Eaxperiment & : GUl & SIMULINK

Matlab

GUI

What Is a GUI?

A graphical user interface (GUI) is a graphical display that contains devices, or components,
that enable a user to perform interactive tasks. To perform these tasks, the user of the GUI
does not have to create a script or type commands at the command line. Often, the user does
not have to know the details of the task at hand. The GUI components can be menus, toolbars,
push buttons, radio buttons, list boxes, and sliders. In MATLAB, a GUI can also display data
in tabular form or as plots, and can group related components.

How Does a GUI Work?

Each component, and the GUI itself, is associated with one or more user-written routines
known as callbacks. The execution of each callback is triggered by a particular user action
such as a button push, mouse click, selection of a menu item, or the cursor passing over a
component. This kind of programming is often referred to as event-driven programming. In
event-driven programming, callback execution is asynchronous, controlled by events external
to the software. In the case of MATLAB GUIs, these events usually take the form of user
interactions with the GUI.

Ways to Build MATLAB GUIs

A MATLAB GUI is a figure window to which you add user-operated controls. You can
select, size, and position these components as you like. Using callbacks you can make the
components do what you want when the user clicks or manipulates them with keystrokes.

You can build MATLAB GUIs in two ways:

e Use GUIDE (GUI Development Environment), an interactive GUI construction Kit.
o Create M-files that generate GUIs as functions or scripts (programmatic GUI
construction).

The first approach starts with a figure that you populate with components from within a
graphic layout editor. GUIDE creates an associated M-file containing callbacks for the GUI
and its components. GUIDE saves both the figure (as a FIG-file) and the M-file. Opening
either one also opens the other to run the GUI.

In the second, programmatic, GUI-building approach, you code an M-file that defines all
component properties and behaviors; when a user executes the M-file, it creates a figure,
populates it with components, and handles user interactions. The figure is not normally saved
between sessions because the M-file creates a new one each time it runs.

As a result, the M-files of the two approaches look different. Programmatic M-files are
generally longer, because they explicitly define every property of the figure and its controls,
as well as the callbacks. GUIDE GUIs define most of the properties within the figure itself.
They store the definitions in its FIG-file rather than in its M-file. The M-file contains
callbacks and other functions that initialize the GUI when it opens.

MATLAB software also provides functions that simplify the creation of standard dialog
boxes, for example to issue warnings or to open and save files. The GUI-building technique

you choose depends on your experience, your preferences, and the kind of application you
need the GUI to operate.

You can combine the two approaches to some degree. You can create a GUI with GUIDE and
then modify it programmatically. However, you cannot create a GUI programmatically and
later modify it with GUIDE.

Before Designing a GUI

Before creating the actual GUI, it is important to decide what it is you want your GUI to do
and how you want it to work. It is helpful to draw your GUI on paper and envision what the
user sees and what actions the user takes.

Starting GUIDE

There are many ways to start GUIDE. You can start GUIDE from the:

e Command line by typing guide
e Start menu by selecting MATLAB > GUIDE (GUI Builder)
e MATLAB File menu by selecting New > GUI

e MATLAB toolbar by clicking the GUIDE button i

However you start GUIDE, it displays the GUIDE Quick Start dialog box shown in the
following figure.

GUIDE Quick Start . =l

Create Mews GUI Open Existing GLI

GUIDEtemplates ~ Preview
<k Blank GUI (Default)

. GUI with Uicontrols

l GUI with Axes and Menu
J} Modal Guestion Dialog

BLANK

[T Bave on startup as] ID:'I.WI:rHI.GUIDE'I.LntitIEd.ﬂg Browse... |
(8] I Cancel | Help |

GUIDE Tools Summary

The GUIDE tools are available from the Layout Editor shown in the figure below. The tools
are called out in the figure and described briefly below.

Align Objects Menu Editor ~ Tab Order Editor M-IFII’lle Editor Property Inspector Object Browser
3

Fie Edk Yew Lapout Took P

D@ b e o aEh G r
! & Salect

4] Push Endon

== Bligar
® Radio Buion
[Check Box
i B Tl [[[
[BtalieTes | Layout Area
[Pap-up Mehu
Component | | 24 Ljemnme [[[
Palette A::'. T Togge Buttan

L [
T Panal
"% Button Group
X Pclive Conirol

Figure Resize Tab

Show Toolbar
Displays the following toolbar in the Layout Editor window.

Tab Order Editor

Menu Editor
Align Objects —\ \

DS /2R | 2BH D% »

M-File Editor —/ /
Property Inspecior

Object Browser

Show Names in Component Palette

When you first open the Layout Editor, the component palette contains only icons. To display
the names of the GUI components, select Preferences from the File menu, check the box next
to Show names in component palette, and click OK.

I =
File Edit Wiew
= | E-General GUIDE Preferences i
J = = | | - Kevboard |
[[#-Fonts ¥ Show names in component paletts ||
~-Colors
- fl-Link ¥ Show File extension in window title
=l | Toolbars
& Command Window I Show File path in window Eitle
~-Command History
[eofr | far | —— [Editor/Debugger ¥ add comments For nevaly generated callback Functions
— Help
=) IS weh
==/l “Current Folder

“ariable Ediror

Workspace

— jouce |

Tirme Series Tools

-Figure Copy Template
~-Compiler

~-Report Generator

----- SystemTest

--Database Toolbox

----- Image Processing

----- Instrument Control

----- Simulink,

----- Simscape

[#-Simulink 30 Animation

----- Sirulink Contral Design

----- Signal Processing Blockset

, ----- Yiden and Image Processing J
4

(o] 4 I iz | Appl Hel
I Tag: fFigurel ance PRty I =P I

I
i

X |l

ke

o
1+

| h Select IT

Push Button L=
= Slider ——— (omponent palette with names & |
@ Radio Button folr | T
[Check Box =3 £

Wl Edit Text Component palette without names s
™1l Static Text [if's

8 |l

=3 Pop-up Menu
£l Listhox

T Taggle Buttan
i{ﬂ Axes

) Panel

TE_I Bution Group
ZX ActiveX Control

Setting the GUI Size

Set the size of the GUI by resizing the grid area in the Layout Editor. Click the lower-right
corner and drag it until the GUI is the desired size. If necessary, make the window larger.

& D Work ' GUIDE untitled.fig } =101l
Fle Edk Wew Layout Took Help

D E| ¢ 2B o | 2R ES% »
& Celzc =

] Push Bution
=n 5lidar
& Fadio Buton
[Chick Box
wir Edit Text

aar] Bratic Teat
3 Pap-up Menu
Sl Listboe

[Togole Buttan
Jpe prvas

R Panal

(lick and drag comer

"%/ Bulton Group .
fo resize

=X Brtived Condrol

Available Components
The component palette at the left side of the Layout Editor contains the components that you
can add to your GUI. You can display it with or without names.

Component Icon | Description

Push Button Push buttons generate an action when clicked. For example, an
OK button might apply settings and close a dialog box. When

you click a push button, it appears depressed; when you release
the mouse button, the push button appears raised.

Toggle Button Toggle buttons generate an action and indicate whether they are
turned on or off. When you click a toggle button, it appears
depressed, showing that it is on. When you release the mouse
button, the toggle button remains depressed until you click it a
second time. When you do so, the button returns to the raised
state, showing that it is off. Use a button group to manage
mutually exclusive toggle buttons.

Radio Button Radio buttons are similar to check boxes, but radio buttons are
typically mutually exclusive within a ngroup of related radio
buttons. That is, when you select one button the previously

9 seleted button is deselected. To activate a radio button, click the
mouse button on the object. The display indicates the state of
the button. Use a button group to manage mutually exclusive
radio buttons.

Check Box o Check boxes can generate an action when checked and indicate
their state as checked or not checked. Check boxes are useful

when providing the user with a number of independent choices,
for example, displaying a toolbar.

Edit Text

Edit text components are fields that enable users to enter or
modify text strings. Use edit text when you want text as input.
Users can enter numbers but you must convert them to their
numeric equivalents.

Static Text

THT

Static text controls display lines of text. Static text is typically
used to label other controls, provide directions to the user, or
indicate values associated with a slider. Users cannot change
static text interactively.

Slider

Sliders accept numeric input within a specified range by
enabling the user to move a sliding bar, which is called a slider
or thumb. Users move the slider by clicking the slider and
dragging it, by clicking in the trough, or by clicking an arrow.
The location of the slider indicates the relative location within
the specified range.

List Box

List boxes display a list of items and enable users to select one
or more items.

Pop-Up Menu

Pop-up menus open to display a list of choices when users click
the arrow.

AXes

Axes enable your GUI to display graphics such as graphs and
images. Like all graphics objects, axes have properties that you
can set to control many aspects of its behavior and appearance.
See “Axes Properties” in the MATLAB Graphics
documentation and commands such as the following for more
information on axes objects: plot, surf, line, bar, polar, pie,
contour, and mesh. See Functions — By Category in the
MATLAB

documentation for a complete list.

Panel

Panels arrange GUI components into groups. By visually
grouping related controls, panels can make the user interface
easier to understand. A panel can have a title and various
borders. Panel children can be user interface controls and axes

T
as well as button groups and other panels. The position of each
component within a panel is interpreted relative to the panel. If
you move the panel, its children move with it and maintain their
positions on the panel.
Button Group - Button groups are like panels but are used to manage exclusive

selection behavior for radio buttons and toggle buttons.

Callbacks: An Overview

After you have layed out your GUI, you need to program its behavior. The code you write
controls how the GUI responds to events such as button clicks, slider movement, menu item
selection, or the creation and deletion of components. This programming takes the form of a
set of functions, called callbacks, for each component and for the GUI figure itself.

What Is a Callback?

A callback is a function that you write and associate with a specific GUI component or with
the GUI figure. It controls GUI or component behavior by performing some action in
response to an event for its component. This kind of programming is often called event-driven
programming. When an event occurs for a component, MATLAB invokes the component’s
callback that is triggered by that event. As an example, suppose a GUI has a button that
triggers the plotting of some data. When the user clicks the button, MATLAB calls the
callback you associated with clicking that button, and the callback, which you have
programmed, then gets the data and plots it. A component can be any control device such as a
push button, list box, or slider. For purposes of programming, it can also be a menu or a
container such as a panel or button group.

M-Files and FIG-Files

By default, the first time you save or run a GUI, GUIDE stores the GUI in two files:

o A FIG-file, with extension .fig, that contains a complete description of the GUI
layout and the GUI components, such as push buttons, axes, panels, menus, and so
on. The FIG-file is a binary file and you cannot modify it except by changing the
layout in GUIDE.

¢ An M-file, with extension .m, that initially contains initialization code and templates
for some callbacks that are needed to control GUI behavior. You must add the
callbacks you write for your GUI components to this file. When you save your GUI
the first time, GUIDE automatically opens the

M-file in your default editor. The FIG-file and the M-file, usually reside in the same

directory. They

correspond to the tasks of laying out and programming the GUI. When you lay out the GUI in
the Layout Editor, your work is stored in the FIG-file. When you program the GUI, your work
is stored in the corresponding M-file.

GUI M-File Structure

The GUI M-file that GUIDE generates is a function file. The name of the main function is the
same as the name of the M-file. For example, if the name of the M-file is mygui.m, then the
name of the main function is mygui. Each callback in the file is a subfunction of the main
function. When GUIDE generates an M-file, it automatically includes templates for the most
commonly used callbacks for each component. The M-file also contains initialization code, as
well as an opening function callback and an output function callback. You must add code to
the component callbacks for your GUI to work as you want. You may also want to add code
to the opening function callback and the output function callback. The major sections of the
GUI M-file are ordered as shown in the following table.

Section Description

Comments . L :
Displayed at the command line in response to the help command. Edit
these as necessary for your GUI.

Initialization GUIDE initialization tasks. Do not edit this code.

Opening function | Performs your initialization tasks before the user has access to the

GUL.

Output function | Returns outputs to the MATLAB command line after the opening
function returns control and before control returns to the command
line.

Componentand | Control the behavior of the GUI figure and of individual components.
figure callbacks | MATLAB calls a callback in response to a particular event for a
component or for the figure itself.

Utility/helper Perform miscellaneous functions not directly associated with an event
functions for the figure or a component.

Examplel: Making Time shift and Time scale .

This GUI example plot a function f(t)=t*[u(t+1)-u(t-1)]+u(t-1)-u(t-3) and plot a time shifted
,time scaled version of f(t) which has the general form cf(at+b). The user can input variables
values of a,b and c. The original function appears on GUI axis1 and the other on GUI axis2.

GUI-building techniques illustrated in this example include:

« Controlling which axes object is the target for plotting commands.
o Using edit text controls to read numeric input and MATLAB expressions.
« Converting user inputs from strings to numbers and validating the result.

Designing steps

1-Put the following component in the figure .

i =l=lx]

Flle Edit Wew Layout Tools Help

EEFIEE L IR

I M Select | ‘ | ‘ | ‘
Static Text
Push Button
e Slider
® Radio Button Static Text
A Check Box axes] Edit Test
[Edit Text
THT Stabic Text
‘op-up Menu Static Text
[
=l Listbox Fdt Text
Toggle Button
[E Table
I es Static Text
T Static Text
| 2 Pane! Edit Text
%] Button Group | | | | | |
X ActiveX Control
Static Text
axes? —L1
Edit Text
Push Button

Taq: figurel Current Paint: [444, 1] Position: [520, 200, 814, 600]

2. Change the name of the (static text) by double clicking on each one as follow

=1eix|

Fle Edit Wiew Layout Tools Help
EEFITEL R EEIEERE
T T T T

I & Select CInsp _lglx| 1
Push Button
= Slider Fonthame M35 Sans Serif &=
® RadioButton ||| Fontsis 8.0 y{ S 7
CheckBox FontLnits I x| Bt Tet
W Fontweight el =
ForegroundColor
i Static Text Handlevisibility .
=3 Pop-up Menu I e Static Text
=l Listbosx Horizontalalignment Eclit Test
Toaagle Button | Interruptible :
I Table KeyPressFon 1
W | ListboxTop Static Text
_— Max =I
| % Pane! i 1] I Eelit Text
BeutonGrove || | = pasiion ox cancel_|
=X Activex Conkral SelectionHighlight
- _ SliderStep [0.01 0.1] Static Text
2 [Static Text & I I
Style text - Edt Tezt
——| Taa text3 o |
TooltipString @ ‘
LIContextMeny <Hene: - Push Buitan

Tag: texts Current Point: [453, 365] Position: [650, 498, 101, 19]

=¥) QR | |[El - mepector: uicontrol 8| untitled.fig (] | Hel @) | (MATLAB 7.0.0 (R2009h o\ | Doct - icrosaft word (1) [fun 4

3-change the size ,colour and weight of the text as follow

("Inspector: uicontrol (kex

: : "
:[81] =1 =2

=100 %]

BuktonCowvwnFon
CDaka
Callback.

4|4

Clipping
CreateFon
DeleteFon
Enable
Extent

L

Fontangle
FonkMarne
FonkSize

FonktUniks

Handleisihility

HitTesk

Harizonkaltlignment

Interruptible

kevPressFon @
ListboxTop

Max

[0x0 double arrav]

an

an
[0D015.4 1.923]
narmal

M3 Sans Serif

poinks

Fant'weight Crorma3)
FaregroundCalor £y o

on
on
center

an

1.0
1.0

% %

0% %

4

% %

4- The final design will be as follow ,

AR

i

Fle Edit Yiew Layout Tools Help

=0fx]

AEL TR L

FERIL

Rk Select

Push Button
a=m Slider

@ Radio Button
[A Check Box
B Edit Text

T Static Text
(= Pop-up Menu
E] Listbosx
Toggle Button
E Table

kﬂ Axes

/%] Panel

' f(t)=t*|[u(t+1)‘-u(t-1)]|+u(t-1)lu(t3) |
| | | | | |

axes]

a

1

bI

1}

I

c

1

T T 1T T 1 I
¢flat+b) t=iiinc:j
=50

"] Buttan Group

=X ActiveX Contral

Taa: figurel

=1 s Al =

5- push on the green arrow (Run) and save the design .

08

06

02

FiO=t"[u(t+1)-ult-1)]+ ut-1)-u(t-3)

Current Poink: [208, 1961

06

0.4r

0.1

1
0.2 0.3 0.4 0.5 05 o7 0.8
cflat+b)

09

0.1

0.z 0.3 0.4 0.5 0.6 0.7 0.8

0.9

Position: [520, 223, 751, 5771
I =

cea ke

_ o=l

'Y

6-Right click on the Plot button and select view callback and choose callback .

Bl = =T -
T File Edit Wiew Layout Tools Help
BENTTEL EEEEEEEDE | @
i N oot T T T T 1 T |-
] ft)=tu(t+ 1)-ut-1)Fult-1)-uit3)
Push Button I I \ 1 I | B
! e Slider |
@® Radio Button i ETgl
A Check Box axesi m
a7 Ecit Text a
) Static Text [.
Pop-up Menu b
Listboi: I o :
Togale Button C
1
I T |
ind aves c“flat+b) tizine:j
] 5015
[I I \ I I \ 7
|E Button Group | —
=X Activex Control Wll :I’
= 0 o
axes2 cut ey
Copy Chrl+C
Paste Chrly
Clear
Duplicate Chrl+D
Ering ko Fronk Chrl+F
Send to Back Chrl+B
CreateFen
- ©Object Brawser
eleteFon
I-file: Editar
ButtonDovnFen
Tag: plok Currenk Poink: [637, 188] Pc Property Inspector
= Push Buttom Property Editar, .
~ I T T

7-The M file will open as follow

Editor - C:\Documents and Settings* Abdo' My Documenkts
File Edit Text Go Cell Tools Debug Deskbop ‘Wwindow Help

-1o] =l

m|?|x

Dol .

2B 9 ™o |ew k-8B RE®] O <]

é"%l:%|—|1.o R x | o8 o | @

137 ZD

135 % Hint: edit controls usually have a white bhackground on Windows.

139 £ See ISFC and COMFPFUTEER.

140 — if ispo ££ disegual (get (hobject, ' BackgroundColor') , get (0, 'defsulcd

14l — set (hobject, ' BackgroundColor ' , 'white') ;

142 — end

143

144

145 % ——— Executes on button press in plot.

146 function plot Callback(k L, F » handles=s)

147 % hibject handle to plot (sese GCEOD)

145 % eventdata reserved — to bhe defined in & future version of MATLI

149 %z handle=s structure with handles and user data [(see GUIDALATL)

150 % Get user input from GUI J

151 — axes (handles.axes1l)

152 — a = strZzdouble(get (handle=s.a, ' String' 1) :

153 — b = ztrZdouble (get (handle=s. b, 'String' 1)1 :

154 — o = gtriZdoukle(get (handles.c, ' String'il);

155 — t = eval (get (handles.t,'String' 1) -

| RY I _>l_I
exp3_GLUi f plak_Callback Lm 146 Cal 1 |O'-p'R

'Y

8-Write the following code under the Plot_callback function

axes (handles.axesl)
= str2double (get (handles.a, 'String'));
= str2double (get (handles.b, 'String'));

°ct Q O W

= eval ((get (handles.t, 'String')));
$plot the first function
f=inline (' ((t>=1)&(t<3))"','t");
plot (t, £ (t))

ylim ([min(f(t))-.2 max(f(t))+.2])
grid on

%plot the seconed function

fl=c.*f (a*t+b);

axes (handles.axes?)

plot(t, £1l)

ylim ([min(fl)-.2 max(fl)+.2])
grid on

= str2double (get (handles.c, 'String'));

9-Run and enjoy

flt)=t"[u(t+1)-uit-1)]+ult-1)-ut-3)

I
b
I
——

t=iiinc:j
-5:.01:5

=012

V¢

Example 2: Design programmatically

| MainFigure = figure('Color',[0.1 0.2 0.6], 'Name', 'Demo design)

=10

Ele Edit Wew Insert Tools Deskkop Window Help

Odde | [R AT EL-|2|0Han

Try this (controlsuite in the help)

)} controlsuite

— Buttons - — Action Panel
Push Button | Aotlo n
_ = |
Toggle Button
[~ Check Box
— Button Group—————————— — Edit Boxes
* Top Radio button Eclit Text
= Middle Radio hutton Tioine ;|
" Bottom Radio button Eit
Text
— Listhaox
=
— Plat Cantrols
4 [
Icool - I

— Membrane data table and plot

[R B L R R PN)

=101 x|

\o

Exercise

Building GUI interfaces in Matlab

We will build a simple calculator to do that.

Start gui builder by typing
>>guide

GUIDE Quick Start

Create Mew GU| I Open Existing GUI |

GUIDE templates: - Prewieuw
4 Blank GUI (Default)

41 GUl with Uicantrols

{L SUl with Axes and Menu
ik Modal Question Dialog

BLANK

_| Save on startup as: |fhome/esazonov/untitled.fig Browse... |
K I Cancel | Help I

1: insert the following component and rename it as in the figure

ol

i =101 %]
File Edit ‘iew Lawouk Tools Help
AE IR R - EIEERE
3
am
oz THT
[eefr | [Tt
Static text

.T_
! panel 0 1 2 3 T

4 5 B/L

8 9 o !

+ - M

sin cos tan Pi

- () clear

-«

Tag: figurel

Current Poink: [349, 315]

Position: [520, 281, 351, 519]

2-Rename the tage of each push button such that it indicate it in order to make thing
more easy for example (0) called its tag as (zero) and so on ...

ARY

3-under the callback of zero button write this code

% —--—- Executes on button press in zero.
function zero Callback (hObject, eventdata, handles)
% hObject handle to zero (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
handles structure with handles and user data (see GUIDATA)

\O o\

oo pd) dx oy 0l

U Jens wode> by L8lsl abe cwsSOll Al awae Y S
OLDstring=get (handles.textl, 'string');% ¥ |da adsiws
NI O N W P S S Sy W €

NEWstring=('0"); aodill gaidl zo oylghl ol dl dux]l gaidl |ia

textstring=strcat (OLDstring, NEWstring);
Aol CwsSS 8 ol pad g poa 81 el mogy oY A pg i

set (handles.textl, 'string', textstring); ,ghy sdJl oY1 |l
S s

Tray to put this code instead of the above and see what happen

zero=get (handles. zero, 'string')
set (handles. textl, 'string',b zero)

Note the name of the static text tag is (textl)

4- apply the same code for all the button except the (=) and clear button.just change
the ('0") to ('1"), ('2"), ('3"), ('4") and so on

5-for the sin ,cos ,and tan it consider the angle in radian and to convert it to degree
you must multiply by (pi/180)

So the code is

textstring=get (handles.textl, 'string');
textstring=strcat (textstring, 'sin(pi/180*");
set (handles.textl, 'string', textstring);

6 -For the clear button write this code

set (handles.textl, 'String', ' Yy

YA

7-For the equal button write this code

textstring=get (handles.textl, 'string"')
textstring=eval (textstring)
set (handles.textl, "'string', textstring);

sin{pif180~90)

sin cos | tan Pi

clear

||
—
"

=101]

Any addition to the calculator will be considered

V4

