
Experimental design (DOE) - Design 

Menu: QCExpert Experimental Design Design Full Factorial 

Fract Factorial 

 

This module designs a two-level multifactorial orthogonal plan 2
n–k

 and perform its analysis. 

The DOE module has two parts, Design for the experimental design before carrying out experiments 

which will find optimal combinations of factor levels to gain maximum information at a reasonable 

number of experiments and part Analysis described in the next chapter 0 on page 4, which will analyze 

results of the planned experiment. The main goal of DOE is to find which of the factors included in the 

model have considerable influence on one outcome of the experiment. The outcome is called response 

and it can typically be yield, energy consumption, costs, rate of non-conforming product units, blood 

pressure etc. Factors are variables which will set for the purpose of the experiment to two values or 

levels. Factors must have two states („low“ and „high“, or –1 and +1) defined naturally (night – day, 

male – female) or defined by the user (low temperature = 160°C, high temperature = 180°C). Each 

state is assigned the value  –1 or +1 respectively, regardless of the sign, i.e. formally high temperature 

may be defined as the „low“ state (–1) and low temperature as the „high“ state with no effect to the 

result of the analysis. Factors may typically be night and day, cooling off/on, smoker/nonsmoker, 

clockwise/counterclockwise mixer rotation, etc. The user defines number of factors n, fraction k of the 

full experimental plan and number of replications m of each experiment. The module will create a 

matrix of the experimental plan and stores it in a new data sheet in the form of plus and minus ones. 

Each row in the spreadsheet represents one experiment. The number of rows is m2
n–k

. Factors are 

named by letters of the alphabet A, B, C, …. Columns defining order of an experiment and replication 

are also added for reference. The column Response is left empty – here the user will enter results Y of 

the carried out experiments for further analysis by the module Design of Experiments – Analysis. The 

result of the analysis will be a set of coefficients of a regression model with all linear and all mixed 

terms (main effects and interactions). 

 

, 

for example, with 3 factors A, B, C we have a model with 2
3
 = 8 parameters a0 to a7. 

 

 

 

A, B, C are the factors, AB, AC, BC are second-order interactions, ABC is the third order 

interaction. The linear terms coefficients (main effects) reflect an influence of the factor level on Y. For 

example, the value a1 = 4 suggests that the high level of factor A results in Y bigger by 8 units than at 

low level of A. However, to make a final conclusion about the influence of factors the statistical 

significance of the coefficients must be assessed either by the significance test when m > 1, or by the 

coefficient QQ-plot, see below. Coefficients at mixed terms like a4AB are influences of one factor 

conditioned by the level of another factor (interactions). Great value of an interaction coefficient 

means that the factor influences Y differently in dependence on the level of the other factor. 

 

Fractional factorial designs can significantly reduce the number of experiments needed to 

calculate the coefficients to a fraction 2
–k

 compared to the full fractional design. The fraction k can be 

an integer, generally 0 < k < n. The number of experiments in such a design will then be m2
n–k

. The 

price to be paid for such a reduction of the model is aliasing. Each coefficient represents the influence 

of more than one term of the model, for example a1 may stand for combination of the influences of the 

factor A and the interaction AB, with no possibility to distinguish between there influences. Fractional 

version of the above model 2
3-1

 with k = 1 can thus be written as 
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If the interaction AB is assumed to be negligible, we can take a1 for the main effect of A. The 

summation of main effects and interactions is called aliasing. The goal of fractional design is to try to 

create a design in which a main effect is aliased only with interaction of the highest possible order, as 

it is generally known that high order interactions are often not present, therefore the respective 

coefficient represents indeed the influence of the factor. This goal is sometimes difficult to achieve, 

especially for high k. This module gives the best possible predefined designs in this respect. 

Data and parameters 

Full factorial design creates a design matrix from the given number of factors n and 

replications m. Number of generated rows will thus be m2
n
. Each row correspond to one experiment. 

Therefore this design is appropriate for lower number of factors, as the number of experiments needed 

may get quite high, eg. 1024 experiments for 10 factors without replications (n = 10, m = 1). In the 

dialog window (Fig. 1) select the target data sheet in which the design will be written. NOTE: Any 

contents of this sheet will be deleted, so you should create a new sheet (Menu: Format – Sheet – 

Append). Fill in number of factors and the desired number of replications of each experiment. If the 

checkbox at No of replications is not checked, the number of replications is ignored, m = 1 is taken as 

default. Check the box Basic information if you want to basic description of the design in the Protocol 

sheet. If the Randomize order box is checked, the column Order in the target sheet is randomized and 

after sorting the rows by this column we can obtain rows of the design in a random order, which may 

help to avoid possible deformation of response from the systematic sequence of similar experiments. 

 

 

Fig. 1 Full factorial design dialog 

 

Fig. 2 Fractional factorial design dialog 

 

Fractional factorial design is derived from the full factorial design, but needs much less 

experiments to estimate coefficients with the drawbacks mentioned above. In the dialog window (Fig. 

2) slect the target data sheet in which the design will be written. NOTE: Any contents of this sheet will 

be deleted, so you should create a new sheet (Menu: Format – Sheet – Append). The field Response 

label will be used to label the response column in the design table. If replications are required fill in the 

desired number of replications of each experiment. If the checkbox at No of replications is not 

checked, the number of replications is ignored, m = 1 is taken as default. Check the box Basic 

information if you want to basic description of the design and Alias analysis if the analysis is to be 

performed in the Protocol sheet. If the Randomize order box is checked, the column Order in the target 

sheet is randomized and after sorting the rows by this column we can obtain rows of the design in a 

random order, which may help to avoid possible deformation of response from the systematic 

sequence of similar experiments. The fractionation is based on the design defining relationships in the 

form of sufficient alias equalities. They can be written in the User definition of alias structure field. 

The number of relationships is equal to k, relationships are separated by comma. There is no easy way 

to find optimal design definition, as the defining relationship implies other aliases, some of which may 

disqualify the design. For example, if we attempt to define a 2
4-1

 design for 4 factors A, B, C, D by a 

defining relationship A = ABD, we will get the alias B = D and will not be able to separate influence 



of main effects! DO NOT use user definitions unless you are sure they are correct, otherwise they will 

most probably lead to an unusable or non-optimal plan, with aliases of main effects, such as A = C. It 

is highly recommended to use predefined designs in the drop-down list Pre-defined designs field. The 

designs are ordered by the number of factors n and the fraction k. The design descriptions have the 

following meaning 

 

2 ^( 3 - 1 ) III - 4 

  Number 

of 

factors n 

 Fraction 

order k 

 Design 

resolution 

 Number of 

experiments 

needed 

 

Design resolution is the information gain parameter related to the alias structure. The designs 

with aliases between main effect and high order interaction are more informative and have high 

resolution value. The design should be a compromise between the number of experiments and the 

design resolution. 

 

Table 1 List of pre-defined optimal designs 

No Type of design Fraction Resolution Experiments needed 

1 2
3-1

 3-1 III 4 

2 2
4-1

 4-1 IV 8 

3 2
5-1

 5-1 V 16 

4 2
5-2

 5-2 III 8 

5 2
6-1

 6-1 VI 32 

6 2
6-2

 6-2 IV 16 

7 2
6-3

 6-3 III 8 

8 2
7-1

 7-1 VII 64 

9 2
7-2

 7-2 IV 32 

10 2
7-3

 7-3 IV 16 

11 2
7-4

 7-4 III 8 

12 2
8-2

 8-2 V 64 

13 2
8-3

 8-3 IV 32 

14 2
8-4

 8-4 IV 16 

15 2
9-2

 9-2 VI 128 

16 2
9-3

 9-3 IV 64 

17 2
9-4

 9-4 IV 32 

18 2
9-5

 9-5 III 16 

19 2
10-3

 10-3 V 128 

20 2
10-4

 10-4 IV 64 

21 2
10-5

 10-5 IV 32 

22 2
10-6

 10-6 III 16 

23 2
11-5

 11-5 IV 64 

24 2
11-6

 11-6 IV 32 

25 2
11-7

 11-7 III 16 

26 2
12-8

 12-8 III 16 

27 2
13-9

 13-9 III 16 

28 2
14-10

 14-10 III 16 

29 2
15-11

 15-11 III 16 

 

 

 
Table 2 Examples of 2^(5-2) designs 



(A) Optimal design (B) Unusable design, since A=D and B=absolute 

term 

Design definition: D = AB, E = AC 

 

A = BD = CE = ABCDE 

B = AD = CDE = ABCE 

C = AE = BDE = ABCD 

D = AB = BCE = ACDE 

E = AC = BCD = ABDE 

BC = DE = ABE = ACD 

BE = CD = ABC = ADE 

ABD = ACE = BCDE = 1.0 

Design definition: A = AB, B = AD 

 

A = D = AB = BD 

B = AD = ABD = 1.0 

C = BC = ACD = ABCD 

E = BE = ADE = ABDE 

AC = CD = ABC = BCD 

AE = DE = ABE = BDE 

CE = BCE = ACDE = ABCDE 

ACE = CDE = ABCE = BCDE 

Protocol 

Design type Full factorial, 2^n or Fractional factorial 2^(n-k).  

Design definition Only for Fractional factorial, defining relationships, e.g.: 

E = ABC  

F = BCD 

Design description Only for Fractional factorial design 2^(n-k), resolution, number of 

experiments (without replications). For example „2^( 3- 1) III -   4“ 

means 2-level factors, 3 factors in design, half – fraction of the full 

design, resolution III, 4 distinct experiments. 

No of factors Number of factors 

No of replications Number of replications of each experiment 

No of experiments Number of distinct experiments 

Alias-structure analysis Only for fractional design. Complete listing of all aliases, of grouped 

combinations of undistinguishable factors and interactions, Aliases 

described by one coefficient are on one row. For example, if the alias 

row contains „B  AD  CDE  ABCE“, then the coefficient for the 

factor „B“ will also include effects of interactions AD, CDE a ABCE. 

Number „1“ represents the absolute term a0 in the model. Aliases 

between factors such as A = C are undesirable, as in that case we have 

no information about the influence of the factors A and C. 

  

Graphs 

This module does not generate any plots. 

Experimental design (DOE) - Analysis 

Menu: QCExpert Experimental Design Analysis 

This module analyses data prepared by the previous module (Experimental Design). It can 

analyze both full factorial and fractional factorial designs 2
n
 a 2

n–k
, with filled in results (responses) of 

the experiments in the Response column. 

The main purpose of a designed experiment analysis is to determine which of the factors have 

significant influence on the measured response. Based on these responses, the module computes the 

coefficients of the design model using the multiway ANOVA model. If the design does not contain 

replicated experiments, the resulting model has zero degrees of freedom. In consequence, coefficient 

estimates do no allow for any statistical analysis, all residuals are by definition zero and significance of 

factors and/or interactions can only be assessed graphically using the coefficient QQ plot. With 

replicated experiments the analysis is formally regression analysis, so we can obtain estimates with 

statistical parameters (variances) and test the significance of factors statistically. It is therefore 

recommended to replicate experiments where possible. 



Data and parameters 

An example of the data for the module Design of Experiments – Analysis is shown in Table 3. 

All data except the Response column were generated by the previous module. After setting factors 

according the design and carrying out all 16 experimental measurements (or responses), the response 

values are written to the data table and whole table is submitted to analysis. 

 

 In the dialog window Factorial Design – Analysis (Fig. 3) the response column is pre-selected. 

The significance level is applicable only in case of replicated experiment, where statistical analysis is 

possible. The user can select items to be included in the text protocol output and plots in the graphical 

output. An advanced user can also write a design manually using the required notation: –1 for low and 

1 for high factor level, first 2 columns in data sheet will be ignored, names of factor columns are 

ignored, factors are always named A, B, C,…, last column is expected to contain measured responses. 

Incorrect or unbalanced designs are not accepted and may end with an error message. It is 

recommended however to use designs created by the Experimental design module. 

 

 

Table 3 Example of data for analysis of a designed fractional factorial experiment 25-2 with 5 

factors and 2 replications 

Order Replication A B C D E Response 

1 1 -1 -1 -1 1 1 14.6 

2 2 -1 -1 -1 1 1 14.5 

3 1 -1 -1 1 1 -1 13.6 

4 2 -1 -1 1 1 -1 13.6 

5 1 -1 1 -1 -1 1 15.1 

6 2 -1 1 -1 -1 1 14.7 

7 1 -1 1 1 -1 -1 13.2 

8 2 -1 1 1 -1 -1 13.3 

9 1 1 -1 -1 -1 -1 16.4 

10 2 1 -1 -1 -1 -1 16.4 

11 1 1 -1 1 -1 1 15.3 

12 2 1 -1 1 -1 1 15.1 

13 1 1 1 -1 1 -1 14.7 

14 2 1 1 -1 1 -1 14.6 

15 1 1 1 1 1 1 17.1 

16 2 1 1 1 1 1 16.7 

 

 

Fig. 3 Dialog window for Factorial design – Analysis 



Protocol 

Designed experiment analysis  

  

Design type Factorial, full design, or fractional design with description in the 

form 2^(n-k), e.g. 2^(5-2). 

  

No of factors Number of factors in the design 

No of replications Number of replications 

No of experiments Total number of experiments (number of data rows) 

Design is / IS NOT orthogonal Information if the design is or is not orthogonal. Orthogonality is 

one of the requirements for a stable and effective design. All 

designs generated by QC.Expert™  are orthogonal. 

  

Alias-structure analysis Only for fractional design. Complete listing of all aliases, of 

grouped combinations of undistinguishable factors and 

interactions, Aliases described by one coefficient are on one row. 

For example, if the alias row contains „B  AD  CDE  ABCE“, 

then the coefficient for the factor „B“ will also include effects of 

interactions AD, CDE a ABCE. Number „1“ represents the 

absolute term a0 in the model. Aliases between factors such as A 

= C are undesirable, as in that case we have no information about 

the influence of the factors A and C. 

  

Main effect values and 

interactions 

Computed values of influences for factors and interactions. 

Effect, interaction Factor or interaction, remember that in fractional design, each 

factor or interaction listed here is aliased with one or more other 

interaction and the values are a sum of all aliased influences. 

Coefficient Estimates of main effects, interactions and the absolute term. The 

absolute term is the expected value of the response when all 

factors are at the low level. These coefficients are the actual 

effect of the factors and interactions. 

Value Estimates of parameters of the regression model. As here the 

factors are represented by values –1, +1, the parameter values are 

half the effects. 

 

Std Deviation Standard deviations of regression coefficients can be computed 

only for replicated experiments. Otherwise, the deviations are 

zero. 

  

Analysis of variance Analysis of variance table. 

Source Source of variability. 

Total Total variability of the response Y – a0. 

Explained by model Variability explained by the model. 

Residual Residual variability not explained by the model. This variability 

is zero for non-replicated experiments. 

  

Influence on variance Separated average and variability for low (-) and high (+) levels 

of factors. 

Source  

Average(-), (+) Average response for low (-) and high (+) levels of factors. 

Variance(-), (+) Response variance for low (-) and high (+) levels of factors. 

Ratio(+/-) Ratio of variances at high and low level of the factors. Too high 



or too low value of the ratio may indicate significant influence of 

the given factor on response variability which can be interpreted 

as decrease or increase of quality if Y is the quality parameter or 

stability of the response variable. 

  

Residuals and prediction Table of predicted response and residuals. This table is applicable 

only for repeated experiments, otherwise responses are the same 

as measured responses and residuals are zero. 

Response Measured response Y. 

Prediction Predicted response Ypred from the computed model. 

Residual Residuals Y - Ypred. 

  

 

Graphs 

Effects plot 

 

Plot of the computed effects sorted alphabetically and by 

the interaction order. Greatest values (regardless of the sign) 

may suggest significant influence of the respective factor or 

interaction. This plot should be compared with the Effects 

QQ-plot.  

 

Ordered effects plot 

 

The same as the previous plot, the values are sorted 

decreasingly. 

Ordered square effects plot 

 

Plot of the squared computed effects sorted decreasingly. 

Greatest values may suggest significant influence of the 

respective factor or interaction. This plot should be 

compared with the Effects QQ-plot.  

 

QQ-plot for effects 

 

If all effects and interactions are zero, the effects 

distribution follow the normal distribution. In QQ-plot we 

can see deviations from normal distribution for individual 

factors. Such deviations (like factor B on the picture) can be 

interpreted as significant effect of the factor. 



QQ-plot deviations 

 

Absolute deviations from the line in the QQ-plot. High 

values suggest significance of factors. 

Averages plot 

 
 

Averages plot gives average response for low and high level 

of each factor. The scale on all plots are the same so the 

plots can be compared. 

 

Example of small effect 

 

Example of high effect. 

Interaction plots 

 

 

Interactions plot can reveal possible significant interactions 

of the first order between factors. Interaction will be 

diagnosed if the slopes of the blue and red line differ 

significantly. The scale on all plots are the same so the plots 

can be compared. 

Example of a significant interaction 

 

 Example of an insignificant or no interaction 

 

Interaction of two factors, say A and B mean that a factor A 

influences the response differently in dependence on the 

level of factor B. 

 

 


