EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

PURPOSE:

1. To determine experimentally the molar solubility of potassium acid tartrate in water and in a solution of potassium nitrate.
2. To examine the effect of a common ion on the solubility of slightly soluble salts.

PRINCIPLES:

When a large amount of a slightly soluble ionic compound, $\left[\mathrm{M}^{+}\right]\left[\mathrm{A}^{-}\right]$, is mixed with water, the compound partially dissolves in water and a saturated solution is formed. Some of the solid remains undissolved.
An equilibrium occurs between the undissolved solid and the ions in the solution.

The equilibrium constant for the solubility process is called the Solubility Product Constant (Ksp)

$$
\mathbf{K s p}=\left[\mathbf{M}^{+}\right]\left[\mathbf{A}^{-}\right]
$$

The Ksp for a slightly soluble salt is determined by measuring the concentrations of the M^{+}and A^{-}ions in a saturated solution. In this experiment, we can measure the concentration of the anion because it is a weak acid which can be titrated with a strong base.
Tartaric acid $\left(\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right.$, or H_{2} Tar $)$ is a weak diprotic acid. If enough KOH is added to a solution of tartaric acid to neutralize only half the acidic hydrogens, the salt potassium acid tartrate ($\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ or KHTar) is obtained as a slightly soluble salt.
When KHTar is dissolved in water, the following equilibrium exists:

$\mathbf{H T a r}^{-}(\mathbf{a q})$ is a weak acid and, as such, it can be titrated with a strong base, like sodium hydroxide, and this neutralization reaction proceeds to completion:

$$
\mathbf{H T a r}^{-}(\mathbf{a q})+\mathrm{OH}^{-}(\mathbf{a q}) \quad \longrightarrow \quad \operatorname{Tar}^{2-}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O}(\mathbf{l})
$$

Thus we can determine experimentally the concentration of a HTar^{-}solution by titrating it with a sodium hydroxide solution of known concentration.
In this experiment, you will measure the Molar Solubility of KHTar in two solvent systems: pure water and $0.10 \mathrm{M} \mathrm{KNO}_{3}$. The Molar Solubility of KHTar will be determined by titration of the HTar^{-}ion with standardized NaOH .

EXPERIMENT 12

A SOLUBILITY PRODUCT CONSTANT
The Ksp of KHTar in these solvents is given by:

$$
\mathbf{K s p}=\left[\mathbf{K}^{+}\right]\left[\mathbf{H T a r}^{-}\right]
$$

In pure water the only source of potassium and acid tartrate ions is the dissolved KHTar, which, in view of the negligible amount of dissociation of HTar^{-}leads to the following relation:

$$
\left[\mathrm{K}^{+}\right]=\left[\mathrm{HTar}^{-}\right]=\text {Molar Solubility (Commonly abbreviated "S") }
$$

The concentration of the HTar^{-}is found by knowing how many moles of HTar^{-}are contained in a known volume of solution, Vs.
Since HTar^{-}reacts with the sodium hydroxide in a 1:1 mole ratio:

$$
\mathbf{H T a r}^{-}(\mathbf{a q})+\mathrm{OH}^{-}(\mathbf{a q}) \quad \longrightarrow \quad \operatorname{Tar}^{2-}(\mathbf{a q})+\mathbf{H}_{2} \mathbf{O}(\mathbf{l}),
$$

the moles of HTar^{-}are equal to the moles of NaOH used to reach the endpoint .

```
moles HTar'}=\mathrm{ moles NaOH = (M}\mp@subsup{\mathbf{MaOH}}{\mathbf{NaO}}{})(\mathrm{ Volume of NaOH solution)
```

$\left[\mathrm{HTar}^{-}\right]=\frac{\left(\mathrm{M}_{\mathrm{NaOH}}\right)(\text { Volume of } \mathrm{NaOH} \text { solution) }}{\text { Volume of KHTar solution }}$

In the $0.10 \mathrm{M} \mathrm{KNO}_{3}$ solution, the concentration of HTar^{-}is found in the same fashion. However, there are now two sources of potassium ions: from the dissolved KHTar and from the strong electrolyte, KNO_{3}, which in an aqueous solution is totally dissociated into potassium and nitrate ions. .
The concentration of potassium ions is given by:

$$
\left[\mathbf{K}^{+}\right]=\left[\mathbf{K N O}_{3}\right]+\left[\mathbf{K H T a r}^{-}\right]
$$

It follows that:

$$
\mathrm{Ksp}=\left[\left[\mathrm{KNO}_{3}\right]+\left[\mathrm{KHTar}^{-}\right]\right]\left[\mathrm{HTar}^{-}\right]
$$

Recall that the following equilibrium exists in solution:

$$
\mathrm{KHTar}(\mathrm{~s}) \rightleftarrows \mathrm{K}^{+}(\mathbf{a q}) \quad+\quad \mathrm{HTar}^{-}(\mathbf{a q})
$$

The addition of K^{+}ions from KNO_{3} (potassium nitrate) will shift the solubility equilibrium to the left, thus lowering the solubility of KHTar.
This lowering of solubility by addition of a salt containing a common ion is called the common ion effect.

EXPERIMENT 12
 A SOLUBILITY PRODUCT CONSTANT

PROCEDURE:

I. Preparation of the saturated solutions

The workload will be divided in the following manner:
Team member 1:
Will prepare a saturated solution of potassium acid tartrate dissolved in deionized water as indicated below:

1	Weigh out about 2 g of Potassium Acid Tartrate on a centigram or milligram balance into a 250 mL Erlenmeyer flasks, labeled Aqueous Solution.
2	Add about 150 mL of deionized water to the flask.
3	Agitate the flask by swirling it vigorously for about 15 minutes. For more efficient mixing you may want to place a magnet in the flask and place the flask on a stirring plate. Do not expect all of the solid to dissolve; the solution is a saturated solution and the mass of potassium acid tartrate $(2 \mathrm{~g})$ added to prepare the solution is purposely more than can dissolve in 150 mL of deionized water.
4	At the end of this time, let the solid settle out and measure the temperature of the supernatant (the clear solution above the undissolved solid)
5	Filter the supernatant liquid from the Erlenmeyer flask and collect the clear, colorless filtrate solution into a 200 mL, 250 mL or 400 mL beaker, labeled Aqueous Solution. You may discard the undissolved solid.
6	Recover the stirring magnet from the Erlenmeyer flask by adding water to the flask and pouring the contents of the flask through a funnel, in order to catch the magnet.

Team member \# 2:

Will prepare a saturated solution of potassium acid tartrate dissolved in $\underline{\mathbf{0 . 1 0} \mathrm{M} \mathrm{KNO}_{3}}$ as indicated below :

1	Weigh out about 2 g of Potassium Acid Tartrate on a centigram or milligram balance into a 250 mL Erlenmeyer flask, labeled $\mathbf{0 . 1 0} \mathbf{M ~ K N O}$			
2	Add about 150 mL of $\mathbf{0 . 1 0} \mathbf{M} \mathbf{K N O} \mathbf{N O}_{3}$ to the flask.	$	$	Agitate the flask by swirling it vigorously for about 15 minutes.
:---				
For more efficient mixing you may want to place a magnet in the flask and place the				
flask on a stirring plate. Do not expect all of the solid to dissolve; the solution is a				
saturated solution and the mass of potassium acid tartrate $(2 \mathrm{~g})$ added to prepare the				
solution is purposely more than can dissolve in 150 mL of $\mathbf{0 . 1 0} \mathbf{M ~ K N O}$.				

EXPERIMENT 12
 A SOLUBILITY PRODUCT CONSTANT

II. Titrations

In order to obtain duplicate data, each team members will perform two titrations, as indicated below:

First Titration

The solution of Potassium Hydrogen Tartrate (KHTar) dissolved in Deionized Water will be titrated with a standardized solution of NaOH , approximately $\mathbf{0 . 1 0} \mathrm{M}$.

1. Rinse and fill your buret with the standardized NaOH solution.
2. Rinse your clean 100 mL or 50 mL graduated cylinder with a few mL of the aqueous solution of KHTar (KHTar dissolved in Deionized Water).
3. Carefully measure out 50.0 mL portions of this solution (KHTar dissolved in Deionized Water) into a labeled 250 mL Erlenmeyer flasks.
4. Add two drops of phenolphthalein indicator solution to each flask.
5. Titrate the solution to the "pale pink end-point", recording the volume of NaOH used for the titration.

Second Titration:

The solution of Potassium Hydrogen Tartrate (KHTar) dissolved in $0.10 \mathrm{M} \mathrm{KNO}_{3}$. will be titrated with a standardized solution of NaOH , approximately 0.10 M .

1. Rinse and fill your buret with the standardized NaOH solution.
2. Rinse your clean 100 mL or 50 mL graduated cylinder with a few mL of the solution of KHTar dissolved in $0.10 \mathrm{M} \mathrm{KNO}_{3}$.
3. Carefully measure out 50.0 mL portions of this solution (KHTar dissolved in 0.10 M KNO_{3}) into a labeled 250 mL Erlenmeyer flasks.
4. Add two drops of phenolphthalein indicator solution to each flask.
5. Titrate the solution to the "pale pink endpoint", recording the volume of NaOH used for the two titrations.

III. Calculations

1. Combine the experimental data obtained by both team members and proceed with the calculations, as outlined in the Report Form.
2. Use the exact molarity of the standardized solution of NaOH (to the nearest 0.0001 M) as indicated on the bottle.

EXPERIMENT 12
 A SOLUBILITY PRODUCT CONSTANT

NAME: \qquad Date; \qquad

REPORT FORM

Part I: Molar Solubility of Potassium Acid Tartrate (KHTar) in Deionized Water
Temperature of Solution: \qquad ${ }^{0} \mathrm{C}$

Titrations

Team Member 1
Team Member 2
NAMES:

Molarity of Standardized NaOH solution: \qquad M \qquad M

Final buret reading (mL): \qquad
\qquad
Initial buret reading (mL): \qquad
\qquad
Volume of titrant (mL): \qquad
\qquad
Moles of NaOH used:
\qquad
\qquad

Moles of KHTar used to neutralize the above number of moles of NaOH :

Volume of saturated solution of KHTar (L)

Molarity of saturated solution of KHTar (M) dissolved in water
Molar Solubility ("S") in water

Molar Solubility ("S") of KHTar (M) in water
Average (Experimental):

EXPERIMENT 12
 A SOLUBILITY PRODUCT CONSTANT

Calculate Ksp of KHTar in water from your experimental data

1. Write the Solubility Equilibrium Expression for KHTar.
2. Write the Solubility Product (Ksp) expression for KHTar
3. Calculate Ksp for KHTar in water, based on the experimentally determined Molar Solubility ("S") of KHTar

EXPERIMENT 12
 A SOLUBILITY PRODUCT CONSTANT

Part II: Molar Solubility of Potassium Acid Tartrate (KHTar) in $0.10 \mathrm{M} \mathrm{KNO}_{3}$

Temperature of Solution:

Titrations

Team Member 1 Team Member 2
NAMES: \qquad

Molarity of Standardized NaOH solution: \qquad M \qquad M

Final buret reading (mL):
Initial buret reading (mL):
Volume of titrant (mL):
Moles of NaOH used:

Moles of KHTar used to neutralize the above number of moles of NaOH :

Volume of saturated solution of KHTar(L)

Molarity of saturated solution of KHTar (M) dissolved in $0.10 \mathrm{KNO}_{3}$ Molar Solubility ("S") in $0.10 \mathrm{KNO}_{3}$

Molar Solubility ("S") of $\operatorname{KHTar}(\mathrm{M})$ in $0.10 \mathrm{KNO}_{3}$ Average (Experimental): \qquad M

EXPERIMENT 12
 A SOLUBILITY PRODUCT CONSTANT

Calculate the theoretical Molar solubility of KHTar in $0.10 \mathrm{M} \mathrm{KNO}_{3}$ by using the Ksp of KHTar in water determined in Part I (see page 6)

Solubility Expression: \square

CONCENTRATIONS:

Initial: \square
Change:

Equilibrium: \square

Show calculations below:

Calculation of Percent Error

Molar solubility of KHTar in $0.10 \mathrm{M} \mathrm{KNO}_{3}$
(calculated); see above \qquad
Molar solubility of KHTar in $\mathbf{0 . 1 0} \mathrm{M} \mathrm{KNO}_{3}$ (experimental); see page 7 \qquad
Percent Error: \qquad
Show calculations below:

EXPERIMENT 12
 A SOLUBILITY PRODUCT CONSTANT

CONCLUSIONS:

1. What is the experimentally determined Molar solubility of KHTar in water? (Part I)
\qquad M
2. What is the experimentally determined Molar solubility of KHTar in $\mathbf{0 . 1 0 M} \mathrm{KNO}_{3}$? (Part II)
\qquad M
3. Explain why the two Molar Solubilities listed in 1(a) and 2(b) above are quite different.

PartT III: EXTENDING THE CONCEPTS:

The Solubility Product Constant of AgBr is $\mathrm{Ksp}=5.0 \times 10^{-13}$

1. Calculate the molar solubility of Ag Br in water.

Please show clearly all relevant equations and calculations.

EXPERIMENT 12
 A SOLUBILITY PRODUCT CONSTANT

2. Calculate the molar solubility of AgBr in $0.028 \mathrm{M} \mathrm{AgNO}_{3}$ solution Please include an equilibrium table and show all relevant equations and calculations.
3. Calculate the molar solubility of AgBr in 0.11 M NaBr solution Please include an equilibrium table and show all relevant equations and calculations.
