tangency
conditions).

The expenditure minimisation problem is

min
x1,...,xN

N∑

i=1

pixi subject to u(x1, . . . , xN ) ≥ u (1.1)

xi ≥ 0 for all i

The idea is that the agent is trying to find the cheapest way to attain her target utility, u.
The solution to this problem is called the Hicksian demand or compensated demand. It is
denoted by

hi(p1, . . . , pN , u)

The money the agent must spend in order to attain her target utility is called her expenditure.
The expenditure function is therefore given by

e(p1, . . . , pN , u) = min
x1,...,xN

N∑

i=1

pixi subject to u(x1, . . . , xN ) ≥ u

xi ≥ 0 for all i

Equivalently, the expenditure function equals the amount the agent spends on her optimal
bundle,

e(p1, . . . , pN , u) =
N∑

i=1

pihi(p1, . . . , pN , u)

1.1 Example

Suppose there are two goods, x1 and x2. Table 1 shows how the agent’s utility (the numbers
in the boxes) varies with the number of x1 and x2 consumed.

To keep things simple, suppose the agent faces prices p1 = 1 and p2 = 1 and wishes to attain
utility u = 12. The agent can attain this utility by consuming (x1, x2) = (6, 2), (x1, x2) = (4, 3),
(x1, x2) = (3, 4) or (x1, x2) = (2, 6). Of these, the cheapest is either (x1, x2) = (4, 3) or
(x1, x2) = (3, 4). In either case, her expenditure is 4 + 3 = 7.
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x1\x2 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

Table 1: Utilities from different bundles.

Now suppose the agent faces prices p1 = 1 and p2 = 3 and still wishes to attain utility u = 12.
The combinations of (x1, x2) that attain this utility remain unchanged, however the price of
these bundles is different. Now the cheapest is (x1, x2) = (6, 2), and the agent’s expenditure is
6 + 2× 3 = 12.

While this “table approach” can be used to illustrate the basic idea, one can see that it quickly
becomes hard to solve even simple problems. Fortunately, calculus comes to our rescue.

2 Solving the Expenditure Minimisation Problem

2.1 Graphical Solution

We can solve the problem graphically, as with the UMP. The components are also similar to
that problem.

First, we need to understand the constraint set. The agent can choose any bundle where (a) the
agent attains her target utility, u(x1, x2) ≥ u; and (b) the quantities are positive, x1 ≥ 0 and
x2 ≥ 0. If preferences are monotone, then the bundles that meet these conditions are exactly
the ones that lie above the indifference curve with utility u. See figure 1.

Second, we need to understand the objective. The agent wishes to pick the bundle in the
constraint set that minimises her expenditure. Just like with the UMP, we can draw the level
curves of this objective function. Define an iso–expenditure curve by the bundles of x1 and x2

that deliver constant expenditure:

{(x1, x2) : p1x1 + p2x2 = const}
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Figure 1: Constraint Set. The shaded area shows the bundles that yield utility u or more.

These iso–expenditure curves are just like budget curves and so have slope −p1/p2. See figure
2

The aim of the agent is to choose the bundle (x1, x2) in the constraint set that is on the lowest
iso–expenditure curve and hence minimises her expenditure. Ignoring boundary problems and
kinks, the solution has the feature that the iso–expenditure curve is tangent to the target
indifference curve. As a result, their slopes are identical. The tangency condition can thus be
written as

MRS =
p1

p1
(2.1)

This is illustrated in figure 3.

The intuition behind (2.1) is as follows. Using the fact that MRS = MU1/MU2,1 equation
(2.1) implies that

MU1

MU2
=

p1

p1
(2.2)

1Recall: MUi = ∂U/∂xi is the marginal utility from good i.
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Figure 2: Iso-Expenditure Curve. This figure shows the bundles that induce constant expenditure.

Figure 3: Optimal Bundle. This figure shows how the cheapest bundle that attains the target utility
satisfies the tangency condition.
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Rewriting (2.2) we find

p1

MU1
=

p2

MU1

The ratio pi/MUi measures the cost of increasing utility by one util, or the “cost–per–bang”.
At the optimum the agent equates the cost–per–bang of the two goods. Intuitively, if good 1
has a higher cost–per–bang than good 2, then the agent should spend less on good 1 and more
on good 2. In doing so, she could attain the same utility at a lower cost.

If preferences are monotone, then the constraint will bind,

u(x1, x2) = u, (2.3)

The tangency equation (2.2) and constraint equation (2.3) can then be used to solve for the
two Hicksian demands.

If there are N goods, the agent will equalise the cost–per–bang from each good, giving us N −1
equations. Using the constraint equation (2.3), we can solve for the agent’s Hicksian demands.

The tangency condition (2.2) is the same as that under the UMP. This is no coincidence. We
discuss the formal equivalence in Section 4.2.

2.2 Example: Symmetric Cobb Douglas

Suppose u(x1, x2) = x1x2. The tangency condition yields:

x2

x1
=

p1

p2
(2.4)

Rearranging, p1x1 = p2x2.

The constraint states that u = x1x2. Substituting (2.4) into this yields,

u =
p1

p2
x2

1

Solving for x1, the Hicksian demand is given by

h1(p1, p2, u) =
(

p2

p1
u

)1/2

(2.5)
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Similarly, we can solve for the Hicksian demand for good 2,

h2(p1, p2, u) =
(

p1

p2
u

)1/2

We can now calculate the agent’s expenditure

e(p1, p2, u) = p1h1(p1, p2, u) + p2h2(p1, p2, u)

= 2(up1p2)1/2 (2.6)

2.3 Lagrangian Solution

Using a Lagrangian, we can encode the tangency conditions into one formula. As before, let us
ignore boundary problems. The EMP can be expressed as minimising the Lagrangian

L = p1x1 + p2x2 + λ[u− u(x1, x2)]

As with the UMP, the term in brackets can be thought as the penalty for violating the constraint.
That is, the agent is punished for falling short of the target utility.

The FOCs with respect to x1 and x2 are

∂L

∂x1
= p1 − λ

∂u

∂x1
= 0 (2.7)

∂L

∂x2
= p2 − λ

∂u

∂x2
= 0 (2.8)

If preferences are monotone then the constraint will bind,

u(x1, x2) = u (2.9)

These three equations can then be used to solve for the three unknowns: x1, x2 and λ.

Several remarks are in order. First, this approach is identical to the graphical approach. Di-
viding (2.7) by (2.8) yields

∂u/∂x1

∂u/∂x2
=

p1

p2

which is the same as (2.2). Moreover, the Lagrange multiplier is

λ =
p1

MU1
=

p2

MU2
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is exactly the cost–per–bang.

Second, if preferences are not monotone, the constraint (2.9) may not bind. If it does not bind,
the Lagrange multiplier in the FOCs will be zero.

Third, the approach is easy to extend to N goods. In this case, one obtains N first order
conditions and the constraint equation (2.9).

3 General Results

3.1 Properties of Expenditure Function

The expenditure function exhibits four important properties.

1. The expenditure function is homogenous of degree one in prices. That is,

e(p1, p2, u) = e(αp1, αp2, u)

for α > 0. Intuitively, if the prices of x1 and x2 double, then the cheapest way to attain the
target utility does not change. However, the cost of attaining this utility doubles.

2. The expenditure function is increasing in (p1, p2, u). If we increase the target utility u, then
the constraint becomes harder to satisfy and the cost of attaining the target increases. If we
increase p1 then it costs more to buy any bundle of goods and it costs more to attain the target
utility.

3. The expenditure function is concave in prices (p1, p2). Fix the target utility u and prices
(p1, p2) = (p′1, p

′
2). Solving the EMP we obtain Hicksian demands h′1 = h1(p′1, p

′
2, u) and

h′2 = h2(p′1, p
′
2, u). Now suppose we fix demands and change p1, the price of good 1. This gives

us a pseudo–expenditure function

ηh′1,h′2(p1) = p1h
′
1 + p′2h

′
2

This pseudo–expenditure function is linear in p1 which means that, if we keep demands con-
stant, then expenditure rises linearly with p1. Of course, as p1 rises the agent can reduce her
expenditure by rebalancing her demand towards the good that is cheaper. This means that
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Figure 4: Expenditure Function. This figure shows how the expenditure function lies under the
pseudo–expenditure function.

real expenditure function lies below the pseudo–expenditure function and is therefore concave.
See figure 4.

More formally, the expenditure function is given by the lower envelope of the pseudo-expenditure
functions. That is, for any bundle (x1, x2), the cost of this bundle at prices (p1, p2) is given by

ηx1,x2(p1, p2) = p1x1 + p2x2

The expenditure function is then the minimum of these pseudo–expenditure functions given the
bundle (x1, x2) attains the target utility. Mathematically,

e(p1, p2, u) = min{p1x1 + p2x2 : u(x1, x2) = u} (3.1)

Thus the expenditure function is the lower minimum of a collection of linear functions, and is
therefore concave.2 See figure 5.

4. Sheppard’s Lemma: The derivative of the expenditure function equals the Hicksian demand.
That is,

∂

∂p1
e(p1, p2, u) = h1(p1, p2, u) (3.2)

2Exercise: Show that the minimum of two concave functions is concave.
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Figure 5: Envelope Property of Expenditure Function. This figure shows the expenditure func-
tion equals the lower envelope of the pseudo expenditure functions.

The idea behind this result can be seen from figure 4. At p1 = p′1 the expenditure function
is tangential to the pseudo–expenditure function. The pseudo–expenditure is linear in p1 with
slope h1(p′1, p

′
2, u). Hence the expenditure function also has slope h1(p′1, p

′
2, u).

The intuition behind Sheppard’s Lemma is as follows. Suppose an agent wishes to attain target
utility u = 25 and faces prices p1 = $1 and p2 = $1. Furthermore, suppose that the cheapest
way to attain the target utility is by consuming h1 = 5 and h2 = 5. Next, consider an increase in
p1 of 1¢. This change has a direct and indirect effect. The direct effect is that, holding demand
constant, the agent’s spending rises by h1 × 1¢ = 5¢; the indirect effect is that the agent will
change her demands. However, the tangency condition illustrated in figure 3 shows that the
agent is close to indifferent between choosing the optimal quantity and nearby quantities, so the
rebalancing demand will will have a very small impact on her expenditure. We thus conclude
that ∆e = h1∆p1, Rewriting,

∆e

∆p1
= h1

This is the discrete version of equation (3.2).

Here is a formal proof of Sheppard’s Lemma. By definition of the expenditure function,

e(p1, p2, u) = p1h1(p1, p2, u) + p2h2(p1, p2, u)
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Differentiating with respect to p1 yields

∂

∂p1
e(p1, p2, u) = h1(p1, p2, u) + p1

∂h1(p1, p2, u)
∂p1

+ p2
∂h2(p1, p2, u)

∂p1
(3.3)

As discussed above, we have decomposed the effect of the price change into a direct effect (the
first term) and an indirect effect (the second and third terms). We now wish to show the
indirect effect is zero. From the agent’s minimisation problem in Section 2.3, the FOCs are

pi = λ
∂u(h1, h2)

∂xi

We also know that the agent’s constraint binds:

u(h1(p1, p2, u), h2(p1, p2, u)) = u (3.4)

Substituting the FOCs into (3.3)

∂

∂p1
e(p1, p2, u) = h1(p1, p2, u) + λ

[
∂u(h1, h2)

∂x1

∂h1(p1, p2, u)
∂p1

+
∂u(h1, h2)

∂x2

∂h2(p1, p2, u)
∂p1

]
(3.5)

Differentiating (3.4) with respect to p1 yields

∂u(h1, h2)
∂x1

∂h1(p1, p2, u)
∂p1

+
∂u(h1, h2)

∂x2

∂h2(p1, p2, u)
∂p1

= 0 (3.6)

Substituting (3.6) into (3.5) yields Sheppard’s Lemma.

3.2 Properties of Hicksian Demand

Hicksian demand has three important properties. These follow from the properties of the
expenditure function derived above.

1. Hicksian demand is homogenous of degree zero in prices. That is,

h1(p1, p2, u) = h1(αp1, αp2, u)

for α > 0. Intuitively, doubling both prices does not alter the cheapest way to obtain the target
utility u.
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Figure 6: Hicksian Demand and Own Price Effects. This figure shows the effect of an increase in
p1, from p1 to p′1. The optimal bundle moves from A to B.

2. The Law of Hicksian Demand: The Hicksian demand for good i is decreasing in pi. That is,

∂

∂pi
hi(p1, p2, u) ≤ 0

Intuitively, when p1 rises the relative prices become tilted in favour of good 2. The cheapest
way to attain the target utility then consists of less of good 1 and more of good 2. Graphically
this can be seen from figure 6. As p1 rises to p′1, the iso–expenditure function becomes steeper
and the optimal bundle involves less of good 1 and more of good 2.3

A formal proof of this result uses the properties of the expenditure function:

∂

∂p1
h1(p1, p2, u) =

∂2

∂p2
1

e(p1, p2, u) ≤ 0

where the equality comes from Sheppard’s Lemma and the inequality follows from the concavity
of the expenditure function.

This result highlights a big difference between Hicksian demand and Marshallian demand.
An increase in p1 always reduces the Hicksian demand for good 1 but may, in the case of a
Giffen good, increase the Marshallian demand. This is because the effect of a price change on
Marshallian demand has two effects: a substitution effect (a change in relative prices) and an

3The fact that the demand for good 2 always rises is an artifact of there only being 2 goods.
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income effect (a change in the consumer’s purchasing power). In comparison, the change in
Hicksian demand isolates the substitution effect.

3. Hicksian demand has symmetric cross derivatives. That is,

∂

∂p2
h1(p1, p2, u) =

∂

∂p1
h2(p1, p2, u)

The proof of this result also uses the properties of the expenditure function.

∂

∂p2
h1(p1, p2, u) =

∂

∂p2

[
∂

∂p1
e(p1, p2, u)

]
=

∂

∂p1

[
∂

∂p2
e(p1, p2, u)

]
=

∂

∂p1
h2(p1, p2, u)

The first and third equalities come from Sheppard’s Lemma and the second from Young’s
theorem.

We say goods x1 and x2 are net substitutes if

∂

∂p2
h1(p1, p2, u) > 0 and

∂

∂p1
h2(p1, p2, u) > 0

We say goods x1 and x2 are net complements if

∂

∂p2
h1(p1, p2, u) < 0 and

∂

∂p1
h2(p1, p2, u) < 0

The symmetry of the cross derivatives means that we cannot have one cross–derivative positive
negative and the opposite cross–derivative negative, as with gross substitutes and complements.4

4 Income and Substitution Effects

We are often interested in how price changes affect Marshallian demand. This matters to firms
when choosing prices, to government when choosing tax rates and to economists when making
forecasts. For example: how much will demand for ethanol increase if we lower the price by
$10?

We saw with the UMP that an increase in p1 may lead to a large decrease in demand (if demand
is elastic), may lead to a small decrease in demand (if demand is inelastic) or may lead to an
increase in demand (in the case of a Giffen good). One major issue is that an increase in the

4Exercise: Suppose there are two goods. Show they must be net substitutes.
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Figure 7: Substitution and Income Effects with Normal Good. With a normal good, both
substitution effect (SE) and income effect (IE) are negative.

price of good 1 has two effects: it both makes good 1 relatively more expensive (the substitution
effect) and reduces the agent’s purchasing power (the income effect). This section will separate
these effects. In Section 4.1 we do this graphically. In Section 4.3 we do this mathematically.

4.1 Pictures

Suppose we start at point A in figures 7 and 8. When p1 increases, the budget line pivots
around it’s left end and demand falls from A to C. We can decompose this change into two
effects.

1. A change in relative prices, keeping utility constant. This is the shift from A to B,
and is called the substitution effect. This equals the change in Hicksian demand and,
appealing to the Law of Hicksian Demand, is negative.

2. A change in income, keeping relative prices constant. This is the shift from B to C, and
is called the income effect. This effect is positive if the good is normal, and negative if
the good is inferior.

Exercise: draw the equivalent picture for a Giffen good.
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Figure 8: Substitution and Income Effects with Normal Good. With an inferior good, substi-
tution effect (SE) is negative while the income effect (IE) is positive.

4.2 Relation between the UMP and EMP

The EMP and UMP are closely related. To illustrate, suppose the agent has $10 to spend on
two goods. Suppose her utility is maximised when (x1, x2) = (5, 5) and she can attain 25 utils.5

What is the cheapest way for the agent to attain 25 utils? Given this information, the answer
must be (x1, x2) = (5, 5). Moreover, her expenditure is $10. The reason is as follows. First, we
know that the agent can obtain 25 utils from $10, so the cheapest way to obtain 25 utils is at
most $10. That is, e ≤ $10. Now suppose, by contradiction, that the agent can obtain 25 utils
for, say, $8. Then, if preferences are monotone, she will be able to obtain strictly more than 25
utils with $10, contradicting our initial assumptions.

We can state this result formally. Fix prices (p1, p2) and income m. Marshallian demand is
given by x∗i (p1, p2,m) and indirect utility is v(p1, p2,m). Consider the EMP:

min
x1,x2

p1x1 + p2x2 subject to u(x1, x2) ≥ v(p1, p2,m)

The induced Hicksian demand is given by hi(p1, p2, v(p1, p2,m)) while the expenditure function
is e(p1, p2, v(p1, p2,m)). Then using the reasoning above, one can show that

e(p1, p2, v(p1, p2,m)) = m (4.1)

hi(p1, p2, v(p1, p2,m)) = x∗i (p1, p2,m) (4.2)

5These numbers come from assuming p1 = 1, p2 = 1 and u(x1, x2) = x1x2.
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Suppose we start with income m. Equation (4.1) says that the minimum expenditure required
to reach v(p1, p2,m), the most utility from m, is just m. Equation (4.2) says that an agent who
wishes to maximise her utility from m and one who wishes to find the cheapest way to attain
v(p1, p2,m) will buy the same goods. Intuitively, in both cases, they will spend m and will do
so by equating the bang–per–buck from each good.

Equation (4.1) is practically useful. Fixing prices and omitting them from the arguments, it
says that e(v(m)) = m. Since the expenditure function is increasing in u, we can invert it and
obtain:

v(m) = e−1(m) (4.3)

Hence the indirect utility function equals the inverse of the expenditure function. To illustrate
this result, suppose u(x1, x2) = x1x2. From equation (2.6), we know that

e(u) = 2
√

up1p2

We invert this equation by letting m = e(u) and v(m) = u, and solving for v(m). This yields

v(m) =
m2

4p1p2

One can verify that this indeed the indirect utility function.

We can also state a second, closely related, result. Fix prices (p1, p2) and target utility u.
Hicksian demand is given by hi(p1, p2, u) and the expenditure function is e(p1, p2, u). Consider
the UMP:

max
x1,x2

u(x1, x2) subject to p1x1 + p2x2 ≤ e(p1, p2, u)

The induced Marshallian demand is given by x∗i (p1, p2, e(p1, p2, u)) while the indirect utility is
v(p1, p2, e(p1, p2, u)). One can show that

v(p1, p2, e(p1, p2, u)) = u (4.4)

x∗i (p1, p2, e(p1, p2, u)) = hi(p1, p2, u) (4.5)

Suppose we start with target utility u. Equation (4.4) says that the most utility the agent can
get from e(p1, p2, u), the money required to reach u, is just u. Equation (4.5) says that an agent
who wishes to find the cheapest way to attain u and one who wishes to maximise her utility
from e(p1, p2, u) will buy the same goods. Intuitively, in both cases, they will attain utility u
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and will do so by equating the bang–per–buck from each good.

Fixing prices and omitting them from the arguments, equation (4.4) says that v(e(u)) = u.
Since the indirect function is increasing in m, we can invert it and obtain:

e(u) = v−1(u) (4.6)

Hence the expenditure function equals the inverse of the indirect utility function. Together,
equations (4.3) and (4.6) mean we can move back and forwards between the expenditure function
and indirect utility function.

4.3 Slutsky Equation: Own Price Effects

Suppose p1 increases by ∆p1. There are two effects:

1. Fixing the agent’s utility, relative prices change causing demand to rise by ∂h1
∂p1

∆p1. Since
∂h1
∂p1

< 0, this effect causes demand to fall. This is the substitution effect.

2. Fixing relative prices, the agent’s income falls by x∗1∆p1. As a result, her demand falls
by x∗1

∂x∗1
∂m ∆p1. This is the income effect.

Putting these effects together, we have

∆x∗1 =
∂h1

∂p1
∆p1 − x∗1

∂x∗1
∂m

∆p1

Dividing by ∆p1 yields the Slutsky equation.

Theorem 1 (Own–Price Slutsky Equation). Fix prices (p1, p2) and income m, and let u =
v(p1, p2,m) be the indirect utility. Then

∂

∂p1
x∗1(p1, p2,m) =

∂

∂p1
h1(p1, p2, u)− x∗1(p1, p2, m)

∂

∂m
x∗1(p1, p2,m) (4.7)

A formal proof is reasonably straightforward. Using equation (4.5),

hi(p1, p2, u) = x∗i (p1, p2, e(p1, p2, u))
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Differentiating with respect to p1 yields

∂

∂p1
h1(p1, p2, u) =

∂x∗1(p1, p2, e(p1, p2, u))
∂p1

+
∂x∗1(p1, p2, e(p1, p2, u))

∂m

∂e(p1, p2, u)
∂p1

=
∂x∗1(p1, p2, e(p1, p2, u))

∂p1
+

∂x∗1(p1, p2, e(p1, p2, u))
∂m

x∗1(p1, p2, e(p1, p2, u)) (4.8)

where the second line comes from Sheppard’s Lemma. Using the definition of u and equation
(4.1),

e(p1, p2, u) = e(p1, p2, v(p1, p2,m)) = m (4.9)

Substituting (4.9) into (4.8) and rearranging yields (4.7), as required.

4.4 Slutsky Equation: Cross Price Effects

Equation (4.7) analyses the effect of a change in p1 on the demand for good 1. We can use the
same approach to analyse the effect of a change in p2 on the demand for good 1.

Suppose p2 increases by ∆p2. As before, there are two effects:

1. Fixing the agent’s utility, relative prices change causing demand to rise by ∂h1
∂p2

∆p2. Recall
that ∂h1

∂p2
> 0 if the goods are net substitutes and ∂h1

∂p2
< 0 are net complements.

2. Fixing relative prices, the agent’s income falls by x∗2∆p2. As a result, her demand falls
by x∗2

∂x∗1
∂m ∆p2.

Putting these effects together, we have

∆x∗1 =
∂h1

∂p2
∆p2 − x∗2

∂x∗1
∂m

∆p2

Dividing by ∆p2 yields the Slutsky equation for cross–price effects.

Theorem 2 (Cross–Price Slutsky Equation). Fix prices (p1, p2) and income m, and let u =
v(p1, p2,m) be the indirect utility. Then

∂

∂p2
x∗1(p1, p2,m) =

∂

∂p2
h1(p1, p2, u)− x∗2(p1, p2, m)

∂

∂m
x∗1(p1, p2,m) (4.10)
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The proof is almost identical to that of (4.7). Using equation (4.5),

hi(p1, p2, u) = x∗i (p1, p2, e(p1, p2, u))

Differentiating with respect to p2 yields

∂

∂p2
h1(p1, p2, u) =

∂x∗1(p1, p2, e(p1, p2, u))
∂p2

+
∂x∗1(p1, p2, e(p1, p2, u))

∂m

∂e(p1, p2, u)
∂p2

=
∂x∗1(p1, p2, e(p1, p2, u))

∂p2
+

∂x∗1(p1, p2, e(p1, p2, u))
∂m

x∗2(p1, p2, e(p1, p2, u)) (4.11)

where the second line comes from Sheppard’s Lemma. Using the definition of u and equation
(4.1),

e(p1, p2, u) = e(p1, p2, v(p1, p2,m)) = m (4.12)

Substituting (4.12) into (4.11) and rearranging yields (4.10).

4.5 Slutsky Equation: Example

We illustrate the Slutsky equation with our running example. Let u(x1, x2) = x1x2. From the
UMP we know that

x∗1(p1, p2,m) =
m

2p1

v(p1, p2,m) =
m2

4p1p2

From the EMP (see Section 2.2) we know that

h1(p1, p2, u) =
(

u
p2

p1

)1/2

e(p1, p2, u) = 2(up1p2)1/2

The left hand side of the Slutsky equation states

∂

∂p1
x∗1(p1, p2,m) = −1

2
mp−2

1 (4.13)
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The right hand side is

∂h1

∂p1
− x∗1

∂x∗1
∂m

= −1
2
u1/2p

−1/2
1 p

1/2
2 − 1

4
mp−2

1

= −1
4
mp−2

1 − 1
4
mp−2

1 (4.14)

where the second line uses u = v(p1, p2, m).

Observe that (4.13) equals (4.14) as we would hope. Moreover, the two terms in equation
(4.14) are identical. This means that the substitution and income effects are of equal size: both
account for 50% of the fall in demand.

5 Consumer Surplus

It is often important to put a monetary value on the effect of a price change on an agent’s
utility. For example, the government may wish to evaluate the impact of a tax change; or a
court may wish to evaluate the negative effect of collusion on consumers.

To gain some intuition, suppose the consumer has monetary valuations for each unit of the
good. In particular suppose their valuations are given by table 2.

Unit Valuation $
1 10
2 8
3 6
4 4
5 2

Table 2: Agent’s Valuations

Suppose the price of the good is initially p1 = 3. Since the agent buys a unit if and only if her
valuation exceeds the price, she will buy 4 units. Her consumer surplus, the difference between
her willingness to pay and the price she pays, equals

CS = (10− 3) + (8− 3) + (6− 3) + (4− 3) = $16

Suppose the price rises to p1 = 7. The agent then consumes 2 units and her consumer surplus
is

CS = (10− 7) + (8− 7) = $4.
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Figure 9: Consumer Surplus with Quasilinear Demand. The figure shows the agent’s demand
curve. The shaded area is the loss in CS due to the price increase.

Hence the agent would need to be compensated $12 for this price increase. This is shown in
figure 9.

This exercise is familiar from introductory economics courses: consumer surplus is the area
under the agent’s Marshallian demand curve. However this approach assumes the agent has
quasilinear utility, allowing us to associate a monetary value to each unit demanded by the
agent. In Section 5.1 we show that the welfare effect of a price change is determined by the
area under the Hicksian demand curve rather than the Marshallian demand. In Section 5.2 we
see that, when utility is quasi–linear then Hicksian demand and Marshallian demand coincide,
justifying the approach taken above.

5.1 Compensating Variation

Suppose prices and income are initially (p1, p2,m), and that p1 increases to p′1. The compen-

sating variation is defined by

CV = e(p′1, p2, u)− e(p1, p2, u)
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Figure 10: Compensating Variation and Indifference Curves. This figure shows the effect on
an increase in p1. The Marshallian demand falls from A to C. The Hicksian demand moves from A to
B. The compensating variation equals the difference between the consumer’s original income and the
income she would need to attain u.

The CV is thus the extra spending needed to keep the agent at their original utility level. That
is, an increase in income of CV completely compensates the agent for the price increase.6 This
is shown in figure 10.

The compensating variation can be related to the Hicksian demand curve. Applying the fun-
damental theorem of calculus,7

CV =
∫ p′1

p1

∂

∂p1
e(p̃1, p2, u) dp̃1

=
∫ p′1

p1

h1(p̃1, p2, u) dp̃1 (5.1)

where the second equation follows from Sheppard’s Lemma. Equation (5.1) says that the lost
welfare from the price change equals the area under the Hicksian demand curve. See figure 11.

6There is a closely related measure of welfare called the equivalent variation. We will not discuss this here.
7The fundamental theorem of calculus says that f(b)− f(a) =

∫ b

a
f ′(x)dx.
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Figure 11: Compensating Variation and Hicksian Demand. This figure shows that CV equals
the area under the demand curve.

5.2 Quasilinear Utilities

While we may wish to calculate the area under the Hicksian demand, it is often easier to
calculate the area under the Marshallian demand curve. For example, in empirical applications,
it is easy to estimate the Marshallian demand by looking at how much people buy at different
prices.

Suppose utility is quasilinear in that it can be represented by a utility function of the form

u(x1, x2) = v(x1) + x2

where we assume v(·) is increasing and concave. Under this specification, the marginal utility
of the second good is constant. For example, x2 could be a general aggregate good or cash.

When utility is quasilinear we can think of an agent’s utility in terms of dollar valuations, as
at the start of this section. The argument is as follows. The agent’s problem is to maximise
her utility subject to her budget constraint, p1x1 + p2x2 ≤ m. Since utility is monotone, the
budget constraint will bind. Using the substitution method, the budget constraint becomes

x2 =
m

p2
− p1

p2
x1
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Substituting this into the utility function, the agent maximises

v(x1)− p1

p2
x1 +

m

p2
(5.2)

Notice the last term is a constant and can be ignored. If x2 is interpreted as cash, we can
normalise p2 = 1. The agent then chooses x1 to maximise

v(x1)− p1x1

The agent’s choice is independent of m, so she acts as if she values x1 units of good 1 at v(x1),
independent of the units of x2 being consumed. We can then think of v′(x1) as her valuation
of the marginal unit of x1.

Under quasilinear utility, the Hicksian and Marshallian demands coincide. Ignoring boundary
problems, the Marshallian demand is derived by maximising (5.2). The first–order condition
implies that Marshallian demand is implicitly given by

v′(x∗1(p1, p2,m)) =
p1

p2
(5.3)

Turning to the EMP, the agent minimises

L = p1x1 + p2x2 + λ[u− v(x1)− x2]

The first first–order conditions are

p1 = λv′(x1)

p2 = λ

Looking at the ratio of these two equations, Hicksian demand is implicitly given by

v′(h1(p1, p2, u)) =
p1

p2
(5.4)

From equations (5.3) and (5.4) we see that Marshallian demand and Hicksian demand coincide.
Hence the compensating variation is given by

CV =
∫ p′1

p1

h1(p̃1, p2, u) dp̃1

=
∫ p′1

p1

x∗1(p̃1, p2,m) dp̃1
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This result provides a foundation for the classical measure of consumer surplus.

6 Endowments of Goods

In the UMP we assume that agents are endowed with income m and use it to maximise their
utility. While this is a useful model to address demand for retail products, it is sometimes more
accurate to assume agents are endowed with goods which they can sell on the open market.
There are two reasons for analysing this model:

• The model is important for understanding practical problems such as a worker’s choice
of labour supply (Section 6.1), and an agent’s decision to smooth consumption over time
(Section 6.2).

• When we analyse the entire economy, we will want to close the model. Hence we wish the
agents who demand goods to also work for firms that make goods.

Suppose there are N goods and the agent starts with endowments {ω1, . . . , ωN}, where ωi ≥ 0
for all i. The consumer can sell these goods at market prices {p1, . . . , pN}. For example, an
agent may own a farm which produces vegetables and may sell the produce to buy meat. The
agent has income

m =
N∑

i=1

piωi (6.1)

Given equation (6.1) the agent’s problem is the same as that studied so far. We can derive
her Marshallian demand and indirect utility (see figure 12). We can also derive her Hicksian
demand and expenditure function (since these are independent of income)

The one major difference from the model with exogenous income is that a price change now
affects the agent’s income as well as the goods she buys. We study this in Section 6.3. We first
consider two applications.

6.1 Labour Supply

Suppose an agent has utility u(x1, x2) = x1x2 over leisure x1 and a general consumption good
x2. The agent has exogenous income m and can also work at wage w. She has T hours which
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Figure 12: Marshallian Demand with Endowments This figure shows the optimal choice when
the agent has endowments of the two goods.

she can allocate to either work or leisure. We normalise the price of x2 to p2 = 1.

The agent’s budget constraint is
x2 = w(T − x1) + m

The left hand side equals the agent’s spending on consumption; the right hand side equals her
income. As a thought experiment, one can imagine the agent selling all T units of her labour
and then buying x1 units of it back at price w to be consumed as leisure. We can thus rewrite
the budget constraint as

wx1 + x2 = wT + m

The left hand side is the goods consumed (including leisure, consumed at price w). The right
hand side is the agent’s endowment income, as in equation (6.1).

Ignoring boundary constraints,8 her problem is

max
x1,x2

L = x1x2 + λ[m + w(T − x1)− x2]

8With this problem the boundary constraints are slightly different to normal since the agent cannot consume
more that T units of leisure. We thus have T ≥ x1 ≥ 0 and x2 ≥ 0.
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The FOCs are

x2 = λw

x1 = λ

Taking the ratio of these FOCs, we see that

x2

x1
= w

As before, the left hand side is the MRS, while the right hand side is the price ratio. Using the
budget constraint the agent’s demands are given by

x∗1 =
1

2w
[wT + m] (6.2)

x∗2 =
1
2
[wT + m] (6.3)

Equations (6.2) and (6.3) show that the consumer splits her endowment income of wT + m

equally between leisure and consumption. This is just like the solution to the Cobb Douglas
problem without endowments (see UMP notes), where we found that

x∗1 =
1

2p1
m and x∗2 =

1
2p2

m (6.4)

We can now evaluate an effect of a change in wages. Differentiating (6.2) and (6.3),

∂x∗1
∂w

=
1

2w2
wT − 1

2w2
[wT + m] = − 1

2w2
m (6.5)

∂x∗2
∂w

=
1
2
T (6.6)

From (6.5), we see an increase in the wage reduces the amount of leisure the agent consumes.
There are two effects here: an increase in the wage raises the relative price of leisure and reduces
demand (the substitution effect); it also makes the agent richer and increases the demand for
leisure (the income effect). In this case the substitution effect dominates the income effect: we
analyse this formally in Section 6.4.

From (6.6), we see an increase in the wage increase the amount of x2 the agent consumes. This
is because an increase in wages increase the value of the agent’s endowment; in comparison,
without endowments, equation (6.4) shows that x∗2 is independent of p1.
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6.2 Intertemporal Optimisation

Suppose an agent allocates consumption (e.g. money) across two periods. Let the consumption
in period 1 and 2 be x1 and x2 respectively. The agent’s utility is

u(x1, x2) = ln(x1) + (1 + β)−1 ln(x2) (6.7)

where β ≥ 0 is the agent’s discount rate.

In periods 1 and 2 the agent is endowed with income m1 and m2, respectively. The agent can
save at interest rate r ≥ 0, so that $1 in period 1 is worth $(1+r) in period 2. As a result, the
agent’s budget constraint is

m1 + (1 + r)−1m2 = x1 + (1 + r)−1x2 (6.8)

The left hand side of (6.8) is the agent’s lifetime income in terms of period 1 dollars. The right
and side is the agent’s lifetime spending. We say they are borrowing when x1 > m1 and saving
when x1 < m1.

We can solve this problem just as we would solve a regular utility maximisation problem, where
p1 = 1 and p2 = (1 + r)−1. See figure 13. Using (6.7) and (6.8) the tangency condition,
MRS = p1/p2, becomes

(1 + β)
1/x1

1/x2
= (1 + r)

Rearranging,

x∗1 =
1 + β

1 + r
x∗2 (6.9)

Equation (6.2) immediately implies that if r = β then the agent consumes the same in each
period, x∗1 = x∗2. Intuitively, since the agent’s per–period utility is concave, she wishes to smooth
her consumption across time. If r = β, then the agent is just as impatient as the market, so
she will perfectly smooth her consumption across the two periods. If β > r then the agent is
more impatient than the market and she consumes more in the first period, x∗1 > x∗2.

Using the budget constraint, demand is given by

x∗1 =
1 + β

2 + β
[m1 + (1 + r)−1m2] and x∗2 =

1 + r

2 + β
[m1 + (1 + r)−1m2]
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Figure 13: Intertemporal Optimisation This figure shows an agent who has a high income in period
1 and a low income in period 2. At the optimum, she saves in period 1.

6.3 Own Price Effects

Suppose there is an increase in p1. As with a fixed income m, the budget line becomes steeper.
However, since the value of the endowment changes, it is no longer true that the budget set
shrinks. Rather, the budget line pivots around the endowment: see figure 14.

As in Section 4, we can decompose the price change into a substitution and income effect.
However, the income effect has to be adjusted for the change in the value of the endowment.
Suppose p1 increases by ∆p1. Then there are two effects:

1. Fixing the agent’s utility, relative prices change causing demand to rise by ∂h1
∂p1

∆p1. Since
∂h1
∂p1

< 0, this effect causes demand to fall. This is the substitution effect.

2. Fixing relative prices, the agent’s income rises by (ω1 − x∗1)∆p1. This means that the
agent’s income rises if she is a net seller of the good (as in the labour example), and falls
if she is a net buyer of the good. As a result, her demand rises by (ω1− x∗1)

∂x∗1
∂m ∆p1. This

is the income effect.
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Figure 14: Own–Price Effects with Endowments. This figure shows the effect on a decrease in p1

when the agent is endowed with {ω1, ω2}. Note the income looks like it goes down, even though prices
fall. This is because, at point A, the agent owns more of good 1 than she buys, ω1 > x∗1. Hence a
decrease in p1 reduces her purchasing power.

Putting these effects together, we have

∆x∗1 =
∂h1

∂p1
∆p1 + (ω1 − x∗1)

∂x∗1
∂m

∆p1

Dividing by ∆p1 yields the Slutsky equation.

Theorem 3 (Own–Price Slutsky Equation with Endowments). Fix prices (p1, p2), income m

and endowments (ω1, ω2), and let u = v(p1, p2,m) be the indirect utility. Then

∂

∂p1
x∗1(p1, p2, m) =

∂

∂p1
h1(p1, p2, u) + (ω1 − x∗1(p1, p2,m))

∂

∂m
x∗1(p1, p2,m) (6.10)

This result follows from the regular Slutsky equation (4.7). All we need to do is define net
demand for good 1 by z∗1(p1, p2,m) = x∗1(p1, p2, m)−ω1. We can then apply the regular Slutsky
equation to the agent’s net demand:

∂

∂p1
z∗1(p1, p2,m) =

∂

∂p1
h1(p1, p2, u)− z∗1(p1, p2,m)

∂

∂m
z∗1(p1, p2,m) (6.11)

Since z∗1 and x∗1 differ by a constant term, we can put equation (6.11) back in terms of
x∗i (p1, p2,m), yielding equation (6.10).
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6.4 Labour Supply and the Slutsky Equation

We now apply the Slutsky equation (6.10) to the labour supply problem in Section 6.1. From
equation (6.2), the Marshallian demand is

x∗1(p1, p2,m) =
1

2w
[wT + m] (6.12)

Using the (6.2) and (6.3) the indirect utility is

v(p1, p2,m) = x∗1x
∗
2 =

1
4w

[wT + m]2 (6.13)

From (2.5) and using p1 = w and p2 = 1, the Hicksian demand is

h1(p1, p2, u) = u1/2w−1/2 (6.14)

We now have all the elements we need.

The left hand side of the Slutsky equation is

∂

∂p1
x∗1 = − 1

2w2
m

The right hand side of the Slutsky equation is

∂h1

∂p1
+ (ω1 − x∗1)

∂x∗1
∂m

= −1
2
w−3/2u1/2 +

[
T − 1

2w
[wT + m]

]
1

2w

= −1
2
w−3/2 1

2
w−1/2[wT + m] +

1
4w2

[wT −m]

= − 1
4w2

[wT + m] +
1

4w2
[wT −m]

= − 1
2w2

m

where the first line uses (6.12) and (6.14), and the second uses u = v(p1, p2,m) and equation
(6.13). We can therefore see that the substitution effect outweighs the income effect, and as
m becomes smaller these two effects grow closer in magnitude. In the limit, as m → 0, leisure
demand (and hence labour supply) are independent of the wage.
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