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Introduction

This work is devoted to the modal analysis of a pre-stressed steel strip. Two different complementary ap-
proaches exist in modal analysis, respectively the theoretical and experimental modal analyses. On the one
hand, the theoretical modal analysis is related to a direct problem. It requires a model of the structure.
Model uncertainties are inherent to this kind of analysis. On the other hand, the experimental analysis is an
inverse problem and requires a prototype. It allows to checkif the finite element model represents reality
in an accurate way and to assess the impact of model uncertainties. It is important to highlight that modal
analysis relies on two important assumptions: linearity and time invariance of the structure. Even if these
assumptions are never perfectly met in practice, they are not far from reality.

The flowchart represented in Fig. 1 summarizes the basics of the “model updating scheme” followed in
this report. The methodology is inspired from those described in [5] and [6]. Starting from a real structure,
the two complementary modal analysis approaches are followed. The first section is devoted to the theoret-
ical modal analysis of the structure. A finite element model of the structure is built and allows to evaluate
the modal properties of the strip. The results of this first section are then used to prepare the experimental
measurements. The experimental modal analysis, describedin section 2, allows to get a second evaluation
of the modal characteristics of the structure. In the third section, the results from both the theoretical and
experimental modal analyses are compared with each other and the finite element model is eventually up-
dated in order to get a reliable model that reproduces the experimental results in an accurate way.

REAL STRUCTURE

Finite element modeling
M , K

Modal testing
H(ω)

Theoretical
modal analysis

Experimental
modal analysis

Correlation?
YES

NO

Model updating

RELIABLE MODEL

Natural frequencies, mode
shapes, analytical FRFs

Natural fr., damping ratios,
mode shapes, synthetized FRFs

FIGURE 1 - Model updating scheme.
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1 Finite element analysis

In this first section, finite element models of the structure are built in MATLAB andSAMCEF Field. These
models are used to get a first evaluation of the natural frequencies and mode shapes of the structure.

The studied structure consists in a vertical strip fixed at its extremities, as represented in Fig. 2. The
geometrical dimensions of the strip used in this first finite element model are listed in Table 1. The strip is
pre-stressed by a mass of 1.8 kg.

FIGURE 2 - Schematic view of the structure.

Parameter Symbol Value Units

Length l 50 cm
Width w 25 mm
Thickness t 0.4 mm
Pre-stress mass m 1.8 kg

TABLE 1 - Main properties of the steel structure.

The material properties of the steel used in the model correspond initially to a standard steel [1] (see
Table 2).

The structure is modeled inMATLAB using Bernoulli beam elements. The strip is divided into constant
size elements. The mass and stiffness matricesM andK are obtained by assembling the corresponding ele-
ment matrices. It should be noted that the stiffness matrix is composed of two parts: a geometrical stiffness
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Parameter Symbol Value Units

Density ρ 7,800 kg/m3

Young’s modulus E 210 GPa
Poisson’s ratio ν 0.3 [-]

TABLE 2 - Material properties of the steel structure.

matrix is added to the usual linear stiffness matrix to take into account the increased stiffness induced by the
pre-stress mass. The element matrices used in the implementation of the finite element model can be found
in [4]. Regarding the boundary conditions, the strip is assumed to be perfectly clamped at its top extremity.
At its bottom, a lateral guide allows the strip to move only inthe verticalx direction (see Fig. 2).

A similar model is built inSAMCEF Field.

These two finite element models are used to compute the seven first natural frequencies of the strip.
These frequencies are listed in Table 3. Both models use 50 elements of 1 cm length. It is checked at the
end of the section that this discretization is sufficient to capture the dynamics of the problem. The results
obtained with the two models are in good agreement, which gives confidence in theMATLAB model and
in the way in which pre-stress is taken into account. The results also confirm that Bernoulli elements are
appropriate for representing the dynamics of the strip. Therelative errors between these frequencies com-
puted with the two models can be partially ascribed to the different treatments of shear deflection in the two
approaches. The maximal relative error is indeed obtained with the fifth mode which is, as shown below,
the first torsion mode of the structure.

Frequency [Hz] Frequency [Hz] Relative error
MATLAB SAMCEF Field [%]

Mode 1 18.35 18.37 0.10
Mode 2 39.76 39.79 0.07
Mode 3 66.14 66.16 0.03
Mode 4 98.65 98.66 0.01
Mode 5 102.96 103.55 0.57
Mode 6 137.88 137.89 0.01
Mode 7 184.16 184.18 0.01

TABLE 3 - Eigenfrequencies obtained with elements of 1 cm in length.

The corresponding mode shapes (obtained with theMATLAB model) are represented in Fig. 3. The
modes obtained with theSAMCEF Field model (not shown) are similar. The higher the natural frequency,
the more complex the form of the mode shape. The fifth mode is a torsion mode around thex-axis while
the six other modes are the successive bending modes around they-axis. Those are the usual low-frequency
modes for a beam.

In the absence of accurate information about damping, the damping ratios corresponding to the identi-
fied modes are not estimated with the finite element model. Only the experimental measurements described
in the next section can provide reliable estimates.
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(a) Mode 1.
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(b) Mode 2.
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(c) Mode 3.
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(d) Mode 4.
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(e) Mode 5.
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(f) Mode 6.
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(g) Mode 7.

FIGURE 3 - The seven first modes of vibration obtained inMATLAB.
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Before further analyzing the structure, it is checked that the finite element discretization is sufficient
to capture the dynamics of the strip up to its seventh mode. Fig. 4 shows the eigenfrequencies computed
with the MATLAB model using different numbers of elements. The different results are normalized by the
eigenfrequencies computed with 50 elements, as listed in Table 3. Although the torsion frequency (mode
5) converges slightly more slowly, it can be checked that thedifferent eigenfrequencies do not significantly
change when the number of elements is increased beyond 50,i.e. for elements of length smaller than 1 cm.
This finite element resolution is therefore considered as appropriate.
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FIGURE 4 - Natural frequencies normalized by the natural frequencies computed with 50 elements as a
function of the number of elements.
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2 Experimental modal analysis

This section presents the methodology and the main results of the experimental modal analysis of a physical
prototype of the structure. First, the main components of the measurement chain are described together with
the signal processing parameters. Then, a preliminary dataacquisition is performed in order to get a first
idea of the modal parameters of the strip. Eventually, a moredetailed data acquisition is carried out and the
modal parameters of the structure are identified.

2.1 Measurement process

Before going further in the analysis, the main components ofthe measurement chain are described. The
different signal processing parameters are also describedand justified.

The first element of the measurement chain is the tested structure described in section 1. The experi-
mental set-up is pictured in Fig. 5. The finite element analysis performed in the previous section can help to
prepare the measurement process. In the following, the focus is put on the bending modes of the structure.
There is therefore no need to consider measurement or excitation points that are not located on the central
fibre of the strip. In order to correctly represent the dynamics of the six first bending modes identified in
Fig. 3, 9 equally spaced points on the strip are considered (see Fig. 6). These points are denoted by P1 to P9
in this report.

FIGURE 5 - Experimental set-up. FIGURE 6 - Excitation and measurement points.

The data acquisition and signal processing are carried out using theLMS SCADAS Mobile acquisition
system and theLMS Test.Lab software [6]. All the modes of interest have frequencies less than 200 Hz. In
order to avoid aliasing error, a bandwidth of 400 Hz is chosen. This is justified further. In order to reach an
accuracy close to 0.1 Hz on the frequencies, 4096 spectral lines are considered.This gives an acquisition
time of 10.24 s.

8



An impact hammer is used to excite the structure. This is indeed the simplest way of obtaining the im-
pulse response functions (or equivalently the frequency response functions) required to identify the modal
properties of the structure because it does not require to attach anything to the structure, which would not
be appropriate considering the small weight of the steel strip. The hammer includes a force transducer. Its
main characteristics are given in Table 4.

Sensitivity 2.23 mV/N
Transducer type 086B03
Transducer manufacturer PCB
Serial number 5856

TABLE 4 - Characteristics of the impact hammer.

The studied structure is very light. In order to avoid any overloading of the channels, the amplitude of
the force applied has to remain relatively small. The heavy head of the hammer is therefore removed.

The impact hammer can be used with two tips of different stiffness: a steel tip and a vinyl one. For the
current application, there is no need to excite the structure at very high frequencies. The vinyl tip, which
is softer, is therefore chosen. The power spectral density of a typical impact is represented in Fig. 7. The
figure shows that the energy of the impact is well spread over all the frequencies of interest. The analysis of
the bandwidth in theLMS Test.Lab software confirms that impacts with this kind of hammer and tip do not
excite in a significant way the frequencies beyond 400 Hz. Thechoice of the tip is therefore appropriate for
the current study.
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FIGURE 7 - Power spectral density of a typical impact force.

In order to correctly capture the impact, two quantities have to be defined: the trigger level and the pre-
trigger. Those are automatically defined by theLMS Test.Lab software by analyzing and averaging several
impacts [6]. On the one hand, the acquisition is triggered when the signal on the hammer channel exceeds
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the trigger level, which is 0.1 N here. On the other hand, pretrigger determines the time prior to the trigger
condition that will be included in the acquisition. It is given by 0.1 s in the considered experimental set-up.

Because the studied structure is very light, it is importantto avoid modifying its mass by adding ac-
celerometers on it. The response (in term of velocity) of thestructure to the impacts is therefore measured
with a laser transducer whose main characteristics are given in Table 5.

Sensitivity 1000 mV/(m/s)
Transducer type MSA-400 OFV-552
Transducer manufacturer Polytec
Serial number 0110716

TABLE 5 - Characteristics of the laser transducer.

Also because of its lightness, the structure is very responsive to hammer impacts. In order to avoid any
overloading of the channels, the structure is only excited at the point closest to the bottom fixation (point P9
in Fig. 6). The laser transducer is used to measure the response at the different points P1 to P8. A roving
accelerometer technique is used to measure a row of the frequency response functions matrix.

When processing the signal, two types of errors may appear: variance and bias errors [3]. Variance
errors are due to the discrepancy between the mean of each sample and the mean of the ensemble. Such
errors can be reduced by averaging a sufficiently large number of samples. To achieve a good compromise
between the acquisition time and the accuracy of the measures, the average between three successive tests
is made. Bias errors can be separated into aliasing and leakage errors.

The LMS Test.Lab software set the sampling rateωs at a sufficiently high value to avoid aliasing [6].
In order to limit the frequency content beyondωs/2, which is folded back in the low frequency range, it is
important to avoid triggering modes with frequencies larger than 400 Hz. As stated previously, the chosen
hammer/tip combination does not excite in a significant way the frequencies beyond 400 Hz. Since the
structure is supposed to be quasi-linear, the frequency content of the response beyond 400 Hz is therefore
also small.

In order to reduce leakage errors, windowing techniques areapplied to the excitation and the response
signals. These windows force the signal to vanish at the end of the observation time and, therefore, filter
out otherwise unavoidable noise components at the end of thesignal. The forms of the windows are adapted
to the forms of the signal: a rectangular window is chosen forthe impact and an exponential one for the
response. The optimum parameters defining the windows are set by theLMS Test.Lab software by analyzing
and averaging several successive impacts [6].

2.2 Preliminary data acquisition

Before embarking upon the complete modal analysis of the strip, the analysis of the response of the structure
to a single impact is used to provide a first idea of the naturalfrequencies and damping ratio’s. As explained
previously, the structure is triggered at point P9 (see Fig.6). The measurement point must be carefully cho-
sen in order to detect all the modes identified with the finite element method. It is therefore important that
this point does not coincide with a vibration node of any bending mode. The point P2 satisfies this condition
and is therefore chosen.
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The measured frequency response function and its coherencefunction are represented in Fig. 8. The
coherence function is a good indicator of the accuracy and the repeatability of the performed impacts [5].
The values close to 1 taken by the coherence function in the whole range of interest indicates that the noise
in the measured signals is limited and that the three successive impacts are performed accurately at the same
location. As expected, the coherence function drops at low frequency and at the anti-resonance frequencies.
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FIGURE 8 - Frequency response function and coherence function corresponding to an excitation at point P9
and the measure of the response at point P2.

The measured frequency response function plotted in Fig. 8 provides a quick way of determining the
number of modes in a given bandwidth [3]. It allows to highlight the resonance peaks of the structure and,
therefore, to identify the resonance frequencies1. Six modes can be clearly seen between 0 and 200 Hz.
They correspond to the 6 bending modes identified with the finite element model. The natural frequencies
obtained by this analysis of the experimental data are givenin Table 6.

Frequency [Hz]

Bending mode 1 17.9
Bending mode 2 38.3
Bending mode 3 63.7
Bending mode 4 94.7
Bending mode 5 132.4
Bending mode 6 175.5

TABLE 6 - Eigenfrequencies obtained from the frequency response function plotted in Fig. 8.

1 When a single frequency response function is measured experimentally, theComplex Mode Indicator Function provides
exactly the same information and is therefore not implemented for the present study.
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This preliminary data acquisition can also provide estimates of the damping ratios associated to the
different modes. Two single degree of freedom methods are implemented inMATLAB: the peak-picking
method and the circle-fitting method. These two methods workin the frequency domain. Single degree of
freedom modal analysis methods may be applied when the modesare well separated in frequencies and can
therefore be analyzed separately by focusing on a given frequency bandwidth. The accuracy of the peak-
picking method and the circle-fitting method depends on the number of points that describe the resonance
peak. These methods are used here to estimate the damping ratio of the fifth bending mode, because the
related peak is the most accurately described in the measured FRF. Similar results can be obtained for the
other modes of the structure.

The peak-picking method is illustrated in Fig. 9 [5]. In thisfigure, the peak corresponding to the fifth
bending mode is isolated. The Bode plot of the FRF amplitude is used to detect the maximum response and
the half-power points. The modal damping is evaluated by

ζ ≃
∆ f
2 f

, (1)

where∆ f is the frequency bandwidth between the half-power points and f is the natural frequency of the
mode (see Fig. 9). A damping ratio of 0.09% is found.
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FIGURE 9 - Peak-picking method. Close-up on the fifth bending mode.

The circle-fit method is illustrated in Fig. 10 and is based onthe circular nature of the Nyquist plot of
the FRF when viscous damping is assumed and when the FRF is expressed in its mobility form [5]. The
modal damping associated to modek can be expressed by

ζk =
f 2
a − f 2

b

2 fk( fa tan(θa/2)+ fb tan(θb/2))
, (2)

where fk is the natural frequency of the mode,fa/ fb are frequencies close tofk around the circle andθa/θb

are the corresponding angles measured with respect to the radius of the cercle associated to the resonance
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frequency. An example of these parameters is shown in Fig. 10. Taking different values forfa and fb allows
to evaluate the scatter between the different estimates of the modal damping (see Fig. 11). The mean value
of the differentζ computed is equal to 0.096% and is therefore in good agreement with the results of the
peak-picking method.
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FIGURE 10 - Circle-fit method (fifth bending mode).
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In order to check the linearity of the structure, a second test is performed by switching the excitation
and the measurement points. The structure is therefore excited at point P2 and the response is measured at
point P9. Notice that the point P2 is sufficiently close to thetop fixation of the strip to avoid overloading of
the channels (Fig. 6). The norms of the two FRF are plotted in Fig. 12. The curves are in good agreement
except at low frequencies where data suffer from noise, as already shown by the coherence function in
Fig. 8. Fig. 12 shows that the reciprocity principle is verified and that the assumption of linearity is therefore
justified.
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FIGURE 12 - Illustration of the reciprocity principle.

2.3 Identification process

A more detailed data acquisition is performed on the strip. The structure is excited at point P9 (see Fig. 6)
and the response is successively measured at each of the other points. The values given to the various
parameters used for the acquisition have already been givenand justified in section 2.1. Using the measure-
ment data, it is then possible to extract the modal parameters of the structure. On the one hand, the natural
frequenciesfr and damping ratio’sζr are obtained using theLeast Square Complex Exponential (LSCE)
method. On the other hand, the mode shapeszr are computed with theLeast Square Frequency Domain
(LSFD) method.

The LSCE method, introduced in 1979 by Brown et al. [2], worksin the time domain and requires ex-
perimental measurements in the form of impulse response functions (IRF). The impulse responses functions
are not directly given by theLMS Test.Lab software but are easily obtained by taking the inverse Fourier
transform of the transfer functions.

An important issue of many identification techniques is the selection of the model order. The stabiliza-
tion diagram allows to distinguish real modes from spuriousmodes. In Fig. 13, a mode is considered as
“stabilized in frequency” (green marker) if its frequency differs by less than 0.1 Hz from a mode identified
with the previous order. A mode is considered as “stabilizedin frequency and damping” (blue marker) if it
is stabilized in frequency and if its damping ratio differs by less than 0.01 % from the mode identified at this
frequency at the previous order. If the mode is not stabilized in frequency, it is classified as “unstabilized”
and represented by a red marker. The six modes correspondingto the peaks of the mean frequency response
function (represented in gray in the figure) are clearly identified, even if the fourth and the sixth are more
difficult to stabilize. Another mode is identified at 100.2 Hz. This corresponds to the torsion mode of the
structure. Because the excitation and measurement points are not perfectly on the central fibre of the strip,
the torsion of the strip is also excited during the tests.
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FIGURE 13 - Stabilization diagram of the LSCE method. The gray curverepresents the mean frequency
response function.

The eigenfrequencies and damping ratio’s obtained by identification with the LSCE method are given
in Table 7. It should be noted that identification methods arealso directly implemented in theLMS Test.Lab
software. The natural frequencies and damping ratio’s obtained with thePolyreference Least-Squares Com-
plex Frequency-Domain (PolyMAX) method are also listed in Table 7. A good agreementis observed
between the two sets of results and gives confident in theMATLAB implementation of the LSCE method.
This table shows that the damping in the structure is really light. The fourth and sixth bending modes
have a modal damping larger than the other modes. These results can be compared with the results of the
preliminary data acquisition described in section 2.2. On the one hand, the natural frequencies identified
with the single frequency response measured (Fig. 8) are close to the frequencies of the table. On the other
hand, it can also be checked that the valueζ = 0.09−0.10 % obtained for the fifth bending mode with the
peak-picking method and the circle-fit method is a good estimate of the damping ratio.

Frequency [Hz] Frequency [Hz] Damping ratio [%] Damping ratio [%]
LSCE PolyMAX LSCE PolyMAX

Bending mode 1 17.8 17.8 0.06 0.06
Bending mode 2 38.5 38.4 0.03 0.05
Bending mode 3 63.8 63.7 0.08 0.06
Bending mode 4 94.7 94.8 0.20 0.20
Bending mode 5 132.5 132.5 0.08 0.10
Bending mode 6 175.9 176.2 0.21 0.25

TABLE 7 - Comparison of the eigenfrequencies and damping ratio’s obtained with the LSCE method
implemented inMATLAB and the PolyMAX method implemented in theLMS Test.Lab software.
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The companion method LSFD is implemented to identify the mode shapes of the structure. Unlike the
LSCE method, the LSFD method works in the frequency domain [5]. This method takes advantage of the
previous knowledge of the natural frequencies and damping ratio’s identified with the LSCE method (see
Table 7).

The modes extracted with this method are complex. However, because the identified damping ratio’s are
small, one can expect that the different degrees of freedom of the structure vibrate in phase. The complexity
of the mode shapes is assessed with the Argand diagram. Fig. 14 represents the Argand diagrams of the
six bending modes identified with the LSFD method. It is checked in this figure that all the nodes of the
structure vibrate in phase in the different mode shapes. Thereal bending modes extracted from the complex
ones are represented in Fig. 15.
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(f) Bending mode 6.

FIGURE 14 - Argand diagrams of the six first bending modes.
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(b) Second bending mode.
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(c) Third bending mode.
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(d) Fourth bending mode.
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(e) Fifth bending mode.
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(f) Sixth bending mode.

FIGURE 15 - The six first bending modes of vibration identified with the LSFD method (in red) compared
to the modes obtained with the finite element method (in blue).

Three tools are commonly used in industry in order to check that the modes are physical and, therefore,
that the order is correctly selected [6].

i. The first check is provided by a visual inspection of the modes. At low frequencies, the simplest
modes must be observed. This is the case here: the first modes identified correspond to the usual first
bending modes of a beam.

ii. Then, the frequency response function rebuilt from the identified modal parameters has to match the
measured frequency response function. Fig. 16 represents the frequency response function related
to an excitation at point P9 and a response at point P3. The figure allows to compare the measured
FRF with the FRF synthesized from the identified poles and modes. A good agreement is observed
between the two FRF, which gives confidence in the identification process.

iii. Eventually, the different mode shapes must be independent. This is checked with the auto-MAC
matrix represented in Fig. 17. Because all the out-of-diagonal terms are close to 0, the modes are
indeed independent.
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FIGURE 16 - Comparison of the synthesized and measured frequency response functions.
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FIGURE 17 - Auto-MAC matrix of the experimental bending modes.
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3 Comparison between numerical and experimental results

At this stage of the study, two sets of modal parameters are available. On the one hand, estimates of the
natural frequencies and mode shapes of the strip have been obtained in section 1 based on finite element
models. On the other hand, a second set of modal parameters (natural frequencies, modal damping and mode
shapes) comes from the experimental modal analysis performed in section 2. In the first part of this section,
the two sets of modal parameters are compared. Then, the finite element is updated in order to reduce the
discrepancies between the results of the theoretical and experimental modal analyses, in agreement with the
methodology set in Fig. 1.

3.1 Correlation

The results obtained with theMATLAB finite element model and with the experimental modal analysis are
summarized in Table 8. The natural frequencies obtained with the initial finite element models systemati-
cally overestimate the corresponding natural frequenciesidentified with the experimental analysis by 3-5 %,
which is clearly not acceptable.

Frequency [Hz] Frequency [Hz] Relative error
TMA EMA [%]

Bending mode 1 18.4 17.8 3.4
Bending mode 2 39.8 38.5 3.4
Bending mode 3 66.1 63.8 3.6
Bending mode 4 98.7 94.7 4.2
Bending mode 5 137.9 132.5 4.1
Bending mode 6 184.2 175.9 4.7

TABLE 8 - Comparison of the eigenfrequencies obtained from theoretical (TMA, initial model) and
experimental (EMA) modal analyses.

Visually, the two sets of mode shapes are in good agreement (see Fig. 3 and 15). They correspond to the
successive bending modes of the strip. The Modal Assurance Criterion (MAC) can be used to quantify the
correlation between the two sets of modes [3]. The MAC computed between modei of the first familyψ1

(i)

and modej of the secondψ2
( j) is given by

MAC(ψ1
(i),ψ

2
( j)) =





ψ1
(i)

T ψ2
( j)

||ψ2
( j)|| · ||ψ

2
( j)||





2

. (3)

The MAC matrix based on the two sets of modes available is represented in Fig. 18. The close-to-one values
of its diagonal elements and the negligible values of its out-of-diagonal elements confirm the correlation
observed previously.

In conclusion, despite the high correlation between the mode shapes, a model updating is required to
decrease the relative errors between the natural frequencies.

3.2 Model updating

The poor agreement can result from a bad experimental analysis or from modeling errors and uncertainties.
It has been shown in the previous section that the measurement process is performed in a rigorous way and
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FIGURE 18 - MAC matrix between the numerical modes (initial model) and the experimental modes.

that the choice of the measurement coordinates is justified.Moreover, the modal identification gives the
same results as thePolyMAX identification method implemented directly in theLMS Test.Lab software. It is
therefore argued that it is the finite element modeling of thestructure that must be improved.

The inaccuracies in the finite element modeling come from three main sources. In the following, the
modeling uncertainties about physical and geometrical parameters and the discretization and approximation
errors are successively considered.

In order to identify possible errors on the geometry of the structure, new measurements of the dimen-
sions of the structure are done. Two 30 cm samples of the steelstrip are weighted to correct the steel density.
The pre-stress mass is also precisely weighted. Eventually, a tensile test is performed on the two samples of
the strip to revise the estimate of the Young’s modulus. The corresponding updated values of the geometrical
and material properties are listed in Tables 9 and 10.

Parameter Symbol Value Units

Length l 50.1 cm
Width w 25 mm
Thickness t 0.4 mm
Pre-stress mass m 1.816 kg

TABLE 9 - Geometrical properties of the steel structure (corrected).

While errors can be introduced by the process of discretization, it was shown in the first section that the
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Parameter Symbol Value Units

Density ρ 7,767 kg/m3

Young’s modulus E 2.06 GPa
Poisson’s ratio ν 0.33 [-]

TABLE 10 - Material properties of the steel structure (corrected).

number of finite elements used in the numerical models is sufficient to capture the dynamics of the problem.
Refining the mesh does not lead to any significant change in thenatural frequencies.

The approximation errors are related to assumptions about the physics of the model. Here, the natural
frequencies obtained with the model are slightly higher than the experimental ones. The model is therefore
too rigid with respect to reality. This can be ascribed to thechoice of the boundary conditions in the initial
model described in section 1. Perfect clamping is a mathematical idealization that never exists in practice.
It is impossible to completely prevent any rotation about the y-axis at the fixations of the strip (see Fig. 2).
The finite element model is therefore corrected by introducing a stiffness in rotation about they-axis at both
ends of the strip. To simplify the analysis, the stiffness coefficient is supposed to be the same on both sides.
The rigidity of the clamping is determined in such a way that it minimizes the error (in a least-square sense)
between the natural frequencies coming from the numerical and the experimental modal analyses. Fig. 19
represents the global error as a function of the stiffness inrotationk. A optimum value ofk = 3.83 Nm/rad
is found.
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FIGURE 19 - Global error on the natural frequencies as a function of the stiffness in rotation.

Table 11 shows the natural frequencies computed after updating of the finite element model,i.e. after
correction of the material/geometrical properties of the strip and modification of the boundary conditions.
These frequencies can be compared with the experimental frequencies and show now relative errors less
than 0.2%.
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Frequency [Hz] Frequency [Hz] Relative error
TMA EMA [%]

Bending mode 1 17.8 17.8 0.1
Bending mode 2 38.5 38.5 0.1
Bending mode 3 63.7 63.8 0.1
Bending mode 4 94.8 94.7 0.1
Bending mode 5 132.2 132.5 0.2
Bending mode 6 176.3 175.9 0.2

TABLE 11 - Comparison of the eigenfrequencies obtained from theoretical (TMA, after updating of the
model) and experimental (EMA) modal analyses.

One can also check in Fig. 20 that the adjustment of the model does not have any detrimental effect on
the correlation between the numerical and experimental mode shapes. The out-of-diagonal terms are really
close to 0 while the diagonal terms vary between 0.96 and 0.99.
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FIGURE 20 - MAC matrix between the numerical modes (corrected model) and the experimental modes.
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Conclusion

Throughout this project, several theoretical and experimental aspects of modal analysis have been addressed
in order to study a pre-stressed steel strip. The modal analysis theory relies on two main assumptions: lin-
earity and time invariance of the structure.

As a first step, finite element models of the strip have been built in MATLAB andSAMCEF Field. They
have been used to carry out the theoretical modal analysis ofthe structure and to identify a first set of modal
parameters (natural frequencies and mode shapes) related to the six first bending mode of the strip and the
first torsion mode. Because models are always synonymous with approximations and uncertainties, they
must be validated against experimental data. Testing of thereal structure and identification methods have
allowed to extract the real modal parameters of the strip. First, a single measured frequency response func-
tion has provided a quick way of determining the number of modes in the studied frequency bandwidth.
Two one-degree of freedom methods, namely thePeak-Picking method and theCircle-Fit method, have
provided first estimates of the damping ratio’s. Then, theLeast Square Complex Exponential and Least
Square Frequency Domain methods have been used to identify in an accurate way the modal parameters of
the structure. Experimental modal analysis has also allowed to get a much better knowledge of the modal
damping. Eventually, the finite element model has been updated in order to represent in a much more accu-
rate way the real structure and, in particular, its modal characteristics.

This reliable finite element model can now be used to study thedynamics of the real structure in a
much faster and more flexible way than through experimental measurements. Contrary to experimental
measurements, which only provide information about a limited number of points on the structure, the finite
element model can describe the whole structure. Moreover, it allows to assess the impact of changes in
geometrical and material properties without the need to build a new prototype.
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