
Heriot-Watt University

Masters Thesis

Experimental comparison of auto-scaling
cloud computing platforms for a
micro-services web application

Author:

Yann Jaffrennou

Supervisor:

Dr. Arash Eshghi

A thesis submitted in fulfilment of the requirements

for the degree of MSc.

in the

School of Mathematical and Computer Sciences

August 2020

http://www.hw.ac.uk
https://portfolio.yannjaffrennou.com
https://researchportal.hw.ac.uk/en/persons/arash-eshghi
http://www.macs.hw.ac.uk

Declaration of Authorship

I, Yann Jaffrennou, declare that this thesis titled, ’Experimental comparison of auto-

scaling cloud computing platforms for a micro-services web application’ and the work

presented in it is my own. I confirm that this work submitted for assessment is my

own and is expressed in my own words. Any uses made within it of the works of other

authors in any form (e.g., ideas, equations, figures, text, tables, programs) are properly

acknowledged at any point of their use. A list of the references employed is included.

Signed: Yann JAFFRENNOU

Date: August 2nd, 2020

i

Abstract

Cloud computing technologies are increasingly used for deploying web applications and

services. With their very own characteristics, they offer new ways to control and reduce

hosting costs. These new practices and tools are detailed in this paper, and experi-

ments are made to study the performances and costs of an experimental micro-services

web backend application using Google Kubernetes Engine with an auto-scaling cluster,

Google Cloud Run and a more traditional deployment using Google’s auto-scaling In-

frastructure as a Service. These experiments aim to evaluate the performances, ability

to scale and cost of each deployment in a comparative way.

Acknowledgements

I would like to sincerly thank my supervisor, Dr. Arash Eshghi, for his interest for the

subject and willingness to supervise me on a subject new to him.

I am also grateful to the Alana team, and especially Ioannis PAPAIOANNOU, for his

responsiveness, the useful information he provided me concerning Alana, and his big

contribution to finding a simple yet efficient experimental platform.

Finally, I would like to thank Dr. Jessica Chen-Burger for her trust and support.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Context and Motivations . 1

1.2 Aims and Objectives . 2

2 Literature review 4

2.1 Background . 4

2.1.1 Web applications . 4

2.1.1.1 Principles . 4

2.1.1.2 Monolithic architecture 5

2.1.1.3 Micro-services architecture 5

2.1.2 Scalability . 6

2.1.2.1 Principles and problematics 6

2.1.2.2 Vertical scalability . 7

2.1.2.3 Horizontal scalability . 8

2.1.2.4 Virtual machines . 9

2.1.2.5 Container-based virtualization 10

2.1.2.6 Container orchestration 11

2.1.3 Cloud computing . 12

2.1.3.1 Principles . 12

2.1.3.2 Public cloud computing actors 13

2.1.3.3 Services . 13

2.1.4 Alana . 15

iv

Contents v

2.1.4.1 Global architecture and services 15

2.1.4.2 Alana Hub . 16

2.2 Related work . 16

2.2.1 Monolithic vs. Micro-services architecture 16

2.2.2 Virtual Machines vs. Containers 17

2.2.3 Managed container services . 18

2.2.4 Cloud services providers . 18

2.3 Conclusion . 19

3 Requirement Analysis 20

3.1 MoSCoW Requirements . 20

3.2 Deployments . 20

3.2.1 Architecture of Alana Hub . 20

3.2.2 Cloud deployments . 22

3.3 Experimental platform . 24

3.4 Methodology for the experiments . 24

3.4.1 Description of the experiments . 24

3.4.2 Utilization of the experimental platform 26

3.5 Data retrieving and analysis . 27

4 Professional, Legal, Ethical and Social Issues 28

4.1 Legal . 28

4.1.1 Amazon Web Services . 28

4.1.2 Google Cloud Platform . 29

4.1.3 Microsoft Azure . 29

4.2 Professional . 29

4.3 Ethical . 30

4.4 Social . 31

5 Implementation 32

5.1 Application used: architecture, endpoints and responses 32

5.2 General Google Cloud environments: Projects and accounts 36

5.3 Infrastructure as a Service: Google Compute Engine & Load Balancer . . 37

5.3.1 General architecture . 37

5.3.2 Resources used and setup process 37

5.4 Managed Kubernetes Service: Google Kubernetes Engine 40

5.4.1 General architecture . 40

5.4.2 Resources used and setup process 40

5.5 Serverless deployment: Google Cloud Run 43

5.5.1 General architecture . 43

5.5.2 Resources used and setup process 43

5.6 Experimental Platform . 45

Global architecture and services used 45

User behaviour . 45

Swarming . 46

6 Experiments and results 47

6.1 Experimental protocol . 47

Contents vi

6.2 Results . 49

Performance . 49

Cost . 49

Scalability and Resource utilization 50

6.3 Findings . 52

Cost per performance . 52

Scalability and performance at scale 53

Summary: Strengths and weaknesses 55

7 Conclusion 56

7.1 Conclusion . 56

7.2 Future work . 57

A Locust - Docker 58

B MongoDB - Docker 59

C Cinema Application V1 - Docker 60

D Cinema Application V2 - Docker 62

Bibliography 63

List of Figures

2.1 Monolithic vs Micro-services architecture 6

2.2 Virtual Machine Architecture . 9

2.3 Container Architecture . 10

2.4 Kubernetes Architecture . 12

2.5 Services comparison . 14

2.6 Alana Architecture . 15

3.1 Experimental platform architecture . 24

5.1 Cinema Application V1 (standalone) . 33

5.2 Cinema Application V2 (using managed services) 33

5.3 IaaS Architecture . 37

5.4 Kubernetes Architecture . 40

5.5 Cloud Run Architecture . 43

5.6 Locust user behaviour . 45

6.1 Users simulated over time . 48

6.2 IaaS Autoscaler Utilization . 50

6.3 Kubernetes CPU utilization . 51

6.4 Kubernetes cluster size . 51

6.5 Cloud Run CPU allocation . 51

6.6 Cost per performance . 52

6.7 Number of requests handled per second 53

6.8 Average response time . 54

vii

List of Tables

2.1 Cloud Service Providers Growth . 13

3.1 MoSCoW requirements . 21

3.2 Alana Hub Deployments . 23

3.3 Experimental data . 27

5.1 Cinema Application Endpoints . 34

5.2 MongoDB Setup Parameters . 36

5.3 IaaS complete setup parameters . 39

5.4 Kubernetes complete setup parameters . 42

5.5 Cloud Run complete setup parameters . 44

6.1 Summary of the Cinema Application performance for all swarming sessions 49

6.2 Cost breakdown for all deployments . 50

6.3 Ranking of IaaS, Kubernetes Engine and Cloud Run 55

viii

Abbreviations

GCP Google Cloud Platform

AWS Amazon Web Services

MA Monolithic Architecture

MSA Micro Services Architecture

SOA Service Oriented Architecture

VM Virtual Machine

OS Operating System

CSP Cloud Services Provider

DBaaS DataBase as a Service

FaaS Function as a Service

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

CaaS Container as a Service

NLU Natural Language Understanding

WBS Work Breakdown Structure

GCE Google Compute Engine

GKE Google Kubernetes Engine

ix

Chapter 1

Introduction

This chapter aims to define the context, motivations, aims and objectives of this Master

Project.

1.1 Context and Motivations

As the new evidence for deploying and hosting web applications and services, cloud

computing services are extensively used by companies [Tanni and Hasan, 2017]. These

types of hosting services have their very own characteristics, including a price-for-usage

billing [Huang et al., 2012] and an almost unlimited amount of resources available [Ko

et al., 2014]. At the same time, a massive adoption of Agile project management in soft-

ware development increased the need for practices permitting safe and easy continuous

deployments and isolation of software components. To benefit from cloud computing

characteristics and solve issues faced in Agile project management, a new model of

software architecture is becoming very popular, and slowly evolves to the new default

choice for any medium to big size web application: the micro-services architecture [Chen

et al., 2017]. A focus on scalability brought by cloud computing services pricing mod-

els and micro-services architectures led to a massive adoption of new tools permitting

the creation of ephemeral environments for software to run, built over new technologies

and principles of virtualization, such as Docker and Kubernetes [Pereira Ferreira and

Sinnott, 2019].

1

Chapter 1. Introduction 2

The combination of new software architectures, new virtualization technologies and new

hosting services constitute entirely new technological stacks for any new application,

and comparisons of their efficiency with traditional/historical technologies permit to

determine what future improvements could be made in software development practices,

and in the choice of technologies to use to achieve lower costs in production environments.

Nowadays, IT engineers are very likely to use cloud computing services to deploy web

services or applications, and a good understanding of these technologies is crucial. Their

new pricing models can be a threat for companies (especially startup companies with

lower budgets). Thus choices have to be made between multiple software architectures

and many cloud computing services for deploying, hosting and scaling applications and

services. Each of these tools are generally based on different metrics for billing [Lehrig

et al., 2015], implying another layer of confusion and difficulty to predict costs and

optimize deployments. A good knowledge and understanding of these technologies is

then very valuable for companies, permitting to achieve strategical choices leading to

cost limitations and operational improvements.

1.2 Aims and Objectives

This Master Project aims to review and assess cloud computing services for deploying,

hosting and scaling web services/applications proposed by the three main cloud services

providers (Amazon Web Service, Microsoft Azure and Google Cloud Platform). With

its experiments, a reusable protocol will be established to assess and compare different

cloud services for any kind of web application or service, permitting to reduce their

running cost.

The objectives of this project are the following:

1. Gather knowledge on new trends of cloud computing and scalable web applications

2. Evaluate the scalability performances of two cloud computing services

3. Experimentally compare the running costs of applications deployed using Infras-

tructure as a Service and Container as a Service (see section 2.1.3.3) on Google

Cloud Platform, Amazon Web Services and Microsoft Azure (see section 2.1.3)

Chapter 1. Introduction 3

4. Experimentally determine the cheapest deployment for Alana Hub ensuring a good

quality of service

Chapter 2

Literature review

This chapter aims to review all the existing technologies in use for this project, to assess

and summarize relevant papers concerning different topics addressed in this paper, and

to propose a few possible future work to go further in the objectives of this project.

2.1 Background

The purpose of this section is to gather all the knowledge needed to understand the

objectives of this project, the problematic raised and the experiments that will be led

to solve it. It aims to define and explain web applications and their architectures,

existing practices and tools to achieve scalable web applications, and cloud computing

infrastructures and services.

2.1.1 Web applications

2.1.1.1 Principles

An application program can be defined as a “Complete, self-contained computer program

[. . .] that performs a specific useful task, other than system maintenance functions”

[BusinessDictionary, 2020]. Web applications are a sub-type of applications, that can be

described as “a software program that runs on a web server” [Christensson, 2014]. Web

applications often depends on web services. According to Christensson [2017], “A web

4

Chapter 2. Literature review 5

service is an application or data source that is accessible via a standard web protocol

(HTTP or HTTPS). Unlike web applications, web services are designed to communicate

with other programs, rather than directly with users”. Web applications can integrate

web services in their core, or rely on external web services. Thus a web application is

a complete package that brings functionalities to its users in an interactive way. Web

services are not meant to be used by users directly, but to interact with other web

applications or services.

Consequently, a choice is often made by developers to isolate the interactive part of

their applications (called front-end) and an ensemble of web services that permits these

applications to benefit from server-side business logic and functionalities (e.g. dialogues

with databases). This architecture permits to have multiple front-end application (e.g.

android application, web application...) relying on the same back-end services.

2.1.1.2 Monolithic architecture

One of the two possible software architectures for web applications is called ‘monolithic

architecure’ (MA). A monolithic application can be defined as “an application with

a single code base that includes multiple services” [Al-Debagy and Martinek, 2018].

Thus a monolithic application may include multiple services, but all these services are

deployed and hosted as a whole. This software architecture is historical, and represented

the “traditional approach to software development” [De Lauretis, 2019] for many years,

used by the biggest companies in the world like Netflix, Amazon and Ebay.

Monolithic applications are generally simple to develop, test and deploy. However, their

limitations are quickly reached when they get bigger, harder to debug, more complex

and less comprehensible [Chen et al., 2017]. In other words, monolithic applications are

convenient and easy to manage for small projects, but their strengths become limitations

for larger applications.

2.1.1.3 Micro-services architecture

As a new growing trend in software development, micro-services architecture (MSA)

aims to solve the problems of monolithic applications. Micro-services can be defined

as ”small, autonomous services that work together” [Newman, 2015]. Micro-services

Chapter 2. Literature review 6

architectures constitute a part of the concept of Service Oriented Architecture (SOA),

allowing to build complete applications as an agglomeration of independent and specific

pieces of software defining services that work together [De Lauretis, 2019].

This type of software architecture is more and more adopted by big companies such

as Amazon, Netflix, LinkedIn, Soundcloud and many others [Taibi et al., 2017], be-

coming the new default choice when developing an important and/or cloud-hosted web

application.

In the context of web applications, monolithic and micro-services architectures can be

represented as described in the figure 2.1.

Figure 2.1: Monolithic vs Micro-services architecture (appinventiv.com)

2.1.2 Scalability

2.1.2.1 Principles and problematics

The notion of scalability can be introduced with two fundamental known characteristics

of any computing machine:

Chapter 2. Literature review 7

1. One machine with a given configuration can accomplish a limited and finite number

of tasks per unit of time

2. A machine with a more powerful configuration will be able to accomplish more

tasks per unit of time than a machine with a weaker configuration

In this context, an application can be considered scalable if an improvement to the hard-

ware configuration of the server hosting it leads to an improvement in its performance

in completing the tasks it is asked to [Barzu et al., 2017b]. Thus a server is not scalable

if software limitations impede it from operating in a better way with higher physical

resources (e.g. limitations in the use of multi-threading).

At any time, a scalable web server with a given configuration is able to handle a limited

number of requests per unit of time. This number of requests can however be over-

passed, as it does not depend on phenomenons on the server side but on the number of

concurrent clients trying to interact with the server and the intensity of the activity of

each client with the server. Consequently, if the amount of requests directed to a web

application is bigger than the capacity of the servers hosting this application to handle

them, there exists only two ways to upscale the servers’ capacities to handle these extra

requests:

1. Upgrade the configuration of the servers’ nodes to increase individual computing

capacities of each node: Vertical scalability (see 2.1.2.2)

2. Add more servers working in parallel to increase the global computing capacities

of the server cluster: Horizontal scalability (see 2.1.2.3)

2.1.2.2 Vertical scalability

Vertical scaling is the process of adding hardware resources to a server node to enhance its

computing capabilities, thus enhancing the ability of the server node to answer requests

[Barzu et al., 2017b]. However, scalability refers to both upscaling and downscaling, and

physical resources can either be added or removed in vertical scaling processes. With this

technique, an existing server node will have to be shut down to accomplish the upscaling

or downscaling actions, and the effect of vertical scaling is similar to the replacement

of a server node by another one with a different physical configuration. Thus vertical

Chapter 2. Literature review 8

scaling actions on a web server composed of a single node will result on a down time

of the associated services, although server replacement should be made in a way that

guarantees continuity of service. In a clustered configuration including multiple nodes,

rebooting a server node to change its physical configuration implies that this node will

not be able to handle any request during the upscaling process, resulting in a period of

time with a lower computing capacity for the server before achieving better performances

when the total number of node returns back to normal. Moreover, algorithms may not

use correctly the amount of physical resources they have access to after upscaling actions

[Aaqib, 2019].

Thus vertical scalability is a good choice for servers that do not require any continuity

of service (e.g. to face an increasing number of employees in a company, for a web server

used only by employees during the day), or with multiple node for slow upscaling actions

(e.g. email server in a company facing an increasing emailing activity).

2.1.2.3 Horizontal scalability

Horizontal scaling is the process of adding more machines (server nodes) to the server

cluster to achieve better performances [Barzu et al., 2017a]. The use of a cluster-based

architecture requires having a load balancer to split the traffic and distribute requests

to each server node. Horizontal scalability solves the main issues of vertical scalability:

there is no need to reboot any server node during upscaling and downscaling processes

and no physical action is required on the server nodes, that only needs to be started up

or shut down, ensuring a better continuity of service. Moreover, the application running

on the servers can be designed to adapt to the physical configuration of each server node,

replicating its behavior to each server node working simultaneously. However, the load

balancing component has to dynamically adapt to the variable number of server nodes

running.

Another great advantage of horizontal scalability is that it permits to implement auto-

scaling systems on physical infrastructures: server nodes can be started up and shut

down dynamically in a fully automated way, depending on the capacity of each working

server node to handle the requests forwarded by the load balancer. Auto-scaling systems

can also be used to restart server nodes presenting issues or bugs, by over-scaling the

server cluster of one extra node while the inefficient node is restarted.

Chapter 2. Literature review 9

2.1.2.4 Virtual machines

The purpose of virtual machines (VM) is to simulate physical machines inside real phys-

ical machines. These systems behave like any regular physical machine, despite using

virtual components and resources. Virtual machines are isolated from any host operat-

ing system (OS) thanks to a hypervisor. A hypervisor is a software that allows kernels

to run on top of the physical machine’s kernel, by virtualizing all the physical compo-

nents (CPU, RAM, storage...) needed for a guest kernel and OS to run [Joy, 2015]. The

most know hypervisors in use nowadays include VMware, KVM, Xen and Hyper-V (Joy

[2015]). According to Murugesan [2012], a typical virtual machine architecture can be

represented as shown in figure 2.2.

Figure 2.2: Typical virtual machine architecture [Murugesan, 2012]

Following this architecture, all the physical components needed by each VM to operate

are virtualized by the hypervisor. Thus, a virtual machine’s hardware configuration is

static and any change in this configuration (comparable to vertical scaling described

in section 2.1.2.2) will require the VM to be rebooted, in a way similar to physical

machines.

The isolation provided by virtual machines is very useful in server environments. Indeed,

OS images can be built to describe the entire hosting environment needed for the deploy-

ment of an application or service, permitting to integrate the OS-level configuration as

a software component of the application’s technological stack. Moreover, if an OS-level

issue occurs, a virtual machine can simply be cleared out and recreated with its very own

Chapter 2. Literature review 10

system image. Consequently, virtual machines are a very good solution to achieve hori-

zontal scalability (see section 2.1.2.3) by running multiple similar virtual server nodes in

a single physical server, but they do not allow to achieve vertical scalability (see section

2.1.2.2) in a significantly better way than using physical servers.

2.1.2.5 Container-based virtualization

Containers — or container-based virtualization — are comparable to virtual machines

by bringing isolation between different applications’ running environment. The key

difference between container-based virtualization and hypervisor-based virtualization is

the kernel-level architecture: while virtual machines use hypervisors to attribute static

amounts of physical resources to each guest kernel, container services are built over the

host kernel and have direct access to the physical resources of the host machine [Joy,

2015]. According to Joy [2015], container-based virtualization can be represented as

described in figure 2.2.

Figure 2.3: Container-based virtualization architecture [Murugesan, 2012]

Despite apparent similarities, this architecture is very different from hypervisor-based

virtualization. In this architecture, each container runs a light OS without any guest

kernel, thus hardware resources allocation does not have to be decided and locked before

booting up containers. Consequently, each container can use computing resources like

any regular application running on the host operating system, through the container

service. In this way, containers can be compared to vertical auto-scaling (see section

Chapter 2. Literature review 11

2.1.2.2) virtual machines, increasing their access to and use of hardware resources de-

pending on their needs. Container-based systems also allow the use of replication to

scale horizontally [Joy, 2015].

Many other advantages of containers over virtual machines can be enumerated including

portable deployments, fast application delivery and easy deployment [Joy, 2015].

The most popular and used container service nowadays is Docker, an open source plat-

form for distributed systems that uses isolation features of the Linux kernel [Preeth E

N et al., 2015].

2.1.2.6 Container orchestration

With the possibility to use multiple similar containers in parallel to scale applications

horizontally and the trend of micro-services software architecture (see section 2.1.1.3)

leading to the use of a high number of containers for each service deployed, a need for

container orchestration tools emerged [Pereira Ferreira and Sinnott, 2019]. According

to Pereira Ferreira and Sinnott [2019], the purpose of these tools is to “control the

automation tasks of deployment, scaling, and overall operation of containerised appli-

cations across the infrastructure”. Thus container orchestration software provides all

the required functionalities to manage complex container-based applications over mul-

tiple servers and/or server nodes, adding horizontal auto-scaling functionalities to the

inherent vertical auto-scaling behaviors of containers.

The most popular container orchestration tool is Kubernetes, an open-source software

developed by Google [Dewi et al., 2019]. Operating at the core of Google technologies,

Kubernetes is responsible for starting up over two billion containers every week across

their different business units [Pereira Ferreira and Sinnott, 2019].

Kubernetes uses a set of pods constituted of containers, and distributes them over an

ensemble of workers (physical or virtual machines) depending on the health and work

load of each worker. This distribution, scheduling and management of pods is done by

the Kubernetes masters [Dewi et al., 2019]. A simple representation of Kubernetes is

proposed in figure 2.4.

Chapter 2. Literature review 12

Figure 2.4: Simple Kubernetes architecture (Dewi et al. [2019])

2.1.3 Cloud computing

With its very own characteristics, cloud computing makes all virtualization and auto-

scaling technologies a must-have. This section aims to describe the use of these tech-

nologies in cloud computing infrastructure, and to review different auto-scaling services

proposed by the three main cloud actors.

2.1.3.1 Principles

One of the key characteristics of cloud computing is the availability of resources and

tools as a service to be used by clients. It represents a significant step in service oriented

architectures (SOA), providing computational resources without any need for the users

to understand the underlying technologies [Murugesan, 2012]. Cloud computing infras-

tructures differentiate by having massive resources available, and supporting on-demand

Chapter 2. Literature review 13

scalability of users’ computational needs without the limitations of regular hosting or

physical server clusters. They also bring new revenue models with users paying for the

amount of resources they use rather than for a pre-defined amount of resources provided

for a fixed price and paid every month/year [Murugesan, 2012].

Consequently, cost reductions of cloud hosting are achieved by reducing the amount of

resources used. In this context, scaling applications is crucial: any application deployed

on cloud computing infrastructures should always use the minimum amount of resources

it needs to accomplish its given tasks [Moldovan et al., 2016].

2.1.3.2 Public cloud computing actors

Among hundreds of cloud services providers (CSP), the three leading actors of cloud

computing are Amazon Web Service (AWS, created in 2006), Microsoft Azure (created

in 2010) and Google Cloud Platform (GCP, created in 2008) [Wahid and Banday, 2018].

In 2017, their market shares was divided as 47.1% for AWS, 10% for Azure and 3.95%

for GCP. However, the evolution of these market shares has to be considered as each

of these actors launched their services at different time. An analysis made by Canalys

included a calculation of these annual growths as presented in the table 2.1

CSP
Q4 2019

(US$ billion)
Q4 2019

Market share
Q4 2018

(US$ billion)
Q4 2018

Market share
Annual
growth

AWS 9.8 32.4% 7.3 33.4% 33.2%

Azure 5.3 17.6% 3.3 14.9% 62.3%

GCP 1.8 6.0% 1.1 4.9% 67.6%

Table 2.1: Cloud Service Provider Growth

Following these annual growth, AWS, GCP and Azure have to be considered as equiva-

lent in their potential adoption in the next few years. Therefore, the choice of a CSP for

hosting a new web application has to be made following other criteria, such as pricing.

2.1.3.3 Services

The services proposed by cloud services providers are numerous, including Databases as

a Service (DBaaS) that permit to host databases in the cloud without having to deploy

them on virtual machine instances, Function as a Service (FaaS) that permits to build

Chapter 2. Literature review 14

and call simple functions in the cloud and get responses without any hosting configu-

ration, and many others. However, the three main services provided are Infrastructure

as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS)

(Wahid and Banday [2018]). These services express different level of management and

responsibility shared between users (CSP’s clients) and CSP’s [Prajapati et al., 2018].

According to Nunnikhoven [2016], these different levels of services can be represented

as shown in figure 2.5. This representation is however discussed, but provides a good

overall understanding of the main differences between these services.

Figure 2.5: Service level comparison between On-Premises, Iaas, PaaS and SaaS

IaaS includes AWS EC2, Google Compute Engine and Microsoft Azure Cloud VMs ;

PaaS includes Google App Engine, AWS Elastic Beanstalk and Microsoft Azure Web

Apps ; SaaS includes GMail, Office 365... For all these services, auto-scaling tools

are available with different characteristics: IaaS autoscaling tools usually work with a

user-managed load balancer associated to a group of VM instances that grows up as

the pressure on each running instance reaches a certain level, whereas PaaS and SaaS

include hidden scalability services as the user is not responsible for managing the way

VM instances operate. Consequently, PaaS and SaaS are qualified as ‘serverless hosting’.

Another important type of services is Container as a Service (CaaS). These services often

use the container orchestration tool Kubernetes, thus referred to as Managed Kubernetes

Services [Pereira Ferreira and Sinnott, 2019]. Relying on the high levels of virtualization

cloud computing technologies are built over, this specific type of service permits to

Chapter 2. Literature review 15

manage application deployments with a high focus on scalability and reliability using

Kubernetes, without any need to manually manage any cloud virtual machine directly.

2.1.4 Alana

This subsection is dedicated to a review of the Alana service, as the objectives of this

project include to apply and test auto-scaling deployment methods to one of its com-

ponents: Alana Hub. All the knowledge brought in this subsection is extracted from a

paper written by Alana’s creators, Cercas Curry et al. [2018].

2.1.4.1 Global architecture and services

According to its creators [Cercas Curry et al., 2018], Alana’s architecture can be repre-

sented as described in figure 2.6.

Figure 2.6: Alana Architecture [Cercas Curry et al., 2018]

This architecture makes Alana a modular application that can be enriched with bots to

unlock new functionalities. One of the key component of this architecture is called the

‘Hub’, responsible for the main logic of Alana.

Chapter 2. Literature review 16

2.1.4.2 Alana Hub

The Hub defines how all the other modules interact with each others, and integrates

a Natural Language Understanding (NLU) pipeline and a Postprocessor. The NLU

pipeline is responsible for understanding the written transcript of the oral user’s request,

whereas the postprocessor is responsible for transforming one of the response candidates

proposed by the bots before transmitting it back to the user through lambda functions

(FaaS type cloud computing, briefly described in section 2.1.3.3) and vocal assistants.

In the production configuration used during the 2018 Alexa Prize, Alana Hub was hosted

on a simple AWS EC2 instance [Cercas Curry et al., 2018]. This limited configuration

may be a bottleneck in the complete workflow of Alana, resulting in dropping off requests

and leaving users unsatisfied. Moreover, the lack of scalability of this single IaaS instance

could result in unnecessary hosting fees at idle.

Moreover, Alana Hub adopts a monolithic architecture and includes different services

(called components) build over different technologies such as natural language process-

ing, data querying and script-based algorithms. With the current hosting configuration,

these components have to work in the same environment with a unique set of resources

to share.

2.2 Related work

The purpose of this section is to gather information and conclusions from related studies

on the topics of web applications architecture, containers and virtualization, managed

container services and cloud services providers.

2.2.1 Monolithic vs. Micro-services architecture

Many studies have been led to compare the performances and deployment costs of web

applications built over monolithic and micro-services architectures.

Chapter 2. Literature review 17

Villamizar et al. [2015] studied the deployments, performances and running costs of an

application developed and implemented using the monolithic approach and the micro-

services pattern. After deploying these two versions of their application using Amazon

Web Services (IaaS, see section 2.1.3.3), they observed the following:

1. The latency of response is not considerably impacted by micro-services architecture

2. The running cost of micro-services version was 17% lower than the running cost

of the monolithic version, due to its more granular scalability

Other conclusions were made on the advantages and disadvantages of both architecture

in software development and deployment processes (see sections 2.1.1.2 and 2.1.1.3).

In another study led by Villamizar et al. [2016], the same conclusions were made on

economical benefits of micro-services architecture operated by the CSP’s client with a

cost reduction of 13.42% compared to the monolithic architecture, and a cost reduction

of 77.08% using the Amazon Lambda service (FaaS, see section 2.1.3.3) operated by the

CSP.

2.2.2 Virtual Machines vs. Containers

Comparisons between virtual machines and Linux containers have been made, especially

using Docker, Kubernetes and cloud VMs at IaaS level.

Joy [2015] led a study to compare the performances of an application hosted on virtual

machines vs. containers.

Their first experiment consisted in deploying an application composed of a Joomla front-

end and a PostgreSQL back-end with virtual machines in the cloud (EC2 instances on

AWS) and containers (Docker running on two On-Premises servers).

Their second experiment aimed to compare the scaling performances of virtual machines

and containers. They deployed a load-balanced Wordpress application using auto-scaling

EC2 instances on AWS on one side, and Kubernetes and Docker running on two On-

Premises servers on the other side.

From these two experiments, the following observations were made:

Chapter 2. Literature review 18

1. The container-based deployment of their application permitted to resolve more

than 5 times as many requests as the VM based deployment

2. The virtual machine configuration takes more time to process one single request

than the containers-based configuration

3. The container-based deployment was scaling 22 times faster than the virtual ma-

chines deployment

2.2.3 Managed container services

A very detailed study has been led by Pereira Ferreira and Sinnott [2019] on hosted

and managed Kubernetes+Docker deployments. The aim of this study was to compare

different key performances (computing performance, memory performance, disk perfor-

mance, network performance...) between an application deployed with Kubernetes and

Docker with IaaS level services, and the same application deployed using Managed Ku-

bernetes Services (see section 2.1.3.3) on the main Cloud Services Providers: Google

Cloud Platform, Amazon Web Services and Microsoft Azure (see section 2.1.3).

Their conclusions were the following:

1. Choosing a managed Kubernetes service does not imply any specific performance

enhancement associated to the managed service itself

2. There is no unique best solution, each cloud service provider has its own pros and

cons in terms of performance

2.2.4 Cloud services providers

Despite the studies led by Pereira Ferreira and Sinnott [2019] detailed in section 2.2.3,

other studies comparing different cloud services providers shown differences between

their performances. Some experiments led by Tanni and Hasan [2017] using CloudSim

resulted in slightly better performances with AWS in comparison to GCP.

On the pricing side, a theoretical study led by Wahid and Banday [2018] concludes that

pricing-to-performance ratio depends on the type of machines and resources selected.

Chapter 2. Literature review 19

AWS wins the pricing competition in many cases, but GCP and Azure are not defeated

in all categories.

2.3 Conclusion

Cloud computing can be perceived as a revolution in the way web applications and

services are hosted. Providing their users with an almost unlimited amount of resources

to use, web entrepreneurs have to consider scalability from the very beginning of the

development of any new application. Their architectural choices have implications on

the development processes and the candidate services to use for production hosting.

With numerous services offered by the main cloud services providers, the running cost

of an application can vary and a good knowledge of these services is crucial. However,

despite the best possible understanding of these technologies, the number of existing

deployment alternatives for a whole application is still huge and only a few of them can

be assessed.

The specific behaviors of each application have strong implications on the resources

it will require, and the only reliable way to ensure the best cost optimization of a

cloud infrastructure is experimental. The number of hosting configurations and their

differences make the evaluation of all possibilities almost impossible, and a limited set of

configurations has to be determined before leading any experiment. In this context, it is

impossible to ensure that the hosting infrastructure built and used for a web application

on the cloud is the most optimized, and a constant effort has to be put in hosting

optimization throughout the whole life cycle of every application.

Chapter 3

Requirement Analysis

This chapters aims to describe the requirements for this project, and bring explanations

on the technologies chosen for assessment and the experiments that will be led to evaluate

solutions for deploying Alana in an auto-scaling environment.

3.1 MoSCoW Requirements

The requirements for this project are presented in table 3.1 according to the MoSCoW

scheme. Further explanations on these requirements are given in this chapter.

3.2 Deployments

3.2.1 Architecture of Alana Hub

In its current form, Alana Hub has a monolithic software architecture. Thus the mono-

lithic Docker image should only emerge from the current production version of Alana,

compacted in a unique Docker image. The micro-services version of Alana Hub is a new

version that has to be developed from the monolithic version, splitting its components

into micro-services with one Docker image per micro-service. The possible micro-services

architectures for Alana Hub will be determined as part of this project (requirement R3,

see table 3.1), and some details about its components and their interactions will be

20

Chapter 3. Requirement Analysis 21

Require-
ment ID

Requirement description MoSCoW Priority

R1 Create a test bench composed of 100 GCE instances M H

R2
Create a tool to schedule and operate 9 stressing

sessions for each experiment, with 3 different
values for each of the 3 experimental factors

M H

R3
Propose at least one micro-services

architecture for Alana Hub
M H

R-D1.1.1
Execute one experiment composed

of 9 stressing sessions on the monolith
of Alana Hub on GCP with Compute Engine

M H

R-D1.1.2
Execute one experiment composed of 9

stressing sessions on the monolith of Alana
Hub on GCP with Kubernetes Engine

M H

R-D1.2.1
Execute one experiment composed of 9

stressing sessions on the monolith
of Alana Hub on AWS with EC2

M H

R-D1.2.2
Execute one experiment composed of 9

stressing sessions on the monolith of Alana
Hub on AWS with Kubernetes Service

M H

R-D1.3.1
Execute one experiment composed of 9

stressing sessions on the monolith of
Alana Hub on Azure with cloud VMs

S M

R-D1.3.2
Execute one experiment composed of 9

stressing sessions on the monolith of Alana
Hub on Azure with Kubernetes Service

S M

R-D2.1.1
Execute one experiment composed of 9

stressing sessions on the micro-services version
of Alana Hub on GCP with Compute Engine

M H

R-D2.1.2
Execute one experiment composed of 9

stressing sessions on the micro-services version
of Alana Hub on GCP with Kubernetes Engine

M H

R-D2.2.1
Execute one experiment composed of 9

stressing sessions on the micro-services version
of Alana Hub on AWS with EC2

M H

R-D2.2.2
Execute one experiment composed of 9 stressing

sessions on the micro-services version of
Alana Hub on AWS with Kubernetes Service

M H

R-D2.3.1
Execute one experiment composed of 9

stressing sessions on the micro-services version
of Alana Hub on Azure with cloud VMs

S M

R-D2.3.2
Execute one experiment composed of 9

stressing sessions on the micro-services version
of Alana Hub on Azure with Kubernetes Service

S M

R4 Retrieve logs from the slave machines M H
R5 Retrieve logs from Alana M H

R6
Retrieve data from the

cloud hosting services consoles
M H

R7
Analyse the collected data to propose conclusions

on the best deployment solution to choose
M H

R8 Use any Unix based computer as the master S M

R9
Propose a unique application

to manage all the requirements
C S

R11 Test any other type of deployment W M

Table 3.1: MoSCoW requirements

Chapter 3. Requirement Analysis 22

required to propose a possible architecture following these criteria. A possible presen-

tation of such information could be a diagram representing all the modules of the NLU

pipeline [Cercas Curry et al., 2018] and their interactions with each others and with the

rest of the software. This would allow to assess the possibilities to parallelize the NLU

pipeline components to achieve a faster resolution, calling independently each component

depending on the specific resources they need.

From the new micro-services architecture, all the choices concerning its deployment

(allocation of services to Kubernetes pods, use of cloud VMs to dedicated services. . .)

will be made. The experiments will permit to determine if these choices are good, and

if some further adjustments should be made to this new architecture to optimize its

behavior in the contexts reproduced in the experiments.

Preferably, all these docker configurations should be provided in a docker-compose for-

mat, consisting of at least two components per architecture:

1. docker-compose.yaml: Yaml file containing the upper level configuration of all

services with volume mapping, ports, reference to the adequate Dockerfile. . .

2. Dockerfile: Yaml file containing details on lower level configurations of the Docker

images, allowing Docker to build appropriate images to run Alana at start-up

Some additional files may be provided as needed by the docker configuration, such as

environment variable files, specific configuration files for some services. . .

3.2.2 Cloud deployments

The experiments of this project consist in simulating different levels of load to the Alana

service, and measuring characteristics about its behaviors, performances and running

costs. This imply to define different scenarios that will be assessed and compared, with

fixed parameters and variables. With the constraints of using Docker in all deployments

and using auto-scaling technologies, and the desire to compare deployments with services

from the three main cloud services providers (Google Cloud Platform, Amazon Web Ser-

vice and Microsoft Azure), a choice has been made to evaluate two types of deployments

proposed by these three cloud services providers (autoscaling VM group+load balancer ;

Chapter 3. Requirement Analysis 23

Kubernetes with autoscaler), for the two different architectures of Alana. A total of 12

deployment types will then be tested, as described in the table 3.2.

Architecture
Deployment

type
Google Cloud

Platform
Amazon Web

Services
Microsoft
Azure

Monolithic
Autoscaling
VM group +

Load balancer

Load Balancer
Compute Engine
instance groups

Network Load Balancer
Auto Scaling Group of

EC2 instances

Azure Load Balancer
Azure autoscale with

Virtual Machine

architecture
Kubernetes

engine

Google Kubernetes
Engine cluster with
cluster autoscaler

Amazon Elastic
Kubernetes Service

with cluster autoscaler

Azure Kubernetes
Service with

cluster autoscaler

Micro-services
Autoscaling
VM group +

Load balancer

Load Balancer
Compute Engine
instance groups

Network Load Balancer
Auto Scaling Group of

EC2 instances

Azure Load Balancer
Azure autoscale with

Virtual Machine

architecture
Kubernetes

engine

Google Kubernetes
Engine cluster with
cluster autoscaler

Amazon Elastic
Kubernetes Service

with cluster autoscaler

Azure Kubernetes
Service with

cluster autoscaler

Table 3.2: Alana Hub Deployments

Each of these deployments will be associated with one separate and independent factorial

experiment, and their factors are detailed in subsection 3.4.1.

Each cloud services provider proposes a free plan to let users try and use their services

without having to pay. The services offered by each one of them vary.

Google Cloud Platform proposes the most elastic offer for free: a USD 300 free credit

available for a duration of 12 months that can be used with any service, without any

limitation or restriction on what can be used and tested [Google, 2020a]. However, a

limitation set the maximum number of vCPU cores running at the same time to 8. This

will be a limitation for this project, and a budget will be required to cover the fees it

could imply.

Amazon Web Services proposes a quite restricted free plan, that only includes a free

use of a limited set of services for a duration of 12 months. With this free plan, the

configuration of EC2 instances is limited to t2.micro, including only one vCPU and 1Gb

of memory [Amazon, 2020b]. These instances will not be sufficient for the experiments

of this project .

Microsoft Azure proposes a hybrid free plan for the same duration of 12 months, includ-

ing a free access to a limited set of services (same VM instances as AWS, not sufficient for

Alana), and a USD 200 credit that can be used freely over the first 30 days, comparable

to Google Cloud free credit [Microsoft, 2020b].

Thus Google Cloud Platform and Microsoft Azure could be used with free credits for

these experiments, but AWS will bill for the use of their services from the very beginning.

Chapter 3. Requirement Analysis 24

A financial credit should then be provided to cover AWS’ costs, and the extra costs of

GCP ans Azure.

3.3 Experimental platform

An experimental platform is required to stress Alana in all its deployment configurations.

The purpose of this test bench is to simulate dialog sessions with multiple users, with a

focus on minimizing any internal factor that could limit the overall performances of the

system from the client’s point of view. This experimental platform will be composed

of multiple Google Compute Engine instances (highest free credit, this will be man-

aged from a separate Google account) acting as slaves supervised by a master machine

ordering tasks. This configuration can be represented as shown in figure 3.1

Figure 3.1: Experimental platform architecture

Each slave machine composing this test bench represents one user, and each experiment

will use a number of these machines to send requests and get responses from Alana.

3.4 Methodology for the experiments

3.4.1 Description of the experiments

The 12 experiments led will inherently provoke different behaviors of Alana, depending

on the evolution of the number of requests it has to respond to. These four behaviors

are as follows:

1. Idle: Alana is deployed, but no user is interacting with it

Chapter 3. Requirement Analysis 25

2. Upscaling: Alana is facing an increasing number of requests per minute, and has

to scale up to handle them

3. Continued load: Alana handles a big amount of requests per minute, and has to

stay stable and coherent during this period

4. Downscaling: Alana is facing a decreasing number of requests per minute, and has

to scale down to limit costs

Experiments with different intensity of load for the “continued load” phase should be

made, to determine the relations between the number of requests received by Alana on

a given period of time (request frequency), the number of VM instances (or Kubernetes

workers) required to handle them, and the cost of the cloud infrastructure. Thus the

intensity of each stressing session has to be controlled. From Alana’s point of view, the

intensity of a session depends on the 3 following characteristics:

1. Number of concurrent users

2. Time elapsed between Alana’s response and the user’s next request

3. Complexity of each request in the way Alana computes it

This last parameter is not controlled, and the sample conversations provided (described

in section 3.4.2) should be made ensuring that the dialogues provided represent a general

ensemble with a great variety of requests and subjects. The characteristics 1 and 2 can

be integrated as variables for each stressing session, with a transfer of parameter from

the master machine to each slave machine.

Finally, a total of 12 stressing sessions will be led for each deployment scenario described

in section 3.2.2. For each of these sessions, a total of 3 factors will be modified. These

3 factors are as follows:

1. Number of concurrent users

2. Request frequency

3. Duration of the session

For each of these 3 factors, 3 separate values will be used. These values will be deter-

mined as part of the project.

Chapter 3. Requirement Analysis 26

3.4.2 Utilization of the experimental platform

Each slave machine will run a shell script responsible for making curl calls to Alana

endpoint, collecting the responses and log the time taken between each request and the

associated response. Depending on the factors defined in section 3.4.1, the next request

will be sent to Alana after a certain delay. To ensure that all slaves are working in

the same time slot, stressing sessions will be scheduled and their characteristics will be

transferred from the master machine with a crontab file defining the exact starting time

of the session. The most simple way to schedule and launch stressing sessions is to run

a shell script on the master machine responsible for building shell scripts and cron files

for each slave, before transferring them to the slave machines using scp commands. The

slave machines are not ephemeral, and the list of their IP addresses will be exported

from Google Cloud Platform. These instances will be created with an instance model

providing the public SSH key needed to make these transfers from the master machine

to each slave.

To simulate user interactions with Alana, samples of existing conversations should be

provided. The number of these samples is not limited as conversations can be looped to

simulate longer interactions. However, with a probable number of 100 users simulated

and an average duration per human-to-Alexa conversation of 2.20 minutes with 11 rounds

[Cercas Curry et al., 2018] and the intuition that conversations with a same number of

rounds will be approximately 2 times shorter (no reflexion/formulation time for the

simulated user, and bypass of Alexa’s speech recognition), a minimum number of 1000

conversations should be provided to simulate sessions with 100 users for a duration of

10 minutes, with an average duration per session of 1.10 minutes, without reusing any

conversation. For longer simulation sessions, discussion samples will be reused.

The format of these discussion samples can be chosen by the Alana team among many

options: SQL database, no-SQL database, CSV file, text file. . . Each conversation

should be clearly distinguished, and indications of a user identifier, a session identifier

and a round identifier could be used to make each interaction unique.

Finally, these samples should be as representative as possible of real-world interactions,

with a consideration of the variety of subjects and conversation types real-world scenarios

could include.

Chapter 3. Requirement Analysis 27

3.5 Data retrieving and analysis

To achieve analyses on the behavior, scalability and cost of Alana at scale, data has

to be collected from Alana Hub, Alana’s hosting and the experimental platform. The

purpose of this data collection is to include all the information needed to characterize

the links from causes to consequences at every level. This data is described in table 3.3.

Data ID Data description Source
1 Time taken by Alana to respond to each request Alana Hub

2
Time taken by each bot to provide a

response to Alana Hub for each request
Slave machines

3
Time taken by Alana Hub’s

NLU pipeline to process each request
Alana Hub

4
Number of server instances used

over time for each session
Cloud hosting provider

5
Amount of CPU resources used by

Alana Hub over time for each session
Cloud hosting provider

6
Amount of RAM used by Alana Hub

over time for each session
Cloud hosting provider

7
Cost of Alana Hub cloud infrastructure

over time for each session
Cloud hosting provider

Table 3.3: Experimental data

The nature of these analyses will be determined as part of the R7 requirement.

Chapter 4

Professional, Legal, Ethical and

Social Issues

This project and its context bring some professional, legal, social and ethical issues that

have to be covered. All the necessary precautions are taken to ensure that these issues

are controlled, and will not raise any problem. This chapter brings details on these

issues and the way they should be handled.

4.1 Legal

The main legal issue for this project concerns the use of Google Cloud Platform, Amazon

Web Services and Microsoft Azure with free trial accounts for a research project. Each

of these cloud services providers have their own contracts and our use of their services

has to be adequate to their policies. This section provides details on the contracts for

these three services, to ensure that no contractual abuse will be made.

4.1.1 Amazon Web Services

Amazon presents on its website, with a Question/Answer format, a clear mention ensur-

ing that their free trial can be used without any specific limitation in comparison with a

paid account. Moreover, examples are provided on the use of this free tier for different

28

Chapter 4. Professional, Legal, Ethical and Social Issues 29

purposes including “development and test projects” [Amazon, 2020c]. This project con-

sists in testing deployments for development purposes, and falls into the scope of this

particular use. Thus our activity with AWS is perfectly legal for this matter.

4.1.2 Google Cloud Platform

The creation of multiple Google accounts by one same person to get access to multiple

free trials is technically possible, but not allowed by the Terms and Conditions of Google

Cloud Platform. As described in the Supplemental Terms and Conditions For Google

Cloud Platform Free Trial [Google, 2020c], “Only new Google Cloud Platform customers

are eligible to participate in the Free Trial”. A misconduct to this rule can lead to a

suspension for the user concerned. If a project has only one owner, and this owner gets

suspended, the project will be considered as orphaned and marked for deletion [Google,

2020b]. The solution proposed by Google to avoid a project from getting orphaned (and

potentially deleted) is to make sure that at least two users are set as owners of the

project.

Two solutions emerge from this limitation: create new free GCP accounts against their

terms of services and accepting the exposure to the risk of project deletion, or opt for a

paid account without any risk on the integrity of the projects.

4.1.3 Microsoft Azure

Microsoft Azure’s free trial is limited to one per new customer: “If you’ve never tried

or paid for Azure before, you’re eligible. [. . .] There is a limit of one account with 12

months free access to products and $200 credit per new customer” [Microsoft, 2020a].

Thus, the creation of multiple accounts by one customer may be technically limited,

and prohibited if technically feasible. Alana should then expect to pay for the Microsoft

Azure resources used for this project.

4.2 Professional

A professional issue that could be raised concerns the possession of proprietary docker

images of the Alana Hub service. These ready-to-deploy images are the property of

Chapter 4. Professional, Legal, Ethical and Social Issues 30

Alana, and their use should be limited to what Alana explicitly allows. Thus, these files

should be kept safely with a great attention to avoiding any kind of leaks. Solutions to

ensure this security will be decided with Alana.

4.3 Ethical

The use of cloud computing resources implies an energy consumption and environmental

cost. The global energy footprint of the IT sector is estimated to consume 7% of global

electricity [Cook et al., 2017], thus ethical issues associated to energy consumption and

environmental impact have to be considered. According to Greenpeace [Cook et al.,

2017], Google matches its energy consumption with an equivalent or larger supply of

renewable energy. Thus Google is able to provide its customer with entirely environ-

mentally clean services in terms of energy consumption. Amazon is not transparent

enough to assess their environmental impact correctly, but claims to have produced re-

newable energy at a height of more than 50% of their energy consumption for the year

2018 [Amazon, 2020a]. Things could however have changed since 2018, and the real

environmental impact of Amazon Web Services is still difficult to estimate. Finally,

Microsoft’s energy consumption has also passed the target of at least 50% renewable

energy equivalence in 2018 [Smith, 2019].

With the purpose of this project and considering the current hosting of Alana, it is

important to note that “[Cloud computing data centers] are typically operating far

more efficiently than most independently operated data centers due largely to much

higher server utilization rates and better data center design, requiring a much smaller

percentage of energy spent on cooling and other non-computing power demand” [Cook

et al., 2017]. Moreover, one of the purposes of this project is to determine the less costing

— thus most computing resources efficient — way to deploy Alana Hub. Consequently,

and despite a potential consumption estimated to a maximum of 50% non-renewable

energy, the overall environmental impact of this project is positive and serves the ecologic

transition and its ethical principles.

Chapter 4. Professional, Legal, Ethical and Social Issues 31

4.4 Social

The main social issue with this project concerns the use of conversations between real-

life users and Alana as samples for our experiments. To ensure that any impact of the

use of these conversations are minimized and the users privacy is respected, all these

conversations should be anonymized according to the GDPR definitions, thus containing

no information permitting to identify a natural person [European Commission, 2018].

Dispositions should also be taken to ensure that this data will remain under control,

avoiding any kind of leaks from this project.

Chapter 5

Implementation

This chapter is dedicated to the implementation of the project. It brings details on the

application used and the 3 different cloud computing deployments made and assessed.

5.1 Application used: architecture, endpoints and responses

To exploit horizontal scalability in the best possible way for the experiments of this

project, and in consideration of the current progress of Alana Hub as a dockerised

micro-services application, a choice has been made to use an ensemble of microservices

APIs constituting a whole web backend application. This application was not built

for this specific project, but modifications were made to ensure a good fit between the

application and its running environments. The final application used is described in this

section.

The Cinema Application used for these experiments finds its origins in a project written

in Golang, created by Morejon and shared publicly on GitHub. Its purpose is to represent

a simple version of a complete booking system that could be used by any cinema. It

includes 4 independent micro-services: users, movies, showtimes and bookings.

Two distinct versions have been created from this original project. Databases apart, the

first version (docker-compose file in appendix C) has been designed to run as a standalone

application and includes a reverse proxy (ingress) service to distribute requests over its

4 other services distinguished by different host names. The second version (docker-

compose file in appendix D) requires external services to direct incoming requests to

32

Chapter 5. Implementation 33

the appropriate service. The implementation of a reverse proxy is the only difference

between these two versions. Finally, both versions rely on external MongoDB databases

(docker-compose file in appendix B) populated with one thousand sample records each.

The architectures of these two versions are represented respectively in figure 5.1 and

figure 5.2.

Figure 5.1: Cinema Application V1 (standalone)

Figure 5.2: Cinema Application V2 (using managed services)

Chapter 5. Implementation 34

With the appropriate domain name and host name configuration, the endpoints of the

Cinema Application are described in table 5.1.

Service URL Method Description
Users http://users.ms.yannjaffrennou.com/users GET Get all users
Users http://users.ms.yannjaffrennou.com/users POST Create user
Users http://users.ms.yannjaffrennou.com/users/{id} DELETE Remove user by id

Movies http://movies.ms.yannjaffrennou.com/movies GET Get all movies
Movies http://movies.ms.yannjaffrennou.com/movies POST Create movie
Movies http://movies.ms.yannjaffrennou.com/movies/{id} GET Get movie by id
Movies http://movies.ms.yannjaffrennou.com/movies/{id} DELETE Remove movie by id

Showtimes http://showtimes.ms.yannjaffrennou.com/showtimes GET Get all showtimes
Showtimes http://showtimes.ms.yannjaffrennou.com/showtimes POST Create showtime
Showtimes http://showtimes.ms.yannjaffrennou.com/showtimes/{id} GET Get showtime by id
Showtimes http://showtimes.ms.yannjaffrennou.com/showtimes/{id} DELETE Remove showtime by id
Bookings http://bookings.ms.yannjaffrennou.com/bookings GET Get all bookings
Bookings http://bookings.ms.yannjaffrennou.com/bookings POST Create booking

Table 5.1: Cinema Application Endpoints

Example responses from each one of the 4 services included in the Cinema Application

for GET methods are presented in JSON listings 5.1 (movies), 5.2 (users), 5.3 (show-

times) and 5.4 (bookings).

{

"data": [

{

"id": "57 b37b7c377dd100054f9f91",

"title": "El padrino",

"director ": "Francis Ford",

"rating ": 9.5,

"createdon ": "2016 -08 -16 T20 :45:48.704Z"

},

...

]

}

Listing 5.1: Example response for GET movies.ms.yannjaffrennou.com/movies

Chapter 5. Implementation 35

{

"data": [

{

"id": "57 b378da202bba0005a61b87",

"name": "Manuel",

"lastname ": "Morejon"

},

...

]

}

Listing 5.2: Example response for GET users.ms.yannjaffrennou.com/users

{

"data": [

{

"id": "57 b37e39d88780000587358a",

"date": "2016 -08 -15" ,

"createdon ": "2016 -08 -16 T20 :57:29.339Z",

"movies ": [

"57 b37c7b377dd100054f9f94",

"57 b37ba8377dd100054f9f92",

"57 b37b7c377dd100054f9f91"

]

},

...

]

}

Listing 5.3: Example response for GET showtimes.ms.yannjaffrennou.com/showtimes

{

"data": [

{

"id": "5 ef38094a960b0000107bb86",

"userid ": "5 ef36ebc8affb40001d156c3",

"showtimeid ": "5 ef379751d8cb9000129a7d1",

"movies ": [

"5 ef36fae622bf60001fecd3c",

"5 ef36f28622bf60001fec9f5"

]

},

...

]

}

Listing 5.4: Example response for GET bookings.ms.yannjaffrennou.com/bookings

Chapter 5. Implementation 36

5.2 General Google Cloud environments: Projects and ac-

counts

To ensure a minimum interference between each deployment and the experimental plat-

form, two separate Google Cloud accounts are used. One account is dedicated to the

experimental platform, while the other one is dedicated to the experimental deployments.

From the deployment account, one project is created for each deployment. As described

in section 5.1, a MongoDB setup is required for both versions of the Cinema Applica-

tion. To ensure a maximum equity between each deployment, this MongoDB setup is

replicated in each project, allowing each deployment to rely on its own databases. This

MongoDB setup requires a Cloud Firewall rule and a Google Compute Engine instance,

and the parameters of these services are detailed in table 5.2.

Service Parameter Value

Target Tag(s) mongodb
VPC Network - Firewall Network Default

Source IP ranges 0.0.0.0/0
TCP Port(s) 27017

Zone us-east1-b

Instance Type
n1-standard-1

(1 vCPU, 3.75 GB memory)
Network Tag(s) mongodb

GCE - VM Instance External IP address None
Internal IP address 10.142.0.2

Boot Disk (OS)
Container-Optimized

OS 81-12871.181.0
Disk Size 10GB

Startup Script

docker start $(docker ps -aq)

docker exec $(docker ps -q)
/bin/bash /backup/restore.sh

Table 5.2: MongoDB Setup Parameters

A first setup is required for each Google Cloud project to deploy MongoDB. This setup

is made using a docker-compose file and SSH connections. All MongoDB instances of all

projects (each relying on their own private network) use the same private (internal) IP

address, permitting to use the same environment variables for the Cinema Application

in all deployments. With this setup, MongoDB runs in a docker container inside of the

VM instance and the default MongoDB port (27017) is exposed, as described in figure

5.1 and 5.2. Databases are backed up every time the VM instance restarts, and traffic

Chapter 5. Implementation 37

on the default MongoDB port is authorized from all networks. This setup is strictly

equivalent in all projects, for all deployments. The MongoDB deployment does not

auto-scale.

5.3 Infrastructure as a Service: Google Compute Engine

& Load Balancer

5.3.1 General architecture

The general architecture of the Infrastructure as a Service deployment used is presented

in figure 5.3.

Figure 5.3: IaaS Architecture

Replication is managed at VM instance level, and each VM instance runs exactly one

copy of each container. The IaaS deployment is the only one running the first version

of the Cinema Application described in figure 5.1.

5.3.2 Resources used and setup process

The setup process to achieve this IaaS deployment is described in this section. All

sensible parameters of the complete configuration of each service are described in table

5.3.

Chapter 5. Implementation 38

To create this complete architecture, a VM instance is firstly created using Google

Compute Engine VM Instances service. The purpose of this instance in only to build a

reusable system image that will be used to create new instances in auto-scaling context.

For this matter, the first version of the Cinema Application is deployed to the image-

builder VM instance. Once this setup is finished, all useless content is deleted (Cinema

App code, SSH keys and useless docker images) to only keep one copy of each container.

The image-builder is then stopped, and a system image is created from its disk using

Google Compute Engine Images service.

Once the system image is ready to use, the image-builder VM instance is deleted and

a Google Compute Engine Instance Template must be created to define the complete

configuration that will be used for all instances of the auto-scaling deployment. This

instance template includes the choice of the previously created system image as a boot

disk, a startup script to start all Docker containers, and a network configuration with

no external IP address. At this stage, no infrastructural costs are occurring (no service

deployed, no running instance, no request to handle...). Dynamic costs will start to occur

with the next steps, including the creation of VM instances as part of the production

environment.

An auto-scaling Compute Engine Instance Group is created, with a targeted CPU uti-

lization set to 60%. Finally, a Load Balancer is created from Google Network Services.

A unique backend service is associated to this load balancer, directing all the traffic

to the previously created instance group. A DNS record is added to the DNS Zone of

yannjaffrennou.com to resolve all host names following *.ms.yannjaffrennou.com with

the external IP address provided by the frontend http service of the lastly created load

balancer.

Chapter 5. Implementation 39

Service Parameter Value
Zone us-central1-a

GCE VM instance Instance type
n1-standard-1

(1 vCPU, 3.95GB memory)

(Image Builder) Boot Disk (OS)
Container-Optimized

OS 81-12871.181.0
Disk size 50GB

Allow HTTP/HTTPS traffic true
GCE Images Name cinemams-image

Name cinemams-template

Instance type
n1-standard-1

(1 vCPU, 3.95GB memory)
GCE Instance Boot Disk (OS) cinemams-image

Template Allow HTTP/HTTPS traffic true
Startup Script docker start $(docker ps -aq)

External IP none
Name cinemams-healthcheck

Protocol TCP
GCE Health Port 80

Check Interval 60 seconds
Timeout 5 seconds

Healthy threshold 2 consecutive successes
Unhealthy threshold 3 consecutive failures

Name cinemams-group
Zone us-central1-a

Instance Template cinemams-template
GCE Instance Autoscaling mode Autoscale

Group Number of instances Minimum 1, Maximum 6
Target CPU utilization 60%

Cool down period 60 seconds
Health check cinemams-healthcheck

Name cinemams-backend
Protocol HTTP
Timeout 30 seconds

Load Balancing Instance Group cinemams-group
- Backend Port Number 80

Maximum backend utilization 80%
Capacity 100%

Health check cinemams-healthcheck
Name cinemams-frontend

Load Balancing Protocol HTTP
- Frontend IP address IPv4 ephemeral

Port 80
Load Balancing Backend(s) cinemams-backend
- HTTP(S) Load Frontend cinemams-frontend

Balancing Host and path rules default

Table 5.3: IaaS complete setup parameters

Chapter 5. Implementation 40

5.4 Managed Kubernetes Service: Google Kubernetes En-

gine

5.4.1 General architecture

The general architecture of the Kubernetes cloud deployment used is represented in

figure 5.4.

Figure 5.4: Kubernetes Architecture

The Kubernetes deployment is based on the second version of the Cinema Application.

Each container is replicated independently through pods, which are then distributed

over an auto-scaling instance group.

5.4.2 Resources used and setup process

The Kubernetes deployment uses more services than the IaaS deployment, and it is

based on higher levels of management. The setup process to achieve this deployment is

described in this section. All sensible parameters of the complete configuration of each

service are described in table 5.4.

First, container images are created on a local machine from the docker-compose file of

the second version of the Cinema Application. These docker images are then pushed

Chapter 5. Implementation 41

to Google Container Repository to be used in cloud computing contexts. In parallel,

a Kubernetes Cluster is created using Google Kubernetes Engine (GKE). This cluster

scales between 3 and 6 instances (to satisfy the requirement of a minimum of 3 pods

replicated over distinct nodes for each service), and its nodes are using the same instance

type and OS as the ones used in the IaaS deployment. The disk space is equivalent too,

and set to 50GB. Once the Kubernetes cluster is ready, running costs start to occur and

the 4 services of the Cinema Application can be deployed.

Each container is associated to one pod configuration called Workload in Kubernetes.

Thus a total of 4 workloads are created. For each one of them, the appropriate container

image is selected from the container registry. Once the 4 workloads are created and have

associated pods running on some Kubernetes nodes, they are exposed to port 80 (with

target port 8080 as described in figure 5.2). The service type parameter is set to Node

Port to allow all pods associated to one workload to be exposed on a dedicated port of

each node. This step leads to the creation of 4 services in GKE.

Finally, a Kubernetes Ingress is set up to route incoming traffic to appropriate pods

and expose the Cinema Application publicly. 4 host rules are created for each one of

the 4 services, depending on the host names defined in figure 5.2. A Load Balancer is

automatically created with one backend per service, implying 4 health checks. The URLs

targeted by these health checks must be modified to target the endpoints described in

table 5.1, to ensure that a response with code 200 (success) will be sent instead of a 404

(not found).

Chapter 5. Implementation 42

Service Parameter Value
Name cinemams-kube
Zone us-central1-a

Master version 1.14.10-gke.36
GKE Node version 1.14.10-gke.36

Cluster Number of nodes Minimum 3, Maximum 6
Node image type Container-Optimized OS (cos)

Machine type n1-standard-1(1 vCPU, 3.95GB memory)
Disk size 50GB

Application name cinemams-<serviceName>

Container image
us.gcr.io/cinemams-kubernetes-282410/

cinema/<serviceName>:latest
Cluster cinemams-kube

GKE Service port 80
Workloads Target port 8080

Protocol TCP
Service type Node port
Service name cinemams-<serviceName>-service
Ingress type External HTTP/S load balancer

Name cinemams-ingress

Backend services

cinemams-users-service
cinemams-movies-service

cinemams-showtimes-service
cinemams-bookings-service

GKE
Ingress

Host rules

movies.ms.yannjaffrennou.com
->cinemams-movies-service

users.ms.yannjaffrennou.com
->cinemams-users-service

showtimes.ms.yannjaffrennou.com
->cinemams-showtimes-service

bookings.ms.yannjaffrennou.com
->cinemams-bookings-service

Frontend protocol TCP
Frontend port 80
Frontend IP IPv4, automatically allocated

GCE
Health checks

Path /<serviceName>

Table 5.4: Kubernetes complete setup parameters

Chapter 5. Implementation 43

5.5 Serverless deployment: Google Cloud Run

5.5.1 General architecture

The general architecture of the Cloud Run deployment used is represented in figure 5.5.

Figure 5.5: Cloud Run Architecture

The Cloud Run deployment is based on the second version of the Cinema Application,

running at container level. Each container is replicated independently and uses its own

resources (one vCPU cannot be shared across multiple containers). This architecture is

the most simple from the user’s point of view, as each container is deployed independently

and traffic is routed at DNS Zone level.

5.5.2 Resources used and setup process

The Cloud Run deployment is the easiest to set up. All sensible parameters of the

complete configuration of each service are described in table 5.5.

First, a network connector is required to enable communication between Cloud Run

containers and the MongoDB service running in Google Compute Engine. This net-

work connector is created using the Serverless VPC Access service. This connector is

configured to allow traffic through the default network, from region us-central1, for all

machines with an IP address within the IP range 10.8.0.0/28 (matching with the IP

addresses allocated to Cloud Run instances running on the default cloud network). In

parrallel, container images for each one of the 4 services of the Cinema Application have

to be made available in the Container Registry of the Cloud Run project by pushing

them from a local machine. These images are strictly identical to the ones used for

Chapter 5. Implementation 44

the Kubernetes deployment, created from the second version of the Cinema Application

described in figure 5.2.

Once the network configuration is done and the container images are ready, each one

of the 4 services of the Cinema Application can be deployed independently using their

container images. Each service is set to target port 8080 of their running containers,

and the lastly created VPC connector is added to their connections.

Finally, the last step required to make all services accessible from internet is the DNS

setup. 4 mappings have to be added to the Domain Mapping, for each one of the 4

services. This step requires to add one CNAME record per service to the DNS Zone

following the instructions provided by Google Cloud.

Service Parameter Value
Name cinemams-connector
Region us-central1

Serverless Network default
VPC Access IP range 10.8.0.0/28

Minimum throughput 200Mbps
Maximum throughput 500Mbps

Service Name cinemams-<serviceName>
Region us-central1

Authentication Allow unauthenticated

Cloud Run Container image
us.gcr.io/cinemams-cloud-run/cinema/

<serviceName>:latest
Services Container port 8080

Memory allocated 256MiB
CPU allocated 1

Number of instances Minimum 0, Maximum 1000
VPC Connector cinemams-connector

Cloud Run
Domain Mappings

Mappings

movies.ms.yannjaffrennou.com
->cinemams-movies

users.ms.yannjaffrennou.com
->cinemams-users

showtimes.ms.yannjaffrennou.com
->cinemams-showtimes

bookings.ms.yannjaffrennou.com
->cinemams-bookings

Table 5.5: Cloud Run complete setup parameters

Chapter 5. Implementation 45

5.6 Experimental Platform

The experimental platform used for the experiments of this project is quite different

from the one described in section 3.3. This new experimental platform, its architecture

and behaviour are described in this section.

Global architecture and services used

The experimental platform has been built from an existing service called Locust. Lo-

cust is an open source load testing tool that permits to define user behaviours before

simulating multiple users interacting with the application to test. Locust is available

as a docker image on Docker Hub, and it can be set up with a master/worker archi-

tecture using multiple docker containers (docker-compose file in appendix A). In this

configuration, the users simulated are distributed over all workers. With Locust and

Docker, the complete experimental platform is handled by one Google Compute Engine

VM instance. It resides in the same region as all deployments (us-central1), and it is

configured with 8 vCPUs and 30GB of memory (n1-standard-8 instance type) to make

it ready to handle its high needs of resources. A simple docker-compose file is used to

start Locust (with one master and 10 workers), and the web interface of Locust can be

accessed through any browser as soon as these containers are all running.

User behaviour

The user behaviour is described through python code. A set of candidate requests is

defined along with a delay (that can be randomized), and every time a user receives

a response to its lastly sent request, it waits for the delay before sending a randomly

picked request. This cycle is represented in figure 5.6.

Figure 5.6: Locust user behaviour

Chapter 5. Implementation 46

Swarming

Three parameters have to be defined before starting any new swarming session: the

number of users to simulate, the user hatching and the URL to swarm. Thus the

number of users simulated increases every second before reaching a maximum value.

For instance, a session configured with 1000 users and a user hatching of 100 will take

10 seconds to reach the total number of users to simulate before stabilizing at its full

load of 1000 users. A running session can be stopped at any time, by the simple press of

a button. While a session is running, metrics on the requests and responses are updated

in real time and saved in a table that can be downloaded as a CVS file. For every

session and each endpoint targeted, these metrics include the number of requests sent,

the average request frequency, the number of success and failures, statistics on response

time, inter alia.

Chapter 6

Experiments and results

6.1 Experimental protocol

To experimentally measure the performance and cost of each deployment throughout dif-

ferent utilization schemes, one experiment is lead for each deployment. The only variable

in this set of experiments is the cloud computing infrastructure used, thus permitting to

compare these deployments in similar stressing conditions determined through prelimi-

nary experiments on the Cinema Application. Consequently, the experimental protocol

must be identical for all experiment, and this protocol is described in this section.

The experiments lead are composed of 13 phases defined over time, for a total of 7 idle

periods and 6 swarming sessions. Swarming sessions are separated by a 15 minutes idle

period, and include a 1 minute period of scale out and 14 minutes of full load, no matter

the number of users simulated (the higher the number of users is, the higher the user

hatching is). The number of users simulated over time is described in figure 6.1.

For each deployment, the total duration of the experiment is 3 hours and 30 minutes.

The first 30 minutes of idle period permit to set up the deployment and send a test

request before starting swarming. Once the experiment is finished, the infrastructure is

shutdown to avoid any extra cost.

To simplify the requests sent to the Cinema Application and minimize the need of

high computational resources of the MongoDB instance, only the ”GET all” endpoints

described in table 5.1 are triggered. Thus no write lock have to be managed by the

47

Chapter 6. Experiments and results 48

Figure 6.1: Users simulated over time

MongoDB service, and no consistency check have to occur. The timeout before each

request is set to a fixed value of 1 second. This user behaviour is presented accordingly

to the experimental platform description (section 5.6) in the python listing 6.1.

import random

import json

from locust import HttpUser , task , between

class QuickstartUser(HttpUser):

ids = {}

wait_time = between(1, 1)

@task

def get_all_users(self):

self.client.get("http :// users.ms.yannjaffrennou.com/users")

@task

def get_all_movies(self):

self.client.get("http :// movies.ms.yannjaffrennou.com/movies")

@task

def get_all_showtimes(self):

self.client.get("http :// showtimes.ms.yannjaffrennou.com/showtimes")

@task

def get_all_bookings(self):

self.client.get("http :// bookings.ms.yannjaffrennou.com/bookings")

Listing 6.1: User behaviour: locustfile.py

Chapter 6. Experiments and results 49

6.2 Results

Performance

A summary of the performance delivered by the Cinema Application in each deployment

configuration is presented in table 6.1.

Measure Users
Request
Count

Failure
Count

Median
Response

Time

Average
Response

Time
Requests/s

Unit user request failure ms ms req/s
120,00 66106,00 0,00 89,00 103,94 72,42
240,00 128432,00 0,00 94,00 145,99 141,37
360,00 185286,00 0,00 94,00 198,60 205,03

IaaS 480,00 242516,00 0,00 95,00 234,74 268,17
600,00 285942,00 0,00 98,00 327,28 317,22
720,00 321435,00 1,00 110,00 464,24 354,83

SUMMARY 1229717,00 1,00 / 294,50 226,51
120,00 65184,00 0,00 92,00 110,58 72,15
240,00 128136,00 0,00 110,00 138,58 141,77
360,00 135125,00 1,00 150,00 819,91 150,08

Kubernetes 480,00 119152,00 1,00 160,00 2023,59 131,27
600,00 163239,00 6,00 120,00 1684,05 181,59
720,00 145564,00 765,00 140,00 2802,94 160,80

SUMMARY 756400,00 773,00 / 1401,08 139,61
120,00 62858,00 0,00 170,00 175,08 69,41
240,00 124977,00 0,00 180,00 187,38 137,77
360,00 187307,00 0,00 170,00 186,32 206,84

CloudRun 480,00 246935,00 9,00 180,00 198,28 273,21
600,00 308375,00 40,00 170,00 197,55 341,49
720,00 345308,00 0,00 180,00 281,78 389,22

SUMMARY 1275760,00 49,00 / 216,74 236,32

Table 6.1: Summary of the Cinema Application performance for all swarming sessions

As described in table 6.1, the Cloud Run configuration can be considered as best per-

forming by responding to the highest number of requests, closely followed by the IaaS

configuration. The Kubernetes configuration performed less, and presented the highest

number of failures of all configurations. Despite a very small median response time for

the IaaS configuration, the Cloud Run deployment presents the lowest average response

time and Kubernetes is, here again, less performant.

Cost

In terms of cost, and according to the results presented in table 6.2, the IaaS configu-

ration was the less expensive to run, followed by Kubernetes, and Cloud Run. For all

configurations, the highest cost factor corresponds to the actual computing resources

(CPU), representing more than half of the cost of each infrastructure. The rest of these

costs are distributed between memory utilization and load balancing. For the Cloud

Chapter 6. Experiments and results 50

Run deployment, the N1 instance cost is only due to the MongoDB instance running in

Google Compute Engine.

Deployment IaaS Kubernetes Cloud Run
Unit euro euro euro

N1 Predefined Instance Core running in Americas 0,53 0,41 0,10
N1 Predefined Instance Ram running in Americas 0,27 0,20 0,05

HTTP Load Balancing: Global
Forwarding Rule Minimum Service Charge

0,07 0,07 /

CPU Allocation Time / / 1,15
Memory Allocation Time / / 0,03

TOTAL 0,87 0,68 1,33

Table 6.2: Cost breakdown for all deployments

Scalability and Resource utilization

As the main cost factor and scalability parameter, the CPU available and used by

the Cinema Application is a key element to determine if a deployment is able to scale

properly. For the IaaS and Kubernetes deployment, this CPU availability is represented

by the number of Compute Engine instances running, whereas the CPU available to the

Cloud Run configuration is observable through dynamic CPU allocation (expressed in

seconds of CPU core availability per second of time elapsed).

For the IaaS deployment, the CPU capacity and CPU utilization are represented over

time in figure 6.2. With the targeted CPU utilization of 60% described in table 5.3, one

running instance (with one vCPU) represents 60% of CPU availability, two instances

are 120%, and so on. Thus this CPU availability metric is always a multiple of 60%.

Figure 6.2: IaaS Autoscaler Utilization

Concerning the Kubernetes deployment, the CPU utilization monitoring does not cover

auto-scaling clusters. Consequently, it is expressed as a percentage of the total CPU

availability of the cluster. In other words, a 80% CPU utilization can represent less

CPU consumption than a 60% CPU utilization if the Kubernetes cluster has scaled

up between these two measures, increasing the total CPU availability. Thus the CPU

Chapter 6. Experiments and results 51

utilization has to be considered along with the number of running instances of the

Kubernetes cluster, respectively represented in figure 6.3 and 6.4.

Figure 6.3: Kubernetes CPU utilization

Figure 6.4: Kubernetes cluster size

Finally, the Cloud Run scalability can be represented directly through the CPU alloca-

tion, corresponding to the number of seconds of one vCPU allocated to a service each

second of time elapsed. In other words, if 4 vCPUs are allocated to a service at a certain

time, this metric will be of 4 seconds per second at this precise time. As the Cloud Run

service manages each service independently, this metric is expressed per service. The

Cloud Run CPU allocation for all 4 services over time is presented in figure 6.5.

Figure 6.5: Cloud Run CPU allocation

As Google Kubernetes Engine relies on the same technology of auto-scaling instance

group as the IaaS deployment, similar scaling behaviour are observable: it takes around

13 minutes before the instance group starts to shutdown one instance when the CPU

Chapter 6. Experiments and results 52

capacity is higher than the CPU utilization. This results in unnecessary costs for unused

VM instances. On the other side, Cloud Run allocates computing resources with a sig-

nificantly higher precision, avoiding any extra cost. Moreover the difference of targeted

CPU utilization between IaaS and Kubernetes (respectively 60% and 80%) implies a

lower number of running instances for the Kubernetes configuration in comparison with

the IaaS configuration: the IaaS instance group peaked at 6 instances whereas the Ku-

bernetes instance group peaked at 4 instances. The Cloud Run CPU allocation went up

to a total of 16 vCPUs, way higher than the IaaS and Kubernetes configurations.

6.3 Findings

Cost per performance

The cost per performance of each cloud computing platform compared in this study can

be expressed as a cost per request, or cost per successful request. As the number of

failures is overall pretty low (the highest being 0,1% for Kubernetes), these two means

of calculation present pretty similar results, presented in figure 6.6.

(a) Cost per request (b) Cost per successful request

Figure 6.6: Cost per performance

According to these results, the price per request of each deployment matches its level

of service. In other word, the cloud hosting providers’ clients can benefit from extra

services allowing easiest deployment or maintenance at a cost. A Simple Infrastructure

as a Service presents the lowest cost per request, and further analyses of the performances

Chapter 6. Experiments and results 53

of each system must be made in consideration of the scale and scalability performance

of these systems.

Scalability and performance at scale

The ability to auto-scale of each infrastructure can be expressed as its ability to deliver

the same performances for different number of users simulated at different time. In

other words, the response time observed for each request should be invariable, and the

number of requests handled per second should be proportionate to the number of users

simulated. The number of requests handled by each infrastructure for each swarming

session is presented in figure 6.7. According to this graph, the IaaS and Cloud Run

deployments handled an increasing number of requests while the number of users was

increasing, proving a good ability to scale. On the other side, Kubernetes was able to

scale only from 120 to 240 users, and its performance started decreasing from 360 users.

Figure 6.7: Number of requests handled per second

The median and average response time of each configuration and for each swarming

session are presented in figure 6.8. These graphs show, once again, that the IaaS and

Chapter 6. Experiments and results 54

Cloud Run were able to scale very well and maintain a constant response time while the

load was increasing. On the other side, Kubernetes presents surprising response time

variations that can be explained by a poor ability to get access to and use a correct

amount of computing resources.

Aside from scalability, the median response time of each deployment seems to be pro-

portionate to the level of service it relies on. Indeed, a higher level of service implies a

higher number of layers for each request to go through before arriving to a computing

instance. This phenomenon does not benefit to the Cloud Run service, that presents

the best scalability but the highest median response time.

(a) Median response time (b) Average response time

Figure 6.8: Average response time

To summarize, the IaaS configuration delivered the best performance having the small-

est response time and a very good ability to scale, despite a slightly lower number of

requests handled per second than the Cloud Run deployment at certain scale. The Cloud

Run infrastructure showed the best ability to scale with perfectly constant median and

average response times, but its response time is higher than the two other configura-

tions. Finally, Google’s managed Kubernetes Service presented a very bad ability to

scale, resulting in bad overall performance. It was however able to deliver competi-

tive performances at small scale, relying on a correctly adjusted amount of computing

resources.

Chapter 6. Experiments and results 55

Summary: Strengths and weaknesses

A summary of the results observed for each 4 deployments in terms of ability to scale,

fixed scale performance and cost is presented in table 6.3 (ranking, lower is better).

IaaS Kubernetes Cloud Run
Performance at fixed scale 1 2 3

Ability to scale 2 3 1
Cost 1 2 3

Table 6.3: Ranking of IaaS, Kubernetes Engine and Cloud Run

The results observed for Kubernetes Engine are the most surprising, with limited per-

formances and a poor ability to scale, despite its numerous benefits aside from pure

performance (continuous integration, continuous deployment, flexibility...). It should

preferably not be used in a fast-scaling context, and the size of the cluster should ideally

be fixed. Cloud Run is perfectly adapted to fast-scaling context, but may imply a trade

off on response time and increased costs. Finally, a simple Infrastructure as a Service is

the best value for money, with the best performances, overall good scalability and low

cost.

Chapter 7

Conclusion

7.1 Conclusion

This project permitted to reveal some key characteristics of some of Google’s auto-

scaling cloud computing technologies: Google Kubernetes Engine, Google Cloud Run

and Google IaaS with more classic auto-scaling instance groups and Docker. Each one

of these technologies presents its own set of strengths and weaknesses, and a special

attention should be paid to the choice of a production environment for deploying a

micro-services application in the cloud. Along with considerations on the flexibility and

level of service proposed by each technology, an estimation of the requirements of the

application to be deployed must be made in terms of performance, scalability and cost.

Containerised applications are very easy to deploy using all of these technologies, and

architectural decisions should be taken from the very beginning of the development phase

to ensure a good transition to auto-scaling production environments.

From big changes in the application tested, repercussions on the financial coverage of the

experiments, and structural changes on the experimental platform, this project had to

strongly evolve. Most of its Must requirements were not met, and a Won’t requirement

was satisfied. According to the requirements described in section 3, the following were

met:

• Retrieve data from the cloud hosting services consoles

56

Chapter 7. Conclusion and Future work 57

• Analyse the collected data to propose conclusions on the best deployment solution

to choose

• Test any other type of deployment

However, thanks to the flexibility of the project and its general aim, the following ob-

jectives were fully reached:

• Gather knowledge on new trends of cloud computing and scalable web applications

• Evaluate the scalability performances of two cloud computing services

• Experimentally compare the running costs of applications deployed using Infras-

tructure as a Service and Container as a Service (see section 2.1.3.3) on Google

Cloud Platform (see section 2.1.3)

The findings and conclusions of this project must be considered within its context,

the application used for its experiments, and the specific load simulated, although some

conclusions could be extrapolated to other applications and contexts with further studies.

7.2 Future work

From the experiments of this project, it appeared that Kubernetes’ ability to deliver good

performance in auto-scaling context was not good compared to concurrent deployments.

Further studies could be led to study the influence of Kubernetes Engine parameters

(such as targeted CPU utilization) on its performance at scale.

The same experiment could also be led on other auto-scaling services proposed by Google

(such as App Engine), or by other cloud services providers (Amazon EC2, beanstalk...)

to extend the observations of this project to a broader ensemble.

Finally, some experiments on micro-services applications deployed in auto-scaling cloud

computing infrastructures could be led at a much bigger scale through A/B testings on

a real-life application delivered to its users.

Appendix A

Locust - Docker

version: ’3’

services:

master:

image: locustio/locust

ports:

- "80:8089"

volumes:

- ./:/ mnt/locust

command: -f /mnt/locust/locustfile.py --master -H http :// master :8089

worker:

image: locustio/locust

volumes:

- ./:/ mnt/locust

command: -f /mnt/locust/locustfile.py --worker --master -host master

Listing A.1: docker-compose.yml

58

Appendix B

MongoDB - Docker

version: ’3.7’

services:

db:

image: mongo :3.3

ports:

- target: 27017

published: 27017

protocol: tcp

mode: host

volumes:

- ./ backup :/ backup

Listing B.1: docker-compose.yml

59

Appendix C

Cinema Application V1 - Docker

version: ’3.7’

services:

proxy:

image: traefik :1.7.4 - alpine

command:

- "--api"

- "--docker"

- "--docker.watch"

labels:

- "traefik.frontend.rule=Host:monitor.ms.yannjaffrennou.com"

- "traefik.port =8080"

volumes:

- type: bind

source: /var/run/docker.sock

target: /var/run/docker.sock

ports:

- target: 80

published: 80

protocol: tcp

mode: host

movies:

build: ./ movies

image: cinema/movies

labels:

- "traefik.backend=movies"

- "traefik.frontend.rule=Host:movies.ms.yannjaffrennou.com"

bookings:

build: ./ bookings

image: cinema/bookings

labels:

60

Appendix C. Cinema Application V1 - Docker 61

- "traefik.backend=bookings"

- "traefik.frontend.rule=Host:bookings.ms.yannjaffrennou.com"

showtimes:

build: ./ showtimes

image: cinema/showtimes

labels:

- "traefik.backend=showtimes"

- "traefik.frontend.rule=Host:showtimes.ms.yannjaffrennou.com"

users:

build: ./users

image: cinema/users

labels:

- "traefik.backend=users"

- "traefik.frontend.rule=Host:users.ms.yannjaffrennou.com"

Listing C.1: docker-compose.yml

Appendix D

Cinema Application V2 - Docker

version: ’3.7’

services:

movies:

build: ./ movies

image: cinema/movies

ports:

- 8080:8080

bookings:

build: ./ bookings

image: cinema/bookings

ports:

- 8080:8080

showtimes:

build: ./ showtimes

image: cinema/showtimes

ports:

- 8080:8080

users:

build: ./users

image: cinema/users

ports:

- 8080:8080

Listing D.1: docker-compose.yml

62

Bibliography

Aaqib, S. M. (2019). An efficient cluster-based approach for evaluating vertical and

horizontal scalability of web servers using linear and non-linear workloads. pages

287–291.

Al-Debagy, O. and Martinek, P. (2018). A comparative review of microservices and

monolithic architectures. pages 000149–000154.

Amazon (2020a). Aws & sustainability. Url: https://aws.amazon.com/about-

aws/sustainability/.

Amazon (2020b). Aws free tier. Url: https://aws.amazon.com/free/.

Amazon (2020c). Aws free tier faqs. Url: https://aws.amazon.com/free/free-tier-faqs/.

Barzu, A., Barbulescu, M., and Carabas, M. (2017a). Horizontal scalability towards

server performance improvement. pages 1–6.

Barzu, A., Carabas, M., and Tapus, N. (2017b). Scalability of a web server: How does

vertical scalability improve the performance of a server? pages 115–122.

BusinessDictionary (2020). Businessdictionary. Url:

http://www.businessdictionary.com/definition/application-software.html.

Cercas Curry, A., Papaioannou, I., Suglia, A., Agarwal, S., Shalyminov, I., Xinnuo,

X., Dusek, O., Eshghi, A., Konstas, I., Rieser, V., and Lemon, O. (2018). Alana v2:

Entertaining and informative open-domain social dialogue using ontologies and entity

linking.

Chen, R., Li, S., and Li, Z. (2017). From monolith to microservices: A dataflow-driven

approach. pages 466–475.

63

Bibliography 64

Christensson, P. (2014). Web application definition. Url:

https://techterms.com/definition/web application.

Christensson, P. (2017). Web service definition. Url:

https://techterms.com/definition/web service.

Cook, G., Lee, J., Tsai, T., Kong, A., Deans, J., Johnson, B., and Jardim, E. (2017).

Clicking clean: who is winning the race to build a green internet?

De Lauretis, L. (2019). From monolithic architecture to microservices architecture. pages

93–96.

Dewi, L. P., Noertjahyana, A., Palit, H. N., and Yedutun, K. (2019). Server scalability

using kubernetes. pages 1–4.

European Commission (2018). General data protection regulation. Url: https://gdpr-

info.eu.

Google (2020a). Google cloud free tier. Journal, 2020(2020-04-04). Url:

https://cloud.google.com/free/docs/gcp-free-tier.

Google (2020b). Project suspension guidelines. Url: https://cloud.google.com/resource-

manager/docs/project-suspension-guidelines.

Google (2020c). Supplemental terms and conditions for google cloud platform free trial.

Url: https://cloud.google.com/terms/free-trial/.

Huang, Y., Yang, Y., Rossi, M., and Xu, B. (2012). Towards a unified architecture of

cloud service delivery platform. 01:360–364.

Joy, A. M. (2015). Performance comparison between linux containers and virtual ma-

chines. pages 342–346.

Ko, R. K. L., Tan, A. Y. S., and Ng, G. P. Y. (2014). ’time’ for cloud? design and

implementation of a time-based cloud resource management system. pages 530–537.

Lehrig, S., Eikerling, H., and Becker, S. (2015). Scalability, elasticity, and efficiency in

cloud computing: A systematic literature review of definitions and metrics. pages

83–92.

Microsoft (2020a). Azure free account faq. Url: https://azure.microsoft.com/en-

us/free/free-account-faq/.

Bibliography 65

Microsoft (2020b). Create your azure free account today. Url:

https://azure.microsoft.com/en-us/free/.

Moldovan, D., Truong, H., and Dustdar, S. (2016). Cost-aware scalability of applications

in public clouds. pages 79–88.

Morejon, M. (2020). microservices-docker-go-mongodb. Url:

https://github.com/mmorejon/microservices-docker-go-mongodb Commit: 5c371d5.

Murugesan, S. (2012). Cloud computing: A new paradigm in it that has the power to

transform emerging markets. International Journal on Advances in ICT for Emerging

Regions (ICTer), 4.

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems.

Nunnikhoven, M. (2016). Defending the whole, iaas, paas, and saas. Url:

https://www.slideshare.net/marknca/defending-the-whole-iaas-paas-and-saas.

Pereira Ferreira, A. and Sinnott, R. (2019). A performance evaluation of containers

running on managed kubernetes services. pages 199–208.

Prajapati, A. G., Sharma, S. J., and Badgujar, V. S. (2018). All about cloud: A

systematic survey. pages 1–6.

Preeth E N, Mulerickal, F. J. P., Paul, B., and Sastri, Y. (2015). Evaluation of docker

containers based on hardware utilization. pages 697–700.

Smith, B. (2019). We’re increasing our carbon fee as we double down on sustainabil-

ity. Url: https://blogs.microsoft.com/on-the-issues/2019/04/15/were-increasing-our-

carbon-fee-as-we-double-down-on-sustainability/.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2017). Processes, motivations, and issues for

migrating to microservices architectures: An empirical investigation. IEEE Cloud

Computing, 4(5):22–32.

Tanni, T. I. and Hasan, M. S. (2017). A performance analysis of a typical server running

on a cloud. pages 1–6.

Villamizar, M., Garcés, O., Castro, H., Verano Merino, M., Salamanca, L., Casallas,

R., and Gil, S. (2015). Evaluating the monolithic and the microservice architecture

pattern to deploy web applications in the cloud.

Bibliography 66

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., Casallas,

R., Gil, S., Valencia, C., Zambrano, A., and Lang, M. (2016). Infrastructure cost

comparison of running web applications in the cloud using aws lambda and monolithic

and microservice architectures. pages 179–182.

Wahid, A. and Banday, M. T. (2018). Machine type comparative of leading cloud players

based on performance pricing. pages 2364–2368.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Context and Motivations
	1.2 Aims and Objectives

	2 Literature review
	2.1 Background
	2.1.1 Web applications
	2.1.1.1 Principles
	2.1.1.2 Monolithic architecture
	2.1.1.3 Micro-services architecture

	2.1.2 Scalability
	2.1.2.1 Principles and problematics
	2.1.2.2 Vertical scalability
	2.1.2.3 Horizontal scalability
	2.1.2.4 Virtual machines
	2.1.2.5 Container-based virtualization
	2.1.2.6 Container orchestration

	2.1.3 Cloud computing
	2.1.3.1 Principles
	2.1.3.2 Public cloud computing actors
	2.1.3.3 Services

	2.1.4 Alana
	2.1.4.1 Global architecture and services
	2.1.4.2 Alana Hub

	2.2 Related work
	2.2.1 Monolithic vs. Micro-services architecture
	2.2.2 Virtual Machines vs. Containers
	2.2.3 Managed container services
	2.2.4 Cloud services providers

	2.3 Conclusion

	3 Requirement Analysis
	3.1 MoSCoW Requirements
	3.2 Deployments
	3.2.1 Architecture of Alana Hub
	3.2.2 Cloud deployments

	3.3 Experimental platform
	3.4 Methodology for the experiments
	3.4.1 Description of the experiments
	3.4.2 Utilization of the experimental platform

	3.5 Data retrieving and analysis

	4 Professional, Legal, Ethical and Social Issues
	4.1 Legal
	4.1.1 Amazon Web Services
	4.1.2 Google Cloud Platform
	4.1.3 Microsoft Azure

	4.2 Professional
	4.3 Ethical
	4.4 Social

	5 Implementation
	5.1 Application used: architecture, endpoints and responses
	5.2 General Google Cloud environments: Projects and accounts
	5.3 Infrastructure as a Service: Google Compute Engine & Load Balancer
	5.3.1 General architecture
	5.3.2 Resources used and setup process

	5.4 Managed Kubernetes Service: Google Kubernetes Engine
	5.4.1 General architecture
	5.4.2 Resources used and setup process

	5.5 Serverless deployment: Google Cloud Run
	5.5.1 General architecture
	5.5.2 Resources used and setup process

	5.6 Experimental Platform
	Global architecture and services used
	User behaviour
	Swarming

	6 Experiments and results
	6.1 Experimental protocol
	6.2 Results
	Performance
	Cost
	Scalability and Resource utilization

	6.3 Findings
	Cost per performance
	Scalability and performance at scale
	Summary: Strengths and weaknesses

	7 Conclusion
	7.1 Conclusion
	7.2 Future work

	A Locust - Docker
	B MongoDB - Docker
	C Cinema Application V1 - Docker
	D Cinema Application V2 - Docker
	Bibliography

