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Introduction

This work is devoted to the modal analysis of a pre-strestsal strip. Two different complementary ap-
proaches exist in modal analysis, respectively the thieateind experimental modal analyses. On the one
hand, the theoretical modal analysis is related to a diremblem. It requires a model of the structure.
Model uncertainties are inherent to this kind of analysis.tke other hand, the experimental analysis is an
inverse problem and requires a prototype. It allows to chiethe finite element model represents reality
in an accurate way and to assess the impact of model und@saitt is important to highlight that modal
analysis relies on two important assumptions: linearityt ime invariance of the structure. Even if these
assumptions are never perfectly met in practice, they aréanérom reality.

The flowchart represented in Fig. 1 summarizes the basidseedfodel updating scheme” followed in
this report. The methodology is inspired from those desctiin [5] and [6]. Starting from a real structure,
the two complementary modal analysis approaches are fetlowhe first section is devoted to the theoret-
ical modal analysis of the structure. A finite element modehe structure is built and allows to evaluate
the modal properties of the strip. The results of this firstisa are then used to prepare the experimental
measurements. The experimental modal analysis, desdritsttion 2, allows to get a second evaluation
of the modal characteristics of the structure. In the thectien, the results from both the theoretical and
experimental modal analyses are compared with each otletharfinite element model is eventually up-
dated in order to get a reliable model that reproduces therarpntal results in an accurate way.

REAL STRUCTURE

Theoretical
modal analysis

Finite element modeling
M, K

Natural frequencies, mode
shapes, analytical FRFs

Correlation?

RELIABLE MODEL ]

{ Model updating

FIGURE 1 - Model updating scheme.



1 Finite element analysis

In this first section, finite element models of the structuee lauilt in MATLAB and SAMCEF Field. These
models are used to get a first evaluation of the natural fregjee and mode shapes of the structure.

The studied structure consists in a vertical strip fixedaektremities, as represented in Fig. 2. The
geometrical dimensions of the strip used in this first finl@reent model are listed in Table 1. The strip is

pre-stressed by a mass 08Xkg.
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X
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‘____
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FIGURE 2 - Schematic view of the structure.

Parameter Symbol  Value Units
Length I 50 cm
Width w 25 mm
Thickness t 0.4 mm
Pre-stress mass m 1.8 kg

TABLE 1 - Main properties of the steel structure.

The material properties of the steel used in the model qooras initially to a standard steel [1] (see
Table 2).

The structure is modeled MATLAB using Bernoulli beam elements. The strip is divided intostant
size elements. The mass and stiffness matfitemdK are obtained by assembling the corresponding ele-
ment matrices. It should be noted that the stiffness matrcomposed of two parts: a geometrical stiffness
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Parameter Symbol  Value Units

Density P 7,800 kg/nt
Young’s modulus E 210 GPa
Poisson’s ratio Y 0.3 [-]

TABLE 2 - Material properties of the steel structure.

matrix is added to the usual linear stiffness matrix to take account the increased stiffness induced by the
pre-stress mass. The element matrices used in the implatioenof the finite element model can be found
in [4]. Regarding the boundary conditions, the strip is assdito be perfectly clamped at its top extremity.
At its bottom, a lateral guide allows the strip to move onlyhe verticalx direction (see Fig. 2).

A similar model is built INSAMCEF Field.

These two finite element models are used to compute the segemdiural frequencies of the strip.
These frequencies are listed in Table 3. Both models usedifiegits of 1 cm length. It is checked at the
end of the section that this discretization is sufficientaptare the dynamics of the problem. The results
obtained with the two models are in good agreement, whichsgoonfidence in th®IATLAB model and
in the way in which pre-stress is taken into account. Thelt®siso confirm that Bernoulli elements are
appropriate for representing the dynamics of the strip. rEfetive errors between these frequencies com-
puted with the two models can be partially ascribed to thieifit treatments of shear deflection in the two
approaches. The maximal relative error is indeed obtainigd the fifth mode which is, as shown below,
the first torsion mode of the structure.

Frequency [HZ] Frequency [HZ] Relative error
MATLAB SAMCEF Field [%0]
Mode 1 18.35 18.37 0.10
Mode 2 39.76 39.79 0.07
Mode 3 66.14 66.16 0.03
Mode 4 98.65 98.66 0.01
Mode 5 102.96 103.55 0.57
Mode 6 137.88 137.89 0.01
Mode 7 184.16 184.18 0.01

TABLE 3 - Eigenfrequencies obtained with elements of 1 cm in length

The corresponding mode shapes (obtained withMAELAB model) are represented in Fig. 3. The
modes obtained with theAMCEF Field model (not shown) are similar. The higher the natural fregye
the more complex the form of the mode shape. The fifth mode @ssioh mode around theaxis while
the six other modes are the successive bending modes afmemdxis. Those are the usual low-frequency
modes for a beam.

In the absence of accurate information about damping, theothg ratios corresponding to the identi-
fied modes are not estimated with the finite element modely @il experimental measurements described
in the next section can provide reliable estimates.
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FIGURE 3 - The seven first modes of vibration obtainedviATLAB.



Before further analyzing the structure, it is checked that finite element discretization is sufficient
to capture the dynamics of the strip up to its seventh modg. 4~shows the eigenfrequencies computed
with the MATLAB model using different numbers of elements. The differestlts are normalized by the
eigenfrequencies computed with 50 elements, as listedhifeTa Although the torsion frequency (mode
5) converges slightly more slowly, it can be checked thatifferent eigenfrequencies do not significantly
change when the number of elements is increased beyori@5@y elements of length smaller than 1 cm.
This finite element resolution is therefore considered asapiate.
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FIGURE 4 - Natural frequencies normalized by the natural frequencomputed with 50 elements as a
function of the number of elements.



2 Experimental modal analysis

This section presents the methodology and the main redithe experimental modal analysis of a physical
prototype of the structure. First, the main components®htieasurement chain are described together with
the signal processing parameters. Then, a preliminary atafaisition is performed in order to get a first
idea of the modal parameters of the strip. Eventually, a rdetailed data acquisition is carried out and the
modal parameters of the structure are identified.

2.1 Measurement process

Before going further in the analysis, the main componenthefmeasurement chain are described. The
different signal processing parameters are also descabedustified.

The first element of the measurement chain is the testedteudescribed in section 1. The experi-
mental set-up is pictured in Fig. 5. The finite element anslgserformed in the previous section can help to
prepare the measurement process. In the following, thesfiscput on the bending modes of the structure.
There is therefore no need to consider measurement or #xgifzoints that are not located on the central
fibre of the strip. In order to correctly represent the dyrendf the six first bending modes identified in
Fig. 3, 9 equally spaced points on the strip are consideaKg). 6). These points are denoted by P1 to P9
in this report.

P1
P2
P3
P4
PS5
P6

P7

P8

P9

1.1cm1:___

FIGURE 5 - Experimental set-up. FIGURE 6 - Excitation and measurement points.

The data acquisition and signal processing are carried sinfjuheLMS SCADAS Mobile acquisition
system and theMS Test.Lab software [6]. All the modes of interest have frequencies than 200 Hz. In
order to avoid aliasing error, a bandwidth of 400 Hz is chogéhis is justified further. In order to reach an
accuracy close to.0 Hz on the frequencies, 4096 spectral lines are considérkid. gives an acquisition
time of 1024 s.



An impact hammer is used to excite the structure. This iséddbe simplest way of obtaining the im-
pulse response functions (or equivalently the frequensgaese functions) required to identify the modal
properties of the structure because it does not requirgdoratinything to the structure, which would not
be appropriate considering the small weight of the stegd.stthe hammer includes a force transducer. Its

main characteristics are given in Table 4.

Sensitivity 2.23 mV/N
Transducer type 086B03
Transducer manufacturer PCB

Serial number 5856

TABLE 4 - Characteristics of the impact hammer.

The studied structure is very light. In order to avoid anyrtnading of the channels, the amplitude of
the force applied has to remain relatively small. The heagdhof the hammer is therefore removed.

The impact hammer can be used with two tips of differentrstdk: a steel tip and a vinyl one. For the
current application, there is no need to excite the stracairvery high frequencies. The vinyl tip, which
is softer, is therefore chosen. The power spectral densigytgpical impact is represented in Fig. 7. The
figure shows that the energy of the impact is well spread di/dreafrequencies of interest. The analysis of
the bandwidth in th&MS Test.Lab software confirms that impacts with this kind of hammer apdit not
excite in a significant way the frequencies beyond 400 Hz.cFuéce of the tip is therefore appropriate for

the current study.
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FIGURE 7 - Power spectral density of a typical impact force.

In order to correctly capture the impact, two quantitiesehtavbe defined: the trigger level and the pre-
trigger. Those are automatically defined by théS Test.Lab software by analyzing and averaging several
impacts [6]. On the one hand, the acquisition is triggeredmine signal on the hammer channel exceeds



the trigger level, which is @ N here. On the other hand, pretrigger determines the timoe forthe trigger
condition that will be included in the acquisition. It is givby Q1 s in the considered experimental set-up.

Because the studied structure is very light, it is importandvoid modifying its mass by adding ac-
celerometers on it. The response (in term of velocity) ofdinecture to the impacts is therefore measured
with a laser transducer whose main characteristics ara giv€able 5.

Sensitivity 1000 mV/(m/s)
Transducer type MSA-400 OFV-552
Transducer manufacturer Polytec
Serial number 0110716

TABLE 5 - Characteristics of the laser transducer.

Also because of its lightness, the structure is very respens hammer impacts. In order to avoid any
overloading of the channels, the structure is only excitaétleapoint closest to the bottom fixation (point P9
in Fig. 6). The laser transducer is used to measure the resmirthe different points P1 to P8. A roving
accelerometer technique is used to measure a row of theeineguesponse functions matrix.

When processing the signal, two types of errors may appesaiance and bias errors [3]. Variance
errors are due to the discrepancy between the mean of eagliesand the mean of the ensemble. Such
errors can be reduced by averaging a sufficiently large nuofiEamples. To achieve a good compromise
between the acquisition time and the accuracy of the messilme average between three successive tests
is made. Bias errors can be separated into aliasing andgeadteors.

The LMS Test.Lab software set the sampling rat& at a sufficiently high value to avoid aliasing [6].
In order to limit the frequency content beyoand/2, which is folded back in the low frequency range, it is
important to avoid triggering modes with frequencies latpan 400 Hz. As stated previously, the chosen
hammer/tip combination does not excite in a significant weay frequencies beyond 400 Hz. Since the
structure is supposed to be quasi-linear, the frequencienbof the response beyond 400 Hz is therefore
also small.

In order to reduce leakage errors, windowing techniquesjppied to the excitation and the response
signals. These windows force the signal to vanish at the étldecobservation time and, therefore, filter
out otherwise unavoidable noise components at the end sfdghal. The forms of the windows are adapted
to the forms of the signal: a rectangular window is chosernttierimpact and an exponential one for the
response. The optimum parameters defining the windows tiogy #egeLMS Test.Lab software by analyzing
and averaging several successive impacts [6].

2.2 Preliminary data acquisition

Before embarking upon the complete modal analysis of iy $tre analysis of the response of the structure
to a single impact is used to provide a first idea of the naftegluiencies and damping ratio’s. As explained
previously, the structure is triggered at point P9 (see &igThe measurement point must be carefully cho-
sen in order to detect all the modes identified with the finiéenent method. It is therefore important that

this point does not coincide with a vibration node of any egdnode. The point P2 satisfies this condition

and is therefore chosen.
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The measured frequency response function and its cohefenceon are represented in Fig. 8. The
coherence function is a good indicator of the accuracy aeddhpeatability of the performed impacts [5].
The values close to 1 taken by the coherence function in tleearange of interest indicates that the noise
in the measured signals is limited and that the three suvedsgpacts are performed accurately at the same
location. As expected, the coherence function drops atileguency and at the anti-resonance frequencies.
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FIGURE 8 - Frequency response function and coherence functioesymonding to an excitation at point P9
and the measure of the response at point P2.

The measured frequency response function plotted in FigoBges a quick way of determining the
number of modes in a given bandwidth [3]. It allows to hightighe resonance peaks of the structure and,
therefore, to identify the resonance frequenkieSix modes can be clearly seen between 0 and 200 Hz.
They correspond to the 6 bending modes identified with théefelement model. The natural frequencies
obtained by this analysis of the experimental data are divéable 6.

| Frequency [HZ]
Bending mode 1 17.9
Bending mode 2 38.3
Bending mode 3 63.7
Bending mode 4 94.7
Bending mode 5 132.4
Bending mode 6 175.5

TABLE 6 - Eigenfrequencies obtained from the frequency respamsgibn plotted in Fig. 8.

1 When a single frequency response function is measured imxgretally, theComplex Mode Indicator Function provides
exactly the same information and is therefore not impleefrr the present study.
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This preliminary data acquisition can also provide estgsaif the damping ratios associated to the
different modes. Two single degree of freedom methods apteimented iNMATLAB: the peak-picking
method and the circle-fitting method. These two methods wotke frequency domain. Single degree of
freedom modal analysis methods may be applied when the naodegell separated in frequencies and can
therefore be analyzed separately by focusing on a giveudmry bandwidth. The accuracy of the peak-
picking method and the circle-fitting method depends on tivaber of points that describe the resonance
peak. These methods are used here to estimate the dampngfrdie fifth bending mode, because the
related peak is the most accurately described in the meh&IRE. Similar results can be obtained for the
other modes of the structure.

The peak-picking method is illustrated in Fig. 9 [5]. In tfiigure, the peak corresponding to the fifth
bending mode is isolated. The Bode plot of the FRF amplitedeséed to detect the maximum response and
the half-power points. The modal damping is evaluated by

Af

whereAf is the frequency bandwidth between the half-power points fais the natural frequency of the
mode (see Fig. 9). A damping ratio of 0.09% is found.

HIINI,I'
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H"““./'\/ﬁ
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0.4
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\ \ \
131 131.5 132 1325 133 133.5
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FIGURE 9 - Peak-picking method. Close-up on the fifth bending mode.

The circle-fit method is illustrated in Fig. 10 and is basedtmcircular nature of the Nyquist plot of
the FRF when viscous damping is assumed and when the FRFrisssegd in its mobility form [5]. The
modal damping associated to mddean be expressed by

22
~ 2f(fatan(8a/2) + fotan(8p/2))’

wherefy is the natural frequency of the modi/ f, are frequencies close fig around the circle anél, /6y
are the corresponding angles measured with respect todhes raf the cercle associated to the resonance

Lk 2
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frequency. An example of these parameters is shown in Figldking different values fof, and f,, allows

to evaluate the scatter between the different estimatdseahbdal damping (see Fig. 11). The mean value
of the different{ computed is equal to 0.096% and is therefore in good agreewitdnthe results of the
peak-picking method.

25

1.5¢

FRF imaginary part [m/s/N]
o

-1.5¢

0 1 2 3 4
FRF real part [m/s/N]

FIGURE 10 - Circle-fit method (fifth bending mode).
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1326 1324 132.5 2
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FIGURE 11 - Estimates of the fifth bending mode damping ratio obthimith the circle-fit method as a
function of the frequencie§, and fy (Eg. 2). The red plane corresponds to the mean value.
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In order to check the linearity of the structure, a secontiseperformed by switching the excitation
and the measurement points. The structure is thereforéedxai point P2 and the response is measured at
point P9. Notice that the point P2 is sufficiently close totiye fixation of the strip to avoid overloading of
the channels (Fig. 6). The norms of the two FRF are plotteddn 2. The curves are in good agreement
except at low frequencies where data suffer from noise, @ady shown by the coherence function in
Fig. 8. Fig. 12 shows that the reciprocity principle is vexdfiand that the assumption of linearity is therefore
justified.
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FIGURE 12 - lllustration of the reciprocity principle.

2.3 Identification process

A more detailed data acquisition is performed on the stripe $tructure is excited at point P9 (see Fig. 6)
and the response is successively measured at each of thepothts. The values given to the various
parameters used for the acquisition have already been givéjustified in section 2.1. Using the measure-
ment data, it is then possible to extract the modal paramefahe structure. On the one hand, the natural
frequenciesf, and damping ratio’€, are obtained using thieeast Square Complex Exponential (LSCE)
method. On the other hand, the mode shapemre computed with theeast Square Frequency Domain
(LSFD) method.

The LSCE method, introduced in 1979 by Brown et al. [2], wdrkthe time domain and requires ex-
perimental measurements in the form of impulse responsaifuns (IRF). The impulse responses functions
are not directly given by theMS Test.Lab software but are easily obtained by taking the inverse Eouri
transform of the transfer functions.

An important issue of many identification techniques is tlecion of the model order. The stabiliza-
tion diagram allows to distinguish real modes from spurimues. In Fig. 13, a mode is considered as
“stabilized in frequency” (green marker) if its frequendffets by less than 4 Hz from a mode identified
with the previous order. A mode is considered as “stabilineflequency and damping” (blue marker) if it
is stabilized in frequency and if its damping ratio diffegsless than M1 % from the mode identified at this
frequency at the previous order. If the mode is not stalullipefrequency, it is classified as “unstabilized”
and represented by a red marker. The six modes correspotading peaks of the mean frequency response
function (represented in gray in the figure) are clearly iifieid, even if the fourth and the sixth are more
difficult to stabilize. Another mode is identified at 1@MHz. This corresponds to the torsion mode of the
structure. Because the excitation and measurement peoatsoaperfectly on the central fibre of the strip,
the torsion of the strip is also excited during the tests.

14
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FIGURE 13 - Stabilization diagram of the LSCE method. The gray cuepgesents the mean frequency
response function.

The eigenfrequencies and damping ratio’s obtained by iii=atton with the LSCE method are given
in Table 7. It should be noted that identification methodsadse directly implemented in theMS Test.Lab
software. The natural frequencies and damping ratio'siebtwith thePolyreference Least-Squares Com-
plex Freguency-Domain (PolyMAX) method are also listed in Table 7. A good agreemismbserved
between the two sets of results and gives confident irMNELAB implementation of the LSCE method.
This table shows that the damping in the structure is redlyt! The fourth and sixth bending modes
have a modal damping larger than the other modes. Thesésreanl be compared with the results of the
preliminary data acquisition described in section 2.2. R@mdne hand, the natural frequencies identified
with the single frequency response measured (Fig. 8) ase ttothe frequencies of the table. On the other
hand, it can also be checked that the vajue 0.09— 0.10 % obtained for the fifth bending mode with the
peak-picking method and the circle-fit method is a good estnof the damping ratio.

Frequency [HZ] Freguency [HZ] Dampingratio[%] Damping ratio[%]

LSCE PolyMAX LSCE PolyMAX
Bending mode 1 17.8 17.8 0.06 0.06
Bending mode 2 38.5 38.4 0.03 0.05
Bending mode 3 63.8 63.7 0.08 0.06
Bending mode 4 94.7 94.8 0.20 0.20
Bending mode 5 1325 132.5 0.08 0.10
Bending mode 6 175.9 176.2 0.21 0.25

TABLE 7 - Comparison of the eigenfrequencies and damping ratiigined with the LSCE method
implemented ilMATLAB and the PolyMAX method implemented in th®S Test.Lab software.
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The companion method LSFD is implemented to identify the englthpes of the structure. Unlike the
LSCE method, the LSFD method works in the frequency domdinThis method takes advantage of the

previous knowledge of the natural frequencies and damgitig’s identified with the LSCE method (see
Table 7).

The modes extracted with this method are complex. Howeeeglse the identified damping ratio’s are
small, one can expect that the different degrees of freeddhestructure vibrate in phase. The complexity
of the mode shapes is assessed with the Argand diagram. &igptesents the Argand diagrams of the
six bending modes identified with the LSFD method. It is cleecln this figure that all the nodes of the

structure vibrate in phase in the different mode shapesr@dléending modes extracted from the complex
ones are represented in Fig. 15.

150
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(a) Bending mode 1. (b) Bending mode 2. (c) Bending mode 3.

90 90

270

(d) Bending mode 4. (e) Bending mode 5. (f) Bending mode 6.

FIGURE 14 - Argand diagrams of the six first bending modes.
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FIGURE 15 - The six first bending modes of vibration identified witlke ttSFD method (in red) compared
to the modes obtained with the finite element method (in blue)

Three tools are commonly used in industry in order to cheakttie modes are physical and, therefore,
that the order is correctly selected [6].

i. The first check is provided by a visual inspection of the esdAt low frequencies, the simplest
modes must be observed. This is the case here: the first nimtgdied correspond to the usual first

bending modes of a beam.

ii. Then, the frequency response function rebuilt from thentified modal parameters has to match the
measured frequency response function. Fig. 16 represemt§aquency response function related
to an excitation at point P9 and a response at point P3. Theefaglows to compare the measured
FRF with the FRF synthesized from the identified poles andenod good agreement is observed
between the two FRF, which gives confidence in the identiiogbrocess.

iii. Eventually, the different mode shapes must be indepahd This is checked with the auto-MAC
matrix represented in Fig. 17. Because all the out-of-chiagjterms are close to 0, the modes are

indeed independent.
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FIGURE 16 - Comparison of the synthesized and measured frequegpgnse functions.

FIGURE 17 - Auto-MAC matrix of the experimental bending modes.
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3 Comparison between numerical and experimental results

At this stage of the study, two sets of modal parameters aiahle. On the one hand, estimates of the
natural frequencies and mode shapes of the strip have beaimexbin section 1 based on finite element
models. Onthe other hand, a second set of modal paramet¢usaifrequencies, modal damping and mode
shapes) comes from the experimental modal analysis pegfbimsection 2. In the first part of this section,
the two sets of modal parameters are compared. Then, the dirinent is updated in order to reduce the
discrepancies between the results of the theoretical gmetiexental modal analyses, in agreement with the
methodology set in Fig. 1.

3.1 Correlation

The results obtained with theATLAB finite element model and with the experimental modal anslgst
summarized in Table 8. The natural frequencies obtainekl thé initial finite element models systemati-
cally overestimate the corresponding natural frequendistified with the experimental analysis by 3-5 %,
which is clearly not acceptable.

Frequency [HZ] Frequency [HZ] Relativeerror
TMA EMA [%0]
Bending mode 1 18.4 17.8 3.4
Bending mode 2 39.8 38.5 3.4
Bending mode 3 66.1 63.8 3.6
Bending mode 4 98.7 94.7 4.2
Bending mode 5 137.9 1325 4.1
Bending mode 6 184.2 175.9 4.7

TABLE 8 - Comparison of the eigenfrequencies obtained from thieatdTMA, initial model) and
experimental EMA) modal analyses.

Visually, the two sets of mode shapes are in good agreememt{g. 3 and 15). They correspond to the
successive bending modes of the strip. The Modal AssurariteriGn (MAC) can be used to quantify the
correlation between the two sets of modes [3]. The MAC combietween modieof the first familqu(li)

and modej of the secondp(zj) is given by

1 T,2
Wi W)

MAC(W ) 0f,) = |
ORI T 1w,

®3)

The MAC matrix based on the two sets of modes available i€sgmted in Fig. 18. The close-to-one values
of its diagonal elements and the negligible values of itsaftdiagonal elements confirm the correlation
observed previously.

In conclusion, despite the high correlation between thearsithpes, a model updating is required to
decrease the relative errors between the natural freqggenci

3.2 Model updating

The poor agreement can result from a bad experimental asalyfom modeling errors and uncertainties.
It has been shown in the previous section that the measutgraoess is performed in a rigorous way and

19



1
175.9 0.9
0.8
132.5
" 0.7
[}
s
g 947 0.6
=
=) 0.5
[0}
g
g 638 L10.4
o
I
=
F10.3
38.5
r10.2
17.8 I 0.01 0.01 0.00 0.00 0.00 r 101

—0

66.1 98.7 137.9 184.2

Finite element modes

18.4 39.8

FIGURE 18 - MAC matrix between the numerical modes (initial modei}l the experimental modes.

that the choice of the measurement coordinates is justifiddreover, the modal identification gives the
same results as tiwlyMAX identification method implemented directly in thiS Test.Lab software. Itis
therefore argued that it is the finite element modeling ofstinecture that must be improved.

The inaccuracies in the finite element modeling come froraghmain sources. In the following, the
modeling uncertainties about physical and geometricalmaters and the discretization and approximation
errors are successively considered.

In order to identify possible errors on the geometry of thhactire, new measurements of the dimen-
sions of the structure are done. Two 30 cm samples of thesttgehre weighted to correct the steel density.
The pre-stress mass is also precisely weighted. Eventaaiysile test is performed on the two samples of
the strip to revise the estimate of the Young’'s modulus. Theesponding updated values of the geometrical
and material properties are listed in Tables 9 and 10.

Parameter Symbol  Value Units
Length I 50.1 cm
Width w 25 mm
Thickness t 0.4 mm
Pre-stress mass m 1.816 kg

TABLE 9 - Geometrical properties of the steel structure (corthcte

While errors can be introduced by the process of discréizait was shown in the first section that the
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Parameter Symbol  Value Units

Density P 7,767 kg/ni
Young’s modulus E 206 GPa
Poisson’s ratio Y 0.33 []

TABLE 10 - Material properties of the steel structure (corrected)

number of finite elements used in the numerical models iscéerfii to capture the dynamics of the problem.
Refining the mesh does not lead to any significant change inatigal frequencies.

The approximation errors are related to assumptions abeypttysics of the model. Here, the natural
frequencies obtained with the model are slightly highenttinee experimental ones. The model is therefore
too rigid with respect to reality. This can be ascribed todheice of the boundary conditions in the initial
model described in section 1. Perfect clamping is a matheatdtlealization that never exists in practice.
It is impossible to completely prevent any rotation aboetytaxis at the fixations of the strip (see Fig. 2).
The finite element model is therefore corrected by intrady@i stiffness in rotation about tlyeaxis at both
ends of the strip. To simplify the analysis, the stiffnessfioient is supposed to be the same on both sides.
The rigidity of the clamping is determined in such a way thatinimizes the error (in a least-square sense)
between the natural frequencies coming from the numeritédltiae experimental modal analyses. Fig. 19
represents the global error as a function of the stiffnesstationk. A optimum value ok = 3.83 Nm/rad

is found.

0.9 i

Global error [%)]

1 1 : 1
02 25 3 3.5 3.83 4 4.5 5
Stiffness in rotation [Nm/rad]

FIGURE 19 - Global error on the natural frequencies as a functiomestiffness in rotation.

Table 11 shows the natural frequencies computed after imgdat the finite element modei,e. after
correction of the material/geometrical properties of tligo sand modification of the boundary conditions.
These frequencies can be compared with the experimentpldneies and show now relative errors less

than 0.2%.
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Frequency [HZ] Frequency [HZ] Relativeerror
TMA EMA [%0]
Bending mode 1 17.8 17.8 0.1
Bending mode 2 38.5 38.5 0.1
Bending mode 3 63.7 63.8 0.1
Bending mode 4 94.8 94.7 0.1
Bending mode 5 132.2 1325 0.2
Bending mode 6 176.3 175.9 0.2

TABLE 11 - Comparison of the eigenfrequencies obtained from #tait (TMA, after updating of the
model) and experimentakE{(1A) modal analyses.

One can also check in Fig. 20 that the adjustment of the maxkd dot have any detrimental effect on
the correlation between the numerical and experimentalensbdpes. The out-of-diagonal terms are really
close to 0 while the diagonal terms vary between 0.96 and 0.99

1
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FIGURE 20 - MAC matrix between the numerical modes (corrected nmate the experimental modes.
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Conclusion

Throughout this project, several theoretical and exparntal@aspects of modal analysis have been addressed
in order to study a pre-stressed steel strip. The modal sisalyeory relies on two main assumptions: lin-
earity and time invariance of the structure.

As a first step, finite element models of the strip have beedh ibuMATLAB andSAMCEF Field. They
have been used to carry out the theoretical modal analy#iedtructure and to identify a first set of modal
parameters (natural frequencies and mode shapes) retetied $ix first bending mode of the strip and the
first torsion mode. Because models are always synonymoltsapjroximations and uncertainties, they
must be validated against experimental data. Testing ofdhlestructure and identification methods have
allowed to extract the real modal parameters of the strifst,/ single measured frequency response func-
tion has provided a quick way of determining the number of esoith the studied frequency bandwidth.
Two one-degree of freedom methods, namely Phak-Picking method and the€ircle-Fit method, have
provided first estimates of the damping ratio’s. Then, ltbast Square Complex Exponential and Least
Sguare Freguency Domain methods have been used to identify in an accurate way thelmpadameters of
the structure. Experimental modal analysis has also atlaweyet a much better knowledge of the modal
damping. Eventually, the finite element model has been egddatorder to represent in a much more accu-
rate way the real structure and, in particular, its modatattaristics.

This reliable finite element model can now be used to studydth@mics of the real structure in a
much faster and more flexible way than through experimenedsurements. Contrary to experimental
measurements, which only provide information about a 8chitumber of points on the structure, the finite
element model can describe the whole structure. Moreowatlows to assess the impact of changes in
geometrical and material properties without the need tlllaunew prototype.
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