Improving Measurements for Smokestack Emissions 2017

Experimental Investigation on Geometric Parameters of S-type Pitot tube for GHGs Emission monitoring

Woong KANG

Center for Fluid Flow and Acoustics Korea Research Institute of Standards and Science

Contents

S-type Pitot tube in Smokestack

Research objective

Experimental results in KRISS

Conclusion

Korea GHG Inventory

 High proportion (90%) of greenhouse gas emissions arising from the energy and industrial fields such as heavy / petrochemical / semiconductor and power plant

Korea Emission Trading Scheme

- Implementation with allocation of emission cap for each company in 2015
- To meet the cap of emissions, company with increasing emissions should buy emission allowance from other emission-reduced company

Estimation method of GHG emissions in KOREA

Fuel consumption (Tier 1)

by IPCC guidelines

Activity-based method

 $E = FC \times EF$

E : estimated emission (kg) FC : fuel consumption (TJ) EF : emission factor (kg/TJ)

$$E = FM \times CC \times \frac{M_{CO_2}}{M_C}$$

CC: fuel carbon content(kg/kg) M_{CO2} : molecular mass of carbon dioxide M_C : atomic mass of carbon Carbon content (Tier 3) by IPCC guidelines

Continuous emission measurement(CEM)

$$E_{CEM} = \sum_{i=1}^{N} E_{5min,i} = \sum_{i=1}^{N} (K \times \overline{C}_i \times Q_{5min,i} \times \frac{MW_{gas}}{22.4L}) \text{ (CEMS (Tier 4) by EPA)}$$

 Depending on combustion source and unit size, facilities can select estimate methods, but CEMs is not Mandatory in the Environ. Law of Korea

Smoke Stack Tele-Monitoring System(TMS)

😌 On-site Measurement

오 Analyzer Control Unit

- National Ambient Air Monitoring System operated by Ministry of S. Korea
- Measure and monitor the pollutant items(SOX, NOX,..)and non-pollutant item(Temp., Flow rate and O2) from large-scale emission facilities

Contents

S-type Pitot tube in Smokestack

Experimental results in KRISS

Conclusion

Instruments for Stack Flow Velocity in KOREA

S-Type Pitot tube

- Large pressure orifices($\Phi=5\sim10$ mm) & Strong tubes for high dust environments like industry stack (ISO 10780, KS M9429, EPA method2)
- Measurement differential pressure between an impact(total pressure) and wake orifice(static pressure) based on Bernoulli equation

$$V = C_{P,S} \sqrt{\frac{2\Delta P}{\rho}}$$

- V : flow velocity in the stack gas(m/s) $C_{P,S}$: S type Pitot tube coefficient
- ΔP : differential pressure between

impact and wake orifice (Pa)

ho : density of the stack gas (*kg/m*³)

Calibration for S Pitot Tube Coefficient (C_p)

• Calibration against L-type Pitot tube in the wind tunnel of the national metrology institute or the accredited calibration laboratories.

Calibration for S Pitot Tube Coefficient (C_p)

 Determination by comparing the differential pressure of standard pitot tube and S-type Pitot tube

$$C_{P,S\cdot type} = C_{P,Std} \left(\frac{\Delta P_{Std}}{\Delta P_{S\cdot type}} \right) \frac{C_{p,s-type} : S-type \text{ Pitot tube coefficient}}{\Delta P_{s,std}} = C_{P,Std} \left(\frac{\Delta P_{Std}}{\Delta P_{S\cdot type}} \right) \frac{C_{p,s-type} : S-type \text{ Pitot tube coefficient}}{\Delta P_{s,std}} = C_{P,Std} \left(\frac{\Delta P_{Std}}{\Delta P_{S,std}} \right) \frac{C_{P,s-type} : S-type \text{ Pitot tube coefficient}}{\Delta P_{s,std}}$$

Pitot tube

tube

On-site Measurement

On-site Measurement

• S-type Pitot tube is usually installed and inserted in harsh environment such as tall stack height and high gas temperature

On-site Measurement

• Difficult to observe the inside of the stack and verify the precise installation of the S-type Pitot tube

• Flow velocity of emission gas can be altered due to the unstable process in particular industrial condition of plant

• Yaw angle misalignment can occur during installation of S-type Pitot tube from outside of the stack due to the difficulty of observation

• Pitch angle misalignment of S-type Pitot tube can result due to the deflection of the long S-type Pitot tube in large diameter stacks.

Experimental Studies (2015)

- Flow Measurement and Instrumentation, Kang et al. 2015

The effects of Yaw angle misalignment

The effects of Yaw angle misalignment

- S-type Pitot tube coefficients(C_P) at each yaw angle are normalized by S-type Pitot tube coefficients(C_{P,0°}) at a yaw angle of 0°
- The normalized S-type Pitot tube coefficients decreased by up to 2% as the yaw angle increases to ±10 ° with symmetric tendency

The effects of Pitch angle misalignment

The effects of Pitch angle misalignment

- The normalized S-type Pitot tube coefficients increase up to 4 % as the pitch angle increases to +10°
- In negative Pitch angles, S-type Pitot coefficients decrease to −2%, which can occur in industry stacks due to defection of long S type Pitot tube

S-type Tube for Smokestack

- When S-type Pitot tube install in the stack, there could be yaw, pitch angle misalignment and velocity change.
- But, one average calibration coefficient of S-type Pitot tube was used.

What is Ideal S-Type Pitot tube ?

 Linearity, Repeatability of S-type Pitot tube coefficient in the used range of Reynolds number

• Less (more) sensitivity to the effect of yaw and pitch angle misalignment

Standardization of S-Type Pitot tube

INTERNATIONAL STANDARD

ISO 10780

> First edition 1994-11-15

Stationary source emissions — Measurement of velocity and volume flowrate of gas streams in ducts

Émissions de sources fixes — Mesurage de la vitesse et du débit-volume des courants gazeux dans des conduites

Designation: D3796 - 09

Standard Practice for Calibration of Type S Pitot Tubes¹

Method 2—Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)

Recommended Configuration of S Pitot tube

International Organization for Standardization

ISO 10780

External diameter of leg (D) : 4 mm to 10 mm

Distance between the base of each leg of the Pitot tube and its face-opening plane : $1.05D \le L \le 10D$

This distance shall be equal for each leg

ASTM D3796(Ref. 1) Bending a 45° angle on the end of 0.95 cm stainless steel tube

The Pitot tube's length : $0.6 \text{ m} \le \text{PL} \le 3.0 \text{ m}$

Cutting is parallel to the main body of the tube

EPA

External diameter of leg (D) : 4.8 mm to 9.5 mm

Distance between the base of each leg of the Pitot tube and its face-opening plane : $1.05D \le L \le 1.50D$

This distance shall be equal for each leg

Contents

S-type Pitot tube in Smokestack

Research objective

 Evaluate the effect of various geometries of S-type Pitot tube on the Stype Pitot tube coefficients including the sensitivity to velocity change, pitch and yaw angle misalignments

- 1. Distance between leg base and facing-opening plane (L)
 - ISO: 1.05D \leq L \leq 10D, EPA: 1.05D \leq L \leq 1.5D
- 2. Bending Angle of opening parts (α)
 - ASTM: 45° (KRISS S Pitot tube = 30°)
- 3. Shape of opening parts
 - Curved / Straight

Configuration of S-type Pitot tube

• S-type Pitot tube KRISS used

Configuration of S-type Pitot tube

• S-type Pitot tube KRISS used

S-type Pitot tube Manufacturing

• How to manufacture S-type Pitot tube model for our designs?

L =1.05D, lpha = 30 $^\circ$

L = 1.6D, lpha = 30 $^{\circ}$

L = 3D, α = 30°

- 3D Printing (SLA, Streolithograhpy)
 - focusing an ultraviolet (UV) laser on to a vat of photopolymer resin with elevator

3D Printing for S-type Pitot tube

3D Printing S-type Pitot tube for our design(Daejeon Techno-park)

Model	ATOMm-4000
Equipped Laser	Solid state laser 400mW 40KHz
Scanning Method	Digital (TSS4)
Laser Warranty Period	1 year
Maximum Scanning Speed	30,000mm/sec
Laser Diameter	0.10 - 0.60mm (automatically changeable)
Maximum Model Size	400×400×300mm
Z Table	Minimum layer pitch 25µm *depends on the resin used
Recoater	Blade recoater
Resin Surface Control	Balloon
Power Supply	AC100V×1 Single phase 15A
Equipment Dimension	Approx.W1565×D1050×H1860mm
Equipment Weight	Approx.550kg (not including resin)
Software	C-Sirius
PC OS	Windows 7
Operation	English/ Japanese

KRISS

L = 3D, α = 30°

Research objective

- Evaluate the effect of various geometries of S-type Pitot tube on the Stype Pitot tube coefficients including the sensitivity to velocity change, pitch and yaw angle misalignments
- 1. Distance between leg base and facing-opening plane (L)
 - ISO: $1.05D \le L \le 10D$, EPA: $1.05D \le L \le 1.5D$

→ <u>L = 1.05D, 1.6D, 3D</u>

- 2. Bending Angle of opening parts - ASTM: 45° (KRISS S Pitot = 30°) $\rightarrow \alpha = 15^{\circ}, 30^{\circ}, 45^{\circ}$
- 3. Shape of opening parts

Windtunel experiments

Particle Image Velocimetry(PIV)

 Quantitative visualization of flow phenomenon around S-type Pitot tube
Time-resolved laser (20mJ), High-speed camera(3200 fps), Time interval = 1ms between two-consequent velocity image

Particle Image Velocimetry(PIV)

 Quantitative visualization of flow phenomenon around S-type Pitot tube
Time-resolved laser (20mJ), High-speed camera(3200 fps), Time interval = 1ms between two-consequent velocity image

Contents

S-type Pitot tube in Smokestack

Research Objective

Conclusion

Verification of 3D Printing model

• Compare Cp distribution according to velocity change

• Two pitot tubes show almost similar results in yaw and pitch angle change

Experiments for the effect of S pitot geometry I

1. Distance between leg base and facing-opening plane (L)

→ L = 1.05D, 1.6D, 3D

2. Bending Angle of opening parts

 $\rightarrow \alpha$ = 15°, 30°, 45°

- 3. Shape of opening parts
 - → Curved, Straight

L=1.6D Models

• Compare L=1.6D models (a = 15 Deg., 30 Deg. and 45 Deg.)

L=1.6D Models(Cp distribution)

 The a=45°(L=1.6D) S Pitot has Cp larger than others 4%, Cp is increasing as incoming velocity increases up 15 m/s

L=1.6D, 30 Deg Model(PIV)

• Flow phenomenon around S-type Pitot tube

Due to complicated geometry between the impact and wake orifices, the separated flows are developed to a vortical structure behind orifices

L=1.6D, 30 Deg Model(PIV)

• Velocity vector distribution around S-type Pitot tube

L=1.6D, 45 Deg Model(PIV)

• Flow phenomenon around S-type Pitot tube (L=1.6D, 45 Deg.)

Separated flow from wake orifice(downstream) were developing less due to gradual change of curved surface compared to 30 deg model.

L=1.6D, 45 Deg Model(PIV)

• Velocity vector distribution around S-type Pitot tube

FMI, Kang et al. 2015

Cp,s-type coefficients

 When vortical structure behind the wake orifice developed well Lower pressure at wake orifice observed → Cp,s decreased

L=1.6D 30 Deg vs 45 Deg

Separated flow from wake orifice(downstream) were developing less due to gradual change of curved surface → Cp,s increased (45 deg)

L=1.6D Model (Pitch angle)

• The normalized S-type Pitot tube coefficients increase as the pitch angle increases

L=1.6D Model (Pitch angle)

• Three models(15, 30 and 45 Deg) show similar pattern to Pitch angle change

L=1.6D Model (Yaw angle)

 The normalized S-type Pitot tube coefficients decreased as the yaw angle increases with symmetric tendency

Effect of yaw angle misalignment, L=1.6D, 30Deg

L=1.6D Model (Yaw angle)

 30 Deg. Model show less sensitive to yaw angle misalignment within wide range of yaw anlges

L=1.6D 30 Deg. (Yaw=0°) PIV

• Flow phenomenon around S-type Pitot tube (L=1.6D, 30 Deg.)

• Each vortical structures from impact and wake orifices are observed

L=1.6D 30 Deg. (Yaw=0°) PIV

• Velocity vector distribution around S-type Pitot tube

L=1.6D 30 Deg. (Yaw=-20°) PIV

• Flow phenomenon around S-type Pitot tube (L=1.6D, 30 Deg.)

 Due to yaw angle misalignment, separated flows from surface of impact and wake orifice are enhanced

L=1.6D 30 Deg. (Yaw=-20°) PIV

• Velocity vector distribution around S-type Pitot tube

L=1.6D 30 Deg. (Yaw angle) PIV

 Pressure values near wake orifice decrease due to the enhancement of separated flow from orifice surface, which shows symmetry ± yaw angle

L=1.6D 45 Deg. (Yaw=-20°) PIV

• Flow phenomenon around S-type Pitot tube (L=1.6D, 45 Deg.)

 Separated flow from impact orifice(upstream) interfere with vortical structures of wake orifices(downstream) due to the proximity of two orifices

L=1.6D 30 Deg vs 45 Deg (Yaw angle)

 When vortical structure behind the wake orifice were interfered with upstream separated flow, lower pressure near wake orifice
→ Cp,s deceresed (45 deg)

Experiments for the effect of S pitot geometry II

1. Distance between leg base and facing-opening plane (L)

 \rightarrow L = 1.05D, 1.6D, 3D

2. Bending Angle of opening parts

 $\rightarrow \alpha = 15^{\circ}, 30^{\circ}, 45^{\circ}$

- 3. Shape of opening parts
 - → Curved, Straight

L=1.05D Models

• Compare L=1.05D models (α = 15 Deg., 30 Deg. and 45 Deg.)

 α = 15°, L = 1.05D α = 30°, L = 1.05D α = 45°, L = 1.05D

L=1.05D Models(Cp distribution)

 Three models of L=1.05 S Pitot Cp is increasing as incoming velocity increases

L=1.05D Model (Yaw angle)

All three models are sensitive to yaw angle misalignments

Experiments for the effect of S pitot geometry III

1. Distance between leg base and facing-opening plane (L)

→ L = 1.05D, 1.6D, **3D**

2. Bending Angle of opening parts

 $\rightarrow \alpha$ = 15°, 30°, 45°

- 3. Shape of opening parts
 - → Curved, Straight

L=3D Models

• Compare L=3D models (α = 15 Deg., 30 Deg. and 45 Deg.)

L=3D Models(Cp distribution)

• The a=15 and 45°(L=3D) S Pitot has large Cp compared to short L models Cp values were almost constant with velocity change

Cp distribution

Previous research

• S Type Pitot Tubes, (William, EPA-600, 1977)

Cp value increase as Length of S Pitot increase (consistent with present exp

KRISS

L=3D Model (Yaw angle)

Three models show non-sensitive to yaw angle misalignment

Previous research

• S Type Pitot Tubes, (William, EPA-600, 1977)

L=3D, 30 Deg. (Yaw=-20°) PIV

• Flow phenomenon around S-type Pitot tube (L=3D, 30 Deg.)

• Due to the distance between two orifice, there is less interference for vortical structures of wake orifices

Practical issue for long L model

• The hole size in the stack for installing S-type Pitot tube

Experiments for the effect of S pitot geometry IV

1. Distance between leg base and facing-opening plane (L)

→ L = 1.05D, 1.6D, 3D

2. Bending Angle of opening parts

 $\rightarrow \alpha = 15^{\circ}, 30^{\circ}, 45^{\circ}$

- 3. Shape of opening parts
 - \rightarrow Curved, Straight

Shape of opening part

• Curved and Straight models (L=1.6D, 30 Deg) $\alpha = 30^{\circ}$

Cp distribution (Curved vs Straight)

 Cp distribution of Straight model is a little linear compared to Curved model

L=1.6D Curved vs Straight (Yaw angle)

 Straight model is less sensitive to yaw angle misalignment compare to Curved model

L=1.6D, 30 Deg. Straight (Yaw=-20°) PIV

• Flow phenomenon around S-type Pitot tube (L=1.6, 30 Deg. Straight)

 Vortical structures from impact and wake do not affect each other near orifices

Curved vs Straight (Yaw angle)

Despite same length(L=1.6D), vortical structures from impact and wake do not affect each other near orifices due to difference of opening shape

Conclusion

- S-type Pitot tube is mainly applied to measurement stack velocity for Smokestack TMS in KOREA
- No detail guideline for manufaturig S-type Pitot tube geometry
- Various geometric parameters on S-type Pitot tube coefficients with yaw and pitch misalignment were investigated by wind tunnel experiments

Conclusion

- S-type Pitot tube is mainly applied to measurement stack velocity for Smokestack TMS in KOREA
- No detail guideline for manufaturig S-type Pitot tube geometry
- Various geometric parameters on S-type Pitot tube coefficients with yaw and pitch misalignment were investigated by 3D printing and wind tunnel experiments
- L=1.6D, 30 Deg. Model shows the good linearity of Cp distribution and less sensitivity to yaw angle misalignment
- S-type Pitot tube with Long distance(L=3D) shows better characteristics than L=1.6D. But in the real smokestack, it could be non-practical.
- Straight model are least sensitive to yaw angle misalignment. But for the ideal geometry of S-type Pitot tube in the smokestack, more research is need.

Thank you for your kind attention!

