
Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	1	

Department	of	Electrical	&	Electronic	Engineering	
Imperial	College	London	

2nd	Year	Laboratory	

Experiment	VERI:	FPGA	Design	with	Verilog	(Part	2)	
(webpage:	www.ee.ic.ac.uk/pcheung/teaching/E2_Experiment	/)		

PART	2	–	Counters	and	FSMs	

1.0		Learning	Outcomes	

Part	2	of	VERI	teaches	you:	

• how	to	design	different	types	of	counters	and	timers;	
• how	to	use	the	Modelsim	simulator	to	verify	the	correct	function	of	your	design	and	

the	use	of	testbenches;	
• how	 to	 predict	 the	maximum	 operating	 clock	 frequency	 of	 your	 circuit	 sequential	

circuits;	
• how	 to	 design	 some	 useful	 timing	 and	 counting	 components	 for	 later	 part	 of	

Experiment	VERI.	

1.1	 Experiment	5:	Designing	a	Counter	

Step	1:	Create	the	project	for	an	8-bit	counter	

• Create	in	your	directory	a	folder	named	part_2.			
• Click	 file>New	 Project	Wizard,	 and	 create	 project	ex5	 and	 top	 level	 file	ex5_top.		

Then	click	Finish.		
• Create	 the	 Verilog	 file:	 “counter_8.v”	 which	 contains	 your	 design	 in	 Verilog.	 	 I	

suggest	you	use	convention	of	using	“_n”	to	indicate	the	number	of	bits	in	a	module.	
• Click	File	>	New	…		and	select	Verilog	as	the	new	file.		An	edit	window	will	appear.	

Step	2:	Enter	the	Verilog	specification	of	the	8-bit	binary	counter	

• Enter	the	Verilog	module	as	shown	below	(next	page).	 	Although	you	can	miss	out	
the	 comments,	 I	 recommend	 that	 you	 to	 retain	 them	 because	 the	 code	 is	
deliberately	verbose	in	order	to	explain	the	meaning	of	the	Verilog	language.			

• The	 line	 `timescale	1ns	 /	 100ps	 tells	 the	 system	to	use	1	ns	as	 the	unit	 time	step	
with	a	time	resolution	of	100ps.	

• Make	sure	that	you	fully	understand	this	Verilog	code	before	proceeding	to	the	next	
step.		Save	the	file	as	counter_8.v.		(I	recommend	that	you	use	module	name	as	the	
file	name	to	avoid	confusion.)	

Step	3:	Enter	the	Verilog	specification	of	the	8-bit	binary	counter	

• While	is	opened	in	the	Editor	window,	click	 	Project	>	Add	Current	File	to	Project,	
then	click	Project	>	Set	as	Top	Level	Entity.	 	This	command	tells	Quartus	that	this	
module	is	the	top-level	of	your	design.			

Normally	 we	 use	 …_top.v	 as	 the	 top-level	 module,	 which	 connects	 to	
physical	 pins	 of	 the	 FPGA.	 	 However,	 for	 this	 experiment,	 the	 counter	
module	 is	 verified	 through	 simulation.	 	 So	 we	 don’t	 need	 to	 create	 pin	
connects.		The	“Set	as	Top	Level	Entity”	is	very	useful	if	you	want	to	use	the	
simulator	to	verify	different	modules	in	a	large	design.	You	can	move	up	and	
down	the	module	hierarchy	and	verify	them	from	the	lowest	level	up.	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	2	

• Click	Processing	>	Analyze	Current	File.		This	is	the	fastest	way	to	check	if	this	.v	file	
has	any	syntax	error.	

• Then	Click	Processing	>	Start	>	Start	Analysis	and	Synthesis.	This	takes	the	current	
Verilog	module	 (and	all	other	modules	that	 it	uses	 if	any),	and	produce	a	register-
level	model	of	your	design	ready	for	register-transfer	level	(RTL)	simulation.		Unlike	
full	compilation,	this	step	does	not	require	pin	assignment	and	other	device	specific	
steps,	but	is	sufficient	for	you	to	simulate	the	circuit	as	specified	in	Verilog.		

Verilog	code:	8-bit	counter		
(Note	that	the	first	character	on	line	1	before	

‘timescale’	is	a	backquote	`	-	not	easy	to	find	on	many	
keyboards!)	

	

Step	4:	Simulate	the	binary	counter	

• Click	 Tools	 >	 Run	 Simulation	 Tools	 >	
RTL	 Simulation.	 	 This	 command	 starts	
up	Modelsim	simulator	programme	as	a	
separate	 process.	 	 Now	 you	 have	
entered	the	Modelsim	environment.			

• Click	 	 Simulate	 >	 Start	 Simulation	 ….			
Then	select	work	->	counter_8	from	the	
popup	window.	 	 This	 tells	Modelsim	 to	
simulate	this	module.	

• Note	 that	 Modelsim	 provides	 several	 windowpanes.	 The	 most	 important	 is	 the	
Transcript	pane	–	 this	 is	where	you	enter	 commands1	to	drive	 the	 simulator.	 	 The	
wave	pane	is	where	results	are	displayed	as	waveforms.		You	are	recommended	to	
un-dock	this	pane	as	shown	below	so	that	it	is	in	a	separate	window	and	spans	the	
whole	width	of	your	monitor.			Finally,	there	is	the	object	pane,	which	shows	all	the	
signals	(objects)	of	your	design.	

	

																																																								
1	Modelsim	uses	a	scripting	language	known	as	Tcl	to	control	how	it	is	driven.		You	only	need	to	learn	
Tcl	if	you	want	to	do	advance	stuff	with	Modelsim	for	your	personal	interest.	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	3	

Step	 5:	 Add	 waveforms	 to	 the	 Wave	 window	 and	 drive	
signals	

• In	the	transcript	window,	enter	two	commands:	“add	
wave	 clock	 enable”	 and	 “add	 wave	 –hexadecimal	
count”.	 	 This	will	 add	 these	 signals	 as	waveforms	 in	
the	 wave	 pane	 and	 show	 count	 values	 as	
hexadecimal.	

• Now	we	want	to	drive	clock	with	a	50MHz	symmetrical	signal.		To	do	this,	enter:	
• Enter:	“force	enable	1”	to	enable	the	counter.	
• Enter:	“run	100ns”	to	run	the	simulator	for	5	clock	cycles	(5	x	20ns	=	100ns).	
• You	will	 see	 the	waveform	pane	 showing	 the	 counter	 counting	 from	0	 to	 5.	Now	

force	enable	low	and	run	for	another	100ns.	Then	high	again	and	run	for	100ns.			

	

• Click	on	the	waveform	put	a	cursor	at	a	specific	time	for	inspecting	the	signal	values.		
The	 icons	 above	 the	waveforms	 (as	 labeled)	 allow	 you	 to	 zoom	 in	 and	out	 of	 the	
waveform.		Try	this	yourself.		

	 	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	4	

Step	6:	Create	a	Testbench	as	a	DO-file	

• Interactively	 specifying	 the	 driving	
signals	 is	 very	 tedious	 and	 prone	 to	
error.	 	 Therefore	 the	preferred	method	
is	to	create	a	“do”	file	which	is	a	text	file	
containing	a	sequence	of	commands	(as	
you	 have	 previously	 entered	 in	 the	
transcript	window).		

• Click	 	 File	 >	 new	 >	 source	 	 and	 select	
new	“do”	file.		Then	enter	the	command	
lines	as	shown	on	the	right.	 	 	Then	save	
this	as	“tb_counter.do”.			

• Delete	all	signals	from	the	wave	window,	and	enter	command	
vsim>	restart	
vsim	>	do	./tb_counter.do	
	

• This	 should	 provide	 exactly	 the	 same	 waveform	 results	 as	 in	 step	 5.	 	 However,	
the	 .do	 file	 can	 be	 reused	 and	 modified	 far	 easier	 than	 typing	 them	 into	 the	
transcript	window.		It	acts	as	a	simple	form	of	a	test-harness	(or	testbench)	for	your	
design.	 	 Generally	 speaking,	 you	 must	 produce	 testbenches	 for	 all	 your	 designs	
instead	of	using	interactive	means	to	test	your	circuit.		Not	only	because	this	saves	
time,	 it	 also	allows	you	 to	 change	 the	 code	and	verify	 its	 correctness	 in	 the	 same	
way	for	each	version	of	your	design.	

Step	7:	Single	stepping	

• Modelsim	is	very	powerful.	You	can	use	it	to	debug	your	Verilog	design	almost	like	
software.		However,	do	remember	that	we	are	dealing	with	a	hardware	description	
that	operates	in	parallel.	 	 In	contrast,	software	codes	are	generally	procedural	and	
operate	sequentially.		

• Try	the	vsim>	step	command	or	click	on	the	step-command	pane	 	
to	watch	how	you	can	step	through	your	Verilog	code.	 	Signal	values	 in	the	object		
and	the	wave	windows	are	updated	accordingly.	

• Modelsim	has	many	useful	features	to	help	you	debug	your	design.		Details	of	all	the	
commands	can	be	found	in	the	Modelsim	Reference	Manual.	This	is	easily	available	
under		Help	>	PDF	Documentations	>	Reference	Manual.	Beware	that	this	manual	
is	very	thick!	DO	NOT	print	this	out.	

2.0			Experiment	6:	Implementing	a	16-bit	counter	on	DE1	

In	this	part	of	the	experiment,	you	will	test	your	counter	design	on	the	DE1	board.		You	will	
also	learn	how	to	find	the	maximum	clock	frequency	that	your	design	will	work	correctly.	

Step	1:	 	Create	a	new	project	ex6,	and	copy	to	this	directly	your	files	counter_8.v.	Modify	
counter_8.v	to	counter_16.v	and	make	it	a	16-bit	counter.	Furthermore,	add	a	reset	input	
to	reset	the	count	value	to	zero	synchronously	to	the	clock.		Download	from	the	experiment	
webpage	the	component	bin2bcd_16.v,	a	module	I	have	designed	to	convert	a	16-bit	binary	
number	 to	 5	 BCD	digits.	 You	will	 also	 need	 the	 add3_ge5.v	module.	 Put	 these	module	 in	
the		../mylib	folder,	which	should	also	contained	the	hex_to_7seg.v	you	designed	in	Part	1.	

Step	2:		Create	a	top-level	module	ex6_top.v	 in	Verilog	to	specify	the	circuit	shown	below.		
Make	sure	that	you	have	added	all	the	relevant	Verilog	modules	to	the	project	using	Project	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	5	

>	 Add/Remove	 Files	 in	 Project:	 counter_16.v,	 ex6_top.v	 and	 finally	 add	 hex_to_7seg.v,	
add3_ge5.v	 and	 bin2bcd_16.v	 from	 your	 library	 folder	 ../mylib/.	 Go	 to	 the	 ex6_top.v	
window	and	set	this	file	as	your	top-level	module.	

	

Step	3:		Use		Processing	>	Analyze	Current	File	check	your	newly	create	Verilog	files.	This	is	
the	quickest	way	to	 find	 the	basic	syntax	errors	 in	your	Verilog	code.	 	Once	all	 the	simple	
errors	are	fixed,	use	Processing	>	Start	Analysis	and	Elaboration	to	perform	fuller	check	of	
the	 “ex6_top.v”	 to	make	 sure	 that	 files	 are	 consistent	 and	 correct.	 	 There	 is	 no	 need	 to	
simulate	this	circuit.	

Step	4:	 	Selecting	 the	FPGA	Device	–	Click	Assignments	>	Device….	and	select	the	correct	
Cyclone	V	FPGA:	5CSEMA5F31C6.	

Step	5:	Pin	Assignment	–	Open	the	ex6_top.qsf	file.		Examine	its	content.		You	will	find	that	
no	pins	are	being	assigned	yet.		Insert	into	this	file	all	the	pin	assignments.		The	easiest	way	
to	do	this	is	click	on:	Edit	>	Insert	file	..		then	select	../pin_assignment.txt	(you	should	have	
downloaded	this	file	from	the	Experiment	webpage).		Note	that	you	are	currently	not	using	
all	 the	pins	assigned	 in	 the	pin_assignment.txt	 file.	 	Don’t	worry.	This	will	only	produce	a	
few	more	warning	messages.		Full	compilation	can	still	go	ahead	without	errors.		

Step	6:	 	 Set	 clock	 frequency	–	Create	a	new	file	“ex6_top.sdc”2	which	should	contain	one	
single	line:	

create_clock	-name	"CLOCK_50"	-period	20.000ns	[get_ports	{CLOCK_50}]	

With	this,	Quartus	will	know	that	the	signal	CLOCK_50	is	a	50	
MHz	clock.	

Step	 7:	 Full	 Compilation	 –	 Click:	 	 Processing	 >	 Start	
Compilation.	 	 This	 will	 go	 through	 the	 entire	 compilation	
process.		Examine	the	Tasks	window	on	the	left	and	see	all	the	
steps	being	taken	in	order	to	generate	the	final	bit-stream.	

Step	 8:	 Maximum	 clock	 frequency	 –	 As	 part	 of	 the	
compilation	 process,	 TimeQuest	 timing	 analyzer	 is	 used	 to	
predict	 various	 timing	 information.	 	 In	 the	 “Compilation	
Report”	 window,	 you	 should	 see	 a	 list	 of	 reports	 resulting	
from	 the	 compilation.	 Double-click	 TimeQuest	 Timing	
Analyzer	 entry,	 and	 you	 should	 see	 a	 list	 similar	 to	 the	 one	

																																																								
2	Synopsis	Delay	Constraint	(.sdc)	files	are	standard	formatted	files	introduced	by	Synopsis,	a	well-
known	company	specializing	on	IC	design	CAD	tools.	With	this,	a	designer	can	specify	various	timing	
constraints	for	the	CAD	tools	the	check	against.		Here	we	are	only	using	this	to	define	clock	frequency.	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	6	

shown	 here.	 	 Clicking	 on	 various	 entries	 under	 this	 will	 show	 the	 various	 timing	
specifications.		Answer	the	following	questions:	

What	are	the	predicted	maximum	frequencies	for	this	circuit	under	the	highest	and	lowest	
temperatures?		What	are	the	other	interesting	timing	data	that	you	can	discover	with	these	
reports?		Why	is	the	TimeQuest	entry	red,	indicating	that	there	may	be	a	problem?			

Step	9:	 Test	your	design	on	DE1	–	program	the	DE1	and	check	that	your	design	works.			

Step	10:		Examine	the	amount	of	FPGA	resources	being	used	by	this	16-bit	counter.	Explain	
the	results.	

Test-yourself	Task	(compulsory)	–	Cascade	counter	

You	 are	 now	 required	 to	 create	 something	 yourself.	 	 In	 the	 previous	 exercise,	 the	 16-bit	
counter	is	counting	a	20MHz	clock.	This	is	much	too	fast	for	us	to	see	the	counter	changing.		
This	 part	 of	 the	 experiment	 requires	 you	 use	 the	 counter	 to	 count	 the	 number	 of	
millisecond	 elapsed.	 	 You	 would	 need	 to	 do	 this	 by	 having	 two	 counters	 cascaded	 (i.e.	
connected	in	series)	with	each	other.		The	overall	block	diagram	is	shown	below.	

The	 divide-by-50000	 circuit	 generates	 a	 1	 cycle	 high	 pulse	 every	 50,000	 clock	 cycles.		
Therefore	the	output	signal	tick	provides	one	enable	pulse	every	millisecond.		(See	notes.)	

	

Modify	your	circuit	to	implement	this	and	test	the	new	circuit	on	the	DE1	board.	

3.0			Experiment	7:	Linear	Feedback	Shift	Register	(LFSR)	and	PRBS	

You	 encountered	 a	 4-bit	 LFSR	 in	 Lecture	 5	 slide	 17,	 which	 implements	 the	 primitive	
polynomial:	 	1	+	X3	+	X4.	 	 	 	You	are	now	required	to	 implement	a	7-bit	LFSR	implementing	
the	polynomial:		1	+	X	+	X7.				Assuming	that	you	initialize	the	shift	register	to	7’d1,	work	out	
manually	the	first	10	sequence	values	of	the	output	sequence.	(The	output	sequence	should	
be	127	long	without	repetition,	is	known	as	a	pseudo-random	binary	sequence	or	PRBS.)		

Connect	the	shift	register	clock	to	KEY[3]	and	use	the	momentary	key	to	cycle	through	the	
first	 ten	 values	of	 the	PRBS.	 The	 random	output	 should	be	displayed	 as	 two	hexadecimal	
digits.	

Checkpoint:		You	should	get	to	this	point	by	the	end	of	the	second	week.	

	

	 	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	7	

4.0		Experiment	8	(Optional	challenge):	Starting	line	delay	circuit	

The	next	two	experiments	are	optional.	They	are	designed	to	provide	a	challenge	to	those	
who	finish	early,	or	for	those	who	want	to	learn	more	about	digital	design,	Verilog	and	
FPGAs.	The	two	experiments	are	linked	–	what	you	designed	in	Experiment	8	will	be	used	in	
Experiment	9.	

The	goal	here	is	to	design	a	Formula	1	style	of	race	starting	lights.		The	specification	of	your	
circuit	is:	

1. The	circuit	is	triggered	(or	started)	by	pressing	KEY[3]	(don’t	forget	KEY[3]	is	low	
active);	

2. The	10	LEDs	(below	the	7-segment	displays)	will	then	start	lighting	up	from	left	to	
right	at	0.5	second	interval,	until	all	LEDs	are	ON;	

3. The	circuit	then	waits	for	a	random	period	of	time	between	0.25	and	16	seconds	
before	all	LEDs	turn	OFF;	

4. You	should	also	display	the	random	delay	period	in	milliseconds	on	five	7-segment	
displays.	

	
In	order	to	assist	you	in	designing	this	circuit	without	spending	too	much	time,	the	following	
overall	block	diagram	of	the	circuit	is	provided.		You	should	also	download	the	solution	bit-
stream	for	this	experiment	from	the	experiment	webpage	(ex8sol.sof)	and	try	it	out	before	
attempt	it	yourself.	

	
In	the	above	diagram,	all	signals	on	the	left	of	the	block	are	inputs	and	the	signals	on	the	
right	are	outputs.			

The	two	clock	divider	circuits	provide	clock	ticks	once	every	1ms	and	0.5sec	respectively.		
Each	clock	tick	should	be	a	positive	pulse	lasting	one	period	of	CLOCK_50	(i.e.	20ns).		The	
system	then	use	the	tick_ms	signal	as	the	clock	of	the	remaining	circuit.		

The	LFSR	module	produces	a	pseudo-random	binary	sequence	(PRBS),	which	is	used	to	
determine	the	random	delay	required.		The	enable	signal	to	the	LFSR	allows	this	to	cycle	
through	a	number	of	clock	cycles	before	it	is	stopped	at	a	random	value.	

The	delay	module	is	triggered	after	all	10	LEDs	are	lid,	and	then	provides	a	delay	of	N	clock	
cycles	(at	1ms	period)	before	asserting	the	time_out	signal	(for	1ms).		

The	delay	value	N	is	fed	to	the	binary	to	BCD	converter,	which	then	drives	the	7-segment	
displays.	



Department	of	EEE	
Imperial	College	London	

v4.2	-	PYK	Cheung,	7	Nov	2018	 	 Part	2	-	8	

There	are	several	design	decisions	to	be	made:	

1. How	many	bits	LFSR	is	required?	
2. How	many	bits	should	you	use	in	the	delay	module?	

The	FSM	module	is	the	key	module	to	the	entire	system.			You	must	decide	what	are	the	
states	that	are	required,	draw	the	state	diagram	and	then	map	that	to	Verilog.	

5.0		Experiment	9	(Optional	challenge):	A	Reaction	Meter	

Extend	your	circuit	in	Experiment	8	by	adding	a	reaction	counter.	This	should	count	the	time	
between	all	the	LEDs	turning	OFF	and	you	pressing	KEY[0].			The	reaction	time,	instead	of	
the	random	delay,	should	be	displayed	on	the	7-segment	displays	in	milliseconds.	

	


