

Experiment 5 : GUI & SIMULINK

2

GUI

What Is a GUI?

A graphical user interface (GUI) is a graphical display that contains devices, or components,

that enable a user to perform interactive tasks. To perform these tasks, the user of the GUI

does not have to create a script or type commands at the command line. Often, the user does

not have to know the details of the task at hand. The GUI components can be menus, toolbars,

push buttons, radio buttons, list boxes, and sliders. In MATLAB, a GUI can also display data

in tabular form or as plots, and can group related components.

How Does a GUI Work?

Each component, and the GUI itself, is associated with one or more user-written routines

known as callbacks. The execution of each callback is triggered by a particular user action

such as a button push, mouse click, selection of a menu item, or the cursor passing over a

component. This kind of programming is often referred to as event-driven programming. In

event-driven programming, callback execution is asynchronous, controlled by events external

to the software. In the case of MATLAB GUIs, these events usually take the form of user

interactions with the GUI.

Ways to Build MATLAB GUIs

A MATLAB GUI is a figure window to which you add user-operated controls. You can

select, size, and position these components as you like. Using callbacks you can make the

components do what you want when the user clicks or manipulates them with keystrokes.

You can build MATLAB GUIs in two ways:

 Use GUIDE (GUI Development Environment), an interactive GUI construction kit.

 Create M-files that generate GUIs as functions or scripts (programmatic GUI

construction).

The first approach starts with a figure that you populate with components from within a

graphic layout editor. GUIDE creates an associated M-file containing callbacks for the GUI

and its components. GUIDE saves both the figure (as a FIG-file) and the M-file. Opening

either one also opens the other to run the GUI.

In the second, programmatic, GUI-building approach, you code an M-file that defines all

component properties and behaviors; when a user executes the M-file, it creates a figure,

populates it with components, and handles user interactions. The figure is not normally saved

between sessions because the M-file creates a new one each time it runs.

As a result, the M-files of the two approaches look different. Programmatic M-files are

generally longer, because they explicitly define every property of the figure and its controls,

as well as the callbacks. GUIDE GUIs define most of the properties within the figure itself.

They store the definitions in its FIG-file rather than in its M-file. The M-file contains

callbacks and other functions that initialize the GUI when it opens.

MATLAB software also provides functions that simplify the creation of standard dialog

boxes, for example to issue warnings or to open and save files. The GUI-building technique

3

you choose depends on your experience, your preferences, and the kind of application you

need the GUI to operate.

You can combine the two approaches to some degree. You can create a GUI with GUIDE and

then modify it programmatically. However, you cannot create a GUI programmatically and

later modify it with GUIDE.

Before Designing a GUI
Before creating the actual GUI, it is important to decide what it is you want your GUI to do

and how you want it to work. It is helpful to draw your GUI on paper and envision what the

user sees and what actions the user takes.

Starting GUIDE

There are many ways to start GUIDE. You can start GUIDE from the:

 Command line by typing guide

 Start menu by selecting MATLAB > GUIDE (GUI Builder)

 MATLAB File menu by selecting New > GUI

 MATLAB toolbar by clicking the GUIDE button

However you start GUIDE, it displays the GUIDE Quick Start dialog box shown in the

following figure.

4

GUIDE Tools Summary

The GUIDE tools are available from the Layout Editor shown in the figure below. The tools

are called out in the figure and described briefly below.

Show Toolbar
Displays the following toolbar in the Layout Editor window.

5

Show Names in Component Palette

When you first open the Layout Editor, the component palette contains only icons. To display

the names of the GUI components, select Preferences from the File menu, check the box next

to Show names in component palette, and click OK.

6

Setting the GUI Size

Set the size of the GUI by resizing the grid area in the Layout Editor. Click the lower-right

corner and drag it until the GUI is the desired size. If necessary, make the window larger.

Available Components
The component palette at the left side of the Layout Editor contains the components that you

can add to your GUI. You can display it with or without names.

Component Icon Description
Push Button

Push buttons generate an action when clicked. For example, an

OK button might apply settings and close a dialog box. When

you click a push button, it appears depressed; when you release

the mouse button, the push button appears raised.
Toggle Button

Toggle buttons generate an action and indicate whether they are

turned on or off. When you click a toggle button, it appears

depressed, showing that it is on. When you release the mouse

button, the toggle button remains depressed until you click it a

second time. When you do so, the button returns to the raised

state, showing that it is off. Use a button group to manage

mutually exclusive toggle buttons.
Radio Button

Radio buttons are similar to check boxes, but radio buttons are

typically mutually exclusive within a ngroup of related radio

buttons. That is, when you select one button the previously

seleted button is deselected. To activate a radio button, click the

mouse button on the object. The display indicates the state of

the button. Use a button group to manage mutually exclusive

radio buttons.
Check Box

Check boxes can generate an action when checked and indicate

their state as checked or not checked. Check boxes are useful

7

when providing the user with a number of independent choices,

for example, displaying a toolbar.
Edit Text

Edit text components are fields that enable users to enter or

modify text strings. Use edit text when you want text as input.

Users can enter numbers but you must convert them to their

numeric equivalents.

Static Text

Static text controls display lines of text. Static text is typically

used to label other controls, provide directions to the user, or

indicate values associated with a slider. Users cannot change

static text interactively.

Slider

Sliders accept numeric input within a specified range by

enabling the user to move a sliding bar, which is called a slider

or thumb. Users move the slider by clicking the slider and

dragging it, by clicking in the trough, or by clicking an arrow.

The location of the slider indicates the relative location within

the specified range.

List Box

List boxes display a list of items and enable users to select one

or more items.

Pop-Up Menu

Pop-up menus open to display a list of choices when users click

the arrow.

Axes

Axes enable your GUI to display graphics such as graphs and

images. Like all graphics objects, axes have properties that you

can set to control many aspects of its behavior and appearance.

See “Axes Properties” in the MATLAB Graphics

documentation and commands such as the following for more

information on axes objects: plot, surf, line, bar, polar, pie,

contour, and mesh. See Functions — By Category in the

MATLAB

documentation for a complete list.
Panel

Panels arrange GUI components into groups. By visually

grouping related controls, panels can make the user interface

easier to understand. A panel can have a title and various

borders. Panel children can be user interface controls and axes

as well as button groups and other panels. The position of each

component within a panel is interpreted relative to the panel. If

you move the panel, its children move with it and maintain their

positions on the panel.
Button Group

Button groups are like panels but are used to manage exclusive

selection behavior for radio buttons and toggle buttons.

8

Callbacks: An Overview

After you have layed out your GUI, you need to program its behavior. The code you write

controls how the GUI responds to events such as button clicks, slider movement, menu item

selection, or the creation and deletion of components. This programming takes the form of a

set of functions, called callbacks, for each component and for the GUI figure itself.

What Is a Callback?

A callback is a function that you write and associate with a specific GUI component or with

the GUI figure. It controls GUI or component behavior by performing some action in

response to an event for its component. This kind of programming is often called event-driven

programming. When an event occurs for a component, MATLAB invokes the component’s

callback that is triggered by that event. As an example, suppose a GUI has a button that

triggers the plotting of some data. When the user clicks the button, MATLAB calls the

callback you associated with clicking that button, and the callback, which you have

programmed, then gets the data and plots it. A component can be any control device such as a

push button, list box, or slider. For purposes of programming, it can also be a menu or a

container such as a panel or button group.

M-Files and FIG-Files

By default, the first time you save or run a GUI, GUIDE stores the GUI in two files:

 A FIG-file, with extension .fig, that contains a complete description of the GUI

layout and the GUI components, such as push buttons, axes, panels, menus, and so

on. The FIG-file is a binary file and you cannot modify it except by changing the

layout in GUIDE.

 An M-file, with extension .m, that initially contains initialization code and templates

for some callbacks that are needed to control GUI behavior. You must add the

callbacks you write for your GUI components to this file. When you save your GUI

the first time, GUIDE automatically opens the

M-file in your default editor. The FIG-file and the M-file, usually reside in the same

directory. They

correspond to the tasks of laying out and programming the GUI. When you lay out the GUI in

the Layout Editor, your work is stored in the FIG-file. When you program the GUI, your work

is stored in the corresponding M-file.

GUI M-File Structure

The GUI M-file that GUIDE generates is a function file. The name of the main function is the

same as the name of the M-file. For example, if the name of the M-file is mygui.m, then the

name of the main function is mygui. Each callback in the file is a subfunction of the main

function. When GUIDE generates an M-file, it automatically includes templates for the most

commonly used callbacks for each component. The M-file also contains initialization code, as

well as an opening function callback and an output function callback. You must add code to

the component callbacks for your GUI to work as you want. You may also want to add code

to the opening function callback and the output function callback. The major sections of the

GUI M-file are ordered as shown in the following table.

9

Section Description

Comments
Displayed at the command line in response to the help command. Edit

these as necessary for your GUI.

Initialization GUIDE initialization tasks. Do not edit this code.

Opening function Performs your initialization tasks before the user has access to the

GUI.

Output function Returns outputs to the MATLAB command line after the opening

function returns control and before control returns to the command

line.

Component and

figure callbacks

Control the behavior of the GUI figure and of individual components.

MATLAB calls a callback in response to a particular event for a

component or for the figure itself.

Utility/helper

functions

Perform miscellaneous functions not directly associated with an event

for the figure or a component.

Example1: Making Time shift and Time scale .

This GUI example plot a function f(t)=t*[u(t+1)-u(t-1)]+u(t-1)-u(t-3) and plot a time shifted

,time scaled version of f(t) which has the general form cf(at+b). The user can input variables

values of a,b and c. The original function appears on GUI axis1 and the other on GUI axis2.

GUI-building techniques illustrated in this example include:

 Controlling which axes object is the target for plotting commands.

 Using edit text controls to read numeric input and MATLAB expressions.

 Converting user inputs from strings to numbers and validating the result.

01

Designing steps

1-Put the following component in the figure .

2. Change the name of the (static text) by double clicking on each one as follow

1

2

3

00

3-change the size ,colour and weight of the text as follow

4- The final design will be as follow ,

02

5- push on the green arrow (Run) and save the design .

03

6-Right click on the Plot button and select view callback and choose callback .

7-The M file will open as follow

04

8-Write the following code under the Plot_callback function

axes(handles.axes1)

a = str2double(get(handles.a,'String'));

b = str2double(get(handles.b,'String'));

c = str2double(get(handles.c,'String'));

t = eval((get(handles.t,'String')));

%plot the first function

f=inline('((t>=1)&(t<3))','t');

plot(t,f(t))

ylim ([min(f(t))-.2 max(f(t))+.2])

grid on

%plot the seconed function

f1=c.*f(a*t+b);

axes(handles.axes2)

plot(t,f1)

ylim ([min(f1)-.2 max(f1)+.2])

grid on

9-Run and enjoy

05

Example 2: Design programmatically

MainFigure = figure('Color',[0.1 0.2 0.6], 'Name', 'Demo design')

Try this (controlsuite in the help)

06

Exercise

Building GUI interfaces in Matlab

We will build a simple calculator to do that.

Start gui builder by typing

>>guide

07

1: insert the following component and rename it as in the figure

2-Rename the tage of each push button such that it indicate it in order to make thing

more easy for example (0) called its tag as (zero) and so on ...

Static text

Panel

Push

button

08

3-under the callback of zero button write this code

% --- Executes on button press in zero.
function zero_Callback(hObject, eventdata, handles)
% hObject handle to zero (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

 هذه برمجة للرقم صفر%

نعمل التالي حتي لا تمسح شاشة التكست عند اضافة رقم جديد
OLDstring=get(handles.text1,'string');% نستخدم هذا الامر

قديملا لتخزين محتوي التكست

NEWstring=('0'); هذا النص الجديد المراد اظهاره مع النص القديم

textstring=strcat(OLDstring, NEWstring);

لحالي في تكست واحد ا نصقديم والال نصيقوم هذا الامر بوضع ال

set(handles.text1,'string',textstring); هذا الامر الذي يظهر

 النص لكلي

Tray to put this code instead of the above and see what happen

zero=get(handles.zero,'string')
set(handles.text1,'string',zero)

Note the name of the static text tag is (text1)

4- apply the same code for all the button except the (=) and clear button.just change

the ('0') to ('1') , ('2'), ('3'), ('4') and so on

5-for the sin ,cos ,and tan it consider the angle in radian and to convert it to degree

you must multiply by (pi/180)

So the code is

textstring=get(handles.text1,'string');
textstring=strcat(textstring,'sin(pi/180*');
set(handles.text1,'string',textstring);

6 -For the clear button write this code

set(handles.text1,'String',' ') ;

09

7-For the equal button write this code

textstring=get(handles.text1,'string')

textstring=eval(textstring)

set(handles.text1,'string',textstring);

Any addition to the calculator will be considered

