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• Statistical Design of Experiments• Statistical Design of Experiments

Methodology developed in 1958 by the 
British statistician Ronald Fisher

Strategy
• Appropriate statistical analysis before any 

experimental data are obtained 

Objective
• To get as much information as possible 

from a minimum number of experiments 
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• Appropriate statistical analysis before any 
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Objective
• To get as much information as possible 

from a minimum number of experiments

Bayne, C. K.; Rubin, I. B., Practical experimental designs and optimization methods for chemists. VCH 
Publishers, USA, 1986.
Tranter, R., Design and analysis in chemical research. Sheffield Academic; CRC Press: Sheffield, England, 2000.
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• Experimentation in Organic synthesis• Experimentation in Organic synthesis

In any synthetical procedure there are factors
temperature, time, pressure, reagents, rate of 
addition, catalyst, solvent, concentration, pH 

that will have an influence on the result
yield, purity, selectivity

In any synthetical procedure there are factors
temperature, time, pressure, reagents, rate of 
addition, catalyst, solvent, concentration, pH

that will have an influence on the result
yield, purity, selectivity

Carlson, R., Design and optimization in organic synthesis. Elsevier: Amsterdam ; New York, 1992.



• Conventional approach to optimization• Conventional approach to optimization

• Analysis of the reaction conditions that affect the yield:• Analysis of the reaction conditions that affect the yield:

Tranter, R., Design and analysis in chemical research. Sheffield Academic; CRC Press: Sheffield, England, 2000.
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• The maximum yield would be obtained at 125 °C in 130 min• The maximum yield would be obtained at 125 °C in 130 min?
Are these really the optimum conditions?

?
Are these really the optimum conditions?



Yield vs (Time and Temperature)Yield vs (Time and Temperature)
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• How yield actually behaves• How yield actually behaves

Carlson, R., Design and optimization in organic synthesis. Elsevier: Amsterdam ; New York, 1992.
Tranter, R., Design and analysis in chemical research. Sheffield Academic; CRC Press: Sheffield, England, 2000.
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• The conventional approach• The conventional approach

Owen, M. R.; Luscombe, C.; Lai, L. W.; Godbert, S.; Crookes, D. L.; Emiabata-Smith, D.
Org. Proc. Res. Dev. 2001, 5, 308-323.

• Analysis of the effect of one particular reaction condition 
by keeping all the other ones constant 
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• The DoE approach• The DoE approach
• To rationally choose points throughout the cube to fully 

represent the entire space. 
• To rationally choose points throughout the cube to fully 

represent the entire space.
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Owen, M. R.; Luscombe, C.; Lai, L. W.; Godbert, S.; Crookes, D. L.; Emiabata-Smith, D.
Org. Proc. Res. Dev. 2001, 5, 308-323.



• Outline• Outline

Determining important reaction conditions
• Fractional factorial design

Analysis of reaction condition effects
• Factorial design

Estimation of the optimum conditions
• Response surface analysis
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• Factorial designs• Factorial designs
• Two types of reaction conditions:

Numeric
temperature, pH, rate of addition, concentration
Categoric
solvent, inert atmosphere, presence of molecular 
sieves, use of a particular reagent 

• Each reaction condition will be screened over a defined 
set of values (numeric) or options (categoric) 

• Experiments are run using all the possible combinations
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• mn Factorial designs• mn Factorial designs

• If we analyze 2 values (or options) for 3 reaction 
conditions, 23=8 experiments need to be run 

• A mn factorial design requires mn experiments
• The most used method is 2n design
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• A mn factorial design requires mn experiments
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• 23 factorial design• 23 factorial design

• 2 values (or options)  for 3 reaction conditions:• 2 values (or options)  for 3 reaction conditions:

Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.
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• 23 factorial design• 23 factorial design

• 8 experimental runs:• 8 experimental runs:

acid catalyst
(H2SO4/H3PO4)

OH
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T °C

run T C K label

1 - - - 1
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5 - - + k
6 + - + tk
7 - + + ck
8 + + + tck

yield (%)
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72
54
68
52
83
45
80

Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.
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• Measuring the effect: Temperature• Measuring the effect: Temperature
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• Measuring the effect: Concentration• Measuring the effect: Concentration
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• Measuring the effect: Catalyst• Measuring the effect: Catalyst
Effect of K
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• Concentration-temperature interaction• Concentration-temperature interaction
Effect of C on the 
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• Concentration-temperature interaction• Concentration-temperature interaction
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• Temperature-catalyst interaction• Temperature-catalyst interaction
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• TCK interaction• TCK interaction
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• Measuring the effect and interactions• Measuring the effect and interactions
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Factor effect plotFactor effect plot
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• What do those numbers mean?• What do those numbers mean?
• First we need to evaluate if they are significant• First we need to evaluate if they are significant

3x

3x
(when there is 

no central point)

• If the effect of a factor is lower than the standard 
deviation, it’s likely to be due to experimental error 

• If the effect of a factor is lower than the standard 
deviation, it’s likely to be due to experimental error



• What do those numbers mean?• What do those numbers mean?

±+−+= TK5C5.2T5.1125.64yieldresult
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calculated

60.25 ± 2
73.25 ± 2
55.25 ± 2
68.25 ± 2
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45.25 ± 2
78.25 ± 2

• The effects can be used to calculate a function that 
represents all the experimental runs 

• The effects can be used to calculate a function that 
represents all the experimental runs



• The meaning of those numbers• The meaning of those numbers
±+−+= TK5C5.2T5.1125.64yield

±−+= C5.2T5.1625.64yield
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• Categorical reaction conditions can be optimized• Categorical reaction conditions can be optimized



• It was possible to choose one catalyst because the 
interaction TK was identified

• Something important• Something important

yield (%)
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• The meaning of those numbers• The meaning of those numbers

• To find the optimum 
conditions, we need to make 
sure that this function 
represents the entire space 

• To find the optimum 
conditions, we need to make 
sure that this function 
represents the entire space
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• Other factorial designs• Other factorial designs

• Full factorial design
• Central composite
• Box-Benhken

• Full factorial design
• Central composite
• Box-Benhken

Tye, H. Drug Discovery Today 2004, 9, 485-491.



• Outline• Outline

Determining important reaction conditions
• Fractional factorial design

Analysis of reaction condition effects
• Factorial design

Estimation of the optimum conditions
• Response surface analysis
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• Fractional Factorial designs• Fractional Factorial designs

• Factorial designs work perfectly for determining 
important factors 
…if you have 3 reaction conditions, as in the example

• If you had to analyze 7 reaction conditions at 2 values 
each, you would need to run 27=128 experiments! 

• By virtue of statistics, it is possible to lower that number 
and get the same information 

• Factorial designs work perfectly for determining 
important factors
…if you have 3 reaction conditions, as in the example

• If you had to analyze 7 reaction conditions at 2 values 
each, you would need to run 27=128 experiments!

• By virtue of statistics, it is possible to lower that number 
and get the same information

acid catalyst
(H2SO4/H3PO4)

OH

COOR

ROOC
COOR

COOR

ROOC
COOR

H2O

T °C



• mn-p Fractional Factorial designs• mn-p Fractional Factorial designs

mn-pmn-p
actual number 

of reaction 
conditions

number of values 
for each reaction 

condition

number of “ignored” 
reaction conditions

• A mn-p fractional factorial design requires mn-p experiments

• If we analyze 2 values or options for 4 reaction conditions 
(as if they were only 3), 24-1=8 experiments need to be run 

• A mn-p fractional factorial design requires mn-p experiments

• If we analyze 2 values or options for 4 reaction conditions 
(as if they were only 3), 24-1=8 experiments need to be run

Tranter, R., Design and analysis in chemical research. Sheffield Academic; CRC Press: Sheffield, England, 2000.



• Effects vs. interactions• Effects vs. interactions

Tranter, R., Design and analysis in chemical research. Sheffield Academic; CRC Press: Sheffield, England, 2000
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• This is what we 
got before: 

• This is what we 
got before: Important?
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If you get to here you 
have something very 

unusual!

more-than-5-factor 
interactions

Sometimes3-factor interactions

Often2-factor interactions

Very oftenmain effects



Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.
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Yates’s algorithm:Yates’s algorithm:

yield (%)

#
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#
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#
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#
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• 24-1 Fractional factorial design• 24-1 Fractional factorial design

av + ABCD

A + BCD

B + ACD
AB + CD
C + ABD
AC + BD

BC + AD

ABC + D



• Fractional factorial designs• Fractional factorial designs

Design Expert 7.0.3 (Stat-Ease Inc.) (http://www.statease.com)
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• How to compare the effects?• How to compare the effects?

Factor effect plotFactor effect plot
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In the case of 3 reaction conditions, a “Factor effect plot”
is enough
In the case of 3 reaction conditions, a “Factor effect plot”
is enough

For a high number of reactions, a normal plot is neededFor a high number of reactions, a normal plot is needed



• Normal plots• Normal plots

Let’s assume that the experimental error follows a 
normal distribution
Let’s assume that the experimental error follows a 
normal distribution

Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.

In a normal plot, reaction condition 
effects that are due to experimental error 
will appear forming a straight line

In a normal plot, reaction condition 
effects that are due to experimental error 
will appear forming a straight line

Normal plotNormal plot

% error
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Stazi, F.; Palmisano, G.; Turconi, M.; Clini, S.; Santagostino, M. J. Org. Chem. 2004, 69, 1097-1103.
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• Application example• Application example
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A 27-4 fractional factorial (8 experiments) design was used:A 27-4 fractional factorial (8 experiments) design was used:

Reaction condition -1 +1
A pre-complex time (min) 0 60 
B reaction time (h) 2 6 
C Ag2 CO3 (equiv) 1.5 3.8 
D HMTTA (equiv) 1.5 12.6 
E sugar derivative (equiv) 1.5 3 
F 4 Å mol sieves (mg) 0 100 
G solvent (mL) 0.5 1.5



• Application example• Application example

run A B C D E F G yield (%) 

1 - - - + + + - 14.7 
2 + - - - - + + 19.5 
3 - + - - + - + 24.4 
4 + + - + - - - 11.2 
5 - - + + - - + 34.2 
6 + - + - + - - 83.2 
7 - + + - - + - 56.5 
8 + + + + + + + 55.4 

• 27-4 factorial design results:• 27-4 factorial design results:
A pre-complex time (min) 

B reaction time (h) 

C Ag2 CO3 (equiv) 

D HMTTA (equiv) 

E sugar derivative (equiv) 

F 4 Å mol sieves (mg) 

G solvent (mL) 

Stazi, F.; Palmisano, G.; Turconi, M.; Clini, S.; Santagostino, M. J. Org. Chem. 2004, 69, 1097-1103.
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• Finally, a 23 factorial design and 
response surface analysis gave 
the optimum conditions 

• Finally, a 23 factorial design and 
response surface analysis gave 
the optimum conditions 

Stazi, F.; Palmisano, G.; Turconi, M.; Clini, S.; Santagostino, M. J. Org. Chem. 2004, 69, 1097-1103.
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• Response surface analysis• Response surface analysis

Carlson, R., Design and optimization in organic synthesis. Elsevier: Amsterdam; New York, 1992.

• The problem of optimizing a synthetic reaction corresponds to 
locate the maximum value of a function from a mathematical 
point of view 

• The problem of optimizing a synthetic reaction corresponds to 
locate the maximum value of a function from a mathematical 
point of view

yield yield
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H2SO4(aq) 1.0M

OH
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t
time
(min)

T
Temperature 

(°C)

70 80 127.5 132.5

-1 +1 -1 +1

run t T

1 - -
2 + -
3 - + 
4 + + 
5 0 0
6 0 0 
7 0 0 

Central point: 
three times to 
calculate the 

experimental error

Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.



• Response surface analysis• Response surface analysis

run t T yield (%) 

1 - - 54.3
2 + - 60.3 
3 - + 64.6 
4 + + 68.0 
5 0 0 60.3 
6 0 0 64.3 
8 0 0 62.3 

3 central points

Yield vs. (Time and Temperature)Yield vs. (Time and Temperature)
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Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.
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Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.
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• Response surface analysis• Response surface analysis

Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.

87.4

±+−= T97.6t69.209.82yield

77.2 73.01

85.991.9

71.2

91.1

86.8 79.3

• Equation for the 22 factorial 
design: 

• Equation for the 22 factorial 
design:

• Calculated equation for the 
surface: 

• Calculated equation for the 
surface:

T97.6t69.236.87yield +−=

±−−− Tt58.0T12.3t15.2 22
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• Response surface analysis• Response surface analysis

Box, G. E. P.; Hunter, W. G.; Hunter, J. S., Statistics for experimenters : an introduction to design, data analysis, 
and model building. Wiley: New York, 1978.

T97.6t69.236.87yield +−= ±−−− Tt58.0T12.3t15.2 22

88

8590
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Optimum conditions:
T = 157 °C
t = 73 min
yield: 93%

Optimum conditions:
T = 157 °C
t = 73 min
yield: 93%



• Sequential nature of experimentation• Sequential nature of experimentation

PlanPlan

Fractional 
factorial 
design 

Fractional 
factorial 
design

Hypercube design 
in n dimensions 

Hypercube design 
in n dimensions

Design in 2,3,4 
dimensions 

Design in 2,3,4 
dimensions

Full factorial 
design 

Full factorial 
design

Tranter, R., Design and analysis in chemical research. Sheffield Academic; CRC Press: Sheffield, England, 2000.

Central 
composite 

Central 
composite

Response 
surface analysis 

Response 
surface analysis



• Application of response surface analysis• Application of response surface analysis

Owen, M. R.; Luscombe, C.; Lai, L. W.; Godbert, S.; Crookes, D. L.; Emiabata-Smith, D.
Org. Proc. Res. Dev. 2001, 5, 308-323.
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reaction condition range units

temperature 10 30 °C

time 19 31 hours

volume of NMP 3 7 mL/g of substrate

equivalents of TEA.3HF 1 1.67 Equivalents

24 central composite

Monitored results:
• % yield of alcohol
• % lactone
• % remaining silyl ether

24 central composite

Monitored results:
• % yield of alcohol
• % lactone
• % remaining silyl ether
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Owen, M. R.; Luscombe, C.; Lai, L. W.; Godbert, S.; Crookes, D. L.; Emiabata-Smith, D.
Org. Proc. Res. Dev. 2001, 5, 308-323.
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• Application• Application

Owen, M. R.; Luscombe, C.; Lai, L. W.; Godbert, S.; Crookes, D. L.; Emiabata-Smith, D.
Org. Proc. Res. Dev. 2001, 5, 308-323.

Predicted conditions product yield (%) impurity (%)

target/constraints T (°C) Time (h) solvent Et3N·3HF predicted actual predicted actual 

max yield 19 31 3.6 1.42 95.3 95.8 3.3 3.3 

lactone < 2% 17 31 4.8 1.50 94.2 94.0 1.9 1.7 

lactone < 1.1% 16 29 5.3 1.68 92.4 93.1 1.1 1.1 

lactone < 2%, solvent < 3.5 mL/g 14 31 3.45 1.58 93.9 94.2 1.8 2.0 

lactone < 2% Et3 N.3HF < 1.18eq. 28 19.5 7 1.17 93.7 93.4 1.9 2.0 

lactone < 2%, time < 23 h 24 23 6.3 1.41 94.2 94.2 2.0 1.9
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• When DoE “fails”• When DoE “fails”

Larkin, J. P.; Wehrey, C.; Boffelli, P.; Lagraulet, H.; Lemaitre, G.; Nedelec, A.
Org. Proc. Res. Dev. 2002, 6, 20-27.

entry Ac2 O 
(equiv)

AcBr 
(equiv) T (°C)

yield (%)
(20 g)

yield(%)
(20 kg)

comments

1 3 3.8 23-27 77.3 < 70 original conditions
2
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1.5
1

4
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74

optimum of DoE
new conditions

Conditions: t  = 4-5h; yield of 2 after crystallization
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• “DoE involves a lot of math, it’s rather 
complicated” 

• “DoE involves a lot of math, it’s rather 
complicated”

• People tend not to utilize DoE because of the 
tedious mathematical manipulations. 

• People tend not to utilize DoE because of the 
tedious mathematical manipulations.

Lendrem, D.; Owen, M.; Godbert, S. Org. Proc. Res. Dev. 2001, 5, 324-327.
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Most commonly used:

• Stat-Ease Design Expert ®

(http://www.statease.com)

• Umetrics MODDE ®

(http://www.umetrics.com)

• S-matrix Fusion Pro ®

(http://www.smatrix.com)

Most commonly used:

• Stat-Ease Design Expert ®

(http://www.statease.com)

• Umetrics MODDE ®

(http://www.umetrics.com)

• S-matrix Fusion Pro ®

(http://www.smatrix.com)



• What if I need to run >24 experiments?• What if I need to run >24 experiments?

Harre, M.; Tilstam, U.; Weinmann, H. Org. Proc. Res. Dev. 1999, 3, 304-318.

The answer is to use automation

• Some features of automated systems, commercially available:
Up to 100 simultaneous reactions
Automated liquid handler

Vessel volume: 100 μL 250 mL
Temperatures: -100 °C 350 °C

Reflux, N2 blanketing, automated N2/vacuum manifold

On-line HPLC

The answer is to use automation

• Some features of automated systems, commercially available:
Up to 100 simultaneous reactions
Automated liquid handler

Vessel volume: 100 μL 250 mL
Temperatures: -100 °C 350 °C

Reflux, N2 blanketing, automated N2/vacuum manifold

On-line HPLC



• Example of the use of automation• Example of the use of automation
Ar

OH

HO

R

O

R

ArPPh3, DIAD

toluene
50 - 70 %

Important factors: ratio DIAD/alcohol, 
alcohol, temperature 
Important factors: ratio DIAD/alcohol, 
alcohol, temperature

• System:
Automated liquid handler
On-line HPLC

• Reaction conditions:
A  equivalents of alcohol
B  equivalents of DIAD
C  volume of toluene
D  temperature
E  addition rate of DIAD

• 20 experimental runs
• Total research time: 5 days

• System:
Automated liquid handler
On-line HPLC

• Reaction conditions:
A  equivalents of alcohol
B  equivalents of DIAD
C  volume of toluene
D  temperature
E  addition rate of DIAD

• 20 experimental runs
• Total research time: 5 days

Emiabata-Smith, D. F.; Crookes, D. L.; Owen, M. R. Org. Proc. Res. Dev. 1999, 3, 281-288.
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Further exploration 
would  lead us to 
obtain > 94% yield 

Further exploration 
would  lead us to 
obtain > 94% yield

1.1 equivalents of DIAD and 
1.1 equivalents of alcohol
89% yield, almost pure 
product after workup 

1.1 equivalents of DIAD and 
1.1 equivalents of alcohol
89% yield, almost pure 
product after workup

Emiabata-Smith, D. F.; Crookes, D. L.; Owen, M. R. Org. Proc. Res. Dev. 1999, 3, 281-288.
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• DoE offers powerful mathematical models that are 
applicable to the behavior of organic reactions 

• DoE methods are a daily practice in industrial chemistry. 
Current applications and results are not being published 

• DoE is not a substitute for creative chemistry, but it can 
be a great supplement 
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• DoE is a tool• DoE is a tool

• A tool… like a hammer

• The only way to know how it works is to use it

• If you don’t try it, you will never know that it 
actually works 

• When you get used to the hammer, you wouldn’t 
use a rock again 

• A tool… like a hammer

• The only way to know how it works is to use it

• If you don’t try it, you will never know that it 
actually works

• When you get used to the hammer, you wouldn’t 
use a rock again

Lendrem, D.; Owen, M.; Godbert, S. Org. Proc. Res. Dev. 2001, 5, 324-327.
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