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ABSTRACT

EXPERIMENTAL APPLICATIONS OF MODAL DECOMPOSITION
METHODS TO A NONUNIFORM BEAM

By

Rickey A Caldwell Jr.

The goal of this research is to compute the mode shapes and in some cases the natural

frequencies of a lightly damped freely vibrating nonuniform beam using sensed outputs, via

accelerometers. The methods applied are reduced-ordered mass weighted proper decom-

position (RMPOD), state variable modal decomposition (SVMD) and smooth orthogonal

decomposition (SOD). A permutation of input impulse magnitudes, input locations, signal

length, and acceleration, velocity, displacement ensembles were used in the RMPOD decom-

position to gain some experience regarding the effects of input parameters and signal types

on modal estimations. An analytical approximation to the modal solution of the Euler-

Bernoulli beam equation is developed for nonuniform beams. In the case of RMPOD the

theory is pushed into the experimental realm. For SVMD and SOD the science is also ex-

tended into the experimental realm and is additionally applied to nonuniform beams. The

results of this thesis are as follows: the analytical approximation accurately predicted the

mode shapes of the nonuniform beam and can accurately predict frequencies if the correct

material properties are used in the computations. RMPOD extracted accurate approxima-

tions to the first three linear normal modes (LNMs) of the thin lightly damped nonuniform

beam. SVMD and SOD extracted both the natural frequencies and mode shapes for the first

four modes of the thin lightly damped nonuniform beam.
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Chapter 1

Introduction

For beams freely vibrating in their linear elastic range with small amplitudes and known

initial and boundary conditions, it is effective to describe the beam’s dynamics using its mode

shapes, natural frequencies, and modal damping. Generally the calculus of this information

is derived from the Euler-Bernoulli beam equations or more generally the Timoshenko beam

equation. The most significant difference between the two beam theories is that Timoshenko

beam theory allows for warping of the cross sections and shear stress in the cross sections,

and Euler-Bernoulli beam theory assumes that deformations occur in bending only and that

cross-sections remain plane. In order to derive the dynamics from these beam theories one

needs the material properties such as mass per unit length, Young’s modulus, Possion’s ratio,

and geometry information such as the area moment of inertia of the cross section. If one

considers discrete mass systems such as mass-spring-dashpot systems, then the mass, spring,

and damping matrices must be known. In both of these cases, continuous beam and discrete

mass systems, one needs to know the material properties and the geometry to compute the

mode shapes and natural frequencies which can then be used to compute the dynamics of
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the beam, such as displacement, velocity, and acceleration.

The focus of the thesis is on decomposition methods where an engineer could capture dis-

placement time histories or its derivatives and use that information to find the mode shapes,

and in certain cases, the natural frequencies and modal damping coefficients. In particular

the focus lies in experimentally applying reduced-order mass weighted proper orthogonal

decomposition (RMPOD), state variable modal decomposition (SVMD), and smooth or-

thogonal decomposition (SOD) to a thin lightly damped freely vibrating nonuniform beam.

In applying RMPOD a permutation of several experimental parameters were taken to find

which conditions would yield the best mode shape estimates, when compared to the mode

shapes produced by the analytical approximation. In the case of SVMD and SOD, these

decomposition methods were applied to a nonuniform experimental beam for the first time

and were able to extract frequency and mode shape information.

1.1 Background

Often in engineering practice, the need to know modal parameters is of great importance.

Examples include the rattling of dashboard components; payload survival of a rocket; civil

engineering structures, such as bridges; and architectural structures, such as skyscrapers.

Vibrations in these examples can be caused from numerous things. In the dashboard example,

vibrations are caused by the engine and the rolling of the tires on the road. In rockets,

vibrations are caused by combustion and aero-elastic forces. Finally, in civil and architectural

structures, vibrations are caused by man-made forcing, such as machinery, natural forcing,

such as wind and earth quakes; or a combination of both. To determine the modal parameters

of these structures, one needs to perform a modal analysis.
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Linear modal analysis will yield three parameters: damping, natural frequencies, and

mode shapes. Damping, when positive, is a means to take energy from the system, and

damping always exists in natural systems, albeit minuscule in some cases [1]. Positive damp-

ing causes the amplitude of displacement of a freely vibrating object to diminish over time

[1]. In the figure below, damping causes the vibrations to decay. Damping also limits the

amplitude of oscillations during a phenomenon called resonance, which is related to the

natural frequency and forcing.

Figure 1.1: Effects of damping on free vibrations.

The natural frequencies are the frequencies in which an unforced, undamped system will

vibrate. For a single degree of freedom (SDOF) system there will be one frequency ωn. For

multiple degrees of freedom or distributed parameter systems, such as a continuous beam,

there are several to infinitely many natural frequencies [2]. The beam free vibration can

include all of the natural frequencies simultaneously, and often the higher frequencies decay

more quickly than the lower frequencies. Towards the end of the oscillations, the beam will
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vibrate primarily at one frequency (typically the lowest called the fundamental frequency)

[2].

When an object is being forced with harmonic excitation or random excitation and the

frequency of the excitation approaches the natural frequency, a large magnification in the

oscillation amplitudes will be observed. This is called resonance. For a single degree of

freedom, the displacement amplitudes at resonance namely when the forcing frequency ω

equals the undamped natural frequency ωn is X =
F0
cωn

where c is the damping coefficient,

and F0 is the amplitude of forcing. One can see from the equation that as c approaches

zero the displacement amplitude, X, approaches infinity, and as c approaches infinity, X

approaches zero. In a MDOF (multiple degree of freedom) or distributed parameter system,

for each natural frequency or modal frequency, there exists a corresponding characteristic

deflection called a mode shape. The lowest natural frequency is called the fundamental

frequency and the corresponding mode shape is called the fundamental mode [2]. The second

lowest natural frequency and mode shape are called the second natural frequency and the

second mode. The same holds for the third, fourth, fifth, and so on. Usually only the first

five or so natural frequencies or modes have significance in engineering practice.

Mode shapes, specifically linear normal modes, describe characteristic shapes of oscilla-

tions, where each point in the system vibrates harmonically, and all the points go through

zero and extreme values simultaneously. This is called synchronous oscillation. Modes shapes

represent topographical information with regard to deflections.

Damping, natural frequencies, and mode shapes collectively characterize many natural

systems. In structures, such as bridges, this information will indicate how the bridges will

behave under most conditions. If designed correctly, the bridge can handle many different
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types of vehicles, earthquakes, and wind loads. However, if the bridge is designed without

these factors in mind, disaster may occur. One such infamous bridge is the Tacoma Narrows

Bridge, which high winds had aerodynamic instability that created negative damping and

led to the self excitation of a torsional mode of a a bridge section at .2 Hz. The excitation of

the torsional mode caused the bridge to oscillate until it fell apart [3]. Eventually, the bridge

was redesigned to withstand its wind load using the information from a modal analysis [3].

There are two types of modal analysis scenarios: analytical and experimental.

1.1.1 Analytical Modal Analysis

To compute the modal parameters analytically, the governing equations of motion must be

derived from the laws of physics. In linear, time-invariant systems, seeking a synchronous

motion solution gives rise to an eigensystem equation which, when solved, provides modal

information. The following simple example illustrates the analytical method.

Figure 1.2: Mass-spring-dashpot (MSD) system.

For an undamped mass spring system like that illustrated in Fig 1.2 the governing equa-

tions take the form.
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Mẍ + Cẋ + Kx = 0 (1.1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and x

and its derivatives are acceleration, velocity, and displacement vectors. Often the damping

matrix can be assumed to be proportional to the mass and stiffness matrix such that C =

αM + βK. In this case, the mode shapes of the undamped system also represent those

of the damped system. We continue with the analysis for the system with c = 0. A

trial solution of x = φ expiωt is plugged in for x which leads to the generalized eigenvalue

problem [−ω2M + K]φ = 0. A solution is φ = 0; but this is a trivial solution. To enable

nontrivial solutions, the determinant of [−ω2M + K] is set equal to zero and solved for ω.

The roots ω2
i of the characteristic equation are called eigenvalues and the corresponding

φ of each eigenvalue is called the eigenvector, and they satisfy the relationship Bv = λv.

Where B = M−1K, v = φ, and λ = ω2. Using these parameters and superposition the

displacements of all masses are:

x =
∑
i

ciφ sin(ωit+ ψi) (1.2)

where ci and ψi are based on the initial conditions. It can be easily seen from the above

equation that the eigenvector controls the shape of oscillation of each sinusoid and the square

root of the eigenvalue controls the frequency of oscillation.

In this particular example, damping was assumed to be zero (i.e. the system is operated in

a vacuum and friction is ignored). Although this is a discrete system, similar methodologies
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are known for continuous systems, such as a cantilevered beam which is illustrated by an

example next.

The Euler-Bernoulli equation for an unforced uniform beam with boundary conditions

corresponding to a cantilevered beam is:

m(x)ÿ +
d2

dx2
[EI(x)

d2u

dx2
] = 0 (1.3)

y(0, t) = 0

d

dx
[y(0, t)] = 0

d2

dx2
[EI(x)y(L, t)] = 0

d3

dx3
[EI(x)y(L, t)] = 0

In the equation x is the axial coordinate, m(x) is the mass per unit length, E is the

Young’s modulus, I(x) is the area moment of inertia of the cross section and y = y(x, t) is

the transverse displacement. This is a partial differential boundary value problem and can

be solved using the method of separation of variables. Plugging y = X(x)Γ(t) leads to two

equations: one in the spatial variable X(x) and the other in time Γ(t). The time equation

leads to the eigenvalues and the natural frequencies of the system such that ωn = β2
n

√
EI

ρ
,

where ωn is the natural frequency. βn are values that satisfy the following equation, 1 +

cos(βn) cosh(βn) = 0 based on boundary conditions listed above. The spatial variable leads

to the generalized eigenfunction X(x) = A cosh(βx) + B sinh(βx) + C cos(βx) + D sin(βx).

The values of the the constants A,B,C, and D depend on the boundary conditions [2, 4].
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1.1.2 Experimental Test Modal Analysis

Experimental modal analysis can be categorized in two ways: input-based where forcing

is measured [5, 6]; and output-only, when only displacements, velocities, accelerations, or

stresses are measured. Both types of methods have their own particular advantages. Input

methods systems can fall into several different categories, including single input single output

(SISO). In SISO systems, a single sensor is used at one location and a known or measured

input, such as an impact hammer, is applied at one location. With SISO “modal analysis”,

modes cannot be determined; only natural frequencies, which is achieved by computing

a fast Fourier transform on the vibration signal. Single input multiple output (SIMO)

systems use multiple sensors and single measured input at one location. Other configurations

exist for different testing needs. The process is the same; input measurements and output

measurements are used to create a frequency response function, which is then used to gather

the modal information [1].

Output-only modal analysis only uses outputs (e.g. displacements, velocities, accelera-

tions, or stresses) to determine the modal information. This is useful when inputs cannot be

recreated in the lab environment or they are unknown and cannot be measured. Other ben-

efits include the avoidance of frequency response functions and long and cumbersome testing

procedures [7]. Output-based modal analysis can be classified as time-based or frequency-

based. The latter is very common in many engineering systems, e.g. in the Laplace domain

in control systems. Some examples of time domain methods include the eigensystem re-

alization algorithm [8], Ibrahim time domain method [9], independent component analysis

[10, 11], and polyreference method [12]. Examples of frequency-based methods are orthog-

onal polynomial methods [13, 14], complex mode indicator function [15], and frequency
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domain decomposition [16]. The methods that will be explored in this body of work are

based on the time domain and are extensions of proper orthogonal decomposition. They

include mass weighted proper decomposition, reduced-ordered mass weighted proper decom-

position, smooth orthogonal decomposition, and state-variable modal decomposition. The

outputs used will be displacements, velocities, and accelerations. Accelerometers were used

for sensing.

1.2 Thesis Preview and Contribution

The thesis starts with Chapter Two which covers the beam experiment. This chapter de-

scribes the experimental setup, equipment used, procedures employed and the data process-

ing. The goal of this chapter is to provide information on the data collection process.

From this point each chapter is written as a “stand-alone” module with its own de-

velopment and conclusion. Chapter Three introduces the analytical approximation. The

mathematical framework for the analytical approximation is reviewed in Section Two. The

final section of Chapter Three ends with an example problem. Now that a method of compar-

ison has been established the thesis moves on to the decomposition methods. Chapter Four

presents the modal decomposition methods and starts with an introduction of output-only

decomposition methods and proper orthogonal decomposition (POD). The first decomposi-

tion method introduced in this thesis is reduced-order mass weighted proper decomposition

(RMPOD) and it is motivated from the shortcomings of POD. These shortcomings are abated

by the use of a reduced-order mass matrix which is discussed next. Once the mathematical

elements of RMPOD and the mass matrix are covered Section Two ends with a discussion

of the experimental results when RMPOD was applied to the data. Section Three presents
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SVMD and starts with a background of SVMD, followed by a summary of the mathematical

development of SVMD. This section is concluded with the results of applying SVMD to the

experimental beam and how this contributes the current scholarship. The last decomposition

method applied in the thesis is the smooth orthogonal decomposition (SOD). Section Four

starts with a background of SOD and compares it to POD. This section points to the work

of Chelidze et. al. [17]. This is followed by a summary of the mathematical development

of SOD. The next two subsections present the results of using SOD on the experimental

data, and how this research contributes to the scholarship. Section Five juxtaposes each of

these decompositions methods to each other. In the final chapter, Chapter Five concisely

summarizes the conclusions reached in this research.

The contribution of this work to the scholarship primarily consists of the application of

recently developed modal analysis methods to a nonuniform beam and taking prior simula-

tions and theory in RMPOD, SVMD, and SOD to experimental applications. One example

is in Yadalam et. al [18], where a rod modeled as an exponential horn is used in simulations

to show that the eigenvectors of RMPOD are approximations of LNMs. This is done ex-

perimentally in this body of work by means of a nonuniform beam experiment. Additional

studies include the application of a higher order derivative ensemble matrix, and the devel-

opment of a testing procedure to extract “best practice methodologies” that yielded the best

possible approximation to LNMs.
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Chapter 2

Beam Experiment

2.1 Overview

Free vibration experiments were conducted on a tapered cantilevered beam. In the exper-

iment a Buck Bros. tapered saw blade served as the nonuniform beam. This beam was

sensed with eleven accelerometers. Specific details of the experimental setup are described

in the next section. There were several experimental runs in which different experimental

parameters were varied in order to gain insight on their effects on the predictions of RMPOD,

SVMD, and SOD. The following sections outline the equipment used, how the equipment

was configured, the data acquisition process, and the data processing.
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2.2 Experimental Setup and Procedure

The saw blade handle was removed and additional holes were punched in the blade for

mounting purposes. The blade was cleaned with soap, water, and a scrubbing pad to remove

any oil and dirt. Next, the beam was marked and hatched to indicate the cantilevered end

and the area to be clamped by the steel retaining blocks. The beam was clamped in a fixture

such that the length was 11.5 inches. The width was 3.5 inches at the clamped end; tapering

from 3.5 inches at a location of 1.78 inches from the clamp, to 0.80 inches at the free end.

The beam was clamped such that the midline of the taper was horizontal, and the flexure of

the beam was in the horizontal plane.

Accelerometers were placed at one inch intervals at the midpoint of the width starting

one inch from the clamped end and progressing to the free end. Each accelerometer was

attached to the beam using wax. Details of the attachment locations are given in Table 2.1

and shown in Figure 2.1.

Blade Width at Sensor Locations
Sensor Location Beam Width (inches)

1 3.50
2 3.40
3 3.10
4 2.82
5 2.57
6 2.30
7 2.02
8 1.75
9 1.48
10 1.2
11 0.9

Table 2.1: Beam width at sensor locations.

Accelerometer calibration data are shown in Table 2.3. The sensors were plugged into

12



Figure 2.1: Experimental beam.

the PCB Piezotronics Model Series 481 signal conditioner and each channel had a gain of 10.

The first sensor at x = 1 inch was plugged into channel 1, and the second sensor was plugged

into channel 2, etc. The signals were then sent to the TEAC Integrated Data Recorder, which

had a built-in filter. The sampling rate was 5000 Hz. The built-in filter was set as a 2000

Hz low-pass filter to prevent aliasing. The highest frequency of interest was 700 Hz. A fast

Fourier transform (FFT) of any of the acceleration signals during free vibration revealed the

following natural frequencies: 8.45 Hz, 40.28 Hz, 107.4 Hz, 205.1 Hz, 498 Hz, and 677.5 Hz.

After the data was acquired it was viewed with TEAC GX-View software. This data was

saved in ASCII format and exported to Matlab for data processing. The path of the signal

was accelerometer, signal conditioner, data recorder, and finally to storage in an ASCII .txt

file. An equipment list is included in Table 2.2. All data acquisition equipment was turned

on for five minutes prior to any data collection to allow any possible transients to die out.

After the equipment had “warmed-up” the experiment was started.

The beam was lightly tapped with an impact hammer such that resulting oscillations

produced voltages less than ±1V for each accelerometer, and again with an output of less
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than ±5V for each accelerometer. The beam was struck at locations x = 2, x = 6, and

x = 11 inches from the cantilevered end.

Equipment List
Signal Conditioner PCB Piezotronics Model Series 481
Data Recorder TEAC Integrated Recorder GX-1
Attachment Medium Wax
Beam Buck Bros. saw blade
Accelerometers PCB Accelerometers model 352B10 (11)

Cantilever Beam Rig

Table 2.2: Equipment list.

2.3 Additional Data Processing

The resulting accelerations were recorded and imported into MathWorks’ Matlab. In Matlab

further signal processing was performed. The data was truncated so that data prior to the

impact were removed. The data was inspected to ensure that the maximum and minimum

values of the oscillations were not saturated. The raw acceleration data was converted into

in

sec2
using the conversion factors in Table 2.3. The means of the acceleration signal were

removed. Since the accelerometers had phase distortions near 8 Hz, a high-pass filter was

used with a cutoff frequency of 20 Hz. Filtering was done using Matlab’s “lsim” function

with the acceleration data as input to the transfer function

G(s) =
s2

s2 + 20π
√

2s+ (20π)2
. (2.1)

This attenuated the first mode and consequently removed the first mode from the results of

the decomposition methods. Within Matlab the mean of each signal was again subtracted.

The signal was passed through this second-order high-pass filter twice: once forward and
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the second time backwards, to correct the phase shifting that resulted from filtering. The

signal was then integrated using the “cumtrapz” function in Matlab, which approximates

the integral using the trapezoid rule. One iteration of this process yielded velocities. The

filtering and integration process was repeated again to produce displacements. Accelerations,

velocities, and displacements were used to create ensemble matrices for RMPOD, SVMD,

and SOD.

All results shown in this thesis used the following input parameters: a small impulse (as

defined earlier in this chapter), the beam was struck at x = 2 inches, and a sample window

of t = [1/4Ls 1/2Ls] where Ls is the signal length, was used.

Accelerometer Calibration Data

Sensor Location Serial Number
mV
m
s2

mV

g

1 106257 1.044 10.24
2 94899 1.038 10.16
3 106264 1.041 9.95
4 106241 1.030 10.10
5 94860 1.063 10.43
6 94858 1.022 10.02
7 94861 1.051 10.31
8 94863 1.036 10.61
9 94905 1.059 10.39
10 94906 1.054 10.33
11 106273 1.028 10.08

Table 2.3: Accelerometer calibration data.
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Chapter 3

Analytical Approximation

3.1 Motivation

As the experimental modal analysis results were obtained, the need to compare them to

analytical modal parameters became necessary. Using the uniform Euler-Bernoulli beam

equation was not adequate because one of the assumptions of the model is constant cross-

sectional area. An analytical approximation to the nonuniform Euler-Bernoulli beam was

developed and is outlined in this chapter.

3.2 Development

Since the experimental beam is a thin, lightly damped, freely vibrating beam, the govern-

ing equation can be described by the following partial differential equation and boundary
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conditions:

m(x)ÿ(x, t) +
d2

dx2
[EI(x)

d2

dx2
y(x, t)] = 0 (3.1)

y(0, t) = 0

d

dx
[y(0, t)] = 0

d2

dx2
[EI(x)y(L, t)] = 0

d3

dx3
[EI(x)y(L, t)] = 0

It is prudent to note that the equation (3.1) was derived assuming that bending alone

contributes to the strain energy and shear is neglected. Additionally, the contribution of

the mass moment of inertia to the kinetic energy is ignored. Letting y(x, t) = Γ(t)u(x) and

inserting into the governing partial differential equation (3.1) leads to the following sequence

of expressions:

m(x)Γ̈(t)u(x) + (EI(x)u′′(x)Γ(t))′′ = 0

m(x)Γ̈(t)u(x) + Γ(t)(EI(x)u′′(x))′′ = 0

m(x)Γ̈(t)u(x) = −Γ(t)(EI(x)u′′(x))′′

Γ̈(t)

Γ(t)
= −

(
EI(x)u′′(x)

)′′
u(x)m(x)
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The last expression is true only if both sides of the equation are equal to some constant, say

β, which is defined as β = −ω2. Then:

Γ̈(t)

Γ(t)
= −ω2 (time equation)

(EI(x)u′′(x))′′ = ω2u(x)m(x) (spatial equation) (3.2)

Equation (3.2) with its boundary conditions, u(0) = 0, u′(0) = 0, [EI(x)u(L)]′′ = 0, and [EI(u(L)]′′′ =

0 is a differential eigenvalue problem. In the uniform case EI(x) and m(x) are constants,

and equation (3.2) can be solved to obtain modes shapes and frequencies. However, in the

nonuniform case, equation (3.2) is difficult, if not impossible, to solve in closed form. As such,

we use an assumed mode analysis to estimate mode shapes and frequencies as described next.

We first discretize equation (3.1) by approximating y(x, t) ∼=
n∑
i=1

qi(t)ui(x), where ui(x) are

appropriately normalized assumed modal functions and qi(t) are the assumed modal coordi-

nates. Then inserting into equation (3.1), multiplying (3.1) by uj(x), and integrating over

the length leads to

Mq̈ + Kq = 0. (3.3)

where q = [q1(t) · · · qn(t)]T and where elements mij of M and kij of K are

mij =

∫ L

0
m(x)ui(x)uj(x) dx

(3.4)

kij =

∫ L

0
EI(x)u′′i (x)u′′j (x) dx
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The discretization of y(x, t) can be expressed as y ∼= Uq. As such, the elements of y

are yi = y(xi, t)
∼=

n∑
j=1

uj(xi)qj(t). We can assume that there exists a discretized system of

equations that approximate the original PDE as

M̂ÿ + K̂y = 0, (3.5)

such that the system matrices of (3.3) and (3.5) are related by M = UT M̂U and K =

UT K̂U. Assuming synchronous motion, such that q(t) = vr(t), then Mq̈ + Kq = 0 leads

to an eigenvalue problem,

µMv = Kv. (3.6)

Solving this eigenvalue problems leads to estimates µi ≈ ω2
i of the modal frequencies of

the beam model, and a modal matrix V for the system (3.3). Applying the transformation

q = Vr diagonalizes the equations (3.3). Remembering that y = Uq and subbing q = Vr

into that equation, the following is derived: y = UVr. Therefore y = UVr transforms (3.5)

in original coordinates, to the diagonal system in r. Then the discretized mode shapes are

approximated by the columns of the new modal matrix UV.

In application, a matrix U is created such that U = [u1 u2 · · · uM ] where ui’s are

the discretized assumed modal functions. We then build the associated mass and stiffness

matrices M and K. Matrix V is created such that V = [v2 · · · vm] where vi’s are

from the resulting eigensystem. Then, the discretized LNMs for the nonuniform beam are

approximated as columns of UV. This is demonstrated in the following example founded in

the next section.
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Material Property Value

Young’s Modulus (E) 190× 109 Pascals

Density (ρ) 7035
kg

m3
Height (h) 0.00066 m

Width (w)
0.08787 m x ≤ 0.0457 m

−0.27409x+ 0.1004 0.0457 m < x ≤ 0.2921 m

Length (L) 0.2921 m

Table 3.1: Assumed material properties for the beam.

3.2.1 Example

A thin steel saw blade was placed into a cantilever apparatus as described in Chapter Two.

Assuming the material properties in Table 3.1 for the saw blade and applying the analytical

approximation, results were found supporting the validity of the analytical approximation.

The density of the beam was calculated by first weighing the beam, next the height,

width, and length of the beam was measured. The width was measured to the midpoint of

the teeth, and the height measured was of the blade only and did not included the keft of

the teeth. Next the beam was was divided into two sections, one rectangular and the other

triangular. The area of these sections were computed subtracting out any holes, and this

value was multiplied by the height to get the total volume. Finally, the mass and volume were

used to compute density. Using the discretized assumed modes from the Euler-Bernoulli

beam equation to write matrix U, such that U = [u1 · · · uM ] where xj = (1 inch)j are

the position of the accelerometer as given in Chapter Two and where the first twenty values

of βi are given in Table 3.2. Accounting for the mass of the accelerometers (0.7 grams per

accelerometer), the mass and stiffness matrices M and K were computed using piecewise

continuous functions of EI(x) and m(x) using equation (3.2.0.4) to account for the tapered
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βL Value

β1 1.87510406
β2 4.694091133
β3 7.854757439
β4 10.995540734
β5 14.137168391
β6 17.278759532
β7 20.420352251
β8 23.561944901
β9 26.703537555
β10 29.84513020
β11 32.98672286
β12 36.12831551
β13 39.26990816
β14 42.41150082
β15 45.5530934770
β16 48.694686130
β17 51.8362787842
β18 54.9778714378
β19 58.1194640914
β20 61.261056745

Table 3.2: βL’s for assumed modes.
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and rectangular sections of the beam. Then using equation (3.6) with matrices M and K,

V was determined and its corresponding eigenvalues λ’s were computed. These eigenvalues

are the squares of radian natural frequencies, such that λj = ω2
j , and the product UV is a

matrix where the columns approximate discretized mode shapes of the nonuniform beam.

The eigenvalues are shown in Table 3.3. The frequencies computed by the analytical

approximation and the FFTs are consistent. The ratios between the estimated frequencies

and FFTs were between 1.04 and 1.08. This could be caused by error the parameter group

E/ρ, however this is likely to be small. Another source of error may be due to the stiffening

due to the discretization, and the assumptions embedded in the beam model. Since the

beam is wide, there may be some influence of plate characteristics. The infinite uniform 1-D

plate equation is
∂2w

∂t2
+Dw′′′′ = 0, while that of the uniform beam is

∂2w

∂t2
+
EI

m
u′′′′ = 0.

The ratio between parameter groups is
EI

mD
= 1 − ν2, where ν is Poisson’s ratio, which

bounds the deviation between the infinite 1-D plate and the Euler-Bernoulli beam. Using

ν = 0.3, this leads to an increase of about 5%, in the analytically estimated frequencies,

which would increase the difference between the frequencies of the approximated model and

the experiments. Hence the “plate effect” would worsen the frequency prediction.

To ensure that experimental frequencies were not due to torsional modes the accelerom-

eters were moved to the perimeter of the beam and the beam was impacted off center. The

resulting torsional modes are shown in Table 3.4. These torsional modes are within the

frequency range of interest, but are not excited when the impulse is centered on the midline

of the beam.

The frequencies were computed for discretizations n = 5, 10, 15, and 20. Table 3.5 shows

the values of the natural frequencies, and its trend suggests convergence. The sequence {fn}
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as n→ 20 suggests an upper bound and the sequence {fn} converges only if there is a lower

bound at some F − ε for a positive value of ε, and lim
n→∞ fn = F [19]. By computing the

modal assurance criterion (MAC) values of all possible two pair combinations,

(
4

2

)
, it is

obvious that the analytical modes shapes have converged by n = 10. Please refer to Table

3.6 for the MAC values.

Figure 3.1: Analytical approximations of discretized mode shapes for n = 20, top: first
mode, bottom: second mode.
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Mode number Analytical Approximation Experimental FFT Ratio

1 9.02 Hz 8.55 Hz 1.06
2 43.51 Hz 40.28 Hz 1.08
3 112.00 Hz 107.4 Hz 1.04
4 214.46 Hz 205.1 Hz 1.05
5 350.5 Hz not recorded N/A
6 520.93 Hz 498 Hz 1.05
7 725.83 Hz 677.5 Hz 1.07

Table 3.3: Comparison of natural frequencies computed from the analytical approximation
compared to experimental data.

Mode number Experimental FFT

1 226.09
2 241.17
3 386.61

Table 3.4: Torsional frequencies computed from the FFTs of the accelerometer signals.

n = 5 n = 10 n = 15 n = 20

9.02633 9.02537 9.02374 9.02135
43.52080 43.51587 43.51081 43.50646
112.27588 112.20519 112.16094 111.99878
214.94132 214.56857 214.52153 214.45728
355.84320 350.95416 350.65144 350.50359

Table 3.5: Comparison of natural frequencies for discretization values n = 5, 10, 15, and 20.
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Mode 1 Mode 2

n 10 15 20 10 15 20
5 0.999 0.999 0.999 0.999 0.999 0.999
10 — 0.999 0.999 — 0.999 0.999
15 0.999 — 0.999 0.999 — 0.999

Mode 3 Mode 4

n 10 15 20 10 15 20
5 0.999 0.999 0.999 0.999 0.999 0.999
10 — 0.999 0.999 — 0.999 0.999
15 0.999 — 0.999 0.999 — 0.999

Mode 5

n 10 15 20
5 0.9767 0.9761 0.9761
10 — 0.999 0.999
15 0.999 — 0.999

Table 3.6: MAC values for two-pair combinations of n values at n = 5, 10, 15 and 20 for the
first five modes.

Figure 3.2: Analytical approximations of discretized mode shapes for n = 20, top: third
mode, bottom: fourth mode.
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Chapter 4

Modal Decomposition Methods

4.1 Introduction

When one needs to determine the mode shapes of a structure using time domain output-only

methods there are several options including, but not limited, to proper orthogonal decompo-

sition (POD), smooth orthogonal decomposition (SOD), state variable modal decomposition

(SVMD), Ibrahim time domain method, polyreference method, and eigensystem realization

algorithm [20, 12, 18, 21]. Some of these methods use sensed outputs such as displacements,

velocities, or accelerations to create an ensemble matrix, followed by a correlation matrix.

Then the correlation matrix is used in an eigenvalue problem. The corresponding eigen-

vectors generally are approximations to linear normal modes (LNMs) for lightly damped

free-vibration structures. The eigenvalues, depending on the decomposition method, can

approximate natural frequencies, or correspond to spectral energy densities.

One such method is the proper orthogonal decomposition (POD), which is a statisti-
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cal method used to represent high degree of freedom systems in reduced-order forms and

extract useful information without a loss of accuracy [22, 23]. Essentially, POD uses an

eigenvalue problem (EVP) to extract a basis from an ensemble matrix consisting of sensed

measurements. Berkooz et al. [23] referenced a personal communication by A.M. Yaglom

which suggests that identical applications of POD were developed in different fields by differ-

ent researchers. Examples include Karhunen-Loeve decomposition and principal component

analysis [23, 24]. I direct the reader to pg. 542 of [23] for more details. Recently POD has

been applied to the vibrations of structures in order to determine their mode shapes. In

this application of POD a lightly damped freely vibrating structure is sensed with M ap-

propriate sensors such that its displacements (typically) can be directly measured or derived

(e.g. from accelerometers or strain gauges). Once the displacement time histories have been

captured there will be N samples. An ensemble matrix, X, is formed and its dimension is

M × N ; each row corresponds to a sensor and each column is a sample time step. Thus

X = [x1 x2 · · · xM ]T , where xi = [xi(0) xi(∆T ) · · · xi(N∆T )]. Next, a correlation

matrix, R, is computed using R =
XXT

N
. The eigenvectors of R are approximations to

linear normal modes and they are orthogonal as long as the following conditions are met: i.

damping is small, ii. unforced system (freely vibrating) and iii. the mass matrix is uniform.

Other POD schemes have been developed for cases in which these restrictions do not apply.
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4.2 Reduced-order Mass Weighted Proper Decompo-

sition

4.2.1 Motivation

Mass-weighted POD (MPOD) addresses the issue of a mass matrix that is not unity or a

constant multiple of unity. In this instance a modified correlation matrix, R̂, is formulated

such that R̂ = RM. If an adequate number of samples were used in the ensemble matrix

the eigenvectors of R̂ converge to the LNMs of the system Mẍ + Kx = 0 [24] given the

conditions i. & ii. from above. Often in engineering practice M and R are dimensionally in-

congruent and the multiplication RM cannot be carried out. In these cases a reduced-order

mass-weighted proper orthogonal decomposition can be used.

Reduced-order mass-weighted proper decomposition (RMPOD) is a potent decomposi-

tion and is very similar to POD. RMPOD employs the use of a reduced order mass matrix

Mr, such that the dimensions of Mr agree with the dimensions of the correlation matrix

R. A common reason the mass matrix is larger than R is a result of the number of sensors

M available. For example the mass matrix produced by an FEA program is easily greater

than 100 × 100. Thus by mathematical necessity in order to create a correlation matrix

whose dimensions match the mass matrix the experimenter needs 100 sensors. Like with

POD one senses a structure with M accelerometers. The accelerometers signals are pro-

cessed to create displacements. Then an ensemble matrix X is created such that each row

corresponds to a sensor and each column is a time step. Then X = [x1 x2 · · · xM ]T with

xi = [xi(0) xi(∆T ) xi(2∆T ) · · · xi(N∆T )]. This ensemble matrix is used in both POD and
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RMPOD, where M is the number of sensors and N is the number of time samples. (Note

M is not M, M is the mass matrix.)

RMPOD then uses the reduced order mass matrix Mr of dimension M ×M , such that

the matrix multiplication RMr is possible. Then the following problem is solved:

RMrv = λv. (4.1)

If the damping is light, and the response is free and multimodal, the eigenvectors v cor-

respond to LNMs and the eigenvalues are mass weighted mean squared of the output [18].

In summary, use of RMPOD is motivated when the mass matrix is not unity, and/or the

dimensions of the mass matrix and correlation matrix is incongruent.

4.2.2 Reduced Mass Matrix of a Beam

The mass matrix is computed in much the same way it is in finite element analysis (FEA).

The mass between sensors (nodes) are interpolated using, in this case, linear interpolation

functions (shape functions), which accounts for the mass between sensors. The mass matrix

is symmetric and can be formulated in the context of a governing equation of the form

ρ(x)ÿ(x, t) +Ly(x, t) = 0, where ρ(x) is the mass per unit length and L is a linear operator.

If y is discretized such that y(x, t) = yi = y(xi, t) and y = [y1 · · · yM ], where M the is

number of sensors, then interpolating between the discretized displacements yields y(x, t) ∼=
M∑
i=1

yi ηi(x). The order of ηi(x) can be chosen; in this case is ηi(x) linear and has the form

ηi(x) = 1
h

(x− (i−1)h) for (i−1)h ≤ x < ih, ηi(x) = −1
h

(x− (i+ i)h) for ih ≤ x < (i+1)h,

and ηi(x) = 0 otherwise, where h is the spatial interval of the sensors on the beam. Plugging
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y(x, t) ∼=
M∑
i=1

yi ηi(x) into ρ(x)ÿ(x, t) + Ly(x, t) = 0, multiplying by ηj(x) and integrating

produces the discretized system

Mrÿ + Kry = 0

where Mr has the elements Mij =

∫ L

0
ρ(x)ηi(x)ηj(x) dx. For our choice of ηi(x), we have

Mij = −
∫ (i+1)h

ih
ρ(x)[

1

h
(x− (i+ 1)h)][

1

h
(x− (j − 1)h)] dx; {i < j & |i− j| = 1

Mij = −
∫ (j+1)h

jh
ρ(x)[

1

h
(x− (i− 1)h)][

1

h
(x− (j + 1)h)] dx; {i > j & |i− j| = 1

Mii =

∫ ih

(i−1)h
ρ(x)[

1

h
(x− (i− 1)h)]2 dx+

∫ (i+1)h

ih
ρ(x)[

1

h
(x− (i+ 1)h)]2 dx; {i = j

Therefore all that is needed to compute the reduced mass matrix is the interpolation func-

tions, the mass per unit length, and h the distance between each sensor. Naturally, the

dimension of the mass matrix hence the numbers of sensors affects the results: the higher

the better. Once the mass matrix is computed one can implement RMPOD. To review,

the computational path starts with capturing outputs from sensors, computing an ensemble

matrix, and then the correlation matrix R.

4.2.3 Experimental Results

A permutation of tap magnitudes, tap locations, signal length, and acceleration, velocity,

displacement ensembles were used in the RMPOD decomposition to gain some experience

regarding the effect of these parameters on RMPOD predictions. Results were evaluated us-

ing the modal assurance criterion (MAC) [25] values relative to the approximate analytical
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modes as a rubric. For the RMPOD, using acceleration time signals, impacting the beam

two inches for the cantilevered end, and using a time window t=[0.25s 0.5s], gave the best

overall performance, although only marginally better than other permutations of the testing

parameters.

For the conditions listed above, the RMPOVs (proper orthogonal values) as shown in Fig-

ure 4.1, indicating the relative mass-weighted “signal energy” associated with each extracted

mode. As such, these values show some indication of modal participation and dominance.

Figures 4.2, 4.3, and 4.4 show the plots of the extracted modes, modal coordinates of the

extracted mode, and the FFT of the modal coordinates for the second, third, and fourth

mode, respectively.

Modal coordinates were used to further evaluate the decomposition. The modal coordi-

nates are defined through the transformation A = Ẍ = VQ̈, such that Q̈ is an ensemble of

modal acceleration time histories. The notations “Ẍ” and “Q̈” are used loosely to indicate

ensembles of acceleration quantities, as oppose to the derivative of ensembles, as ensembles

are merely matrices of numbers. Then the modal accelerations are given by Q̈ = V−1A.

The magnitude of the FFT of the modal coordinate acceleration for the second mode showed

a single peak at 39.14 Hz. The third modal coordinate acceleration has a maximum peak at

107.6 Hz and smaller peak at 39.14 Hz. This shows some pollution from the second mode

into the third modal coordinate acceleration. A similar phenomenon occurs for the fourth

modal coordinate acceleration coordinate, which had a maximum peak at 205.5 Hz, followed

by 39.14 Hz, and finally, 107.6 Hz. Despite this modal pollution, the extracted mode shapes
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were strong approximations to the linear normal modes, which is evident by MAC values

close to unity for these modes. Those values are 0.986, 0.852, and 0.912 for the second, third,

and fourth modes, respectively. The estimated modes in comparison to the analytically ap-

proximated modes are shown in Figures 4.2, 4.3, and 4.4. Table 4.1 shows the MAC values

between the RMPOD extracted modes and the approximate analytical modes. For instruc-

tive purposes Figure 4.5 shows an example of a poor LNM approximation by RMPOD.

Modes RMPOD

2 0.986
3 0.852
4 0.912
5 0.915
6 0.861

Table 4.1: MAC values for RMPOD when compared to the approximate analytical modes.

4.3 State Variable Modal Decomposition

4.3.1 Background

State variable modal decomposition (SVMD) is very similar to proper orthogonal decom-

position (POD) in methodology. As in POD an ensemble matrix is formed using sensed

outputs. POD uses the ensemble matrix X consisting of sampled displacement vectors,

while SVMD uses an ensemble matrix Y which consists of sampled velocity and displace-

ment vectors; hence the term “state variable” [26]. As such a 2M × N ensemble matrix

Y = [y(t1) y(t2) · · · y(tN )] is built, where y(t) = [ẋ1(t), · · · ẋM (t); x1(t) · · ·xM (t)]T as

shown in Table 4.2, where N is the number of samples and the M is the number of sensors.
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Figure 4.1: RMPOVs: mode (2) 1.2591, mode (3) 0.0562, mode (4) 0.0346.
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Figure 4.2: Top: second mode shape extracted by RMPOD (o) plotted with the analytical
approximation’s discretized mode shape (line). Middle: 2nd modal coordinate acceleration
from RMPOD. Bottom: fast Fourier transform of modal coordinate acceleration.
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Figure 4.3: Top: third mode shape extracted by RMPOD (o) plotted with the analytical
approximation’s discretized mode shape (line). Middle: 3rd modal coordinate acceleration
from RMPOD. Bottom: fast Fourier transform of modal coordinate acceleration.
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Figure 4.4: Top: fourth mode shape extracted by RMPOD (o) plotted with the analytical
approximation’s discretized mode shape (line). Middle: 4th modal coordinate acceleration
from RMPOD. Bottom: fast Fourier transform of modal coordinate acceleration.
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Figure 4.5: Top: seventh mode shape extracted by RMPOD (o) plotted with the analytical
approximation’s discretized mode shape (line). Middle: 7th modal coordinate acceleration
from RMPOD. Bottom: fast Fourier transform of modal coordinate acceleration.
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Likewise, ensemble W = [ẏ(t1) · · · ẏ(tN )] is setup. In SVMD a 2M × 2M correlation ma-

trix R is created such that R =
YYT

N
. Unique to SVMD, a second 2M×2M nonsymmetric

correlation matrix is created, N, such that N =
YWT

N
.

POD SVMD

X = [x1 x2 · · · xM ] Y=

[
ẋ1 ẋ2 · · · ˙xM
x1 x2 · · · xM

]

X=


x1(0) x1(∆T ) · · · x1(M∆T )
x2(0) x2(∆T ) · · · x2(M∆T )

...
. . .

...
xN (0) xN (∆T ) · · · xN (M∆T )

 Y=



ẋ1(0) ẋ1(∆T ) · · · ẋ1(MT )
ẋ2(0) ẋ2(∆T ) · · · ẋ2(M∆T )

...
. . .

...
ẋN (0) ẋN (∆T ) · · · ẋN (M∆T )

x1(0) x1(∆T ) · · · x1(M∆T )
x2(0) x2(∆T ) · · · x2(M∆T )

...
. . .

...
xN (0) xN (∆T ) · · · xN (M∆T )



R =
XXT

N R =
YYT

N
; N =

YWT

N

Rφ = λφ λRφ = Nφ

Table 4.2: POD and SVMD. The first row contains the ensemble matrices. The second row
contains the expanded ensemble matrices. The third row contains the correlation matrices.
Finally, the last row contains the eigensystem problems.

Once the two correlation matrices are computed, an eigenvalue problem is cast as

λRφ = Nφ. (4.2)

This problem can be solved for 2M eigenvalues, λ, and the eigenvectors φ. If this eigensystem

is solved in Matlab using the “eig” command it produces two matrices Λ and Φ corresponding
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to eigenvalue problem in matrix form,

RΦΛ = NΦ. (4.3)

The eigenvalue matrix Λ is diagonal and contains information about the natural frequencies

and, in theory, modal damping. The eigenvector matrix Φ contains modal information but

the inverse transpose of this matrix must be taken to extract the mode shapes [26]. So the

matrix of eigenvectors is Ψ = Φ−T and each 2M × 1 column of Ψ contains information

about the mode shapes of the beam. The bottom half of rows M × 1 will contain the mode

shapes of the displacements and represent the approximate LNMs. Since the matrix N is not

symmetric the mode shapes may be the complex. If damping is approximately Caughey or

Rayleigh (proportional) then the real values of the complex modes approximately correspond

to classical linear normal modes. Otherwise, the complex modes correspond to the mode of

the state-variable vibration model [27].

4.3.2 Mathematical Development

In this section the mathematical framework for SVMD will be explained. This particular

mathematical development was derived in the work of [21] and is meant to provide a de-

scription that is easier to follow for the non-specialist. Starting with the basic mass-spring

dashpot (MSD) system the governing equation is

Mẍ + Cẋ + Kx = 0 (4.4)
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where x and its time derivatives are vectors. Now we can include the following trivial

equation in order to transform the system into a state variable one:

Mẋ−Mẋ = 0 (4.5)

Writing equations (4.4) and (4.5) together in matrix form leads to the following linear dif-

ferential equations:

 0 M

M C


ẍ

ẋ

+

−M 0

0 K


ẋ

x

 =

0

0


Now letting

y =

ẋ

x

 and ẏ =

ẍ

ẋ


and letting

Let A =

 0 M

M C

 and B =

−M 0

0 K


leads to

Aẏ + By = 0 (4.6)

Assuming a solution of the form y = φeαt yields the eigenvalue problem αAφ + Bφ = 0,

where α are the eigenvalues, which can be complex. If damping is Caughey, then α has
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the form of α = −ζωn ± ıωd where ωn is the undamped modal frequency. Zeta, ζ, is the

damping coefficient and indicates the peak-to-peak decay rate of the exponential damping

envelope. If ζ = 0 then the system is undamped. The frequency of damped oscillation is

indicated by ωd = ωn

√
1− ζ2. If ζ > 1 then the system is overdamped, and the α have the

form α = −ζωn ± ωn
√
ζ2 − 1, which are real.

The relationship to the eigensystem problem in equation (4.2) is shown below. Re-

membering that R =
YYT

N
and N =

YWT

N
and substituting into αRφ = Nφ yields

αYYφ = YWTφ. Solving (4.6) for ẏ, and replacing ẏ and y with the associated ensembles,

W and Y , leads to get W = −BA−1Y. Plugging W into αYYφ = YWTφ produces the

following sequence of expressions:

αYYTφ = Y−BTA−TYTφ

αYYTφ = −YBTA−TYTφ

αYYTφ = −YYTBTA−Tφ

Iαφ = −BTA−Tφ (4.7)

where α is a scalar and φ is a vector. The last line was achieved assuming YYT is nonsingular

and its inverse exists.

Introducing a diagonal matrix Λ of eigenvalues α, and a matrix Φ whose columns are

made up of eigenvectors φ, the matrix form of equation (4.7) would be ΦΛ = −BTA−TΦ.

Taking the inverse transpose of both sides yields Φ−TΛ−T = −B−1AΦ−T . Using the

fact that the transpose of a diagonal matrix is the same matrix, letting U = Φ−T and
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moving some matrices around produces the eigensystem problem −A−1BU = UΛ. The

solution of this system will produce is an eigenvalue matrix, Γ, and an eigenvector matrix,

Ω, satisfying the equation −A−1BΩ = ΩΓ . Comparing the two question together it can

be seen that:

−A−1BΩ = ΩΓ

−A−1BU = UΛ

U = Φ−T

then

Γ = Λ

Ω = Φ−T

This is the same result as above where Γ is a diagonal matrix consisting of the 2M eigen-

values, and half of complex entries can examined for information on modal frequency and

damping. Likewise the bottom half of rows of the Ω matrix will yield approximations to

linear normal modes.

4.3.3 Experimental Results

SVMD yielded accurate extractions of natural frequencies which corresponded to the FFT

of the beam. The natural frequencies extracted by SVMD were 40.08 Hz, 106.42 Hz, and

205.08 Hz for the second, third, and fourth mode, respectively. The FFT of the raw beam

acceleration signals produced high magnitude peaks at 40.28 Hz, 107.4 Hz, and 205.5 Hz for

the second through fourth modes. These frequencies in addition to other poorly extracted
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frequencies are listed in Table 4.6 on page 56.

The SVMD extracted mode shapes showed high similarity to the analytical approxima-

tions, as quantified by MAC values near unity as shown in Table 4.4 on page 55. The LNMs

predicted by SVMD had MAC values of 0.9921, 0.9729, and 0.9865 for the second, third,

and fourth mode respectively. Additional support for this conclusion is shown in Figures

4.7, 4.8, and 4.9. Each plot shows the FFT of the modal coordinates; Figure 4.7 shows a

frequency peak at 39.14 Hz for the second mode. In figure 4.8 the third modal coordinate’s

FFT shows a peak at 107.6 Hz. Finally, Figure 4.9 shows a large peak at 205.5 Hz and a

slightly smaller one at 39.14 for the fourth mode. A similar phenomenon was observed for

RMPOD. It is also worth noting that the FFT peaks of the modal coordinates are close in

value as the SVMD extracted frequencies, and the FFT frequency peaks of the experimental

beam accelerations.
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Figure 4.6: The second, third and fourth modes extracted by SVMD.
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Figure 4.7: Top: second mode shape extracted by SVMD (o) plotted with the analytical
approximation’s discretized mode shape (line). Middle: second modal coordinate of SVMD.
Bottom: fast Fourier transform of the second modal coordinate.
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Figure 4.8: Top: third mode shape extracted by SVMD (o) plotted with the analytical
approximation’s discretized mode shape (line). Middle: third modal coordinate of SVMD.
Bottom: fast Fourier transform of the third modal coordinate.
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Figure 4.9: Top: fourth mode shape extracted by SVMD (o) plotted with the analytical
approximation’s discretized mode shape (line). Middle: fourth modal coordinate of SVMD.
Bottom: fast Fourier transform of the fourth modal coordinate.
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4.3.4 Contribution

Prior works by Feeny and Farooq [28, 26] were conducted on simulations and a uniform beam

experiment. In this thesis SVMD was successfully applied to a thin lightly-damped nonuni-

form beam. As with the previous experiment [26], instead of sensing displacements we sensed

accelerations. Using sensed accelerations is computationally easier than using displacements

since when using displacements one must use finite differences to get the velocities. As a

result of using finite differences great care must be taken to make sure the resulting velocity

and displacement ensemble matrices are dimensionally compatible. A concern with using

finite differences is that it magnifies high frequency noise. The power in the SVMD lies in

the fact that a mass matrix is not needed for nonuniform structures, which is the case with

MWPOD. Input measurements are also not needed. Moreover, without needing the mass

matrix, SVMD enables the practitioner to extract approximations to the LNMs, natural

frequencies, and possibly modal damping coefficients.

4.4 Smooth Orthogonal Decomposition

4.4.1 Background

Smooth orthogonal decomposition (SOD) is another generalization of POD [17]. Like POD,

MWPOD, and SVMD, SOD uses sensed outputs, normally velocity and displacement, to

extract the natural frequencies and approximations to LNMs. Like all of the decomposition

methods discussed in this thesis, ensemble matrices of measurements are created. In the case

of SOD two correlation matrices are created. One is the displacement correlation matrix R,
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such that R =
XXT

N
, and the other is the velocity correlation matrix S =

VVT

N
, where V is

an ensemble of velocity measurements. R and S must be the same dimensions. Next, R and

S are used in the generalized eigenvalue problem described by λRψ = Sψ. The eigenvalues

approximate (in theory) the squares of the modal frequencies, such that ωn =
√
λ, and

LMNs are approximated by columns of Φ = Ψ−T , where Ψ is a matrix whose columns are

eigenvectors of the generalized eigenvalue problem.

In application, SOD has been shown to extract approximations to LNMs and natural

frequencies from simulated discrete and continuous systems [17]. In the work by Chelidze

and Zhou [17] it was shown that SOD can extract modal information from the superposition

of sinusoids of the same amplitude but different frequencies, i.e, xk = sin 2πfkt, which points

out one of the benefits of SOD over POD since POD fails to extract LNM in this particular

case. However such “real world” situations of this case may be rare. Other case studies

performed by Chelidze and Zhou [17] are shown in the Table 4.3. Additionally, Chelidze and

Zhou showed that SOD can extract modal information from damped free vibrating systems

and modal information of forced damped system if the system is forced at a resonance.

Case POD SOD

Same amplitude, different frequencies × X
Different amplitude, different frequencies X X
Different amplitude, same frequencies X(largest amplitude) ×

Table 4.3: SOD vs POD case study.

4.4.2 Mathematical Development

The relationship between the SOD EVP and the general mass-spring system with negligible

damping can be shown following the development in [29]. The vibration system can be
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written as Mẍ+Kx = 0. As shown in prior sections this reduces to the following eigenvalue

problem: −ωMφ + Kφ = 0. If we create a modal matrix of eigenvectors and a diagonal

matrix of eigenvalues then this can be written as

KΦ = MΦΛ. (4.8)

Remembering that SOD is an eigenvalue problem described as λRψ = Sψ and that R =

XXT

N
, S =

VVT

N
, and V ∼= XDT , where D is a finite difference matrix operator, we can

rewrite the SOD eigenvalue problem as

λ
XXT

N
ψ =

XDTDXT

N
ψ.

Using DTDXT ≈ −AT , where A is an ensemble of sampled accelerations,ẍ, and noting

A = −M−1KX [17] (i.e. solving Mẍ + Kx = 0 for ẍ); we arrive at

λXXTψ = −XXTKM−1ψ.

Assuming that the determinant of XXT is not equal to zero and is thus invertible, then we

can simplify the previous equation to λψ = −KM−1ψ. Creating matrices of the eigenvec-

tors and eigenvalues we can write this in matrix form as Ψ−TΛ−1 = K−1MΨ−T. Moving

K so that it is not inverted we arrive at

KΨ−T = MΨ−TΛ.
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If we compare this equation to equation (4.8) it can be seen that Φ = Ψ−T. Therefore the

inverse transpose of the eigenvector matrix of λRψ = Sψ produces a modal matrix whose

columns approximate the LNMs.

4.4.3 Experimental Results

The results suggest that SOD can extract approximations to the LNMs as illustrated by

MAC values close to unity [25]. The corresponding time histories were divided up into

several time windows in order to extract modal information without pollution from other

modes. The biggest restraint was having a sufficient number of cycles for modes with low

natural frequencies. The natural frequencies for the second, third, and fourth modes of

the experimental beam via FFT are 40.28 Hz, 107.4 Hz, and 205.1 Hz respectively. The

natural frequencies predicted by SOD are these modes are 43.72 Hz, 107.77 Hz, and 203.53

Hz. These frequencies in addition to other poorly extracted frequencies are listed in Table

4.6 on page 56. The SOD predicted mode shapes which, when compared to the discretized

analytical mode shapes had MAC valves of 0.999, 0.820, and 0.937. From these results it

can be concluded that the SOD can extract the lower modes of a lightly-damped nonuniform

cantilevered beam. Figures 4.10, 4.11, 4.12 shows the SOD extracted modes for the 2nd,

3rd, and 4th modes respectively. These modes are plotted with the discretized analytical

approximations of a nonuniform Euler-Bernoulli beam.
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Figure 4.10: SOD extracted second mode (o) compared to the analytical approximation
(solid line).
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Figure 4.11: SOD extracted third mode (o) compared to the analytical approximation (solid
line).
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Figure 4.12: SOD extracted fourth mode- (o) compared to the analytical approximation
(solid line).

4.4.4 Contribution

Chelidze and Zhou [17], did extensive simulations comparing SOD to POD. In these simu-

lations they studied the applicability of SOD to extracted modal information from outputs

consisting of the sum of sinusoids which had the same amplitude and different frequencies,

different amplitudes and different frequencies, and finally, different amplitudes and same

frequencies. Additional studies included damped vibrations and forced oscillations. These

were performed on discrete systems and distributed parameter systems. Farooq and Feeny

used SOD to extract the modal information from and simulated randomly excited lightly

damped discrete system [29].

This work contributes to the field first by using experimental data and not simulations
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and second by using a nonuniform beam. This research has shown that it is possible to

extract modal information from a lightly-damped freely vibrating nonuniform cantilevered

beam. The experimental results was compared with an analytical approximation of an Euler-

Bernoulli beam.

4.5 Method Comparison

As a final cross-check, each method was compared to each other using MAC as shown in the

Tables 4.4 and 4.5 below. The tables show a strong similarity between each method. Table

4.6 shows the extracted frequencies for SVMD and SOD. It looks like in this experiment

all methods were successful for extracting their respective modal parameters for the lower

modes. Table 4.7 lists some of the benefits and drawbacks of each method. However, the

drawbacks of each decomposition method are not serious.

Modes RMPOD POD SVMD SOD

2 0.986 0.982 0.992 0.999
3 0.852 0.829 0.973 0.820
4 0.912 0.585 0.986 0.937
5 0.915 0.746 0.961 0.680
6 0.861 0.430 0.081 0.054

Table 4.4: MAC values for decomposition methods when compared to the discretized ana-
lytical analysis mode shapes.

Modes RMPOD vs SOD RMPOD vs SVMD SOD vs SVMD

2 0.9893 0.9702 0.9926
3 0.8027 0.8751 0.9138
4 0.8907 0.9214 0.9507
5 0.5255 0.8728 0.8263
6 0.0023 - -

Table 4.5: Cross comparison of decomposition methods using MAC values.
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mode SVMD SOD FFT

2 40.08 Hz 43.72 Hz 40.28 Hz
3 106.42 Hz 107.77 Hz 107.4 Hz
4 205.08 Hz 203.53 Hz 205.1 Hz
5 306.04 291.38 Hz 498.0 Hz
6 480.75 446.72 Hz 677.3 Hz

Table 4.6: SVMD and SOD extracted frequencies.

RMPOD

PROS CONS

can estimate mode shapes frequencies not directly estimated (need Q)
RMPOVs estimate modal strength need to compute the reduced mass matrix
requires single R
requires X only
input signal not needed

SVMD

can estimate mode shapes no modal strength, except by Q
estimate modal frequencies directly need X, V, and A
possibility of modal damping directly
mass not required
input signal not needed

SOD

can estimate mode shapes no modal strength except by Q
estimate modal frequency directly need X and V
mass not required
input signal not needed

Table 4.7: Pros and cons of each decomposition method.
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Chapter 5

Conclusions

All results shown in this thesis used the following input parameters: a small impulse (as

defined in Chapter Two), the beam was struck at x = 2 inches, and a sample window of

t = [1/4Ls 1/2Ls] where Ls is the signal length.

Three decomposition methods were applied to the output-only modal analysis of a nonuni-

form beam experiment whose modal frequencies were 8.454 Hz, 40.28 Hz, 107.4 Hz, 205.1

Hz, 498 Hz, and 677.3 Hz obtained by fast Fourier transform. The first mode was filtered out

since it was below the range of reliable accelerometer performance. The beam was modeled

as a nonuniform Euler-Bernoulli beam. An analytical approximation for the mode shapes

was developed and the predicted mode shapes and natural frequencies were compared to

the results from modal decomposition of the experimental beam. The natural frequencies

predicted by the model were proportionally consistent with those identified experimentally,

and could therefore be used to identify a parameter group.

The reduced-order mass-weighted POD was applied under a permutation of conditions

involving impulse location and strength, and using decompositions based on displacement,
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velocity and acceleration signals. RMPOD extracted good approximations to the 2nd, 3rd,

and 4th LNMs as suggested by near unit MAC values between the extracted modes and the

analytical approximations of the modes. Those values were 0.986, 0.852, and 0.912 for the

second, third, and fourth mode, respectively, when accelerations were used as the output and

a small impulse was applied two inches from the clamp. Further confirmation on the quality

of the modes was provided from computing the modal coordinates and taking their FFTs.

The peak frequency for the lowest extracted mode was dominant. For increasingly higher

modal coordinates, frequencies of other modes leaked in from other modes. The pollution of

these modes had little effect on the approximation to the LNMs.

SVMD and SOD were also employed to extract approximations of the natural modal

frequencies and approximations to the LNMs. SVMD extracted natural frequency approx-

imations that were 40.08 Hz, 106.42 Hz, and 205.08 Hz for the second, third, and fourth

mode, respectively. The MAC values for these modes when compared to the analytical ap-

proximations were 0.9921, 0.9729, and 0.9865. SOD predicted frequencies of 43.72 Hz, 107.77

Hz, and 203.53 Hz. The predicted mode shapes had MAC values of 0.986, 0.984, and 0.989.

This work contributes to ongoing research on output-only modal decomposition methods

as the first application of RMPOD and SOD to a modal analysis experiment, and as the first

application of SVMD to an inhomogeneous experiment, thereby supporting the feasibility of

these methods. These tests suggest that RMPOD, SVMD, and SOD can be reliable methods

of modal analysis, at least for the lower modes of a structure. These methods are easy to

apply. The necessary signal processing was in integrating the accelerometer signals into the

desired quantify (displacement, velocity or acceleration), with high pass filtering used to

prevent integrator drift. Application of the methods in concert can be useful in confirming
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results.
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