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Preface

These notes are meant to accompany course PHYS2350 Experimental Physics,
for the Spring 1999 semester. They should make it much easier for you to fol-
low the material and to be better prepared for the experiments. The course
will not cover everything in these notes, but with some luck the notes will
continue to be a useful reference for you.

The text is organized into two types of major sections, namely Chapters
and Experiments, so that they follow in a more or less logical order. As much
as possible, the Experiments only rely on material in preceding chapters.
There is no index, but hopefully the table of contents will be good enough
for the time being.

Thanks to helpful comments from many students and faculty, this has
all gone through a number of revisions which I hope have made the material
more useful and more clearly presented. In the latest version, I’ve reformatted
everything into LATEX2e, the new LATEX standard. For the time being, I’ve
removed the explicit distinction between “Experiments” and “Chapters”, but
the references should still be clear. (My apologies for any mistakes I’ve made
which I didn’t find in time!) This change allows me to use what I think are
more a more clear postscript font.

Special thanks to Prof. Peter Persans for his comments, and for adding
the Jarrell–Ash spectrometer to the laboratory for the Atomic Spectroscopy
measurement. I’ve updated the “Procedure” section of that experiment to
include a description of this instrument. Credit also goes to Peter for the
expanded appendix giving a quick review of matlab commands.

Please give me any comments you might have on these notes, particularly
if you see ways in which they may be improved.

Thanks for your help.

Jim Napolitano, January 3, 1999
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Values of Physical Constants

The following table of fundamental constants is taken from the “Review of
Particle Properties”, published in Physical Review D I, v.50 (1994). The
uncertainties in the values are very small and can be neglected for the exper-
iments in this book.

Quanitity Symbol Value
Speed of light in vacuum c 299792458 m/sec
Planck’s constant h 6.6260755×10−34 J sec

h̄/2π 6.5821220×10−22 MeV sec
Electron charge e 1.60217733×10−19 Coul

h̄c 1.97327053×10−13 MeV m
Vacuum permittivity ε0 8.854187817 × 10−12 F/m
Vacuum permeability µ0 4π × 10−7 N/A2

Electron mass me 0.51099906 MeV/c2

Proton mass mp 938.27231 MeV/c2

Deuteron mass md 1875.61339 MeV/c2

Atomic mass unit u 931.49432 MeV/c2

Rydberg energy hcR∞ 13.6056981 eV
Bohr magneton µB 5.78838263×10−11 MeV/T

= eh̄/2me

Nuclear magneton µN 3.15245166×10−14 MeV/T
= eh̄/2mp

Avogardro constant NA 6.0221367×1023 atoms/mole
Boltzmann constant k 1.380658×10−23 J/K
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Ch 1

Data Taking and Presentation

Progress is made in the physical sciences through a simple process. A model
is developed, and the consequences of the model are calculated. These con-
sequences are then compared to experimental data. If the consequences do
not agree with the data, then the model is wrong, and it should be discarded.
After enough successful comparisons with data, however, a model becomes
widely accepted, and progress goes on from there.

Obviously, it is crucial that the data be “correct”. Furthermore, the accu-
racy of the measurement must also be reported so that we know how strong
a comparison we can make with the model. Finally, since it is likely that
many people will want to compare their models to the data, the experimental
results must be reported clearly and concisely so that others can read and
understand it.

The purpose of this chapter is to give you some ideas on how to take
data “correctly”, and how to report it clearly. However, every experiment is
different, so these guidelines can only serve as a broad basis. You will gain
experience as you do more experiments, learning rules for yourself as you go
along.

We will use some loose language, especially in this chapter. Experimental
Physics is a subject that can only be truly learned from experience, and terms
like “settings” and “uncertainties” will become much clearer when you’ve

1



2 CH 1. DATA TAKING AND PRESENTATION

done your time the laboratory. However, we attempt to at least roughly
define terms as we go along. For starters, we take the term “quantity” to be
the result of some measurement, like the number read off a meter stick or a
voltmeter. Things that you can change by hand, which affect the “quantity”
you want to measure, are called “settings”.

I will often resort to saying something like “. . . and your intuition will get
better after some experience.” I apologize, but it is very hard to tell someone
how to be a good experimenter. You have to learn it by being shown how,
and then working on your own. There is at least one book, however, which
contains many good ideas about carrying out experiments:

• Practical Physics, G. L. Squires, Third Edition
Cambridge University Press (1991)

1.1 Your Log Book

Keep a log book. Use it to record your all your activities in the lab, such
as diagrams of the apparatus, various settings, tables of measurements, and
anything you may notice or realize as you go through your experiment. This
log book will be an invaluable reference when you return to your data at any
later time, and you want to make sense of what you did in the lab. The
book itself should have a hard binding with pages that won’t get ripped out
easily. If you make plots on graph paper or a computer, they can be attached
directly into the log book with tape or staples. However, a good log book
has pages with both vertical and horizontal rulings, so that you can make
hand drawn graphs directly on the page. Never write data down on scratch
paper so that you can do work with it before putting it your log book.

Your log book should be kept neat, but not too neat. What’s important
is that you record things so that you can go back to them at a later time and
remember details of what you did. Record your activities with the date and
time, especially when you’ve returned to recording things after a delay. When
you are setting up your experiment, don’t worry about writing everything
down as you go along, but wait until things make some sense to you. That
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way, whatever you write down will make better sense when you go back to
read it later.

Some scientists keep a log book as a daily diary, recording not only their
measurements, but lecture and seminar notes and other similar things. A
good tip is to leave the first few pages blank, and fill them in with a table of
contents as you go along. How you organize your lab book(s) is up to you,
but it is probably a good idea to keep a lab book specifically for your lab
course.

1.2 Common Sense

For virtually any experiment, there are some good rules to keep in mind
while you are taking data. It is a good idea to step back once in a while,
during your experiment, and ask yourself if you are following these rules.

In later chapters we will be more precise with language regarding “exper-
imental uncertainty” or “measurement error”. For the time being, however,
just take these terms at face value. They are supposed to indicate just how
precisely you have measured the desired quantity.

1.2.1 Use Redundancy

If you measure something with the various settings at certain values, you
should in principle get the same value again at some later time if all the
settings are at their original values. This should be true whether you changed
the settings in between, or if you just went out for a cup of coffee and left
the apparatus alone. It is always a good idea to be redundant in your data
taking. That is, check to make sure you can reproduce your results.

In practice, of course, you will not get the same result when you come
back to the same settings. This is because any one of a number of things
which you did not record (like the room temperature, the proximity of your
lab partner, the phase of the moon,. . . ) will have changed and at least some
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of them are likely to affect your measurement in some subtle way. With
some experience, you will be able to estimate what is or is not an acceptible
level of reproducibility. In any case, the degree to which you can reproduce
your results will serve as a measure of your experimental uncertainty for that
quantity.

Be aware of any trends in your measurements as you take data. You
can be redundant also by specifically taking data with settings that test
any trends that you notice. If you expect data to follow a trend based on
some specific model, then take more data than is necessary to determine the
parameters of the model. For example, suppose you are testing the notion
that temperature T is a linear function of pressure P , i.e.

T = a + bP

Then, the parameters a and b can in principle be determined with only two
measurements of temperature at specific settings of the pressure. This is not
redundant, however, and you should take data at more pressure settings to
confirm that the linear relation is correct. If it is not, then that tells you
something important about either your experimental setup or your model,
or both.

It is natural to take data by changing the setting(s) monotonically. That
is, to increase or decerease a setting over the range you are interested. It is
a good idea to at least go back and take a couple of points over again, just
to make sure things have not “drifted” while you took your data. A more
radical alternative is to take your data at more or less random values for the
settings.

Don’t drive yourself crazy by changing more than one setting at a time
while you are making measurements. Unless you are testing some trend you
may have noticed, you will certainly want to go back to find out each of the
settings affected the measured quantity.

1.2.2 Be Precise, But Don’t Go Overboard

It is of course important to strive for as much precision as possible in your
measurements. However, do not waste your time measuring one particular



1.2. COMMON SENSE 5

quantity very precisely if the result your are ultimately interested in, depends
on some other quantity which is known much more poorly. For example,
suppose you want to ultimately determine the velocity v for some object
moving in a straight line. You do this by measuring the distance L that it
travels in a period of time t, i.e.

v = L/t

The relative precision of L and t contribute equally to the relative precision
of t. (We will return to this in a later chapter when we discuss experimental
uncertainties.) That is, if both L and t are both known to around 10%, they
will both contribute to the uncertainty in v. However, there is no point in
trying to figure out a way to measure t, say, to 1% if you cannot measure L
to comparable precision. Your good idea for measuring t, although it may be
useful and satisfying for other reasons, will not help you determine v much
more precisely.

It is important to keep in mind how precisely you are measuring the
various quantities that go into your final result. With experience, you will
develop a good insight for knowing when enough is enough.

1.2.3 Measure Ratios

Whenever you can, use your apparatus to determine ratios of quantities mea-
sured at different settings. This is a very useful technique, since common
factors cancel when you take a ratio, and the uncertainty in these factors
cannot affect the ratio. Hence, a measurement of a ratio will be inherently
more precise than a measurement of an absolute quantity. Some of the quan-
tites we will measure in the experiments are ratios, and they typically are
determined with relatively high precision.

Even if the ultimate goal of the experiment cannot be expressed as a
ratio, try to find ratios among your data that you can use to test the model.
For example, suppose you want to determine the resistivity ρ of some metal
sample from the decay lifetime τ of some transient voltage signal. Your model
says that τ depends on ρ through the relation

τ = R2/ρ
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where R is the radius of the sample. Even though you cannot determine τ
directly from a measurement of a ratio, you can measure τ for two different
samples of the same metal, but with different radii R. The ratio of the
lifetimes should be the same as the ratio of the squares of the sample radii,
and this is a good check on your procedure. This and other examples will be
pointed out along the way as we discuss the various experiments.

The determination of the lifetime of the free neutron is a good historical
example of the triumph of ratios over absolute measurements. Free neu-
trons decay with a half life of around 10 minutes. Furthermore, up until
quite recently, “samples” of free neutrons were only available in fast moving
streams from nuclear reactors. Through the 1970’s, the neutron lifetime was
determined through two absolute measurements, one of the decay rate as the
stream passed through some detectors and the other of the flux of neutrons in
the stream itself. The various measurements of different groups did not agree
with each other, and the resulting large uncertainty in the lifetime had se-
rious consequences in astrophysics and particle physics. Then in the 1980’s,
using a result based on the accepted model for neutron decay, a different
group measured a single ratio which agreed with previous, but less precise,
measurements of this ratio and finally pointed the way to the correct value of
the neutron lifetime. A fine account of these measurements is given in “How
Long Do Neutrons Live?”, by S.J. Freedman, in Comments in Nuclear and
Particle Physics, 19(1990)209.

1.2.4 Avoid Personal Bias

Nobody starts working on an experiment without at least a rough idea of
what he or she is supposed to measure. It is impossible, therefore, to have no
notion of what to expect from the measurement of some quantity for some
range of settings. Sometimes, though, the result of a measurement is quite
surprising and may be an important clue to how nature works! You must
walk a pretty fine line between what you expect and what you are trying to
learn. This will again become easier and more natural with experience.

Never fudge your data to give you the answer you expect! You will not
learn anything from this, and you may miss something very important. There
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are several great examples in the history of science where highly regarded
researchers end up with egg on their faces for not keeping this in mind.
One example of this is documented in a very readable paper, “How the First
Neutral Current Experiments Ended”, by Peter Galison, in Review of Modern
Physics, 55(1983)477.

1.3 Tables and Plots

A picture is worth a thousand words. It is always best to display your data
using either a table or a plot, or both. Tables are particularly useful if you
want someone else to be able to take your numbers and test a different model
with them. Plots are best if you want to show features in your data that
may be particularly important, such as “peaks” or “valleys” that demonstrate
some phenomenon happening at a particular setting, or “trends” like linear
or exponential behavior which may or may not support some specific model.

It is a real art to know just how much information to include on a table or
plot. Too little data can leave the reader without enough to figure out what
can be concluded from the experiment. On the other hand, if you put too
much on the page it is very frustrating to know exactly what the important
point is. As with most things in Experimental Physics, experience will be
the most important teacher.

1.3.1 Tables of Data and Results

In the old days, data was recorded directly from the instruments into the log
books. In modern times, however, we usually use some sort of computerized
interface to gather the data. In either case, it is a good idea to keep the “raw
data”, as we call it, in the log book. Of course, be judicious in what you call
“raw data”. If you read line positions from a spectrum with a thousand data
points in it, just record the line positions and not all the data points!

It is smart to always record data points exactly as you read them from
the instrument, instead of doing any conversions in your head or (heaven
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forbid!) on scratch paper. Record all conversion factors or offset values in
your log book.

Always put labels at the head of columns or rows. The labels should be
terse but descriptive of the setting value or of the measured quantity, and
you should keep using that notation as you do calculations and analysis in
your log book. Always include the units along with the label, and try to
stick with standard conventions. When recording numbers, make sure you
keep enough significant figures (depending on the precision you expect to be
important), but not too many.

Let’s do an example. Suppose you are measuring the time period ∆T of
some oscillating signal using an oscilloscope as a function of some relative
pressure setting PREL measured with a vacuum gauge. (We will discuss
various laboratory instruments in a later chapter.) You make a table in your
log book that looks like the following:

PREL ∆T
(in. Hg) (div.)

27.5 5.3†
25 5.0
20 4.5

14.5 4.1
5 7.0‡
0 6.6

†0.1 ms per division
‡50 µs per division

Notice that in the middle of taking the data, you found it was better to
switch the time base of the oscilloscope. You did so and noted the different
conversion factors.

Now let’s suppose that you want to do some calculations with this data
so that you can test some model. If you leave room in the table, you can
put the results of the calculations right there. (In this case, there is not so
much data and we can do this without making the table too crowded.) The
model is best described by its dependence of the frequency ν = 1/∆T on the
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internal pressure P . The table might then be extended in the following way:

PREL ∆T
(in. Hg) (div.) P/PATM ν (kHz)

27.5 5.3† 0.083 1.89
25 5.0 0.17 2.00
20 4.5 0.33 2.22

14.5 4.1 0.52 2.44
5 7.0‡ 0.83 2.86
0 6.6 1 3.03

†0.1 ms per division
‡50 µs per division

This is a clear, concise description of the data you took, and the numbers are
available to someone who may have some other idea of how to look at your
data. If you want to examine how well a particular model might compare to
this result, the first thing to do is make a plot.

1.3.2 Making Plots

It is handy to plot the results listed in a table. That makes it easy to refer
back and forth between the table and the plot, picking off details visually
on the plot and reading the relevant numbers from the table. For the data
listed in the above table, we’ve plotted the analyzed quantites in Fig. 1.1.
This picture could easily and quickly be made by hand, directly in the log
book.

Some important things can immediately be learned from this plot. First,
we’ve drawn a straight line through the data points and it is clear that our
results show that to a good level of accuracy, the frequency depends linearly
on pressure. Note that we have plotted the data with a “suppressed zero”
on the vertical axis. This is a useful technique when the data covers only a
limited range, but you should be careful to make it clear when an axis does
not start at zero. The slope of the line can easily be read off the plot, and
its value compared to the model prediction.
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Figure 1.1: An Example of Plotting Data

It is a good idea to choose the axes of your plot so that you can compare
the behavior to a particular model. You can do this easily by eye if the
model predicts a straight line when you plot your data. If the model predicts
a linear dependence (like in the above example) then a simple plot on linear
axes will do. However, if it predicts some other kind of dependence, you have
to resort to different ways of plotting the data.

For example, if the model predicts an exponential dependence, e.g. N =
N0e

−t/τ as in radioactive decay, then it is best to plot (logN) = (logN0) −
(log e/τ ) × t versus t in which case you again get an easy-to-see straight
line dependence, where the slope determines the value of τ . If the expected
dependence is a power law function, e.g. g = g0V

n as in the gain of a
photomulitplier as a function of voltage, then log g plotted against logV
gives a straight line whose intercept determines g0 and slope determines n.

Special graph paper (or axis scaling) called “semilog” or “log-log” allows
you to plot the quantites directly without having to take the logarithms
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Table 1.1: Linear Axis Scaling in Plots
Model Best Scale Slope Intercept

y = Ax+B Linear A B
y = AeBx Semilog B log e logA
y = AxB Log-Log B logA

yourself. These different choices are listed in Table 1.1.

In cases where the model is more complicated, you can still plot the data
in a way that allows you to easily see a straight line dependence. For example,
if y =

√
Ax2.3 +B, then plot y2 as a function of x2.3. In experiment 12

on Compton Scattering, you will learn that the scattered photon energy E ′

depends on the incident energy E and the scattering angle θ in the following
way:

E ′ =
E

1 + (E/m) (1− cos θ)

In this case, you can plot the quantity E/E′ as a function of (1− cos θ) and
the result should be a straight line with slope E/m and intercept at 1.

The data plotted in Fig. 1.1 simply shows data points. We will later see
how we determine an “uncertainty” with each of these data points, usually
associated with the quantity plotted on the vertical axis. In this case, the
data points are plotted with an “error bar”, that is, a symbol with a vertical
line drawn through it. The limits of the vertical line indicate the range of
“uncertainty” associated with that point. We will see many examples of this
when we describe the experiments.

1.4 Using Computers

Nothing can replace a hand-drawn plot in your log book, as you take your
data, as a check that things are proceeding normally. I urge all of you to
follow this practice when you are actually running your experiment. However,
a neater presentation is of course possible using any of a number of computer
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programs designed to tabulate and plot data. A different use of computers is
to actually help you analyze data, not just plot it, and most programs allow
you to do some of both.

Be aware that even though different programs may all claim to be flexible
at some level, they are all written with specific priorities and audiences in
mind. The program you like to use will likely come down to your personal
taste. Following are some thumbnail sketches of programs that run either
on PC’s or Mac’s, or ones that run on the Rensselaer Computer Services
(RCS) Unix system. For most examples in this book, however, I will use the
program matlab which is available on PC’s, Mac’s, and on RCS.

1.4.1 Programs for the PC

There are zillions of PC plotting and analysis programs out there. Some
are very inexpensive and some are very pricey. What they are capable of
is pretty much correlated with their cost, but that doesn’t mean that you
will find more expensive programs more useful. Following are some of the
programs either on the PC’s in the Physics Department, or available at the
ITS Product Center. A more complete list and descriptions were published
in the Spring 1994 Physics Courseware Communicator.1

• The student edition of matlab. I recommend this program. More on
this below.

• graph III (cricket graph). This is a simple, easy-to-use, plotting
program with data entered on a spread sheet. The plots are high quality
and have plenty of useful options. The program allows for some very
basic analysis options and curve fitting, but not advanced enough for
many of things you will need for this course.

• f(g) Scholar. This is a good program for scientific data plotting, at a
reasonable price. Besides producing fine plots, it has very sophisticated
tools for data analysis including curve fitting.

1This quarterly publication reviews physics-related software, mainly for educational
use. It is available from the Physics Courseware Evaluation Project (PCEP) at North
Carolina State University. Their email address is pcep@ncsu.edu.
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• DeltaGraph Pro. This is a higher level program than graph III

(and costs around twice as much). The graphics are a bit more so-
phisticated, and there are some more options for data analysis, but the
primary audience is not scientific.

• PSI-Plot. This is a relatively sophisticated package, aimed at scien-
tists and engineers. A new release (version 3.0) contains many of the
analysis options you are likely to encounter in this course. It is a bit
expensive, but we do have a copy on one of the PC’s in the student
laboratory. You are welcome to try it out.

• excel. Many of you are familiar with this program, basically a spread
sheet with graphics. However, it attempts to be very broad based, and
is therefore hard to adapt directly to the sorts of things you will need
to do.

1.4.2 Programs on RCS

The people at ITS maintain a bunch of programs that you can use These
programs are generally more sophisticated that what you get on a PC, for
two reasons. One is that RCS has lots more memory and disk space than
what you get on a PC, and unless there is a lot of traffic, the computers
you use are a lot faster. The second reason is that the University pays for
the programs, and they can afford some very nice packages. If anything,
you might want to buy some documentation for the program or programs
you settle on, but in some cases, that documentation is free and available on
RCS itself. You can use the Unix man pages to find out more about these
programs, and where to go to get more documentation.

Note that you can use the SUN workstations and the mtools utilities
to reac PC-compatible floppy disks on RCS. This is a fine way to transfer
data from the lab to RCS. Another way is to use ftp with PC’s that are
connected to the campus network.

• matlab. I will use matlab for most of the examples in this course.
More information is in the next sections.

• gnuplot. This is a pretty simple-to-use plotting program, but it has
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almost no analysis capabilities. One very nice feature is that you can
plot combinations of standard built-in functions on top of your data
points. The program should be able to do all you need in this course,
so far as plotting is concerned.

• xmgr. The subtitle for the manual calls xmgr “Graphics for ex-
ploratory data analysis”, and that is pretty accurate. You can actually
produce wonderful looking plots, and do rather sophisticated things
with your data, including fitting and manipulations. The program
also works with the X11 interface so that most of your control can be
window-driven, although you don’t have to do things that way. The
biggest problem with the program is that the documentation is not
easy to read, and it will take some practice to get good at it.

• maple. Most of you are familiar with maple from your math courses.
Recall that this program is designed for symbolic manipulation, not
data manipulation. That is, it works well with formulas, but can be
hard to use when massaging data. It can be used this way, however, so
if you’re adept at maple, you might want to use it for data analysis as
well as plotting.

1.4.3 matlab

matlab is a numerical analysis package that is ideally suited for data anal-
ysis. It is easy to use, and has most of the features you will need already
built-in. These include fitting, integration, differentiation, and the like. The
name comes from “matrix laboratory”, which reminds us that data is in-
ternally stored and manipulated as matrices.

We will refer to matlab throughout these notes, including specific exam-
ples for the various experiments. General information for data analysis can
also be found in Sec. 6.2.3, and various sections of Chapter 9, in particular
sections 9.2.1 and 9.5.
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Making Plots with matlab

matlab also has sophisticated plotting capability. Note, however, that your
emphasis should be on data analysis, not making beautiful plots. The plot
in Fig. 1.1 was made with matlab using the following commands:

x=[0.083 0.17 0.33 0.52 0.83 0.98];

y=[1.89 2.00 2.22 2.44 2.86 3.03];

xl=[0 1 ];

yl=[1.79 3.06];

plot(x,y,’o’,xl,yl)

xlabel(’Pressure (atm)’)

ylabel(’Frequency (kHz)’)

title([’Plotting example made on ’,date])

print -dps plexm.ps

clear x y xl yl

In this example, data is entered line-by-line. The semicolon (“;”) after each
data line is not necessary, but if it is not included, matlab echos the values
of the newly created variable. The plot function has a number of arguments,
and we specify the ‘o’ which means “plot the points as circles” for data
points, and no option to just connect points with a straight line. The axes
are labeled and a title is added as shown. Note that the arguments to these
functions are in fact matrices of character strings, and that is why we enclose
the argument to “title” in square brackets. The “print” command as used
here generates a postscript file which can be stored or sent to your favorite
printer. If no options are given to the “print” command, then the output
automatically goes to the default printer. Finally, the data variables we
defined in the beginning are cleared, freeing up the memory they required.

You can change lots of things on plots, like the character size for example,
using the “handle graphics” capability in matlab. Refer to Appendix D to
learn the basics.
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Entering Data into matlab

For larger amounts of data, you can tell matlab to retrieve data from a
separate file, instead of having to type all the numbers in by hand. This
is done with the matlab command “load”, which, for example, will read a
two-column ascii data file with n lines into a n× 2 matrix. The name of the
matrix is the same as the name of the file with the extension stripped off.
Individual vectors of data can be extracted from this matrix. For example,
if the name of the file is “mine.dat”, then the matlab commands

load mine.dat

x=mine(:,1);

y=mine(:,2);

create two vectors x and y, each of which contains the n elements of the
two columns in the file. A different approach is to “read” the numbers in
whatever format they were written using commands like

fid=fopen(’sc1.lis’);

a=fscanf(fid,’%f’)’;

fclose(fid);

which reads a column of numbers in the file “sc1.lis” into a vector a. (The
format control %f should be familiar to c programmers. Note that the vector
is created by transposing the list read with fscanf.) These techniques should
be particularly useful to you when reading data transferred to RCS from a
floppy disk or through an ethernet connection.

Keeping Track of Things

Anytime in the middle of a matlab session, you can type the command whos
to get a list of the variables you’ve created and their type. The command
who just gives you the list of names. These can be very useful if you get
confused regarding what’s been created in the course of entering commands.
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Commands do not need to be entered to the command line for matlab.
Instead, they can be created with some editor, and stored in a file with the
extension “.m”. Just entering the name of the file (without the “.m”) to the
matlab command line executes the command in this file.

Further Documentation on matlab

Remember that you should use matlab primarily for data analysis, not data
plotting. We will refer to the relevant commands and show examples along
the way in the rest of this book. There is a built-in help documentation for
matlab that should help you find your way, once you get started. There are
a number of other sources of matlab documentation:

• The matlab Documentation Set, The MathWorks,
which contains several separate publications on various ways to use and
modify matlab. The ones most useful to you at the beginning would
be

– The matlab User’s Guide, a short description of what matlab

can do and a tutorial introduction.

– The matlab Reference Guide, which is a complete listing of all
the standard matlab functions.

• The Student Edition of matlab, Prentice Hall (1994)
which combines the User’s Guide and Reference Guide from the stan-
dard documentaion set, and can be purchased separately from the pro-
gram. It comes with the software package you can purchase from the
ITS Product Center.

• Numerical Methods for Physics,
Alejandro Garcia, Prentice-Hall (1994),
a good book on numerical methods which uses matlab for most of the
programming examples.

You might also browse the World Wide Web home page of The MathWorks,
at http://www.mathworks.com/, which contains lots of useful information in-
cluding a list of books which use and refer to matlab.
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1.5 Formal Lab Reports

When you are finished with an experiment, or some part of it, you may have
to write a formal report on what you’ve done. This is certainly the case
if you want to publish your results in a scientific journal. Different people
have different ideas about what these reports should look like, and papers
for journals have well defined formats that have to be followed.

Here’s a hint for writing up papers or lab reports. Before you start writ-
ing, think about how you might explain your work to someone. Better yet,
find someone who will listen to you explain your experiment to them, but
who is not familiar with it. You’ll be surprised to see how clearly you can
organize your thoughts this way.

The main sections of a formal report or paper are likely to include the
following:

• Title. Give some thought to the title of the report. It must be terse,
but still let the reader know what it is about. Don’t forget that titles
of papers are entered in data bases used for computerized literature
searches, so try to include words that will make your paper show up in
a typical search on the subject.

• Abstract. This is a concise, self-contained summary of the exper-
iment. It should report the method, conclusion, and an assessment
of the accuracy and/or the precision of the result. The abstract is a
summary of the whole paper. It is not an introduction.

• Introduction and Theory. Write what you expect to learn and a
general description of the experiment. You should include relevant
equations and formulas, and refer to previous work on the subject.

• Experimental Setup. Describe the apparatus including all relevant
detail. Diagrams with symbols, standard where available, are a good
idea. Refer back to these diagrams when writing the Procedure.

• Procedure and Data. Indicate how you proceeded to take data.
Basic analyses used to process the data can be included here. Tables
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summarizing the results are a good idea. Keep in mind aspects of the
procedure that affect the accuracy and the precision of the data. What
limits the precision?

• Interpretation and Discussion. This section should contain any
detailed analysis on the data, particularly where it applies to testing
a certain hypothesis. Discuss the result, and whether or not it makes
sense. Derive whatever quanitites you can from the data, and interpret
them.

• Conclusion. Summarize the experience of this measurement. You
may want to include suggestions for further work, or for changes and/or
improvements to the apparatus.

• References. List all cited references in a separate section.

• Appendices. If you want to include things like raw data, calculations,
detailed equipment descriptions, and so on, you should put them in
Appendices. They should be there if the reader wants to go into the
work in more detail, but should not be necessary for understanding the
motivation or interpretation of the measurement.

It is important to include citations to important literature relevant to your
work. Tables and plots should be used wherever appropriate to make your
point.

1.6 Exercises

1. The following table lists data points for the decay rate (in counts/sec) of
a radioactive source:

Time Rate Time Rate Time Rate
(sec) (/sec) (sec) (/sec) (sec) (/sec)
0.6 18.4 2.0 3.02 3.6 1.72
0.8 10.6 2.4 2.61 4.0 1.61
1.2 8.04 2.8 2.08 4.2 1.57
1.6 6.10 3.0 1.50 4.3 1.85



20 CH 1. DATA TAKING AND PRESENTATION

a. Plot the data using an appropriate set of axes, and determine over what
range of times the rate obeys the decay law R = R0e

−t/τ .

b. Estimate the value of R0 from the plot.

c. Estimate the value of τ from the plot.

d. Estimate the value of the rate you expect at t = 6 sec.

2. An experiment determines the gravitational acceleration g by measuring
the period T of a pendulum. The pendulum has an adjustable length L.
These quantities are related as

T = 2π

√
L

g

A researcher measures the following data points:

Data L T
Point (prulp) (klotz)

1 0.6 1.4
2 1.5 1.9
3 2.0 2.6
4 2.6 2.9
5 3.5 3.4

One of these data points is obviously wrong. Which one?



Ch 2

Basic Electronic Circuits

Nearly every measurement made in a physics laboratory comes down to de-
termining a voltage. It is therefore very important to have at least a basic
understanding of electronic circuits, before you start making physical mea-
surements. It is not important to be able to design circuits, or even to com-
pletely understand a circuit given to you, but you do need to know enough
to get some idea of how the measuring apparatus affects your result.

This chapter introduces the basics of elementary, passive electronic cir-
cuits. You should be familiar with the concepts of electric voltage and cur-
rent before you begin, but something on the level of an introductory physics
course should be sufficient. It is helpful to have already learned something
about resistors, capacitors, and inductors as well, but you should get what
you need to know about such things out of this chapter, at least as far as
this course is concerned. There is a very little bit at the end about diodes
and transistors, but there is more on them in the experiments in which they
are used.

This chapter is not a substitute for a course in electronics design. There
are of course lots of books on the subject, and you should get one that you
are comfortable with. Solid state electronics is an ever growing field, so don’t
get hooked on a very old book. An excellent, up-to-date text and reference
book on electronics that most people in the business use, or at least have a
copy of is:

21
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• The Art of Electronics, by Paul Horowitz and Winfield Hill
Second Edition, Cambridge University Press (1989)

A student manual for this book is also available. Another nice book which
includes a few introductory chapters on solid state electronics, including the
physics behind diodes and transistors, is

• Experimental Physics: Modern Methods, by R. A. Dunlap,
Oxford University Press (1988)

A good introduction to the basics of electric circuits is found in

• Physics, Robert Resnick, David Halliday, and Kenneth Krane,
John Wiley and Sons, Fourth Edition (1992)

– Chap.31 Capacitors and Dielectrics

– Chap.32 Current and Resistance

– Chap.33 DC Circuits

– Chap.38 Inductance

– Chap.39 AC Circuits

2.1 Voltage, Resistance, and Current

Let’s start at the beginning. Figure 2.1(a) shows the run-of-the-mill DC
current loop. It is just a battery that provides the electromotive force V
which drives a current i through the resistor R. This is a cumbersome way
to write things, however, so right off the bat we will use the shorthand shown
in Fig. 2.1(b). All that ever matters is the relative voltage between two points,
so we specify everything relative to the “common” or “ground”. There is no
need to connect the circuit loop with a line; it is understood that the current
will flow from the common point up to the terminals of the battery.
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Figure 2.1: The simple current loop (a) in all its glory and (b) in shorthand.

2.1.1 Loop and Junction Rules

The concept of electric potential is based on the idea of electric potential
energy, and energy is conserved. This means that the total change in electric
potential going around the loop in Fig. 2.1(a) must be zero. In terms of
Fig. 2.1(b), the “voltage drop” across the resistor R must equal V . It’s
actually a pretty trivial statement when you look at it that way.

This is a good time to remind you of the definition of resistance, namely
R is just the voltage drop across the resistor divided by the current through
the resistor. In other words, the voltage drop through a resistor R is equal to
iR where i is the current through it. In terms of the simple loop in Fig. 2.1,
V = iR. The SI unit of resistance is Volts/Amps, also known as the Ohm
(Ω).

Just about all the resistors you will care about in this course obey Ohm’s
Law, which just states that the resistance R is independent of the current i.
In fact, we nearly always use the symbol R to mean a constant value of a
resistance, that is, a resistor that obeys Ohm’s Law.
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Electric current is just the flow of electric charge (i ≡ dq/dt, to be precise),
and electric charge is conserved. This means that when there is a “junction”
in a circuit, like the one shown in Fig. 2.2, the sum of the currents flowing
into the junction must equal the sum of the currents flowing out. In the case
of Fig. 2.2, this rule just implies that i1 = i2 + i3. It doesn’t matter whether
you specify the current flowing in or out, so long as you are consistent with
this rule. Remember that current can be negative as well as positive.

i
1

i
2

i
3

v- �
�
��

@
@
@R

�
�
�

@
@
@

Figure 2.2: A simple three wire circuit junction.

These rules and definitions allow us to determine the resistance when re-
sistors are connected in series, as in Fig. 2.3(a), or in parallel, as in Fig. 2.3(b).
In either case, the voltage drop across the pair must be iR, where i is the
current through set. For two resistors R1 and R2 connected in series, the
current is the same through both, so the voltage drops across them are iR1

and iR2 respectively. Since the voltage drop across the pair must equal the
sum of the voltage drops, then iR = iR1 + iR2, or

R = R1 +R2 Resistors in Series

If R1 and R2 are connected in parallel, then the voltage drop across each are
the same, but the current through them is different. Therefore iR = i1R1 =
i2R2. Since i = i1 + i2, we have

1

R
=

1

R1
+

1

R2
Resistors in Parallel

Remember that whenever a resistor is present in a circuit, it may as well be
some combination of resistors that give the right value of resistance.
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Figure 2.3: Resistors connected (a) in series and (b) in parallel.

2.1.2 The Voltage Divider

A very simple, and very useful, configuration of resistors is shown in Fig 2.4.
This is called a “voltage divider” because of the simple relationship between
the voltages labeled VOUT and VIN . Clearly VIN = i (R1 +R2) and VOUT =
i (R2), where i is the current through the resistor string. Therefore

VOUT = VIN
R2

R1 +R2

(2.1)

That is, this simple circuit divides the “input” voltage into a fraction deter-
mined by the relative resistor values. We will see lots of examples of this sort
of thing in the laboratory.

Don’t let yourself get confused by the way circuits are drawn. It doesn’t
matter which directions lines go in. Just remember that a line means that all
points along it are at the same potential. For example, it is common to draw
a voltage divider as shown in Fig. 2.5. This way of looking at it is in fact an
easier way to think about an “input” voltage and an “output” voltage.

2.2 Capacitors and AC Circuits

A capacitor stores charge, but does not allow the charge carriers (i.e. elec-
trons) to pass through it. It is simplest to visualize a capacitor as a pair
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Figure 2.4: The basic voltage divider.

of conducting plates, parallel to each other and separated only by a small
amount. Some capacitors (called “parallel plate capacitors”) are actually
constructed this way, but the kind used in circuits are usually little ceramic
disks with a bulge in the middle and two wire leads sticking out.

If a capacitor has a potential difference V across its leads and has stored
a charge q on either side, then we define the capacitance C ≡ q/V . It is easy
to show for a parallel plate capacitor C is a constant value independent of
the voltage. It is not so easy to do this in general, but it is still true for
the most part. The SI unit of capacitance is Volts/Amperes, also known as
the Farad (F). As it turns out, one Farad is an enormous capacitance, and
laboratory capacitors typically have values between a few microfarads (µF)
down to a few hundred micromicrofarads (µµF) or picofarads (pF). People
who work with circuits a lot are likely to refer to a picrofarad as a “puff”.

It is pretty easy to figure out what the effective capacitance is if capacitors
are connected in series and in parallel, just using the above definitions and
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Figure 2.5: An alternate way to draw a voltage divider.

the rule about the total voltage drop. The answers are

1

C
=

1

C1
+

1

C2
Capacitors in Series

and
C = C1 + C2 Capacitors in Parallel

That is, just the opposite from resistors.

Now let’s think about what a capacitor does in a circuit. Let’s take the
resistor R2 in the voltage divider of Fig. 2.4 and replace it with a capacitor
C . This is pictured in Fig. 2.6. The capacitor does not allow any charge
carriers to pass through it, so the current i = 0. Therefore the voltage drop
across the resistor R is zero, and VOUT , the voltage across the capacitor C ,
just equals VIN .

What good is this? We might have just as well connected the output
terminal to the input! To appreciate the importance of capacitors in circuits,
we have to consider voltages that change with time.

2.2.1 DC and AC circuits

If the voltage changes with time, we refer to the system as an AC circuit.
If the voltage is constant, we call it a DC circuit. AC means “alternating
current” and DC means “direct current”. These names are old and not very
descriptive, but everyone uses them so we are stuck with them.
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Figure 2.6: A voltage divider with a capacitor in it.

Let’s go back to the voltage divider with a capacitor, pictured in Fig. 2.6,
and let the input voltage change with time in a very simple way. That is,
take

VIN (t) = 0 for t ≤ 0 (2.2)

= V for t > 0 (2.3)

and assume that there is no charge q on the capacitor at t = 0. Then for
t > 0, the charge q(t) produces a voltage drop VOUT (t) = q(t)/C across the
capacitor. The current i(t) = dq/dt through the divider string also gives a
voltage drop iR across the resistor, and the sum of the two voltage drops
must equal V . In other words

V = VOUT + iR = VOUT +R
dq

dt
= VOUT +RC

dVOUT

dt
(2.4)

and VOUT (0) = 0. This differential equation has a simple solution. It is

VOUT (t) = V
[
1− e−t/RC

]
(2.5)
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Now it should be clear what is going on. As soon as the input voltage is
switched on, current flows through the resistor and the charge carriers pile up
on the input side of the capacitor. There is induced charge on the output side
of the capacitor, and that is what completes the circuit to ground. However,
as the capacitor charges up, it gets harder and harder to put more charge on
it, and as t→∞, the current doesn’t flow anymore and VOUT → V . This is
just the DC case, where this circuit is not interesting anymore.

The value RC is called the “capacitive time constant” and it is the only
time scale we have in this circuit. That is, statements like “t → 0” and
“t → ∞” actually mean “t � RC” and “t � RC”. The behavior of the
circuit will always depend on the time relative to RC .

So now we see what is interesting about capacitors. They are sensitive
to currents that are changing with time in a way that is quite different from
resistors. That is a very useful property that we will study some more, and
use in lots of experiments.

The time dependence of any function can always be expressed in terms of
sine and cosine functions using a Fourier transform. It is therefore common
to work with sinusoidally varying functions for voltage and so forth, just
realizing that we can add them up with the right coefficients to get what-
ever time dependence we want in the end. It is very convenient to use the
notation1

V (t) = V0e
ıωt (2.6)

for time varying (i.e. AC) voltages, where it is understood that the voltage
we measure in the laboratory is just the real part of this function. The
angular frequency ω = 2πν where ν is the frequency, that is, the number of
oscillations per second.

This expression for V (t) is easy to differentiate and integrate when solving
equations. It is also a neat way to keep track of all the phase changes signals
undergo when the pass through capacitors and other “reactive” components.
You’ll see and appreciate this better as we go along.

1If you’re not familiar with complex numbers, see Appendix C.4.
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2.2.2 Impedance

Now is a convenient time to define impedance. This is just a generalization of
resistance for AC circuits. Impedance, usually denoted by Z, is a (usually)
complex quantity and (usually) a function of the angular frequency ω. It is
defined as the ratio of voltage drop across a component to the current through
it, and just as for resistance, the SI unit is the Ohm. For “linear” components
(of which resistors and capacitors are common examples), the impedance is
not a function of the amplitudes of the voltage or current signals. Given this
definition of impedance, the rules for the equivalent impedance is the same as
for resistance. That is, for components in series, add the impedances, while
if they are in parallel, add their reciprocals.

The impedance of a resistor is trivial. It is just the resistance R. In this
case, the voltage drop across the resistor in phase with the current through
it since Z = R is a purely real quantity. The impedance is also independent
of frequency in this case.

Things get to be more fun with capacitors. In this case the voltage drop
V = V0e

ıωt = q/C and the current i = dq/dt = ıωC × V0e
ıωt. Therefore, the

impedance is

Z (ω) =
V (ω, t)

i(ω, t)
=

1

ıωC
(2.7)

Now the behavior of capacitors is clear. At frequencies low compared to
1/RC , i.e. the “DC limit”, the impedance of the capacitor goes to infinity.
(Here, the value of R is the equivalent resistance in series with the capacitor.)
It does not allow current to pass through it. However, as the frequency gets
much larger than 1/RC , the impedance goes to zero and the capacitor acts
like a short since current passes through it as if it were not there. You can
learn a lot about the behavior of capacitors in circuits just by keeping this
in mind.

There is an important lesson here. Between any two conductors, there is
always some capacitance. Therefore, no matter how well some circuit is de-
signed, there will always be some “stray” capacitance around, however small.
Consequently, the circuit will always fail above some frequency because effec-
tive shorts appear throughout. You can only keep the stray capacitance so
small, especially in integrated circuit chips where things are packed tightly
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together, and this is a practical limitation for all circuit designers.

2.2.3 The Generalized Voltage Divider

We can easily generalize our concept of the voltage divider to include AC
circuits and reactive (i.e. frequency dependent) components like capacitors.
(We will learn about another reactive component, the inductor, shortly.) The
generalized voltage divider is shown in Fig. 2.7. In this case, we have

out
V

in
V

Z
1

v f

f

Z
2

Figure 2.7: The generalized voltage divider.

VOUT (ω, t) = VIN (ω, t)
Z2

Z1 + Z2
= VIN (ω, t) geıφ (2.8)

where we take the liberty of writing the impedance ratio Z1/(Z1 + Z2), a
complex number, in terms of two real numbers g and φ. We refer to g =
|VOUT |/|VIN | as the “gain” of the circuit, and φ is the phase shift of the
output signal relative to the input signal. For the simple resistive voltage
divider shown in Fig. 2.4 and Fig. 2.5, we have g = R1/(R1 +R2) and φ = 0.
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Figure 2.8: Input and output voltages for the generalized voltage divider.

That is, the output signal is in phase with the input signal, and the amplitude
is just reduced by the relative resistor values. This holds at all frequencies,
including DC.

The relative phase is an important quantity, so let’s take a moment to
look at it a little more physically. If we write VIN = V0e

ıωt, then according
to Eq. 2.8 we can write VOUT = gV0e

ıωt+φ. Since the measured voltage is just
the real part of these complex expressions, we have

VIN = V0 cos(ωt)

VOUT = gV0 cos(ωt+ φ)

These functions are plotted together in Fig. 2.8. The output voltage crests
at a time different than the input voltage, and this time is proportional to
the phase. To be exact, relative to the time at which VIN is a maximum,

Time of maximum VOUT = − φ

2π
× T =

φ

ω

where T = 2π/ω is the period of the voltage fluctuations. This time lag can
make all the difference in the world in many circuits.

Now let’s consider the voltage divider in Fig. 2.6. Using Eq. 2.8 we find

VOUT = VIN

1
ıωC

R + 1
ıωC

= VIN
1

1 + ıωRC
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The gain g of this voltage divider is just (1 + ω2R2C2)
−1/2

and you can
see that for ω = 0 (i.e. DC operation) the gain is unity. For very large
frequencies, though, the gain goes to zero. The gain changes from unity to
zero for frequencies in the neighborhood of 1/RC . We have said all this
before, but in a less general language.

However, our new language tells us something new and important about
VOUT , namely the phase relative to VIN . Using equations C.2 and C.3, we
find that

1

1 + ıωRC
=

1− ıωRC

1 + ω2R2C2
=

1

(1 + ω2R2C2)1/2
eıφ

In other words, the output voltage is phase shifted relative to the input
voltage by an amount φ = − tan−1(ωRC). For ω = 0 there is no phase shift,
as you should expect, but at very high frequencies the phase is shifted by
−90◦.

2.3 Inductors

Just as a capacitor stores energy in an electric field, an inductor stores energy
in a magnetic field. An inductor is essentially a wire wound into the shape
of a solenoid. The symbol for an inductor is

At first, you might think “A wire is a wire, so what difference could it make
to a circuit?” They key is in the magnetic field that is set up inside the coil,
and what happens when the current changes. So, just as with a capacitor,
inductors are important when the voltage and current change with time, and
the response depends on the frequency.

The inductance L of a circuit element is defined to be

L =
NΦ

i

where N is the number of turns in the solenoid and Φ is the magnetic flux
in the solenoid generated by the current i. The SI unit of inductance is the
Tesla·m2/Ampere, or the Henry (H).
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Now if the current i through the inductor coil is changing, then the mag-
netic flux is changing and this sets up a voltage in the coil that resists the
change in the current. The magnitude of this voltage drop is

V =
d (NΦ)

dt
= L

di

dt

If we write V = iZ, where Z is the impedance of the inductor, and V = V0e
ıωt,

then V = (L/Z)(ıω)V or

Z = ıωL (2.9)

We can use this impedance to calculate, for example, VOUT for the generalized
voltage divider of Fig. 2.7 if one or more of the components is an inductor.

You can now see that the inductor is, to large extent, the opposite of a
capacitor. The inductor behaves as a short (that is, just the wire it is) at
low frequencies, whereas a capacitor is open in the DC limit. On the other
hand, an inductor behaves as if the wire were cut (an open circuit) at high
frequencies, but the capacitor is a short in this limit. You can make inter-
esting and useful circuits by combining inductors and capacitors in different
combinations.

One particularly interesting combination is the series LCR circuit, com-
bining one of each in series. The impedance of such a string displays the
phenomenon of “resonance”. That is, in complete analogy with mechanical
resonance, the voltage drop across one of the elements is a maximum for
a certain value of ω. Also, as the frequency passes through this value, the
relative phase of the output voltages passes through 90◦. If the resistance R
is very small, then the output voltage can be enormous, in principle.

2.4 Diodes and Transistors

Resistors, capacitors, and inductors are “linear” devices. That is, we write
V = iZ, where Z is some (complex) number, which may be a function of
frequency. The point is, though, that if you increase V by some factor, then
you increase i by the same factor.
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Diodes and transistors are examples of “nonlinear” devices. Instead of
talking about some imedance Z, we instead consider the relationship between
V and i as some (nonlinear) function. What’s more, a transistor is an “active”
device, unlike resistors, capacitors, inductors, and diodes which are “passive”.
That is, a transistor takes in power from some voltage or current source, and
gives an output that combines that input power with the signal input to get a
response. As you might guess, transistors are very popular signal amplifiers,
although they have lots of other uses as well.

Instead of covering the world of nonlinear devices at this time, we will just
discuss some of their very basic properties. We will describe their operation
in some more detail when we use them in specific experiments, since they
can be used in a large variety of ways.

You might know that in the old days, many of these functions were possi-
ble with vacuum tubes of various kinds. These have been almost completely
replaced by solid state devices based on semiconductors.

2.4.1 Diodes

The symbol for a diode is

where the arrow shows the nominal direction of current flow. An ideal diode
conducts in one direction only. That is, its V − i curve would give zero
current i for V < 0 and infinite i for V > 0. (Of course, in practice, the
current i is limited by some resistor in series with the diode.) This is shown
in Fig. 2.9(a).

A real diode, however, has a more complicated curve, as shown in Fig. 2.9(b).
The current i changes approximately exponentially with V , and becomes very
large for voltages above some forward voltage drop VF . For most cases, a
good approximation is that the current is zero for V < VF and unlimited for
V > VF . Typical values of VF are between 0.5 V and 0.8 V.
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Figure 2.9: Current i versus voltage V for (a) the ideal diode and (b) a real
diode.

Diodes are pn junctions. These are the simplest solid-state devices, made
of a semiconductor (usually silicon). The electrons in a semiconductor fill
an energy “band” and normally cannot move through the bulk material, so
the semiconductor is really an insulator. If electrons make it into the next
energy band, which is normally empty, then they can conduct electricity.
This can happen if, for example, electrons are thermally excited across the
energy gap between the bands. For silicon, the band gap is 1.1 eV, but the
mean thermal energy of electrons at room temperature is ∼ kT = 1/40 eV.
Therefore, silicon is essentially an insulator under normal conditions, and not
particularly useful.

That’s where the p and n come in. By adding a small amount (around 10
parts per million) of specific impurities, lots of current carriers can be added
to the material. These impurities (called dopants) can precisely control how
current is carried in the semiconductor. Some dopants, like arsenic, give
electrons as carriers and the doped semiconductor is called n-type, since the
carriers are negative. Other dopants, like boron, bind up extra electrons,
and current is carried by “holes” created in the otherwise filled band. These
holes act like positive charge carriers, so we call the semiconductor p-type.
In either case, the conductivity increases by a factor of ∼ 1000 at room
temperature. this makes some nifty things possible.
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So now back to the diode, or pn junction. This is a piece of silicon, doped
p-type on one side and n-type on the other. Electrons can only flow from p
to n. That is, a current is carried only in one direction. A detailed analysis
gives the i− V curve shown in Fig. 2.9(b). See Dunlap for more details.

If you put voltage across the diode in the direction opposite to the direc-
tion of possible current flow, that is called a “reverse bias”. If you put too
much of a reverse bias on the diode, i.e. V < −V MAX

R , it will break down
and start to conduct. This is also shown in Fig. 2.9(b). Typical values of
V MAX

R are 100 V or less.

2.4.2 Transistors

Transistors are considerably more complicated than diodes2, and we will
only scratch the surface here. The following summary closely follows the
introduction to transistors in The Art of Electronics. For details on the
underlying theory, see Dunlap.

A transistor has three terminals, called the collector, base, and emitter.
There are two main types of transistors, namely npn and pnp, and their sym-
bols are shown in Fig. 2.10. The names are based on the dopants used in the
semiconductor materials. The properties of a transistor may be summarized
in the following simple rules for npn transistors. (For pnp transistors, just
reverse all the polarities.)

1. The collector must be more positive than the emitter.

2. The base-emitter and base-collector circuits behave like diodes. Nor-
mally the base-emitter diode is conducting and the base-collector diode
is reverse-biased.

3. Any given transistor has maximum values of iC, iB, and VCE that
cannot be exceeded without ruining the transistor. If you are using an
transistor in the design of some circuit, check the specifications to see
what these limitng values are.

2The invention of the transistor was worth a Nobel Prize in Physics in 1956.
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Figure 2.10: Symbols for npn and pnp transistors.

4. When rules 1-3 are obeyed, iC is roughly proportional to iB and can be
written as iC = hFE iB. The parameter hFE , also called β, is typically
around 100, but it varies a lot among a sample of nominally identical
transistors.

Obviously, rule 4 is what gives a transistor its punch. It means that a
transistor can “amplify” some input signal. It can also do a lot of other
things, and we will see them in action later on.

2.5 Exercises

1. Consider the following simple circuit:



2.5. EXERCISES 39

R

VoutVin
C

Let the input voltage VIN be a sinusoidally varying function with ampli-
tude V0 and angular frequency ω.

a. Calculate the gain g and phase shift φ for the output voltage relative
to the input voltage.

b. Plot g and φ as a function of ω/ω0 where ω0 = 1/RC . For each of these
functions, use the combination of linear or logarithmic axes for g and
for φ that you think are most appropriate.

2. Consider the following simple circuit:

R Vin outV

L

Let the input voltage VIN be a sinusoidally varying function with ampli-
tude V0 and angular frequency ω.

a. Calculate the gain g and phase shift φ for the output voltage relative
to the input voltage.

b. Plot g and φ as a function of ω/ω0 where ω0 = R/L. For each of these
functions, use the combination of linear or logarithmic axes for g and
for φ that you think are most appropriate.

3. Consider the following not-so-simple circuit:
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R outin VV

LC

a. What is the gain g for very low frequencies ω? What is the gain for very
high frequencies? Remember that capacitors act like dead shorts and
open circuits at high and low frequencies, respectively, and inductors
behave in just the opposite way.

b. At what frequency do you suppose the gain of this circuit is maximized?
Use your intuition, and perhaps some of Chapter 38 in Resnick, Halli-
day, and Krane.

c. Using the rules for impedance and the generalized voltage divider, de-
termine the gain g(ω) for this circuit and show that your answers to
(a) and (b) are correct.

4. Suppose that you wish to detect a rapidly varying voltage signal. However,
the signal is superimposed on a large DC voltage level that would damage
your voltmeter if it were in contact with it. You would like to build a simple
passive circuit that allows only the high frequency signal to pass through.

a. Sketch a circuit using only a resistor R and a capacitor C that would
do the job for you. Indicate the points at which you measure the input
and output voltage.

b. Show that the magnitude of the output voltage equals the magnitude
of the input voltage, multiplied by

1√
1 + 1

ω2R2C2

where ω is the (angular) frequency of the signal. You may use the
expression for capacitor impedance we derived in class.
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c. Suppose that R=1kΩ and the signal frequency is 1MHz=106/sec. Sug-
gest a value for the capacitor C.
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Ch 3

Common Laboratory
Equipment

There are lots of different kinds of laboratory equipment. In fact, there are
too many to cover in any detail, and you will learn about specific pieces of
equipment as you do the experiments. However, there are certain kinds of
equipment common to nearly all experiments, and we will talk about these
in this chapter. As you might imagine, all of this equipment is related to
generating or measuring voltage.

I don’t know of any book that covers the specific sorts of things in this
chapter. If you are interested in some specific piece of equipment, however,
a good place to check is with the manufacturer or distributer of a product
line. You can typically get good documentation for free, and not always in
the form of the company’s catalog.

3.1 Wire and Cable

Connections between components are made with wires. We tend to neglect
the importance of choosing the right wire for the job, but in some cases it
can make a big difference.

43
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The simplest wire is just a strand of some conductor, most often a metal
like copper or aluminum. Usually the wire is coated with an insulator so that
it will not short out to its surroundings, or to another part of the wire itself.
If the wire is supposed to carry some small signal, then it will likely need to
be “shielded”, that is covered with another conductor (outside the insulator)
so that the external environment doesn’t add noise somehow. One popular
type of shielded wire is the “coaxial cable” which is also used to propagate
“pulses”.

3.1.1 Basic Considerations

Don’t forget about Ohm’s law when choosing the proper wire. That is, the
voltage drop across a section of wire is still V = iR, and you want this voltage
drop to be small compared to the “real” voltages involved. The resistance
R = ρ× L/A where L is the length of the wire, A is its cross sectional area,
and ρ is the resistivity of the metal. Therefore, to get the smallest possible
R, you keep the length L as short as practical, get a wire with the largest
practical A1, and choose a conductor with small resistivity. Copper is the
usual choice because it has low resistivity (ρ = 1.69× 10−8 Ωcm) and is easy
to form into wire of various thicknesses and shapes. Other common choices
are aluminum (ρ = 2.75 × 10−8 Ωcm) which can be significantly cheaper in
large quantities, or silver (ρ = 1.62 × 10−8 Ωcm) which is a slightly better
conductor although not usually worth the increased expense.

The resistivity increases with temperature, and this can lead to a partic-
ularly insidious failure if the wire has to carry a large current. The power
dissipated in the wire is P = i2R, and this tends to heat it up. If there is
not enough cooling by convection or other means, then R will increase and
the wire will get hotter and hotter until it does serious damage. This is most
common in wires used to wind magnets, but can show up in other high power
applications. A common solution is to use very low gage (i.e. very thick)
wire, that has a hollow channel in the middle through which water flows.
The water acts as a coolant to keep the wire from getting too hot.

1Wire diameter is usually specified by the “gage number”. The smaller the wire gage,
the thicker the wire, and the larger the cross sectional area.
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The wire insulator must also withstand the temperature increase, and
whatever else the outside environment wants to throw at it. It may be
necessary, for example, to immerse part of a circuit in liquid nitrogen, and
you don’t want the insulator to crack apart. It should not be hard to find a
conductor and insulator combination that will suit your purpose.

3.1.2 Coaxial Cable

A coaxial cable is a shielded wire. The name comes from the fact that the
wire sits inside an insulator, another conductor, and another insulator, all
in circular cross section sharing the same axis. A cutaway view is shown in
Fig. 3.1. Coaxial cable is used in place of simple wire when the signals are

Figure 3.1: Cutaway view of coaxial cable.

very small and are likely to be obscured by some sort of electronic noise in
the room. The outside conductor (called the “shield”) makes it difficult for
external electromagnetic fields to penetrate to the wire, and minimizes the
noise. This outside conductor is usually connected to ground.

A second, and very important, use of coaxial cable is for “pulse trans-
mission”. The wire and shield, separated by the dielectric insulator, act as a
kind of waveguide and allows short pulses of current to be transmitted with
little distortion from dispersion. Short pulses can be very common in the
laboratory, in such applications as digital signal transmission and in radia-
tion detectors. You have to be aware of the “characteristic impedance” of
the cable when you use it in this way.

Coaxial cable has a characteristic impedance because it transmits the
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signal as a train of electric and magnetic fluctuations, and the cable itself has
characteristic capacitance and inductance. The capacitance and inductance
of a cylindrical geometry like this are typically solved in elementary physics
texts on electricity and magnetism. The solutions are

C =
2πε

ln(b/a)
× ` and L =

µ

2π
ln

(
b

a

)
× `

where a and b are the radii of the wire and shield respectively, ε and µ
are the permittivity and permeability of the dielectric, and ` is the length
of the cable. It is very interesting to derive and solve the equations that
determine pulse propagation in a coaxial cable, but we won’t do that here.
One thing you learn, however, is that the impedance seen by the pulse (which
is dominated by high frequencies) is very nearly real and independent of
frequency, and equal to

Zc =

√
L

C
=

1

2π

√
µ

ε
ln

(
b

a

)
(3.1)

This “characteristic impedance” is always in a limited range, typically 50Ω ≤
Zc ≤ 200Ω, owing to natural values of ε and µ, and to the slow variation of
the logarithm.

You have to be careful when making connections with coaxial cable, so
that the characteristic impedance Zc of the cable is “matched” to the load
impedance ZL. The transmissions equations are used to show that the “re-
flection coefficient” Γ, defined as the ratio of the current reflected from the
end of the cable to the current incident on the end, is given by

Γ =
ZL − Zc

ZL + Zc

That is, if a pulse is transmitted along a cable and the end of the cable is not
connected to anything (ZL = ∞), then Γ = 1 and the pulse is immediately
reflected back. On the other hand, if the end shorts the conductor to the
shield (ZL = 0), then Γ = −1 and the pulse is inverted and then sent back.
The ideal case is when the load has the same impedance as the cable. In this
case, there is no loss at the end of the cable and the full signal is transmitted
through. You should take care in the lab to use cable and electronics that
have matched impedances. Common impedance standards are 50Ω and 90Ω.
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3.1.3 Connections

Of course, you will need to connect your wire to the apparatus somehow, and
this is done in a wide variety of ways. For permanent connections, especially
inside electronic devices, solder is usually the preferred solution. You won’t
typically make solder joints in the undergraduate laboratory, unless you are
building up some piece of apparatus. It is harder than you might think to
make a good solder joint, and if you are going to do some of this, you should
have someone show you who has a decent amount of experience. Another
type of permanent connection, called “crimping”, squeezes the conductors
together using a special tool that ensures a good contact that does not release.
This is particularly useful if you can’t apply the type of heat necessary to
make a good solder joint. Again, you are unlikely to encounter this in the
undergraduate laboratory.

Less permanent connections can be made using terminal screws or binding
posts. These work by taking a piece of wire and inserting it between two
surfaces which are then forced together by tightening a screw. You may need
to twist the end of the wire into a hook or loop to do this best, or you may
use wire with some sort of attachment that has been soldered or crimped on
the end.

If you keep tightening or untightening screws, especially onto wires with
hand made hooks or loops, then the wire is likely to break at some point.
Therefore, for temporary connections, it is best to use alligator clips or ba-
nana plugs, or something similar. Again, you will usually use wires with this
kind of connector previously soldered or crimped on the end.

Coaxial cable connections are made with one of several special types of
connectors. Probably most common is the “Bayonet N-Connector”, or BNC,
standard, including male cable end connectors, female device connectors,
and union and T-connectors for joining cables. In this system, a pin is
soldered or crimped to the inner conductor of the cable, and the shield is
connected to an outer metal holder. Connections are made by twisting the
holder over the mating connector, with the pin inserting itself on the inner
part. Another common connector standard, called “Safe High Voltage” or
SHV, works similarly to BNC, but is designed for use with high DC voltages
by making it difficult to contact the central pin unless you attach it to the
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correct mate.

For low level measurement you must be aware of the thermal electric
potential difference between two dissimilar conductors at different temper-
atures. These “thermoelectric coefficients” are typically around 1 µV/◦C,
but between Copper and Copper-Oxide (which can easily happen if a wire
or terminal has been left out and is oxidized) it is around 1 mV/◦C.

3.2 DC Power Supplies

A lot of laboratory equipment needs to be “powered” in one way or another.
Unlike the typical 100 V 60 Hz AC line you get out of the wall socket, though,
this equipment usually requires some constant DC level to operate. One way
to get this constant DC level is to use a battery, but if the equipment draws
much current the battery will die quickly. More often we use DC “power
supplies” to get this kind of constant DC level. The power supply in turn
gets its power from the wall socket.

Power supplies come in lots of shapes, sizes, and varieties, but there are
two general classes. These are “voltage” supplies or “current” supplies, and
the difference is based on how the output is regulated. Since the inner work-
ings of the power supply has some effective resistance, when the power supply
has to give some current, there will be a voltage drop across that resistance
and that will affect how the power supply works. In a “voltage regulated”
supply, the circuitry is designed to keep the output voltage constant (to
within some tolerance), regardless of how much current is drawn. (Typically,
there will be some maximum current at which the regulation starts to fail.
That is, there is a maximum power that can be supplied.) Most electronic
devices and detector systems prefer to have a specific voltage they can count
on, so they are usually connected to voltage regulated supplies.

A “current regulated” supply is completely analagous, but here the cir-
cuitry is designed to give a constant output current in the face of some load
on the supply. Such supplies are most often used to power magnets, since the
magnetic field only cares about how much current flows through the coils.
This is in fact quite important for precise magnetic fields, since the coils tend
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to get hot and change their resistance. In this case, V = iR and R is chang-
ing with time, so the power supply has to know to keep i constant by varying
V accordingly. In many cases, a simple modification (usually done without
opening up the box) can convert a power supply from voltage regulation to
current regulation.

The output terminals on most power supplies are “floating”. That is, they
are not tied to any external potential, in particular to ground. One output
(sometimes colored in red) is positive with respect to the other (black). You
will usually connect one of the outputs to some external point at known
potential, like a common ground.

You should be aware of some numbers. The size and price of a power
supply depends largely on how much power it can supply. If it provides a
voltage V while sourcing a current i, then the power output is P = iV . A
very common supply you will find around them lab will put out several volts
and a couple of amps, so something like 10 W or so. Depending on things like
control knobs and settings to computer interfacing, they can cost anywhere
from $50 up to a few hundred. So-called “high voltage” power supplies will
give several hundred up to several thousand (or more!) volts, and can source
anywhere from a few µA up to 100 mA, and keep the voltage constant to a
level of better than 100 mV. Still, the power output of such devices is not
enormously high, typically under a few hundred watts. The cost will run
into thousands of dollars. Magnet power supplies, though, may be asked to
run something like 50 A through a coil that has a resistance of, say, 2 Ω. In
this case, the output power is 5 kW, and that is a force to be reckoned with.
Realize, of course, that these are all round numbers just to give you some
idea of what you’ll see around the laboratory.

3.3 Waveform Generators

You might think there are things called “AC” power supplies, analagous to
the DC supplies we’ve just discussed. Well there are, but we don’t call them
that because in general (and certainly for the equipment you will see in this
course) they don’t supply much power. Instead, we talk about “Waveform
Generators” which produce an output voltage signal that varies in time.
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Later, in Experiment 5 we will combine a waveform generator with a DC
power supply to make an AC power supply, and we will talk more about that
then.

The function V (t) can be anything from a simple sine wave to an arbitrary
function you program into the device, but increased flexibility can cost a lot
of money. Most waveform generators, though, do have at least sine waves,
square waves, or triangle waves, and can vary the frequency over a wide
range. Low frequencies are pretty easy to get, but for very high frequencies
(above a MHz or so) things get much harder because of stray capacitance
giving effective shorts. (See section 2.2.1.) You can also vary the voltage
amplitude and offset over several volts.

Sometimes instead of wanting a “wave” output, you need a “pulse”. That
is, a signal that is high for some short period of time, with another coming
after a much longer time. Most waveform generators can accomodate your
wishes either by providing an explicit “pulse” output, or by allowing you to
change the symmetry of the waveform so that the “0 to π” portion of the
wave is stretched or compressed relative to the “π to 2π” portion.

3.4 Meters

So now that you know how to get some voltage, including time varying ones,
and how to connect these voltages using wire and cable, you have to think
about how to measure the voltage you create. The simplest way to do this
is with a “meter”, particularly if the voltage is DC. (Most meters do provide
you with AC capability, but we won’t go into the details here.) An excellent
reference on the subject of meters is given in the “Low Level Measurements
Handbook”, published by Keithley Instruments, Inc. (If you want a copy,
call them at (216)248-0400 and they will probably send you one for free.) As
you might imagine, Keithley sells meters.

In the old days, people would use either voltmeters, ammeters, or ohm-
meters to measure voltage, current, or resistance respectively. These days,
although you still might want to buy one of these specialized instruments to
get down to very low levels, most measurements are done with “Digital Mul-
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timeters”, or DMM’s for short. (In fact, some DMM’s are available now that
effectively take the place of the most sensitive specialized meters.) Voltage
and resistance measurements are made by connecting the meter in parallel
to the portion of the circuit you’re interested in. To measure current, you
have to put the meter in series.

Realize that DMM’s work by averaging the voltage measurement over
some period of time, and then displaying the result. This means that if
the voltage is fluctuating on some time scale, these fluctuations will not
be observed if the averaging time is greater than the typical period of the
fluctuations. Of course the shorter the averaging time a meter has (the higher
the “bandwidth” it has), the fancier it is and the more it costs.

Most of the applications in this course do not involve very low level mea-
surements, but you should be aware of a simple fact just the same. Meters
have some effective input impedance, so they will (at some level) change the
voltage you are trying to measure. For this reason, voltmeters and ohm-
meters are designed to have very large input impedances (many MΩ to as
high as several GΩ), while ammeters “shunt” the current through a very low
resistance and turn the job into measuring the (perhaps very low) voltage
drop across that resistor.

3.5 Oscilloscopes

An oscilloscope measures and displays voltage as a function of time. That is,
it plots for you the quantity V (t) on a cathode ray tube (CRT) screen as it
comes in. This is a very useful thing, and you will use oscilloscopes in nearly
all the experiments you do in this course. A good reference is “The XYZ’s
of Oscilloscopes”, published by Tektronix, Inc., probably the world’s largest
manufacturer of oscilloscopes.

The simple block diagram shown in Fig.3.2 explains how an oscilloscope
works. The voltage you want to measure serves two purposes. First, after
being amplified, it is applied to the vertical deflection plates of the CRT. This
means that the vertical position of the trace on the CRT linearly corresponds
to the input voltage, which is just what you want. The vertical scale on the
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Figure 3.2: Block Diagram of an Oscilloscope

CRT has a grid pattern that lets you know what the input voltage is.

3.5.1 Sweep and Trigger

The horizontal position of the trace is controlled by a “sweep generator”
whose speed you can control. However, for repetitive signal shapes, you want
the signal to “start” at the same time for ever sweep, and this is determined
by the “trigger” system. The place on the screen where the trace starts is
controlled by a “horizontal position” knob on the front panel. One kind of
trigger is to just have the scope sweep at the line (i.e. 60 Hz) frequency,
but this won’t be useful if the signals you’re interested in don’t come at
that frequency. Another kind of simple trigger is to have the trace sweep
once whenver the voltage rises or falls past some level, i.e a “leading edge”
trigger. There is usually a light on the front panel that flashes when the
scope is triggered.
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Oscilloscopes almost always have at least two input channels, and it is
possible to trigger on one channel and look at the other. This can be very
useful for studying coincident signals or for measuring the relative phase of
two waveforms. In any case, the trigger “mode” can either be “normal”, in
which case there is a sweep only if the trigger condition is met, or “auto”
where the scope will trigger itself if the trigger condition is not met in some
period of time. Auto mode is particularly useful if you are searching for some
weak signal and don’t want the trace to keep disappearing on you.

3.5.2 Input Voltage Control

You have several controls on how the input voltage is handled. A “verti-
cal position” knob on the front panel controls where the trace appears on
the screen. You will find one of these for each input channel. The input
“coupling” can be set to either AC, DC, or ground. In AC mode, there is a
capacitor between the input connector and the vertical system circuit. This
keeps any constant DC level from entering the scope, and all you see is the
time varying (i.e. AC) part. If you put the scope on DC, then the constant
voltage level also shows up. If the input coupling is grounded, then you force
the input level to zero, and this shows you where zero is on the screen. (Make
sure that the scope is on “auto” trigger if you ground the input, otherwise
you will not see a trace!)

Sometimes, you also get to choose the input impedance for each channel.
Choosing the “high” input impedance (usually 1 MΩ) is best if you want
to measure voltage levels and not have the oscilloscope interact with the
circuit. However, the oscilloscope will get a lot of use looking at fast pulsed
signals transmitted down coaxial cable, and you don’t want an “impedance
mismatch” to cause the signal to be reflected back. (See Sec.3.1.2.) Cables
with 50Ω characteristic impedances are very common in this work, so you
may find a 50Ω input impedance option on the scope. If not, you should use
a “tee” connector on the input to put a 50Ω load in parallel with the input.
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3.5.3 Dual Trace Operation

By flipping switches on the front, you can look at either input channel’s trace
separately, or both at the same time. There is obviously a problem, though,
with viewing both simultaneously since the vertical trace can only be in one
place at a time.

There are two ways to get around this. One is the alternate the trace from
channel one to channel two and back again. This gives complete traces of
each, but doesn’t really show them to you at the same time. If the signals are
very repetitive and you’re not interested in fine detail, this is okay. However,
if you really want to see the traces at the same time, select the chop option.
Here, the trace jumps back and forth between the channels at some high
frequency, and you let your eye interpolate between the jumps. If the sweep
speed is relatively slow, the interpolation is no problem and you probably
can’t tell the difference between alternate and chop. However, at high sweep
speed, the effect of the chopping action will be obvious.

3.5.4 Bandwidth

You should realize by now that high frequency operation gets hard, and the
oscilloscope gets more complicated and expensive. Probably the single most
important specification for an oscilloscope is its “bandwidth”, and you will
see that number printed on the front face right near the screen. The number
tells you the frequency at which a sine wave would appear only 71% as large
as it should be. You cannot trust the scope at frequencies approaching or
exceeding the bandwidth. Most of the scopes in the lab have 20 MHz or
60 MHz bandwidths. A “fast” oscilloscope will have a bandwidth of a few
hundred MHz or more. You will find that you can the sweep speed over a large
range, but never much more than (Bandwidth)−1. The “vertical sensitivity”
can be set independently of the sweep speed, but scopes in general cannot
go below around 2 mV/division.
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3.5.5 XY Operation

On most oscilloscopes, if you turn the sweep speed down to the lowest value,
one more notch puts the scope in the XY display mode. Now, the trace
displays channel one (X) on the horizontal axis and channel two (Y ) on the
vertical. For periodic signals, the trace is a lissajous pattern from which you
can determine the relative phase of the two inputs.

Oscilloscopes are also used this way as displays for various pieces of equip-
ment which have XY output options. Thus, the oscilloscope can be used as
a plotting device in some cases.

3.6 Digitizers

Computers have become common in everyday life, and the experimental
physics laboratory is no exception. In order to measure a voltage and deal
with the result in a computer, the voltage must be digitized. The generic de-
vice that does this is the Analog-to-Digital Converter or ADC. ADC’s come
in approximately an infinite number of varieties and connect to computers
in lots of different ways. We will cover the particulars when we discuss the
individual experiments, but for now we will review some of the basics.

3.6.1 ADC’s

Probably the most important specification for an ADC is its resolution. We
specify the resolution in terms of the number of binary digits (“bits”) that
the ADC spreads out over its measuring range. The actual measuring range
can be varied externally by some circuit, so the number of bits tells you how
finely you can chop that range up. Obviously, the larger the number of bits,
the closer you can get to knowing exactly what the input voltage was before
it was digitized. A “low resolution” ADC will have 8 bits or less. That is, it
divides the input voltage up into 256 pieces and gives the computer a number
between 0 and 255 which represents the voltage. A “high resolution” ADC
has 16 bits or more.
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High resolution does not come for free. In the first place, it can mean a
lot more data to handle. For example, if you want to histogram the voltage
being measured with an 8 bit ADC, then you need 256 channels for each
histogram. However, if you want to make full use of a 16 bit ADC, every
histogram would have to consume 65536 channels. That can use up computer
memory and disk space in a hurry. Resolution also affects the speed at which
a voltage can be digitized. Generally speaking, it takes much less time to
digitize a voltage into a smaller number of bits, than it does for a large
number of bits.

There are three general classes of ADC’s, which I refer to as Flash, Peak
Voltage Sensing, and Charge Integrating ADC’s. A Flash ADC, or “waveform
recorder”, simply reads the voltage level at its input and converts that voltage
level into a number. They are typically low resolution, but run very fast.
Today you can get an 8 bit Flash ADC which digitizes at 100 Mhz (i.e. one
measurement every 10 ns). This is fast enough so that just about any time
varying signal can be converted to numbers so that a true representation of
the signal can be stored in a computer.

To get better resolution, you need to decide what it is about the signal you
are really interested in. For example, if you only care about the maximum
voltage value, you can use a peak sensing ADC which digitizes the maximum
voltage observed during some specified time. Sometimes, you are interested
instead in the area underneath some voltage signal. This is the case, for
example, in elementary particle detectors where the net charge delivered is
a measure of the particle’s energy. For applications like this, you can use
an integrating ADC which digitzes the net charge absorbed over some time
period, i.e. 1

R

∫ t2
t1
V (t)dt, where R is the resistance at the input. For either of

these types, you can buy commercial ADC’s that digitize into 12 or 13 bits
in 5 µs or longer, but remember that faster and more bits costs more money.

Don’t forget that one of your jobs as an experimenter will be to calibrate
(or otherwise know) how to convert the number you get from an ADC into
an actual voltage or charge value. You will need to do this for some of the
experiments in this course.
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3.6.2 Other Digital Devices

The opposite of an ADC is a DAC, or Digital-to-Analog Converter. Here the
computer feeds the DAC a number depending on the number of bits, and the
DAC puts out an analog voltage proportional to that number. The simplest
DAC has just one bit, and its output is either “on” or “off”. In this case,
we refer to the device as an “output register”. These devices are a way to
control external equipment in an essentially computer-independent fashion.

In many cases, you want to digitize a time interval instead of a voltage
level. In the old days, this was a two step process involving a device called a
“Time-to-Analog Converter” (TAC), followed by an ADC. Nowadays, both
these functions are packaged in a single device called a TDC. The rules and
ranges are very similar as for ADC’s.

Devices known as “latches” or “input registers” will take an external
logic level, and digitize the result into a single bit. These are useful for telling
whether some device is on or off, or perhaps if something has happened which
the computer should know about. For the latter, the computer interface
circuit has to be able to interrupt what the computer is doing to let it know
that something important happened on the outside.

3.6.3 Dead Time

Why should you care how fast an ADC, or some other device, digitizes?
Obviously, the faster the device works, the faster you can take data. In fact,
this can be the limiting factor for many kinds of high sensitivity experiments.

When a device is busy digitizing, it cannot deal with more input. We refer
to the cumulative time a device is busy as “dead time”. Suppose τ is the time
needed to digitize an input pulse, and R0 is the (presumably random) rate at
which pulses are delivered to the digitizer. If Rm is the measured rate, then
in a time T the number of digitized pulses is RmT . The dead time incurred
in time T is therefore (RmT )τ , so the number of pulses lost is [(RmT )τ ]R0.
The total number of pulses delivered (R0T ) must equal the number digitized
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plus the number lost, so

R0T = RmT +RmTτR0

and therefore

Rm =
R0

1 + τR0
(3.2)

or R0 =
Rm

1− τRm
(3.3)

The “normal” way to operate a digitizer is so that it can keep up with the
rate at which pulses come in. In other words, the rate at which it digitizes
(1/τ ) should be much greater than the rate at which pulses are delivered,
that is τR0 � 1. Equation 3.2 shows that in this case, Rm ≈ R0, that is,
the measured rate is very close to the true rate, which is just what you want.
Futhermore, an accurate correction to the measured rate is given by Eq. 3.3
which can be written as R0 = Rm(1 + τRm) under normal operation.

On the other hand, if τR0 � 1, then Rm ≈ 1/τ . That is, the digitizier
measures a pulse and before it can catch its breath, another pulse comes
along. The device is “always dead”, and the measured rate is just one per
digitizing time unit. Essentially all information on the true rate is lost,
because the denominator of Eq. 3.3 is close to zero. You would have to know
the value of τ very precisely in order to make a correction that gives you the
true rate.

3.7 Digital Oscilloscopes

The digital oscilloscope is a wonderful device. Instead of taking the input
voltage and feeding it directly onto the deflection plates of a CRT (Fig. 3.2),
a digital oscilloscope first digitizes the input signal using a Flash ADC, stores
the waveform in some internal memory, and then has other circuitry to read
that memory and display the output on the CRT. At first glance, that may
sound silly, since we get the same result but in a much more roundabout way.
They key, however, is that we have the voltage stored as numbers, and the
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internal computer in the digital oscilloscope can do just about anything with
the numbers.

Even though it works very differently from analog oscilloscopes, digital
scopes have controls that make them look as much like analog scopes as
possible. The same terminology is used, and just about any function that is
found on an analog scope will also be found on a digital one.

Digital oscilloscopes are relatively new, and in this case Tektronix does
not have a corner on the market. In our lab, for example, we use the oscil-
loscopes by LeCroy and by Hewlett-Packard. For the models we have, the
LeCroy scopes are the most powerful.

3.7.1 The LeCroy 9310 Digital Oscilloscope

Our laboratory is equipped with LeCroy model 9310 and 9310A oscilloscopes.
The bandwidth of the 9310 is 300 Mhz and digitizes into 10k channels, while
the 9310A is 400 Mhz into 50k. (Both have a maximum digitizing rate
of 100 Msamples/sec.) These scopes differ in other minor ways, but both
are equipped with a complete mathematics library (including Fast Fourier
Transform) and a PC-compatible 3.5-inch floppy disk drive for data storage.

We chose these oscilloscopes partly because of how straightforward it is
to use them. Given experience with analog oscilloscopes, you will have no
trouble using these much more sophisticated devices. You can do a lot by
using very few of the features.

Most of the controls are menu driven, and allow you to do any one of a
number of things with the data. Very simply, you can stop the scope at any
time and consider the last trace it threw up on the CRT. Using the cursors,
you can read on the screen the values of V (t) to within the resolution of the
ADC (8 bits). You can also read the time scale, so you can do a better job
estimating signal periods and frequencies.

The real power of the oscilloscope is realized with the internal math soft-
ware, allowing you to do much more complicated things with the data. You
can take functions of the trace, such as log [V (t)] to see if V (t) is consistent
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with an exponential decay. You can even take the Fourier transform of the
voltage as it comes in, and measure the amplitude and phase of the different
Fourier components.

For anything but the simplest data taking, you should use the floppy drive
to store traces for further analysis. Start with an empty, or just formatted,
1.5 Mb (HD) 3.5-inch floppy, and follow these steps:

• Insert the disk into the drive (mounted on top of the scope).

• Press the “Utilities” button to bring up that menu. Select “Floppy
disk utilities” under that menu.

• You will be asked to “Reread” the disk, again from the menu.

• For the first time you use the disk on that particular scope,

– Press “Perform disk format”. You will be asked to confirm that
by pressing it again.

– Press “Copy template to disk”. This puts a template file on the
disk that identifies the properties of that particular oscilloscope.

At this point, the disk has a directory file on it which containes the
template file. All storage operations go to that directory.

• Press “Return” three times to clear all the menus.

To store a particular trace, it is a good idea to make sure the oscilloscope
is “Stopped”, i.e., no longer updating traces. Then bring up the “Waveform
store” menu, and choose the trace (1, 2, or A-D) you want to store, as well
as the medium you want to store it to (“Disk”). A file with a name like
sc1.000 will be written to the disk, where the name stands for “store channel
1” (if you in fact chose to store the trace corresponding to channel 1) and
the extension keeps track of the number of times you stored that channel.
These traces are binary files that must be decoded elsewhere, most easily on
the PC in the laboratory.

The files produced by the oscilloscope are in binary format to save space.
Remember, the default saves 10k real numbers (50k for the 9310A) plus



3.8. COMPUTER INTERFACES 61

additional information for each trace. To convert these binary files to ascii
information, you need the program 94tran which is supplied by LeCroy.
The use of binary files in general is described in a readme document, also
supplied by LeCroy. These files are kept in the LeCroy subdirectory on the
general use PC in our lab.

As described in readme, the basic way to translate the file to a list of ascii
values (representing the voltage value for each point of the trace) is through
the command

94tran -tfile.tpl -ofile.lis file.abc

where file.tpl is the template file, file.lis is the output file, and file.abc is the
binary file created by the oscilloscope. For more detail, you can also type
“94tran -h” for help. To get different information about that trace, use a
particular “format” specification file. (See readme.) For example, if you want
to get all the parameter settings of the scope when that trace was saved, use
the file all.fmt:

94tran -tfile.tpl -ofile.lis -fall.fmt file.abc

This is a good way to check the way the scope was setup, but it is a good idea
to write down the important things in your logbook when you take your data,
as some of the different parameter names are pretty cryptic. The readme file
has details on how to write your own format files, if you want.

Once the data is in ascii form, you can use anything you want to analyze
it. For example, you might use matlab, as described in Sec. 1.4.3 and
elsewhere in these notes.

3.8 Computer Interfaces

We’ve talked about digitizing devices like ADC’s on a very elementary scale,
and also more sophisticated digital instruments like oscilloscopes and multi-
meters. In the end, you want to get the data collected by these devices into a
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computer. What’s more, you want the computer to be able to control these
devices. The connection between the computer and the external device is
done through an “interface”. There are a huge number of different kinds of
interfaces.

The architecture of an interface falls into one of two categories. A serial
interface is the simplest. Here the computer communicates one bit at a
time with the outside world. The external device responds to a particular
pattern of one’s and zero’s, and so does the computer. Data is transferred
between the two one bit at a time as well. The connection is almost always
done through a standard RS-232 serial line, the same way a keyboard is
attached to the computer. Lots of pieces of this scheme are standard, such
as the communications software and even the connectors, and this is a big
advantage. The problem, of course, is communication rate. A fast serial
line runs at 19,200 bits per second (the “baud rate”), and at this speed it
would take over two minutes to read all 10K, 8 bit data points in one trace
of the LeCroy 9310. If you are willing to give up the nice, standard features
of an RS-232 connection, you can go faster but the interface hardware and
software is more complicated.

In order to go faster, the serial architecture is abandoned altogether,
and one goes to a parallel type of interface. In this scheme, many bits are
transferred at the same time over a parallel set of wires. The wires are
connected through some kind of plug-in card directly to the “backplane” of
the computer, and this really speeds things up. The software for a particular
computer can be rather simple as well. Unfortunately, you lose the ability to
have some kind of standard interface because there are lots of different kinds
of computers out there, so both hardware and software can be very different.
Even the IBM/PC and its look-alikes have at least two distinct backplane
architectures.

One way people have tried to bridge the gap between fast-but-specific
parallel interfaces and standard-but-slow serial interfaces is to build parallel
“middleman” interfaces, and hope that they become popular enough to be
an industry standard. That is, a device like an ADC or meter might be
designed to connect to the middleman, and computer interfaces would also
be designed to connect to it as well. This potentially gives you more freedom
of choice, assuming that people out there provide you with lots of choices on
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both the device side and on the computer side. Of course, the middleman
costs money by itself, so this solution is generally more expensive. Some
examples of this type of interface are the following:

GPIB or “General Purpose Interface Bus”. Also known as the IEEE-
488 standard, or as HPIB by people at Hewlett Packard corporation, this has
become quite popular in recent years. It uses an ASCII code to communicate,
very similar to most serial line communication systems, but uses a 24-pin
connector allowing data to be transferred in parallel at some level. It can
transmit up to 1 MByte per second, within this communication protocol.

CAMAC or “Computer Automated Measurement And Control”.
This standard has been around for a long, long time, and many people are
hooked on it because they’ve already purchased lots of devices that connect
to it. It uses a rigid protocol called the Dataway for communication and data
transfers can be quite fast and flexible. Programming in CAMAC is rather
difficult, however, and people usually end up buying commercial CAMAC
software for their favorite computer.

FASTBUS. This architecture was developed originally as a modern re-
placement for CAMAC, particularly for very high rate and high density ap-
plications. It is being used heavily at several large modern laboratories.
However, it is rather costly and its popularity has been somewhat limited.

VME or “Versa Module Europa”. Developed by a consortium of com-
mercial companies, VME maps device locations directly into computer mem-
ory and is designed for high speed, computer intensive applications. Data
transfer is very efficient, and the speed is around 20 MBytes per second. It
is becoming increasingly popular, particularly in Europe.
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3.9 Exercises

1. An electromagnet is designed so that a 5 V potential difference drives 100 A
through the coils. The magnet is an effective inductor with an inductance L
of 10 mH. Your laboratory is short on space, so you put the DC power supply
across the room with the power cables along the wall. You notice that the
meter on the power supply has to be set to 6 V in order to get 5 V at the
magnet. On the other hand, you are nowhere near the limit of the supply,
so it is happy to give you the power you need.

Is there any reason for you to be concerned? Where did that volt go,
and what are the implications? If there is something to be concerned about,
suggest a solution.

2. You are given a low voltage, high current power supply to use for an
experiment. The manual switch on the power supply is broken. (The power
supply is kind of old, and it looks like someone accidently hit the switch
with a hammer and broke it off.) You replace the switch with something you
found around the lab, and it works the first time, but never again. When
you take it apart, the contacts seem to be welded together, and you know it
wasn’t that way when you put it in. What happened? (Hint: Recall that the
voltage drop across an inductor is Ldi/dt, and assume the switch disconnects
the circuit over 1 msec or so.)

3. The following table is from the Tektronix Corp. 1994 catalog selection
guide for some of their oscilloscopes:

Model Bandwidth Sample Rate Resolution Time Bases

2232 100 MHz 100 MS/s 8 bits Dual
2221A 100 MHz 100 MS/s 8 bits Single

2212 60 MHz 20 MS/s 8 bits Single
2201 20 MHz 10 MS/s 8-bits Single

You are looking at the output of a waveform generator on one of these
oscilloscopes. The generator is set to give a ±2 V sine wave output. If the
sine wave period is set at 1 µsec, the scope indeed shows a 2 V amplitude.
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However, if the the period is 20 nsec, the amplitude is 1 V. Assuming the
oscilloscope is not broken, which one are you using?

4. You want to measure the energies of various photons emitted in a nuclear
decay. The energies vary from 80 keV to 2.5 MeV, but you want to measure
two particular lines that are separated by 1 keV. If you do this by digitizing
the output of your energy detector, at least how many bits does your ADC
need to have?

5. Pulses emitted randomly by a detector are studied on an oscilloscope:

The vertical sensitivity is 100 mV/div and the sweep rate is 20 ns/div.
The bandwidth of the scope is 400 MHz. The start of the sweep precedes
the trigger point by 10 ns, and the input impedence is 50Ω.

a. Estimate the pulse risetime. What could you say about the risetime if
the bandwidth were 40 MHz?

b. Estimate the trigger level.

c. These pulses are fed into a charge integrating ADC, also with 50Ω
input impedence. The integration gate into the ADC is 100 ns long
and precedes the pulses by 10 ns. Sketch the spectrum shape digitized
by the ADC. Label the horizontal axis, assuming 1

4
pC of integrated

charge corresponds to one channel.

d. The ADC can digitize, be read out by the computer, and reset in 100 µs.
Estimate the number of counts in the spectrum after 100 sec if the
average pulse rate is 1 kHz. What is the number of counts if the rate
is 1 MHz?
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6. A detector system measures the photon emission rate of a weak light
source. The photons are emitted randomly. The system measures a rate of
10 kHz, but the associated electronics requires 10 µsec to register a photon,
and the system will not respond during that time. What is the true rate at
which the detector observes photons?
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Experiment 1: The Voltage
Divider

Now’s a good time to make some measurements based on what you’ve learned
so far. We will do some simple things with the voltage divider circuit, in-
cluding both resistors and capacitors.

Circuits are most easily put together on a “breadboard”. This is a flat,
multilayered surface with holes in which you stick the leads of wires, resistors,
capacitors, and so on. The holes are connected internally across on the
component pads, and downward on the power pads. You can play around
with a DMM and measure the resistance between different holes to convince
yourself of the connections.

Don’t forget to write everything down in your log book!

4.1 The Resistor String

Use a DMM to measure the voltage across the terminals of one of the small
DC power supplies. Switch the DMM to measure the current out of the
terminals. Do you suspect the supply is voltage or current regulated?

67
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Connect two 1 KΩ resistors in series on the breadboard, and then connect
the terminals of the power supply to each end of this two-resistor string. Once
again, measure the current across the output of the terminals. Also, measure
the current through the string. (You will have to change the way you connect
the leads of the DMM.)

Now connect two more 1 KΩ resistors in series with the others. Move the
connections from the power supply so that once again it is connected to each
end of the string. Repeat your voltage and current measurements.

Explain what you have seen so far. Compare the results to Ohm’s law. Is
the power supply voltage or current regulated? How well? Can you estimate
the equivalent internal resistance of the power supply?

Now measure the voltage drop across each of the four resistors. Compare
the result to what you expect based on the voltage divider relation. Use
your data and Ohm’s law to measure the resistance of each of the resistors.
(Do you need to remeasure the current through each resistor?) Compare the
resistance values you measure with the nominal value.

Remove the DC power supply and replace it with a waveform genera-
tor. Set the waveform to a sine wave. Use an oscilloscope to compare the
voltage (as a function of time) across the resistor string from the waveform
generator with the voltage across one of the resistors. Put each of these into
the two channels of the oscilloscope, and trigger the scope on the channel
corresponding to the waveform generator output. Look at both traces simul-
taneously (on either chop or alternate) and compare the relative amplitudes
of the “input” sine wave across the string, and the “output” sine wave across
the single resistor.

Discuss what you’ve measured. You may want to try any number of
variations on this theme. For example, put some of the resistors in parallel
or series and see what you get. Remember that Ohm’s law should always
be valid and you can verify that anywhere you want in your circuit. Also
remember that the power supply supplies power. If you hook up some other
resistor to the circuit, use what you’ve learned to calculate the power P =
i2R = V 2/R dissipated in that resistor and make sure it does not exceed the
resistor’s power rating.
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Figure 4.1: Measuring gain and relative phase on an oscilloscope.

4.2 Adding a Capacitor

Now connect a resistor and capacitor in series. Choose a resistance R and
capacitance C so that the inverse time constant 1/RC is well within the
frequency range of the waveform generator and the oscilloscope.

Just as you did for the the resistor string, measure the amplitude of the
voltage across either the resistor or capacitor, relative to waveform generator
signal applied across the front and back of the pair. (You should take care
to set the DC offset of the waveform generator to zero using the oscilloscope
to measure the offset relative to ground.) Do this as a function of frequency,
spanning well on either side of 1/RC . Also measure the phase of the output
sine wave, relative to the input sine wave. Figure 4.1 shows how to make
these measurements on the oscilloscope CRT, using the circuit shown. Refer
to Fig. 2.8 for interpreting the input and output waveforms in terms of gain
and phase.

It would be a good idea to set your frequency values logarithmically in-
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stead of linearly. That is, instead of setting frequencies like

νLO, νLO + ∆ν, νLO + 2∆ν, . . . , νHI

use something like

νLO, f × νLO, f
2 × νLO, . . . , νHI

Make a clear table of your measurements and plot the gain (i.e. the relative
amplitudes) and the relative phase as a function of frequency. Think about
how you want to scale the axes. (Making both axes linear is the worst choice.)

Don’t forget that you measure frequency ν, but most of the relations
we’ve derived are in terms of the angular frequency ω = 2πν.

Compare your results to the calculated gain and phase difference. Adding
this to the plot would be a good idea. Do you expect the same thing whether
you were measuring the voltage across the capacitor or the resistor? You can
test this by changing the position of the oscilloscope probes in Fig. 4.1.

A sample of data and calculation is plotted in Fig. 4.2. This plot was
produced using matlab using the following commands:

load vdcap.dat

omega=vdcap(:,1);

gain =vdcap(:,2);

phase=vdcap(:,3);

R=1.453E3;

C=0.1E-6;

omegaf=logspace(1.5,7.5);

gainf =1./sqrt(1+(omegaf.*R*C).^2);

phasef=(180/pi)*atan(omegaf.*R*C);

subplot(2,1,1)

loglog(omega,gain,’o’,omegaf,gainf)

axis([1E2 1E7 2E-4 2])

xlabel(’Angular Frequency (Hz)’)

ylabel(’Gain’)

subplot(2,1,2)

semilogx(omega,phase,’o’,omegaf,phasef)



4.2. ADDING A CAPACITOR 71

10
2

10
3

10
4

10
5

10
6

10
7

10
-2

10
0

Angular Frequency (Hz)

G
ai

n

10
2

10
3

10
4

10
5

10
6

10
7

0

20

40

60

80

Angular Frequency (Hz)

P
ha

se

Figure 4.2: Sample of data on gain and phase shift with an RC voltage
divider.
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axis([1E2 1E7 0 95])

xlabel(’Angular Frequency (Hz)’)

ylabel(’Phase’)

print -dps vdcap.ps

clear all

The angular frequency, gain, and phase were all calculated separately and
stored in the ascii file vdcap.dat in three columns. The curves were calculated
using the known values of the resistor (1.453 kΩ) and capacitor (0.1 µF).
Some more advanced plotting commands were used here, to make log-log
and semilog plots, and to put two plots on a single page.

4.3 Response to a Pulse

Use the waveform generator as a pulse generator and study the output using
your RC voltage divider circuit. Compare the input and output pulse shapes
as a function of the width ∆t of the pulse. What happens if ∆t � RC?
What about ∆t� RC?
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Experiment 2: The Ramsauer
Effect

This is a simple and elegant experiment in quantum mechanical scattering.
You will show that when electrons at one particular energy impinge on xenon
atoms, they pass right through as if the atom was not there.

The experiment is described in detail in the following references:

• Demonstration of the Ramsauer-Townsend Effect
in a Xenon Thytratron,
Stephen G. Kukolich, American Journal of Physics 36(1968)701

• An Extension of the Ramsauer-Townsend Effect in a Xenon Thyratron,
G. A. Woolsey, American Journal of Physics 39(1971)558

For more information on the physics associated with quantum mechanical
matter wave transmission, see

• Introduction to the Structure of Matter,
John J. Brehm and William J. Mullin, John Wiley and Sons (1989),
Chapter Five

73
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• Introductory Quantum Mechanics, Richard L. Liboff,
Second Edition, Addison Wesley (1992), Section 7.8

• Quantum Physics, Robert Eisberg and Robert Resnick,
John Wiley and Sons, Second Edition (1985), Chapter Six

• Does the Spherical Step-Potential Well Exhibit the Ramsauer-Townsend
Effect?,
R. C. Greenhow, American Journal of Physics 61(1993)23

The concepts of mean free path and cross section, and how they pertain to
the motion of particles in a gas, are described very well in

• Physics, Robert Resnick, David Halliday, and Kenneth Krane,
John Wiley and Sons, Fourth Edition (1992), Chapters 23 and 24

You may also want to consult Appendix B.

5.1 Scattering from a Potential Well

The Ramsauer effect (sometimes called the Ramsauer-Townsend Effect) demon-
strates the difference between classical mechanics and quantum mechanics,
in the simple problem of a particle “scattering” from a potential energy well.
We mainly consider the problem in one dimension, but make a few comments
about the three dimensional case.

5.1.1 Transmission past a One Dimensional Well

Figure 5.1 summarizes the situation.1 A particle is incident from the left,

1The textbooks by Brehm&Mullin, Liboff, Eisberg&Resnick, and others all treat this
or similar cases at appropriate levels of detail. Other cases include the potential “barrier”
as opposed to the “well”, and the “step” function where the height of the potential energy
changes abruptly.
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Figure 5.1: A particle incident on a potential energy well.

where the potential energy is zero. Its total mechanical energy (i.e. kinetic
plus potential energy) is E, which is constant with time.

Let’s first consider what happens classically. Conservation of energy de-
termines the motion through the equation

p2

2m
+ V (x) = E (5.1)

The function V (x) is zero everywhere except for −a ≤ x ≤ a where it is
equal to −V0. The particle is incident from the left and has a momentum
p = +

√
2mE. It maintains this momentum until it gets to the well at

x = −a, where its momentum abruptly changes to p = +
√

2m(E + V0).
Next it continues to the right hand edge of the well where the momentum
changes back to p = +

√
2mE. Finally, the particle continues on its way to

the right forever.

The basic idea of quantum physics, however, is that particles can behave
as waves with a wavelength λ = h/p, where Planck’s constant h = 6.626 ×
10−34 J sec=4.14× 10−15 eV sec. The motion of the particle is governed by
the wave function ψ(x) with the quantity ψ∗(x)ψ(x)dx interpreted as the
probability of finding the particle between x and x+ dx. The wave function



76 CH 5. EXPERIMENT 2: THE RAMSAUER EFFECT

is determined by solving Schrödinger’s wave equation

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (5.2)

where h̄ ≡ h/2π.

Equation 5.2 is easy to solve. The quantity E − V (x) is positive every-
where, so we can write it as

d2ψ(x)

dx2
= −k2ψ(x) (5.3)

where
h̄2k2

2m
= E + V0 for − a ≤ x ≤ a

and
h̄2k2

2m
= E elsewhere.

You’ve seen this equation lots of times before. The first time was probably
when you studied the harmonic oscillator, and learned that the solution is
either sin(kx) or cos(kx) with the appropriate integration constants. We will
use complex numbers (see Appendix C.4) to write the solution instead as

ψ(x) = Ae+ıkx +Be−ıkx (5.4)

Let’s stop here for a moment and think about this. Remember that ψ(x)
is supposed to represent the wave that is the particle. The wavelength λ of
this wave, by Eqn. 5.4 is just 2π/k. Therefore the requirements on k listed
in Eq. 5.3 just state that

h̄2k2

2m
=

(
h

λ

)2
1

2m
=

p2

2m
= E − V (x)

which is just conservation of energy all over again. The Schrödinger equation
is just a statement of conservation of energy for a wavy particle.

Now let’s go back to the wave function ψ(x) in Eq. 5.4 and see what it
implies about the particle’s motion. The time dependence of the wave is
given by e−ıωt, so the term proportional to e+ıkx represents a wave moving
to the right and e−ıkx is a wave moving to the left. Divide the x−axis into
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three regions, namely regions I (x ≤ −a), II (−a ≤ x ≤ a), and III (x ≥ a).
(See Eqn. 5.1.) We have k = k1 in regions I and III, and k = k2 in region II,
where k1 and k2 are defined in Eq. 5.3. We write ψ(x) for each of the three
regions as

Region I : ψI(x) = Ae+ık1x +Be−ık1x

Region II : ψII(x) = Ce+ık2x +De−ık2x

Region III : ψIII(x) = Fe+ık1x

We do not include a leftward moving wave in region III since we assume there
are no more changes in potential past the well so the particle cannot turn
around and come back.

There is already a key difference between the classical and quantum me-
chanical treatments. The solution allows for some portion of the incident
wave to be “reflected” from the well. That is, B need not be zero, and in
fact generally is not. This is clearly different from the classical case where the
particle would always travel on past the well, albeit with greater momentum
for the time it is in the well.

Now the wave function and its first derivative must be continuous every-
where. This allows us to determine relations between A, B, C , D, and F by
matching ψ(x) and ψ′(x) at x = ±a. These four conditions give us

Ae−ık1a +Be+ık1a = Ce−ık2a +De+ık2a

ık1Ae
−ık1a − ık1Be

+ık1a = ık2Ce
−ık2a − ık2De

+ık2a

Ce+ık2a +De−ık2a = Fe+ık1a

ık2Ce
+ık2a − ık2De

−ık2a = ık1Fe
+ık1a

These are four equations in five unknowns. A fifth relation would just deter-
mine the normalization of the wave function, but we won’t bother with this
here.

Let’s calculate the probability that an incident particle makes it past the
well. The amplitude of the incident wave is A and the amplitude of the
transmitted wave is F . Therefore, the transmission probability T is given by

T =
|F |2
|A|2 =

F ∗F
A∗A

=
(
F

A

)∗ (F
A

)
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It is pretty easy to solve for F/A using the above relations. Solve the first
two for A in terms of C and D by eliminating B. Then solve the last two to
get C and D in terms of F . The result is

A

F
= e2ık1a

[
cos (2k2a)− ı

2

k2
1 + k2

2

k1k2

sin (2k2a)

]

which leads to
1

T
= 1 +

1

4

[
k2

1 − k2
2

k1k2

]2

sin2 (2k2a)

where k1 =
√

2mE/h̄ and k2 =
√

2m(E + V0)/h̄. We can therefore write

1

T
= 1 +

1

4

V 2
0

E(E + V0)
sin2 (2k2a) (5.5)

The reflection coefficient R = |B|2/|A|2 can also be calculated in the same
way. Can you think of a simpler way to do this, having already calculated
T ?

The transmission coefficient T is plotted as a function of E/V0 in Fig. 5.2,
for a a = 10h̄/

√
2mV0. The transmission probability is unity only at certain

values of the incident kinetic energy E. This is wholly different from the
classical case where transmission would always occur.

Consider the physical interpretation of the points where T reaches unity.
This is when sin2 (2k2a) = 0 or k2a = nπ/2 where n is any integer. However,
k2 = 2π/λ2 where λ2 is the wavelength of the particle while it is in the well.
Therefore, the condition for T = 1 is n(λ/2) = 2a. That is, there is perfect
transmission past the well only when an integral number of half-wavelengths
fits perfectly inside the well. (Note that the width of the well is 2a.)

5.1.2 Three Dimensional Scattering

Of course, the experiment we will do involves scattering in three dimensions
and we have only worked things out for the one dimensional case. The
generalization to three dimensions is the “spherical” well for which V (r) =
−V0 for r ≤ a, but zero elsewhere. The analysis of this case is somewhat
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Figure 5.2: Transmission probability for a square well. The barrier width is
chosen so that k2

2a
2 = 100(1 + E/V0).

more complicated, and we won’t treat it here. Nevertheless, the essential
point still remains, namely that the well becomes invisible to the incident
particle when ka = nπ/2 where h̄2k2/2m = E + V0.

When we talk about scattering in three dimensions, the language becomes
a bit specialized. In particular, we talk about the scattering “cross section”
which measures the probability that an incident particle scatters from some
target. In this experiment, you observe the total cross section (as opposed to
a differential cross section) which measures the probability that the particle
scatters into any direction at all. For classical scattering of a point particle
from a “hard sphere” of radius a, the total cross section is just given by the
cross sectional area of the sphere, namely πa2.

When the well becomes transparent to the incident particle, the total
cross section vanishes. Analysis of the three dimensional case shows that
when ka = nπ/2, the cross section passes through a resonance. That is, the
phase of the scattered wave, relative to the incident wave, passes through
90◦.
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There is an important difference between the one-dimensional and three-
dimensional cases. This is that only the first resonance, i.e. when the con-
dition ka = π/2 is met, is clearly visible. Therefore, you expect to see only
one dip in the cross section in this measurement.

The paper by Greenhow provides some interesting, although somewhat
advanced, reading. You should review the material on three dimensional
scattering in books like Brehm and Mullin or Liboff before getting into it
in detail. Greenhow actually analyzed the case of the perfect spherical well
and shows that the Ramsauer effect is generated but only in a restricted
way. The real potential of the xenon atom, of course, is considerably more
complicated than a spherical well, but this nevertheless serves as a convenient
and worthwhile approximation.

5.2 Measurements

Your measurements are very similar to those originally performed by Ram-
sauer, that is, you will be scattering electrons from xenon gas atoms. The
procedure we use is based closely on the experiment described by Kukolich.
The idea is shown schematically in Fig. 5.3, using a figure borrowed from
Kukolich. Electrons are released by a hot filament, and made to accelerate
to some energy E by a voltage V , so that E = eV where e = 1.602×10−19 C.
Electrons which scatter from the xenon atoms in their path move off in some
direction and likely hit the “shield”, a conductor which transports the elec-
trons back to ground potential. On the other hand, the electrons which make
it through without scattering eventually strike the “plate” which also con-
ducts the electrons back to ground. You will determine the behavior of the
scattering cross section by measuring the plate current relative to the shield
current as a function of V . A large (small) scattering cross section therefore
corresponds to a small (large) plate current.

The actual setup is diagrammed in Fig. 5.4. The acceleration and scatter-
ing take place in a xenon-filled electron tube called a 2D21 thyratron. You
make connections to the various internal components through pins (num-
bered in Fig. 5.4) on the tube. For your convenience, the tube plugs into
a socket wired to a labeled panel with banana plug connectors. Electrons
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that are captured by the shield or the plate are returned to ground through
the resistors on the respective circuit, and you determine the shield or plate
currents from the voltage drop across these resistors. These resistors are in a
breadboard, and you should consider different values for them and test that
the currents you deduce are the same. Since the plate current is typically
much less than shield current, you generally want the plate resistor to be
much larger than the shield resistor so that their voltage drops are compara-
ble. Suggested starting values are 10 kΩ and 100 Ω for the plate and shield
resistors respectively.

5.2.1 Procedure

The data taking procedure is straightforward. First, you need to heat the
cathode filament in the thyratron so that it emits electrons. This is done
using a standard laboratory DC voltage supply and a high current voltage
divider to send a specific current through the filament. The filament is con-
nected to pins 3 and 4 of the thyratron, and you get the right current with
a voltage of about 4 V. Adjust the voltage divider and power supply so that
you get 4 V before connecting to the pins. Too much voltage can damage
the filament and the tube becomes useless. You should monitor this voltage
throughout the data taking procedure to make sure it does not change.

Measure the voltages at the plate (Vp) and at the shield (Vs) as a function
of the applied voltage V . Adjust V through the voltage divider connected
to another DC voltage supply. You should vary V in relatively small steps
between 0 and around 5 V. You should find that the plate current ip passes
through a maximum of 0.15 µA or so for V ∼ 1 V. This is the Ramsauer
Effect. The plate current is a maximum because the scattering cross section
has gotten very small allowing a large number of electrons to pass through
the xenon gas and strike the plate. Sample data, taken from Kukolich, is
shown by the open points and solid line in Fig. 5.5.

In order to get quantitative results, some more work needs to be done.
First, you must realize that the thyratron is a pretty weird electron acceler-
ator. As you change the value of V , the electric field lines inside change and
the probability that electrons get to the plate will certainly change, regard-
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Figure 5.5: Sample of raw data, taken from Kukolich.

less of whether or not there is gas inside. In fact, how do you know for sure
that the maximum in the plate current corresponds at all e−−Xe scattering?
Symbolically, the plate and shield currents are related as

ip(V ) = is(V )f(V ) [1− PSCAT (E)]

where PSCAT is a function of the electron energy and should become small at
the Ramsauer Effect resonance, and f(V ) is a geometrical factor depending
on the accelerating voltage and the details of the thyratron. The problem is
that you do not know beforehand how to separate the effects of f(V ) and
PSCAT (E).

However, you can easily separate these effects using your apparatus. After
turning off the filament voltage and letting the filament cool down, dunk the
top of the tube in liquid nitrogen. This freezes out the xenon and reduces
the bulb pressure to a negligible level. Repeat the measurements above and
since PSCAT = 0, you determine f(V ) from

f(V ) =
i∗p(V )

i∗s(V )

where the i∗ indicate measurements taken with the xenon removed. Fig-
ure 5.5 also plots i∗p as a function of V .
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5.2.2 Analysis

When analyzing your data, realize that the electrons are accelerated by the
potential difference between the the negative terminal of the power supply
(V ) and the the shield (Vs) and that Vs changes with V . Their energy is
therefore given by

E = e (V − Vs + corrections)

where there are still some additional corrections. (These are studied in more
detail in Sec. 5.3.) These corrections amount to about 0.4 V which should
be added in before calculating E.

Plot PSCAT as a function of the incident electron momentum p =
√

2mE
where m is the electron mass. To compare with the figures in Kukolich,
realize that they ignore any extraneous factors and compute “momentum”
simply as

√
V − Vs, also ignoring any other corrections.

Different experiments show that the radius of the xenon atom is around
4 Å. Calculate the well depth of the xenon atom potential, assuming that
it is approximated by a spherical well with this radius. Does this sound
reasonable to you?

Because the electrons scatter, the electron beam intensity diminishes ex-
ponentially as a function of the distance traveled, that is I(x) = I0e

−x/LSCAT

where LSCAT is the “mean free path” through the gas in the tube. Insomuch
as the plate current measures the beam intensity at the plate, the scattering
probability PSCAT is related to the mean free path by

e−L/LSCAT = 1− PSCAT

where L is the distance through the tube to the plate. For the 2D21 thyra-
tron, L = 0.7 cm.

This information can be used to estimate the scattering cross section
σ since it is related to the mean free path by LSCAT = 1/ρnσ where ρn

is the number of xenon atoms per unit volume. Determine ρn from the
ideal gas law2 using the quoted pressure of 0.05 Torr for the 2D21 at room

2The ideal gas law says that Pv = NkT where N is the total number of atoms in the
volume v, hence ρn = N/v. See for example, Resnick, Halliday, and Krane.
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temperature. Compare the calculated cross section on and off resonance with
the “geometric” cross section πa2 where a is the radius of the xenon atom.

To summarize, you can calculate the following quantities from your data:

• The approximate well depth V0 of the xenon atom.

• The scattering probability, which can be compared to the literature.

• The scattering cross section, on and off resonance.

5.3 Advanced Topics

As discussed by Kukolich, there is a discrepancy between the observed value
of V where the minimum cross section occurs, and that found in the liter-
ature. He attributes this to a 0.4 V contact potential, but Woolsey shows
that this is in fact both from the contact potential and from the thermal
energy of the electrons when they emerge from the filament. You can show
this in the same way as Woolsey. You will use the same apparatus as for the
“standard” measurements above, but with some simple rearrangements.

The filament of the 2D21 is made of barium oxide and the shield is made
of nickel. Since the nickel has the higher work function of the two, there is a
contact potential difference that causes electrons to spontaneously flow from
the filament to the shield, even if V −Vs is zero. Therefore, the actual energy
of the electrons is somewhat higher than you would expect from V −Vs alone.
Call that contact potential difference Vc.

There is another reason that the electrons are higher energy than you
would first expect. The filament is hot, so the electrons have some thermal
energy when they are emitted. As dictated by statistical mechanics, this
thermal energy is not one single value but instead is distributed over a range
of energies. The appropriate distribution function is the Maxwell-Boltzmann
distribution which says that the number of electrons with energy ETH is
proportional to e−ETH/kT , where T is the temperature of the filament. The
average energy of the electrons is ETH = 3kT/2. (See for example, Resnick,
Halliday, and Krane.)
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So, the incident energy of the electrons is given by

E = e(V − Vs + Vc + V̄ ) (5.6)

where eV̄ = ETH represents the average effect of the thermal electron distri-
bution.

Now the issue is, how do we measure Vc and V̄ ? The key is to realize
that, when the xenon in the thyratron tube is frozen out, the plate current
will behave like (see Woolsey)

i∗s = i0e
−3VRET /2V̄ (5.7)

where VRET is a “retarding” voltage between the shield and the cathode.
That is, as VRET increases, it makes it harder for electrons to get to the
shield. The fact that i∗s is a finite value (equal to i0) when there is no
potential difference between the shield and filament (VRET = 0) just indicates
that electrons still flow to the shield due to their thermal energy. As the
retarding voltage is increased, the shield current goes down exponentially.
This continues until the retarding voltage equals the contact voltage, after
which the current decreases even more rapidly due to space charge saturation
at the cathode. See Woolsey for more details.

The procedure is therefore straightforward. With the top of the thyratron
dunked in liquid nitrogen as before, reverse the polarity of V by switching
around the connections. As you increase V from zero, record the shield
voltage Vs. (You may need to find a more precise voltmeter than the standard
DMM’s used in the lab.) If you plot i∗s = Vs/Rs versus V + Vs on semilog
paper, then the slope of the line gives you V̄ according to Eq. 5.7. At some
value of V , the data will abruptly change and i∗s will fall more rapidly. At
this value of V , you determine Vc = V + Vs. This is shown in Fig. 5.6 which
is taken from Woolsey’s paper.

Take several measurements of this type. Try changing the cathode fil-
ament voltage by a volt or so around the standard value of 4 V. This will
change the temperature of the filament, so it should change the slope ac-
cordingly. The contact potential, on the other hand, should be unaffected.
Use measurements of this type to determine Vc and V̄ , and to estimate their
uncertainties. Use your results and Eq. 5.6 to reanalyze the Ramsauer effect.
How does this affect your determination of the well depth? What about the
cross section determination?
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Figure 5.6: Sample of data with reversed polarity, taken from Woolsey.
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Ch 6

Experimental Uncertainties

Before we go on to do more experiments, we need to learn one of the most
important things there is about making measurements.

Every measurement yields some number. Of equal (and sometimes greater)
importance is the uncertainty with which we know how close that number
approximates the “right” answer. In this chapter, we will learn the basic
facts about estimating and reporting experimental uncertainties.

Sometimes people refer to experimental “error” when they mean experi-
mental uncertainty. This is unfortunate, since “error” implies that a mistake
was made somewhere, and that is not what we are talking about here. This
terminology is pretty well ingrained into the jargon of experiments, though,
so you might as well get used to it.

When an experimenter quotes the result of a measurement, the uncer-
tainty in that result should also be quoted. As you will see, the measurement
result will give a sort of “central value” of some quantity, call it Q, and the
uncertainty gives some idea of how far on either side of Q you have to go
to hit that true value. We write the uncertainty in Q as δQ, and quote the
result of the measurement as

Q± δQ

You should always get used to writing down your results this way.

89



90 CH 6. EXPERIMENTAL UNCERTAINTIES

We will discuss some of the basics of uncertainties and statistical anal-
ysis in this course. In particular, the concepts you need to carry out the
experiments will be outlined, and they are covered rather well in

• Practical Physics, G. L. Squires, Third Edition
Cambridge University Press (1991)

However, it is a good idea to have a more thorough reference on this stuff.
There are a lot of books out there, but I recommend

• An Introduction to Error Analysis: The Study of Uncertainties in Phys-
ical Measurements,
John R. Taylor, University Science Books (1982)

We will also discuss using matlab for some of the numberical manipulations
commonly used for determining uncertainty. Refer to Sec. 1.4.3 for the basics
on matlab, including the main references

• The Student Edition of matlab, Prentice Hall (1994)

• Numerical Methods for Physics,
Alejandro Garcia, Prentice-Hall (1994)

6.1 Systematic and Random Uncertainties

There are two kinds of experimental uncertainty, namely Systematic and
Random Uncertainty. Sometimes it can be hard to tell the difference because
their meanings are not always precisely defined. I will give you some con-
venient ways to think about them, but as with all things in Experimental
Physics, your intuition will get better with experience.

Systematic uncertainty comes from not knowing everything there is to
know about your experiment. If you could precisely duplicate the conditions
every time you make a measurement, then your systematic uncertainty would
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be zero. However, it is impossible to precisely duplicate things. The room
temperature will be different, the positions of other people in the room or
the building will have changed, and the phase of the moon is not the same,
to name just a few. Another possibility is that your measuring instrument is
only accurate to some level, and this may be the most important systematic
uncertainty. All of these things can affect your measurement at some level,
and one of your jobs is to try and estimate how big the effect can be.

Some guidelines are in order for estimating systmatic uncertainty. In
very many cases, one thing in particular may dominate the systematic un-
certainty. Try to find out what that thing is, and estimate how much it may
have changed your result. That would be an estimate of your systematic un-
certainty. You can go further, perhaps, and figure out how much it actually
might have changed things. It would cause the central value to shift, and
then you would apply a “correction” to your result. How well can you make
that correction? Answer that question, and you can get another estimate of
your systematic uncertainty. Of course, if you want to make your experiment
more and more precise, the approach is to identify the sources of systematic
uncertainty and reduce their effect somehow.

Random uncertainties are different. At their most fundamental level,
they come from the chance fluctuations of nature, although in many cases,
the system is so complicated that you will observe fluctuations that might as
well be random. The point is, you cannot account for random uncertainty,
other than to calculate how big it is. The key to random uncertainties is
that if you make many measurements of the same quantity, then the random
fluctuations will average to zero over many trials. Obviously, then, the way to
reduce random uncertainty is to make lots of measurements. Because of their
random nature, this source of experimental uncertainty can be estimated
quite precisely. More on that soon.

Let’s try a simple example. Suppose you want to measure the resistance
of a 500 foot roll of 32 gage aluminum wire. You just hook up your DMM
to the ends of the wire on the spool, and measure the resistance. There
is some uncertainty associated with how long the wire actually is, so you
measure many spools of wire to get an idea of how big the random fluctuations
are. However, there is also an uncertainty associated with the precision of
the DMM. No matter how many measurements you make, that systematic
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uncertainty will always be present.

Let’s get more precise about these things.

6.2 Determining the Uncertainty

Remember that by their nature, systematic and random uncertainties are
treated differently. In particular, you can only estimate the systematic un-
certainty. We’ll discuss some ways to do that, but as with just about every-
thing in Experimental Physics, practice makes perfect. On the other hand,
you can deal with random uncertainties in well defined ways, and we’ll go
through those.

6.2.1 Systematic Uncertainty

Try looking for systematic uncertainties in two places. First, consider the
accuracy of your measuring instruments. This includes meters, clocks, rulers,
digitizers, oscilloscopes, and so on. How precisely can you read the device
in the first place? If a ruler is graduated in 1 mm increments, for example,
you can’t measure the length of something much better than that. Does you
clock tick off in seconds? If so, it is hard to argue that you could measure the
time it takes something to happen any more precisely. Also keep in mind the
manufacturer’s specifications. How accurately does your oscilloscope measure
voltage? How well do they guarantee the conversion of charge to digits in a
charge integrating ADC?

The second thing to keep in mind is the effect external factors have on
your measurement. For example, suppose you are trying to precisely mea-
sure the length of something with a carefully graduated metal ruler, but the
room temperature is fluctuating in a ±5◦C range. The length of the ruler
is given by L = L0 + α(T − T0), where α is the metal’s thermal expansion
coefficient. Therefore, the actual length L of your sample will only be known
to a precision of α · (±2.5◦C) due to this systematic uncertainty. There are
an infinite number of examples of this sort of thing.
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Don’t make the mistake of assuming you will figure all these things out
when you are analyzing your experiment! Record anything you suspect might
be important. Try to find out what you can about your instruments as well.

6.2.2 Random Uncertainty

The idea of random uncertainty is that the uncertainty will average away
with a large number of trials. Consequently, you would expect the average
value of a number of measurements to closely approximate the true value,
at least within the limit of any systematic uncertainty. This in fact is the
case, and we will talk more about it when we discuss statistical analysis
in a later chapter. However, if the average approximates the true value,
how do we calculate the magnitude of the random uncertainty? Let’s make
some definitions, and then I will tell you what to interpret as the random
uncertainty.

Suppose you make n measurements of a quantity x, and the result is the
list of numbers x1, x2,. . . xn. We define the mean x̄, also written as 〈x〉, of
the measurements to be

x̄ = 〈x〉 =
1

n

n∑
i=1

xi Mean Value (6.1)

That is, x̄ is just the average value of x from the measurements. The variance
σ2 of the measurements is defined to be

σ2
x =

1

n− 1

n∑
i=1

(xi − x̄)2 Variance (6.2)

and obviously has something to do with how far the values fluctuate about
the mean value. (Don’t worry about the n − 1 in the dominator instead of
just n. We’ll discuss this later as well.) The quantity σx (the square root
of the variance) is called the standard deviation. You can show that the
variance can also be written as

σ2
x =

n

n− 1

(
x̄2 − x̄2

)
(6.3)

This form is particularly useful for programming computers, since you can
calculate both x̄2 and x̄ within the same loop.
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Now as we discussed above, we interpret the mean x̄ as our best approx-
imation to the “true value” of x. Furthermore, we interpret the standard
deviation σx as the uncertainty in each measurement xi. On the other hand,
as we will show in Sec. 6.3.1, the uncertainty in the mean value of the xi, as
it approximates the true value of x, is given by

σx̄ = σx/
√
n (6.4)

So, when you report the result of a series of measurements of x, you write

x̄± σx̄

That is, the random uncertainty in the measured value is σx̄.

Don’t forget that these formulas apply only to random uncertainties, and
do not apply to systematic uncertainties. You can always minimize the ran-
dom uncertainty by taking lots of measurements and averaging them to-
gether. However, if systematic uncertainties dominate, then the total uncer-
tainty in the measurement will be bigger than that given by (6.4).

6.2.3 Using matlab

matlab can be very useful for your data analysis needs. Given a list of
numbers read into a vector array x (see Sec. 1.4.3), you can easily determine,
for example, an array xsq corresponding to the squares of these elements:

xsq=x.^2;

The “.” before the exponentiation symbol indicates that the operation is to
be performed element-by-element, as opposed to calculating the square of a
matrix. This notation is used for all element-by-element operations.

The program also has simple functions available which directly calculate
many of the quantities needed here. For example,

n=length(x);
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xsum=sum(x);

xbar=mean(x);

sigx=std(x);

return the number of elements in the array x, the sum of the values, the
mean of the values, and the standard deviation of the values. Various other
functions return the maximum (max) value, minimum (min) value, median
(median) value, and the product of the elements (prod). In matlab language,
for example, the standard deviation can also be calculated from the sequence
of commands

n=length(x);

xbar=mean(x);

xsig=sqrt(sum((x-xbar).^2)/(n-1));

This should return precisely the same value you would get using the std
function.

Of course, this is just the tip of the iceberg. We will point out the most
relevant functions as we go along, but don’t forget there are lots more that
we won’t mention. Consult the matlab User’s Guide for more information.

6.3 Propagation of Errors

If you measure some value x with an uncertainty δx, but you are interested
in some quantity q which is a function of x, i.e. q = q(x), then what is
the corresponding uncertainty δq? For example, suppose the gain g of an
amplifier depends on voltage V as g = AV n. If the voltage is known to
within δV , how well do we know g?

Suppose things are more complicated and q is a function of two inde-
pendently measured quantities x and y, q = q(x, y). An example might be
determining the temperature T from a gas bulb thermometer with volume v
and pressure P , through the ideal gas law T = Pv/NR. How do you deter-
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Figure 6.1: Propagation of errors for a single independent variable.

mine the uncertainty in T from the uncertainty in P and v (or, in general,
δq from δx and δy)?

All this is accomplished through “propagation of errors”. This phrase
is so ingrained in the scientific community, that I won’t bother substituting
“uncertainty” for “error”. In any case, the prescription is straightforward.

Let’s consider the single variable case first. Figure 6.1 schematically plots
the quantity q = q(x) as a function of x. Say the best value for x is x0. Then,
the best value for q is q0 = q(x0). As shown in the figure, the uncertainty
in x, δx, is related to the uncertainty in q just by the slope of the curve at
x = x0. That is,

δq =

∣∣∣∣∣dqdx
∣∣∣∣∣
x0

× δx (6.5)

gives the uncertainty in q. The absolute value insures that the result is a
positive number.

Now let q be a function of several variables, i.e. q = q(x, y, . . .). The
best value for q is q0 = q(x0, y0, . . .), and there will be contributions to the
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uncertainty δq from each variable, following from Eqn 6.5:

δqx =

∣∣∣∣∣∂q∂x
∣∣∣∣∣
x0

× δx, δqy =

∣∣∣∣∣∂q∂y
∣∣∣∣∣
y0

× δy, . . .

The big question, though, is how to combine the δqi to get δq? Do we
simply add them together, i.e. δq = δqx+δqy+· · ·? This might seem unfairly
large, since if x fluctuates all the way to its maximum uncertainty so that
x = x0 + δx, then it is unlikely that y would fluctuate that much as well,
and so on. In fact, you might think that if x and y are correlated, then an
upward fluctuation in x might imply there is a good chance that y fluctuates
downward. In this case, you are temped to use something like δq = |δqx−δqy|.

In general, there is no clear answer to this question. It depends on the
specific nature of the uncertainties, whether they are random or systematic,
and whether or not they are correlated with each other. There is, however,
one specific case where there is a straightforward answer. This is the case
where all uncertainties are random and uncorrelated, and the answer is

δq =
[
(δqx)

2 + (δqy)
2 + · · ·

] 1
2

=

( ∂q
∂x

∣∣∣∣∣
x0

δx

)2

+

 ∂q

∂y

∣∣∣∣∣
y0

δy

2

+ · · ·


1
2

(6.6)

In this case, we say that the uncertainties are “added in quadrature”.

Even though Eqn. 6.6 only applies to random, uncorrelated uncertainties,
it is often used (incorrectly!) in other circumstances. Probably the most
dangerous incorrect use is for random uncertainties which are not completely
uncorrelated. You should at least convince yourself that the variables x, y,
and so forth are independent to at least a good approximation. There is a
method which can take into account correlations of random uncertainties,
and we will discuss it in a later chapter.

Adding errors in quadrature is almost always incorrect for systematic
uncertainties, and you should do the best you can to estimate their net
effect. One practice is to quote the random and systematic errors separately,
i.e.

q = q0 ± δq|RANDOM ± δq|SY STEMATIC
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so you can at least let the reader know their relative contributions.

You should always keep in mind the relative sizes of the terms in Eqn. 6.6.
If any of the (∂q/∂xi)

2 δ2xi are significantly bigger than the rest, then it will
dominate the net uncertainty, especially since you add the squares.1 In this
case, you may be able to think of that variable as the only important one,
as far as the uncertainty is concerned. Many experiments to measure some
quantity more precisely than it has been done before, are based on ideas that
can reduce the dominant uncertainty.

6.3.1 Examples: Fractional Uncertainty

We will work out some general formulas for propagating uncertainties. In the
cases for more than one variable, we assume that errors add in quadrature.

Power Law of One Variable

Consider the earlier example of gain as a function of voltage, i.e. g = AV n

where we know the voltage V to within ±δV . Using Eqn. 6.5 we have

δg = nAV n−1δV

Notice however that there is a simpler way to write this, namely

δg

g
= n

δV

V
(6.7)

That is, the fractional uncertainty in g is just n times the fractional uncer-
tainty in V . This is true for any power law relation q = αxβ where α and β
are arbitrary constants, that is

q = αxβ ⇒ δq

q
= β

δx

x

1Don’t be swayed by the notation δ2x. It is just a simple and common shorthand for
(δx)2.
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Sum of Two Variables

Consider the general case q = Ax+By where A and B are arbitrary constants.
Equation 6.6 tells us that

δq =
√
A2δ2x+B2δ2y (6.8)

In this case, there is no simple form for the fractional error in q.

General Power Law Product

Now look at the general case q = Axmyn · · ·. Again using Eqn. 6.6 we have

δq =
[(
mAxm−1yn · · ·

)2
δ2x+

(
nAxmyn−1 · · ·

)2
δ2y + · · ·

] 1
2

but it is obviously simpler to write

δq

q
=

(mδx

x

)2

+

(
n
δy

y

)2

+ · · ·


1
2

(6.9)

Knowing the fractional uncertainties in x, y, and so on makes it simple to
see if any of them dominate the result.

Two simple but useful cases of Eqn. 6.9 are q = xy and q = x/y. In
both cases, the fractional uncertainty in q is the sum in quadrature of the
fractional uncertainties in x and y.

The Uncertainty in the Mean

Back in Sec. 6.2.2 we just quoted the result for the uncertainty in the mean.
We can now derive it using propagation of errors. Start with the definition
of the mean value (Eq. 6.1):

x̄ =
1

n

n∑
i=1

xi =
1

n
(x1 + x2 + · · ·+ xn)
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Here n is a constant and we determine the uncertainty in the mean simply
by applying Eq. 6.8:

δx̄ =
[

1

n2
δ2x1 +

1

n2
δ2x2 + · · · + 1

n2
δ2xn

] 1
2

Now the supposition in Sec. 6.2.2 was that the xi are all separate measure-
ments of the same quantity x, and that the uncertainty in x is given by the
standard deviation σ. Therefore, all the terms in this equation are the same,
and we have

δx̄ =
[
n

1

n2
σ2
] 1

2

=
σ√
n

= σx̄

which proves Eq. 6.4.

6.3.2 Dominant Uncertainty

If two or more quantities are measured to determine the value of some de-
rived result, their individual uncertainties all contribute to the uncertainty
in the final value. If one of the uncertainty in one of those quantities makes
the largest contribution to the final uncertainty, we refer to it as the “dom-
inant uncertainty”. It is smart to identify the dominant source or sources
of uncertainty in an experiment. That’s the one you want to learn how to
measure better. Doing a better job on the others might be nice, but it won’t
buy you a significantly more precise result in the end.

The relative precision of each of the quantities is not all that matters. You
also need to know how that quantity contributes in the end. Equation 6.9
makes this point particularly clear. If one of the quantities enters with some
large exponent, then that exponent amplifies the contribution of its uncer-
tainty. Even though δx/x may be smaller than δy/y, x may dominate the
uncertainty in the end if m is much larger than n.



6.4. EXERCISES 101

6.4 Exercises

1. You measure the following voltages across some resistor with a three-digit
DMM. As far as you know, nothing is changing so all the measurements are
supposed to be of the same quantity VR.

2.31 2.35 2.26 2.22 2.30
2.27 2.29 2.33 2.25 2.29

a. Determine the best value of VR from the mean of the measurements.

b. What systematic uncertainty would you assign to the measurements?

c. Assuming the fluctuations are random, determine the random uncer-
tainty from the standard deviation.

d. Somebody comes along and tells you that the true value of VR is 2.23.
What can you conclude?

2. (From Squires.) In the following examples, q is a given function of the
independent measured quantities x and y. Calculate the value of q and its
uncertainty δq, assuming the uncertainties are all independent and random,
from the given values and uncertainties for x and y.

a. q = x2 for x = 25± 1

b. q = x− 2y for x = 100± 3 and y = 45± 2

c. q = x lny for x = 10.00± 0.06 and y = 100± 2.

d. q = 1− 1
x

for x = 50± 2.

3. Police use radar guns to catch speeders. The guns measure the frequency
f of radio waves reflected off of cars moving with speed c. This differs from
the emitted frequency f0 because of the Doppler effect:

f = f0

(
1− v

c

)
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for a car moving away at speed v. What fractional uncertainty must the
radar guns achieve to measure a car’s speed to 1 mph?

4. The period T of a pendulum is related to its length L by the relation

T = 2π

√
L

g

where g is the acceleration due to gravity. Suppose you are measuring g from
the period and length of a particular pendulum. You have measured the
length of the pendulum to be 1.1325±0.0014 m. You independently measure
the period to within an uncertainty of 0.06%, that is δT/T = 6 × 10−4.
What is the fractional uncertainty (i.e. % uncertainty) in g, assuming that
the uncertainties in L and T are independent and random?

5. You have a rod of some metal and you are changing its temperature T .
A sensitive gauge measures the deviation of the rod from its nominal length
l = 1.500000 m. Assuming the rod expands linearly with temperature, you
want to determine the coefficient of linear expansion α, i.e. the change in
length per degree K, and the actual length l0 before any temperature change
is applied. The measurements of the length deviation ∆l as a function of the
temperature change ∆T are as follows:

∆T (K) ∆l (µm) ∆T (K) ∆l (µm) ∆T (K) ∆l (µm)
0.8 70 2.2 110 3.6 130
1.0 110 2.6 150 3.8 170
1.2 130 2.8 120 4.2 160
1.6 100 3.0 130 4.4 190
1.8 130 3.4 160 5.0 160

Plot the points and draw three straight lines through them:

• The line that best seems to go through the points.

• The line with the largest reasonable slope.

• The line with the smallest possible slope.
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Use your own estimates by eye to determine these lines. (Don’t use a fitting
program.) Use the slopes and the intercepts of these lines to determine α±δα
and l0 ± δl0.

6. Suppose you wish to measure the gravitational acceleration g by using
something like the “Galileo” experiment. That is, you drop an object from
some height h and you know that the distance it falls in a time t is given
by 1

2
gt2. For a given experimental run, the fractional uncertainty in h is

δh/h = 4% and the fractional uncertainty in t is δt/t = 1.5%. Find the
fractional uncertainty in g from this data, assuming the uncertainties are
random and uncorrelated.

7. You want to measure the value of an inductor L. First, you measure the
voltage V across a resistor R when 1.21± 0.04 mA flows through it and find
V = 2.53 ± 0.08 V. Then, you measure the decay time τ in an RC dircuit
with this resistor and a capacitor C and get τ = RC = 0.463± 0.006 msec.
Finally, you hook the capacitor up to the inductor and measure the oscillator
frequency ω = 1/

√
LC = 136 ± 9 kHz. What is the value of L and its

uncertainty?

8. A simple pendulum is used to measure the gravitational acceleration g.
The period T of the pendulum is given by

T = 2π

√
L

g

(
1 +

1

4
sin2 θ0

2

)

for a pendulum initially released from rest at an angle θ0. (Note that T →
2π
√
L/g as θ0 → 0.) The pendulum length is L = 87.2± 0.6 cm. The period

is determined by measuring the total time for 100 (round trip) swings.

a. A total time of 192 sec is measured, but the clock cannot be read to
better than ±100 ms. What is the period and its uncertainty?

b. Neglecting the effect of a finite value of θ0, determine g and its uncer-
tainty from this data. Assume uncorrelated, random uncertainties.

c. You are told that the pendulum is released from an angle less than 10◦.
What is the systematic uncertainty in g from this information?

d. Which entity (the timing clock, the length measurement, or the un-
known release angle) limits the precision of the measurement?
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9. The β-decay asymmetry, A, of the neutron has been measured by Bopp,
et.al., Phys.Rev.Lett. 56(1986)919 who find

A =
2λ(1− λ)

1 + 3λ2
= −0.1146± 0.0019

This value is perfectly consistent with, but more precise than, earlier results.
The neutron lifetime, τ , has also been measured by several groups, and the
results are not entirely consistent with each other. The lifetime is given by

τ =
5163.7 sec

1 + 3λ2

and has been measured to be

918 ± 14 sec by Christenson, et.al., Phys.Rev.D5(1972)1628,

881 ± 8 sec by Bondarenko, et.al., JETP Lett. 28(1978)303,

937 ± 18 sec by Byrne, et.al., Phys.Lett. 92B(1980)274, and

887.6± 3.0 sec by Mampe, et.al., Phys.Rev.Lett. 63(1989)593.

Which, if any, of the measurements of τ are consistent with the result
for A? Which, if any, of the measurements of τ are inconsistent with the
result for A? Explain your answers. A plot may help.



Ch 7

Experiment 3: Gravitational
Acceleration

This is a conceptually simple experiment. We will measure the value of g,
the acceleration due to gravity, from the period of a pendulum. The main
point is to determine g and understand the uncertainty. If you measure it
precisely enough, you can see the effect of the Earth’s shape. You can also
convince yourself that Einstein’s “Principle of Equivalence” is valid.

The physics and technique are straightforward, and can be found in just
about any introductory physics textbook. Most of the interesting stuff is
neatly collected in

• Handbook of Physics, E. U. Condon and Hugh Odishaw,
McGraw Hill Book Company, Part II, Chapter 7, pg.57-59

7.1 Gravity and the Pendulum

According to lore, Galileo first pointed out that all objects fall at the same ac-
celeration, independent of their mass. This is pretty much true, at least near
the surface of the earth. We understand this simply in terms of Newtonian

105
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mechanics, which says that
~F = m~a (7.1)

and Newtonian gravity, which says that

F = G
mME

R2
E

(7.2)

where m is the mass of the object, ME is the mass of the earth, and RE

is the radius of the earth, which we assume is much larger than the height
from which the object is dropped. In other words, the acceleration a due to
gravity near the earth’s surface, which we call g, is

g = G
ME

R2
E

≈ 9.8 m/sec2 (7.3)

In fact, since the earth is flatter near the poles and therefore closer to the
center of the earth, there is some variation with lattitude. At sea level, one
finds g = 9.780524 m/sec2 at the equator, and g = 9.832329 m/sec2 at the
poles, a fractional difference of about one half of one percent.

There are practical, as well as philosophical, reason to know the value
of g with high precision. For example, oil exploration can exploit small
changes in the gravitational acceleration due to underground density changes.
Consequently, there has been a lot of work over the years aimed at high
quality measurements of g. Until very nifty techniques based on measuring
the rate of free fall using interferometry came into being1, the pendulum was
the best method. We will explore that technique in this laboratory.

A sketch of the physical pendulum and its approximation as a simple pen-
dulum are shown in Fig. 7.1. For a precise measurement of g it is important
to realize that no pendulum is truly “simple”, so we’ll start with the physical
pendulum. The rotational inertia I ≡ ∫

r2dm is defined around the pivot
point, and L is the distance from the pivot to the center of mass. Newton’s
Second Law in terms of the swing angle θ is

τ = I
d2θ

dt2

where the torque is
τ =

∣∣∣ ~W × ~L
∣∣∣ = MgL sin θ

1See Practical Physics, G. L. Squires, Third Edition, Cambridge (1985)
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Figure 7.1: Physical and simple pendula. The physical pendulum realizes
the size and mass distribution with a rotational inertia I about the pivot
point. If approximated as a simple pendulum, i.e. a point mass suspended
on a massless string, then I = ML2.
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so the equation of motion can be written

d2θ

dt2
+
MgL

I
sin θ = 0 (7.4)

This is generally solved in the “small angle approximation”, that is, by setting
sin θ ≈ θ. In this case, we are reduced to simple harmonic motion with
angular frequency

ω ≡
(
MgL

I

)1
2

Physical Pendulum (7.5)

The approximation as a simple pendulum just sets I = ML2, so we have

ω ≡
(
g

L

)1
2

Simple Pendulum (7.6)

One goal of this experiment is measure the pendulum period precisely
enough to see a departure from the small angle approximation. This depar-
ture can be calculated theoretically. We find a “first integral of the motion”
by first multiplying Eq. 7.4 by dθ/dt

dθ

dt

d2θ

dt2
+ ω2dθ

dt
sin θ = 0

then rearranging the derivatives to get

d

dt

1

2

(
dθ

dt

)2

− ω2 cos θ

 = 0

which implies that

1

2

(
dθ

dt

)2

− ω2 cos θ = constant

The constant2 can be determined by assuming the pendulum is released from
rest (dθ/dt = 0) at an angle θ0, i.e. constant = −ω2 cos θ0. Therefore(

dθ

dt

)2

= 2ω2(cos θ − cos θ0)

2This constant can in fact be expressed in terms of the total mechanical energy.
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and so ∫ θ0

0

dθ

(cos θ − cos θ0)
1
2

= ω
√

2
(
T

4

)
(7.7)

where the period is T and we realize it takes one-fourth of a period to move
to the vertical position from the point of release.

This integral cannot be solved analytically, but we can make use of some
mathematical trickery and expand it in powers of θ0. Since cosx = 1 −
2 sin2(x/2) we can rewrite Eq. 7.7 as∫ θ0

0

dθ[
sin2(θ0/2)− sin2(θ/2)

] 1
2

=
ωT

2

and then make a change of variables to sinx = sin(θ/2)/ sin(θ0/2) which
leads us to ∫ π/2

0

dx[
1− sin2(θ0/2) sin2 x

] 1
2

=
ωT

4

Now we can easily expand the integrand in powers of sin2(θ0/2)

1[
1− sin2( θ0

2
) sin2 x

]1
2

= 1 +
1

2
sin2(

θ0

2
) sin2 x+ · · ·

and carry out the integral term by term.

The result is

T =
2π

ω

[
1 +

1

4
sin2 θ0

2
+ · · ·

]
(7.8)

where ω is given by Eq. 7.5 or Eq. 7.6. The small angle approximation is
clearly recovered as θ0 → 0. The second term in Eq. 7.8, which we might call
the “first order correction”, is small but you should be able to confirm it in
this experiment.

7.1.1 Principle of Equivalence

Einstein realized that there was some cheating going on when we derived
Eq. 7.3 using Eq. 7.1 and Eq. 7.2. The mass M of the object in question
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is used in two very different ways, and we just assumed they were the same
thing without asking why. In Eq. 7.1, Newton’s Second Law, mass is just
the proportionality constant that connects acceleration, a precisely defined
kinematic quantity, with a new and more mysterious quantity called force.
In Eq. 7.2, Newton’s Law of Gravity, we use M to mean the quantity that
gives rise to a “gravitational force” in the first place. We should actually
write the two masses differently, i.e. “inertial mass” MI for Newton’s Second
Law, and “gravitational mass” MG for Newton’s Law of Gravity.

We should therefore reduce the physical pendulum to the simple pendu-
lum by writing I = MIL

2 whereas the torque is more properly written as
τ = MGgL sin θ. The period for the simple pendulum, in the small angle
approximation, becomes

T = 2π

(
L

g

MI

MG

) 1
2

You might then ask, “Is the gravitational mass the same as the inertial
mass for all materials?” and test the answer by measuring the period for
pendulum bobs made from different stuff. Clearly if you are going to test
whether Einstein was right or not, you must be prepared to make as accurate
a measurement as possible.

The best limit3 on |MI − MG|/MI was obtained by Eric Adelberger
and collaborators at the University of Washington. They obtained |MI −
MG|/MI < 10−11 using a torsion balance. Early in this century, however, a
limit of < 3× 10−6 was obtained with a simple pendulum.

7.2 Measurements and Analysis

The technique is simple and straightforward, but you have to take some care
because the point is to make precise measurements.

Set up a pendulum by hanging a massive bob from a flexible but inelastic

3See Gravitation and Spacetime, Hans C. Ohanian and Remo Ruffini, Second Edition,
Norton (1994)
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line. You want to keep your “physical” pendulum as “simple” as possible, so
make sure the line is very lightweight and the bob is small and massive. (You
still will have to be careful when you determine the pendulum “length”.) The
length of line determines the period, so pick something convenient. A couple
of meters is a good place to start.

Timing the period precisely is very important. Set up the pendulum so
the bob swings close to the floor or table top. Put a mark on the surface
under the bob when it is motionless. You’ll use this mark to time the period
as the pendulum swings past it.

Set the pendulum in motion and use the digital stopwatch to time the
period. The stopwatch reads in 0.01 second intervals and the period will likely
be a couple of seconds. That is, you would immediately have a systematic
uncertainty of ∼ 0.05% by timing one swing. That’s not good enough, since
we are trying to measure g to 0.1% or so, which means we need to know the
period at least twice as well, or 0.05%. However, you can easily reduce the
systematic uncertainty by a factor of 10 by timing 10 swings instead of only
one.

Figure 7.2 histograms the period as determined4 in several runs of ten
swings each. (This analysis is done in matlab simply by entering the mea-
surements into an array, defining another array to set the histogram bins,
using the command hist to sort the data, and the command stairs to make
the plot.) There is some scatter in the measurements which probably comes
from human response time in starting and stopping the stopwatch. We will
treat this scatter as a random uncertainty, that is we can take the period as
the average of all these N measurements with an uncertainty given by the
standard deviation divided by

√
N . That is, the period is determined to be

T = 2.7994± 0.0009, a 0.03% measurement.

Determine the length of the pendulum as best you can. Assign an uncer-
tainty to the length, and calculate g from Eq. 7.6 and T = 2π/ω. Determine
δg, the uncertainty in g, by propagating the errors from the length L and
period T . Is your result for g ± δg clearly within the established polar and
equatorial values?

4Data taken by Jason Castro, Shaker High School Class of 1996.
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Figure 7.2: Histogram of several measurements of the pendulum period, each
made by timing ten swings and dividing by ten to reduce the systematic
uncertainty from reading the stopwatch.



7.2. MEASUREMENTS AND ANALYSIS 113

Try to confirm the first order correction in Eq. 7.8 by changing the angle
θ0 and plot T ± δT as a function of sin2(θ0/2). You will have to use an
angle θ0 that causes a correction significantly larger than your measurement
uncertainty. You can measure θ0 accurately enough just be putting a ruled
scale on the floor or table top, and use trigonometry to turn the point at which
you release the pendulum into an angle θ0. Do you determine a straight line
with the correct slope?
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Ch 8

Experiment 4: Dielectric
Constants of Gases

This experiment measures the dielectric constant of some gases. This is a
simple physical property of materials, and in this case it can be related to
the way the electron charge is distributed in atoms or molecules that make
up the gas. The technique is simple, and is an instructive way to measure
quantities that differ from each other by only a small amount.

The basic physics involved is rather straightforward. For a good basic
discussion of the fundamentals, you might review

• Physics, Robert Resnick, David Halliday, and Kenneth Krane,
John Wiley and Sons, Fourth Edition (1992)

– Chap.22-24 The Ideal Gas Law

– Chap.31 Capacitors and Dielectrics

– Chap.38 Electromagnetic Oscillations

A fine discussion of the electronic properties of gases and how they give rise
to the dielectric constant can be found in

115
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• The Feynman Lectures on Physics, R. Feynman, R. Leighton, and M.
Sands, Addison Wesley (1964), Vol.II Chapt.11

The measurement will be made using the “beat method” of measuring fre-
quency. This is discussed in

• Practical Physics, G. L. Squires, Third Edition
Cambridge University Press (1991), Sec.6.6

You will also likely use some edition of the Handbook of Chemistry and
Physics to look up dielectric constants, ionization potentials, and dipole mo-
ments for various gases.

Note also that an experiment rather similar to this one is described in Y.
Kraftmakher, Am. J. Phys. 64(1996)1209.

8.1 Electrostatics of Gases

The physics associated with this experiment is pretty simple. It has to do
with how charge can be stored in a capacitor, and how the material inside
the capacitor changes the amount of charge that can be stored. After some
review, we will get into specifics for the case where the material inside the
capacitor is a gas.

Let’s review the traditional definition of the dielectric constant. We’ll
start with a capacitor, pictured as a pair of parallel plates, separated by
some distance that is small compared to their size. Assume first that the
space in between the plates is a vacuum. If the capacitor is charged up to
some voltage V by a battery and a charge ±q0 is stored on the two plates
(+q0 on one and −q0 on the other), then the capacitance is defined to be

C0 = q0/V

Now suppose that the space between the plates is filled with some (non-
conducting) material. It turns out that if the capacitor is charged to the
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same voltage V , then more charge (±q) can be stored on the plates. In other
words, the capacitance increases to

C = q/V

The increase in the capacitance defines the dielectric constant κ through

κ =
C

C0
> 1 (8.1)

Obviously, κ also measures the increased stored charge if the plates are kept
at constant potential, i.e. κ = q/q0.

The dielectric constant κ is a property of the material and does not depend
on the capacitor geometery or the voltage. This is not at all obvious from
these simple definitions, but we won’t go into it in any more detail here.

So why does the charge on the capacitor plates increase when the material
is inserted? The reason is that although the atoms or molecules that make
up the material are electrically neutral, the positive and negative charges
in them are somewhat independent. When they are inside the electric field
of the capacitor, the negative charges tend to point towards the positive
capacitor plate, and vice versa. This cancels out some of the electric field.
However, if the plates are kept at constant voltage, the total electric field
inside must remain unchanged. Therefore there is a buildup of charge on the
plates, and the capacitance increases.

When the positive and negative charges “line up” in this way in an atom or
molecule, it obtains a “dipole moment”. For point charges of ±q separated by
a distance x, the dipole moment p = qx. (See Resnick, Halliday, and Krane.)
If the charge is not concentrated at a point, but has some distribution in
space (as for an atom or molecule), then the dipole moment comes from
integrating the charge distribution, weighted by the position.

The dielectric constant κ can be directly related to the atomic or molecu-
lar dipole moment p. The electric field inbetween the plates of the capacitor
is E = σ/ε0 where σ = q/A is the charge per unit area on the plates. There
are always some “free” charges supplied by the voltage source, but with the
dielectric in place there are also some “polarization” charges from the effect
of the dipole moments. The key is to realize that the polarization charge per



118 CH 8. EXPERIMENT 4: DIELECTRIC CONSTANTS OF GASES

unit area is just given by the net dipole moment per unit volume, called P .
(See the Feynman Lectures.) Therefore, the electric field inside the capacitor
is given by

E =
σ

ε0
=
σFREE − σPOL

ε0
=
σFREE − P

ε0

so that

σFREE = ε0E
(
1 +

P

ε0E

)
Equation 8.1 then implies that

κ = 1 +
P

ε0E
(8.2)

The task, then is to relate the individual atomic or molecular dipole moments
to the net dipole moment per unit volume. How we do this depends on where
those dipole moments come from, and there are two ways that can happen.

Some molecules have permanent dipole moments. They make up the
class called polar dielectrics. This happens because the atoms that make
up the molecules are arranged in some asymmetric pattern and the atomic
nuclei cause the charge to be redistributed in some way. The most common
example is the water moleculeH2O, where the atoms form a triangular shape
with the oxygen at the vertex. A permanent dipole moment forms along the
line passing through the oxygen nucleus and which bisects the two hydrogen
nuclei. It is hard to calculate the magnitude of the dipole moment, but
you can look it up in the Handbook of Chemistry and Physics and you find
p(H2O) = 1.85 Debye= 6.17 × 10−30 C·m. This is more or less typical of
most polar molecules, with values ranging from about a factor of ten smaller
to a factor of ten larger.

Atoms and most molecules, however, have their electric charge symmetri-
cally distributed and do not have permanent electric dipole moments. They
can nevertheless have dielectric properties because the electric field between
the capacitor plates induces an electric dipole moment in them. These ma-
terials are called nonpolar dielectrics, and their behavior is considerably dif-
ferent from polar dielectrics. The action with a nonpolar dielectric inside
the capacitor plates is shown schematically in Fig. 8.1, taken directly from
Resnick, Halliday, and Krane, which shows the effect on the electric field.
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Figure 8.1: (a) A slab of nonpolar dielectric material. The circles represent

neutral atoms of molecules. (b) An external electric field ~E0 displaces the
positive and electric charges in the atom and induces a dipole moment. These
displaced charges induce charges of the opposite sign on the capacitor plates
(c), increasing the stored charge in order to keep ~E0 unchanged.

Let’s first estimate the dielectric constant of some gas made of nonpolar
atoms. We will use a very simple model, namely where the electron is bound
to the atom by some imaginary spring with spring constant k. When the
electron is placed in an electric field E, there is an electric force on it of
magnitude eE. This causes the electron to be displaced a distance x where
it is counterbalanced by the spring force kx. It will make more sense to
express the spring constant k in terms of the electron mass m and the angular
frequency of the simple harmonic oscillations ω0, namely k = mω2

0. Therefore
mω2

0x = eE, and the atomic dipole moment is

p = ex =
e2E

mω2
0

(8.3)

Before we go further, it is instructive to estimate the size of this dipole
moment. Estimate ω0 by assuming that h̄ω0 = hν0 is the energy needed
to ionize the atom. (This is a real seat-of-the-pants estimate!) It takes
something like 10 eV to ionize an atom, so take ω0 = 10 eV/h̄ = 1.52 ×
1016/sec. Let’s also take a relatively high electric field, say 100 V across a
capacitor with a 1 mm gap, or E = 105 V/m. Then we find p = 1.22 ×
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10−35 C·m. You certainly expect, therefore, that the dielectric constant for a
nonpolar gas should be a lot smaller than for a gas made of polar molecules.
There are, however, other important differences as we shall soon see.

Anyway, let’s continue and estimate the dielectric constant for the non-
polar gas. The dipole moment per unit volume is just P = Np where N is
the number of atoms or molecules per unit volume and p is given by Eq. 8.3.
Equation 8.2 then gives

κ = 1 +
Np

ε0E
= 1 +

Ne2

ε0mω2
0

Nonpolar Gas (8.4)

We approximate N from the ideal gas law, namely N = P/kT = 2.4 ×
1025/m3 at room temperature (T = 300 K) and atmospheric pressure (P =
1.01× 105 N/m2). Using the same seat-of-the-pants estimate, we find that κ
is very close to unity, in fact κ− 1 = 3.3× 10−4. This is surprisingly close to
what is actually measured, especially for such a very simple estimate. Keep
in mind, however, how κ− 1 depends on N and ω2

0 .

Lastly, we will briefly derive the dielectric constant for a polar gas. At
first, we suspect that it should be a lot larger because the dipole moment is
so much bigger, but it isn’t quite as simple as that. The permanent dipoles
do indeed tend to line up along the electric field, but they are thermally
agitated and don’t stay aligned very long because they are always bumping
into each other. See the Feynman Lectures or a book on statistical mechanics
if you want to go through the derivation, but for now I will just quote the
result

P =
Np2E

3kT
= N × p×

(
pE

3kT

)
This makes good sense qualitatively. The effective dipole moment of the polar
molecule, i.e. P/N is just the permanent dipole moment p reduced by the
factor pE/3kT which measures the electrostatic energy of dipole alignment
(i.e. pE, roughly) with respect to the thermal energy of the molecules (kT ,
roughly). This reduction factor is significant. For example, water vapor
(p = 6.17×10−30 C·m) at room temperature in a 105 V/m electric field has a
reduction factor of 5×10−5 bringing it more in line with nonpolar dielectrics.
Putting this together into an expression for the dielectric constant gives

κ = 1 +
Np2

3ε0kT
Polar Gas (8.5)
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Figure 8.2: Sketch of an old fashioned variable parallel plate capacitor.

Note that as for nonpolar gases, κ − 1 is proportional to N and therefore
proportional to the pressure. However for polar gases, it is a strong function
of temperature. On the other hand, the dielectric constant for polar gases
shows no dependence on the ionization potential (i.e. h̄ω0) of the molecules.

8.2 Measurements

You should realize something right away. For gases, typical values for the
dielectric constant κ are very close to unity. In fact, κ − 1 will be on the
order of 10−4 or so. If you were to measure κ directly, therefore, you would
need a fractional experimental uncertainty δκ/κ ≈ 10−5 = 0.001% in order
to get a 10% measurement of κ− 1. This would be hard!

The trick is to come up with a way to measure κ− 1 directly. We will do
this by first relating κ to the frequency of electromagnetic oscillations, and
then by learning how to measure the difference of two such frequencies.

The heart of the experiment is a variable parallel plate capacitor, the
kind that had been used to tune the frequency in old fashioned radios. A
sketch of such a thing is shown in Fig. 8.2. The relative surface area of the
plates is changed by turning the knob which moves half the plates past the
half alternately between, and this is how the capacitance is “tuned”. The
space between the plates is usually filled with air, but you will be able to
introduce various different gases in that space, as well as evacuate it. The
capacitance depends, of course, on what is between the plates because of the
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dielectric constant of the material. The capacitance C of the capacitor can
be changed either by tuning it (which makes a big change) or by changing
the gas between the plates (a small change.)

This capacitor is put in series with an inductor (with inductance L),
forming an “LC Oscillator”. (See Halliday, Resnick, and Krane.) The cur-
rent in this circuit, as well as the voltage across either the capacitor or the
oscillator, varies sinusoidally like cosωt where ω = 1/

√
LC . Changing the

capacitance, then, changes the angular frequency ω. Still, however, it is very
hard to measure the dielectric constant by introducing a gas inbetween the
plates and remeasuring the frequency, since the change in frequency would
be very small.

Instead of measuring the frequency directly, we will measure how much
it changes using the “method of beats”. Suppose you have two signals, call
them y1 and y2, both with the same amplitude A but with different angular
frequencies ω1 and ω2. If those two signals are added, you find

y1 + y2 = A (cosω1t+ cosω2t)

=
[
2A cos

(
ω1 − ω2

2
t
)] [

cos
(
ω1 + ω2

2
t
)]

If ω1 ≈ ω2, then the addition signal oscillates with a angular frequency
ω̄ ≈ ω1 ≈ ω2, but with an amplitude that itself oscillates with a very low
frequency |ω1 − ω2| /2. These slow oscillations in the amplitude are called
“beats”, and it is not hard to build a circuit that gives an output signal
which oscillates with the beat frequency of two input signals.

Okay, so the beat frequency measures the difference between two numbers
(ω1 and ω2) which are very close to each other. That is essentially what
you want, namely to measure the difference between the angular frequency
with the capacitor in vacuum (1/

√
LC) and the angular frequency with the

capacitor in gas (1/
√
κLC). The problem, though, is that if the capacitor is

in vacuum, you don’t have the signal with it filled with gas, and vice versa!
How can you get the two signals you want at the same time?

The solution to this problem is to have an external reference frequency,
and measure the change in the LC oscillator frequency relative to the refer-
ence. In the experiment setup, the external oscillator is packaged in a box,
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Figure 8.3: Setup for measuring the dielectric constant of a gas.

together with the circuit which forms the difference signal. You connect the
LC oscillator signal into the box, and the output is a signal whose angu-
lar frequency is the difference (as opposed to half the difference) of the two
angular frequencies of the input.

8.2.1 Procedure

The setup is shown in Fig. 8.3. The LC oscillator is inside another box which
sits inside a bell jar. With the bell jar removed, you can tune the capacitance
by adjusting the knob on the side of the box. It is important to tune the
capacitor so that the LC oscillator gives very closely the same frequency as
the reference signal in the external box. Do this by carefully turning the knob
and watching the output difference signal on an oscilloscope. The object is
to make the difference signal frequency as small as possible after the bell jar
is replaced and then evacuated. This will likely take some trial and error.
Also, be careful that the frequency of the LC oscillator is always less than
the reference. That is, keep your eye on the difference frequency when you
pump out the bell jar; the frequency will change, but you don’t want it to
go through zero.

You might notice that the difference frequency changes drastically while
you’re trying to measure it. In fact, you’ll find that as you bring some object,
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like your hand, near the bell jar, you can change the difference frequency
at will. The reason is that you can disturb the electric field, and hence the
capacitance, of the variable capacitor without actually touching it. You can’t
change the capacitance by very much, but you’re going through all this so
you can detect small changes in capacitance! For this reason, it is a good
idea to cover the bell jar with a grounded, conducting shell that shields the
capacitor from external sources of noise. This is pretty easily accomplished
using a large sheet of aluminum foil, connected with a wire to a ground point.

Once you’ve tuned the capacitor, you need to measure the reference fre-
quency ν0 = ω0/2π. In fact, you cannot get at the internal oscillator that
provides it, but you can easily measure the frequency of the LC oscillator
at this point, just by hooking up its output leads to the oscilloscope. If
you tuned the capacitor perfectly, then this would be exactly equal to the
reference frequency.

Now evacuate the bell jar. Using the valves connected to the filling hose,
let in air or one of the gases inside the pressurized gas bottles. Let it in
a little at a time, and measure the difference frequency for each pressure.
The pressure gauge that we are using measures pressure P in inches of mer-
cury, where one atmosphere is 30 inches. Record the pressure and difference
frequency at each setting.

8.2.2 Analysis

Don’t forget that the angular frequency ω is 2πν where ν is the frequency
you measure using the oscilloscope. Let’s make some definitions.

• ω0 is the angular frequency of the external oscillator, that is, the refer-
ence frequency that you measured earlier.

• C0 is the capacitance of the variable capacitor when the space inbetween
the plates is evacuated.

• The dielectric constant κ = 1+χ, where χ is called the electric suscep-
tibility.
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Realize the χ is a small number in this experiment. Also realize that it is
a function of the pressure P . In fact, according to Eqs. 8.4 and 8.5, χ is
proportional to P .

We can write that

ω0 =
1√
LC0

+ δω0

where δω0 represents the (small) difference between the reference frequency
and the evacuated frequency of the LC oscillator. You should be able to
have tuned the capacitor so that δω0/ω0 ≈ 0.1% or smaller.

Measuring the difference frequency allows you to determine ω0−ω, where
ω is the angular frequency of the LC oscillator, whether or not there is some
gas between the plates. Therefore

ω0 − ω =
1√
LC0

− ω + δω0

=
1√
LC0

(
1− 1√

κ

)
+ δω0

≈ ω0

(
1− 1√

κ

)
+ δω0

where we write 1/
√
LC0 = ω0. We can get away with this because it multi-

plies another very small number, namely

1− 1√
κ
≈ 1

2
χ

This introduces an uncertainty in χ on the order of δω0/ω0, and it is unlikely
that this small uncertainty will dominate the measurement.

If you plot your measurements as ω − ω0 versus P or P/PATM , then
you should get a straight line. In fact, the slope of the line should give you
ω0χATM/2 if plotted against P/PATM . (The y−intercept of the line tells you
how closely you tuned the capacitor to the reference frequency.) Draw the
best straight line that you can through your data points, and call this the
best value for the slope. Also draw lines with the largest and smallest slopes
you think are reasonable. Use these lines to estimate the uncertainty in your
measurement. An example is shown in Fig. 8.4. How does this uncertainty
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Figure 8.4: Sample Data for the Dielectric Constant

compare with that from the imprecise tuning of the variable capacitor? How
does your value compare with “book” values for the dielectric constant? Is
it within your experimental uncertainty?

Do this with a few different gases, including the air. Check to see if there
is a correlation between the ionization potential of the gas and the dielectric
constant. You might check the humidity in the atmosphere on the day you do
the measurement. What effect does moisture in the air have on your result?
Remember that unlike N2 and O2, water is a polar molecule.

8.3 Advanced Topics

Get a bottle of Helium gas to try. The electrons in a He atom are very
tightly bound; it takes 24.5 eV of energy to remove an electron. Use this,
and the discussion of nonpolar dielectric constants, to estimate the dielectric
constant of Helium. Compare this to your measurements. If you are unable
to determine a value for the He dielectric constant, see if you can determine
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an “upper limit” for it. That is, if you see no slope in your plot of ω0 − ω
versus P , how big a slope would you be able to put through the data? Is
this upper limit consistent with the book value?

Check the literature for possible polar gas molecules that you could mea-
sure. Be careful, since a lot of such molecules make explosive gases it would
probably be wise to pick something less dangerous! Try to vary the temper-
ature by cooling or heating the outside of the bell jar. Do the same with
a nonpolar gas like N2 or CO2. Can you at least approximately verify the
temperature dependence in Eqs. 8.4 and 8.5?
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Ch 9

Statistical Analysis

We continue our discussion of uncertainties. In this chapter we will be talking
about random uncertainties only, although some of the techniques we will
develop (like curve fitting) can be applied in more general cases. As before,
refer to the books by Squires or Taylor for more details:

• Practical Physics, G. L. Squires, Third Edition
Cambridge University Press (1991)

• An Introduction to Error Analysis: The Study of Uncertainties in Phys-
ical Measurements,
John R. Taylor, University Science Books (1982)

This chapter also begins a more serious discussion about datat analysis,
especially using computers. As before, we will make use of matlab for all
examples, and again I refer you to the following documentaion:

• The Student Edition of matlab, Prentice Hall (1994)

• Numerical Methods for Physics,
Alejandro Garcia, Prentice-Hall (1994)

See Sec. 1.4.3 for more details.

129
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9.1 The Mean as the Best Value

Let’s introduce the subject by reconsidering something we took for granted.
If we measure some quantity x a whole bunch of times, then we assumed that
the best approximation to the “true” value of x was the mean of x, called x̄.
(See Eq. 6.1). This is in fact true, and we can prove it.

Let A be the value that best approximates the true value of x. Assume
that we have n measurements of x, called xi, and that each measurement has
a standard deviation uncertainty σ. Consider the quantity χ2(A) defined as

χ2(A) =
n∑

i=1

(xi −A)2

σ2

The conjecture is that A is the value that minimizes χ2. This actually makes
some sense since if A gets too far away from all the values, then χ2 gets very
big. We will put this conjecture on firmer ground at the end of this chapter
when we talk about the Gaussian Distribution, but for now let’s take it at
face value.

So, let’s minimize χ2(A) with respect to A. That is,

dχ2

dA
=

2

σ2

n∑
i=1

(xi − A)(−1) = 0

which implies
n∑

i=1

xi − A
n∑

i=1

(1) = 0

or

A =
1

n

n∑
i=1

xi = x̄

And there it is! The best approximation to the true value of x, i.e. A, is
given by the mean of x.

From the definition of the standard deviation, it is clear that the minimum
value of χ2 is

χ2
MIN ≡ χ2(x̄) = n − 1
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When we generalize the definition of χ2, the mean value will be very useful
when evaluating data. We’ll come back to this a few more times in this
chapter.

This allows us to make a very useful generalized definition of the mean,
called the weighted average. If the measurements of x do not all have the same
standard deviation uncertainty, it doesn’t make sense to just take a straight
average of all of them. Instead, the values with the smallest uncertainties
should be worth more, somehow. In this case,

χ2(A) =
n∑

i=1

(xi − A)2

σ2
i

where σi is the standard deviation uncertainty of xi. We can determine A in
exactly the same way, namely by setting dχ2/dA = 0. We find that

A = x̄ =

∑n
i=1 wixi∑n
i=1 wi

Weighted Average (9.1)

where the “weights” wi ≡ 1/σ2
i . Obviously, if all the weights are equal, then

Eq. 9.1 reduces to Eq. 6.1. The uncertainty in the weighted average can be
derived using propagation of errors, just as we did in the unweighted case.
You find

σx̄ =

[
n∑

i=1

wi

]−1/2

(9.2)

There are no built-in functions like mean in matlab for the weighted
average, but it is pretty simple to either do it from the command line, or
write an appropriate m-file to carry this out. It could be done, for example,
almost entirely within the sum command. See the discussion in Sec. 6.2.3.

What about the minimum value of χ2 for a weighted average? That
depends on the weights, i.e. the individual uncertainties assigned to the
measurements xi. However, if the various data points xi ± σi are indeed
consistent with a single “true” value, then you expect that χ2

MIN ≈ (n− 1).
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9.2 Curve Fitting

You will very, very often want to test your data against some model. Plot-
ting your data in a suitable way can help you do that, as we’ve discussed.
Sometimes, however, you need to be more precise. In particular, if the model
depends on some parameters, you want to vary those parameters so that
the model “fits” your data. This would give you the “best” value for those
parameters. Of course, you also want to know with what uncertainty your
data determines those parameters.

This is the subject of “curve fitting”. We can develop it just by following
our prescription for showing that the best value for some quantity is given
by the mean of the measured values. To be sure, we are developing the
technique known as the “method of least squares”, since the object is to
minimize the sum of the squares of the deviations between the data and the
fitting function. There are in fact other techniques, such as the principle
of maximum likelihood and multiple regression, that may actually be better
suited to some class of problems, but we won’t be discussing them here.

9.2.1 Straight Line Fitting

Let’s start with the simplest generalization of our prescription for the mean.
Whereas the mean is a one parameter “fit” to a set of values xi, we now
consider a two parameter fit to a set of points (xi, yi). In particular, the
model is a straight line of the form

y = a0 + a1x

and our job is to find the best values of a0 and a1, and their uncertainties, as
determined by the data. If we were to fix a1 = 0, then we should get a0 = ȳ.

For now we assume all the values yi have the same uncertainty we call σy,
and we ignore any uncertainties in the xi. The χ2 function is defined just as
before, namely

χ2(a0, a1) =
n∑

i=1

[yi − y(xi)]
2

σ2
y

=
n∑

i=1

(yi − a0 − a1xi)
2

σ2
y
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which we minimze just as before, namely

∂χ2

∂a0
= − 2

σ2
y

n∑
i=1

[yi − a0 − a1xi] = 0

∂χ2

∂a1
= − 2

σ2
y

n∑
i=1

[yi − a0 − a1xi] xi = 0

which leads to a pair of equations for a0 and a1,

a0n+ a1

n∑
i=1

xi =
n∑

i=1

yi

a0

n∑
i=1

xi + a1

n∑
i=1

x2
i =

n∑
i=1

xiyi (9.3)

From now on, we will drop the limits i = 1 and n from the summation signs
because it gets too crowded. The solutions for a0 and a1 are simple:

a0 =
(
∑
x2

i ) (
∑
yi)− (

∑
xi) (

∑
xiyi)

∆

a1 =
n (
∑
xiyi)− (

∑
xi) (

∑
yi)

∆
(9.4)

where
∆ ≡ n

(∑
x2

i

)
−
(∑

xi

)2

So, if you draw a line y = a0+a1x over a plot of your (x, y) data, the line will
pass near all the points, assuming that a straight line was a good approxi-
mation in the first place. You would likely derive some physical quantities
from the values of a0 and a1.

Remember when we defined the standard deviation (Eq. 6.2)? Instead of
dividing by n, we divided by n− 1. We won’t try to prove it, but the reason
is that x̄ is not the “true” value of x, but rather just our best estimate for x.
Therefore, the uncertainty is actually a slight bit larger than it would have
been if we used the true value, and this shows up by dividing by n−1 instead
of n. If n gets to be very large, then x̄ is very close to the true value and
n− 1 is very close to n so this is at least consistent.

Now when we fit to a straight line, we have the same problem. That is,
our data determine the best values for a0 and a1, not the true values. In this
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case, however, there are two free parameters, not one as for the simple mean.
The standard deviations σy are therefore given by

σ2
y =

1

n− 2

∑
(yi − a0 − a1xi)

2

and the minimum value of χ2 is n− 2. The number of data points (n) minus
the number of free parameters (2 for the straight line fit and 1 for the simple
mean) is called the number of “degrees of freedom”.

Of course, we need to know the uncertainties in a0 and a1 as well. Equa-
tions 9.4 give a0 and a1 in terms of things we know the uncertainties for,
namely the yi. Therefore, just use propagation of errors to get what we
want. The result is

σ2
a0

=
σ2

y

∑
x2

i

∆
and σ2

a1
=
nσ2

y

∆

and so the result of your fit should be reported as a0 ± σa0 and a1 ± σa1.

If the individual points do not all have the same uncertainty, but instead
are (xi, yi ± σyi), then the generalization is straightforward. We have

χ2(a0, a1) =
∑

wi (yi − a0 − a1xi)
2

where wi = 1/σ2
yi

. The rest follows in the same way as above, and the
equations are listed in both Squires and Taylor. They are also written out
in Garcia, including programs in matlab and in fortran. (See the next
section.)

Using matlab to fit straight lines.

Straight line fitting is so common a problem that matlab has a built-in
function for this. The function polyfit(x,y,1), where x and y are arrays of the
same length, returns a two-dimensional array which contains the slope and
intercept of the best-fit straight line. (The third argument, 1, is a simple ex-
tension of this function. I will explain it shortly.) Furthermore, the function
polyval(p,x) returns the best fit functional values, i.e. the approximation to
the y, for the slope and intercept in p as returned by polyfit. The following
series of commands
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p=polyfit(x,y,1);

f=polyval(p,x);

plot(x,y,’o’,x,f)

fits the points to a straight line, and then plots the data points themselves
along with the fit.

For unequally weighted points, you can’t really use polyfit. However, it is
a simple matter to program such a thing using matlab, and in fact Garcia
has already provided us with an m-file which does this. It is called linreg.m,
and it is available via anonymous ftp from The Mathworks1, or from me. I
also reproduce linreg.m in Fig. 9.1.

9.2.2 Fitting to Linear Functions

If you wanted to fit data to a parabola, i.e. y = a0 + a1x + a2x
2, you

could follow the same procedure as for a straight line. You would get three
equations in the three unknowns a0, a1, and a2, and solve them as before.
However, there is something more profound going on.

There is an entire class of functions that can be fit this way. You might
suspect as much if write Eq. 9.3 as[

n
∑
xi∑

xi
∑
x2

i

] [
a0

a1

]
=

[ ∑
yi∑
xiyi

]

Shades of Math III! This is called a “system of linear equations”, and there
are very general ways of solving these things.

Any function of the form

y = b1f1(x) + b2f2(x) + · · ·+ amfm(x)

can be fit using the procedure as for a straight line. The straight line, of
course, is the case where m = 2, f1(x) = 1, and f2(x) = x. The parabola,

1You can get lots of free software like this from The Mathworks. Check out their World
Wide Web address at http://www.mathworks.com. Software is available through their ftp

site at ftp.mathworks.com.
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function [a_fit, sig_a, yy, chisqr] = linreg(x,y,sigma)

% Function to perform linear regression (fit a line)

% Inputs -

% x - Independent variable

% y - Dependent variable

% sigma - Estimated error in y

% Outputs -

% a_fit - Fit parameters; a(1) is intercept, a(2) is slope

% sig_a - Estimated error in the parameters a()

% yy - Curve fit to the data

% chisqr - Chi squared statistic

N = length(x);

temp = sigma .^ (-2);

s = sum(temp);

sx = sum(x .* temp);

sy = sum(y .* temp);

sxy = sum(x .* y .* temp);

sxx = sum((x .^ 2) .* temp);

denom = s*sxx - sx^2;

a_fit(1) = (sxx*sy - sx*sxy)/denom;

a_fit(2) = (s*sxy - sx*sy)/denom;

sig_a(1) = sqrt(sxx/denom);

sig_a(2) = sqrt(s/denom);

yy = a_fit(1)+a_fit(2)*x; % Curve fit to the data

chisqr = sum( ((y-yy)./sigma).^2 ); % Chi square

return;

Figure 9.1: Garcia’s program linreg.m for computing the weighted least
squares linear fit to data using matlab.
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and in fact any polynomial function, is just larger values of m and successive
powers of x. The functions f(x), of course, don’t have to be power laws, but
any function you like. These are called “linear functions” because they are
linear in the free parameters. In general, they are not linear in x, so don’t
get these two uses of the word “linear” confused.

The solution for a general linear fitting problem takes the form
F11 F12 · · · F1m

F21 F22 · · · F2m
...

...
...

...
Fm1 Fm2 · · · Fmm



b1
b2
...
bm

 =


∑
f1(xi)yi∑
f2(xi)yi

...∑
fm(xi)yi


where Fjk =

∑n
i=1 fj(xi)fk(xi). This reduces the job to solving an m × m

system of linear equations. All you really need to do is setup the matrix. (In
fact, the matrix is symmetric since Fjk = Fkj .)

These days there are plenty of computer programs that can do the matrix
algebra for you. Of course, unless you have one of your own favorites, I
recommend you use matlab. You might recall that matlab actually stands
for MATrix LABoratory, and it is in fact very well suited for doing all sorts of
linear algebra problems, just like this one. You need to construct the matrix
Fjk, which is pretty simple to do, and then let matlab solve the matrix
equation using the “\” operator.

The function polyfit, for example, actually uses general matrix manipula-
tion to solve the linear fit problem for a general n-dimensional polynomial.
That is what the third argument is about. As described in the User’s Manual,
the matlab function call

p = polyfit(x, y, n);

returns the coefficients pi of the function

f(x) = p1x
n + p2x

n−1 + · · ·+ pnx+ pn+1

which best fits the data points (x, y). The call

f = polyval(p, x);
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returns the function f(x) evaluated at the same x−values as the data points.

For polynomial least squares fitting where the points are not all equally
weighted, Garcia has provided another m-file called pollsf.m. If you intend
to write your own linear least-squares fitting code, it would be a good idea
to examine Garcia’s technique.

9.2.3 Nonlinear Fitting

If you want to fit your data to some nonlinear function, that is, a function
that is nonlinear in the free parameters, then the problem is harder. The
approach is still the same, namely form the χ2 function and minimize it
with respect to the free parameters, but there are no general formulas. This
minimization job can of course be done numerically, but when the number
of free parameters gets large, that can be easier said than done.

As you might imagine, matlab contains the ability to do nonlinear fit-
ting through numerical minimization. The functions fmin and fmins minimize
functions of one or more than one variable, respectively. They are pretty easy
to use, but be careful of the pitfalls. You need to have a reasonable starting
point defined, and then feed fmin or fmins the χ2 function you want to mini-
mize. You can pass arguments to the χ2 function through the arguments of
fmin or fmins. There is lots of additional stuff in the matlab Optimization
Toolbox, which is devoted to all sorts of minimizing and maximizing prob-
lems. This toolbox, however, is not part of the Student Edition of matlab,
but it is available on the RCS version of the program.

Another computer program that is very popular for minimizing functions
in general (but is almost always used to fit data to some curve), is called
minuit and is available from the CERN Program Library. The program
is continuously updated, but an older version is described in a paper by
F. James and M. Roos. Computer Physics Communications, 10 (1975)343.
You will likely come across other numerical minimization programs in anal-
ysis packages on just about any flavor of computer.

Sometimes, though, you get lucky. If you can “linearize” a nonlinear
function, then a simple redefinition of variables turns the job into something
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simple. This is not unlike finding the right way to plot data so that a simple
curve is what you expect. (See Sec. 1.3.2.) It’s best to illustrate this with an
example.

One nonlinear functional form you run into a lot is the simple exponential,
namely

y = Ae−λx

This is easily linearized, just by taking the natural log,

ln y = lnA− λx

which can be fit to a straight line. Be careful, though, about the individual
uncertainties. Even if the points yi all have the same uncertainty σy, this
will not be true for the straight line you are fitting. In this case, the points
ln yi will have uncertainty σln yi = (σy/yi), and you need to use the weighted
averages when computing the free parameters in the fit.

9.2.4 χ2 as the Goodness of Fit

We’ll conclude this section on curve fitting with a few more words about χ2.
This quantity is actually quite important in advanced statistical theory. If
you really want to learn more about it, look at Taylor’s book and some other
texts, but for now just realize a simple way to use it.

Let’s suppose you’ve taken your data and analyzed it by fitting it to a
straight line or perhaps some more complicated function. You’ve included
the individual point uncertainties in the fit, using the formulas like Eq. 9.4
after including all the weights. You graph the fitted function along with the
data, and it comes close to most of the points so you figure you’ve done things
correctly. Is there any way you can be more confident of the result? Is there
some measure of how good the fit really is? Maybe you need to use a function
that is slightly more complicated, and the additional terms are telling you
something important about the physics, or about your experiment?

Recall that if all points xi have the same uncertainty, then the minimum
value of χ2 is identically equal to n − 1. If the points do not have the same
uncertainty, then I said that you expect χ2 to be around the same value if
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the individual points and their uncertainties are consistent with measuring a
single value. The same can be said for a straight line fit. That is, if χ2 is
around n− 2, then the fit is pretty good, and you probably don’t need to go
looking around for other sources of uncertainty.

In general, if the quantity χ̃2 (sometimes called the “reduced χ2”), defined
as χ2 divided by the number of degrees of freedom, is approximately unity,
then the fit is “good”. (Recall that the number of degrees of freedom is
defined as the number of data points, minus the number of free parameters,
or “constraints”.) If the uncertainties are truly random, then you can even
interpret the probability of data being given by your model. See Taylor.

9.3 Covariance and Correlations

Let’s return to the discussion about “Propagation of Errors” in section 6.3.
In particular, we talked about how to combine the various contributions δqx,
δqy,. . . to get the net uncertainty δq. We listed a few possible choices, namely

δq
?
= |δqx|+ |δqy|+ · · ·

or δq
?
= |δqx − δqy ± · · ·|

or δq
?
=

[
(δqx)

2 + (δqy)
2 + · · ·

]1/2

or δq
?
= Something Else

I told you that in the one specific case of random, uncorrelated uncertainties,
the answer is clear and it is the third choice where we add uncertainties in
quadrature. We are going to go a little further now, and look at the issue of
correlated, but still random, uncertainties.

We are following the discussion as described in Taylor’s book. We’ll just
deal with q(x, y), that is, a function of two variables only. Since we are
working with random uncertainties only, the best value is equal to the mean.
If we expand q(x, y) about the mean values of x and y we have

qi = q(xi, yi)

= q(x̄, ȳ) +
∂q

∂x
(xi − x̄) +

∂q

∂y
(yi − ȳ)
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and we can determine the mean of q from

q̄ =
1

n

n∑
i=1

qi

=
1

n

n∑
i=1

[
q(x̄, ȳ) +

∂q

∂x
(xi − x̄) +

∂q

∂y
(yi − ȳ)

]
= q(x̄, ȳ)

where the second and third terms are identically zero just from the definition
of the mean. This actually proves, for the case of random uncertainties, our
assertion in Sec. 6.3 that the best value of q is the function evaluated at the
best values of x and y.

The standard deviation of q, σq, is determined from

σ2
q =

1

n− 1

n∑
i=1

(qi − q̄)2

=
1

n− 1

n∑
i=1

[
∂q

∂x
(xi − x̄) +

∂q

∂y
(yi − ȳ)

]2

=

(
∂q

∂x

)2 [
1

n− 1

n∑
i=1

(xi − x̄)2

]
+

(
∂q

∂y

)2 [
1

n− 1

n∑
i=1

(yi − ȳ)2

]

+ 2

(
∂q

∂x

∂q

∂y

)[
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

]

You should immediately recognize the first two terms in brackets as the
definitions of σ2

x and σ2
y. By making the definition

σxy ≡ 1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) (9.5)

we can write

σ2
q =

(
∂q

∂x

)2

σ2
x +

(
∂q

∂y

)2

σ2
y + 2

(
∂q

∂x

∂q

∂y

)
σxy (9.6)

The quantity σxy is called the “covariance”. You should recall that σ2
x and

σ2
y are called the “variance” of x and y. This is nearly the same as Eq. 6.6,
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which defines the net random uncertainty when the uncertainties in x and y
are uncorrelated, except for the extra term involving the covariance σxy.

Consider what happens to σxy when the uncertainties are uncorrelated,
that is, when measurements of x and y are independent. This means that if
x fluctuates to more than x̄, it is equally probable for y to fluctuate to more
or to less than ȳ. Therefore, the sum in Eq. 9.5 will tend to zero, and Eq. 9.6
is identical to Eq. 6.6. A nonzero covariance, however, can make Eq. 9.6 give
a larger or smaller answer than Eq. 6.6 depending on the sign of σxy.

It is interesting to note that |σxy| ≤ σxσy. Therefore,

σq ≤
∣∣∣∣∣∂q∂x

∣∣∣∣∣σx +

∣∣∣∣∣∂q∂y
∣∣∣∣∣σy

In other words, this is an upper limit for the uncertainty of random errors
when the variables may or may not be correlated.

Unfortunately, Eqn. 9.6 is practically useless when analyzing experiments,
especially in the basic laboratory. You will see many ways to estimate or
determine the uncertainty σx for quantities x, but it is not so clear how
to do the same for the covariance σxy. One of the easiest way to use the
covariance, however, is to determine whether or not two variables x and y
are correlated at all. For a set of points (x, y), we can define the coefficient
of linear correlation

r ≡ σxy

σxσy

=

∑
(xi − x̄)(yi − ȳ)

[
∑

(xi − x̄)2
∑

(yi − ȳ)2]1/2
(9.7)

Obviously, −1 ≤ r ≤ 1 where r = 0 implies there is no correlation between x
and y. If r = 1, then x and y are perfectly linearly correlated, in otherwords
y = mx + b where m > 0. If m < 0, but there is still a strict linear
relationship between x and y, then r = −1 and we say x and y are perfectly
anti-correlated. This is all quite simple to prove since for all xi and yi, you
must have (yi − ȳ)/(xi − x̄) = m if y = mx+ b.

Calculating the linear correlation coefficient for a set of pairs of numbers
can be quite useful. It can tell you if it likely or not that one variable depends
on another, and by how much. In many cases where you expect that two
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Table 9.1: Example of (x, y) Correlation Data
# GPA $K # GPA $K # GPA $K
1 1.0 32 6 1.8 40 11 3.0 48
2 1.2 40 7 2.2 44 12 3.0 68
3 1.0 48 8 2.2 56 13 3.4 60
4 1.4 48 9 2.6 48 14 3.6 52
5 1.6 40 10 2.8 56 15 3.8 64

things might be independent, you can use the correlation coefficient to show
that this is or is not so, at least to some level.

We can illustrate this with a simple example. Table 9.1 gives a made-
up list of annual salaries in K$, for students who graduate with the given
cumulative Grade Point Average after four years of college. You’re studying
hard, and you’d like to make sure that good grades pay off in the long run,
at least in terms of earning potential! So, you ask, does the data indicate a
correlation?

A good thing to do is plot the data. This is shown in Fig. 9.2. There
certainly seems to be a trend in the data. You calculate the correlation
coefficient from Eq. 9.7 and you find r = 0.74, which is a rather large value.
There certainly seems to be a big correlation between grades and salary. You
go back to studying.

These manipulations are all quite simple in matlab. Given a set of (x, y)
data points, a few operations using the sum and sqrt functions will determine
the value of r in Eq. 9.7. You might also look over the functions cov which
calculates the covariance matrix, and corrcoef which calculates correlation
coefficients. Also, the plot in Fig. 9.2 was made using matlab.

In this example, the plot shows a pretty clear correlation, and the corre-
lation coefficent is actually quite close to unity. In many cases, the data is
not so clearly correlated from the plot, and you rely heavily on the statistical
analysis (i.e. the correlation coefficient) to tell if there is something behind
the data. You might want to look up some socially popular correlation co-
efficients, like that between the serum cholesterol level in the body and the
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Figure 9.2: Example of (x, y) Correlation Data

incidence of heart disease. You might be surprised.

In a strict sense, the correlation coefficient can be used to tell you the
probability that the variables are correlated or not. This of course is only valid
if the fluctuations are purely statistical. Tables are available (see Taylor, for
example) that allow you to look up these probabilities.

9.4 Distributions

Statistical analysis is based on probability. The entire formal basis of random
uncertainty is based on “probability distributions”, or “distributions” for
short. Of course, leaving this until the end is rather cockeyed of me, but
for the most part you don’t need the formal descriptions of distributions to
carry out the necessary analyses. However, for dealing with purely random
situations, such as radioactive counting, you get valuable information from
the underlying distributions.
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We start by describing the only “true” random probability distribution,
the Binomial Distribution. We then extend it to its key approximations, the
Poisson Distribution and the Gaussian or Normal Distribution.

9.4.1 The Binomial Distribution

The binomial distribution is the basis for the study of random uncertainties.
It is based on a very simple principle of random statistical probabilities that
you are all familiar with.

Let’s throw dice.

You have, say, five dice in your hands. You throw them all at once.
If everything is random, the probability that none of the five dice shows a
“one” is (5/6)

5
, that is, the probability that any particular die has something

other than a “one” (i.e. 5/6) raised to the number of dice that you threw.
Similarly, the probability that all the dice show a “one” is (1/6)5.

What is the probability that any single one of the dice shows a “one”,
and the rest show something other than “one”? The probability of one of
them showing a “one” is 1/6 and the probability of the other four showing
something else is (5/6)

4
, but this is not the whole story. There are five

different ways I can combine the five dice so that one shows a “one” and
the others don’t. Therefore, the probability of one showing a “one” and the
others showing something else is 5 (1/6) (5/6)4.

Similarly, the probability that two of the dice show “one’s” and the other
three do not is 10 (1/6)2 (5/6)3. The factor of 10 comes from the fact that
there are 10 different ways you can combine five dice so that two show a
“one” and the other three don’t. The only real trick is calculating the factor
of 10. Let’s look at this first.

This factor is really the number of combinations of n things taken ν at a
time, where n = 5 and ν = 0, 1, . . . , n in the above examples. We will use the

notation

(
n
ν

)
for this factor. To calculate it, imagine you have a handful

of n things, and you want to take out ν of them and set them on the table, in
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any order. The number of ways to pick the first one is n. The number of ways
to pick the next is n−1 since there is one less than when you started. So, the
number of ways to pick them all is n×(n−1)×(n−2) · · · (n−ν+1), and now
there are ν of these things on the table. However, the order doesn’t matter.
Since there are ν! different permutations of the ν things, this procedure over
counts by ν!. Therefore,(

n
ν

)
=

n× (n− 1)× (n− 2) · · · (n− ν + 1)

ν!

=
n!

ν!(n− ν)!
(9.8)

There are some simple identities like(
n

n− ν

)
=

(
n
ν

)

and (
n
n

)
=

(
n
0

)
= 1

and (
n
1

)
= n

Now let’s go back to probabilities and throwing dice. Let p be the prob-
ability of a single success (namely 1/6 in the above example). In that case,
1−p (namely 5/6) is the probability of a single failure. Let n be the number
of trials, i.e. n = 5 throws of the dice. Then, the probability bn,p(ν) of ν
successes in a total of n trials is

bn,p(ν) =

(
n
ν

)
pν(1− p)n−ν (9.9)

This is the binomial distribution. It describes the probability distribution
of a purely random set of events. It is called the “binomial” distribution
because of the similarity between Eq. 9.9 and the equation for the binomial
expansion:

(p+ q)n =
n∑

ν=0

(
n
ν

)
pνqn−ν
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Figure 9.3: Data and probability distributions for throwing five dice.

This expression tells you something very important about the binomial dis-
tribution, which is true for all probability distributions, namely

n∑
ν=0

bn,p(ν) = 1 (9.10)

That is, the binomial distribution is normalized to one. This just says that
the sum of the probabilities of all the possible individual outcomes is unity,
which of course it must be.

Let’s take a look at what Eq. 9.9 is telling us. Assume you are doing
an experiment, like throwing five dice. Each time you throw the five dice,
you record the number of “one’s” that come up. (We’ve called this number
ν.) You do this 40 times, and make a histogram of the values of ν. This
is histogrammed2 in Fig. 9.3. Also plotted as a solid line in Fig. 9.3 is the
prediction of Eq. 9.9, i.e. 40× b5, 1

6
(ν). (We will talk about the other curves

soon.) You can see that the experiment pretty clearly matches the prediction.
You can imagine that if instead of 40 times, you ran the experiment a very
large number of times, then the match would be much closer. The probability

2Thanks to Jim Cronen and John Karcz for helping take this data.



148 CH 9. STATISTICAL ANALYSIS

distribution represents the outcome of the experiment if it were performed an
infinite number of times. If the outcome of the experiment is governed solely
by random statistics, then the binomial distribution describes the outcome.
If there is a deviation from the binomial distribution, then the experiment is
not governed by purely random statistics.

We can derive the mean µ = ν̄ and standard deviation σ for the binomial
distribution. It is not hard to do (see Taylor), but we just quote the results
here:

Mean µ ≡
n∑

ν=0

νbn,p(ν) = np (9.11)

Variance σ2 ≡
n∑

ν=0

(ν − µ)2bn,p(ν) = np(1− p) (9.12)

Equation 9.11 is easy to interpret. It just says that the mean is the number
of trials times the probability of individual success. In other words, if you
throw five dice and the probability to get a “one” is 1/6, then on the average
you expect to get just under one (5/6, to be exact) “one” each time you
throw them.

We can check these equations against the data plotted in Fig. 9.3. The
mean and standard deviation of the data is shown on the plot and are µ =
0.825 and σ = 0.8439. The uncertainty in the mean is σ/

√
40 = 0.132, so

we can write µDATA = 0.825 ± 0.133 and σDATA = 0.844. The predictions,
assuming the data is governed by the binomial distribution, are µRANDOM =

5 × (1/6) = 0.833 (from Eq. 9.11) and σRANDOM =
√

5× (1/6) × (5/6) =

0.833 (from Eq. 9.12). The agreement is quite good.

In practice, we actually rarely use the binomial distribution directly. This
is because it is expressed in terms of quantities that we have no direct mea-
sure of, namely n and p, so we can only use it if we know what n and p are
supposed to be. Instead, we generally use one of two approximations to the
binomial distribution which can be expressed in terms of measured quanti-
ties, namely µ and σ, where we assume that the measured values are good
approximations to the true values for the binomial distribution. We discuss
these two approximations in the remaining sections.
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9.4.2 The Poisson Distribution

The Poisson distribution is based on the limit where p→ 0 and n→∞, but
where the mean µ = np remains fixed. This limit is clearly very useful, since
in many cases you can think of a very large number of chances for something
to happen (i.e. n very large), but the probability of any one of those chances
being successful is very small (i.e. p very small).

For example, the probability that you will get hit by any particular rain-
drop in a rain shower is very small, but there are a huge number of raindrops
that can potentially hit you. The result is that some average number of rain-
drops does hit you and you get wet. The prototypical example of the Poisson
distribution is radioactive decay, a truly random process, where the number
of atoms that may decay in any time interval is enormous (something like
Avogadro’s number), but their individual chance to decay is tiny. The result
is some average decay rate.

So let’s take this limit of the binomial distribution, given by Eq. 9.9. First,
since n is very large, we know that n ≈ (n − 1) ≈ (n − 2) · · · ≈ (n − ν + 1)
and so

lim
n→∞

(
n
ν

)
pν =

nν

ν!
pν =

µν

ν!

Now consider what happens to (1 − p)n−ν ≈ (1− p)n =
[
(1− p)−1/p

]−µ
as p

goes to zero. The answer should3 be well known to you, namely

lim
p→0

(1− p)−1/p = lim
p→0

(1 + p)1/p = e

This gives us the expression for the Poisson distribution

Pµ(ν) =
µν

ν!
e−µ (9.13)

As promised, the result does not depend on either n or p, but only on the
measurable quantity µ. This is a big advantage.

3If you have been taught calculus in a formal way, you might have learned instead that
ln(x) ≡ ∫ x

1
(1/t)dt and that ex is the inverse function of ln(x), and that e = e1. In that

case, the above expression for e is a theorem that you may not have seen.
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Figure 9.3 also plots the Poisson distribution approximation to the bino-
mial distribution, comparing it to the data. Even for these modest values of
n(= 5) and p(= 1/6), the result is quite close to the correct result, i.e. the
binomial distribution.

Notice a glaring example of how the Poisson distribution is only an ap-
proximation. Figure 9.3 might have been extended to ν = 6, that is, the
probability that six dice show a “one”, even though you only rolled five!
This is meaningless for the binomial distribution (Eq. 9.9), but the formula
for the Poisson distribution (Eq. 9.13) is perfectly calculable in this case.

The Poisson distribution allows you to estimate, for example, the prob-
ability that you get no successes (ν = 0) when the mean is known. If, on
the average, you get hit by 3.7 raindrops in one second, then the probability
that in any particular second you don’t get hit by any raindrops is

Pµ(0) =
µ0

0!
e−µ = e−µ = e−3.7 = 2.5%

Of course, calculating the probability for any number is just about as straight-
forward.

Note that the Poisson distribution depends only on µ and not on σ. In
fact, Equations 9.11 and 9.12 allow you to write in the limit of the Poisson
distribution,

σ =
√
µ (9.14)

That is, if the Poisson distribution describes your data, then the standard
deviation of the distribution is determined only by the mean.

Consider the power of Eq. 9.14. If in some unit of time T , you measure
N events, say the number of radioactive atoms that decay, then your best
measure of the mean number of events you expected during that time T
is just N , assuming you make no other measurements. Since you expect
the result to be governed by the Poisson distribution (it is a truly random
process, satisfying the limiting conditions), then your best measure of the
uncertainty in N is just

√
N . Therefore the decay rate you measure is given

by R = N/T and the uncertainty is δR =
√
N/T . (We ignore any systematic

uncertainty from the measurement of T .) The fractional uncertainty in the
rate, δR/R =

√
N/N = 1/

√
N gets smaller as N increases. Consequently, if
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you want to measure the rate with twice as small a random uncertainty, you
need to have N be four times as large, so you need to measure the number
of counts over a time period of 4T , or four times as long.

Don’t confuse the rate R and the number of counts N in the above example
or in problems like it. The discrete numberN is what is distributed according
to the Poisson distribution, not the normalized rate R. A common, but
completely incorrect, mistake is to figure

√
R for the uncertainty in R. This

would imply that collecting more data does not improve the precision of your
result.

9.4.3 The Gaussian Distribution

Both the binomial distribution and it’s exact approximation in the limit of
large n and small p, the Poisson distribution, share one inconvenient feature.
They are functions of an integer we’ve called ν that translates into the num-
ber of “successes” of some particular type. In most cases, though, you are
working with some variable that is not discrete, even though it may have
its roots in some discrete quantity. In other words, you are working with a
transformed quantity that ends up being a continuous, real number, and it is
inconvenient, if not innacurate, to interpret the distribution of this variable
in terms of a discrete distribution.

The Gaussian distribution, also known as the normal distribution, pro-
vides a way around this. In fact, the Gaussian distribution contains the basis
for all the use of “squares” in definitions of things like the standard deviation
(Eq. 6.2), adding errors in quadrature (Eq. 6.6), and the χ2 function. It is
an approximation to the binomial distribution that holds in the limit of large
n and any p, but it is not an “exact” approximation because it is not valid
over the entire region, no matter how large n becomes.

We won’t go through it all here, but to arrive at the Gaussian distribu-
tion from the binomial distribution, you convert the factorial function to a
function of a real variable using Stirling’s approximation,

x! =
√

2πxx+ 1
2e−x

which is valid in the limit of large x. Note that x doesn’t have to be an
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integer on the right hand side, and that is the essence of why you can now
use any real value for ν. What you discover is that

lim
n→∞ bn,p(ν) ≈ 1

σ
√

2π
exp

[
−(ν − µ)2

2σ2

]
≡ fµ,σ(ν) (9.15)

so long as |ν − µ| doesn’t get too much larger than a few σ. In other words,
as long as you are relatively near the mean, the Gaussian distribution is
a good approximation to the true distribution for random variables. Note
that fµ,σ(ν) is still normalized to unity (i.e.

∫∞
−∞ fµ,σ(ν)dν = 1) as any

good probability distribution must be, so it overestimates the probability for
(ν − µ) � 0 and underestimates it for (ν − µ) � 0.

The Gaussian distribution is similar to the Poisson distribution in that
there is no longer any dependence on n or p. However, unlike the Poisson
distribution, the Gaussian distribution depends independently on the mean
µ and standard deviation σ. You have to know them both. You can’t derive
one from the other.

The Gaussian approximation to our dice-throwing example is also shown
in Fig. 9.3. It is a rather poor approximation in this case, but not only is
n not very large, the distribution is also somewhat narrow, so this is not a
place where you expect such an approximation to do a good job. Try an
experiment yourself where you throw a larger number of dice (say n = 10)
and an individual success is defined to be either a “four”, “five”, or “six” on
any of the dice. Thus p = 1/2 in this case, and you can investigate how well
the Gaussian approximation holds in the region of the peak.

Since the outcome of some event involves the product of the probabilities
of the individual events that make it up, and because Eq. 9.15 involves an
exponential of a square of the deviation from the mean, it is not too hard
to see how prescriptions like “adding in quadrature” arise for random events
described by the Gaussian distribution. For more details, see the book by
Taylor.
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9.5 Data Analysis With matlab

We conclude this chapter with some final remarks about matlab as a tool for
data analysis. Up to this point we have talked about the basics (Sec. 1.4.3);
how to read in data from external sources like a digital oscilloscope (Sec. 3.7.1);
using matlab for simple manipulations (Sec. 6.2.3); using matlab to fit
data to straight lines (Sec. 9.2.1) as well as other linear (Sec. 9.2.2) and non-
linear (Sec. 9.2.3) functions; and some notes on determining covariance and
correlation (Sec. 9.3).

We will finish up with the procedure used to create Fig. 9.3. Other
examples will be imbedded in the individual experiments.

The m-file which produced Fig. 9.3 is shown in Fig. 9.4. If you recall,
this is from a simple experiment of throwing five dice at a time, and recording
the number of dice which show a “one” on each throw. The plot shows the
number of times zero, one, two, three, four, or all five dice came up with a
“one”. The dice were tossed 40 times.

The array dice corresponds to each of these six cases. The array freq is
the result of the experiment, that is, the number of times (i.e. frequency)
that each of these cases occurred. After making sure the next plot will clear
the page (hold off), we make a stairs plot of the data, centered on the halfway
points between the integers. (This just makes for a cleaner looking plot.)
Labels are added to the x and y axes, and we prepare to add more things to
this plot (hold on).

First we determine the number of throws, average number of dice with
a “one”, and standard deviation about this mean directly from the data.
These values are added to the plot using the title command.

We then calculate the three distributions that will be plotted on top of
the data. Notice that the binomial and Poisson distributions use the gamma
function to find the factorial, i.e. Γ(n + 1) = n!. Instead of calculating the
Gaussian function on the course integer grid, we instead define it on an array
x which goes from zero to five in tenths. (Note the use of the matlab built-in
value pi= π.) In all three cases we normalize the distribution to the total
number of tosses.
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%

% Enter the data points and plot as a histogram

dice=[ 0 1 2 3 4 5];

freq=[17 14 8 1 0 0];

hold off;

stairs(dice-0.5,freq);

xlabel(’NUMBER OF DICE SHOWING A ONE (i.e. nu)’);

ylabel(’NUMBER OF OCCURENCES’);

hold on;

%

% Get statistical info about the data and add to the plot

N=sum(freq);

avg=sum(freq.*dice)/N;

sig=sqrt(sum(freq.*(dice-avg).^2)/(N-1));

title([’N=’,num2str(N),’ avg=’,num2str(avg),’ stdev=’,num2str(sig)])

%

% Calculate distribution functions

% Binomial:

bnomcoef=gamma(5+1)./(gamma(dice+1).*gamma(5-dice+1));

bnomdist=N*bnomcoef.*(1/6).^dice.*(5/6).^(5-dice);

% Poisson:

poisdist=N*(avg.^dice)*exp(-avg)./gamma(dice+1);

% Gaussian:

x=[0:0.1:5];

gausdist=N*exp(-(x-avg).^2/(2*sig^2))/(sig*sqrt(2*pi));

%

Figure 9.4: matlab commands for calculating and plotting data and distri-
butions.
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% Add them to the plot

plot(dice,bnomdist,’o’,dice,poisdist,’x’,x,gausdist,’--’)

plot(dice,bnomdist,’-’,dice,poisdist,’-’)

text(2.5,18,’-o- Binomial’)

text(2.5,16,’-x- Poisson’)

text(2.5,14,’--- Gaussian’)

%

% Make PostScript file of the plot

print -dps distribs.ps

%

% Display the integrals

disp(’ Areas under distributions:’)

disp(’ Binomial Poisson Gaussian’)

disp([sum(bnomdist),sum(poisdist),trapz(x,gausdist)])

%

Figure 9.4 continued.

We then add these three distributions to the figure. The plot command
is used twice, once to draw the distributions with symbols, or a dashed line
in the case of the gaussian, and then to connect the symbols with straight
lines. A legend is added to the plot with the text command; this is one of the
many higher level graphics functions that are available with matlab, but
which should not be important for nearly all the applications you will need
in this course.

A postscript file is created of this figure. In fact, the file distribs.ps is what
is included into this LATEX document using the psfig macro.

Finally, the m-file puts some numbers out on the terminal screen which
tell a little more about the distributions. That is, it calculates the area under
the distribution curves and prints out the following:

Areas under distributions:

Binomial Poisson Gaussian

40.0000 39.9913 33.4232

Note that we use the sum command to do the integral over the discrete
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distributions, but the trapz command to integrate the gaussian distribution
using the trapezoidal rule. Only in the case of the binomial distribution,
which is an exact distribution not involving any approximations, do we get
exactly the right answer, namely the total number of tosses of the dice. The
Poisson distribution is very close to the right answer, only really making the
approximation to the value of e. The gaussian distribution, however, misses
by quite a bit, mainly because so much of the integral of this continuous
function is for x ≤ 0.

The Student Edition of matlab User’s Guide contains an introduction
to the program followed by a detailed writeup on each command or function,
listed in alphabetical order. At the end of these detailed writeups there are
a list of similar or related commands, and this is an excellent way to extend
your knowledge of matlab.

9.6 Exercises

1. Formally prove some things that we just glossed over in the text.

a. Prove Eq. 9.1, that is, the standard definition for the weighted average
is the value which minimizes χ2.

b. Use propagation of errors to derive the uncertainty in the weighted
average, i.e., Eq.9.2.

2. Recall problem #4 from Chapter 6. Use the method of least squares to
fit the data for ∆l as a function of ∆T to a straight line. Use the fitted slope
and the uncertainty to determine the coefficient of linear expansion α. (You
can use any program you might have handy, but if you just give the answer
then you can’t get any partial credit.) Also calculate the uncertainty δα.
This can be tedious by hand, but you can have partial credit if you at least
show what needs to be done to calculate it. Are hand estimates just as good
as a fitting program? What are the relative advantages or disadvantages?

3. Let’s suppose you have some peculiar dice which each have 10 faces. The
faces are numbered from 0 to 9. You throw eight of these dice at a time
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and record which numbers land face down on the table. You repeat this
procedure (i.e. throwing the dice) 50 times.

a. For how many throws do you expect there to be exactly three dice
landing with either face 1 or face 5 landing face down?

b. What is the average number of dice you expect to land with either
face 1 or face 5 down, for any particular throw? What is the standard
deviation uncertainty in this number?

c. Use the Poisson approximation to calculate the same number as in (a).

d. Use the Gaussian approximation to calculate the same number as in
(a).

You may want to review the material in the notes concerning Fig. C5.2.

4. A radioactive source emits equally in all directions, so that the intensity
falls off like 1/r2 where r is the distance to the source. You are equipped
with a detector that counts only radioactivity from the source, and nothing
else. At r = 1 m, the detector measures 100 counts in 10 seconds.

a. What is the count rate, and its uncertainty, in counts per second?

b. What do you expect for the fractional uncertainty in the count rate if
you count for 100 seconds instead of 10?

c. Based on the original 10 second measurement, predict the number of
counts you should observe, and its uncertainty, if the detector is moved
to a distance of 2 m and you count for one minute.

5. Suppose you are using a Geiger counter to measure the decay rate of a
radioactive source. With the source near the detector, you detect 100 counts
in 25 sec. To measure the background count rate, you take the source very
far away and observe 25 counts in 25 sec. Random counting uncertainties
dominate.

a. What is the count rate (in counts/sec) and its uncertainty when the
source is near the Geiger counter?
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b. What is the count rate (in counts/sec) and its uncertainty when the
source is far away?

c. What is the net count rate (in counts/sec) and its uncertainty due to
the source alone?

d. Suppose you want to reduce the uncertainties by a factor of 10. How
long must you run the experiment?

6. An experimenter is trying to determine the value of “absolute zero” in de-
grees Celsius using a pressure bulb and a Celsius thermometer. She assumes
that the pressure in the bulb is proportional to the absolute temperature.
That is, the pressure is zero at absolute zero. She makes five measurements
of the temperature at five different pressures:

Pressure (mm of Hg) 65 75 85 95 105
Temperature (◦C) -21 19 41 93 129

Use a straight line fit to determine the value of absolute zero, and its uncer-
tainty, from this data.

7. Fit the following (x, y) values to a straight line. . .

x= 2.5 63 89 132 147
y= 406.6 507.2 551.3 625.5 651.7

. . . and plot the data points and the fitted line.

a. Does it look like a straight line describes the data well?

b. Study this further by plotting the deviations of the fit from the data
points, i.e. ydev=y-yfit. What does this plot suggest?

c. Try fitting fitting the points to a quadratic form, i.e., a polynomial of
degree 2. Is this fit significantly better than the straight line?

8. The following results come from a study of the relationship between high
school averages and the students’ overall average at the end of the first year of
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college. In each case, the first number of the pair is the high school average,
and the second is the college average.

78,65 80,60 85,64 77,59
80,56 82,67 81,66 89,78
87,71 80,66 85,66 87,76
84,73 87,63 74,58 91,78
81,72 91,74 86,66 90,68

a. Draw a scatterplot of the college average against the high school aver-
age.

b. Evaluate the correlation coefficient. Would you conclude there is a
strong correlation between the grades students get in high school and
the grades they get in their first year of college?

9. Using the data in Table 10.1, draw a scatterplot of electrical conductivity
versus thermal conductivity for various metals. (Electrical conductivity is the
inverse of electrical resistivity.) Calculate the linear correlation coefficient.

10. Graph the ratio of the Poisson distribution to the Gaussian distribution
for mean values µ = 2 and for µ = 20. Use this to discuss where the
Gaussian approximation to the Poisson distribtuion is applicable. Repeat the
exercise, but comparing the Gaussian approximation directly to the Binomial
distribution with p = 1

2
.



160 CH 9. STATISTICAL ANALYSIS



Ch 10

Experiment 5: Resistivity of
Metals

If you apply a voltage across two points on a metal, then a current flows
through the metal. We take it for granted that electrons moving through the
metal are carrying that current.

In fact, the physics behind current carriers in metals is far from trivial.
In this experiment we will explore some of that physics. What’s more, we
will do it with a novel technique that measures the resistivity of the metal,
a property only of the type of material and independent of the size or shape
of the conductor. This technique in fact can make measurements of the
sample without actually touching it, and has found a lot of use in modern
applications.

We introduce this experiment at a time when we’ve covered the basics
of electronics and uncertainty analysis, and you will see lots of both while
making these measurements. The circuits will make use of diodes and tran-
sistors, and you will take data using a digital oscilloscope. The data will lend
itself to analysis using some of the curve fitting formulas we’ve derived.

The physics we will cover, including Faraday’s Law which is intimately
connected to the technique, can be found in the following books:

161



162 CH 10. EXPERIMENT 5: RESISTIVITY OF METALS

• Physics, Robert Resnick, David Halliday, and Kenneth Krane,
John Wiley and Sons, Fourth Edition (1992)

– Chapter 32, Sections 1-5: Resistivity

– Chapter 36: Faraday’s Law

• Introduction to the Structure of Matter,
John J. Brehm and William J. Mullin, John Wiley and Sons
(1989) Section 12-3, Especially Pg.593

• Solid State Physics: An Introduction for Scientsts and Engineers, Ronald
F. Brown, El Corral Bookstore,
California Polytechnic State University, Chapter 5 Sec. 1

The technique used in this experiment is based on the following paper:

• Eddy-Current Method for Measuring the Resistivity of Metals
C.P. Bean, R.W. DeBlois, and L.B. Nesbitt
Journal of Applied Physics 30(1959)1976

10.1 Resistance and Faraday’s Law

First we’ll look over the definition of electrical resistivity and how it is related
to resistance. We’ll include a discussion about how the resistance might be
expected to change as a function of temperature. Second, we talk briefly
about the technique developed by Bean and collaborators which uses Fara-
day’s law of induction to measure the resisitivity of a sample.

10.1.1 Resistance and Resistivity

Let’s start with the assumption that Ohm’s law is valid, that is, V = iR
where R is independent of voltage or current. Consider the idealized resistor
pictured in Fig. 10.1. The resistor has a length L and a cross sectional area
A. A voltage drop V is applied across the ends of the resistor. A current i
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Area A

L

i

Figure 10.1: An idealized resistor.

of electrons flows from one end to the other, against a resistance R which is
due to the electrons interacting somehow with the atoms of the material.

Consider Ohm’s law on a microscopic level. The electric field set up
across the ends of the resistor is just E = V/L. The electrons which carry
the current will be spread out over the area A, so at any point within the
resistor you expect a current density j = i/A. Therefore Ohm’s law becomes

E = jρ (10.1)

where R = ρ
L

A

and ρ is the “resistivity” , a property of the material which is independent
of the dimensions of the resistor. In fact, Eq. 10.1 can be derived from the
theory of electrons in metals, as shown in Brehm&Mullin and in Brown.

The resistivity comes from collisions between the electrons and the atoms
of the material, which we now specify will be a metal. In a metal, the
electrons are essentially free, so without any collisions they would continually
accelerate under and applied field with an acceleration a = eE/m where e
and m are the electron charge and mass. However, the collisions cause the
electrons to stop and then start up again, until the next collision. If the time
between collisions is called τ , then the “drift” velocity vd is just

vd = aτ =
eEτ

m

Now if there are n electrons per unit volume in the resistor, then a total
charge q = (nAL)e passes through the resistor in a time t = L/vd. Therefore
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Table 10.1: Electrical and Thermal Properties of Metals

Electrical Temperature Thermal
Resistivity Coefficient Conductivity ΘD

Name Z A (µΩ·cm) (10−3/K)
(

cal
cm·K·sec

)
(K)

Al 13 26.98 2.65 4.29 0.53 395
Fe 26 55.85 9.71 6.51 0.18 420
Cu 29 63.55 1.67 6.80 0.94 333
Zn 30 65.38 5.92 4.19 0.27 300
Sn 50 118.69 11.50 4.70 0.16 260
Pb 82 207.19 20.65 3.36 0.083 86
Bi 83 208.98 106.80 - 0.020 118

the current density is

j =
i

A
=

1

A

q

t
=

1

A

nALe

L/vd
= nevd

in which case we have

ρ =
m

ne2

1

τ
(10.2)

Sometimes people will quote the “conductivity” σ ≡ 1/ρ instead of the re-
sistivity.

Electrical resistivities are listed1 for various metals at room temperature
in Table 10.1. Also included are some thermal properties, which we will see
are closely related to the resistivity through the underlying physics. One of
these is the temperature coefficient of resistivity, defined as (1/ρ)dρ/dT . This
quantity is in fact temperature dependent as we shall see, and the quoted
numbers should be valid near room temperature.

Clearly, the fundamental physics of resistivity lies in the values for the
collision time τ . The interaction of the quantum mechanical electron waves

1Values for Z, A, resistivity, and thermal conductivity are taken from the “Review of
Particle Properties”, Physical Review D50(1994), p.1241-1242. The temperature coeffi-
cient of resistivity, and all data for Zn and Bi, is from the “CRC Handbook of Chemistry
and Physics”, 56th Edition, CRC Press(1975), p.F-166. The Debye temperature is from
the “Handbook of Physics”, 2nd edition, McGraw-Hill(1967), Part 4, Tables 6.1 and 6.3.
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and the quantized lattice of the metal crystal accounts for the collision time in
a pure metal crystal. If there are impurities, then the scattering will contain
an additional contribution. You can write

1

τ
=

1

τCRY STAL
+

1

τIMPURITY

The scattering from the crystal depends crucially on the vibrational energy
stored in the crystal lattice, and therefore on temperature. (See Brehm&Mullin
and Brown for more details.) The impurity scattering is essentially indepen-
dent of temperature.

The connection between the crystal lattice scattering and the temperature
points to some of the most basic condensed matter physics. Note the close
correspondence between the thermal and electrical conduction properties of
the metals listed in Table 10.1. This lead to an early connection between
the heat capacities of various materials as a function of temperature, and
their electrical and thermal conductivities. Using the Debye theory of heat
capacities, Grüneisen calculated the quantum mechanical scattering from the
residual ion sites in the metal, thus obtaining 1/τ . The result is

ρ(T ) ∝ m

ne2

T

MIONΘ2
D

G
(

ΘD

T

)
(10.3)

where MION is the mass of the ion, ΘD is the Debye Temperature (as deter-
mined from the heat capacity), and G(ΘD/T ) is called the Grüneisen function
and is given by

G
(

ΘD

T

)
= 4

(
T

ΘD

)4 ∫ (ΘD/T )

0

u5du

(eu − 1)(1− e−u)
(10.4)

where Tn ≡ T/ΘD is called the normalized temperature. The resisitivity ρ is
proportional to (T/ΘD)G(ΘD/T ) which is plotted in Fig. 10.2. Notice that
this function is roughly linear for temperatures greater than ∼ 0.3ΘD or so,
giving you some idea of the range over which the fourth column of Table 10.1
is valid. The slope of this line is the “Temperature Coefficient” listed in the
table. Remember that this formula is only valid for the contribution to
resistivity from scattering from the crystal lattice.
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Figure 10.2: The function (T/ΘD)G(ΘD/T ).

10.1.2 The Eddy Current Technique

The technique we use measures resistivity directly, using the method devel-
oped by Bean. The idea is based on Faraday’s law, which gives the EMF
(i.e. voltage) induced in a coil that surrounds a magnetic field which changes
with time. That is, you measure a signal V (t) that is proportional to some
dB/dt. This magnetic field B comes from the “eddy currents” left in a metal-
lic sample when the sample is immersed in a constant magnetic field which
is rapidly switched off.

Figure 10.3 shows how this is done. In Fig. 10.3(a), a cylindrical metallic
bar is immersed in a constant magnetic field whose direction is along the axis
of the cylinder. We assume the bar is not ferromagnetic, so the magnetic field
inside is essentially the same as it is outside. Remember that the bar is filled
with electrons which are essentially free to move within the metal.

Now shut the field off abruptly. By Faraday’s Law, the electrons in the
metal will move and generate a current so that tries to oppose the change in
the external magnetic field. These so-called “eddy currents” are loops in the
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0

(a) Field On (b) Field Shut Off

H

H

Figure 10.3: The eddy current technique for measuring resistivity. (a) A
magnetic field H0 permeates a cylindrical metal sample. (b) Eddy currents
set up when the field is shut off generate a field H of their own. The eddy
currents, and therefore H, dcrease with time at a rate that depends on the
resistivity.

plane perpendicular to the axis of the sample, and they generate a magnetic
field of their own. See Fig. 10.3(b). However, as soon as the external field
is gone, there is nothing left to drive these eddy currents, and they start to
decay away because of the finite resisitivity of the metal. The time it takes
for the currents to decay away is directly related to the resistivity, as we shall
see.

We again use Faraday’s Law to detect the decaying eddy currents. The
magnetic field set up by the eddy currents also decays away with the same
time dependence as the currents. Therefore, if we wrap a coil around the
sample, Faraday’s law says that an induced EMF shows up as a voltage drop
around this coil. This voltage drop is our signal, and the rate at which it
decays to zero gives us our measure of the resisitivity of the metal sample.

In order to determine the voltage signal as a function of time, one needs
to solve Maxwell’s equations in the presence of the metal. The derivation is
complicated, but outlined in Bean’s paper, where a series solution is obtained
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by expanding in exponentials. For a cylindrical rod, this series takes the form

V (t) ∝
∞∑
i=1

exp(−λ2
iαt)

where α is proportional to ρ and the λ are roots of the zero-order Bessel
function, i.e. λ1 = 2.405, λ2 = 5.520, λ3 = 8.654, and so on. Since the
λ increase with each term, for long enough times, only the first term is
significant because all the rest die away much faster. That is, the falloff of
V (t) with time will look like a single exponential if you wait long enough,
but will be more complicated at shorter times.

For a cylindrical metal sample where the external magnetic field points
along the axis of the cylinder, the result is

V (t) = V0e
−t/tE (10.5)

where tE = 2.17× 10−9 Ω · sec
cm

R2

ρ
(10.6)

and V0 = 10NρH0 (10.7)

where t = 0 is the time when the external field is switched off. In this
equation, R is the radius of the cylinder, expressed in cm, and ρ is the
resistivity of the metal, expressed in Ωcm. Also, N is the number of turns in
the detector or “pickup” coil and H0 = µ0in (in SI units) for a magnetic field
H0 set up by a solenoid carrying a current i through n turns. This equation
is only valid for times t on the order of tE or larger. At earlier times, there
are transient terms left over which cause V (t) to fall more rapidly than given
by Eq. 10.5.

Bean, et.al., also derive the equivalent expression for a rod of rectangular
cross section, instead of for a cylinder. They find

V (t) = V0e
−t/tE

where tE = 1.27× 10−9 Ω · sec
cm

1

ρ

a2b2

a2 + b2

where the cross sectional dimensions of the rectangle are a and b, both in
cm.
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Figure 10.4: Switching circuit for turning the magnetic field on and off. It
is a good idea to check the current through the solenoid by measuring the
voltage at the testpoint, timed against the HP3311A square wave generator.

10.2 Measurements

The lifetime tE given by Eq. 10.6 is on the order of tenths of milliseconds.
Therefore, the magnetic field must be switched off considerably more rapidly
than that. This is hard to to mechanically, so we will resort to an electrical
switch, using a transistor.

The circuit which produces the switching magnetic field is shown in
Fig. 10.4. A garden variety 6 V/2 A power supply puts current through
the solenoid, creating the magnetic field H0. However, after passing through
the solenoid, the current encounters a transistor (321/TIP 122) instead of
passing directly back to ground. The lead out of the solenoid is connected
to the collector on the transistor, and the emitter is connected to ground.
The base is connected through a 1 kΩ resistor to the 600Ω output of the
HP 3311A waveform generator. The waveform generator is set to produce
a square wave, oscillating between around −10 V to +10 V with a period
of a few milliseconds. Let’s see what this implies for current through the
solenoid.

Recall the transistor rules back in Sec. 2.4.2. (You in fact are using an
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npn transistor.) First, the DC power supply is connected so that the solenoid
is always positive with respect to ground, so the collector is always above the
emitter. Second, the base-emitter acts like a conducting diode, so there will
be a voltage drop across it of around 0.6 V when it conducts. Also, if there
is no current through the base, then the base-collector is reversed biased and
no current flows through the transistor, or therefore through the solenoid.
That is, the switch is off.

This transistor is actually a “darlington pair” which effectively gives a
single transistor with a gain parameter hFE = β = 1000 or so. Trust me that
VCE = 6 V does not exceed the specifications. Now when the waveform gen-
erator is at +10 V, the current through the base is iB ≈ 10 V/1 kΩ=10 mA.
This turns the switch on and lets the current flow through the solenoid pretty
much as if the transistor wasn’t there, so long as iC � βiB = 10 A. You might
want to measure the resistance in the solenoid coil to make sure it doesn’t
draw a lot of current, but since you’re using a 2 A power supply, it is a good
bet that you’re in the clear.

So, when the square wave generator is at +10 V, the solenoid conducts.
However, when the generator switches to −10 V (or presumably anything
less than around 0.6 V), the solenoid and the magnetic field shut off. This is
t = 0 in Eq. 10.5.

The pickup coil is wound on a separate tube which can be inserted inside
the solenoid. You can then insert and remove different metal samples from
the inside of the pickup coil. You might think that all you need to do is
connect the terminals of the pickup coil to an oscilloscope, and that is pretty
much what you do, but there is one complication. The magnetic field shuts
off so fast, that the instaneous induced voltage in the pickup coil is very
large. That is, ∆t is so small that dB/dt ≈ ∆B/∆t and so V is enormous.
It is so large that it screws up the input circuitry of most oscilloscopes, since
they are designed to guard against large voltages.

To fix this problem, the simple circuit shown in Fig. 10.5 is used to
connect the pickup coil terminals to the oscilloscope input. The two diodes
are arranged so that any current is taken to ground, so long as the voltage
is bigger than +0.6 V or smaller than −0.6 V, for VF = 0.6 V. That is, the
circuit “clamps” the input to the oscilloscope so that it never gets very big,
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In (from pickup coil) Out (to scope)

Figure 10.5: Clamping circuit for oscilloscope input.

but still big enough to make the measurement.

Sometimes you will see the signal “ring” just as the switch shuts off. That
is, you see the decaying exponential but a rapid oscillation is superimposed
on it, and this gets in the way of measuring the decay time. (Your circuit
has lots of “loops” each of which is essentially an inductor. Any capacitance
somewhere will cause oscillations, but the exact source can be hard to pin
down.) If the ringing goes away while the signal is still decaying exponen-
tially, just use the data past the point where the ringing is gone. If you
don’t have that luxury, attach a resistor in parallel with the scope input. It’s
best if you can get a variable resistor, and play with the values so that the
exponential decay is unaffected but the ringing is thoroughly damped out.

You can use an analog oscilloscope to set up the circuits and convince
yourself that things are working correctly, but to take data you should use
one of our LeCroy 9310 digital oscilloscopes. Be sure that the input impedance
is high and that the coupling is DC. Things will look weird otherwise.

10.2.1 Procedure

Before measuring the resistivity, you should convince yourself that you know
what the solenoid circuit is doing. Connect up the components according to
Fig. 10.4. Note that the collector on the switching transistor is connected to
the metal block. Do not let this block come in contact with ground. Hook
up the output of the waveform generator to one of the input channels of the
oscilloscope, and confirm that you see a square wave of the right period and
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amplitude. Make adjustments if necessary. It is probably a good idea to keep
this signal always in one oscilloscope channel throughout the measurements
since it is a simple way to tell when the magnetic field is on (square wave
high) or off (low).

Now connect a probe to the junction between the solenoid and the transis-
tor collector. View this on the other channel of the oscilloscope, and confirm
that you see what you expect. That is, when the square wave is high, the
solenoid is conducting and the voltage at this point should be around +1.2 V,
i.e. the sum of the two forward voltage drops for the CB and BE diode equiv-
alents for the transistor. On the other hand, when the square wave is low,
the solenoid should not be conducting and there is no voltage drop across it,
so the voltage at this junction should be around +6 V, i.e. the voltage of the
DC power supply. You can remove this probe now since you will need this
oscilloscope channel to make the resistivity measurements.

Next, connect the pickup coil to the clamping circuit and plug it into
the second channel of the scope. Don’t put any metal sample in just yet.
You should see a voltage spike, alternaltively positive and negative, when
the magnetic field switches on and off. This is just Faraday’s law in its most
brutal form. If the diode clamps were not there, the voltage spikes would be
so large the protection circuit on the scope input would mess up the signal.

Now you’re ready to take some data on resistivity. By this time, you
should be using one of the LeCroy 9310 digital oscilloscopes. You can just
use the cursor to read the values from the decaying exponential trace, or
you can store the data on a floppy disk for later analysis. (See Sec. 3.7.1 for
general instructions.)

Take the 5/8 inch diameter aluminum (alloy) cylinder and insert it into
the pickup coil tube. Watch the pickup coil signal on the scope as you do
this. The effect of the decaying eddy currents should be clear. You may see
some transient oscillations of the signal right after the field shuts off, but
there should be plenty of time left after these oscillations die away for you
to get a smooth curve.

There are several samples for you to try. Don’t forget that you can do
the same thing with a rectangular bar. It might be a good idea to try that.
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10.2.2 Analysis

The analysis is rather straightforward. The simplest thing to do is just stop
the trace on the digital oscilloscope, and use the cursors to read out several
points. Do this with the 5/8 inch aluminum rod. Tabulate this V (t) data
and plot it on semilog paper. Extract the value of tE and determine the
resistivity ρ from Eq. 10.6. Do you get the value you expect? Don’t forget
that you are dealing with an alloy, not the pure metal. Explain the difference.
Make an estimate of the experimental uncertainty in tE and propagate that
uncertainty to the value of ρ. Show whether or not any difference you see is
within this experimental uncertainty.

A more complete analysis is best done by saving the data on a floppy disk,
and using matlab, or some other program, to fit the trace to a decaying
exponential. You might refer to sections 1.4.3 and 3.7.1. After transferring
the data to a PC and converting it to an ascii file, called sc1.lis, the following
matlab commands produce the plot shown in Fig. 10.6:

fid=fopen(’sc1.lis’);

a=fscanf(fid,’%f’)’;

fclose(fid);

chan=[3000:50:7000];

vdat=a(chan);

lvdat=log(vdat);

coef=polyfit(chan,lvdat,1);

efit=exp(polyval(coef,chan));

plot(chan,vdat,’o’,chan,efit);

The data as stored in sc1.lis is 10002 numbers, that is, the list of voltage
values as stored in the trace. This is best read in directly with the fscanf
function, yielding an array a that has 10002 elements. Note that we take
the transpose of a so that it is a column vector. We don’t need all those
numbers, so a separate array chan is defined which are the channels we will
use. (Note the upper and lower limits are set to 3000 and 7000 respectively,
based on the data as taken. Your case will likely be different.) The array
vdat contains the voltage values only at the channel values in chan.



174 CH 10. EXPERIMENT 5: RESISTIVITY OF METALS

3000 3500 4000 4500 5000 5500 6000 6500 7000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 10.6: Sample data analyzed with matlab.

This is a simple case to fit, because we just take the logarithm and then
fit to a straight line. Taking the exponential of this straight line gives the
function that fits the data, and that is what we plot in Fig. 10.6. The array
coef contains the fit parameters which give the exponential decay time. You
might also compare your result for V0 to the expression given in Eq. 10.7.

It is possible to use the digital oscilloscope to extract

d

dt
log10〈V (t)〉 = − 1

tE
log10 e

directly from the display, using the “Measure/Parameters” menu after doing
some manipulations with the “Math” menu. This number, in the time region
where it is a constant, gives you the resistivity ρ through Eq. 10.6. On the
other hand, it takes some time to get a good value for the average 〈V (t)〉, and
for some of your measurements (particularly those that involve a temperature
change) you might not have enough time.

The main source of systematic uncertainty is likely to come from the times
over which you fit the decaying voltage signal. At short times, the decay is
not a pure exponential because the transient terms have not all died away,
so you want to exclude these times when you fit. At long times, there may
be some left over voltage level that is a constant added to the exponential,
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and again, a pure exponential fit will be wrong. Try varying the upper and
lower fit limits until you get a set that gives the same answer as a set that is
a little bit larger on both ends.

You should convince yourself that you are getting consistent results. Use
the 1/2 inch alumimum alloy rod and measure it as well. Check to make sure
that the decay lifetimes tE scale like R2. This should certainly be the case
to within the experimental uncertainty you estimate.

You also have several pure (> 99%) aluminum rods, that are 1/2 inch
diameter. There are also various rods of copper, one of which is more than
99.9% pure, and a rod of lead which is 99.999% pure.

10.3 Advanced Topics

Having learned how to take and analyze data on resistivity, you can now
investigate the temperature dependence. It is best to start simply by com-
paring the two samples of 1/2 inch diameter aluminum rod, one an alloy and
the other a (relatively) pure metal. Vary the temperature by immersing the
samples in baths of ice water, dry ice and alcohol, and liquid nitrogen. You
can also use boiling water, and if you’re really ambitions, hot oil.

These measurements will be tricky. You must remove the sample from
the bath and measure the eddy current decay before the temperature changes
very much. Probably the best way to do this is to take a single trace right
after you insert the sample, stop the oscilloscope, and store the trace to disk.
Then, you can analyze the trace offline to get the decay constant.

You might try to estimate how fast the bar warms up by making ad-
ditional measurements after waiting several seconds, e.g. after saving the
trace on the floppy. This would best be done with a sample whose resistivity,
and therefore tE can be expected to change a lot with temperature. Pure
aluminum is a good choice.

Remember that the temperature dependence will be much different for the
pure metal than for the alloy. Explain why. Try to estimate the contribution
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to the mean free path of the electrons due to the impurities.

The other (pure) metals will give different temperature dependences. The
Grüneisen function should describe the resistivity as a function of tempera-
ture for all pure metals. This is a function, however, of the quantity θD/T ,
where T is the temperature and θD is the Debye temperature for that par-
ticular metal. Therefore, different metals will give you different functions of
T , but they should all give a universal shape when plotted as a function of
θD/T . For your convenience, the Debye temperatures for various pure metals
is given in Table 10.1.

Note that you can calculate the Grüneisen function using matlab. A
series of statements like

u=[x/100:x/100:x];

intg=u.^5./((exp(u)-1).*(1-exp(-u)));

G(m)=4*trapz(u,intg)/x^4;

will calculate the value of G(x = 1/Tn). The plot in Fig. 10.2 was made by
embedding these statements in a for loop which varied the value of Tn over
the appropriate range.



Ch 11

Light Production and Detection

Light is everywhere and we use it all the time. Nature is full of it because
light represents a range of wavelenghts in the electromagnetic spectrum that
is naturally emitted and absorbed by matter. We use light in many different
ways when performing experiments. Furthermore, there is a good deal of
physics in studying light itself.

I will be a little loose in my use of the word “light”. Light is electromag-
netic radiation with wavelength greater than ∼150 nm (=1500 Å) and less
than several tens of microns. This range is a bit arbitrary, but is laboratory
based. If light has a wavelength shorter than 150 nm or so, it is very hard
to reflect from mirrors, and it will not penetrate far in most any material, so
nothing is transparent to it. On the other hand, if the wavelength is more
than several tens of microns long, then it is on the order of distances that
can be seen with the naked eye, and our intuitive feeling for “light” breaks
down.

A fine book which describes the use of light in the laboratory (and which
contains many other excellent discussions on techniques used in experimental
physics) is

• Experimental Physics: Modern Methods, by R. A. Dunlap,
Oxford University Press (1988); Chapters 8, 9, and 10

177
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Table 11.1: Wavelengths of Visible Light

Wavelength
Color Range (nm)
Red 622-770

Orange 597-622
Yellow 577-597
Green 492-577
Blue 455-492

Violet 390-455

Of course, we can see just a portion of the spectrum which we call “light”.
This portion ranges from around 400 nm to 800 nm, but the limits depend on
your particular set of eyes. As listed by Dunlap and relisted in Table 11.1,
the visible spectrum is broken up into the colors of the rainbow in differ-
ent bands of wavelengths. Light with wavelengths longer than 770 nm is
called “infrared” or IR. Light with wavelengths shorter than 390 is called
“ultraviolet” or UV.

Recall some common notation. We use λ for wavelength, and typical units
are nm (10−9 m) or Å (10−10 m), although microns (µm) are typically used
in the IR. Frequency ν = c/λ, and angular frequency ω = 2πν, are measured
in Hz=cycles/sec. The energy of a photon at a particular wavelength is
E = hν = h̄ω = hc/λ. It is convenient to remember this relation in the form

E (in eV) =
1239.8

λ (in nm)

In the visible part of the spectrum, the energy of a typical photon is ∼few eV
and frequencies are several×1014/sec.

The rest of this chapter discusses sources of light including thermal and
line sources as well as lasers, and methods of measuring light intensity. Very
important topics such as optical spectroscopy and polarimetry are left to the
experiments which depend most heavily on them. Optical interferometry is
a very powerful technique, but is not used in our course so we only mention
it in passing. Dunlap, however, is a good source for information on all of
these.
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11.1 Sources of Light

Light production can be traced to the motion of atomic electrons and, to
some extent, nuclei. These are charged particles that emit electromagnetic
radiation when accelerated, and in nature much of this radiation is in the
optical region.

If the motion is that of electrons bound up in individual atoms or molecules,
then quantum mechanics tells us that only transitions between well-defined
energy states are possible. In that case, the light will have a spectrum con-
sisting of lots of discrete “lines” at wavelengths corresponding to the energies
of transition between discrete states. On the other hand, if the radiation is
from some sort of collective action of all the atoms, the spectrum will be
continuous. Of course, the continuous spectrum can result from lots of very
closely spaced energy levels giving discrete lines that are packed together.
Sometimes, therefore, the time spectrum shows both discrete and continuous
features.

11.1.1 Thermal Radiation

If you make something very hot, it glows. The light it gives off is essentially
continuous. It is pretty well described as if it were a black body, that is, as
if all the light incident on it were absorbed. The energy emitted by a black
body is straightforward to derive based on “cavity radiation”. The intensity
(i.e. J/m2 per sec·sr) of emitted radiation between frequencies ν and ν + dν
is given by

I(ν)dν =
2πh

c2
ν3

ehν/kT − 1
dν (11.1)

Recall that the factor
(
ehν/kT − 1

)
forces I(ν) → 0 as ν → ∞ in agreement

with experiment. This factor arises from Planck’s hypothesis that light is
quantized. It is simple to rewrite this equation in terms of the wavelength λ
since ν = c/λ and dν = (c/λ2)dλ. That is

I(λ)dλ =
2πhc2

λ5

1

ehc/λkT − 1
dλ
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Figure 11.1: Black body radiation spectrum

To make something hot enough to glow, you need to raise its temperature
to more than 1500 K or so. Figure 11.1 plots the photon intensity as a
function of wavelength λ, at T = 1500 K. Only a very small portion of the
spectrum at shorter wavelengths extends into the visible region (λ ≤ 770 nm),
with most of the photons at the “red” end of the range.

This explains a common phenomenon. As you slowly turn up the heat,
you first see a red glow. (You can still get a severe burn even if there is
no observable glow, however!) Increasing the temperature further pushes the
spectrum to shorter wavelengths (higher energies, so higher frequencies), and
the light is no longer biased to the red end. In fact, the entire spectrum is
pretty much filled out, and the glow is white. If you increase the temperature
further, the object will probably burn up or melt.

This is how an ordinary incandescent light bulb works. It gives off a white
light, and can be used to illuminate many things besides this page. If you
need light at any particular optical wavelength, shine a light bulb at your
experiment and you will get some. Such lamps are very useful in the lab, but
the are often limited in intensity. If you need more photons than you can get
from a lamp, you have to resort to some discrete line light sources.



11.1. SOURCES OF LIGHT 181

11.1.2 Discrete Line Sources

For an partcle sitting in some potential well (such as an electron in an atom),
only specific energy states are permitted. This is a consequence of quantum
mechanics. If an electron falls into a lower energy state thant the one it is
in, the atom emits one photon whose energy is given by the difference in
energy between the two levels. It takes around 10 eV to ionize an atom in its
ground state, so a zero energy free electron would emit around 10 eV if it fell
into the ground state. This is an upper limit to the energy of the photons
emitted in atomic transitions, and corresponds to λ = 125 nm. This is well
into the UV, but most photons will be from lower energy transitions and will
have longer wavelenghts, so there are typically many transitions in or near
the visible region.

The prototypical example of these kinds of transitions are in the hydrogen
atom. We put off the explicit discussion of this case until Experiment 6, but
the only thing special about one-electron atoms is that they can be solved
exactly. Even in atoms with many electrons, these kinds of “electronic”
transitions are still of roughly similar (i.e. optical) energies and are very
common. Hydrogen, in fact, only has one visible line (in the red) that is not
blue or shorter in wavelength. Neon, on the other hand, has dozens of lines
in the red and orange, but none in the blue. (Do you recall what a neon
light looks like?) Mercury and sodium vapor, in contrast, have several lines
throughout the entire region.

The trick to making light from a discrete light sources is to bump electrons
out of the atoms. The electrons then fall back into the various holes left
behind. You can remove electrons in a variety of ways, but the best is
ususally through an electric discharge.

Non-electronic, but nevertheless discrete, transitions are not possible in
atoms, but they are possible in molecules. The individual atoms in the
molecules can vibrate relative to each other, giving rise to new energy levels
similar to those in the harmonic oscillator. The spacing of these energy levels
is on the order of a tenth of an eV, so the transitions have λ ≈ 10 µm or so,
well into the IR. The atoms may also rotate around one another, giving even
more energy levels but this time analagous to the rigid rotor instead of the
harmonic oscillator. Here the energy levels are spaced by hundredths of an



182 CH 11. LIGHT PRODUCTION AND DETECTION

eV or smaller, so the emitted photons approach a millimeter in wavelength,
which is into the “radio” region and out of the optical.

However, all these rotation and vibrational states are built on top of
various electronic excitations, and cause the different electronic transition to
become “split” into lines clustering about the central wavelength. These are
also covered in more detail in Experiment 6, but for now you should realize
how rich they make the spectra of atoms and molecults, even in a tiny portion
of the spectrum like the optical region.

11.1.3 Lasers

Lasers are extremely useful light sources that find their way into many appli-
cations, including a lot in this course. We won’t go through a very detailed
explanation of how lasers work, but it is important to understand how they
differ from either thermal or standard discrete line sources. Again, Dunlap
contains a reasonably complete discussion.

Lasers are examples of discrete line sources. The difference is how the
excited electronic state gets de-excited. In standard sources, the excited
state decays spontaneously, whenever it feels like it, so the light that comes
out is rather random in character. In lasers, however, the de-excitation is
“stimulated” and the light is anything but random.

Stimulated decay of an excited state happens whenever a photon with
energy very close to the excitation energy passes near the atom. This stim-
ulates the emission of a photons with the same wavelength as the incident
photon. Furthermore, the emitted photon will travel in the same direction as
the incident photon and will be in phase with it. If these two photons then
come upon two more atoms in the same excited state, a total of four photons
(all with the same energy and moving in the same direction and with the
same phase) are present.

These four photons can produce four more copies of themselves, and so
on, and a beam of light is produced. This is called coherent light and it is
quite intense, among other things, since the strict phase correlation prevents
destructive interference among the various photons. This is how we produce
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Figure 11.2: Schematic representation of a laser

Light Amplification through Stimulated Emission of Radiation, or LASER
for short.

There is a problem, however. For a laser to work, we need more atoms
or molecules in the excited state than in the ground state. This can never
happen at any finite temperature for matter in thermal equilibrium, so we
must find some artificial way of creating this so-called population inversion.
We can use a lamp or electrical discharge to create excited states, but they
will likely decay spontaneously before we can build up a significant number.

The trick is to identify specific states called “metastable” states, in what-
ever material you can find them in. These metastable states, because of
quantum mechanical selection rules, have very long lifetimes, because transi-
tion to lower energy states are strongly inhibited. This also means that it is
hard to excite the states directly, but we get around that by exciting states
above the metastable state, and letting them decay to it. Once there are
a lot of metastable states populated relative to the ground state, the laser
can do its thing. This is shown schematically in Fig. 11.2. This suddenly
depletes the metastable state and gives a laser light “pulse”, after which the
metastable states can be repopulated.

In practice, the lasing1 material sits in an optically resonant cavity that
traps photons inbetween twomirrors for many reflections. This is how the

1The acronym LASER has become part of English as many parts of speech, such as
the adjective lasing material or transition, and as the verb to lase.
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amplification stage is actually achieved, and the physics of this resonant
cavity is actually quite elegant. Experiments in a laboratory optics course
can study this in detail. These experiments are not in our course, however,
so I won’t go into more detail here.

Many types of lasers are commercially available. Probably most common
is the He-Ne gas laser, which lases at three lines, one in the visible (632 nm)
and two in the IR (1.15 µm and 3.39 µm). The lasing transitions are between
different excited states in the Ne atom, and do not include the ground state.
This makes it possible to operate continuously, as opposed to pulsed.

Lasers based on semiconductor diodes are becoming very popular and
cheap. They operate in the near IR, and even can be tuned over some range
of wavelengths, although this feature is likely to give you headaches the first
time you try it. Lasers that can be tuned over large wavelength ranges are
also available, and generally go by the name of dye lasers. However, these are
professional devices that are touchy and expensive to operate, so you are not
likely to encounter them in a basic experimental physics laboratory course.

11.2 Measuring Light Intensity

If we are going to do experiments with light, we have to learn to measure
it. There are several properties of light that can be measured, for example,
its intensity, wavelength, or degree of polarization. In this section we discuss
ways to measure the intensity, either as energy per unit time or number of
photons per unit time.

In order to work with intensity quantitatively, we need to convert it to a
voltage level which can be recorded or digitized or whatever. However, the
simplest option, namely photographic film, still lets you distinguish “dark”
from “light” and has some advantages. We discuss it first.
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11.2.1 Photographic Film

Photographic film uses light and chemical reactions to record light intensity.
It of course has some obvious drawbacks. For example, it is hard to convert
this record into a voltage, although film scanning machines are built for this
purpose. Another disadvantage is that it is inconvenient to record large
amounts of data this way, unless some fast and efficient scanning method is
available. On the other hand, film has some great advantages as well.

First of all, film is economical. You can record light intensity over quite a
large area for very little money. Astronomers, for example, photograph large
sections of star fields on a single photographic plate giving and accurate and
reliable record, all for only a few dollars (in film) per picture.

Secondly, film gives you data that you can easily relate to. Distances
between images are true, at least to the extend of your focussing device, and
you can remeasure or recheck them easily. There can be an abundance of
data on a single photograph, and you can always go back to the same picture
if you want to recheck things.

Most importantly, however, film has outstanding position resolution, es-
pecially for its price. This resolution is limited by the grain size of the film,
and 10 µm is simple to achieve while 1 µm is routine with a little care. What’s
more, this resolution can be achieved simultaneously over many centimeters
of distance. This is almost impossible to achieve with direct electronic means,
and can be quite important to astronomers measuring star maps to optical
spectroscopists measuring precise wavelengths.

An important tradeoff is between resolution and speed. A film like Kodak
Tech-Pan can be used routinely for 1 µm resolution or smaller, but it takes
a lot of photons to convert a grain. Thus, such a film is limited to cases
of rather large light intensity or where you can afford long exposure times.
Somewhat faster films, like Kodak Pan-X, are much faster, and still give
resolutions perfectly suitable for most applications.
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Figure 11.3: How a photomultiplier tube works. The connection pins are
used to supply high voltage to the individual dynodes, and to extract the
anode output.

11.2.2 Photomultiplier Tubes

The photomultiplier tube (sometime shortened to “phototube” or PMT) is
probably the oldest device for converting optical photons directly into elec-
trical signals. It does this with very high efficiency and is very reliable. Some
can detect single photons and easily distinguish the signal from background
noise. Others are made to measure beams of light. Photomultiplier tubes
have been in development for more than 50 years, and have evolved into
lots of varieties, some of which are quite sophisticated. The basic operation,
though, is quite simple.

The photomultiplier tube is based on two effects, both of which involve
the emission of electrons from the surface of materials. The first is the pho-
toelectric effect, where a photon is absorbed by an electron on the material
surface. The electron them emerges with some small kinetic energy, thus a
photon is “converted” into an electron. The second effect is that when an
electron of some moderate energy strikes a surface, some number of electrons
are emitted. (This process is called “secondary emission”.) Secondary emis-
sion is used to multiply the initial electron into a large number of secondary
electrons. All of this takes place on surfaces enclosed within an evaculated
glass tube, hence the name Photo-Multiplier-Tube.

A schematic photomultiplier tube is shown in Fig. 11.3. The photoelectric
effect acts at the front surface, or face, of the PMT, and there one photon
is converted into one electron. There is a potential difference of ∼100-300 V
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between the face and the first “stage” of the tube, and this accelerates the
electron. Then this 100-300 eV electron strikes the first stage, it emits more
electrons, which are accelerated to the next stage, and so on. These materials
which act as stages are called “dynodes” since they act both as acceptors of
electrons (i.e. anodes), and emitters of electrons (i.e. cathodes). After several
(usually between 6 and 14) stages, a significant number of electrons emerge
in place of the incident photon. Electrical connections are made with the
outside world by pins which penetrate the glass envelope on the end.

The front window of the PMT is made of glass, or some other transparent
material. A thin layer of some optically active material is evaporated on
the inner surface of the window. This layer, called the photocathode, is
semi-transparent and is usually brownish in color. If the tube breaks and
air fills the inside, the photocathode oxidizes away and the brownish color
disappears. In this case, the photomultiplier tube will never work again.

A photon incident on the window penetrates it if it can. In fact, glass
window tubes become very inefficient in the near UV because photons with
wavelengths below 350 nm or so are quickly absorbed in ordinary glass. Spe-
cial UV transmitting glass is available on some photomultipliers tubes, and
this can extend the range down to 250 nm or so. To get further into the
UV, special windows made of quartz or CaF2 are necessary, and the devices
become very expensive.

If the photon penetrates the window, it reaches the photocathode and has
a chance to eject en electron through the photoelectric effect. Recall that in
the photoelectric effect, a photon of energy hν gives rise to an electron of
kinetic energy K via

K = hν − φ

where φ is called the “work function” and represents the energy needed to
remove the electron from the surface. Several different materials are used for
photocathodes, but all are designed to have work functions small enough so
that optical photons can eject electrons. It is in fact hard to find materials
for which φ is less than ≈2 eV, so photomultipliers become quite insensitive
at the red end of the visible spectrum.

The probability that an incident photon ejects an electron from the pho-
tocathode is called the “Quantum Efficiency” or QE. It is clearly a function
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Figure 11.4: Spectral sensitivity (ske) and quantum efficiency (ρ) for some
photomultiplier tube windows and photocathodes. From the Philips photo-
multiplier tube handbook.

of wavelength λ, tending to zero both for λ ≤UV, and λ ≥red. It is also a
function of window and photocathode material for the same reasons. Fig-
ure 11.4, taken from the Philips photomultiplier tube handbook, shows the
“spectral sensitivity” S in mA/W for various combinations of windows and
photocathodes. Manufacturers tend to quote S rather than QE since it is
closer to what the actually measure. By shining so much light enery per unit
time (P ) on the face of the PMT, and measuring the current (i) of electrons
coming off the photocathode, they determine

S ≡ i

P
=
NELECTRON × e/t

NPHOTON × hν/t
=
NELECTRON

NPHOTON
× λ

hc/e
= QE × λ

1.24

where S is written in mA/W and λ is in nm. Curves of constant QE are
drawn in on Fig. 11.4. Typical quantum efficiencies are maximum in the blue
region and range upwards of 25% or so.
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Now let’s return to Fig. 11.3 and see how the photomultiplier tube ampli-
fies the signal. The incident photon has ejected an electron with something
like an eV of kinetic energy. This electron is accelerated to the first dynode,
and strikes it. The dynodes are constructed out of materials that give a sig-
nificant mean number of electrons out for each that strike the surface. This
multiplication factor δ is a strong function of the incident electron energy,
and is roughly linear with energy up to a few hundred eV or so for most
materials used in PMTs.

There is clearly some randomness associated with the operation of a pho-
tomultiplier. The quantum efficiency, for example, only represents the prob-
ability that a photon will actually eject an electron. The result is that the
output voltage pulse corresponding to an input light signal will have random
fluctuations about a mean value. We therefore frequently talk in terms of
the “mean number of photoelectrons” NPE that correspond to a particular
signal.

Assuming that Poisson statistics dominate, this number will dominate
the size of the fluctuations, since the numbers of electrons ejected in subse-
quent stages will be larger. That is, the fractional RMS width of the signal
fluctuations should be given by

√
NPE/NPE = 1

√
NPE . This can be particu-

larly important if the signal corresponds to a very low light level, i.e. a small
value of NPE . In this case, there is a probability e−NPE that there will be no
photoelectrons ejected and the signal will go unobserved.

The gain g of a photomultiplier tube is the number of electrons out the
back (i.e. at the anode) for a single incident photon. So, for an n−stage
tube,

g = δ1 × δ2 · · · × δn ≈ δn

where we tacitly assume that δ is the same at each stage, i.e., all dynodes
are identical and the potential difference across each stage is the same. If δ
is proportional to V , then these assumptions2 predict that g is proportional
to V n. Thus if you want to keep the gain constant to 1% in a 10-stage
photomultiplier tube, you must keep the voltage constant to 0.1%. This is
not particularly easy to do.

2These assumptions are almost always wrong. We are using them just to illustrate the
general performance of the PMT. For actual gain calculations, you must know the specific
characteristics of the PMT.
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The accelerating voltage is usually applied to the individual stages by
a single external high voltage DC power supply, and a multi-level voltage
divider. The voltage divider has output taps connected to each stage through
the pins into the tube. This is connected to the circuit which extracts the
signal from the anode. The extraction circuit and voltage divider string are
housed together in the photomultiplier tube “base”, and their design will
vary depending on the application. The base is usually some sort of closed
box with a socket which attaches to the tube pins. Two examples of base
circuits, taken from the Philips photomultiplier tube handbook, are shown
in Fig. 11.5. If the signal is more or less continuous, and for example a meter
reads the current off the anode to ground, you must use the negative high
voltage configuration so that the anode is at (or near) ground. If the output
is pulse-like, such as when “flashes” of light, or perhaps individual photons,
are detected intermittently, then it is usually best to use the positive high
voltage configuration since that leaves the photocathode at ground. In this
case, and RC voltage divider at the anode output allows fast pulses to reach
the counter, but the capacitor protects the downstream electronics from the
high DC voltage.

No matter what circuit is used, either those in Fig. 11.5 or otherwise,
you must choose the resistor values carefully. Although the stage voltages
only depend on the relative resistor values, you must make sure the average
current passing through the divider string is much larger than the signals
passing through the PMT. Otherwise, the electrons in the multiplier will
draw current through the resistors and change the voltage drop across the
stage. Even if this is a small change, it can affect the gain by a lot since the
gain depends on voltage to a large power.

On the other hand, you can’t make the resistors arbitrarily small so the
divider current gets very large, because this would require a big and expen-
sive high current, high voltage DC power supply. What’s more, the power
dissipated in the divider string, i.e. i2R, gets to be enormous making things
very hot. Tradeoffs have to be made, and always keep your eye on the gain.
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Figure 11.5: Typical photomultiplier base circuits. The upper figure shows
connections for a positive high voltage configuration, while the lower shows
negative high voltage.



192 CH 11. LIGHT PRODUCTION AND DETECTION

11.2.3 Photodiodes

Photodiodes are an alternative to photomultipliers. Both turn light directly
into electrical signals, but there are distinct differences. First, let’s learn how
photodiodes work.

Recall our discussion about diodes in Sec. 2.4.1. A piece of bulk silicon
is essentially an insulator. Only thermally excited electrons can move to the
upper, empty energy band to conduct electricity, and there are few of them
at room temperature. By adding n-type or p-type dopants, lots more charge
carriers can be created, and it’s a much better conductor. A piece of silicon
doped n on one end and p on the other, a pn junction, only conducts in one
direction. If a “reverse” voltage is applied, only a tiny current flows, due to
the small number of thermally excited electrons.

A photodiode uses light (photons) to excite more electrons than those
excited thermally. This is possible if the photon energy is larger than the
band gap. Thus, the “reverse” voltage current would increase if you shine
line on the diode. This is the principle of the photodiode.

The actual mechanism is a bit more complicated, because of how excited
electrons actually conduct. So, for example, for a given applied voltate, the
output current is not very linear with intensity. That is, if you double the
light intensity, the output current does not change by quite a factor of two
(over the “noise” from the thermal electrons). Furthermore, a photodiode
can work if there is no applied voltage, reverse or otherwise. This all means
that you have to calibrate your photodiode response to some degree if you
really want a quantitative measure of the light intensity.

A popular form of photodiode puts a large region of pure, or “intrin-
sic”, silicon inbetween the p and n ends. this increases the active area and
decreases the thermal noise current. These photodiodes are called p-i-n or
“pin” diodes.

Now let’s look at a clear advantage that photodiodes have over photo-
tubes. The energy gap in silicon is 1.1 eV, so photons with wavelengths up
to ≈ 1.1 µm can be detected. This is well past red and into the IR. Pho-
tomultiplier tubes peter out at around 600 nm (see Fig. 11.4) or so because
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of the work function of the photocathode. The band gap of germanium (an-
other popular semiconductor) is 0.72 eV, so germanium photodiodes reach
λ ≈ 2 µm.

So, if you need to detect red light, you probably want to use a photodiode,
and not a photomultiplier tube.

Another big advantage of photodiodes over photomultiplier tubes is cost.
A photomultiplier tube with voltage divider circuitry, high voltage supply,
and mechanical assemblies can easily cost upwards of $2000. A photodiode
costs around $1, and is very easy and cheap to instrument.

Photodiodes can also be made with very small active areas (say 50 µm
across). This along with their low cost makes “photodiode arrays” practical.
These are lines of photdiodes, separately instrumented, that measure photon
position along the array. Such things are frequently used in spectrographic
instruments. A typical example might by 1024 25 µm×2.5 mm photodiodes
arranged linearly in a single housing with readout capability. The cost for
such a thing is typically several $K.

Of course, photomultipliers have some advantages over photodiodes. The
biggest is the relative signal-to-noise3 ratio. A µW of incident light power
gives around a 1 µA signal in a photodiode, but around 1 A in a photomulti-
plier tube. This big enhancement in signal is due to the large gain (∼ 106 or
more). Thermally excited electrons are plentiful in a photodiode, but rarely
does such an electron spontaneously jump off the photocathode in a photo-
multiplier. Therefore, the noise is a lot larger in a photodiode. Thus, the
signal-to-noise ratio is much worse in a photodiode.

So, if you need to detect very low light intensities (“photon counting”
for example), you probably want to use a photomultiplier tube, and not a
photodiode.

Photomultipliers also give a more linear response, particularly if care is
given to the base design. Some of these relative advantages and disadvantages
are shown in Tab. 11.2. Another advantage of photodiodes is that they

3We will discuss the general concept of noise in a later chapter. For now, just take it
at face value. Signal is good. Noise is bad.
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Table 11.2: Photomultiplier tubes versus photodiodes.

If you are Then your choice should likely be
interested in. . . Photomultiplier Photodiode

Low Cost
√

Red Sensitivity
√

Low Intensity
√

Linearity
√

work in high magnetic fields. Photomultiplier tubes rely on electrons with
≈ 100 − 300 eV energy to follow field lines to the dynodes. A few gauss
magnetic field disturbs the trajectories enough to render the PMT useless.
In most cases, magnetic shielding solves the problem, but sometimes this is
impractical and photodiodes are used instead.

Finally, we mention that photosensitive transistors, or phototransistors,
are also available. They use the natural amplification features of the tran-
sistor to get a ∼ 100 times larger signal than the photodiode. Of course,
the transistor also amplifies the noise, so there is no improvement in the
sensistivity at low intensities.

11.3 Exercises

1. Consider blackbody radiation.

a. Show that the wavelength at which the intensity of a blackbody radiator
is the greatest is given by “Wien’s Displacement Law”:

λMAX (m) =
2.9× 10−3

T (K)

Hint: You will need to solve an equation like xex/(ex − 1) = A for
some value A. If A � 1 then this is trivial to solve, but you can be
more exact using maple or matlab. In matlab you would use the
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“function function” fzero to find the place where f(x) = A(ex−1)−xex

crosses zero.

b. Stars are essentially blackbody radiators. Our sun is a “yellow” star be-
cause its spectrum peaks in the yellow portion of the visible. Estimate
the surface temperature of the sun.

2. A particular transition in atomic neon emits a photon with wavelength
λ = 632.8 nm.

a. Calculate the energy E of this photon.

b. Calculate the frequency ν of this photon.

c. An optical physicist tells you the “linewidth” of this transition is ∆ν =
2 GHz. What is the linewidth ∆E in terms of energy?

d. Use the Heisenberg Uncertainty Principle to estimate the lifetime ∆t
of the state which emitted the photon.

e. How far would a photon travel during this lifetime?

f. Suppose the neon is contained in a narrow tube 50 cm long, with mirrors
at each end to reflect the light back and forth and “trap” it in the tube.
What is the nominal “mode number” for 632.8 nm photons, that is, the
number of half-wavelengths that fit in the tube?

g. What is the spacing in frequency between the nominal mode number
m, and the wavelength corresponding to the mode m+ 1?

h. Compare the mode spacing δν (part G) with the line width ∆ν.

i. What is this problem describing?

3. Estimate the “transit time” for a typical photomultiplier tube. That is,
how much time elapses between the photon ejecting an electron from the
photocathode, and the pulse emerging from the anode. Assume the photo-
multiplier has 10 stages and 2000 V between cathode and anode, divided
equally among all stages, and that the dynodes are each separated by 1 cm.

4. Some high quality photomultipliers can detect the signal from a single
photoelectron, and cleanly separate it from the background noise. Such a
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PMT is located some distance away from a pulsed light source, so that on
the average, the PMT detects 〈NPE〉 photoelectrons. If 〈NPE〉 � 1 and
N0 pulses are delivered, show that the number of pulses detected by the
photomultiplier is given by 〈NPE〉N0.

5. A photomultiplier tube observes a flash of green light from an Ar+ laser.
(Assume the photons have wavelength λ = 500 nm.) The photomultiplier is a
10-stage Philips tube, with an “green extended” photocathode. The voltages
are set so that the first stage has a secondary emission factor δ1 = 5, while
the other nine stages each have δ = 2.5. The laser delivers some huge number
of photons to a diffusing system which isotropically radiates the light, and
only a small fraction of them randomly reach the photomultiplier. On the
average, 250 photons impinge on the window for each flash of the laser.

a. What is the average number of electrons delivered at the anode output
of the photomultiplier tube, per laser flash?

b. Assume these electrons come out in a rectangular pulse 20 ns wide.
What is the height of the voltage pulse as measured across a 50Ω resis-
tor?

c. You make a histogram of these pulse heights. What is the standard
deviation of the distribution displayed in the histogram?

d. Suppose the photomultiplier tube is moved four times farther away from
the source. For any given pulse of the laser, what is the probability
that no photons are detected?



Ch 12

Experiment 6: Atomic
Spectroscopy

The formulation of quantum mechanics in the Schrödinger equation is beau-
tiful and elegant. Unfortunately, however, their are very few problems that
can be solved exactly (more or less) which correspond to physical systems
that actually exist.

The hydrogen atom, or more exactly, atoms with a single electron, are
probably the best example of a true, measurable, physical system in which
the beauty of quantum mechanics can be tested without resorting to ap-
proximation techniques and models. In fact, many of the early successes of
quantum mechanics came in the study of atomic spectroscopy, with hydrogen
providing some of the most crucial tests of the theory.

Some other solvable problems with the Schrödinger equation are the har-
monic oscillator, and the rigid rotor. Although ideal cases of these things
are hard to find in nature, good approximations are provided by the study
of diatomic molecules.

The energy levels involved in atomic physics typically give rise to transi-
tions in the few eV range. Consequently, the photons that are emitted are
in the visible region, and our studies of light production and detection will
prove to be useful. In this experiment we will actually use high resolution

197
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spectroscopy to study the photon wavelengths to high precision. For exam-
ple, the wavelengths are slightly different in the deuterium atom as opoosed
to hydrogen because of the larger nuclear mass. You will be able to resolve
that difference.

The physics surrounding atomic and molecular spectroscopy is a large
field. For a good general reference, I suggest

• Introduction to the Structure of Matter,
John J. Brehm and William J. Mullin, John Wiley and Sons (1989),
Chapters 3, 7, 9, and 10

• Quantum Physics, Robert Eisberg and Robert Resnick,
John Wiley and Sons, Second Edition (1985),
Chapters 4 and 7

The experiments we will do are more or less standard in the undergraduate
laboratory, and there are several good books available which describe such
experiments. A few of these are

• The Art of Experimental Physics,
Daryl W. Preson and Eric R. Dietz, John Wiley and Sons (1991)
Experiments 12 and 13

• Physical Chemistry; Methods, Techniques, and Experiments
Rodney J. Sime, Saunders College Publishing (1990)
Experiments 30-33.

• Experiments in Modern Physics,
Adrian C. Melissinos, Academic Press (1966)
Sections 2.1 through 2.4.

The book by Sime is particularly useful for us since the experiments use the
same spectrograph as we have in our laboratory.
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12.1 Energy Levels of the Hydrogen Atom

We’ll start with the Bohr model of one-electron atoms. For most of the
measurements you will make, this model correctly predicts the results, and
in fact gives the same answers as the Schrödinger equation. This approach
is actually worked out in detail by Brehm and Mullin.

We will derive the energy of the atom, and impose simple quantization
rules on the result. Assume for now that the nucleus of the atom is infintely
heavy compared to the electron, and that the electron moves nonrelativisti-
cally. We will examine these assumptions soon, but they are in fact quite
good in general. The total mechanical energy of the electron is

E = K + V

=
1

2
mv2 − 1

4πε0

Ze2

r
(12.1)

Here m, v, and −e are the electron’s mass, velocity, and electric charge, +Ze
is the charge on the nucleus, and r is the “orbital radius” of the electron. The
potential energy, of course, is just the Coulomb attractive potential between
the electron and the nucleus.

Before we get into quantization, let’s work with this equation a bit. We
can relate the velocity v to the other variables by applying F = ma, where
F is the Coulomb force and a is the centripetal acceleration. That is

1

4πε0

Ze2

r2
= m

v2

r

which implies that

v2 =
1

m

1

4πε0

Ze2

r
(12.2)

If we plug this into Eq. 12.1 we get

E =
1

2

1

4πε0

Ze2

r
− 1

4πε0

Ze2

r
= −1

2

1

4πε0

Ze2

r
(12.3)

Now we can impose quantization rules on the energy just by considering the
implications for the orbital radius r.
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Bohr’s quantization rules are simple and elegant. The electron is also a
wave, with wavelength h/p = h/mv. As the electron moves around in its
orbit, the path length must be such that the head of the wave “links up”
with the tail and the wave pattern keeps repeating itself. If this wasn’t the
case, then the wave would interfere with itself as the electron orbited, and
the wave would disappear, and so would the electron.

Bohr’s quantization condition is, therefore, that the circumference of the
orbit be an integral number n of wavelengths of the electron. That is, 2πr =
n(h/p) or

r = n
h̄

mv
(12.4)

where h̄ ≡ h/2π. This actually has a deeper physical significance. The
quantity rp is the angular momentum l of the electron, so this equation in
fact says that l = nh̄, that is, the angular momentum is quantized. This is
really just the beginning of a very interesting story about angular momentum
and quantum mechanics, but we won’t cover it here.

Combining Eq. 12.4 with Eq. 12.2 gives us

n2h̄2

m2r2
=

1

m

1

4πε0

Ze2

r

and therefore
1

r
=

m

n2h̄2

1

4πε0
Ze2

which is a quantization relation for r that does not depend on v. Finally,
insert this expression in Eq. 12.3 and get

E = −1

2

1

4πε0
Ze2 × m

n2h̄2

1

4πε0
Ze2

= −
[

mZ2e4

2(4πε0)2h̄2

]
1

n2
(12.5)

These are the quantized energy levels of the hydrogen atom. That is, the
electron can only have energies described by this formula with n = 1, 2, 3, . . ..
These energy levels are plotted in Fig. 12.1. Notice in particular that the
energy levels get closer and closer together near the top of the potential well.
This pattern will be clearly apparent in this experiment.
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s s s s
? ? ? ?

HαHβHγHδ

n=1, E=-13.6 eV

n=2, E=-3.4 eV

E=0

n=3, E=-1.5 eV
n=4, E=-0.85 eV
n=5, E=-0.54 eV
n=6, E=-0.38 eV

Figure 12.1: Energy levels of the hydrogren atom, and the transitions which
make up the Balmer series of visible wavelength lines. Transitions to the
n = 1 state are also possible, and these lines are called the Lyman series, but
the wavelengths are all in the far ultraviolet.
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For the hydrogen atom (Z = 1), the expression in brackets for Eq. 12.5
works out to be 13.6 eV. This is the energy required to take an electron in the
ground state (n = 1) and separate it from the nucleus completely (E = 0).
That is, this is the binding energy of the hydrogen atom. For atoms with more
electrons, you imagine that the energy needed to separate the “outermost”
electron from the nucleus and the Z−1 remaining electrons is about the same
value, since the other electrons “shield” the outermost electron from all but
unit of charge on the nucleus. In fact, the energy needed to separate one
electron from an atom (the “ionization potential”) is pretty close to 10 eV
for most atoms.

So what’s the experiment? We need to add one more ingredient, namely
transitions between the energy levels. If you prepare an atom in one of the
excited states (n > 1), then the electron will make transitions down to the
lower states. Each transition emits a photon of energy hν which must equal
the difference in energy between the initial and final states. If the electron
starts from the energy level with n = ni and ends up with n = nf then

hν = Enf
− Eni

We use Eq. 12.5 to rewrite this expression, but the result is usually expressed
in terms of the photon wavelength λ instead of the frequency ν = c/λ. You
find

1

λ
= Z2R∞

(
1

n2
f

− 1

n2
i

)
(12.6)

where the Rydberg constant R∞ is defined as

R∞ ≡ me4

8ε2
0ch

3
(12.7)

The subscript “∞” refers to the assumption that the nucleus is infinitely
heavy. The Rydberg constant is actually known quite accurately. It’s value
is

R∞ = 10973731.534 m−1

Note that the hydrogen binding energy is just hcR∞ = 13.6 eV.

You will measure several of these wavelengths in this experiment. You
should note, however, that only a few of the many combinations are ac-
cessible, because you will be detecting essentially visible photons. (See Ta-
ble. 11.1.) In fact, all of the transitions you will observe correspond to nf = 2,
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and the series of lines corresponding to ni = 3, 4, . . . is called the Balmer se-
ries.1 The longest wavelength line (the 3 → 2 transition) is red, but all the
others are blue or violet. These transitions are also shown in Fig. 12.1.

12.1.1 Corrections

There are various corrections due to the simple Bohr formulas. You will in-
vestigate one of these in particular, namely the effect of a finite nuclear mass,
and it can be evaluated using a straightforward extension of the simple rules.
The other corrections actually led to the breakdown of the Bohr formula, and
the development of quantum mechanics based on the Schrödinger equation.
You won’t likely measure these effects in this experiment, but we will at least
mention the physics here.

Finite Nuclear mass

The proton mass mp is much larger than the electron mass, in fact mp/m =
1836, and all the other nuclei are even heavier. Therefore, the “infinite nu-
clear mass” assumption is a pretty good one. On the other hand, optical
spectroscopy experiments can be very precise (look at all the significant fig-
ures on R∞), so you might think you could see the effect of a finite nuclear
mass in this experiment. In fact, you can, and you will measure the dif-
ference in spectra for hydrogen (nuclear mass mp = 938.3 MeV/c2) and for
deuterium (nuclear mass md = 1875.6 MeV/c2).

The finite nuclear mass means that instead of the electron revolving
around the nucleus, both the electron and the nucleus revolve about their
common center of mass. The quantity r still refers to the distance between the
electron and the nucleus, but the orbit radii are actually re = Mr/(m +M)
and rM = m/(m + M) for the electron and nucleus respectively. Since
the nuclear mass M is much larger than the electron mass m, re ≈ r and
rM/re << 1, which is the essence of the infinite mass approximation.

1The other series corresponding to other values for nf are named after the other fellows
who discovered the lines, but none of these lines are in the visible.
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We now quantize the energy as before, but we need to write E including
the kinetic energy of the nucleus, and form the quantization condition using
the total angular momentum which includes the nuclear contribution. The
details are worked out in Brehm and Mullin, and the result is that Eq. 12.6
is unchanged except that the Rydberg constant R∞ is replaced by

RM =
µ

m
R∞ (12.8)

where µ ≡ Mm/(M + m) is called the reduced mass. The key to measur-
ing this effect is to be able to measure the small difference in wavelengths
corresponding to Rp and Rd for hydrogen and deuterium.

Relativistic Effects

By the time the Bohr model was being developed in 1913, people were pretty
much convinced that Einstein’s theory of special relativity was right. Trying
to incorporate relativity into Bohr’s model became a problem, and eventually
led to its downfall. Let’s first estimate how big a problem you expect this to
be.

Relativity should become important when the electron speed v approaches
the speed of light c, so let’s evaluate v/c. Substituting Eq. 12.4 into Eq. 12.2,
you find

v

c
=

1

m

1

4πε0
Ze2 m

nh̄c
= Z

α

n

where

α ≡ 1

4πε0

e2

h̄c
=

1

137.036
(12.9)

is called the fine structure constant. In other words, for the hydrogen atom,
the electron speed is always less than 1% of c, so you wouldn’t expect rel-
ativistic corrections to be very much larger than this. Of course, in heavy
(i.e. large Z) one-electron atoms, the velocity can actually get quite large
compared to c, and you can’t expect the Bohr formula to work well.

I want to take a moment to talk about α. Just about any physicist
you know can tell you that “α is around 1/137”. It is a very fundamental
quantity that you will encounter more and more as you study physics. At
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the very least, it helps you remember some of the formulas we’ve derived.
For example, the binding energy of a one-electron atom is just 1

2
Z2α2 ·mc2,

and the Rydberg constant R∞ = 1
2
α2(mc/h).

It is straightforward to incorporate the effect of special relativity into
the one-electron atom, once you’ve solved the Schrödinger equation for the
problem without relativity. This is called perturbation theory, and the pro-
cedure is outlined in Preston and Dietz, as well as other places. The result
is that the individual lines are “split” according to the angular momenta of
the initial and final atomic states. This splitting is called fine structure, and
it amounts to around ∆λ = 0.1 Å in the Balmer series.

Spin-Orbit Splitting

Relativistic corrections are only one contribution to the fine structure split-
tings. The second contribution, which is about the same size as from rela-
tivity, is due to the spin-orbit interaction.

The electron has some internal angular momentum we call spin. This
internal angular momentum shows up as a magnetic dipole moment on the
electron. In other words, the electron is like a tiny bar magnet. In addition,
there is the electron “current” due to the electron orbiting about the nucleus.
This current sets up a magnetic field all around the atom, and the electron
spin interacts with this magnetic field. This is the spin-orbit interaction, and
it is essentially of the form ~µ · ~B where ~µ is the spin dipole moment of the
electron, and ~B is the magnetic field set up by the electron orbit.

Depending on the relative orientation of ~µ and ~B, which is quantized
according to quantum mechanics, the magnitude and sign of the spin-orbit
interaction will be different for different angular momentum states. This
leads to the spin-orbit splitting. Once again, it is about the same size as
relativistic effects, i.e. ∆λ = 0.1 Å or so.



206 CH 12. EXPERIMENT 6: ATOMIC SPECTROSCOPY

Higher Order Corrections

As you look at the spectral lines with higher and higher resolution, you
discover more (and smaller) splittings. Each of these has physics associated
with them, and some of this physics is very profound.

One example is the so-called hyperfine splitting. (See Brehm and Mullin,
Sec. 8-12.) This is the interaction between the spin magnetic moments of the
electron and the proton, for the hydrogen atom, or for the nucleus in gen-
eral assuming it has a nonzero spin. The splittings caused by the hyperfine
interaction in hydrogen are on the order of 0.01 Å. Transitions between hy-
perfine levels are in the radio frequency range, and a particular transition in
hydrogen (λ = 21 cm) is famous to radio astronomers who use it to identify
hydrogen in hard-to-see regions of the galaxy.

One of the most profound effects in atomic physics is the Lamb shift,
named for Willis Lamb who discovered it in 1947. Up until that time, a
synthesis of quantum mechanics and special relativity, written down by Paul
Dirac, was able to correctly predict all the structures observed in the hydro-
gen spectrum. The Lamb shift, an unexpected splitting at around the 0.01 Å
level (relative to optical spectroscopy), was inconsistent with Dirac theory.
It’s solution turned out to hinge on a new formulation that explicitly includes
the radiation field along with electrons, called Quantum Electrodynamics.

12.2 Measurements

Your first goal is to determine the Rydberg constant from the Balmer series
in hydrogen. You will do this by measuring the Balmer spectral lines from
atomic hydrogen, and fitting the wavelengths to Eq. 12.6. Next, you will
calculate the deuteron to proton mass ratio by measuring the isotope shift
between the lines of atomic deuterium and hydrogen. You need to make
precise measurements of the wavelengths to do all this.

Light from the various elements is produced in a gas discharge tube.
Wavelength measurements are made in either one of two ways. We have a
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Baird model SB-1 1.5 m grating spectrograph, which exposes a strip of 35 mm
film to a dispersed spectrum. A computer controlled table scans the film and
measures the grain density as a function of position. The second method
uses the Jarrell–Ash 1 m Czerny-Turner Scanning Spectrometer which scans
through wavelengths on command. Data is taken directly from a photomul-
tiplier tube as wavelengths pass over a slit as the grating is turned. Results
from the two techniques will be compared in Fig. 12.8. Note that the film
is darkened at a line position, so less light passes through and the scanner
gives a smaller signal when crossing a line. The Jarrell–Ash, however, detects
the light directly and the electronics provides something proportional to the
light intensity.

The light source works by placing a very high voltage across the ends of
the discharge tube, and you will get a nasty shock from it if you are not
careful. Always make sure the voltage is off when you change tubes. Be
careful not to move the source or any other part of the apparatus while you
change discharge tubes, since a small change in position can have a big effect
on where the image ends up on the film. Try never to look directly at the
discharge tube when it is on, because some of the tubes have rather intense
UV light that you cannot see.

12.2.1 Procedure: Baird Spectrograph

A diagram of the Baird spectrograph is shown in Fig. 12.2, and an expanded
view of the film window and slit assembly is shown in Fig. 12.3. The
discharge tube is controlled through a timer that lets you preset the exposure
time. Light from the discharge tube enters through the slit and is focussed
onto the concave diffraction grating in the rear. The grating disperses light
according to wavelength and focusses it onto the film holder adjacent to
the entrance slit. You can adjust the vertical position of the film image by
moving the position of the Hartmann slide, and you can put six or so different
exposures on the same piece of film. It is also possible to run a HeNe laser
beam through the spectrograph for calibration purposes. Furthermore, there
is a “reference line” you can superimpose on the film by pressing a button
near the film holder.
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Figure 12.2: Diagram of the Baird SB-1 Grating Spectrograph.
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Figure 12.3: Diagram of the window and slit assembly.
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The wavelength range is 370 nm to 740 nm, pretty much covering the
visible spectrum. The dispersion at the film focus is around 15Å/mm, but
you will determine this yourself by calibrating the spectrograph. You can set
the slit width to 10 µm, 32µm, or 60µm, and to get the best resolution, you
may need to experiment with different widths. The shutter can be operated
manually, and you should keep it closed if you are not exposing the source,
even if the lights are off.

Before exposing film, you should play around with the roughed-up plexi-
glas sheet that fits in the film holder. You can see the lines with some care,
and you make adjustments of the slit, Hartmann slide, source position, and
so on without having to actually develop film.2 A good source tube to use
is neon, which gives you many bright lines mainly in the orange and red. If
you use the mercury tube, you will see a strong yellow doublet at 577 nm
and 579 nm, and a relatively bright green line at 546 nm.

The film holder uses 10-inch strips of standard 35-mm photographic film,
cut from a 100 foot roll. Kodak Tech-Pan is a good film to use, and that
is what the laboratory should be stocked with. This film is sensitive to
all wavelengths, so the room must be in complete darkness when you are
handling the film. With the lights out, remove a length of film from the
bulk film winder, and slide it into the film holder. The concavity of the film
should match the concavity of the holder. Place the film holder over the
window, and secure it with clamps. At this point, light from the discharge
tubes may be exposed to the film through the shutter. Spend a film strip
or two making measurements with the different slit widths, and varying the
exposure time between a few seconds and several minutes. After you develop
the film and look at the result, you will be better able to judge the slit widths
and exposure times for your “final” set of data. Hint: Cut the film a bit long
so an inch or so hangs out past the blue end of the holder. It will be fully
exposed and a good tag of which end is which.

Remember that you can move the exposure vertically on the film using
the various settings of the Hartmann slide. You likely want to include some
or all of the following discharge tube combinations in your exposures:

2To quote the users manual for the spectrograph, the Fixed slit Assembly is a very
delicate component. Handle it carefully. If you would like a copy of the users manual,
please ask me or the TA.
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• Helium+HeNe Laser

• Hydrogen+HeNe Laser

• Mercury+HeNe Laser

• Hydrogen+Helium

• Hydrogen+Mercury

• Hydrogen+Deuterium

• Nitrogen+HeNe Laser

The helium and mercury lines will be used to calibrate the spectrograph,
that is, to convert position on the film to wavelength. The HeNe laser serves
a similar purpose, giving you a single strong line at 6328 Å, and it might
be a good idea to add this line to all your exposures. You might also want
to press the reference line button for a moment, to help you orient the film
after you’ve developed it. The hydrogen lines will allow you to determine
RH , and the simultaneous exposure of hydrogen plus deuterium allows you
to measure the small difference between these two isotopes, although you will
need pretty good resolution to cleanly separate the two. This is one of the
things to aim for when you practice in the beginning. Nitrogen will give you
a very complicated but interesting spectrum that you can analyze to learn
about the diatomic nitrogen molecule. (See Sec. 12.3.)

Developing the film

The chemicals you need to develop the film should all be premixed for you,
but specific directions are available in any case. You don’t want to get a lot
of these chemicals on your skin, so handle them with some care. Remember,
all developing must be done in total darkness. We use HC-110 to develop
the Tech-Pan film, and it is a good idea to make sure you are using a new
(i.e. less than a year old) bottle of it when you are developing.

Set out four developing tays, each containing around a half gallon or so
of developer, stop bath, fixer, and photoflo, respectively and in that order.
Place the film in the developing tray and agitate for 8-10 minutes at room
temperature. This may be longer or shorter if the temperature is cooler or
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warmer, but the darkroom stays at a pretty even temperature. Dip the film
in the stop bath for 30 seconds to a minute, and then put the film in the
fixer and agitate it for another 8-10 minutes. Rinse the film in photoflo and
hang it to try. You can take a quick look at it using the light table in the
developing room.

Scanning the film

There are three ways you can scan the film to measure the line position.
One is simply to use a ruler, although the experimental uncertainty will be
pretty large. A second possibility is to use the traveling microscope setup,
equipped with a vernier scale to make very precise measurements. The third
method uses a computerized film scanner which measures the grain density
by shining light through the film into a microscope and onto a slit, behind
which is photodiode. The film holder moves by computer control through a
stepper motor, and the photodiode is read out at each step. The program lets
you scan in “high resolution” (small steps) or “low resolution” (big steps).

The computerized scanner gives you a a digital record of the density all
along the film. The data is merely a list of numbers corresponding to the
density at each step. It should be simple to identify the peak position, or
plot the peak shape using matlab. The width of the peak is a measure
of the resolution of the instrument unless there is some narrow structure
(“splitting”) underneath, and we will try to get some physics out of that.

One disadvantage of the computerized scanner is that you cannot move
the film vertically in a precise way, so it could spoil the calibration (see below)
if you are interested in more than just the dispersion. If, for example, the
HeNe line is placed on each exposure, that will make your life a lot easier.

Try to include the HeNe line, or some other reference, in the scan. It is
already hard to get all the Balmer lines in one scan, since you are limited by
the range of the scanner, but get as many as you can along with a reference
line. It is probably best to include the red line and the HeNe (or other
reference) line, the green line, and as many blue lines as you can.
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Figure 12.4: Result of a low resolution computerized scan of a hydro-
gen+HeNe exposure. Because of the limited travel of the scanner, two scans
are superimposed by matching the Hβ line position.

A low resolution scan of a hydrogen plus HeNe exposure is shown3 in
Fig. 12.4. The first five Balmer lines are clearly visible, as is the HeNe line
used for calibration. Instead of the HeNe line, one could include a mercury or
helium exposure so that calibration lines are scattered throughout the scan.

12.2.2 Procedure: Jarrell–Ash Spectrometer

Use the Jarrell–Ash scanning spectrometer to measure wavelengths just as
you do for the Baird spectrograph. That is, use the same discharge tubes in
the same or similar combinations. The Jarrell–Ash has an advantage that
it is much higher resolution, so you can see much more fine detail. It is,
however, a bit trickier to use.

Figure 12.5 shows a schematic of the spectrometer. The light source sits

3Data taken by Marc Crudele, Class of 1996.
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Figure 12.5: Schematic of the Jarrell–Ash scanning spectrometer. The
diffraction grating is rotated either with the dial on the control panel, or
remotely through the computer control. You can look at the spectral lines
with your eye, by inserting the flat mirror and looking at the light on the
viewport.

in the front of the device, and light enters through an adjustable slit. You
can place one of a variety of wavelength filters in front of the slit, to block
out light from other sources and from different directions. Light travels to
the back of the spectrometer, reflects from a curved mirror which creates a
parallel beam that travels to the diffraction grating. The grating disperses
the light according to wavelength, and sends it back to the mirror, which
reflects it back to the exit slit where it is detected by the photomultiplier
tube. The tilt angle of the grating determines the wavelength which passes
through the slit in front of the PMT. By rotating the grating, you scan over
wavelengths.

This spectrograph operates in “second order”. In other words, the light
for a particular wavelength λ is deflected through an angle θ2 = 2λ/d instead
of the “first order” angle θ1 = λ/d. (There are technical reasons why you
might want a spectrometer to operate in second order as opposed to first.)
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This can lead to some confusion, though, because light of shorter wavelengths
can show through from higher orders, and there are plenty of ultraviolet lines
around. For example, suppose you are studying visible light of wavelength λ0,
observed when the grating angle corresponds to θ2 = 2λ0/d. Then, ultraviolet
light of wavelength λ′ = 2λ0/3 will come out at the same position, through
third order in the spectrometer.

Remove this confusion by using optical filters between the light source and
the input slit. There are two ultraviolet/blue filters available. The 345 nm
filter removes all light below this wavelength, so your spectrum is “protected”
from 345 nm up to (3/2) × 345 = 518 nm. Using the 455 nm filter you can
observe from 455 nm to 683 nm. Using a combination of these two filters,
you can therefore cover the full visible spectrum, from violet through red.

You will take your data by letting the computer turn the grating and
record the signal level on the PMT. However, it is a good idea to first set
things up by looking at the spectral lines by eye. You can do this by inserting
the mirror near the PMT (using the “plunger” that comes out the back) which
diverts the light to the side. You can then open up the shutter attachment
to look into the spectrometer through the ground glass viewport. Make sure
the PMT is turned off when you open up the shutter! With the lights off,
you can see the faint, but sharp, lines of the particular light source you are
using. This will help you identify them in the PMT signal.

If you next close the shutter and take the insertable mirror out of the
beam, then the light will again pass through the slits into the PMT. Turn
the PMT on using the Keithley Model 247 High Voltage power supply. Make
sure the power supply is set to zero volts and negative polarity, then switch
it on, and turn the voltage up to around 500V. The white power cord coming
out of the back of the spectrometer powers the amplifiers for the PMT and
for the grating stepper motor control. Plug it in. Turn the grating with
the hand crank, and measure the voltage signal out of the amplifier with
a voltmeter. As the spectral line passes over the slit, you will see a clear
increase in the voltage signal. You should “see” the lines this way, just as
you could see them with the ground glass plate.

Now get ready to read the signal out with the computer, controlling the
grating at the same time. Turn on the computer in the back of the room,
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to the left, between the wall and the spectrometer. Start labview from its
file folder in the program manager when the computer comes up. When a
registration information dialog box comes up, press “OK”, and then press
“OK” again when another dialog box comes up. You will now see a blank “vi”
(virtual instrument) appear as a grey window. Close this window, and now a
dialog box comes up asking for one of three options, namely “new vi”, “open
vi”, or “close labview”. Choose “open vi” and in the “file open” window,
double-click on ALPHSCAN.LLB, and then on “visible spectrometer”. The
program is now ready to go.

Adjust the slit width using the micrometer dial on the front of the spec-
trometer, and set the starting wavelength position using the hand-crank on
the side control panel. Enter the starting wavelength you set on the spec-
trometer into the “start wavelength” field on the program, and enter the
final wavelength (on which the scan will end) in the “finish wavelength”
field. Click on the resolution button to read either “high” resolution (about
0.04 Å/step) or “low” resolution (about 1 Å/step). (Low resolution is the
best choice when you’re first starting out, otherwise it will take a long time
to see if you’ve got things set up correctly.)

When you are ready to start the scan, press the arrow button in the
top left corner of the vi. The scan will continue to the “finish” wavelength
previously set, and then prompt you for a file name to which you can save
the data. If you want to end the scan before the finish wavelength, press the
large STOP button in the window, not the small octagonal button next to
where the start arrow button used to be. If you press the small octagonal
button instead of the large STOP button, you will be unable to save the data
you just took. Also, the program will lock up the stepper motor so that you
will be unable to move the hand-crank.

If for any reason you are unable to move the hand crank, dont force it!!.
Press the square black reset button on the alpha stepper board to release the
hand crank.

The data that you get will be an intensity as measured by some voltage
output from the amplifier circuit on the PMT, as a function of the nominal
wavelength set on the dial. The nominal wavelength is just a conve-
nient scale that is close to the true wavelength. You will have to
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Figure 12.6: Scans of the helium discharge tube using the Jarrell-Ash spec-
trometer and the two ultraviolet/blue filters. Note that the horizontal axis
is the nominal wavelength, and must be recalibrated.

determine the true wavelength by using your calibration spectra. If you pre-
fer, you can just plot the data as a function of “step” number, instead of
using the nominal wavelength, to keep yourself from getting confused.

Figure 12.6 shows two scans of the helium discharge tube using the Jarrell-
Ash spectrometer. One scan uses the 345 nm filter, while the other uses the
455 nm filter. Note that the horizontal axis is the wavelength in Åas read off
the dial, by the computer. The existence of lines well below 3450 in the scan
using the 345 nm filter is clear evidence that the wavelength scale needs to
be recalibrated!

12.2.3 Analysis

There are many levels of analysis you can perform, exploring not only the
physics of atomic spectra, but also the operation of the spectrograph. The
first thing to realize is that the spectrograph is designed so that the line posi-
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tion on the film corresponds to the wavelength through a linear relationship,
that is,

λ = Ax+B

where x is the position. The quanitity A is called the “dispersion”, and for
the SB-1 it is supposed to be around 15Å/mm. For the Jarrell–Ash, it will
depend on the step size you chose in the program.

You might want to try something very simple first. The relative spacing
of the Balmer series lines must be given by Eq. 12.6, with nf = 2. That
means that you can just roughly measure the distance between pairs of lines,
and check that the ratio of any two distances follow this equation. You can’t

get any physics out of this because everything cancels except the
(

1
4
− 1

n2
i

)
terms, but at least you can check that you can make the ni assignments
correctly.

You can go a little further and check that you are getting around the
right value for RH by using the nominal value for the dispersion. These are
things you can do just as you get the data, but to do a more careful job, use
scanned data to get the line positions. In this case, you will want to use the
helium and mercury lines for calibration.

Precise values for the wavelengths using the helium and mercury discharge
tubes are listed in Table 12.1. The values are the “wavelengths in air” as
tabulated in the MIT Wavelength tables, by G.R Harrison, et.al. (1969).
You can find this book on the main floor reference section of the library
under REF QC453.M36 1969. These tables also give the relative intensities
of the lines as produced in a discharge tube.

Use the helium and/or mercury data to determine A and B. Determine
the uncertainties in A and B from your fit, and propagate these uncertainties
through to the physics quantities you derive. How well does A agree with the
manufacturers specification? Plot the deviations from the linear fit to see if
there is any evidence for nonlinearity. An example4 of a helium calibration
done on the Baird spectrograph is shown in Fig. 12.7. Do you think it would
be worthwhile to include a term proportional to x2 in the calibration? How
large you expect the deviations to be for a calibration of the Jarrell–Ash

4Data taken by Marc Crudele, Class of 1996.
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Table 12.1: Some prominent lines for calibrating the spectrograph. Wave-
lengths are in Å.

Helium Mercury Helium Mercury
4026.2 Violet Blue 4916.0

Violet 4046.6 4921.9 Green
Violet 4077.8 5015.7 Green
Violet 4339.2 Green 5460.8
Violet 4347.5 Yellow 5769.6
Violet 4358.4 Yellow 5790.7

4387.9 Violet 5875.6 Yellow
4471.5 Violet 6678.1 Red
4713.4 Blue Red 6291.3
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Figure 12.7: Result of a calibration using a helium spectrum on the Baird
spectrograph. The helium wavelengths are fitted to a straight line as a func-
tion of scanner position. The deviation of the fitted wavelength from the
actual wavelength is plotted versus the wavelength.
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spectrometer? It will be important to carefully determine the position of the
maximum voltage signal to determine the wavelength of the line.

The deviations from the fitted wavelengths in Fig. 12.7 give a good in-
dication systematic uncertainty associated with the scan. For this data set,
the uncertainty is ∼ 0.2Å, or ∼ 13 µm. Note that there is a systematic un-
certainty of about this size just because of the number of significant figures
given in Table 12.1.

Determining RH and RD

You can determine the Rydberg constants for hydrogen and deuterium from
your calibration and the measured line positions for the two isotopes, and
using Equations 12.6 and 12.8. Recall that nf = 2 for the Balmer transitions.

First try the brute force method. Pick one of the lines of either isotope
and determine its wavelength from the calibration. Then, make a good guess
for the value of ni for the line you picked. (What color was the line?) You
then calculate R from Eq. 12.6. Calculate the uncertainty by propagating
the uncertainties in your caibration constants to λ and then to R. Does
the accepted value agree with your measurements to within uncertainties?
You might try this on more than one line. The brute force method is the
most susceptible to uncertainties. For example, it will be hard to measure
the calibration “offset” B very precisely because different spectra will be on
different exposures. (Your best bet is probably to always include a HeNe
laser exposure that you can refer to.)

A different technique eliminates the need for knowing the calibration off-
set because you can use the difference of two wavelengths, since this difference
only depends on the dispersion and not the offset. Use Eq. 12.6 to express
λi − λj for any pair of lines i, j in terms of R. Again, you should try this
for a few different pairs of lines. Is the result more precise? (It should be,
since you no longer need to include the uncertainty in the offset.) How is the
agreement with the accepted value?

Try both of these methods on both hydrogen and deuterium. Compare
them to the accepted value. You should come very close. Is this consistent



220 CH 12. EXPERIMENT 6: ATOMIC SPECTROSCOPY

within your experimental uncertainty?

Hydrogen/Deuterium isotope shift

The values for RH and RD differ because MH and MD are different, even
though both are much larger than the electron mass. You could determine
an expression for (RH − RD)/RH in terms of the masses, and compare your
individual measurements this way. However, it would be hard to be accurate
because RH and RD are so close, the difference might be smaller than your
combined experimental uncertainty.

A better way is to use the hydrogen and deuterium exposure and measure
the splitting ∆λ = λH − λD on any of the Balmer lines. You can determine
∆λ very precisely by exposing hydrogen and deuterium together on the same
strip of film, for the Baird, or by using a deuterium tube with some hydrogen
in it on the Jarrell–Ash, and scanning the double line, as shown5 in Fig. 12.8.
The excellent resolution of the Jarrell–Ash is obvious! Since you already know
λH to high precision, you can write

∆λ

λH
= 1− λD

λH
= 1− RH

RD

=
m

MD

MD −MH

m+MH

=
1−MH/MD

1 +m/MH

m

MH

(12.10)

≈ 1

2

m

MH

≈ 3× 10−4

The splitting is very small indeed! Measure ∆λ/λH for some of the lines and
compare them to this relationship, including uncertainties. Determine an
average value with uncertainty forMD or MD/MH , using Eq. 12.10, assuming
known values for m and MH .

5Baird data taken by Marc Crudele, Class of 1996. Jarrell–Ash data taken by Steve
Irving and Davienne Monbleau, Class of 1999.
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Figure 12.8: Scan of a single Balmer transition line, with both hydrogen and
deuterium exposures. The wavelengths differ slightly because of the isotope
shift. On the left is a scan of a film strip taken in the Baird spectrograph,
exposing hydrogen and deuterium on the same film strip. On the right, a
scan using the Jarrell–Ash spectrometer using a deuterium tube with some
hydrogen gas inside it as well.

Line widths and splittings

You can also learn about the spectrograph, and some physics as well, by
looking at the widths of the spectral lines. First, you should try various
things to make the individual line widths as narrow as you can. For example,
make the input slit width very narrow. The placement of the discharge tube
might also be important.

You can quantify the line widths in several ways. Probably the easiest
is to locate the “full width at half maximum”, that is, the distance between
the sides of the line at the points where it is half the maximum value. Plot
the widths of the hydrogen lines as a function of wavelength and see if there
is a trend. You should keep in mind the effect of “doppler broadening” on
the spectral lines. The atoms which emit these photons are moving in lots of
random directions with a more or less thermal distribution of energies. If a
photon of natural wavelength λ0 is emitted from an atom moving at velocity
component v towards or away from the observer, then its doppler shifted
wavelength is just λ = λ0(1 ± v/c). The mean square velocity 〈v2〉 is given
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to good approximation by (see Appendix B)

1

2
MATOM〈v2〉 =

3

2
kT

where T is the temperature inside the discharge tube. Can doppler broaden-
ing explain what you see?

It is probably not possible to see the fine structure splitting in hydrogen
(around 0.14 Å) with the Baird spectrograph, but it might be possible with
the Jarrell–Ash. 6 In any case, you can measure the line shape. Try to
estimate the widest separation you could have for two lines buried inside the
single line shape. This would give you an upper limit for the fine structure
splitting, and it should be bigger than the expected value.

12.3 Advanced Topics

If you’ve exposed the nitrogen discharge tube, you likely see something quite
different that the other samples. Instead of seeing discrete lines, you should
see a series of “bands”. That is, lots of lines very close together, but clustered
in regularly spaced groups. There should be two major groups like this, one
at the red end of the film, and one at the violet end.

You are looking at the deexcitation spectrum of the N2 molecule, not the
N atom. This opens up an entirely new area of quantum mechanics, based on
different types of potential energies. A thorough treatment is quite involved,
but is discussed to some extent in Brehm and Mullin, and in Sime, but a
very complete writeup on what’s going on is in Preston and Dietz. Here I
will just give you some basics, and show you some simple physics you can
get out of it.

The nitrogen molecule is your basic diatomic molecule, that is, two nitro-
gen nuclei separated by some distance, with an electron cloud surrounding
them. This object can undergo two basic types of motion. One of these is

6An undergraduate laboratory experiment which resolves find structure in the Hα and
Dα lines is described in S. Pollack and E. Wong, Amer. Jour. Physics, 39(1971)1386. You
might want to use some of their tricks.
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a vibration along the axis between the two nuclei, where the separation dis-
tance oscillates about some equilibrium value. The other motion is a rotation
in space, around the center of mass. Since the two nitrogen nuclei have the
same mass, the center of mass is just halfway between the two nuclei.

The equilibrium separation corresponds to the bottom of a potential en-
ergy well V (x) where x is the separation distance. Pretty much any potential
well can be approxmated by a harmonic oscillator potential, so long as the
displacement from equilibrium doesn’t get too large. The spring constant k
of this approximate harmonic oscillator is given by k = 1

2
d2V/dx2, evaluated

at the equilibrium point. The solution to the Schrödinger equation for a
harmonic oscillator leads to equally spaced energy levels

E =
(
nv +

1

2

)
h̄ω Harmonic Oscillator (12.11)

where ω =
√
k/µ and µ is the reduced mass of the system, i.e. MN/2 in the

case of the N2 molecule. The value of nv must be a nonnegative integer.

The molecule also rotates, and the quantum mechanics of a so-called
“rigid rotor” is well defined. It gets complicated because the molecule stretches
as its rotation speed increases, but we won’t get into that here. The energy
levels of the rigid rotor, made of two masses separated by a distance R, are
given by

E =
h̄2

2I
nr(nr + 1) Rigid Rotor (12.12)

where I = µR2 is the rotational inertia, and nr is a nonnegative integer.

Refer to Brehm and Mullin, for example, and you will find that the spac-
ing of energy levels given by Eq. 12.11 is much smaller than typical atomic
energy level spacings, that is, a few eV. What’s more, the spacing given by
Eq. 12.12 is much smaller than those for the harmonic oscillator, Eq. 12.11.

Don’t confuse the different types of spectroscopy used to study these en-
ergy levels. Brehm and Mullin, Sec.10-8, does a good job of showing the var-
ious ways these excitations are observed, only one of which you are equipped
to do with this setup. Transitions between individual vibrational or rota-
tional states within the same electronic state correspond to very low energy
photons, typically with wavelengths in the far infrared. Your apparatus,
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however, is only useful for spectroscopy of visible photons, so you make use
of a transition between electronic states which are modified by the presence
of vibrational and rotation states built on top of them.

So now let’s get back to your piece of film taken with the nitrogen dis-
charge tube. You are looking at the deexcitation of electronic energy levels
of the molecule, that is, states similar to those found in atoms. However, the
big difference is that each of these states correspond to molecular configura-
tions that can undergo their own vibrations and rotations. Therefore, each of
these states has a series of states built on top of them, corresponding to the
nearly equally spaced vibrational excitations, and each vibrational state has
rotational states built on top of it. There are some rules as to which kind of
state can decay to another in a lower electronic configuration, but the result
is still very complicated as you might imagine. This gets compounded when
you realize that the potential well is not really a simple harmonic oscillator,
and the rotor is not really rigid. Nevertheless, we can still get something out
of it.

Look at the major group of bands near the violet end of the spectrum.
This corresponds to the photons emitted from a specific pair of electronic
energy levels, and is called the “second positive series” of nitrogen. A diagram
of the bands are shown in Fig. 12.9, where it is compared to the mercury
spectrum in this region. The figure is taken from Sime. Confirm that your
spectrum agrees with this figure. The band spacing, roughly 5 nm according
to Fig. 12.9, corresponds to transitions from the more or less equally spaced
vibrational levels in one electronic state to those in the lower electronic state.
Use this band spacing to determine a rough estimate of the equivalent spring
constant k from Eq. 12.11. This lets you draw the shape of the potential
well near the equilibrium point. Your next goal is to try and estimate the
separation distance of this equilibrium point.

Look closely, using either the traveling microscope or the computerized
scanner, at the film within the bands. You should see a dense collection of
lines which actually make up the band itself. These are transitions between
the rotation excitations built on top of the electronic+vibrational excitations.
Measure the approximate separation between these lines, and use the data to
estimate the value of I in Eq. 12.12. From this value of I , you can determine
the internuclear separation distance R for the nitrogen molecule. Does this
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Figure 12.9: The second positive series in the nitrogen molecule, compared
to the mercury spectrum, taken with the Baird SB-1 spectrograph. Taken
from Sime.

agree with what you expect?

More sophisticated analyses are possible. See Sime or Preston and Dietz
for more details.
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Ch 13

Noise and Noise Reduction

Noise is one of those odd words scientists use that has no precise meaning.
That is, it means different things to different people at different times. I will
try to give you the most generic definition of noise, and we can get more
specific later.

Let’s say you want to measure something. The quantity you are after is
called the “signal”. Anything that gets in the way of your measurement is
called “noise”. Signal is good. Noise is bad.

Some kinds of noise are very well defined, and in fact are very fundamental
in nature. We will talk about some of these in detail. On the other hand,
some noise is just interference of some sort that you can get rid of if you’re
careful. Sometimes, noise is some empirical property of nature that may have
fundamental importance (like 1/f noise), but we don’t know yet.

There are some general techniques for reducing noise or, equivalently,
extracting signal that is obscured by noise. We will discuss some of these.

I recommend the following books for further discussions about signal and
noise:

• Practical Physics, G. L. Squires, Third Edition
Cambridge University Press (1991);

227
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Spread through Chapters 6,7,8.

• Experimental Physics: Modern Methods, by R. A. Dunlap,
Oxford University Press (1988);
Mainly Chapter 4, but Chapter 3 talks about Op-Amps.

Squires speaks in more general terms about noise and noise reduction. Dun-
lap goes into more detail, especially regarding electronic instrumentation,
but is still very readable. For a very throrough discussion of noise and how
it relates to electronics, see the old stand-by:

• The Art of Electronics, by Paul Horowitz and Winfield Hill
Second Edition, Cambridge University Press (1989)

13.1 Signal and Noise

Let’s not be so vague about noise. The first thing to do is express signal S
and noise N in the same units. We can then write the Signal-to-Noise Ratio
as

r =
S

N

We want r to be large, in some sense, to make a decent measurement.

An alternative way to compare signal and noise has its roots in electronics.
It is called the “decibel” and measures the ratio of signal power to noise
power:

dB ≡ 10 log10

PS

PN
= 10 log10

V 2
S

V 2
N

= 20 log10

VS

VN

(A “bel” would omit the factor of 10.) This definition also finds its way into
comparisons of different voltage levels, whether or not they are measuring
“signal” and “noise”.



13.1. SIGNAL AND NOISE 229

13.1.1 Example: Background Subtraction

Before getting into particulars, let’s illustrate things with a simple example.
We will use what we’ve learned about random uncertainties to be quantitative
about signal and noise. This will lead to our first technique for dealing with
noise, namely signal averaging. Finally, we’ll discuss a common laboratory
instrument used for signal averaging, the multichannel analyzer.

Suppose you want to see if there is sodium vapor on some distant star.
You know that sodium atoms emit distinctive yellow light because of two
strong, nearby lines at 589 and 590 nm. You use a prism (or something
fancier) to spread out the wavelengths of the starlight, and look for the yellow
lines, but there is a problem. You see so much light over all the colors, from
the blackbody spectrum of the star, for example, that you can’t pick out the
lines.

The starlight coming from things other than soidum atoms is called back-
ground, and it is a kind of noise. It obscures your view and makes it hard to
pick out the signal, i.e. the sodium lines. There is much more light given off
by the background, even just in the yellow region, than the sodium, so your
signal-to-noise (or signal-to-background) ratio is poor.

Signal averaging is the classic way to deal with this problem. Let’s talk
in terms of intrumentation. Assume you have a photodiode detector that
you can move across the prism spectrum from the star. A calibration tells
you how to translate the physical position of the photodiode into wavelength.
Your measured intensity M(λ) is the sum of your signal intensity S(λ) and
your background intensity B(λ), i.e.

M(λ) = S(λ) +B(λ)

The key point to realize is that S(λ) and B(λ) have very different shapes.
S(λ) is a sharply peaked function near λ = 589 − 590 nm, while B(λ) is a
smooth function over a large range of wavelengths.

Note that the photodiode itself has some noise, mainly due to thermal
fluctuations of electrons across the band gap. This noise shows up as a
random uncertainty in the intensity measurement, in addition to background
light from the star and other sources. Signal averaging takes this random
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statistical noise and reduces it to the point where the signal can be picked
out of the background.

So you move your photodiode to a position λ, measure the intensity M
and record the value, then step to another λ, measure and record M , step
again, and so on. Obviously, you’d like some modern piece of equipment
to do this stepping and recording for you automatically. Such a device is
generically called a multichannel analyzer and you will use different kinds of
them in this course.

After one “sweep” through the spectrum, your result looks something
like Fig. 13.1(a). The random noise in the photodiode reading makes it
impossible to observe any kind of sharp peak near 590 nm. The solution is
to sweep more times and average the result. We know (see Eq. 6.4) that
the uncertainty in the mean intensity goes down like the square root of the
number of sweeps, for each bin of the sweep. Figure 13.1(b) shows the result
after 100 sweeps. The flucutations are now 10 times smaller, and the sodium
lines are clearer.

Let’s be more quantitative about this. The signal S is a small contribution
to M as compared to the background B. Therefore, in order to extract S we
must have

S

B
� δM

M

(where δM is just the uncertainty in M) since M = B(1 + S/B) and our
assumption is that S/B is small. If you like (and many physicists do) you
can talk about a signal-to-noise ratio r = (S/B)/(δM/M) as a measure of
how the random fluctuations obscure your measurement.

Suppose that after one sweep, you find that δM/M = a. Averaging n
sweeps would still give you about the same value for M , but δM goes down
by

√
n so δM/M = a/

√
n. So, if the signal is only 1% as large as the

background (S/B = 0.01) and one sweep of the multichannel analyzer gives
you a 10% measurements of the intensity (a = 0.1), then you would need
n = 100 sweeps just to get to the point where the signal is about as big as
the random statistical fluctuations. To make it five times as big, you need
52 = 25 times as many sweeps, or 2500 total.

What is the uncertainty in the signal S that you get out? There are a
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Figure 13.1: Measured intensity versus wavelength for (a) a single sweep of
a multichannel analyzer and for (b) 100 sweeps.
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few ways to approach this. One is to curve fit M(λ) to an assumed signal
plus background shape, and use statistical analysis to determine S and δS.
A simpler approach, which makes different assumptions, is called background
subtraction.

Background subtraction is exactly what the name implies. You subtract
the background from the measurement, and extract the signal. To determine
the background under the signal, you might assume it varies linearly over the
signal region, and interpolate for wavelengths above and below 590 nm to
get B(λ = 590 nm). This is an independent and (presumably) uncorrelated
measurement relative to the signal region, so S = M −B implies that

δ2S = δ2M + δ2B ≈ 2δ2M

since M and B are about the same size. Therefore

δS

S
=
M

S

√
2
δM

M
=

√
2

S/B

δM

M

and if I want δS/S to 10% with S/B = 0.01, then I need to get δM/M down
to 7 × 10−4 or so. Taking enough sweeps can do that in principle, but you
don’t want systematic uncertainties to creep in. All this may affect aspects
of the design of your experiment.

One last point before we leave this example. The sodium line is really two
distinct lines at 589 and 590 nm. It would sure be convincing if you could
resolve these two and be sure you’ve seen sodium. Various optical techniques
will get you getter resolution, but they all will cost you in signal intensity.
You can still beat down noise by signal averaging, but you have to judge
whether or not it’s worth the extra time you have to spend taking data.

13.2 Kinds of Noise

Now we’ll talk about some specific physical phenomena that show up as
“noise” in various experiments. These phenomena represent natural funda-
mental limits to the precision with which you can measure things. The nice
thing about discussing specific phenomena is that we don’t have to speak in
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such general terms anymore. The bad thing is that we leave out lots of other
kinds of “noise”, but experiences like those in Sec. 13.1.1 will give you lots
of practice.

Of course, since we’re talking about physical phenomena, then these types
of “noise” can be “signal” if you’re trying to measure them! In fact, you will
do just that in Experiment 7.

Again, because we are making a connection to the laboratory, we will end
up talking about electronics. The basic principles, though, are applicable at
a more fundamental level, and I’ll try to point that out.

13.2.1 Shot Noise

The simplest example of fundamental noise is shot noise. It is a consequence
of the fact that matter is made of discrete units like atoms or electrons. Shot
noise is really just an application of simple statistics.

First consider a non-electrical example. Suppose you are sitting in a hut
with a tin roof and it starts to rain. The rate of “pings” caused by raindrops
on the roof tells you how hard it is raining. That is, r = N/t where N is
the number of raindrops falling in time t. Shot noise is just the fluctuations
in r caused by Poisson statistics, i.e. δr = δN/t =

√
N/t. The relative

magnitude of the fluctuations, δr/r = 1/
√
N , decreases as N gets larger, i.e.

the harder it rains.

Now instead of raindrops, let it be electrons moving through space. In
this case, a current i = eN/t flows, and if you measure the voltage drop V
caused by this current over a resistance R, then V = iR. The shot noise in
the current is δi = e

√
N/t. Therefore, the voltage fluctuations are given by

δ2V = (e2N/t2)R2 = (ie/t)R2 or

δV

V
=
[
e

i

1

t

]1/2

(13.1)

which can get quite large at low currents.

Having the time t in Eq. 13.1 is inconvenient. Instrumentation responds
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as a function of frequency, not time. We use a Fourier transform to go
to frequency space. Instead of using the function h(t) which represents a
flow of electrons that is always zero except for 0 ≤ t′ ≤ t when it is some
constant value (say h(t) = 1), we want to use its Fourier transform H(ν ′) =
sin πν ′t/πν′. We define an equivalent band width ∆ν so that

|H(ν)|2MAX ·∆ν =
∫ ∞

0
|H(ν ′)|2 dν ′

That is, we replace the real frequency spectrum with a square in frequency
space so that the areas are the same. Now H(ν) reaches a maximum value
of t when ν = 0, and the Fourier transforms are related by

∫∞
−∞H(ν ′)2dν ′ =∫∞

−∞ h(t′)2dt′ = t. Therefore

t2 ·∆ν =
1

2
t

or ∆ν = 1/2t. (Note the lower limit of integration changing from −∞ to 0.)

I’ve glossed over lots of details about this Fourier transform business, but
don’t be alarmed. I just want you to know it’s not black magic. You would
certainly expect that ∆ν ∼ 1/t just by using dimensional reasoning. The
factor of 1/2 comes from a precise treatment.

Anyway, this all lets us write the shot noise voltage as

δV

V
=
[
2e∆ν

i

]1/2

Shot Noise

over some bandwidth ∆ν. Note that the noise power spectrum, that is the
noise power per unit bandwidth, is (δV 2/R)/∆ν = 2eV which is independent
of the frequency ν. For this reason, we say that shot noise is a kind of white
noise. That is, all frequencies contribute equally to the power spectrum.

Shot noise is generally too small to bother you. Suppose you are measur-
ing voltage using a meter which accepts a bandwidth ∆ν = 10 kHz. Then,
shot noise introduces a 1% fluctuation in the voltage only if the current
flowing is less than 32 pA.
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13.2.2 Johnson Noise

Johnson noise, like shot noise, comes from a statistical fluctuation. Unlike
shot noise, however, it is not as trivial as just random fluctuations in counting
the number of electrons in a region of space. Instead, Johnson noise comes
from thermal fluctuations of electron motion in matter. For this reason,
Johnson noise is sometimes called thermal noise.

One of the first phenomena that lead people to believe in molecules and
atoms was Brownian motion. this was the observation that specs of dust in a
liquid or gas would jitter around randomly if you looked quickly and carefully
enough. This jittering happens because the spec is constantly bombarded by
molecules in the liquid or gas, each bombardment knocking it one way or
another. The motion of the molecules, and so the motion of the spec, is
random because it is just due to the thermal energy contained in the liquid
or gas. Johnson noise is the same phenomenon, applied to electrons in a
resistor instead of the molecules in a liquid or gas.

As the electrons in the resistor jitter around, during any particular time
interval there may be more moving towards one end of the reisistor instead
of the other end. Therefore, a small net current flows in the resistor during
that time interval, giving a small voltage drop. Of course, the net flow
during the next time interval is uncorrelated with the previous, and over
time this voltage drop averages to zero, i.e. V̄ = 0. However, the variance
V̄ 2 − V̄ 2 = V̄ 2 is not zero, and the Johnson noise is δV = σV =

√
V̄ 2, the

root-mean-square (RMS) noise voltage.

We will give a more complete derivation of Johnson noise in Experiment 7,
but for now let’s try to estimate it from the basic physics. Consider the av-
erage noise power P̄ = V̄ 2/R in the resistor. We expect P̄ to be independent
of the number of electrons n in the resistor since σV should be proportional
to
√
n and according to the microscopic derivation of resistance 1, R is pro-

portional to n. Therefore, you guess that P̄ is the energy ε per electron,
divided by the measurement time t. Statistical mechanics tells you that
ε ∼ kT where k is the Boltzmann’s constant and T is the temperature. Also,
you can use the discussion in 13.2.1 to convert the measuring time to band-

1See, for example, Resnick, Halliday, and Krane, Chapter 32
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width as 1/t = 2∆ν. So, you would guess that P̄ = ε/t = 2kT∆ν and
δ2V = 2kTR∆ν. This is very close to the right answer. A careful derivation
gives this result multiplied by two, hence

δV = [4kTR∆ν]
1/2

Johnson Noise

Note that the power spectrum P̄ /∆ν is again independent of frequency. Like
shot noise, Johnson noise is another form of white noise.

Johnson noise can be easier to come by than shot noise, but it is still
rather small. The Johnson noise in a 100 kΩ resistor at room temperature
(T = 300 K) measured over a 10 kHz bandwidth is 4.1 µV.

13.2.3 1/f Noise

We breifly mention one last kind of “fundamental” noise, namely 1/f noise,
also known as “flicker” noise. Unlike shot noise and Johnson noise, 1/f noise
is not due to fundamental properties of matter, but instead seems to be a
part of nature at some more basic level. It is also the dominant source of
noise in most setups, after you remove interference from sources with unique
frequency spectra.

The name 1/f noise comes from it most obvious characteristic. It is not
a “white” noise, but the power spectrum instead falls off like (frequency)−1,
i.e. 1/ν or 1/f . (Since it tends to lower frequencies, some people prefer to
call this “pink” noise.) The magnitude of 1/f noise depends on the quality of
components used, so there is considerable art in making this contribution as
small as possible. Of course, if you can work at sufficiently high frequencies
where the 1/ν fall off is enough, you can eliminate this noise that way.

1/f noise seems to be present in nature at all levels, and defies a basic
physical description. See Horowitz and Hill for an interesting discussion.
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13.3 Noise Reduction Techniques

Getting rid of noise makes your experiment better, and the best way to make
your experiment better is to be creative and use common sense combined with
experience. On the other hand, there are some standard techniques that we
use for noise reduction, and we’ll spend some time discussing them.

Keep in mind that noise is just anything that gets in the way of your
measurement. Also remember that noise will usually have some specific fre-
quency spectrum, and we will exploit that in some forms of noise reduction.
In fact, let’s start there.

13.3.1 Frequency filters

If the noise that’s bothering you is in some specific range of frequencies, and
you can make your measurement in some other range, then a frequency filter
can do a lot for you. Of course, if you’re dealing with white noise, there is
no frequency range you can escape to. However, if 1/f noise is a problem,
work at high frequency, if the physics permits. If the noise is from 60 Hz
line interference or some other specific frequency, work above or below that
value.

Frequency filters are usually simple circuits (or perhaps their mechanical
analogs) that allow only a specific frequency range to pass from the input to
the output. You then make your measurement with the output. Of course,
you need to be careful of any noise introduced by the filter itself.

We’ve already worked with a frequency filter back in Chapter 2 and Ex-
periment 1. The circuit shown in Fig. 2.6 is a “low pass” filter. It exploits
the frequency dependence of the capacitor impedance ZC = 1/ıωC to short
frequencies much larger than 1/RC to ground, and to allow much smaller
frequencies to pass. As we showed earlier, the ratio of the output to input

voltage as a function of frequency ν = ω/2π is (1 + ω2R2C2)
−1/2

.

If you want to get rid of noise at low frequency, like 1/f noise, you want
the opposite of a low pass filter. To make a “high pass” filter, just reverse the
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TypeCircuit TypeCircuit

Low Pass

Low Pass

Low Pass

High Pass

High Pass

High Pass

Figure 13.2: Simple passive frequency filters.

resistor and capacitor. Note, however, that you are measuring the voltage
across a resistor, and you may need to consider, for example, the Johnson
noise it introduces.

You can also use inductors in these simple circuits. Remember that
whereas a capacitor is open at low frequencies and a short at high frequencies,
an inductor behaves just the opposite. Figure 13.2 shows all permutations of
resistors, capacitors, and inductors, and whether they are high or low pass
filters.

Suppose you only want to deal with frequencies in a specific range. Then,
you want a “bandpass” filter which cuts off at both low and high frequencies,
but lets some intermediate bandwidth pass through. Consider the circuit
shown in Fig. 13.3. The output voltage tap is connected to ground through
either a capacitor or an inductor. Therefore, the output will be zero at both
low and high frequencies. Analyzing this filter circuit is simple:

VOUT

VIN
=

ZLC

ZR + ZLC

where ZR = R and ZLC =
(
Z−1

L + Z−1
C

)−1
with ZL = 1/ıωL and ZC = ıωC.

(Note that L and C are connected in parallel.) The result is

g =
∣∣∣∣VOUT

VIN

∣∣∣∣ = 1[
1 + R2

ω2L2 (1− ω2LC)2
]1/2
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R outin VV

LC

Figure 13.3: A simple bandpass filter.

and as advertised, g → 0 for both ω � 1/
√
LC and for ω � 1/

√
LC .

However, frequencies near ν = ω/2π = 1/2π
√
LC are passed through with

little attenuation. At ω = 1/
√
LC , g = 1 and there is no attenuation at all.

Can you see how to build a “notch” filter, or “band reject” filter, that allows
all frequencies to pass except those in the neighborhood of ω = 1/

√
LC?

There are an infinite variety of these kinds of circuits. If you want the
frequency cut off to be sharper, for example, you could cascade filters. How-
ever, this can make problems since you must consider the impedance of a
downstream filter when analyzing the circuit. It may be very hard to come
up with a “passive” filter that can do what you want. Instead, you may need
“active” (i.e. powered) elements in the circuit. We’ll get to that in the next
section.

13.3.2 Negative Feedback and Operational Amplifiers

One way noise can get in the way of your measurements is by causing things
to change when you don’t want it. These changes can happen as a function of
time, frequency, temperature, etc. . . To fight this, you want your apparatus
to be stable against time, frequency, etc. . . The most common way to do this
is using negative feedback.

The idea behind negative feedback is that you take a part of the “output”
and subtract it away from the “input”, causing it to “feed back” to the
output and discourage it from changing. The theory of control systems makes
extensive use of this idea, applying it to mechanical, thermal, and electrical
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r
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Gain=α
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Vin
Vout = αVin

Figure 13.4: A generic amplifier.

systems. I think it is easiest to demonstrate how it works using circuits, and
in fact that is how we use it in this course.

We’ll build a circuit out of two parts. One part is active and complicated,
and is likely to be fraught with all sorts of ugly, noisy instabilities. The other
part is passive and very simple, and is rock-solid stable. Combining the two
gives us an active circuit that is very stable in fact rock-solid stable in the
ideal limit, and has lots and lots of uses.

Consider a generic amplifier, like that shown in fig. 13.4, which amplifies
the difference voltage between its inputs to give an output voltage. This is
the complicated part. It is likely made from lots of transistors connected
by a spider web of passive components. Let the gain of the amplifier be
α. That is, for the circuit in Fig. 13.4 we have VOUT = αVIN . We apply
negative feedback by taking some of the output voltage and subtracting it
from the input. This is shown in Fig. 13.5. A resistor voltage divider (this is
the simple part) is used to take a fraction β = R2/(R1 + R2) of the output
voltage VOUT and subtract it from the input. The amplifier now does not
amplify VIN directly, but instead amplifies VDIF = VIN − βVOUT . That is,

VOUT = αVDIF = αVIN − αβVOUT

and the net gain g is

g =
VOUT

VIN
=

α

1 + αβ
(13.2)

Now’s here the key point. The generic amplifier is designed so it has
enormous gain. That is, α is very, very large. So large, in fact, that αβ � 1,
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Figure 13.5: A generic amplifier with negative feedback.

no matter how small β is. That means that the gain is

g =
1

β
= 1 +

R1

R2
for αβ � 1 (13.3)

The gain of the system only depends on the ratio of a pair of resistor
values, and not on the gain of the generic amplifier. It is hard to get resistor
values to change, so this amplifier circuit is very stable. The generic amplifier
with gain α, however, is likely to depend a lot on frequency, temperature,
and so on.

As you might imagine, commercial versions of the generic amplifier shown
in Fig. 13.4 are available in lots of flavors. They are called operational am-
plifiers or Op-Amps for short. Instead of a box, they are represented by a
triangle, as shown in Fig. 13.6. The two inputs are labeled “+” and “−” for
phase considerations, but you can ignore that for this course. The +V and
−V terminals are where you apply a voltage source to power the op-amp. It
is common to leave these off for schematic circuit diagrams.

Op-amps are cheap. Most cost less than $1, although you can pay a lot if
you want special properties. All have very large gain, i.e. α upwards of 104

or more, up to some frequency. (Remember that capacitance kills circuits
at high frequency because it becomes a short.) The “good ole standby”
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op-amp is the model 741 which is still widely used today. A version of the
741 in standard use today (the LF411) has a gain of at least 88 dB (i.e.
α ≥ 2.5 × 104) and can be used up to frequencies of tens of kHz or more,
depending on the feedback circuit. Horowitz and Hill tabulate the properties
of your garden variety opamps. (The table covers six pages!) They also tell
the interesting story of how op-amps were developed, and why the 741 is
such a mainstay.

A common use of op-amps, of course, is just as a negative feedback am-
plifier. You pick R1 � R2 so that the gain given by Eq. 13.3 is g ≈ R1/R2.
For example, to build a stable amplifier with a gain of ≈ 100 up to a kHz or
so, you might build the circuit shown in Fig. 13.7.

Another application of op-amps brings us full circule to our discussion
of filters. The effective input impedance of an op-amp in negative feedback
is huge. That’s because even though you apply a voltage VIN , the input to
the op-amp is VDIF = VIN − βVOUT ≈ VIN − β(VIN/β) = 0 so it draws no
current. This makes the op-amp ideal for “load buffering”. That is, you can
use it to make the input to some device (like a filter or perhaps a meter)
large enough so you can ignore its effect on the circuit that feeds it.

So, you might build a high pass filter as shown in Fig. 13.8. All the
output of the op-amp is fed back to the input, so β = 1 and g = 1. However,
ZIN = ∞ (effectively) because of the op-amp, so all this circuit does is cut off
the output of the source for ω < 1/RC like a good high pass fileter should.
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If the op-amp were not there, you would need to add in the filter input
impedance ZFILTER = R+1/ıωC to the source circuit, and that could really
screw things up. See Dunlap for further clever variations on active filters.

13.3.3 The Lock-In Amplifier

We’ve spent some time talking about filtering out noise because it has a
specific frequency or tends toward some frequency range. Suppose instead it
is the signal, not the noise, that comes at a specific frequency. We can use
that to pick the signal out of the noise. Furthermore, we can be sensitive
to the phase of the signal as well as its frequency, and that can make a
huge improvement. The technique that does all this is called phase sensitive
detection. The device that you do it with is called a lock-in amplifier.

There are two inputs to a lock-in amplifier. One input carries the signal
(and the noise). The signal, remember, is varying at some specific frequency
which you are aware of. It may be completely buried in noise, however, so
you wouldn’t see it on an oscilloscope, for example. The other input carries
a reference which varies at the frequency of the signal. The signal oscillates
because you make it do so, and the way you do that also gives you the
reference. For example, your experiment measures a response to a laser, so
you turn the laser on and off rapidly with a mechanical chopper. The motor
drive for the chopper gives you the reference signal.

The lock-in amplifier takes the reference signal and uses it as a switch. For
half the period, the switch is “up” and it lets the signal input pass through
it with no change. For the other half, the switch is “down” and it reverses
the sign of the signal (i.e multiplies it by −1) before it passes. This is shown
in Fig. 13.9. The result of this is a modified signal which is always positive,
instead of oscillating around zero like the input signal. A low pass filter takes
out the remaining oscillation and lets the DC level pass through. This DC
level is read off a meter, or presented at some output connector, or digitized
by some computer, depending on how much money you paid for the lock-in
amplifier.

Now consider what happens if the signal is out of phase by 90◦ with
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Figure 13.9: The lock-in amplifier acting on an in-phase signal.

respect to the reference. This situation is shown in Fig. 13.10. Now the
output of the multiply stage is still something which oscillates about zero.
The average DC level is zero, and that is the output of the lock-in amplifier.

So, as promised, the lock-in amplifier only detects signals that are in
phase with the reference. Most lock-in’s have a “phase adjustment” knob
on the fron that allows you to maximize the output signal. If you have the
phase 180◦ away, the output signal should reverse sign.

Okay, let’s see what the lock-in amplifier does to noise that has some
frequency other than the frequency of the signal. The answer is obvious.
The output of the multiply stage will just be a jumble of noise like the input
stage since the reference is essentially just randomly flipping amplitudes. The
output of the low-pass filter will average to zero over some time determined
by the RC time constant of the filter.

This is a very powerful technique. It let’s you pick out a small signal that
may be deeply buried in noise by keying in on its frequency and phase. It is
not uncommon to detect a signal even if the signal-to-noise ratio is 1/1000
or worse at the input to the lock-in.
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Figure 13.10: The lock-in amplifier acting on an out-of-phase signal.

Modulation Spectroscopy

The lock-in amplifier is actually quite a versatile instrument. One of its uses
beyond noise rejection is as a spectroscopy tool. You will use this feature in
Experiment 9 on Nuclear Magnetic Resonance, but we’ll briefly describe the
technique here.

Let’s say you have a signal y which is a function of some parameter x. For
example, you might have an NMR signal as a function of the large magnetic
field which polarizes the sample. Such a thing is graphed in Fig. 13.11.

Now assume the signal is modulated (i.e. made to oscillate) by setting x
to some central value x0 and making it oscillate about x0 by a small amount
∆x. Then the amplitude ∆y of the modulated signal is given by

∆y =
dy

dx

∣∣∣∣∣
x0

∆x

In other words, the output of the lock-in is the derivative of the line shape
y(x). It does this, of course, while throwing out any noise that gets in its
way. One common technique, described in detail by Dunlap, is to sweep the
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Figure 13.11: Using a lock-in amplifier for modulation spectroscopy.

value of x many times and record the output in a multichannel analyzer.
This uses signal averaging to get rid of any remaining noise.

13.4 Exercises

1. A Geiger counter is a device which counts radioactive decays, typically
used to find out if something is radioactive. A particular Geiger counter
measures 8.173 background counts per second, i.e. this is the rate when
there are no known radioactive sources near it. Your lab partner hands you
a piece of material and asks you if it is radioactive. You place it next to the
Geiger counter for 30 seconds and it registers a total of 253 counts.

a. What do you tell your lab partner?

b. What do you do next?
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2. The Tortoise and the Hare have a signal-to-noise problem. A very weak
signal sits on top of an enormous background. They are told to determine
the signal rate with a fractional uncertainty of 25%, and they decide to solve
the problem independently. The Tortoise dives into it and takes data with
the setup, and he determines the answer after running the apparatus for a
week. The Hare figures she’s not only faster than the Tortoise, but smarter
too, so she spends two days reducing the background in the apparatus to
zero, without affecting the signal. She then gets the answer after running
the improved setup for one hour. (The Hare really is a lot smarter than the
Tortoise, at least this time.)

Assuming Poisson statistics,

a. What is the signal rate?

b. What is the Tortoise’s background rate?

3. Consider the passive filters shown in Fig. 13.2.

a. Determine the gain as a function of ω = 2πν for each filter.

b. Plot the gain as a function of ω/ωC for the three low pass filters. Define
the critical frequency ωC using the simplest combination of the two
components in the circuit, that is, ωC = 1/RC , ωC = 1/

√
LC, or

ωC = R/L. It is probably best to plot all three on the same set of
log-log axes.

c. Do the same as (b) for the high pass filters.

d. Can you identify relative advantages and disadvantages for the different
combinations of low pass or high pass filter?

4. Consider the following variation on the circuit shown in Fig. 13.3:
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R VoutinV

C

L

a. How does this circuit behave at high frequency?

b. How does this circuit behave at low frequency?

c. Calculate the gain g = |VOUT/VIN | as a function of frequency. What is
the behavior for intermediate frequencies?

d. Give an example of where this sort of filter would be useful.

5. A particle detector gives pulses that are 50 mV high when measured as
a voltage drop across a 50 Ω resistor. The pulse rises and falls in a time
span of 100 ns or less. Unfortunately, there are lots of noisy motors in the
laboratory and the ground is not well isolated. The result is that a 10 mV
60 Hz sine wave is also present across the resistor, and adds linearly with
the pulses.

a. Draw a simple circuit, including the 50Ω resistor and a single capacitor,
that allows the pulses to pass, but blocks out the 60 Hz noise.

b. Determine a suitable capacitance value for the capacitor.

6. You are measuring a quantity Q which is proportional to some small
voltage. In order to make the measurement, you amplify the voltage using a
negative feedback amplifier like that shown in Fig.C7.5 in the notes.

a. Show that the gain g of the full amplifier circuit can be written as

g = g0

[
1− 1

αβ
+O

(
1

α2β2

)]
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where g0 = 1/β and α � 1 is the internal amplifier gain, β is the
feedback fraction, and αβ � 1.

b. You measure Q with the specific amplifier shown in Fig.C7.7 in the
notes. The temperature in the lab fluctuated by 5◦ F while you made
the measurement, and the specification sheet for the op-amp tells you
that its gain varies between 2.2×104 and 2.7×104 over this temperature
range. What is the fractional uncertainty in Q due to this temperature
fluctuation?



Ch 14

Experiment 7: Johnson Noise

We’ve spent some time describing things we call “noise”. The basic idea is
that noise gets in the way of what you want to measure, but here we are
going to turn that idea around.

In this experiment, the noise is the signal. That’s a flip way of putting
it, but we are going to get some physics out of a phenomenon that usually is
an annoyance to physicists. The reason we can physics out of it, though, is
because it is a very fundamental source of noise. It has to do with the motion
of electrons in a conductor, and the heat energy they carry around with them.
This is called “Johnson Noise” because it was originally measured by J.B.
Johnson. Some people call it “Nyquist Noise”, because the phenomenon
Johnson measured was first correctly explained by H. Nyquist. I prefer to
call it “thermal noise”, because that tells you more about where it comes
from.

A relatively simple explanation of thermal noise can be found in

• Random Walk Model of Thermal Noise for
Students in Elementary Physics,
Richard W. Henry, American Journal of Physics 41(1973)1361

We will summarize this paper here when we go through a derivation of John-

251
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son Noise. Experiments similar to the one we will do here can be found
in

• Undergraduate Experiment in Noise Thermometry,
P. Kittel, W.R. Hackerman, and R.J. Donnelly,
American Journal of Physics 46(1978)94

• An Experiment on Electronic Noise in the Freshman Laboratory,
D.L. Livesey and D.L. McLeod,
American Journal of Physics 41(1973)1364

Finally, you might want to go back and look at the original work of
Johnson and Nyquist. Their papers are actually quite nice.

• Thermal Agitation of Electricity in Conductors,
J.B. Johnson, Physical Review 32(1928)97

• Thermal Agitation of Electric Charge in Conductors.
H. Nyquist, Physical Review 32(1928)110

14.1 Thermal Motion of Electrons

We will review the simple model presented in Henry’s paper. You might also
want to look up the paper by Kittel, et.al. Recall that we went through a
simple minded approach in Sec. 13.2.2. A brief review of statistical mechanics
and its relation to thermal physics is given in Appendix B.

The model is based on random thermal fluctuations of electrons in a one-
dimensional resistor of length L and cross sectional area A. The resistor has
resistance R and a voltage drop V = iR is across the ends. The current i,
and therefore the voltage V , arises from the thermal fluctuations that allow
more electrons to move one way than another in some short time interval t0.

First, the basics. On average no current flows through the resistor, and
the average value of V is zero. That is,

〈V 〉 = 0
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On the other hand, the thermal fluctuations still give rise to a finite voltage
as a function of time, in other words V (t) 6= 0. Therefore, the variance of V
is not zero, that is

σ2
V =

〈
(V − 〈V 〉)2

〉
= 〈V 2〉 − 〈V 〉2 = 〈V 2〉 6= 0

This quantity 〈V 2〉 = σ2
V is called the thermal or Johnson noise voltage, and

it is what you will measure in this experiment. Let’s calculate it in terms of
some known quantities.

From Ohm’s law and the definitions of current and charge, we can write

σV = σiR

=
σq

t0
R

=
eσx/L

t0
R

where σx is the net x-motion of all the electrons in the measuring time t0. If
we can reduce this to the motion of an individual electron, then we can use
a microscopic description of current and resistance. If there is a total of N
independent and random electron motions (i.e. “random walks”) in time t0,
then

σx =
√
Nσd

where σd is the average distance that any single electron moves. Therefore,

σV =
e

L

√
N
σd

t0
R (14.1)

Now for the physics. N is the total number of electrons in the resistor
times the number of walks in time t0, so

N = (nAL)× t0
τ

=
nALt0
τ

where n is the number density of electrons and τ is the time between collisions
of a single electron. The fluctuation in the motion of a single electron is

σ2
d = 〈d2〉 = 〈v2

xτ
2〉 = 〈v2

x〉τ 2
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and this is what we connect to temperature by 〈E〉 = 1
2
m〈v2

x〉 = 1
2
kT , where

m is the mass of an electron and we note that motion is only in one dimension.
(For a review of statistical mechanics, see Appendix B.) The factor k is
called Boltzmann’s constant and is the basis of the fundamental relationship
between temperature and internal energy. Therefore

σ2
d =

kT τ 2

m

Finally, we note that (see Resnick, Halliday, and Krane or Expt. 5)

L

A

2m

ne2τ
=
L

A
ρ = R

where ρ is the resistivity.1

Finally, put this all into Eq. 14.1 to get

σ2
V =

e2

L2
N
σ2

d

t20
R2

=
e2

L2

nALt0
τ

kT τ 2

mt20
R2

=
A

L

ne2τ

m

kT

t0
R2

or 〈V 2〉 =
2kTR

t0
(14.2)

As discussed in Sec. 13.2.1, however, it is customary to express the noise
using the equivalent bandwidth ∆ν = 1/2t0. Therefore, we have

〈V 2〉 = 4kTR∆ν (14.3)

Now in order to measure the voltage V , we will need to amplify or at least
process the signal in some way. Let g(ν) be the gain of this processing circuit
at frequency ν. Then the output voltage fluctuations d〈V 2〉 integrated over
some small frequency range dν is given by

d〈V 2〉 = 4kTRg2(ν)dν

1The definition of τ used here differs from that used in Expt. 5 by a factor of two. That
is because we are dealing with a single electron. See Resnick, Halliday, and Krane.
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Figure 14.1: Schematic for measuring Johnson noise.

Measurements are made by integrating the signal over a relatively large band-
width ∆ν. This bandwidth is typically determined by the gain function g(ν)
which is large only over some finite frequency range. We therefore obtain the
expression

〈V 2〉 = 4kTRG2∆ν (14.4)

where G and ∆ν are constants defined by

G2∆ν ≡
∫ ∞

0
g2(ν)dν (14.5)

14.2 Measurements

You will measure the Johnson noise in a series of resistors, and use the result
to determine a value for Boltzmann’s constant k.

The setup is shown schematically in Fig. 14.1. The voltage across the
resistor R is immediately processed by an “amplifier”, which essentially mul-
tiplies this voltage by a function g(ν). The output of the amplifier is measured
using the LeCroy 9310 digital oscilloscope. You will use the oscilloscope to
measure 〈V 2〉, given by Eq. 14.4. By changing the value of R (simply by
changing resistors), you measure 〈V 2〉 as a function of R, and the result
should be a straight line. The slope of the line is just 4kTG2∆ν, so once
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you’ve calibrated the gain function of the amplifier, you can get k. (You can
assume the resistor is at room temperature.)

Let’s look a little more carefully at the properties of the amplifier. We
will be working in the several tens of kHz range, so to estimate the gain
we need, take a bandwidth ∆ν = 10 kHz. The digital oscilloscope cannot
make measurements much smaller than around 0.5 mV, so Eq. 14.4 implies
that the nominal gain G must be on the order of 1200 or more to measure
the noise in a 1 kΩ resistor. The amplifier also needs to have low noise and
good stability itself, if are going to use it on such a small signal. A high gain
opamp with negative feedback (see Sec. 13.3.2) sounds like the right solution.

The bandwidth of the amplifier also needs to be considered. In fact, if
we are going to do the job right, we want to make sure that all the band-
width limitations are given by the amplifier, and not by the oscilloscope, for
example. That way, we can measure the function g(ν) of the amplifier stage
only. The oscilloscope bandwidth will depend on the timebase used, that is,
the time over which the output voltage is averaged and digitized. As long as
the oscilloscope’s bandwidth is greater than the amplifier’s, you will be ok.
You ensure this by putting a bandwidth filter on the output of the amplifier.
In the beginning, you will use a commercial bandwidth filter with adjustable
lower and upper limits.

The first “amplifier” you will use, therefore, is shown in Fig. 14.2. For now
the bandwidth filter is just a box with an input and output, and with knobs
you can turn. The gain producing part of the amplifier, on the other hand,
is essentially a cut and dry application of opamps and negative feedback. In
fact, as shown in Fig. 14.2, two such negative feedback loops, are cascaded
to get the appropriate gain and input characteristics. The first loop uses a
HA5170 opamp and a low gain, while the second stage is higher gain and
uses a HA5147.2 Good starting values to use are R1 = 10Ω, R2 = 100Ω, and
R3 = 2.2kΩ. This gives the first stage a gain of 11 and the second stage a
gain of 221, times the bandwidth function imposed by the opamps and the
bandwidth filter.

All of these components, including your input resistor R (but not the com-

2The credit for figuring out the right opamps and amplifier circuit in general goes to
Jeff Fedison ’94. More details on this circuit design are available.
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Figure 14.2: Amplifier stage for measurements of Johnson noise.

Bal

NC +V Out Bal

-In +In -V

Figure 14.3: Pinout diagram for the opamp chips used in this experiment.
We are not using the “Bal” connections. The notation “NC” means “no
connection”.

mercial bandwidth filter), are mounted on a breadboard so you can change
things easily. The pinout diagram for the HA5170 and HA5147 are shown in
Fig. 14.3. The opamps are powered by ±12 V levels applied in parallel with
0.1 µF capacitors to ground, to filter off noise in the power supply. Connec-
tions to the breadboard are made using wires soldered to BNC connectors.
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14.2.1 Procedure

Set up the circuit shown in Fig. 14.2. Check things carefully, especially if
you are not used to working with breadboards. In particular, make sure the
12 V DC levels are connected properly, before you turn the power supply on.
The output from the breadboard gets connected to the bandwidth filter, and
the output of the bandwidth filter goes into the oscilloscope. The lower and
upper limits of the bandwidth filter are not crucial, but 5 kHz and 20 kHz
are a reasonable place to start.

First you need to measure the gain of the amplifier/bandwidth filter as a
function of frequency. All you really need to do is put a sine wave input to
the circuit and measure the output on an oscilloscope. The output should
look the same as the input (i.e. a sine wave of the same frequency ν), but
the amplitude should be bigger. The ratio of the output to input amplitudes
is just the gain g(ν).

There is a problem, though. You have built an amplifier of very large
gain, around 2.4 × 103, and the output amplitude must be less than a few
volts so the opamps do not saturate. That means that the input must be less
than a couple of millivolts. That is barely enough to see on an oscilloscope,
assuming your waveform generator can make a good sine wave with such a
small amplitude.

You get around this problem by using the schematic shown in figure 14.4.
The waveform generator output passes through a voltage divider, cutting
the ampltude down by a known factor. This divided voltage is used as in-
put to the amplifier. It is a good idea to measure the resistor values RBIG

and RSMALL using an ohmmeter, rather than trust the color code (which
can be off by up to 10%). Pick resistors that give you a divider ratio some-
where between 10 and 100. It is also a good idea to tee the output of the
waveform generator and look at it on the oscilloscope along with the ampli-
fier/bandwidth filter output.

Make your measurements of g(ν) by varying the frequency of the wave-
form generator, and recording the output amplitude. Of course, you must
also record the input (i.e. generator) amplitude, but if you check it every
time you change ν, you can be sure it does not change during your mea-
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Figure 14.4: Calibration scheme for the noise amplifier.

surement. Measure over a range of frequencies that allows you to clearly see
the cutoffs from the bandwidth filter, including the shape as g approaches
zero. Also make sure you confirm that the gain is relatively flat inbetween
the limits.

An example is shown in Fig. 14.5. The setup used R1 = 10Ω, R2 = 100Ω,
and R3 = 2.2kΩ, so the total gain should be 2431, and with bandwidth filter
limits at 5 kHz and 20 kHz. The main features seem to be correct, although
the filter has apparently decreased the maximum gain a bit.

Now take measurements of the actual Johnson noise as a function of R.
Remove the waveform generator and voltage divider inputs, and put the
resistor you want to measure across the input to the amplifier. Set the time
per division on the oscilloscope so that its bandwidth limit is much larger
than the upper frequency you used on the bandwidth filter. For example,
if there are 10,000 points3 (i.e. samples) per trace and you set the scope to
0.2 ms/div, then the time per sample is 0.2 µs since there are ten divisions.
The bandwidth is the reciprocal of twice this time (see Sec. 13.2.1) or 2.5 Mhz.
If the filter cuts off at 20 kHz, then this would be fine.

It is best to trigger the scope on “line” so you do not bias the input values.
Also, the coupling of the input channel should be DC and high impedance

3The LeCroy 9310 has 10,000 points but the 9310A has 50,000.
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Figure 14.6: Oscilloscope traces of the output of the bandwidth filter, and
for 100 traces averaged together by the oscilloscope. Note the difference in
the vertical scales.

so the input does not suffer any distortion.

Use resistors with R near zero (10Ω) and up to R ≈ 10kΩ. The oscillo-
scope trace will look like an oscillatory signal, but that is because you are
(likely) using tight bandwidth limits. What would the trace look like if the
lower limit was only slightly smaller than the upper limit?

Figure 14.6 shows a single sweep trace on the scope directly from the
output of the bandwidth filter, and the average (as done by the scope itself)
of 100 traces. The average looks the “same” as the single sweep, but it is
10 times smaller. (Note the difference in the vertical scales.) It is clear,
therefore, that the oscillations in the input signal are random in phase, even
though they are confined within the limits of the bandwidth filter.

The PARAMETERS menu on the scope will allow you to measure lots of
things about the trace, and average the values over lots of sweeps to smooth
out the effects of the oscillations. You should average over 100 sweeps or so,
but if you watch the numbers change as the number of sweeps increases, you
can get an idea of how stable they are.
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There are three quantities in particular you should record, for each value
of R. One is the RMS value, which the oscilloscope handbook tells you

is in fact
√
〈V 2〉, but that is not quite what you want. The amplifier and

bandwidth filter have a tendency to add some small DC level to the output,
so that the MEAN value 〈V 〉 is not quite zero. Since you are only interested
in the fluctuations about the mean, therefore, the quantity you actually want
is called SDEV, i.e. the standard deviation. You should probably check to
see if these values satisfy the relation SDEV2 = RMS2 −MEAN2.

14.2.2 Analysis

The first thing you need to do is determine the value of
∫∞
0 g2(ν)dν. Make a

plot of g2(ν) as a function of ν and estimate the integral under the curve. You
can try to estimate this graphically, but you can easily get an accurate answer
using the matlab function trapz which performs a trapezoidal integration
given a list of (x, y) values.

Next make a plot of 〈(V − 〈V 〉)2〉 = SDEV2 as a function of R. An
example is shown in Fig 14.7. Fit a straight line through these points and
determine the slope and intercept at R = 0. Get a value for k, and the
uncertainty, from the slope, using your gain integral and assuming the resistor
is at room temperature. Estimate the contributions to the uncertainty in k
from your estimates of the possible temperature range for the resistor, and
from the uncertainty in the slope of the straight line.

The intercept of the line is the noise at R = 0. You would expect this
to be zero if Johnson noise in your input resistor were the only thing going
on. The input opamp, however, has some noise of its own, due to internal
Johnson noise, shot noise, and so on. The specification sheet for the HA5170
gives an equivalent input noise of around 10 nV/

√
Hz. How does this compare

to your measurement?
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Figure 14.7: Data taken by measuring the standard deviation (“SDEV”,
using the LRS9310 Parameters menu) of the output voltage signal, as a
function of the input resistor value. The variance is just SDEV2. The slope
gives k, while the intercept gives the equivalent input noise voltage, after
correcting for the amplifier gain×bandwidth.

14.3 Advanced Topics

This is not an easy experiment. A lot of the concepts are probably new to
you, and it would not be surprising if some things didn’t work out quite the
way you expect.

In fact, the value you got for k in the above analysis is likely a bit high.
Furthermore, you likely don’t yet have any clear evidence of a systematic
effect, other than your not getting the answer you expect. This would indicate
some source of noise you’ve not eliminated.

It is a worthwhile project to repeat the measurements, making changes
wherever you can. You might consider changing the resistor values R1, R2,
and R3 in Fig. 14.2 to vary the gain of the amplifier. Adjusting the bandwidth
limits should also give you different measured quantities, but the same result
for k after the calibrations are done. Also, try varying the sample rate of the
scope, just make sure that you keep the equivalent scope bandwidth larger
than what the bandwidth filter gives.
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Beyond these, however, there are some more concrete things that you can
do.

14.3.1 Analysis of Traces

Instead of simply using the oscilloscope to determine the standard deviation,
use matlab and the trace data (as in Fig. 14.6) to get the values and examine
their distribution. You can get the data into an array4 trace by following the
procedure outlined in Sec. 3.7.1, and you can use mean(trace) and std(trace)
to get the mean and standard deviation. The series of matlab commands
used to plot the distribution might look like

bins=linspace(min(trace),max(trace),50);

[n,x]=hist(trace,bins);

stairs(x,n);

The single sweep trace in Fig. 14.6 is plotted this way in Fig. 14.8. The
distribution is rather gaussian-like, as you expect, but you could test to
see if this is really the case by comparing it to the gaussian with the same
mean and standard deviation, and considering the χ2. It might be that
better statistics, or perhaps doing the same thing with the scope-averaged
spectrum, will show some peculiarities.

14.3.2 Frequency Spectrum

The LeCroy 9310 digital oscilloscope has the capability of performing a real
time Fourier analysis of the input. That means that you can actually demon-
strate that the noise spectrum d〈V 2〉/dν is indeed “white”, that is, indepen-
dent of frequency. This is straightforward data to take, but will require that
you learn more about Fourier analysis to interpret it.

4Be careful, though, since the trace can be quite long, say 50,000 values. This will be
too big for the Student Edition of matlab and you’ll need to cut it down by skipping
lines when you read it in.
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Figure 14.8: Histogram of the individual voltage values from a single sweep
trace.

Try the easy part first. Use the oscilloscope to Fourier analyze the input
trace by storing the magnitude of the FFT in one of the math traces. Then,
form the average of many FFT results and display the result. You should
get something that looks somewhat like Fig. 14.9. If the noise spectrum were
indeed white, then this should look more or less like the gain function g(ν).
Indeed, that is the general shape, but what are those big spikes at 30 kHz
and 53 kHz?! There certainly does seem to be some additional noise getting
through.

Attempt to eliminate the noise. Try moving things around or use better
shielding on the circuit breadboard. What happens when you adjust the
limits on the bandwidth filter?

You can in fact use data like that in Fig. 14.9 to analyze your data
directly. For a couple of values of R, you can get d〈V 2〉/dν from the FFT
function, only using data points where the spectrum is truly white. Your
measurements of g(ν) at those frequencies is then used to determine 〈V 2〉.
Consult the oscilloscope handbook for more details.
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Figure 14.9: Fast Fourier Transform (FFT) of the output from the bandwidth
filter. The magnitude of the oscilloscope FFT function was averaged with
the result from 100 traces. The large spikes represent some form of noise at
those specific frequencies.
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14.3.3 Circuit Modifications

One nontrivial circuit modification would be to make your own bandwidth
filter. For example, consider the circuit shown in Fig. 13.35 Try assembling
components that give you reasonable parameters for the gain integral in
Eq. 14.5. A simpler kind of filter might simply be two RC filters, one high
pass and one low pass, cascaded in series. If you want to do active buffering,
though, be careful to use an opamp that works at these frequencies.

Try using a few kΩ resistor as input, but something that is mechanically
large and strong enough to take some real temperature change. If you im-
merse the resistor in liquid nitrogen, for example, it should make a large (and
predictable) change in the Johnson noise.

A very nice addition to the experiment would be to put an adjustable
current through the resistor R. If you get this current from, say, a vacuum
tube diode, then the current would be truly shot noise limited. You would
measure the shot noise by varying the current i, and the slope of 〈V 2〉 versus
i would give you the electron charge e. This is the essence of the experiment
described in the paper by Livesey and McLeod, although their goals were
much less ambitious.

5This, in fact, is what Johnson used in his 1928 paper. You might want to look it up,
and compare your results to his.
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Ch 15

Experiment 8: The Faraday
Effect

Sometimes important physics discoveries are made by trying things mostly for
the sake of curiosity. In 1845, Michael Faraday wondered if a magnetic field
could affect the polarization of light, despite the fact that nobody really knew
what light was or what matter was made from. Faraday did an experiment
nevertheless, and discovered that when plane polarized light passes through
some material in the presence of a longitudinal magnetic field, the plane of
polarization rotates. This the Faraday Effect.

You will measure this effect in this experiment. We take the opportunity
to do a neat experiment, making use of the lock-in amplifier to extract the
signal from the noise. (You should probably review Sec. 13.3.3.)

Discussions of the Faraday effect and other polarization phenomena can
usually be found in advanced undergraduate texts on optics. I suggest

• Introduction to Optics, Second Edition
Frank. L. Pedrotti and Leno S. Pedrotti,
Prentice Hall (1993), Section 26-6.

• The Art of Experimental Physics,
Daryl W. Preson and Eric R. Dietz, John Wiley and Sons (1991)

269
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Experiment 22.

The experiment done in Preston and Dietz is rather different from the way we
do it, but the discussion of the physics is quite thorough. A good introduction
to the basics can be found in

• Physics, Robert Resnick, David Halliday, and Kenneth Krane,
John Wiley and Sons, Fourth Edition (1992)

– Chap.40 Maxwell’s Equations

– Chap.41 Electromagnetic Waves

– Chap.42 The Nature and Propagation of Light

– Chap.48 Polarization

These chapters include discussions on the speed of light in matter and cir-
cular polarization. An excellent reference on optical techniques, including
polarization detection and photodiodes, is given in

• Experimental Physics: Modern Methods, by R. A. Dunlap,
Oxford University Press (1988); Chapter 10

15.1 Magnetically Induced Optical Rotation

It’s worth going back to the beginning, so that’s what we’ll do. We will
quickly come up to speed on the Faraday Effect, but the important concepts
are clearest if we look first at the origin of electromagnetic waves. In partic-
ular, we will look at their speed of propagation. Then we will look at how
media can modify that speed and lead to the Faraday Effect.

15.1.1 Electromagnetic Waves and Polarization

Maxwell’s Equations are fundamentally important because together, they
predict electromagnetic radiation. As presented in elementary texts (like
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Resnick, Halliday, and Krane), Maxwell’s Equations in free space, i.e. with
no matter present, are

∮
~E · d ~A = 0

∮
~B · d ~A = 0∮

~E · d~s = −dΦB

dt

∮
~B · d~s = µ0ε0

dΦE

dt

Of course, ~E and ~B are the electric and magnetic field vectors, which are in
general functions of space and time. ΦB and ΦE are “fluxes”, i.e. integrals of
the fields over the enclosed regions. The quantities µ0 and ε0 are the magnetic
permeability and electric permittivity in free space. We will be returning to
this important point.

These equations are written in the “integral” form. All the physics is
there, so that’s fine, but it is cumbersome to proceed with the equations in
this form. It is better to write them in the “differential” form, using some
well known theorms of vector integral calculus.

Gauss’ theorem relates the integral of a vector field ~F over a closed surface
to a volume integral over the region enclosed, i.e.

∮
~F · d ~A =

∫
~∇ · ~FdV

Stokes’ theorm similarly relates the integral of ~F over the boundary of an
open surface to the integral over that surface, i.e.

∮
~F · d~s =

∫ (
~∇× ~F

)
· d ~A

(The fluxes ΦB and ΦE in Maxwell’s Equations are just integrals over the
same areas dictated by Stokes’ theorem.) This means that we can collect
the integral forms all into integrals over volumes or surfaces, and if we let
the integration region get very small, we force the same relations on the
integrands. The result is Maxwell’s Equations in Differential Form:

~∇ · ~E = 0 ~∇ · ~E = 0
~∇× ~E = −∂ ~B

∂t
~∇× ~B = µ0ε0

∂ ~E
∂t
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Now let’s find an equation for the electric field vector ~E all by itself. Take
the partial derivative with respect to time of the last equation:

∂

∂t
~∇× ~B = µ0ε0

∂2 ~E

∂t2

The partial derivative on the left “passes through” and takes the derivative
of ~B. Then use the third equation to replace this derivative:

−~∇× ~∇× ~E = µ0ε0
∂2 ~E

∂t2

Now make use of a the “curl-of-a-curl” theorem:

~∇×
(
~∇× ~E

)
= ~∇

(
~∇ · ~E

)
−∇2 ~E = −∇2 ~E

where we’ve used the first equation to eliminate the first term. The end
result is the equation for ~E we wanted namely,

∇2 ~E = µ0ε0
∂2 ~E

∂t2
(15.1)

This is called the wave equation, and its solution is profound.

The general solution to the wave equation is simple. Look for a solution
of the form

~E = E(z, t)x̂ (15.2)

that is, where the electric field is a function only of z and t and points in
the x-direction. Notice that there can be no z-component to the vector since
~∇ · ~E = 0 would not be satisfied in general. Also, if we just choose the
x-direction to be the direction that ~E points towards, we can leave off the
y-component with no loss of generality. This electric field vector is said to
be polarized in the x−direction.

Inserting Eq. 15.2 into Eq. 15.1 gives

∂2E(z, t)

∂z2
= µ0ε0

∂2E(z, t)

∂t2

The solution for E(z, t) has the very general form

E(z, t) = f(z − ct) + g(z + ct) (15.3)
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where f(u) and g(u) are any arbitrary function and

c ≡ 1√
µ0ε0

(15.4)

Consider what kind of function is f(z − ct). At time t = 0 and position
z = z0, the function has the value f(z0). At some later time t = t0 > 0, the
function has the same value at the position z = z0+ct0 > z0. In other words,
f(z − ct) represents a functional form which moves to the right with a speed
c. Such a moving functional form is called a “wave”. Similarly, g(z + ct) is
a leftward moving wave. We call c the “speed of light in free space”. It is
uniquely predicted by Maxwell’s Equations.1

The wave equation is linear, so we can add any two solutions and the sum
is still a solution. Thus, we generally work with sine or cosine solutions for
E(z, t), realizing that Fourier analysis gives us the machinery to add them up
to be anything we like. Furthermore, we usually work with ω = 2πν where
ν is the frequency of the wave and k = 2π/λ where λ is the wavelength, and
ω/k = νλ = c. Thus

~E(z, t) = E0 cos (kz − ωt) x̂ (15.5)

where E0 is the arbitrary magnitude of the wave. We will only be working
with rightward moving waves from here on.

The situation is summarized in Fig. 15.1, where Eq. 15.5 is plotted as a
function of z at two different times t = 0 and t = T . The crest of the wave
moves a distance z = cT in time T . The wave is linearly polarized, i.e. the
vector ~E always points in either the +x or −x direction.

Circular Polarization

We can write Eq. 15.5 for ~E(z, t) as the sum of two separate waves, namely

~E(z, t) = ~ER(z, t) + ~EL(z, t) (15.6)

1You should realize that this speed is predicted independent of the reference frame.
That is, light has speed c regardless of the motion of an observer relative to the source
that emitted the wave. This goes against “Galilean” relativity and is the paradox that led
Einstein to deduce the theory of Special Relativity.
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Figure 15.1: A linearly polarized electromagnetic wave.

where

~ER(z, t) =
E0

2
cos (kz − ωt) x̂− E0

2
sin (kz − ωt) ŷ (15.7)

~EL(z, t) =
E0

2
cos (kz − ωt) x̂+

E0

2
sin (kz − ωt) ŷ (15.8)

Neither of these waves are polarized along a particular direction, but they
are polarized in a different sense. Figure 15.2 helps explain this by showing a
view of the vectors ~ER and ~EL in the x, y plane at z = 0 and at two different
times t = 0 and t = T . At time t = 0, both ~ER and ~EL point in the x-
direction. At time t = T , ~ER has rotated through an angle θ = ωT towards
the +y-axis, and ~EL has rotated through the same angle, but towards the
−y-axis. That is, as time goes on, ~ER and ~EL sweep out circular motions
about the z-axis. They are circularly polarized waves.

We say that ~ER has right-handed circular polarization, whereas ~EL is left-
handed. These names come from the screw sense of the wave as it travels in
the +z-direction, i.e. out of the page in Fig. 15.2.

This is important. We have shown that a linearly polarized light wave
is the sum of a right-handed circularly polarized wave, and a left-handed
circularly polarized wave. In the Faraday Effect, we will affect the left and
right handed components differently from each other.
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Figure 15.2: The meaning of circular polarization. These diagrams show
the directions of the electric field vector components ~ER and ~EL for a wave
moving in the z-direction, i.e. out of the page. Instead of always pointing
one way, the vectors ~ER and ~EL rotate around the z-axis. In a time T , they
each rotate through an angle θ = ωT , but in opposite directions. At any
time, however, the total electric field vector ~E = ~ER + ~EL points in the ±x
direction, and is linearly polarized.

15.1.2 Light Propagation in a Medium

Light is just the name we give to electromagnetic waves with wavelengths
between ∼ 200 nm and ∼ 1 µm. See Chapter 11 for more details.

So far we have been dealing only with electromagnetic waves in free space.
What happens if we let them propagate in a material? Well, this opens an
enormous can of worms, but for light waves the discussion is rather straight-
forward.

If there are no free charges or currents in the material, Maxwell’s Equa-
tions are unchanged except that µ0 and ε0 are replaced with their values µ
and ε in that material. Recall that µ > µ0 and ε > ε0. Therefore the speed
of the wave in the material is given by c/n where

n =

√
εµ

ε0µ0
> 1

is called the index of refraction. To be sure, both µ and ε are functions of
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frequency, and are not typically the same as their static (i.e. ν = 0) values.
This gives rise to a wavelength dependence of n which is the reason white
light can be separated into the colors of the rainbow using a triangular prism.

15.1.3 The Faraday Effect

Dramatic things happen when the index of refraction n is different for waves
that have right or left circular polarization. Some materials in nature have
this property. (They are called “birefringent”.) The Faraday Effect is the
observation that an applied magnetic field causes otherwise normal materials
to become birefringent. Let’s think a little bit about how this could happen,
and then see how the effect can be observed.

Consider how ε, for example, might change in a material. (You may want
to review the discussion in Expt. 4.) This is related to how charge might
be “stored” on capacitor plates with the material between the places, and
this is directly related to how polarized the atoms in the material become
when an electric field is applied. In turn, the degree to which the atoms are
polarized depends on how tightly bound are the electrons in the atoms. In
other words, if the applied magnetic field affects the binding energy of the
electrons in the atom, then you expect it to affect the propagation of light
through the material.

Figure 15.3 schematically shows an electron in orbit about the nucleus
of an atom with no applied field, and then with a magnetic field ~B both
into and out of the page. There is clearly an additional central force on
the electron given by e~v × ~B when the field is applied, and this will change
the binding energy. What’s more, for a particular angular momentum state
of the electron, this additional force causes the electron to be more tightly
bound if ~B is one way, and less tightly bound if it is opposite. This is exactly
the kind of effect which would cause ε, and so n, to be different for right or
left handed circular polarizations.

The effect of the applied ~B field is not large. For an electron in the lowest
Bohr orbit of the hydrogen atom (see Expt. 6), the force due to the magnetic
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Figure 15.3: Schematic representation of the Zeeman Effect in an atom. The
external magnetic field alters the electron orbits, and this affects everything
from energy levels to the propagation of light past the atoms. The Coulomb
force FC and the magnetic force FM are not drawn to scale, in particular
FC � FM .

field is
FMAGNETIC = evB = e(αc)B = 3.5× 10−14 N

for a (relatively large) 0.1 T magnetic field. On the other hand, the coulomb
force is

FCOULOMB =
1

4πε0

e2

r2
=

1

4πε0
e2
(
mv

h̄

)2

= 8.2× 10−8 N

or about two million times larger. This effect of magnetic field on the binding
energy is called the Zeeman Effect, and it can be directly observed in high
resolution atomic spectroscopy experiments. In this experiment, we observe
it’s effect on the propagation of light through the material, i.e. the Faraday
Effect.

So now suppose that there are two indices of refraction, nL and nR for
each of the two circularly polarized waves 15.7 and 15.8. This means that
the two components of the linearly polarized wave 15.6 will propagate with
different speeds vR,L = c/nR,L. Because the wave must be continuous at the
entrance and exit boundaries of the material, the frequency ν of the wave
must be the same for the wave both inside and outside. Nevertheless, we
must still satisfy the relation ω/k = c/n inside the medium to be consistent
with Maxwell’s Equations. Therefore, inside the medium, we must have
kR,L = ωnR,L/c.
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Figure 15.4: The rotation of the plane of linear polarization after different
propagation times for the right- and left-handed circular components. Be-
cause ~ER and ~EL rotate by different amounts, the plane of linear polarization
for ~E = ~ER + ~EL rotates away from the x-axis by an amount φ = (θR−θL)/2.

Let’s look at what happens to the right- and left-handed components by
the time they emerge from the other end of the sample. Let the sample
have length L. Therefore, the right-handed component comes out at time
t = L/(c/nR) and the direction of ~ER has rotated an amount (see Fig. 15.2)
θR = ωL/(c/nR = kLnR where k is for the wave outside the medium (i.e. the

free space value). Similarly, ~EL rotates by an amount θL = kLnL. Therefore,
as shown in Fig. 15.4, the emerging wave is linearly polarized but in the plane
rotated by an angle

φ =
1

2
(θR − θL) =

kL

2
(nR − nL) =

π

2
L (nR − nL)

This is the Faraday Effect. The difference in the propagation speeds for the
left- and right-handed components, induced by the external magnetic field,
rotates the plane of polarization of light incident on some material medium.

If we want to quantify this further, we need to get deeper into the dis-
cussion of light propagation in matter. See Preston&Dietz for more details.
It is plausible, and in fact true, that the difference nL − nR is proportional
to the applied magnetic field B. Therefore, we write the rotation angle φ as
proportional to both L and to B as

φ = V BL (15.9)
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Table 15.1: Verdet Constants for Distilled Water
λ (nm) V (10−3min/Gauss·cm)

Sodium D-Light 13.1
600 12.6
800 7.0
1000 4.4
1250 2.9

where V is called the Verdet constant. Clearly V is a function of wavelength,
as well as the medium. Values for distilled water at various wavelengths2

are listed in Table 15.1. Note that sodium D-light is essentially two lines
between 589 nm and 590 nm, and that 60 min=1◦. You will measure the
Verdet constant in this experiment.

15.2 Procedure and Analysis

It requires a lot of power to generate a kG magnetic field, and we will not
go that far. Instead, we will use a small but oscillating magnetic field. The
size of the effect will be small, but the oscillations will allow us to pick it out
of the noise.

It is a good idea to proceed stepwise through this experiment. First,
demonstrate that you are detecting polarized light. Next, make a rough
determination of the Verdet constant by analyzing the oscilloscope signal.
Finally, make a more precise measurement by analyzing the signal with a
lock-in amplifier.

The experimental setup is shown in Fig. 15.5. Your main source of po-
larized light is a HeNe laser. The magnetic field is supplied by a 1026-turn
solenoid driven by the amplified signal of a waveform generator, in series
with a monitor resistor. After passing through the sample and polarization
analyzing filter, the light is detected in a photodiode. Your signal is based

2Data from the Handbook of Physics, Second Edition, Edited by Condon and Odishaw,
McGraw-Hill, 1967
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Figure 15.5: Experimental setup used for the Faraday Effect. The photo-
diode output goes to the DMM for the polarization calibration, and to the
oscilloscope or lock-in to measure the Verdet constant.

on the output voltage of the photodiode.

15.2.1 Polarization Calibration

You will measure the polarization rotation angle φ by detecting the change
in intensity of the light as it passes through the polarization analyzer. This
intensity is converted to the photodiode voltage, so you need to know the
conversion factor.

The analayzer is an etched sheet which filters out the components of the
electric field vector that are not parallel to the etched lines. Therefore, the
electric field ~E that emerges is reduced in magnitude by a factor of cos φ,
where φ is the angle between the analyzer direction and the polarization of the
incident electric field ~E0. The light intensity is proportional to the square
of the electric field. Consequently, if linearly polarized light of intensity
I0 passes through an analyzer at angle φ, then the light emerges with an
intensity

I(φ) = I0 cos2 φ

This is called Malus’ Law.

You will measure the intensity of the transmitted light by measuring the
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output voltage VD of the photodiode.3 The photodiode output is not a linear
function of the intensity. See Dunlap. Therefore, if you plot VD as a function
of the analyzer rotation angle, you will not get the cos2 φ function of Malus’
Law. On the other hand, VD is a monotonically increasing function of the
intensity, so you should see qualitatively the same thing.

Calibrate the polarization analyzer with the magnetic field off. Measure
the photodiode voltage VD with a DMM as you change the angle of the
analyzer. It might be smart to simply confirm that VD goes to zero if you
block the laser light into the photodiode. Make a table of the values and
plot the result. Does the plot look like what you expect? What do you think
VD looks like as a function of the intensity I , assuming that Malus’ Law is
correct?

Your Faraday Effect signal will be a fluctuation in the light intensity
that is in time with the fluctuating magnetic field. (The intensity fluctuates
because the polarization angle φ changes with magnetic field according to
Eq. 15.9.) You detect this intensity fluctuation by measuring fluctations in
VD, so you want VD to change by as much as possible as you change φ.
Therefore, set the analyzer angle so that the slope dVD/dφ is large. Use your
calibration data to estimate dVD/dφ, and its uncertainty, at this angle.

Some sample calibration data is shown in Fig. 15.6. In this case, with
the analyzer set at 163◦, the change in photodiode voltage with angle is
dVD/dφ = 10.3 mV/deg based on a linear fit to the set point and the points
on other side. (The fit and plot were done in matlab with polyfit.) You
should be able to estimate the uncertainty in dVD/dφ by considering how
much the slope might be different than the fitted value.

15.2.2 Applying the Magnetic Field

Now it’s time to apply the magnetic field and first observe the Faraday effect.
The magnetic field is provided by the 1026-turn solenoid coil around the
sample, driven by a sinusoidaly varying current. The current is provided

3To be sure, the photodiode has an output current, which is converted to a voltage by
passing it through a resistor.
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Figure 15.6: Sample polarization calibration data.

by an HP3311A waveform generator (sine wave, 600Ω output) amplified by
the Bogen MU10 monaural audio amplifier. The driver setup is shown in
Fig. 15.7.

The wave generator provides the input to the audio amplifier at the upper
input in the rear panel. The output goes loops through the solenoid coil with
a high power resistor RCOIL in series. (See Fig. 15.7.) You will determine
the current, and so the magnetic field, by measuring the voltage drop across
this resistor. Do not ground either side of the amplifier output signal.

Use clip leads on a coaxial cable to measure the voltage VCOIL across
RCOIL on an oscilloscope. You want the shape to be a good sine wave with
no DC offset and amplitude on the order of 10 V peak to peak. To do this,
you have to adjust the amplitude of the HP3311A and the amplification (i.e.
“volume”) of the audio amplifier appropriately. You will also likely need to
adjust the distortion on the amplifier so that the shape is alright.

Now take the photodiode output and connect it to the other channel of
the oscilloscope. Set the scope trigger to fire on coil voltage, and look at
both channels simultaneously. If the channel on which you measure VD is
DC-coupled, all you should see is a large DC level, corresponding to the
mean light intensity on the photodiode. (This DC level should agree with
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Sine wave
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R Coil Bogen MU10

Audio Amplifier
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To Oscilloscope

Figure 15.7: The driver circuit used to generate the oscillating magnetic field
for measurement of the Faraday Effect and the Verdet constant.

what you measured with the DMM.) The Faraday Effect, on the other hand,
shows up as a small oscillation on top of this DC level, in time with the
VCOIL. You should just be able to see this small oscillation if you set the
channel sensitivity to its lowest scale and AC-couple the input so that the
large DC level is removed. You can confirm that the amplitude of these
small oscillations move up or down with the amplitude of VCOIL, which is
best adjusted by changing the amplifier gain. You can also confirm that the
oscillations disappear if you block the photodiode from the laser. In fact, you
can watch the amplitude of the oscillations change (and the phase reverse) if
you rotate the analyzer, but remember to either recalibrate to find dVD/dφ,
or set the analyzer back where you had it.

You can now check that you are getting about the right Verdet constant,
although it is hard to do a careful job with the small signal you get on the
oscilloscope. From Eq. 15.9, you know that the small changes in polarization
angle ∆φ are related to the changes in magnetic field ∆B through

∆φ = V ·∆B · LSAMPLE (15.10)

and from your calibration, you can convert ∆φ to a change in photodiode
voltage ∆VD through

∆φ
dVD

dφ
= ∆VD (15.11)
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The magnetic field in a solenoid of length LSOLENOID and N = 1026 turns is
given by

B = µ0iCOILN/LSOLENOID (15.12)

when a current iCOIL passes through the coil. By combining Eq. 15.10,
Eq. 15.11, and Eq. 15.12 along with VCOIL = iCOILRCOIL, you can obtain
an expression for the Verdet constant V in terms of VD, VCOIL, and other
quantities which you know or can measure separately.

Make sure you use consistent definitions for VCOIL and for VD. That is,
if VCOIL is amplitude of the sine wave, then make sure you do the same for
VD.

15.2.3 Using the Lock-In

The lock-in amplifier allows you to measure oscillations in VD more precisely
than with the oscilloscope. Furthermore, the lock-in will remove any noise
that is out-of-phase or is at the wrong frequency.

The lock-in is a PARC model 120 with a fixed reference frequency of ∼
100 Hz. It is best used by defining the reference wave externally, but it needs
to be close to 100 Hz so that the internal circuit responds correctly. Turn the
lock-in mode dial to “SEL.EXT.” and set the HP3311A to a frequency near
100 Hz and use a BNC Tee connector to apply the reference input to the lock-
in, while the signal is on the way to the audio amplifier. This assures you that
you are using a reference signal with precisely the same frequency as your
Faraday Effect signal in VD. The photodiode output should be connected to
the lock-in input.

You still need to tune the phase of the lock-in amplifier so that you have
maximum sensitifity to the oscillating VD signal. There are a few ways to do
this, but the most instructive is to use the oscilloscope.

1. With the oscilloscope still triggered on the VCOIL signal, use the other
channel to view the “monitor out” port of the lock-in, with the switch
set to “OUT×1”, which is the basic output signal of the lock-in. If the
time constant is set to a value much smaller than (100 Hz)−1 (1 msec
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will do), then you should just get the sine wave folded with the reference
signal oscillating between ±1. That is, it should look pretty much like
Fig. 13.9 or Fig. 13.10, or something inbetween, depending on the phase
setting.

2. Adjust the phase knob so that it looks like Fig. 13.9, that is, symmetric
about the cusps, and with the cusp points at ground level. If you flip
the relative phase quadrant knob so that the phase is 90◦ lesser or
greater, the trace should look like Fig. 13.10. It should change sign, on
the other hand, if you flip by 180◦.

3. With the phase adjusted so the output looks like Fig. 13.9, turn the
time constant up to 1 sec or so. You can read the monitor out on the
DMM, or use the meter on the lock-in. It is probably a good idea to
block the light to the photodiode, and adjust the zero-trim so that the
lock-in output is zero.

Vary VCOIL by adjusting the audio amplifier gain. (You shouldn’t touch
the waveform generator settings anymore, since it is now serving a dual role as
both amplifier input and lock-in reference.) Make a table of VD as measured
with the lock-in and VCOIL. Realize that the value of VD provided by the lock-
in is the RMS value, i.e. 1/

√
2 times the amplitude. Plot VD versus VCOIL

and make sure you get a straight line through zero. Either fit to find the slope
or average your values of VD/VCOIL to determine the Verdet constant with
an uncertainty estimate. A sample of this sort of data is shown in Fig. 15.8.

15.3 Advanced Topics

You can run this experiment with a mercury lamp in place of the laser, and
filters are available so that only particular lines in mercury will make it to
the detector. This allows you to measure the Verdet constant as a function
of wavelength, and the physics is very cool. See Preston and Dietz for an
explanation of the physics.
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Figure 15.8: Sample data for the Faraday Effect using the lock-in amplifier.



Ch 16

Experiment 9: Nuclear
Magnetic Resonance

The discovery of fundamental magnetism, at scales smaller than the atom,
were crucial to our understanding of nature. It is easy to see why an atom
might have a magnetic dipole moment, since it has electrons orbiting around
the nucleus. Orbiting electrons obviously give rise to a loop of current, and
this is the simplest way to create a magnetic dipole.

However, it is not so easy to see how the electron could have a magnetic
moment all to itself. The same goes for protons or neutrons. The only
way to classically understand such an effect would be if these particles were
“spinning”, but the velocity of the particle at its surface (assuming you have a
clear idea of its radius) is so large that it would be faster than c. Therefore,
the observation of such magnetism meant that quantum mechanics has to
play a role, and the result is physics that cannot be understood at all without
it.

In this experiment, you will study the magnetism of the free proton. You
will use a technique that allows this magnetism to be very precisely picked
out. This technique is known as Nuclear Magnetic Resonance, or NMR for
short. You may also know it from the medical profession, where it is used
to image the location of protons (i.e. water) in the body using “Magnetic
Resonance Imaging”, or MRI.

287
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The essential physics is covered in

• Introduction to the Structure of Matter,
John J. Brehm and William J. Mullin, John Wiley and Sons (1989),
Chapter 8

but this book mainly deals with electron spin magnetic resonance. Good
references that not only describe experiments done at other universities, but
also include the essential physics, are

• The Art of Experimental Physics,
Daryl W. Preston and Eric R. Dietz, John Wiley and Sons (1991)
Experiment 15, and preceding discussion.

• Experiments in Modern Physics,
Adrian C. Melissinos, Academic Press (1966)
Chapter 8.

16.1 Nuclear Magnetism and Precession

Recall the behavior of a current loop in an external magnetic field. The loop
tends to line up so that the magnetic field it generates along its axis points
in the same direction as the external field. See Fig. 16.1. It takes a torque
to change the orientation of the loop, that is, to change the angle between
the axis and the external field. All forces are conservative, and we define a
potential energy

U = −~µ · ~B (16.1)

where ~B is the external field and ~µ is a vector that points along the axis of
the loop, in the direction of the generated field according to the right hand
rule. This all follows from simple classical physics if we define the magnitude
of ~µ to be iA where i is the current in the loop and A is the area it encloses.
We call ~µ the magnetic moment of the current loop.

Subatomic particles like protons, neutrons, and electrons all have an “in-
trinsic” angular momentum called spin. This is a purely quantum mechanical
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BU=+ µU=- Bµ

Figure 16.1: A current loop in an external magnetic field.

phenomenon, and in fact the z-component of the spin is in general quantized
in units of h̄/2. As with quantum mechanical orbital angular momentum,

the total spin vector has magnitude h̄
√

1
2

(
1
2

+ 1
)
. For protons, neutrons,

and electrons, Sz can only be ±h̄/2, relative to some directions, generally
that of some external magnetic field. Furthermore, these particles also have
magnetic moments, which is particularly surprising for the neutron since it
is electrically neutral.

Around 1933, P.A.M. Dirac devised a relativistically consistent theory of
quantum mechanics which accounted nicely for particles with Sz = ±h̄/2
spin. This theory also predicted that these particles should have magnetic
moments given by qh̄/2m where q and m are the particle’s charge and mass.
The predicted magnetic moment1 of the electron is µB ≡ eh̄/2me, a unit
called the Bohr magneton. The prediction for the proton is µN ≡ eh̄/2mp,
called the nuclear magneton.

Dirac’s theory works quite well for the electron. In fact, µe = µN to
within about one part in 1000. What’s more, the small correction turns out
to be precisely and accurately predicted by Quantum Electrodynamics, an
extension of Dirac’s theory that quantizes the electromagnetic field as well.

On the other hand, the story is quite different for protons and neutrons.

1Our language is somewhat cavalier. We are really only talking about the z-component
of the magnetic moment.
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The proton magnetic moment is µp = 2.79µN = (g/2)µN , where g is called
the gyromagnetic ratio. For the neutron, µn = −1.91µN whereas the Dirac
theory predicts zero. For protons and neutrons bound together into a nucleus,
the problem is considerably more complex. The serious disagreement with
Dirac’s theory points to the fact that protons and neutrons are not really
“elementary” particles, but we will not pursue this further. Instead, we will
focus on Nuclear Magnetic Resonance, a very precise technique for measuring
magnetic moments of protons, neutrons, and nuclei.

Consider a proton suspended in an external magnetic field, taking the
place of the current loop in Fig. 16.1. Because of the way its angular mo-
mentum is quantized, the proton has two discrete “spin states” with mag-
netic moments whose z-projections are ±(g/2)µN . Since the z-direction is

defined by ~B, Eq. 16.1 tells us that the energies of these two spin states are
E0±(g/2)µNB, where E0 is the proton energy in the absence of any magnetic
field. The difference in energy between these states is just

∆E = gµNB (16.2)

Transitions between these two states will occur with the emission or ab-
sorbtion of photons with energy ∆E. These are in fact very low energy
photons, and we tend to think of them in different terms. For a relatively
large magnetic field B = 0.5 T=5 kG, you find ∆E = 8.8 × 10−8 eV, and
we generally talk about the frequency of the photons which come with these
transitions. The photon frequency ν is given by

ν =
∆E

h
= g

µN

h
B = g

e

4πmp

B (16.3)

Again, for B = 0.5 T, we find ν = 21.3 MHz or λ = 14 m. These are typical
of radio waves, and these are called Radio Frequency or RF transitions.

Nuclear magnetic resonance is the application of RF waves that cause
protons to jump between these two spin states. There are some things that
are very different from other types of quantum mechanical photon emission
or absorbtion. These differences come from both the fact that an external
magnetic field sets up the energy difference, and from the fact that the energy
difference is very small. We will examine these consequences now.
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There is clearly a directionality to these states since they are setup by
the applied ~B field. Notice that the total proton spin vector is longer than
the z-component, so the spin is tipped at some angle relative to the z (or
~B) axis. Therefore, the ~B field exerts a torque on the magnetic moment
vector, and the spin precesses about the z-axis. The precession frequency
is straightforward to calculate classically (see Melissinos), and you find that
ν = ω/2π where

ωPRECESS =
g

2

e

mp

B

Notice that the classical precession frequency turns out to be the same as
the quantum mechanical transition frequency! This is not an accident, as we
will now see by considering what it takes classically to cause a transition from
one state to the other. As you look at the proton spin vector, it precesses
about the z-axis. Now, picture a time-varying magnetic field ~B1 that is also
rotating about the z-axis in the same direction as the precessing spin vector,
and lying in the x, y plane. For now, the precession speed of ~B1 is arbitrary.
Imagine that you “jump onto” the vector ~B1 and watch the motion of the
proton spin vector. In general, the spin vector will move in some complicated
way, a combination of its own precession about ~B and your own rotating
motion.

Now imagine that your own rotating motion, i.e. the rotation speed of ~B1

exactly matches the precession. What do you see? You think, “the proton
spin vector is moving along with me, so it doesn’t appear to be moving at
all”. However, you are attached to another magnetic field, namely ~B1! The
spin vector will precess about ~B1 instead. This corresponds to the spin vector
going from “up” to “down” and back again in the original, nonrotating frame.
The rotating magnetic field vector ~B1 causes transitions between the two spin
states if it rotates at the precession frequency.

So, we’ve learned that not only is there a good reason for the classical
precession frequency to be equal to the quantum mechanical transition fre-
quency, there is clearly a need (from the classical standpoint surely, and it
holds up in a quantum mechanical treatment) for the RF transition “pho-

tons” to have a magnetic field component ~B1 rotate in the same direction as
the precessing spin. Notice that if the proton is in the other spin state, the
precession changes direction and we need a ~B1 component moving in that
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direction as well if we are to make transitions the other way. This is easy
to accomplish just by using a linearly oscillating magnetic field, which is the
sum of two fields oscillating circularly in opposite directions. (See the dis-
cussion on circular polarization in Sec. 15.1.1.) The experimental apparatus
will do exactly this.

What effect does the smallness of ∆E have this measurement. Notice
that at room temperature, the thermal energy kT ≈ 1/40 eV, or ∼ 3× 105

larger than ∆E. Consequently, mere thermal collisions will continually excite
and deexcite the upper spin state, and at room temperature the number up
relative to the number down is ∼ e−∆E/kT ≈ 1−∆E/kT . In other words, the
difference between the number up and the number down is around three parts
per million. With a linearly oscillating RF field ~B1 which has both right and
left-handed components, nearly an equal number up and down transitions
will occur. This small population difference will therefore account for our
signal, and it will be small as well.

16.2 Measurements

The remainder of this chapter is just lifted from the final report written by
Paul Bilodeau, Erik Mohrmann, and Dan Stouch from their work with the
NMR setup.

The interfaces and connections of each device are described and shown
in Fig. 16.2. The signal carried between each device is also shown. The user
should be able to perform experiments without too much time wasted on
discerning the function of each component and how to change settings.

We’ll start with the power supplies. Power supply #1 (PS1) is in a
circuit with the electromagnet through two leads on its rear. These leads are
attached via hoop clips to screws on the rear surface on the lower crossbeam
of the magnet. The only interface that should be touched on PS1 is the
current control knob. In our work, the current was at most about 11 A and
usually set at 9.5 A. It should be noted that the magnet is rated for 18 A
and 15 VDC.
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Figure 16.2: Setup for the NMR measurements, including the SR850 lock-in
amplifier for signal measurement and storage.
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The input jack on the front of PS1 is connected to Auxiliary Output
1, which is on the rear of the Stanford Research Systems SR850 lock-in
amplifier. It is through this connection that the SR850 can be programmed to
vary the magnetic field. The signal to the the PS1 input jack varies depending
on what one wants to do with the equipment. To keep the magnetic field
fixed, a constant voltage is sent from the SR850. This is usually 0V, but
can be incremented using the AUX OUPUTS menu on the SR850. If a
significant current increase is desired, it is easier to adjust the current with
the control knob on PS1 and use the SR850 for fine-tuning. For scanning
through resonance, the signal can vary through a range set in the AUX
OUTPUTS menu with a linear scan.

Power supply #2 (PS2) provides power and a modulated 60 Hz signal
to the “gauss meter” (GM). (This is actually the power supply to an old
system for measuring magnetic fields with NMR, hence the name.) The
power switch and knob labeled “Modulation” are the only interfaces that do
anything meaningful. All of the other knobs are for use with the PS2 display
screen, which does not work. The “Marker Generator” knob only turns the
“Marker Generator” light on and does nothing applicable to the experiment.
PS2 connects to the gauss meter through a cable to the port labeled “POW
OSC” on the rear of the gauss meter.

The GM’s connections are somewhat complex. All of the input and out-
put jacks are on the rear of the device, except for the ouput to the frequency
counter. This output is on the front of the GM, at the top left, and is un-
labeled. The J2 jack is the interface with the NMR probe that holds the
samples between the magnet poles. “SIG OUT” is the output for the NMR
signal, and is connected to the A-1 “Signal In” port on the SR850. This
signal branches into channel 1 on the LeCroy 9310A digital oscilloscope and
is on the order of 200 mV and 60Hz.

J5 is an output that carries the modulated 60 Hz signal generated by PS2.
This is 10V peak to peak when the modulation is set at its maximum value
(the knob turns beyond the maximum labeled value of 10). The J5 leads are
connected across a resistor to the leads of a Helmholtz coil that is mounted
in the NMR probe head. The Helmholtz coil is wound such that the plane
of its coils are parallel to the plane of the magnet coils. It is the oscillating
magnetic field of the Helmholtz coil that allows us to see the resonance as a



16.2. MEASUREMENTS 295

periodic signal. The resonance peaks occur at the points of inflection of the
modulated sine wave sent through J5.

The signal from J5 is added to the signal coming out of the 400 Hz Mod-
ulator (400M) “Mod Out” port. This combined signal is sent to channel 2 on
the LeCroy. The “Mod Out” signal is a 375Hz sine wave. With the switch
on the 400M set on “Hi” and the knob turned to its maximum value, the
amplitude is approximately 2V peak to peak. With the switch set on “Lo”,
the amplitude drops to approximately 200mV. The knob is for adjusting the
amplitude, and the switch changes voltage scales. The “Ref Out” port sends
out a slightly warped square wave that is 375 Hz and roughly 2V peak to
peak that is not controlled by the knob or the “Hi/Lo” switch.

It is interesting to note that the setting of the “Hi/Lo” switch does have
an effect on the results of scans through resonance. When set to “Hi”, the
signal has a larger amplitude and an upper peak. When set to “Lo”, the
signal loses the upper peak and its amplitude drops. Clearly, the switch
must be set to “Hi” to get a reasonable estimate of the FWHM of the signal
to calculate the magnetic field width of the resonance.

16.2.1 Equipment Settings and Parameters

A full understanding of the equipment used in the experiment allows the
adjustment of parameters for the nominal taking of data. Of the equipment
used in the experiment most of them have some adjustable features, while a
few, namely the LeCroy Digital Oscilloscope and the SRS Lock-in Amplifier,
have far more features than will be used in this setup.

The M-2 Precision Gauss meter varies the frequency of a driving signal,
and then picks up the response of the sample, i.e., resonance. Several of
the adjustments on the gauss meter need not be adjusted. The probe knob
should remain on “blue”, and the RF frequency should remain in the vicinity
of three or four.

The generator for the gauss meter has only one knob of interest and, con-
sidering the equipment’s great age, function. The modulation may be ad-
justed across the full scale, from zero to ten. As the modulation is increased
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the width of the signal decreases, and its sharpness and depth increase. This
also moves the frequency at which resonance will be found. Generally it is
desirable to keep the modulation as high as possible, but I believe experi-
mentation here may yield some insights into the workings of the apparatus,
as is the case with the next piece of equipment, the 400M.

This modulator affects the signals to be processed, as opposed to the
modulator on the gauss meter that affects the signal in the magnetic driver
(Helmholtz coil). The optimum setting for this is in the 6 to 6.5 range.
At lower frequencies under-sampling occurs, and the signal is not processed
correctly. When frequencies are adjusted higher over-sampling occurs, and
unnecessary noise is allowed to enter the signal. Although most of this can
be removed by the lock-in the best bet is to get the cleanest signal to start.

If using a LeCroy Digital Oscilloscope (which is a necessity if T2 decay
wiggles are to be observed and/or analyzed) the divisions/sec should be ad-
justed so that one complete wave of the reference signal is visible on the
display. This will allow three resonance peaks to be visible (at the points
of inflection of the sine wave), and equalizing their amplitudes assures reso-
nance. Triggering should be set to channel two (the reference channel), since
the signal varies too much for reliable triggering. The display to screen for
channel two can the be turned off, for it is not helpful in the finding of reso-
nance. Channel one should have the volts/div set so that the signal is cleanly
visible, but does not leave the display. The offsets should be set in whatever
fashion allows easiest viewing of the signal, since the numerical data here is
not pertinent.

A few of the features of the LeCroy that an analog scope does not possess
are helpful for this experiment. By pressing the “wave form store” button,
and by following the menus as far as location and format are concerned, data
can be saved to memory or disk for later retrieval. The “SNGL” button in
the upper right of the top left panel allows a single sweep to be taken, and
with the LeCroy’s precision, allows the discerning of T2 wiggles. Once the
signal has been taken to resonance using the oscilloscope one of the alligator
clips is removed (drastically changing the signal on the scope) and attention
is turned to the SRS Lock-in Amplifier.

The lock-in has a treasure trove of functions and parameters, a large
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number of which are useful in this experiment. If all else fails, the manual
for the lock-in is very informative and well written. A button by button
description is in order for this device.

Reference/Phase. This button brings up a menu that allows setting of
the interactions between the reference and signal. For this setup the reference
must be set to external, and all of the other parameters can be left at default
– a sine wave of 1V rms, and phase shift set to zero degrees.

Input/Filters. Nothing should be adjusted on this menu. It is imperative
that the ‘source’ remain set on a, and the ‘coupling’ stay set for ac.

Gain/TC. I would encourage experimentation with this menu. Vary the
filtering strength, time constant, and sensitivity to receive maximum results.
In general best results occur when the time constant is set to 100 ms and the
sensitivity is set as small as possible without causing a “chopping” or clamp-
ing of the signal. It is very obvious when this occurs because resonance
signals will display a flat top instead of a peak. The maximum sensitivity
varies depending on the material being sampled (or more accurately, with
the incoming signal). For the first run on a particular substance it might be
advisable to set the sensitivity at 1V, and then reduce it for further runs.
The filtering should probably be left at 12dB, but adjustment here is fine.
The minimum filtering gives a very choppy signal, while higher dampening
smoothes out the peaks, making the measurements slightly less precise. This
uncertainty is most likely overwhelmed by other uncertainties in the experi-
ment, but noise removal is always good.

Output/Offset. This menu is important only if output from the front
panel of the lock-in is used, so it is unused in this experiment.

Trace/Scan. This menu can make the difference between no signal and the
gorgeous loop one expects. Trace one is currently set to ‘X’ which gives an
account of the resonance scan. This scan is not very useful for what is being
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done in this experiment. Trace 2 is set to display ‘Y’, which is the derivative
of the signal, and yields a beautiful trace. By measuring the time from the
top peak to the bottom the full width half max may be measured (assuming
the signal is a gaussian or similar shape, which it approximates). Sometimes
a cleaner signal can be obtained by setting one of the traces (currently 4) to
display Y/X. If this is done be sure to adjust the scale under Display/Scale.
The lock-in should also be set to store all of the traces, and in can be set to
either loop or single mode depending upon the preference of the individual.
The sample rate should be kept high (it is currently set at its max, 512 Hz).
The scan length may be adjusted, but values of either ten or twenty seconds
simplify the math and are appropriate values. Longer scans take too long to
go through resonance.

Display/Scale. This menu allows the adjustment of the display so that
one may view the data in a way that is meaningful to the eye. The settings
here will be adjusted constantly, most notably the scale, which can vary from
10-6 to 100, and the offset, to center the trace on the screen. Information is
most easily discernible in the chart format (reading a moving bar graph is a
difficult endeavor at best).

Aux Output. Only output one is used in this setup, so the setting on the
rest may be ignored. This is the menu that is used to make the actual scans
through resonance. It is very important that the output be set to fixed, and
the offset to 0.00000 when looking for resonance, otherwise the scan will not
be centered around resonance. When a scan is to be taken the alligator clip
should be removed at the wire junction, and the output should be shifted to
linear (a logarithmic output would be particularly hard to decipher). The
best results occur when resonance is scanned through as fast as possible, so
the min and max voltages should be set at least 1V apart. The offset must
be used to center this interval about zero. Note that this means a negative
offset is necessary, otherwise many headaches will result when resonance does
not appear!

Math. This menu is almost entirely unused. It is used for finding various
fits and other functions of the trace, but these are uninteresting to the current
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application.

System Setup. These settings should all be left at default.

Disk. This menu is of use for the saving of data. Pressing this button
causes a menu to appear on the screen that may be manipulated using the
“soft” buttons. The most useful way to save data is to save it to disk as an
ASCII file so that it may be analyzed using Matlab or a similiar program.
File names are entered by using the number pad or by using the ’alt’ key and
the subscripted buttons.

Help. The button for when all else fails. The lock-in has a relatively com-
prehensive ”online” help index. Pressing the help button and then any other
button (even one of the buttons whos function changes) will yield a screen
which tells the current function and settings available for that button.

The other buttons of interest on the lock-in are the number entry key-
pad, which can be used to enter values much faster than by using the spin-
ning knob, when applicable, and the row of buttons across the top. The
Start/Cont button does just that, it starts a trace or continues one that has
been paused. The Pause/Reset button may be used to pause a trace in the
middle (note that pausing during the actual sweep though resonance gives
lousy results) or by pushing again and then pressing enter the trace is cleares.
The cursor button enables the cursor and allows the time values to be read
off the display to the thousandth of a second! The remainder of buttons,
particularly the ’auto-buttons,’ are not of use in this experiment. They ei-
ther do not need to be adjusted, or give settings that are not useful with the
kind of data being explored.

The final piece of equipment that is adjustable is the magnet power source
itself. This is set at 5 on the dial, which yields just below 10 amps. If looking
for resonance at a low frequency, and low frequency noise is a problem then
the current may be increased, thereby increasing the frequency that resonance
will be found at; however either very low or very high currents produce poor
results. The magnet is rated up to 18 amps, so overpowering the equipment
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is not a risk.

16.2.2 Procedure and Analysis

Throughout this section, there will be references to various magnetic fields.
B0 refers to the field generated by the large electromagnet. B1 is the os-
cilatting magnetic field generated by the converted gaussmeter. BT is the
magnetic field at the probe where the sample rests.

Setup. With this understanding of the equipment that is in use the tech-
nique for taking data may be described. The first thing that must be done
is to turn on the magnet and gauss meter power sources at least a half hour
before the start of data taking. During this initial period the magnet is
warming up at such a rate that the signal drift during a data run can be
prohibitive.

Having allowed the system to warm up there are several things that should
be double checked before the start of every run. The sample should be placed
into the signal probe, and then the probe should be centered in the magnet
as exactly as possible, since small variations can have profound effects upon
the resultant data. Lining the sample up includes making sure that it is
centered front to back as well as top to bottom, and also making sure that
the probe is aligned with the magnet; i.e. the coils of the probe are in the
same plane as the magnet’s poles.

Tuning to Resonance. The modulator should now be checked to see that
the switch is in the “low” position and the alligator clips should be checked
to see that both are firmly connected. Next comes the task of making sure
all of the settings on the lock-in are in proper order. If this is the first run
for a certain sample then the sensitivity (under the Gain/TC menu) should
be set at 1V. The Aux Output must be set to fixed, and to an offset of 0.0V.

Having checked all of these initial setting the signal can now be tuned
to resonance. Using the signal on the oscilloscope adjust the frequency on
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the gauss meter until ”dips” or ”valleys” appear at points sharing the same
slope on the reference sine wave. This can then be fine tuned so that the
valleys are equidistant. This is most easily done if the scope is set so that
one complete reference signal appears showing three of the resonance dips.

The Magnetic Moments. The magnetic moment of the proton can be
calculated from measurements of the resonant frequency and the value of
BT. Once resonance is achieved, use the frequency counter to measure the
frequency and the hand-held gaussmeter to measure BT. After recording
your values, you can change B by changing the voltage output of auxillary
output #1 under the AUX OUTPUTS menu on the SR850. A good range
of voltage outputs is -1 V to 1 V. Make sure that the output is set on fixed
voltage. Given BT and the resonance frequency, the magnetic moment can
be calculated using Eq. 16.3.

It is easiest to first find the proton resonance with an oil sample. After you
have found resonance, record the frequency. The teflon resonance is rather
small compared to the oil, so you might want to increase the modulation
amplitude. The 19F moment can then be calculated from the proton moment
and the ratio of their frequencies.

T2 with the SR850. The spin-spin relaxation time (T2) can be calcu-
lated from the width of the resonance peak in Teslas. This can be found by
telling the SR850 to scan over a B range and converting the time interval in
resonance into a B width.

Once the signal is tuned to resonance one (and only one) of the alligator
clips is removed from the signal junction, and the modulator switch should
be adjusted to high. The lock-in should have the Aux Output adjusted to
linear, and the settings adjusted as detailed above. A data run may then
be taken simply by pushing the “Start” button. This can be repeated many
times quite simply by clearing the data (push the pause/reset button once
or twice and then hit enter), and pushing start again. Data may be saved
using the disk button and then following the menu on the screen to input
the desired filename and location of save, usually to 31

2
” disk.
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There are two methods of measuring the magnetic field. First, the hand
gaussmeter can be used. Place the probe in the “Zero Chamber”, set the
readout to the highest level, and use the tuning to adjust it to zero. Then
adjust the meter to the next most sensitive level and again adjust to zero.
Continue doing this until the gaussmeter reads zero (or close thereto) on the
lowest level. Then using the Aux Outputs on the lock-in set the voltage to
the smallest value that was attained during the data set (this is equal to the
starting voltage plus the offset on the linear mode). Measure the magnetic
field at the sample and record. The adjust the voltage to the highest level
that was reached and repeat. The magnetic field can be assumed to vary in
a linear fashion with the current throughout the sweep.

The other possibility is to tune the RF frequency to resonance at the
extreme values of B0 and derive the values of B0 at these points using the
theoretical value for p.

The difference between initial and final B divided by the scan length gives
you the rate of change of B with respect to time, or dB/dt. This multiplied
by the time the sample was in resonance gives the B width necessary to
calculate T2.

Once the first run is taken it is often useful to alter the sensitivity to the
lowest point at which a clean resonance signal is still measured. This point
is different for every sample, depending on the signal strength.

T2 From the Wiggles on the LeCroy. The final part of this experiment,
determining the T2 relaxation time through the “wiggles” on the oscilloscope,
is only possible when using a very uniform magnetic field, and at the moment
this precision is not available with the current magnet. Although this is not
currently practical due to the inhomogenity of the magnetic field B0 about
the sample, the process would entail the following.

Find resonance in an oil sample on the oscilloscope. Adjust the display
so that only a single peak can be seen. Using the math functions, take an
average of the signal. You would see wiggles at the end of the peak. Record
the trace and save it to disk. A plot of ln(wiggle amplitude) vs. time will
allow you to calculate T2.
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16.3 Advanced Topics

16.3.1 Spin Relaxation Times

16.3.2 Magnetic Moments of Nuclei
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Ch 17

Elementary Particle Detection

What is matter “made of”? Matter is made of molecules, and molecules are
made of atoms, and atoms are made of electrons and nuclei, and nuclei are
made of protons and neutrons. But what are protons and neutrons are made
of? There is no simple answer, and they key lies in the interchangeability of
matter and energy. It takes more energy to break molecules up into atoms,
than to break matter into molecules; more energy to break atoms into elec-
trons and nuclei than to break molecules into atoms; and so on. As you get
smaller and smaller, the energy scales get larger and larger. By the time you
get to the size of the atomic nucleus, around several fm=10−15 m, the energy
scale is around an MeV=106 eV. When you look at protons and neutrons,
distances are even smaller and energies are higher.

Something fundamentally different is happening at these small distances.
In fact, you can’t break up protons or neutrons any more. If you put in
more energy, you make new particles like π’s, µ’s, and K’s. This is the realm
of nuclear and particle physics. We will do some experiments in this field,
mainly using nuclear physics phenomena since they are well suited to the
undergraduate laboratory. We will be working with energies on the scale of
MeV, or around a million times larger than what we are used to in atomic
physics and optics. Photons have wavelengths a million times smaller, which
is much smaller than the size of the atom (but still much larger than the
nucleus).

305
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There are some differences in the experimental techniques we use in this
field, and the stuff we’ve talked about so far. For one thing, we will be doing
a lot of “particle counting” to understand what goes on. The instruments we
use are somewhat different, because they will measure “pulses”, where each
pulse corresponds to an elementary particle. What’s more, the processes
are fundamentally random, so the formalism we derived to describe random
uncertainties in Chapters 6 and 9 will be particularly useful here.

There are lots of good books around that discuss the techniques used in
nuclear and particle physics. I suggest the following:

• Techniques for Nuclear and Particle Physics Experiments,
Second Edition, by W. R. Leo, Springer-Verlag (1994)

• Experimental Physics: Modern Methods, by R. A. Dunlap,
Oxford University Press (1988); Chapters 11 and 12.

• Experiments in Modern Physics, by A. R. Melissinos,
Academic Press (1966); Chapter 5.

• The Review of Particle Properties, by the Particle Data Group,
Published every two years, the latest version appears in
Physical Review D 50(1994) Page 1173. You can request this book and
other materials by sending email to pdg@lbl.gov.

For a basic review of nuclear or particle physics, any modern introductory
textbook will do. I recommend

• Physics, Robert Resnick, David Halliday, and Kenneth Krane,
John Wiley and Sons, Fourth Edition (1992);
Chapters 54 through 56.

17.1 Ionizing Radiation

We use the term “radiation” to generically describe the stuff that comes out
of a nuclear reaction, but we’re really talking about elementary particles. If
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there are no particle accelerators around, there are only four types of particles
you normally encounter:

α particles. These are 4He nuclei which are ejected by very heavy nuclei
like Uranium or Plutonium. Since the 4He nucleus is two protons and
two neutrons, α particles have charge +2e.

β particles, sometimes called β rays. These are electrons or positrons
(i.e. antimatter electrons), emitted in some nuclear decays. They have
charge −e (electrons) or +e (positrons).

γ rays. These are the photons emitted when a nucleus makes a tran-
sition from one energy level to a lower level. It is just like the optical
photons emitted in atomic transitions, but the energy is higher and the
wavelength is much smaller. Photons have no charge, of course.

n, or neutrons. Neutrons can be emitted in simple, low energy nuclear
reactions. They have no charge.

Other types of particles include protons p, deuterons d, other atomic nuclei,
the π and K mesons, and the muon µ, but we won’t run into these in this
context.

Because the energies are rather high, a collision between an elementary
particle and an atom of matter can knock an electron (or perhaps several)
out of the atom. That is, the atom is “ionized”, and elementary particles at
these energies are collectively called “ionizing radiation”. Ionization is the
primary principle used for nearly all forms of elementary particle detection.

Ionizing radiation makes particle detection possible in two ways. First,
if the detector material allows the ions and knocked-out electrons to move
relatively freely, then an electric field can collect the faster-moving electrons
at an anode terminal giving you an electrical pulse to deal with. This is
typically used in gaseous detectors. The second technique relies on the fact
that some materials, after recapturing electrons to neutralize the ions, emit
light in the visible region. In this case, a photomultiplier tube or perhaps a
photodiode can be used to turn the light pulse into a detectable signal.
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Table 17.1: Atomic and Nuclear Properties of Materials

Density ρ (−1/ρ)dE/dx|MIN

Material Z A (gm/cm3) (MeV/(gm/cm2))
Be 4 9.01 1.85 1.59
C 6 12.01 2.27 1.75
Al 13 26.98 2.70 1.62
Si 14 28.09 2.33 1.66
Fe 26 55.85 7.87 1.45
Cu 29 63.55 8.96 1.40
Sn 50 118.69 7.31 1.26
Pb 82 207.19 11.35 1.12
Sodium Iodide (NaI) 3.67 1.31
Plastic Scintillator 1.03 1.95
Pyrex Glass 2.23 1.70

Let’s start with the basics of how elementary particles ionize atoms. First
we will discuss the interactions of charged particles with matter. Then we
talk about photon interactions, and how the interactions of electrons are
closely related to them. We briefly discuss neutron interactions as well.

Table 17.1, taken from the Review of Particle Properties, lists various
important properties of materials relevant for the detection of subatomic
particles.

17.1.1 Charged Particles

A charged particle is surrounded by an electric field. When a charged particle
comes near an atom, the force of this electric field on the atomic electrons
can knock an electron out of the atom creating an ion. The larger the charge
on the particle, the greater the chance is of creating an ion. Also, the slower
the particle moves, the more time it spends in the vicinity of the atom, and
again the chance of creating an ion increases.

We express this interaction in terms of the energy lost by a charged par-



17.1. IONIZING RADIATION 309

ticle as it passes through a certain thickness of matter. Dunlap goes through
a classical calculation of this energy loss, but a correct calculation using a
quantum mechanical description of the atom is more complicated. The result
was first worked out by Bethe, Bloch, and others. The complete formula is
written out and discussed in detail by Leo, but a reasonable approximation
is

−1

ρ

dE

dx
≈ Q2

β2
× 1.71 MeV

gm/cm2 (17.1)

for a particle with charge ±Qe and velocity βc where ρ is the density of the
material and dE/dx is the amount of energy the particle loses per unit path
length. We sometimes refer to (−1/ρ)dE/dx as the “stopping power”. This
equation is valid if the incident energy E0 is much larger than the energy
loss per collision (i.e. β is not too small), and if the particle is not highly
relativistic (i.e. β is not too close to unity). The factor of 1.71 actually
depends on the material, but it is generally good to around ±10% for the
lighter elements.

Figure 17.1, taken from the 1992 edition of the Review of Particle Proper-
ties, shows the energy loss given by the full Bethe-Bloch formula. The value
of dE/dx is plotted as a dotted curve. Notice that at any given momentum,
the particles µ, π, K, p, and d, which all have Q = 1, lose more energy for
the larger mass (i.e. smaller β), but they all tend towards the same value
at large momenta where β approaches unity. The α particle, however, has
Q = 2 and therefore loses four times as much energy as the others.

Figure 17.1 also plots the range, or depth of penetration, of the charged
particle in the material. It is obviously important to understand the range
of an elementary particle in some material if we are to build a detector for
that particle, especially one which measures its energy. It is tempting to
determine the range by integrating the energy loss (which depends on β and
therefore on the incident energy E0) over all energies, that is

Range (gm/cm2) ≈
∫ 0

E0

dE
1
ρ

dE
dx

but you have to be careful. This approximation assumes the particle travels
in a straight line through the material until it stops, but typically it will be
scattered by atomic electrons and jitter around (or “straggle”) along the way
and the actual path length will be longer than the range.
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Figure 17.1: Mean range and energy loss in lead, copper, aluminum, and
carbon. Taken from The Review of Particle Properties.
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Straggling is actually not a very large effect for heavy charged particles,
but it is very important for electrons, since they can lose a lot of energy in
a single collision with an atomic electron. For this reason and others having
to do with the low mass of the electron, the energy loss of the electron is
actually closely tied to the energy loss processes of photons.

17.1.2 Photons and Electrons

Photons, or γ−rays, also ionize atoms. However, since they have Q = 0,
they do so in ways very different from charged particles. There are three
main ways that photons interact with matter, and each results in electrons
which continue the ionization process as charged particles. The three ways
photons interact, as far as nuclear and particle physics is concerned, are the
photoelectric effect, the Compton effect, and pair production.

In the photoelectric effect, a photon is absorbed by an atom and an atomic
electron is ejected. The energy of the electron is equal to the photon energy
minus the electrons’s binding energy in the atom. The binding energy may
or may not be a large fraction of the photon energy, but the point is that
the electron has less energy than the original photon. Therefore, some of the
energy of the original photon is lost in this process.

In the Compton effect1, the photon collides with an atomic electron and
knocks it out of the atom. Instead of being absorbed, however, the photon
itself is scattered in another direction. Having given a substantial fraction of
its energy to the electron, the photon’s energy is reduced. The electron and
scattered photon then go their separate ways, each producing more ions.

For particularly high energy photons, pair production dominates over,
first, the photoelectric effect and then the Compton effect. In this case, the
photon disappears and an e+e− pair is created in its place. This can only
happen in matter because an atom has to be nearby so that momentum is
conserved. Obviously, it also can happen only if the photon energy is greater
than 2mec

2=1.022 MeV. Then, of course, the e+ and e− each produce a
number of ions.

1See also Experiment 12.



312 CH 17. ELEMENTARY PARTICLE DETECTION

10 MeV

Relative Cross Section

100 keV 1 MeV 100 MeV

Total

Compton

Photoelectric

Scattering

Effect

Pair
Production

Photon Energy

Figure 17.2: Relative cross sections for the photoelectric effect, Compton
scattering, and pair production, as a function of energy in a large Z material.

The relative cross sections, i.e. probabilities of interaction, for these three
processes is plotted in Fig. 17.2. The relative cross sections actually depend
quite a lot on the material (in particular on the atomic number Z), but
Fig. 17.2 is typical of large Z atoms.

This cross section is directly reflected in the ability for photons to pene-
trate matter. It is small enough for the energies here so that the mean free
path is rather large. That is, there is a fair probability that a photon passes
through a detector-sized piece of material with no interaction. Therefore,
unlike for a charged particle, “range” is not well defined. Instead, we talk
about the attenuation of photons, i.e.

I = I0e
−µx (17.2)

where I is the photon intensity after passing through a thickness x of material
and I0 is the incident intensity. The attenuation coefficient µ, the inverse of
the mean free path, depends very strongly on energy. That is, it behaves
rather like the inverse of the cross section as plotted in Fig. 17.2.

Values for µ/ρ as a function of energy are plotted in Fig. 17.3 for a
variety of materials. Notice that µ rises rapidly, up to a few MeV, and is
very dependent on the particular material for low photon energies. However,
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for energies near 1 MeV we find that µ/ρ ∼ 1/15 cm2/gm, rather independent
of the material. That is a 15 gm/cm2 thick piece of material, i.e. 15 cm of
water, 5.6 cm of aluminum, or 1.3 cm of lead, would attenuate a 1 MeV
photon beam by a factor of 1/e. Such calculations are important for both
radiation shielding considerations as well as for particle detection.

Realize that the photon does not disappear after it interacts, particu-
larly in the region of a few hundred keV to a few MeV. Compton scattering
dominates for these energies, and the scattered photon continues on in some
direction, albeit with lower energy than it came in with. Equation 17.2 gives
the attenation of photons with the incident energy only, and you need to
consider the “left over” photons in many applications.

It’s clearly important to understand the energy loss interactions of elec-
trons (and positrons) to finish the story. First, electrons are charged particles
which lose energy basically as described in Sec. 17.1.1. There is one impor-
tant difference, however. Unlike any other charged particles, electrons are
not much heavier than the atomic electrons they collide with. That means
that electrons can lose a lot, or nearly all, of their energy in a single collision,
and change their direction drastically. That is, if a moving bowling ball hits
a ping-pong ball, the bowling ball is not greatly disturbed and it continues
in its path, suffering many collisions until it slows down and stops. On the
other hand, if a queue ball hits a stationary billiard ball on a pool table,
both balls having the same mass, the queue ball can stop and give up all its
momentum to the ball it strikes. This means that fluctuations both in the
energy loss and in the range are very large for electrons, much larger than
for heavier particles.

Secondly, electrons themselves produce photons if they pass near an atom.
This process is called bremsstrahlung, German for “braking radiation”, be-
cause it happens whenever electrons are forced to slow down, as when they
are attraced (or repelled, for positrons) by the nucleus of an atom. We won’t
describe this any further, only to say that the low mass of the electron means
that it is the only particle for which bremsstrahlung matters. The emitted
photon energy can be just about as large as the electron’s incident energy.

Finally, positrons will eventually slow down and come close enough to an
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Figure 17.3: Photon mass attenuation coefficient µ/ρ plotted for various
materials. Taken from The Review of Particle Properties.
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atomic electron and annihilate2, producing a pair of 511 keV photons.

Clearly, then, if a high energy (greater than several MeV) photon or
electron impinges on a large block of material, the various processes produces
photons from electrons and so forth, multiplying the number rapidly until the
average energy falls below around an MeV. This “shower” is a very effective
way to absorb and measure the energy of a high energy photon or electron.
Such “shower counters” are very common in nuclear and particle physics for
energies of ∼ 100 MeV or more, but we will not be using them in this course.

17.1.3 Neutrons

It turns out that neutrons are relatively easy to liberate in simple nuclear
reactions, and they are commonly used in the laboratory. Frequently their
use is limited to inducing some nuclear reaction and we study the reaction
byproducts, but on occasion we want to detect the neutrons themselves.
That can be quite difficult, because they have no charge and only inter-
act significantly through interactions with the atomic nuclei in the detector.
Those cross sections are small, so neutrons tend to go a long way before they
interact.

For high energy neutrons, the reactions they induce give off fragments
that, on the whole, are charged. These fragments are quite detectable, al-
though a lot of energy escapes with the neutron, so it is hard to get a good
measurement of the neutron total energy. If the material has a lot of free pro-
tons, i.e. it has a lot of hydrogen atoms as do hydrocarbon polymers, then
the simple np elastic scattering reaction can be used to slow the neutrons
down since the proton can take up a lot of the neutron’s incident energy. As
long as the neutron is slowed down, however, it will eventually wander close
enough to some nucleus to be captured by it. When this happens, a γ-ray
photon of several MeV is emitted, and this is typically detectable.

2See also Experiment 11.
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17.1.4 Radiation Safety

Ionizing radiation is dangerous. Ionization does nasty things to living cells
and that can affect people in various ways. If you get a lot of it all at once,
it can kill you! You should take it seriously.

That said, there is nothing in our laboratory that can badly hurt you, at
least if you take some simple precautions.

We’ll first get some of the language straight, and then look at levels of
radiation you are exposed to every day, and in this laboratory. Finally, we’ll
mention some safety rules. For more details, see Leo.

Units

People worried about the effects of ionizing radiation long before they under-
stood it fully. That lead to some odd quantities and units which stay with
us today. To make matters worse, there are now standard SI units for these
things. Everyone is “supposed” to use the SI units, but almost nobody does.

Two quantities measure how much ionizing radiation you (or some other
form of matter) receive:

• Exposure: This is the ionization produced per unit of matter. The
standard unit is the Roentgen (R) which is the quantity of X-rays that
make one electrostatic unit of ionized charge in 1 cm3 of air. In more
modern units, 1 R works out to be 2.58× 10−4 Coul/kg in air at STP.

• Absorbed Dose: This is the energy deposited per unit mass. The old
unit is the rad defined to be 100 erg/gram. The SI unit is the Gray
(Gy) or 1 J/kg=100 rad.

To convert between dose and exposure, you need to know how much energy
(in a particular material) produces so much ionization. For air, it takes (on
the average for electrons) 33.7 eV of deposited energy to create an ion pair.
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Therefore,

1 R ⇒ 2.54× 10−4 Coul

kg
× 1

1.6× 10−19 Coul
ion−pair

× 33.7
ev

ion − pair

= 8.6× 10−3 Gy = 0.86 rad in air

In living tissue, it turns out that 1 R is very close to 1 rad. For this reason,
we tend to use Roentgen’s and rad’s interchangeably, so if you hear someone
use “R”, they probably don’t care whether they’re talking about exposure
or dose.

Biological Effects

So is a 1 R exposure something to worry about? Well, it turns out that it
can be, at least if you get it in a short time. However, you have to be rather
careless to let that happen.

First, realize that neutrons, protons, and alpha particles are more danger-
ous than electrons or photons. This is because they drop a lot more energy
in a very short distance. (See Fig. 17.1.) For that reason, we multiply the
exposure by a factor between 5 and 20 for these particles. In the SI system,
this (dimensionless) factor turns a Gray into a Sievert (Sv). (In the old sys-
tem it turned a rad into a “rem”, for “rad equivelent man”.) The units have
the same dimensions, but using Sieverts reminds us that this “quality factor”
is taken into account.

So how much is too much? From natural sources (like cosmic rays and
natural radioactivity), people in the US receive a dose of around 3 mSv/year.
Based on statistics gained from incidents like Hiroshima and Nagasaki, and
reactor accidents, we know that 2-3 Sv received in a short time can kill
you. On the other hand, doses of 100 mSv/year over many years is probably
safe. That is, such a dose is not likely to get you sick beyond your normal
probability to get sick.

How does this compare to the radioactivity used in our laboratory? You
can estimate exposure rate from standard sources using

Exposure Rate ≈ Γ× A

d2
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Table 17.2: Exposure rate constant for various radioactive sources.

Source Γ (R·cm2/hr·mCi)
137Cs 3.3
22Na 12.0
60Co 13.2

where A is the source activity and d is the distance from the source. The
“Exposure Rate Constant” Γ is different for different sources, because of the
kinds of radiation they emit. Values of Γ are listed in Table 17.2.

Experiment 12 uses a (shielded) 10 mCi 137Cs source which emits gamma
rays in a narrow cone. In that region, at a distance of 1 m, the exposure
would be

3.3 R/hr× 10

1002
≈ 3.3 mrad/hr = 3.3× 10−2 mSv/hr

since we are talking about humans (i.e. 1 R is equivalent to 1 rad) and
gamma rays (i.e. the quality factor is 1). So, if you stood 1 m in front of the
source opening for four days, you’d get about the same dose as you would
all year due to natural sources.

This is far less than what is considered a “safe” dose. The US regulation
specifies 50 mSv (i.e. 5 rem) as the annual occupational dose limit. Below
this limit, the risk of dying from cancer for a radiation worker is the same as
that for a worker in a non-radiation environment.

Protecting yourself and others

The most important rule for radiation protection is

Don’t be stupid.

For example, don’t stand in front of the Compton Scattering source (the
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hottest open source in the laboratory) for four days.

Formally, there are three things to keep in mind to minimize your expo-
sure: time, distance, and shielding. Some simple things to do include:

• Don’t leave unused sources open or lying around.

• Stay behind shielding blocks if they are present.

• Don’t get unnecessarily close to any radioactive sources.

• Don’t eat or drink in the laboratory.

• Wash your hands after working with sources.

If you’d like, you can obtain a radiation dosimetry badge from the Rensselaer
Office of Radiation Safety so you can monitor your exposure.

17.2 Kinds of Particle Detectors

Now that we’ve learned that nuclear “radiation”, or elementary particles,
ionize atoms, how do we use that to detect particles and measure their prop-
erties? After working on this problem for 80 years or so, a lot of different
techniques have been developed. Leo’s book contains excellent discussions
about almost all of these. We will concentrate on the two techniques we use
in the typical undergraduate laboratory, namely gaseous ionization and scin-
tillation detectors. First, however, we introduce a general physical concept
called “solid angle”.

17.2.1 Solid Angle

Solid angle is a three dimensional generalization of the planar angles you
know so well. If you recall, a planar angle ∆θ is just the length of a circular
arc ∆s, divided by the radius r of the circle, i.e. ∆θ = ∆s/r. Solid angle ∆Ω



320 CH 17. ELEMENTARY PARTICLE DETECTION

is just the area ∆A of a piece of a spherical surface, divided by the square
of the radius, i.e. ∆Ω = ∆A/r2. Planar angles are measured in radians and
solid angles are measured in sterradians. A circle subtends a planar angle of
2π and a sphere subtends a solid angle of 4π.

Solid angle is a useful concept whenever we are dealing with some sort
of detector intercepting radiation which moves out in all directions from a
source. Ionizing radiation and elementary particle detectors are just one
example, but you would encounter the same thing in fields like optics or
sonics.

Let’s be a little more explicit with our definition. If d ~A is a vector whose
magnitude is an area dA in some plane, and whose direction is normal to
that plane, and n̂ is a unit vector pointing towards the source which is a
distance r away, then

dΩ =
n̂ · d ~A
r2

≡ dA⊥
r2

(17.3)

where dA⊥ is just the perpendicular component of the area. A spherical sur-
face is most convenient since all surface elements are normal to the direction
to the center. In spherical coordinates (r, θ, φ), where 0 ≤ θ ≤ π is the polar
angle and 0 ≤ φ ≤ 2π is the azimuthal angle, a small rectangular piece of
the surface has area

dA = width× height = (r sin θdφ)× (rdθ) = r2 sin θdθdφ

so the infinitesimal solid angle is just

dΩ = sin θdθdφ (17.4)

You will see Eq. 17.4 many times in physics.

Let’s apply this to a specific case that is used a lot. See Fig. 17.4. This is
a circular area with radius R located a distance d from a source. The face is
normal to the direction to the source. There is perfect azimuthal symmetry,
so we immediately integrate over φ to get

dΩ = 2π sin θdθ

and integrate from θ = 0 to θMAX = tan−1(R/d) to get

∆Ω

4π
=

1

2

∫ θMAX

θ=0
sin θdθ
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θ
d

R
Source

Figure 17.4: Calculating the solid angle of circular face.

where we have written the fraction of the total solid angle as ∆Ω/4π. This
integral is done most easily by a change of variables to µ = cos θ with µ
ranging from cos θMAX = d/

√
d2 +R2 to 1. Since dµ = − sin θdθ,

∆Ω

4π
=
∫ 1

cos θMAX

dµ =
1

2

[
1− d

(d2 +R2)1/2

]
(17.5)

For d = 0, ∆Ω/4π = 1/2, that is, the surface covers one entire hemisphere.
For d→ ∞, expand Eq. 17.5 to first order in R/d to find ∆Ω/4π = R2/4d2

or ∆Ω = (πR2)/d2 which is just what you expect from our basic definition
of solid angle.

17.2.2 Gaseous Ionization Detectors

The simplest way to use ionization to detect particles is to put the detector
material in an electric field and let the electrons and ions drift toward the
anode and cathode respectively. Since the ionization is all over with in a very
short time period (typically nanoseconds), you expect an electric “pulse” first
at the anode from the lighter and faster moving electrons. Some time later,
the ions would give a pulse at the cathode. These pulses would then be fed
into electronic circuits, digitized, interfaced into computers, and so forth.

Among other things, this scenario assumes the electrons and ions move
freely through the material. The easiest way to achieve this is to use a
gaseous detector. These in fact were the first electronic elementary particle
detectors. They are cheap to build and easy to use. They are almost never
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Figure 17.5: Schematic of a gaseous ionization detector.

used in their simplest form anymore, however, because of other advances in
particle detectors. They survive today mainly as “radiation detectors” or
“Geiger Counters”, used for radiation protection monitors.

A Geiger counter is just one way of operating a simple gaseous ionization
detector. Let’s look at the basic design of such a thing and understand
the different ways to operate it. For a more complete discussion see Leo
or Dunlap. Leo in fact contains descriptions of the modern incarnations of
gaseous detectors.

Figure 17.5 shows how you might construct a gaseous ionization particle
detector. It is a gas-filled metal (i.e. conducting) cylindrical tube connected
to ground with a thin wire along the axis. A thin window seals off one end
and that is where the particles enter. The wire is insulated from the tube
and held at some positive high voltage V0. The wire is therefore the anode
and will detect the pulse from the electrons. The cathode (tube) is grounded,
and we will not bother with the pulse from the ions. A high pass filter is
used to extract the signal pulse without exposing the downstream electronics
to the possibly large DC V0.

So what happens when an elementary particle ionizes some of the gas
atoms inside the tube? Well, if V0 = 0, the electrons and ions just hang out
near each other and soon recombine. However, if V0 is larger than 20 V or
so, the electrons and ions separate before they can recombine, and you get a
voltage pulse on the anode wire. You’ve detected an elementary particle!
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Let’s get an idea of how large the signal is. According to Eq. 17.1, an
electron with an MeV of energy deposits around 2 MeV/(gm/cm2) in mate-
rial. A typical gas density is around 10−3 gm/cm3 at room temperature and
pressure. Therefore, if the tube in Fig. 17.5 is 5 cm long and the electron
passes all along it, then it loses ∼ 0.02 MeV of energy along its path, or
around 1% of its total energy. It costs something like 10 eV of energy to
ionize an atom, so our very rough calculation predicts something like 2000
electron-ion pairs created by the electron in the detector. That may sound
like a lot, but it is actually a very small signal because the electron charge
e = 1.6× 10−19 C is very small. Even if all those electrons are collected over
10 ns, it only amounts to an average current of 32 nA or a 1.6 µV voltage
drop across 50Ω.

This is not enough voltage to work with if you are trying to detect single
particles. On the other hand, this type of device is suitable for measuring a
large flux of particles from a beam or intense source, for example. Operated
in this way, the gaseous ionization detector is called an ionization chamber.
It is still used today, albeit rather infrequently, at accelerator laboratories
and other installations.

We can still use the device in Fig. 17.5 to detect individual particles. The
trick is to amplify the signal in the detector by simply increasing the voltage
V0. When V0 exceeds 100 V or so, the electrons gain enough energy on their
journey to the anode wire that they ionize the atoms they collide with. This
increases the size of the signal to the point where it can be amplified with
external electronics without worrying about fundamental limitations from
Johnson noise and so forth. What’s more, up to some maximum value of V0

the size of the signal that comes out is still proportional to the ionization
caused by the incident particle. That is, the signal size still measures the
amount of energy deposited. Operated in this mode, the detector is called a
gas proportional counter.

If V0 is increased still further, more than several hundred volts, things
become quite different. The avalanche of electrons caused by successive colli-
sions grows very large. There is so much charge near the anode wire that the
electric field is severely distorted, and the chain reaction spreads charge out
along the entire length of the wire. The response of the detector saturates,
and the result is one large output pulse that is the same size, independent
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of the number of ions that the elementary particle first created. This is a
Geiger counter. It is a useful way to get a large pulse for detecting pretty
much any kind of radiation, although you can’t get any other information
about the particle other than that it entered the detector. This is fine for
monitoring and counting radioactivity.

Now suppose we want to measure the total kinetic energy carried by an
incident particle. We can do that by stopping it in the detector, and making
sure the output is proportional to the number of ions created. The latter
can easily be achieved in proportional mode in a gas ionization detector,
but stopping the particle is another matter. As we showed above, a 1 MeV
electron only loses 1% of its energy in a 5 cm long counter. That means we
would have to build a detector 5 m long to stop it, and 5 m in diameter to
contain electrons going in different directions! This is no good, and a different
idea is needed. It took many years before scientists figured out something
other than gas detectors to make this possible.

17.2.3 Scintillation Detectors

Despite their importance, gaseous ionization detectors clearly have their lim-
itations. The signals are rather small (if you want the output to be pro-
portional to the deposited energy), it takes a relatively long time to collect
the charge, and gases have very low density. If you want to stop a particle
to measure its total energy, for example, you need a more dense medium,
and that means going to a solid. The problem with solids, though, is that
electron-ion pairs don’t move freely, so you can’t detect the ionization directly
by collecting the electrons.3 We would like to detect the primary ionization
some way other than by collecting the charge.

Scintillation detectors are the most popular way to solve this problem.
The idea is to convert the primary ionization into a pulse of light, and then use
some optical technique to detect the light. There are, therefore, two essential
components to a scintillation detector. One is some detector material, called

3One way around this is to use a semiconductor diode as the detector medium. In fact,
silicon and germanium diodes have been made into high quality particle detectors. They
are expensive, however, and tricky to operate, and we don’t use them in our laboratory.
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a “scintillator”, which produces detectable light when ionized. The second
is the light detector, almost always a photomultiplier tube (see Sec. 11.2.2)
but sometimes a photodiode (Sec. 11.2.3).

When an ionized atom picks up an electron and deexcites, it emits light.
You might think, therefore, that it is not hard to find materials that scin-
tillate, but it is actually not so easy. For one thing, the material needs to
be transparent to the light produced by ionization, otherwise the light won’t
make it to the photomutliplier tube. What’s more, the light needs to be at
wavelengths for which the photomultiplier is sensitive, and this is usually in
a rather narrow region in the blue. (See Fig. 11.4.) In addition, since you
want the detector to measure total energy, you need the number of optical
photons emitted by the scintillator to be at least roughly proportional to the
primary ionization. A variety of suitable scintillators have been identified
over the years, but we will concentrate on two of them, namely NaI(Tl) and
plastic scintillator.

NaI(Tl) Scintillation Detectors

For a good reference specifically on using NaI(Tl) detector for γ-ray spec-
troscopy, I recommend

• Applied Gamma-Ray Spectrometry, C.E. Crouthamel
Pergamon Press (1960)

It is old, but the techniques remain sound and there are lots of useful tables.
I leave it on reserve in the library.

Figure 17.6 diagrams your basic NaI(Tl) scintillation detector, several of
which are found in our laboratory. Light is produced in a single crystal of
NaI(Tl), that is sodium iodide doped with around 0.1% thallium, generally
shaped into a cylinder measuring perhaps two to three inches in diameter and
two to three inches thick. The crystal is housed in an aluminum can, lined
on the inside with white reflective MgO, except on the face which couples to
the photomultiplier tube where a glass window is used. The glass window is
mounted to the can forming a hermetic seal which protects the crystal from
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Figure 17.6: A typical NaI(Tl) scintillation detector. These detectors are
usually referred to by the crystal size. A detector with a 3′′ diameter and 3′′

long crystal would be called a 3′′×3′′, for example.

the atmosphere. If any moisture or humidity were to come in contact with
the crystal, it would absorb water and quickly become useless.

Sodium iodide makes a fine scintillation detector, particularly for photons
because of it’s high density and high average Z (from the iodine), both of
which make it possible to absorb all the energy of a photon (or a charged
particle) in a relatively small crystal. It is also very efficient, producing
one optical photon for every 25 eV of deposited energy, and the wavelength
spectrum is nicely matched to a photomultiplier tube, peaking at 413 nm
and nearly all contained within 350 ≤ λ ≤ 500 nm. The scintillation signal
rises quickly, but decays with a relatively long time constant, around 230 ns.

The “pulse height” signal from the photomultiplier (actually the inte-
grated current out of the anode) is proportional to the amount of light de-
tected, which is proportional to the amount of energy deposited. Therefore,
if the elementary particle stops in the crystal, then you might expect the
pulse height to be one fixed value. This is not the case because the energy
resolution is not perfect, and has a random, statistical spread to it. This
spread comes about partly because of the Poisson-statistical uncertainty in
the number of detected photons, but it is mainly due to differences in how
the light is collected and inhomogenieties in the response of the crystal. It is
best to illustrate this with an example.
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Figure 17.7: A typical γ-ray spectrum from a NaI(Tl) detector. The γ-ray
energy is ∼ 1 MeV.

Figure 17.7 shows the distribution of pulse heights from a typical NaI(Tl)
detector when exposed to 1 MeV γ-rays. The large peak corresponds to full
absorption of the γ-ray (i.e. a deposited energy of 1 MeV), and because of the
various resolution effects is ∼ 100 keV wide at half the peak height. Notice
also the valley for pulse heights just below the peak, and the relatively flat
distribution below the valley. This structure is typical of γ-ray spectra in
scintillation detectors, and it corresponds to less than full absorption of all
the γ-ray energy. It is easy to see where the valley comes from. At these
energies, the γ-rays interact first mainly through Compton scattering. (See
Fig. 17.2.) If the scattered γ-ray photon escapes the detector (remember that
the mean free path 1/µ is around 15 gm/cm2=1.6 in. for sodium iodide for
1 MeV photons), then all the ionization is due to the initial recoil electron.
This electron can have any energy up to that corresponding to 180◦ scattering
of the photon, and this value is less than the full photon energy.

Detection Efficiency for NaI(Tl) Detectors. There will be lots of times
you want to know the actual decay rate or reaction rate, where the NaI(Tl)
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detector measures some γ-ray to let you know something happened. In that
case, you need to know the efficiency ε with which the detector actually
observes the photon. This is a complicated business, since ε depends on many
things like the photon energy, the distance to the source, and the shape of
the detector. In practice, it is best determined with calibrated radioactive
sources, but for a detector of a particular geometry you can essentially reduce
the efficiency to the product of two factors:

ε(Eγ, d) = εintr(Eγ, d) × P (Eγ , d)

where Eγ is the photon energy and d is the distance to the source. The first
factor εintr(Eγ, d) is called the intrinsic efficiency and measures the probabil-
ity that the photon deposits a measurable amount of energy in the detector.
The second factor P (Eγ , d) is called the photopeak efficiency, and measures
the probability that if the photon does deposit a measurable amount of en-
ergy, then it in fact deposits all of its energy. This separation is of course
artificial since both factors depend on Eγ and d, but it is convenient since we
will make different approximations to reduce εintr and P to simpler forms.

The intrinsic efficiency is dominated by the fact that the detector only
subtends a small portion of the solid angle into which the photon can radiate.
It also depends to some extent on the γ-ray energy, since a high enough
energy photon can pass through a detector without depositing any energy.
We separate these two effects using the approximation

εintr(Eγ, d) ≈ ∆Ω

4π
× εdep(Eγ) (17.6)

The fractional solid angle can be taken from Eq. 17.5. In other words, we
write the intrinsic efficiency as the product of the probability that the photon
intercepts the detector times the probability that it deposits any energy at
all in the detector if it intercepts it.

Note that εdep still has some distance dependence in it because because
the back of the detector covers a smaller solid angle than the front, if the
detector is cylindrical. That is, should you use the front or the back to cal-
culate ∆Ω/4π? (The right answer is “somewhere in between”.) The intrinsic
efficiency is best calculated using Monte Carlo techniques, and you can find
tables of these efficiencies in various books. You can then use Eq. 17.6 to in-
terpolate between different cases for the case closest to yours. A table taken
from Crouthamel for a 3′′×3′′ detector is reproduced in Table 17.3.
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Table 17.3: Intrinsic γ-Ray Efficiencies for a 3′′ × 3′′ NaI(Tl) Detector

Energy Distance (cm)
(MeV) 0 0.5 1.0 2.0 4.0 10.0 20.0

0.10 0.500 0.432 0.368 0.260 0.133 0.0318 8.70×10−3

0.15 0.500 0.424 0.355 0.246 0.124 0.0303 8.46×10−3

0.20 0.497 0.407 0.334 0.227 0.114 0.0286 8.17×10−3

0.30 0.465 0.360 0.289 0.192 0.971 0.0255 7.58×10−3

0.40 0.428 0.323 0.257 0.170 0.087 0.0234 7.09×10−3

0.50 0.399 0.297 0.235 0.156 0.079 0.0218 6.68×10−3

0.60 0.378 0.279 0.220 0.146 0.075 0.0207 6.39×10−3

0.80 0.347 0.254 0.200 0.132 0.068 0.0191 5.95×10−3

1.00 0.325 0.236 0.186 0.123 0.063 0.0179 5.61×10−3

The photopeak efficiency P is a very strong function of energy, but a
weak function of the distance between the source and the detector. For
example, in the same 3′′×3′′ detector, the photopeak efficiency drops from
0.9 for ∼ 0.2 MeV photons, down to ∼ 0.4 for 1 MeV. In fact, the photopeak
efficiency can be measured for a particular setup using a radioactive source
which emits a line of one specific energy. A plot of the photopeak efficiency,
or “total absorption factor” for a 3′′×3′′detector, is shown in Fig. 17.8. Note
that P is very sensitive to the size and shape of the detector. For a smaller
detector, for example, a greater fraction of the incident photon energy might
leak out the sides or back, so the photopeak efficiency will be smaller.

Plastic Scintillation Detectors.

A different class of scintillator materials are created by dissolving various
organic compounds in clear plastic. Relative to NaI(Tl), plastics are cheap,
hard to break, and give signals which decay away in much less time (∼ 3 ns).
They do not absorb moisture, so they need not be handled with as much care.
What’s more, it is also possible to form them into a variety of shapes. On the
other hand, plastic scintillators are much less dense than NaI(Tl) (1 gm/cm3

as compared to 3.7 gm/cm3) and being made mainly of carbon and hydro-
gen, they have a low average Z. This makes them less suitable for photon
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Figure 17.8: Photopeak efficiency for detecting γ-rays with a 3′′×3′′ NaI(Tl)
scintillation detector.

detection, and they are mainly used to detect charged particles. Plastics are
also less efficient than NaI(Tl), requiring around 100 eV of deposited energy
to created a detectable optical photon. Just as for NaI(Tl), the emitted
wavelength spectrum peaks at around 400 nm and spreads between 350 nm
and 500 nm.

Depending on the geometry, a plastic scintillator can be mounted to a
photomultiplier in a variety of ways. Probably the simplest is to glue the
scintillator to the photomultiplier window, but more elaborate schemes can
be used to “pipe” the light along some tortuous path using a lucite guide.
This may be necessary if the scintillator sits in some enviornment that the
photomultiplier cannot tolerate, such as cryogenic or in a large magnetic
field. Depending on how efficiently the light can be collected, the energy
resolution may be limited by the Poisson statistics on the average number of
detected photons.

Since plastic scintillators are much less dense than NaI(Tl), as well as
having lower Z, there are considerably less efficient as far as photopeak effi-
ciency is concerned. In fact, plastic scintillation detectors are almost never
used as total energy detectors for photons. On the other hand, they can be
quite useful as electron detectors, if they are large enough for the energies
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involved.

17.3 Pulse Processing Electronics

We conclude this chapter with a discussion of the types of electronics used in
the nuclear physics laboratory. In particular, we are talking about the devices
which accept the types of electrical pulses produced by particle detectors.
Typical time scales for these pulses are 100 ns or less for scintillation counters,
and considerably longer for Geiger counters.

Nearly all such electronics in our laboratory subscribe to the Nuclear
Instrument Module or NIM standard. This dictates the physical size, volt-
age requirements, and input and output characteristics for all modules. The
modules themselves are about 10” long and 8” high. Any NIM module will
fit into a “NIM bin” which supplies the necessary voltages for that mod-
ule. A NIM bin can accept up to 12 single width NIM modules. A single
width NIM module is about 11

2
” wide, but double width NIM modules are

not uncommon. The power is supplied at the rear of the module through
rectangular connector with some number of pins which plugs into the bin.
Power can be drawn from taps which supply ±6 V, ±12 V, and ±24 V, as
well as the 110 V AC line.

Coaxial cable, usually with 50Ω characteristic impedance, is used to carry
signals from the detector to the module, or from one module to another. BNC
connectors are usually used on the cables and on the modules, but sometimes
thin cable is used (but still 50Ω) with a smaller connector standard called
LEMO.

17.3.1 Amplifiers

A pulse signal from a photomultiplier tube is a burst of electrons, corre-
sponding to some ionization event in the detector, which varies over a period
of time somewhere between 10 ns and 200 ns. The integral of this current
signal over time gives the total number of electrons in that pulse, and this
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is the number we care about, especially if we want a measurement of the
deposited energy. An amplifier not only takes this signal and increases its
magnitude to make it easier to use, it also gives the pulse a shape that is
more convenient. For example, the height of the amplifier output pulse, as
opposed to the integrated area of the input, corresponds to the magnitude
of the signal.

The gain of the amplifier and pulse shaping parameters can be varied by
turning various knobs on the front of the module. It is also possible, in most
cases, to adjust the output of the amplifier so that the ambient level is close
to ground potential.

In our laboratory, you will likely find, for example, the Canberra model
2012 or the Ortec model 570 pulse amplifiers. Lots more models are available
from these and other vendors.

17.3.2 Discriminators and Single Channel Analyzers

You frequently need to do one simple thing with the analog output of a
detector or an amplifier. This is to determine whether or not the analog
pulse was greater or smaller than some particular value. The module which
does this is called a discriminator.

The input to the discriminator is the output of the detector or amplifier.
There is an adjustment of some sort with which you can vary the “threshold
level” of the discriminator, that is, the voltage above which (or below which,
if the analog signal is negative) the discriminator “fires” and gives you an
output logic pulse. These logic pulses are then used further down the line in
your electronics setup in some other NIM module.

Logic pulses are defined by one of three common standards in use in the
modern laboratory. One of these, the ECL standard, is not used in our
laboratory, so I won’t discuss it any further. On the other hand, we use each
of the other two, the NIM (actually, the “fast NIM”) standard and the TTL
standard. Both of these use zero (i.e. ground) voltage to correspond to “off”,
or a logical “false”. In the NIM standard, an “on” or logical “true” is based
on current requirements and specifies −16 mA (or within some range of this)
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into 50Ω, or around −800 mV. A logical “true” in the TTL (for Transistor-
Transistor Logic) standard is based on voltage and must be between +2 V
and +5 V. Discriminators which accept the fast pulses from scintillators, for
example, usually have only NIM outputs, while discriminators for shaped
signals generally provide TTL or both TTL and NIM. Depending on which
standard you are using, of course, you must be consistent down the line.
Some NIM modules are available which convert NIM to TTL or the other
way around.

A variation of the discriminator called the single channel analyzer is also
quite useful. The single channel analyzer, or SCA, gives a logical true output
if the input analog pulse is not only larger than some value E, but also smaller
than some value E + ∆E. The threshold level E and the “window” ∆E are
both set by knobs on the front panel.

17.3.3 Processing Logic Signals

Logic signals are used in a semi-infinite number of ways to accomplish many
different things. I will give you two examples of their use, but you will likely
encounter several others.

Frequently, you will want to perform pulse height analysis or particle
counting or something like that, only while some particular logic condition
is satisfied based on your detector setup. For example, you might want to
analyze the pulse height in a NaI(Tl) γ-ray detector only when a second
scintillator indicated that a β-decay occurred. You would use a logic pulse,
probably generated by the β-decay detector signal through a discriminator,
to gate the multichannel analyzer. That is, you would use the logic signal as
an input to the multichannel analyzer gate input which says “Don’t perform
pulse height analysis on your analog input signal unless I’m giving you a
logical ‘true’ signal”, assuming your multichannel analyzer is so equipped.
We use the phrase “gate” in many similar ways, all of which are supposed to
tell the module to do something only if the gate signal is “true”. Some NIM
modules, called gate generators, are designed to provide particularly flexible
gate signals.
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Another common use of logic signals is to know if two events happen
at the same time. In this case, a NIM module called a coincidence module
accepts two or more logic signals as input, and provides a “true” output
only if the inputs are all “true” at the same time. Otherwise, the output is a
logical “false”. Practically, of course, it is important to define what “the same
time” means. Different coincidence modules have different definitions. One
of the most common definitions is that the leading edge of the two (or more)
logic pulses arrive within some time window, called the “resolving time”. On
some modules, the resolving time can be adjusted using a front panel knob.

17.4 Exercises

1. A 22Na radioactive source emits 0.511 MeV and 1.27 MeV γ-rays. You
have a detector placed some distance away. You observe a rate of 0.511 MeV
photons to be 2.5 × 103/sec, and of 1.27 MeV photons to be 103/sec, with
just air between the source and the detector. Use Fig. 17.3 to calculate the
rate you expect for each γ-ray if a 1

2
in. thick piece of iron is placed between

the source and the detector. Repeat the calculation for a 2-inch thick lead
brick.

2. A radioactive source is situated near a particle detector. The detector
counts at a rate of 104/second, completely dominated by the source. A 2 cm
thick slab of aluminum (density 2.7 gm/cm3) is then placed between the
source and the detector. The radiation from the source must pass through
the slab to be detected.

a. Assuming the source emits only 1 MeV photons, estimate the count
rate after the slab is inserted.

b. Assuming the source emits only 1 MeV electrons, estimate the count
rate after the slab is inserted.

3. Consider a small rectangular surface far away from a source. The surface
is normal to the direction to the source, and subtends an angle α horizontally
and β vertically. Show that the solid angle subtended is given by αβ.
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4. A photomultiplier tube with a 2′′ active diameter photocathode is located
1 m away from a blue light source. The face of the PMT is normal to
the direction of light. The light source isotropically emits 105 photons/sec.
Assuming a quantum efficiency of 20%, what is the count rate observed by
the photomultiplier?

5. Refer to Table 17.3.

a. Compare the tabulated intrinsic efficiency for detecting 100 keV γ-rays
to those calculated using Eq. 17.6. Normalize the calculated values to
the tabulated value at d = 0. A plot might be best, including a plot of
the ratio of the two values.

b. Use the curve to estimate the intrinsic efficiency for detecting 100 keV
γ-rays at a distances of 15 cm and 1 m.

c. Repeat (a) and (b) for 1 MeV gamma rays.

d. Do you expect the plots to look very different for the 100 keV and
1 MeV cases?

6. Two scintillation particle detectors are constructed as shown in Fig. 17.6.
In one case, the scintillator is NaI(Tl). However, in the other case it is an
ordinary form of plastic scintillator material. The output pulse height is
digitized into a spectrum by the multichannel analyzer. Assume that the
resolution is dominated by the random statistics of the number of optical
photons. Plastic scintillators produce about 10 photons per KeV of deposited
energy, while NaI(Tl) gives around 40 photons per KeV.

a. A monochromatic, well-collimated source of 1 MeV electrons impinges
on the detector. On the same set of axes, sketch the spectrum deter-
mined by the MCA for each of the two scintillators and label the two
curves. Label the horizontal axis in units of detected energy in MeV.

b. The electron source is replaced by a monochromatic, well collimated
gamma source. As in (a), sketch and label the response of the two
detectors.

7. Two scintillation detectors separated by 3 m can measure the “Time-of-
Flight” for a particle crossing both of them to a precision of ±0.20 ns. Each
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detector can also measure the differential energy loss dE/dx = constant/β2,
β = v/c, to ±10%. For a particle with velocity of 80% the speed of light (i.e.
β = 0.8), how many individual detectors are needed along the particle path
to determine the velocity v using dE/dx to the same precision as is possible
with Time-of-Flight?

8. A Čerenkov detector is sensitive to particles which move faster than the
speed of light in some medium, i.e. particles with β > 1/n where n is the
index of refraction of the medium. When a particle crosses such a detector,
it produces an average number of detected photons given by

µ = K

(
1− 1

β2n2

)

The actual number of detected photons for any particular event obeys a
Poisson distribution, so the probability of detecting no photons when the
mean is µ is given by e−µ. When 1 GeV electrons (β = 1) pass through
the detector, no photons are observed for 31 out of 19761 events. When
523 MeV/c pions (β = 0.9662) pass through, no photons are observed for
646 out of 4944 events. What is the best value of the index of refraction n as
determined from this data? What is peculiar about this value? (You might
want to look up the indices of refraction of various solids, liquids, and gases.)
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Experiment 10: Radioactivity

Around the year 1900 or so, scientists started to get a glimpse of what nature
looked like at distances smaller than the atom. Rutherford discovered some-
thing deep inside the atom that had to be very small. The Curies discovered
high energy radiation emerging from atoms, and in retrospect, it is clear the
source had to have a small size to go with the high energy. These discoveries
have led us to the modern fields of Nuclear Physics and Particle Physics.

In this experiment, you will study some of the same phenomena as the
Curies, that is, radioactivity. This is the classic name given to radiations that
come from the decay of the nucleus. Of course, we’ve learned a lot since then
about the nucleus and about how to do experiments. Modern techniques
will allow you to make a number of measurements of nuclear decay and some
of the properties of nuclear radiation. Furthermore, you will watch several
species of short-lived nuclei decay away. Some of these you will actually create
yourself using a nuclear reaction technique called “neutron activation”.

The material we’ve covered in Chapters 9 and 17 will be particularly
important for this experiment. I suggest you review that material, as well as
what is covered in this chapter. You may also want to consult other sources.
For a good basic introduction to nuclear physics and radiation detection, see

• Physics, Robert Resnick, David Halliday, and Kenneth Krane,
John Wiley and Sons, Fourth Edition (1992), Chapter 54

337
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A more thorough treatment of the different types of radioactivity is given by

• Introduction to the Structure of Matter,
John J. Brehm and William J. Mullin, John Wiley and Sons (1989),
Chapters Fourteen and Fifteen.

• Experimental Physics: Modern Methods, by R. A. Dunlap,
Oxford University Press (1988); Chapter 11

The rest you can get from these notes and from online documentaion for the
data acquisition program.

18.1 Nuclear Decay

Rutherford discovered that the most of the size of the atom was filled with
empty space, which we now understand to be the electrons. Most of the mass
of the atom, though, was concentrated at a very small distance, around 105

times smaller than the atom itself. This is the atomic nucleus, and the study
of it is called nuclear physics. All Rutherford could tell was that it was very
small. We of course know a lot more about the nucleus today.

For the purposes of this course, you can consider the nucleus as a col-
lection of protons and neutrons, bound together quite tightly. Protons and
neutrons are almost identical types of elementary particles, having nearly
the same mass and interacting with matter pretty much the same way. The
biggest difference is that the proton has a charge +e while the neutron is neu-
tral. In fact, we tend to refer to protons and neutrons as different “states”
of the same particle, called the nucleon.

A nucleus is characterized by the number of protons Z and the number of
neutrons N that it contains. For a neutral atom, of course, Z also counts the
number of electrons, and so it specifies the chemical element. In other words,
nuclei with the same Z but different values of N , called isotopes, give rise to
atoms with essentially identical chemical properties. On the other hand, the
nuclear properties are more closely identified with the atomic mass number



18.1. NUCLEAR DECAY 339

A = Z + N . We designate the nucleus with the notation “A(Z)” where
(Z) is the one- or two-letter chemical symbol that designates the atom with
the appropriate value of Z. For example, the nucleus of the carbon atom
(Z = 6) with N = 6 (A = 12) is 12C. Despite the way it is written, we still
say “Carbon-12”.

The protons and neutrons in the nucleus move around constantly inter-
acting with each other in much the same way as electrons do in an atom. The
biggest difference is the distance scale, and therefore the energies involved.
For an atom, the sizes are on the order of 1Å= 10−10m and energies are on
the order of several eV, while for the nucleus size is on the order of several1

fm= 10−15m and the energies are in the MeV region. In other words, just as
atoms have energy levels separated by some eV of energy, nuclei also have
energy levels, but they are separated by some MeV. Excited states decay to
lower states by emitting photons, but for nuclei these photons are obviously
much higher in energy. We generally refer to these MeV photons as γ-rays.

Nuclear energy levels are specified in terms of their total angular mo-
mentum, called nuclear spin, and their parity, which is either +1 or −1.
The parity of a nuclear level just tells whether or not the wave function for
that state changes sign (P = −1) or not (P = +1) when you make the
the substitution ~r → −~r in the argument of the wavefunction. That is,
ψ(−~r) = ±ψ(~r). The most important thing for you to know about parity for
now, is that parity, along with the nuclear spin, will determine which lower
energy level a particular state would rather decay to, and how long that state
will stick around before it is likely to decay. More on this in a little while, but
for now, let’s talk a little more quantitatively about this notion of lifetime.

If you look one particular nucleus, or an atom for that matter, in some
excited state, then you expect it to decay at some point. Quantum mechanics
cannot tell you when it will decay, only what the probability is for how long
it is likely to live. This is the essence of why radioactive decay is randomly
statistical in nature. You will measure some decay rate for a collection of
(identical) nuclei, based on the probability of decay.

To measure this probability, we resort to a determination of the nuclear

1The unit “fm” technically stands for “femtometer”, but just about everyone calles it
the “fermi” in honor of Enrico Fermi.
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lifetime. For some large sample of nuclei, the decay rate2 R, the number
of decays per second, will be proportional to the number N of nuclei in the
sample at any particular time. That is

R =
dN

dt
= −λN

where the proportionality constant is called −λ, the minus sign reflecting the
fact that the decay causes the number of nuclei to decrease with time. This
differential equation has a simple solution, namely

N(t) = N0e
−λt

where N0 is just the number of nuclei present at t = 0. Obviously, λ char-
acterizes the lifetime. The larger λ is, the faster the sample decays, and the
shorter the lifetime. There are two definitions we use for the lifetime. One
is the mean life

τ =
1

λ
Mean Life

The other is more practically minded, and measures the time it takes for the
sample to decay to 1

2
its original number. This is called the half life, and it

is determined by solving N(t) = N0/2 for t. You find

t1/2 =
ln 2

λ
= 0.693τ Half Life

References usually quote the half life, but not always. Always be sure when
you look up a lifetime, whether you are getting the half life or mean life.

The lifetime of a nuclear state is directly related to the quantum mechan-
ical matrix element that connects that state to the final state. This matrix
element depends not only on the wavefunctions for the two states, but also on
the type of interaction that causes the decay. If the interaction is “strong”,
then the decay is highly probable and the lifetime is short. Weaker decays
generally have longer lifetimes, but the answers vary a lot, largely because
of the dependence on the wavefunctions.

So far the discussion pertains as much to the decay of excited atomic
states as to nuclear states. We just have a special name for the photons

2For historical reasons, the standard unit for decay rate is the Curie≡ 3.7×1010 decays
per second. This is the number of decays per second in one gram of radium.
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emitted in the nuclear decay, i.e. γ-rays, and we call the process γ-decay.
However, nuclei can do some things that atoms can’t. The ground state,
that is, the lowest energy level, can also decay in some cases, creating a new
nucleus in place of the old one. There are two such types of decays, namely
α-decay and β-decay and they are as different as night and day.

Alpha decay is the process by which a nucleus emits an α-particle, that
is a 4He nucleus, reducing its Z by two and A by four. It is very common for
very heavy nuclei to decay this way. For example, the uranium isotope 238U
decays to 234Th through

238U →234 Th + α

with a half life of 4.5× 109 years. (The lucky coincidence that this is about
the age of the earth allows geophysicists to determine the age of the solar
system using radioactive dating.) Such long lifetimes are not uncommon,
mainly because the α-particle must quantum mechanically tunnel through
a “barrier” at the edge of the nucleus. This is not very probable, so the
lifetimes for α-decay tend to be long.

Beta decay is a fundamentally important reaction, since it was the first
known example of the weak interaction. The weak interaction is not the same
“force” that gives rise to nuclear binding or to the decay of excited states by
γ-emission. (The latter is the normal, old electromagnetic interaction, used
quantum mechanically.) In fact, the weak interaction is much weaker than
either of these.

The weak interaction changes protons into neutrons or neutrons into pro-
tons. In the process, an electron (e−) or positron (e+) is emitted. In the
jargon of nuclear physics, these processes are called β− or β+ decay respec-
tively. In one form of the weak interaction, an electron from one of the inner
atomic shells is captured, instead of emitting a positron. This process is
called electron capture instead of β-decay, but both are manifestations of the
weak interaction.

Neutrinos (νe) or antineutrinos (ν̄e) are also emitted in β-decay. They are
nearly impossible to detect because they have no charge and could only be
detected through the weak interaction. However, they do have an important
effect on β-decay because they carry away some of the energy. Therefore,
unlike the photons emitted in γ-decay, the e∓ in β-decay are not monoener-
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137Cs 94.5%

5.5%
0.281 MeV

137Ba  (Z=56)

(Z=55)

1.18 MeV

11/2-

1/2+

3/2+

0.6616 MeV

7/2+  (30 yr)

(2.55m)

Figure 18.1: Decay scheme of 137Cs. This is a β− decay which proceeds
through the reaction 137Cs→137Ba+e− + ν̄e. You will detect both the e−

emitted in the β-decay, and the radiations from decay of the excited 137Ba
nucleus. The ν̄e goes undetected.

getic.

A β-decay reaction therefore takes the form

A(Z)
β∓−→A(Z ± 1) + e∓ + {ν̄e, νe}

whereas an electron capture reaction would be

A(Z) + e−→A(Z − 1) + νe

It is important to realize that the so-called daughter nucleus may in fact be
in some excited state which consequently γ-decays. This is even the case
more often than not.

Let’s illustrate these points (with the exception of α-decay) by considering
one particular nucleus that we will use a lot, namely 137Cs. The decay scheme
is shown in Fig. 18.1. The ground state of 137Cs β− decays with a half life of
30.0 years. The difference in the mass between the 137Cs ground state and
the ground state of the 137Ba daughter is ∆Mc2 = 1.18 MeV, so this much
energy ends up being divided between the e− and neutrino kinetic energies,
and any γ-rays from the daughter.
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The ground state of the 137Cs nucleus has spin 7/2 and positive parity.

(This is written as 7
2

+
.) The rule of thumb is that β and γ decays prefer

to go to states with larger energy release, and with as small a change in
spin as possible. For β decay, nature would also prefer not to change the
parity. In the case of 137Cs, the change-in-spin rule dominates, and 94.5% of
the decays go to the 11

2

−
state in 137Ba, which subsequently γ-decays to the

ground state, and the rest proceed to the 3
2

+
ground state. There are no β

decays to the 1
2

+
excited state.

Notice that the γ-ray transition in 137Ba is from a 11
2

−
excited state at

0.662 MeV to the 3
2

+
ground state. That is a large change in angular mo-

mentum, and this decay proceeds very slowly for a γ-decay. The 0.662 MeV
photon is emitted with a 2.55 min half life. You will be able to measure this
half life, among other things, in this experiment.

18.2 Measurements

Instead of one main experiment, we will do a series of relatively simple mea-
surements, all involving radioactivity and nuclear reactions. The last mea-
surement outlined is a catch-all, but should give you ideas on more sophisti-
cated measurements that can be tailored to the physics involved.

You will use a Geiger counter to detect the radiation in all the mea-
surements, except for the last section where you might try other kinds of
detectors. In any case, the particles of radioactivity are counted using a
multi-channel scaling plug-in board, directly interfaced to a PC.

The Geiger counter comes in a neat little package with trays and holders
that allow you to position the source several distances away from the detector
window. You will also be able to place material between the source and the
window, in order to study the attenuation of the radiations.

The plug-in board, manufactured by EG&G/ORTEC and called the MCS-
plus system, comes complete with a set of software that runs under Microsoft
Windows. The program, located in the “MCS” window and called MCS-
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plus, is more or less self explanatory, but there is plenty of documentation
on it. The data can be saved in a binary format and read back into the
program for later use. The data can be printed out to the screen using the
program Print Mcs, located in the same window. A third program called
MCS-Cricket will convert the data to an ascii file suitable for reading into
matlab or some other program.

18.2.1 Particle Counting Statistics

Before getting on with measurements of actual physical quantities, use the
setup to verify the random statistical nature of radioactive decay. This will
give you a chance to get used to operating the detector and the software as
well.

We will study the mean µ and standard deviation σ for the number of
counts N which you collect in some time interval. You can adjust the mean
value of N by adjusting the time interval, or “dwell time” in the program,
since the count rate is essentially fixed (for the 137Cs source). If you prefer,
you can also adjust N by changing either the absorbers or the position of the
tray holding the source under the Geiger counter.

Set the 137Cs source on the holder tray, near the detector window. Set
the mean value of the number of counts µ = N̄ to be somewhere in the range
between 2 and 5. Take on the order of 100 measurements of N , that is set
the pass count to 100. Use matlab or some other program to calculate the
mean µ, as well as the standard deviation σ. (You might review the various
ways to use matlab to analyze data, mainly in Chapter 9.) As radioactive
decay is supposed to be a good example of Poisson statistics, you should find
that σ =

√
µ. How good is this?

You can go farther and verify that the distribution of counts is in fact
approximated quite well by the Poisson distribution. Make a histogram of
the actual number of counts N you measure for each of the M ∼ 100 mea-
surements you make. (See Sec. 9.5.) Plot on top of this the predicted Poisson
distribution, normalized to the number of measurements, that is

P (N) = M × e−µµ
N

N !
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Figure 18.2: An example of counting statistics in radioactive decay. The his-
togram shows the number of times (“frequency”) a certain number of counts
appears in a specified time. The dashed line is the Poisson distribution pre-
dicted by the mean number of counts and the total number of measurements
made.

as we did in Fig. 9.3. How good is this fit? You might go so far as to
calculate the χ2 for the comparison, taking the uncertainty for each bin of
the histogram to be the square root of the number of entries in that bin.
Recall that a “good fit” means χ2/M ∼ 1.

An example3 of this sort of data, analyzed with matlab, is shown in
Fig. 18.2. A list of numbers N is read in from the MCS-plus program, and
the mean µ is determined. The numbers are binned into a histogram, using
for example the matlab function hist, and plotted as a stairs plot. The
predicted poisson distribution is then overplotted. The procedure is very
similar to that described in Sec. 9.5.

As the count rate or dwell time gets large, the random statistical un-
certainty in the rate R will become a small fraction of the rate. That is,
δR/R =

√
N/N = 1/

√
N , so as µ = N̄ gets very large, δR/R gets very

small. At some point, some systematic uncertainty will begin to dominate
the uncertainty in R. This could be due to temperature or voltage fluctua-

3Data taken by Peter Thies and Dan Bentz, class of 1996.
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tions, or many other things.

Try increasing the value of µ and again check the relation σ =
√
µ. See

if you can identify a point where there is clearly some other contribution to
σ other than from simple counting statistics.

18.2.2 Detecting Radiation

Let’s start with some very simple measurements using the 137Cs source. As
discussed in Sec. 18.1, this source emits a combination of β− and γ radiation.

The first thing to do is get a good measure of the background rate in the
detector. That is, with the 137Cs source far away, measure the number of
counts per unit time. This value will have to be subtracted from all other
rates you measure, and it is probably a good idea to go back and remeasure
it over the course of the experiments, just to make sure it doesn’t change.

Don’t forget to record the uncertainty in the background rate, as well
as in all other rates you measure. This is simple to do, assuming that only
random counting statistics contribute. If you determine a number of counts
N during a time t, then the rate you measure is R = N/t and the uncertainty
in R, i.e. δR, is

√
N/t, and you report R± δR.

Dependence on Distance

The source radiates outward in all directions, and in principle has no preferred
direction. Therefore, you expect the rate to vary pretty much like 1/r2 as
you change the distance r between the source and the detector.

Test this hypothesis. Plot the data in any form you like, but include error
bars on the rate to indicate the uncertainty. You might try plotting r2R(r)
and see if it is a constant, but if you prefer plotting R(r), that is up to you.

Don’t forget to subtract background. You can assume that the different
rates you measure are random and uncorrelated, so the uncertainty in the
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net rate is given by adding the uncertainties in quadrature, that is

RNET = RSOURCE − RBACKGROUND

and
δRNET =

√
δ2RSOURCE + δ2RBACKGROUND

Explain your results. Over what range of distances do you expect the
1/r2 rule to be valid.

Attenuation of Radiation

Now be a little more ambitious with the physics. Take the 137Cs source and
measure the count rate with each of the two sides closer to the Geiger counter
window. Can you detect a difference in the count rate? Explain what you
see. Remember that a Geiger counter is detecting particles that interact the
gas, a very low density medium. Does that mean it is a better detector for
β particles or for γ-rays?

Place different absorber materials between the source and the detector,
and see if you can reduce the count rate. You can do this neatly by using
the tray holders underneath the Geiger counter and the various aluminum
absorbers that are provided. It is a good idea to measure the thickness of
the aluminum absorbers carefully.

You should see a clear decrease in the count rate as you add thin aluminum
absorbers. This is because you are detecting β− which are attenuated rapidly.
The range of β particles in matter is roughly given by the relation

R = 0.52× Eβ − 0.09

where R is in gm/cm2 and Eβ is in MeV. You should be able to use this for-
mula and your measurements to estimate the maximum β− energy emerging
from the source. Compare this to what you expect. Include some uncer-
tainty estimate in Eβ from an uncertainty you estimate in R. Is this “range
method” a good way of measuring the energy of β particles?

At some absorber thickness, the attenuation should be only due to the loss
of the 662 keV photons. Therefore, further attenuation should be governed
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Figure 18.3: Sample data for β− absorption in aluminum foils from a 137Cs
source.

by Eq. 17.2, where µ is the appropriate value for the material you are using
and this photon energy.

A sample of this sort of data4 is shown in Fig. 18.3. Notice how the rate
falls, but abruptly becomes more or less constant. Where does this constant
rate come from?

18.2.3 Half Life Measurements

Now let’s measure the half lives of some short lived nuclear states. Obviously,
you need to do some tricks to get short lived states that you can measure.
One trick we will use is the chemical separation of barium from cesium.
However, beyond that, we will in fact create new isotopes using a type of
nuclear reaction called neutron activiation.

In neutron activation, reactions with neutrons are used to create radioac-
tive isotopes from stable nuclei. Neutrons are produced using a Plutonium-
Beryllium (PuBe) source, which is safely packaged away so you can’t get near

4Data taken by Peter Thies and Dan Bentz, class of 1996.
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it, but the neutrons can get out. Plutonium decays by α-emission, that is

239Pu →235 U + α

and the α particles react with the Beryllium

α +9 Be →12 C + n

releasing neutrons. These neutrons are slowed down by collisions with pro-
tons (in all the paraffin, a hydrocarbon, surrounding the source), making
them available for other reactions.

When you put an isotope in the neutron radiation “oven”, make sure you
“cook” it for at least a large fraction of one half life. Otherwise, you may
not get enough rate for you to measure.

Production and Decay of 116In

This is a good place to start. You will make 116In using neutron capture
on a piece of indium. Indium is a very common metal used for soldering
compounds, and all of natural indium is the isotope 115In. The decay scheme
for 116In is shown in Fig. 18.4. Notice that the ground state has a very short
half life, only 14 sec. You will be detecting β− decay of the excited state,
60 keV above the ground state. The decays proceed mainly to a couple of
states at around 2.3 MeV and the available energy is 3.3 MeV, so the β−

typically have energies up to an MeV or so. These are easy to detect in your
Geiger counter.

Irradiate the piece of indium for an hour or so. Remove it and place it
on the Geiger counter platform, close to the counter window. Take data for
an hour or so, setting the MCS program to count for intervals of something
like a minute. Save the data, and convert it to ascii for further analysis.

It’s probably a good idea to make a semilog plot of the data, and estimate
the half life by hand, just to make sure the number looks about right. To do a
better job, you can easily fit the data to a decaying exponential. Just use the
matlab function polyfit to fit the logarithm of the number of counts versus
channel to a straight line. In fact, this is a case where you can accurately
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Figure 18.4: Decay scheme for 116In.

write the random errors of the points, since they are governed by a Poisson
distribution. That is, if there are N counts in any one channel, then the
random uncertainty in N is δN =

√
N and the random uncertainty in the

logarithm of N is δ logN = 1/
√
N . Recall that the matlab routine linreg

(Fig. 9.1) fits weighted data to a line.

A sample of data5 on indium decay is shown in Fig. 18.5. Each channel
represents 30 sec. The simple fit described above is shown in the dashed line.
Notice that the fit isn’t really very good. You can see that more clearly if
you plot the difference between the fitted function and the data points.

In fact, it’s not too surprising. When you put the chunk of indium in
the neutron oven, it irradiates other things in the material as well, and you
expect some background radiation. You can try subtracting a constant value
(representing the background counts) from the data before you fit it, and see
if it looks better. By calculating the χ2 function, you can even optimize the
background term by minimizing χ2.

The matlab program shown in Fig. 18.6 was used to do exactly this.
After reading in the values of channel and counts, the user is asked for a
number of background counts. Then this value is subtracted from the data,

5Data taken by Peter Thies and Dan Bentz, class of 1996.
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Figure 18.5: Data and fits for the decay of 116In. The dashed line is fit to a
decaying exponential, while the solid line includes a constant backgroud of
17 counts.

and care is taken to make sure the value is not less than one. (Remember,
you are going to take a logarithm.) Two fits are done, one that is unweighted
(using polyfit) and one that is weighted according to the Poisson uncertainty
in the points (using linreg). The results, including the χ2, are printed and
plotted. By trying various backgrounds, you find that the lowest χ2 (i.e. the
“best fit”) is found for 17 background counts. You can even estimate your
systematic uncertainty by looking at how much the lifetime varies as you
move around in χ2 near the minimum. This can be large if the minimum in
χ2 is shallow. For this particular data set, we find

τ = 160.7± 2.0± 10 channels

where the first uncertainty is random and the second is systematic. Since
each channel is 30 sec, we determine

t1/2 = log 2× τ × 1

2
min/channel = 55.7± 0.7± 3.5 min

which agrees well with the accepted value of 54 minutes. In fact, it seems we
may have overestimated the systematic uncertainty.

Actually, this business of adjusting the background term to minimize χ2
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% LOAD AND EXTRACT DATA POINTS

load indium.dat

chan=indium(:,1);

data=indium(:,2);

%

% PREPARE DATA FOR FITTING LINE TO LOGARITHM

bkgd=input(’Background counts ’);

dnet=max(data-bkgd,1);

ndof=length(data)-2;

edata=sqrt(data);

ldata=log(dnet);

eldata=edata./dnet;

%

% UNWEIGHTED FIT

coefa=polyfit(chan,ldata,1);

fita=exp(polyval(coefa,chan));

chisqa=sum(((dnet-fita)./edata).^2);

fprintf(’Unweighted fit:\n’);

fprintf(’ tau=%6.3e\n’,-1.0/coefa(1));

fprintf(’ chisquare/dof=%6.3f\n’,chisqa/ndof);

%

% WEIGHTED FIT

[coefb,ecoefb,lfitb]=linreg(chan,ldata,eldata);

fitb=exp(lfitb);

chisqb=sum(((dnet-fitb)./edata).^2);

fprintf(’Weighted fit:\n’);

fprintf(’ tau=%6.3e’,-1.0/coefb(2));

fprintf(’ uncert=%6.3e\n’,ecoefb(2)/coefb(2)^2);

fprintf(’ chisquare/dof=%6.3f\n’,chisqb/ndof);

%

% PLOT RESULTS

plot(chan,data,’o’,chan,fita+bkgd,’-’);

title([’BKG=’,num2str(bkgd),’ CHISQR=’,num2str(chisqa/ndof)]);

Figure 18.6: Program (i.e. m-file) used to fit indium data.
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can be done automatically in matlab. That brings us into the world of
nonlinear fitting (Sec. 9.2.3), and we’ll do that next.

The Half Life of 137mBa

Now we’ll measure the half life of another short lived isotope, 137mBa. The
background is very clear in this case, and we’ll use that to go a step further
in our data analysis techniques. This isotope does not need to be produced
in the neutron oven.

Recall the decay scheme of 137Cs in Fig. 18.1. The daughter nucleus,
137Ba, is produced in its ground state only 5.4% of the time. The rest of the
time it is made in the excited state, called 137mBa for “metastable”, which
decays by γ-ray emission, but with a relatively large half-life (for γ decay)
of around 2.5 minutes. Of course, 137mBa is produced all the time, as the
very long-lived 137Cs decays, so you can’t isolate the 137mBa decay without
somehow separating it from the 137Cs.

You can make this separation because chemically, Cesium is very different
from Barium. By passing a weak HCl solution through a 137Cs source, Barium
is captured and comes out in solution. Some Cesium comes through as well,
but most of the radioactivity of the solution is from 137mBa. There are some
small squeeze bottles of HCl in the lab, and specially prepared 137Cs samples
that allow you to force a few drops over the radioactive isotope. It is best if
you squeeze the drops through slowly, enough to fill the small metal holder
in about 30 seconds. Then, place the holder in the Geiger counter tray, and
start the MCS program.

Realize that you are working with radioactivity and hydrochloric acid.
Don’t be careless. None of this is concentrated enough to be particularly
dangerous, but you should take some simple precautions. Disposable gloves
are located near the setup. It is also a good idea to wash your hands soon
after you’re finished.

You should choose a dwell time and pass length that allows you to get
a relatively large number of points in each channel, but many channels over
the expected decay time of a few minutes. You should be able to get several
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hundred counts per bin in the first bin or two, and a background less than
20 counts per bin. (The background level will be clear after counting for a
half hour.) You might need a few tries to get all of this where you want it.
Save the data and convert it to ascii for later analysis.

You can use the program in Fig. 18.6 to fit the data and adjust the
background counts, but that is tedious. In this case, since the background will
be very clear, you can determine it precisely by averaging over the last many
channels, and subtract that number from the data before fitting. However,
matlab gives you the ability to fit things all at once.

What you need to do is minimize the χ2 function numerically, and mat-

lab gives you two numerical minimization functions. These are fmin, which
minimizes a function of one variable. and fmins for many variables. You need
to minimize χ2 as a function of three variables, two for the exponential and
one background value, so you need to use fmins.

First, write a simple m-file called expcon.m which calculates the function
you are going to fit to the data:

function y=expcon(x,pars)

y=pars(1)*exp(-x/pars(2))+pars(3);

and then write another called chiexpcon.m which calculates χ2:

function chisqr=chiexpcon(pars,xdata,ydata,edata)

chisqr=sum(((ydata-expcon(xdata,pars))./edata).^2);

Don’t forget that for these data, the array of uncertainties edata is just the
square root of the counts, i.e. edata=sqrt(edata).

Play around with some values of pars(1,2,3) so that you have a good
starting point. (Just plot the data points, and then overplot the function
expcon until it looks kind of close.) Then type the command

fmins(’chiexpcon’,pars,0,[],chan,data,edata)
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Figure 18.7: An example of a nonlinear fit. The data is from the decay of
137mBa, including some constant background. The matlab function fmins
was used to make the fit.

and after a little chugging away, you will get the best fit values returned.
(Check the manual for details of the arguments for fmins.) Exactly this
procedure was followed to fit the data shown in Fig. 18.7.

You should probably check that χ2/dof≈ 1. Try to make some estimate
of the uncertainty, and compare your result to the accepted value. You can
estimate the uncertainty as we did for 116In, by subtracting the background
and using linreg to fit the log to a straight line. Be careful to propagate the
errors correctly on the subtracted data.

Note that the radioactivity you detect from 137mBa decay is γ radiation,
which is not detected very efficiently by a Geiger counter. You might try
using a NaI(Tl) detector instead, keying in on the the particular γ-ray in
question. This should greatly increase your counting statistics, as well as
reduce the background. It might be easiest to do this after having worked
on Experiment 11.
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Figure 18.8: The decay of neutron activated natural silver, fit to two decaying
exponentials. The plot was made using the matlab function errorbar.

Radioactive Silver Isotopes

Natural silver is pretty much evenly divided between two isotopes, 107Ag
and 109Ag. Neutron activation captures a neutron equally well on these two
isotopes, producing two radioactive isotopes 108Ag and 110Ag. Both of these
decay with a pretty stiff β− that is easy to detect, but one isotope has a half
life of 24.4 sec and the other is 2.42 minutes. You might want to look up the
decays to get more details.

Take a piece of the pure silver foil and cook it in the neutron oven for
at least ten minutes. Quickly take it out, put it in the Geiger counter, and
start the program. Don’t forget that the lifetime of the shorter lived isotope
is only half a minute. It should be clear from the MCS program that there
are two lifetime components from the decay.

Representative data6 is shown in Fig. 18.8, where each channel is 2.5
seconds long, but I’ve used matlab to add every four channels together to
get better statistics in each channel. Errorbars are added to the data points
using the errorbar function. The points are fit to a double exponential decay,

6Data taken by Peter Thies and Dan Bentz, class of 1996.
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Figure 18.9: Decay scheme for 104Rh.

completely analagous to the way we fit a constant plus and exponential to
the 137mBa data. The only difference is that the m-files for the fit function
and for the χ2 are changed slightly.

It is difficult to determine the random uncertainty for these fits, but you
can try the following. Subtract one of the exponentials from the data, take
the logarithm of the remainder, and use the linreg to fit it (and its uncertainty)
to a straight line. Does this over- or under-estimate the random uncertainty?

Production and Decay of 104Rh

The decay scheme for 104Rh is shown in Fig. 18.9. This is a peculiar isotope
indeed. The 43 sec 0+ ground state decays nearly all the time with a very
stiff (up to 2.5 MeV) β− to 104Pd. (In fact, a small fraction of the time, the
ground state decays in the other direction, via electron capture to 104Ru, but
the branching ratio is less than 1%.) The first excited state, on the other
hand, lives a lot longer (4.41 min), but decays through a cascade of very soft
γ-rays, with energies between 30 and 100 keV.

All of natural rhodium is 103Rh, so neutron activation will make 104Rh
very nicely. Will it also make the 5+ excited state? There doesn’t seem to be
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any difficulty with this in indium, but there the easy state to detect was the
excited state. Here, the ground state decay is the easy one to see, at least
with a Geiger counter.

Irradiate the piece of rhodium foil that is kept with the neutron oven.
Be careful with this foil. Rhodium is very expensive. Place it in the Geiger
counter, and try to identify the relatively short lived ground state decay.
That should not be very hard to do.

The excited state decay will be harder. These low energy photons are not
picked up very well in the Geiger counter. It would be much better to use a
NaI(Tl) detector with a thin window that allows these low energy photons
to penetrate into the crystal. If any of the γ transitions in Fig. 18.9 can be
identified, then you can test to see if the excited state is indeed populated in
neutron capture.



Ch 19

Experiment 11: Positron
Annihilation

In this experiment, you will make measurements of different variables of ra-
dioactive decay. In particular, you will study the coincidence of two different
γ-ray detectors. The two γ-rays come from the same radioactive decay, hence
they should be detected at the same time. The setup is first used to study
the particularly simple correlation of the two γ rays from positron annihi-
lation, and you will have the opportunity to carefully measure properties
of the NaI(Tl) detectors. Then you can measure the so-called γγ angular
correlation from 60Co decay, and explore the physics that goes along with it.

The physics and the technique are covered quite thoroughly in

• Experiments in Modern Physics,
Adrian C. Melissinos, Academic Press (1966)
Sections 9.3 and 9.4

Section 9.3 concentrates on the experiment, while section 9.4 goes into some
detail on the theory of electromagnetic transitions in nuclei, i.e. γ-decay.

A lot of the detailed work you can do in this experiment specifically in-
volves NaI(Tl) detectors for γ-rays. For these specific details, a good reference

359
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is

• Applied Gamma-Ray Spectrometry, C.E. Crouthamel
Pergamon Press (1960)

This book should be available on reserve at the library.

19.1 Correlated Pairs of γ-Rays

If two (or more) γ-rays emerge simultaneously from the same decay, then you
expect them to be somehow correlated with each other. For example, their
energies or relative angles would not be independent of each other. We will
concentrate on two examples of this, one simple and one more sophisticated.

Let’s consider the simple case first, namely the photons that emerge from
positron annihilation with an atomic electron, where everything is at rest in
the beginning. The reaction is

e+e− → γ1γ2

We know there must be at least two photons emitted because there would
be no way to conserve momentum if there were only one. If there is no net
momentum in the beginning (“everything is at rest”), then there must be no
net momentum in the end, and you can’t do that with a single photon.

So, let’s see if we can do it with two photons. We need to conserve not
only momentum, but also energy. The energy of the two photons is just
made from the mass of the e+e−, so

2mc2 = E1 + E2

where m is the electron (and positron) mass and E1 and E2 are the energies
of photons 1 and 2. As for momentum, the only way to make it zero in the
end is if both photons are moving directly away from each other at 180◦, and
if the magnitude of their momenta are equal, that is

E1/c = E2/c
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Figure 19.1: Decay scheme of 60Co. Only the relevant states in 60Ni are
shown.

These equations can in fact be trivially solved for E1 and E2, and you get

E1 = E2 = mc2 = 0.511 MeV

You could probably have guessed that was what it had to be.

This is surely a simple correlation. The two photons must have equal
energies, and they must be at 180◦ with respect to each other. Your job in
this experiment will be to verify these assertions as carefully possible.

A different type of γγ angular correlations, which contains lots of neat
physics, is provided by the β decay of 60Co. The decay scheme of 60Co is
shown in Fig.19.1. This nucleus decays through β− emission to 60Ni with a
5.26 year half life. More than 99% of the decays go to the 4+ 2.506 MeV
excited state in 60Ni. This state decays 100% of the time to the 2+ 1.333 MeV
excited state, which subsequently decays to the ground state. The lifetime
of the 2+ state is around 0.7 ps which is much shorter than anything you can
be sensitive to in this laboratory. Therefore, 60Co β decay is characterized
by the emission of two simultaneous γ-rays, with energies of 1.173 MeV and
1.333 MeV.

Consider the physics of these emitted γ-rays. The first one, with energy
1.173 MeV, can come out in any direction it pleases. We are not going to
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consider detecting the β− along with the γ-rays, so there is absolutely no
preferred direction in space.

But what about the second γ-ray, the one with 1.333 MeV energy? The
first γ-ray obviously carried with it some angular momentum since the nu-
cleus changed from a spin-4 state to a spin-2 state. That means that the
spin vector of the spin-2 state has some orientation in space, relative to the
direction of the emitted 1.173 MeV photon. This might therefore imply that
the 1.333 MeV photon is not free to come out in any direction it pleases, and
in fact it cannot.

Melissinos goes through the physics, which requires some understanding
of the multipole expansion of the electromagnetic field, but the result is
easy to express. It depends only on spin and electromagnetism, not on the
particulars of the decaying nucleus. You find that the γγ angular correlation
is given by

α(θ) ≡ Rγγ(θ)

Rγγ(90◦)
= 1 + a1 cos2(θ) + a2 cos4(θ) (19.1)

where a1 = 1/8 and a2 = 1/24. In other words, it is around 16% more
probable for the two photons to be emitted back-to-back than at 90◦ relative
to each other.

19.2 Measurements

This experiment does not make heavy use of computerized data acqusition.
Instead, your experience will be with the use of NaI(Tl) detectors and their
use as γ-ray detectors. Taking the data is straightforward, but the interpre-
tation will require more thought.

The setup is shown schematically in Fig.19.2. Photons are detected in two
identical 2 in. diameter ×2 in. long NaI(Tl) scintillators. These detectors
are mounted on a table that points both detectors at a center point, and lets
one of them move around that center point through a large angular range.
You can read the relative angle off the scale mounted on the table. You can
also adjust the distance of the detectors to the center point by sliding it along
the mounting rails.
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Figure 19.2: Setup for measuring γγ angular correlations.

The photomultipliers are powered with a high voltage DC supply, and the
signal outputs pass into two identical Canberra 2012 pulse amplifiers. The
amplifier outputs are fed into single channel analyzers, and the outputs of
the SCA’s are fed into a fast coincidence module. A Canberra 1772 visual
counter lets you measure the count rate. You can measure “singles” (i.e.
not-in-coincidence) counting rates either by changing the switches on the
coincidence module, or by bypassing this module and putting the SCA output
directly into the visual counter.

There are two kinds of SCA’s you can use. One is a basic device like
the Ortec 550A which delivers an output pulse as soon as the input crosses
threshold. This is prone to “time slewing”, however, since it leads to an
output time that varies with pulse height. See Fig. 19.3. This effect is large,
since the rise time of the amplified pulse is on the order of microseconds.
Therefore, a large time window is necessary to allow for coincidences, and this
increases your chance of getting an accidental coincidence, i.e. background.

Consequently a second type of SCA, called a “timing SCA”, is also avail-
able. It uses a special circuit that is provides an output pulse at a time
independent of the pulse height, regardless of when the pulse crosses thresh-
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Figure 19.3: Time slewing with a basic Single Channel Analyzer. Rise times
of the voltage pulse is on the order of a microsecond, so the output time can
vary over hundreds of nanoseconds depending on the size of the pulse.

old. One example is the Ortec Model 420. You will want to use this device
for careful coindicence timing.

Two kinds of coincidence modules are also available, the Ortec 414A and
the Canberra 840. The 414A allows you to make more careful measurements
as a function of the resolving time (more on this soon), but has limited
dynamic range. The 840, on the other hand, has an order of magnitude more
range, but cannot make such precise steps.

Positrons are produced using the 22Na radioactive source. The decay
scheme for 22Na is shown in Fig. 19.4. More than 99.9% of the decays of
this nucleus go to the first excited state of 22Ne at 1.275 MeV. Most of
these decays (90%) proceed through β+ decays, which is where you get your
positrons from, and the rest decay through electron capture. The maximum
energy of the β+ is rather small, around 0.55 MeV. You should estimate the
thickness of material required to stop these positrons.

19.2.1 Procedure and Analysis

We’ll go through several measurements you can make with this setup. They
progress from first learning how to use NaI detectors to measure gamma ray
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Figure 19.4: Decay sheme for 22Na.

photons, to learning how to do coincidence photon detection, to measuring
the γγ angular correlation in 60Co. You should work on them more or less in
the order listed, since you need skills from one to do a good job on the next.

Turn the high voltage on to around 1150 V. You should leave it on for
a while (a half hour or so) to let the phototube bases warm up. In the
meantime, check the connections and insert the radioactive source in the
holder by removing the screws, and placing the source in the inside cup.
Screw the holder into the center point of the rotating table.

Adjust the gain of the amplifiers so that each detector gives a ≈ 3 V signal
for the 0.511 MeV annihilation γ-rays. (These pulses should be obvious to
you when you look at the output of the amplifier on the oscilloscope.) Set
the Ortec 550A SCA to “symmetric window” operation. In this mode, the
“lower level” (E) is the center of the window, and the “window” (∆E) knob
controls the width of the window. That is, the SCA gives an output logic
pulse if the input pulse height is between E − ∆E/2 and E + ∆E/2. The
knobs set the value of E in volts (range 0-10 V) and ∆E in tenths of volts
(range 0-1 V).
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Figure 19.5: Singles data taken with the SCA and a 22Na radioactive source.

Singles Measurements

Now measure the shape of the γ-ray spectrum for each of the two detectors.
Slide the detectors so they are very close to the source, within a couple of
cm. Set the window width on the SCA large enough so that you get a decent
number of counts in a reasonable time, but small enough so that you do not
wash out the peaks. Something like 0.1 V to 0.2 V should be alright. Keep
an eye on the flashing red light on the front of the SCA. It flashes whenever
it emits an output pulse, and it can be a handy way of checking whether
the rate is large or small. Record the number of counts out of the SCA with
the visual counter for some preset amount of time, as a function of E. Plot
these numbers. The result should look like Fig. 17.7. Specific examples can
be found in Crouthamel.

Typical data1 is shown in Fig. 19.5. Notice the sharp peak in the count
rate for E ≈ 3 V, corresponding to the annihilation γ-rays. Identify the
compton edge, and calculate the energy (in MeV) where it occurs. You
should also be able to see the 1.27 MeV γ-ray. Is your data consistent with

1Data taken by Aaron Blow and Rick Vigil, Class of 1996
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a linear energy response and zero energy corresponding to zero volts? You
can put in other radioactive sources if you wish to check other γ-rays. You
may want to adjust the offset level on the amplifier to make “zero energy”
as close as possible to “zero volts”.

Using your data, calculate the number of counts in the total absorption
peak for the annihilation γ-rays. (A simple “triangle” approximation to the
peak is good enough.) Realize that you are measuring ∆N/∆E, so you must
include the value of ∆E you used when you calculate the integral. Check this
estimate by actually measuring the total number of counts under the peak.
To do this, switch the SCA to “normal” mode, and adjust the “lower level”
and “upper level” knobs (now both 0-10 V) so that the range just covers the
peak. Now the counter gives you the total number of counts that come in
the total absorption peak for the annihilation γ-rays. This should agree with
your estimate based on your measurements of ∆N/∆E.

Take the total number of counts in the absorption peak and calculate
the activity (i.e. the total decay rate) of the 22Na source. You will need to
measure the distance from the source to the detector so that you can look
up the intrinsic efficiency ε in Crouthamel. You can read the photopeak
efficiency P from Fig. 17.8. Don’t forget that there are two 0.511 MeV
photons for each β+ decay, and that only 90% of the decays are β+. When
you compare it to the value labeled on the capsule, don’t forget to take into
account the elapsed time between when the capsule was made and the day
you make your measurements.

You might want to repeat some of these measurements as a function of the
distance between the detector and the source. See if it is possible to observe
any changes in the shape of the spectrum, possibly in the peak region. You
might also want to put a collimator (i.e. a block of lead with a hole in it) in
front of the detector and see what effect that has. Also, you expect the count
rate to pretty much follow the intrinsic efficiency ε as a function of distance.
Can you test that?

Try measuring the attenuation of photons in material. Some steel plates
are provided which will absorb some but not all of the photons. See how the
rate within the total absorption peak changes as a function of the steel thick-
ness. Does it agree with what you expect from photon absorption curves?
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What effect does the detector resolution have on this measurement?

You can learn a lot from these singles measurements, but the technique
is obviously tedious. There are two ways, however, to get around the task
of making many measurements by hand of the rate for different values of E.
One way is to borrow the MCA-plus system used in Experiment 10. The
input box allows you to analyze the amplifier output and use the system as
an SCA, taking a full spectrum automatically. The other way is to borrow
the multichannel analyzer and graphwin program setup from Compton
scattering, Experiment 12.

Coincidence Measurements

Now let’s move on to measuring coincidences between the two γ-rays. At
this point, the SCA settings should be set to include the full absorption peak
for both detectors. Check the SCA outputs on the oscilloscope to make sure
you see the coincident logic signals. (You might want to go back and reread
Sec. 3.5.1 and Sec. 3.5.3.) It is a good practice to use equal length cables
for the two signals, but the time delay in cables is only ∼ 1.5 ns/foot, which
is smaller than you really need to be concerned with here. Make the time
base short enough so that you can see the relative timing of the leading edge
of the logic pulses. You will see a lot of “jitter” of one pulse relative to the
other, mainly because of the slow response of the NaI detector.

Now put the two logic pulses into the coincidence module. Measure the
coincidence count rate as a function of the resolving time, which you change
using the knob on the front panel. Make a plot of the count rate versus
resolving time. An example2 is shown in Fig. 19.6 using the Ortec 420 timing
SCA and the detectors separated by 8 cm. You should see the rate rise quickly
until the resolving time covers the time jitter. You should be able to use your
oscilloscope observations to estimate the resolving time at which this occurs.
Past this point, the coincident rate should rise only very slowly, mainly due
to accidental coincidences. The accidental coincidence count rate goes up
with resolving time, of course, because there is a better chance of getting a
random pulse into a longer time window.

2Data taken by Aaron Blow and Rick Vigil, Class of 1996
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Figure 19.6: Coincident count rate as a function of resolving time using the
timing SCA.

Measure the coincidence count rate as a function of the distance between
the two detectors, or the distance each of them is set from the center point.
Keep the two detectors back-to-back for the time being. Does the coincidence
count rate vary as you expect?

Now change the angle between the two detectors, and record the coin-
cident count rate. How well can you verify that the two γ-rays come out
at 180◦? What determines the width of the distribution for count rate as a
function of angle? Estimate the width you expect from the geometry and
compare it to what you measure. Test your ideas by changing whatever you
think is reasonable, and see if the count rate varies the way you expect.

This measurement is relatively straightforward and you can learn a lot by
carrying it out carefully. However, the correlation between the two γ rays in
positron annihilation is very strong (pretty much a δ-function, in fact) and
that makes it rather easy to do a clean job. If the correlation is weaker, then
the measurement is harder, but the physics associated with the correlation
is sweeter.



370 CH 19. EXPERIMENT 11: POSITRON ANNIHILATION

19.3 γγ Angular Correlation in 60Co

This experiment is harder than positron annihilation for two reasons. First,
the two γ-rays are not of the same energy, although they are close. (The
energies are 1.17 MeV and 1.33 MeV. See Fig. 19.1.) That means that
the SCA can be set for one γ-ray or the other, or for both. The other
(and much more significant) reason the experiment is harder is because the
angular correlation is not nearly as sharp. For positron annihilation, the two
photons are really back-to-back, but for 60Co, they are almost uncorrelated.
This means that you have to be more careful about a lot of things, including
details of your procedure and the accidental coincidence rate.

This measurement will be very sensitive to small changes in the photon
detectors over the time of the measurement, because you will be trying to
measure a small correlation. It is important to let everything come to thermal
equilibrium, for example, so that temperature changes don’t make for big gain
drifts. You should turn everything on and leave it on for at least several hours
before making your final measurements, but while things are warming up, it
is a good time check things out and become familiar with the technique.

Since the two photons are almost completely uncorrelated, the coincidence
rate will be very small. To make up for this, you should use a rather hot
source. (This will make the issue of accidentals a problem, however, but we
will return to that in a moment.) We have in the laboratory, in a large lead
container, a sealed 60Co source (tracerlab Catalog Number R-31, S/N B-
405) that was 10.6 mCi when it was calibrated on February 27, 1961. Even
with the 5.26 yr half-life of this isotope, there is still plenty of activity left.
The source is actually at the very end of a long stainless steel rod, and you
should hang it vertically, with the tip at the center of the setup, using the
ring stand assembly. It is important that things stay stable, so make sure
the ring stand is anchored and that you don’t bump into it during the course
of the measurements.

Now to make s ome measurements. First things first. Make sure you
can see the two γ-rays clearly in the singles spectra. Just as you did for
22Na, measure ∆N/∆E as a function of E. You should be able to easily see
two nearby peaks, corresponding to the two γ-rays. An example is shown in
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Figure 19.7: Single channel analyzer spectra for the two NaI detectors used in
the angular correlation measurements, exposed to a 60Co radioactive source.
The two separate gamma ray energies are obvious in both detectors.

Fig. 19.7, for the two detectors each at 20 cm from the source. (For this data,
the SCA is set to the “symmetric window” mode, with a 0.1 V window.) One
detector seems to have slightly poorer resolution than the other, but these
are fine for this job. Based on this data, the SCA’s are switched to normal
mode, and the lower and upper levels are set to 6.2 V (6.2 V) and 7.8 V
(7.9 V) on detector one (two) respectively. The singles rates at these settings
are 3.8 kHz for detector one and 4.0 kHz for detector two.

Now put the two detectors in coincidence using the 414A coincidence
module. (It is actually a good idea to run even the singles measurements
through the 414A, using the switches on the front panel to take out the
appropriate detector. This way, no cables have to be changed and everything
should be able to stay a lot more stable.) With the detectors at 20 cm from
the source, you should get a coincidence rate of a few per second, assuming
the coincidence window is large enough. Figure 19.6 suggests that 40 ns or
so should be okay, but with a very small rate, we need to be extra careful of
accidental coindicence background. Let’s look at this a bit more carefully.
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Accidental coincidences happen when two detectors are randomly firing
at some rate, and there is a chance that two random pulses happen within
the coincidence window. Consider the first detector, with rate R1, as the
one which “opens” the window. Then, the fraction of time that the window
is open is R1τ where τ is the width (in time) of the coincidence window.
(We assume that this product is much less than one. If the rate is too high,
the window is always open.) Then, the second detector, with rate R2 comes
along and will happen during the concidence time window with an accidental
coincidence rate RA = R2×(R1τ ) = R1R2τ . If the two detectors are counting
at pretty much the same rate R = R1 = R2, then we have RA = R2τ .

Compare this to the true coincidence rate RT . So long as the window
accomodates the detectors, RT will not depend on τ . It will, however, be
proportional to the source activity, which is proportional to the rate R in
the detectors. Therefore, the ratio of “accidentals” to “trues”, RA/RT , will
be proportional to Rτ , and we would like to keep this number as small
as possible. Still, we need R to be relatively large so we can make our
measurements in a reasonable amount of time, so keeping the coincidence
window small is crucially important.

Let’s look at the numbers for our case. As shown above, our detectors
are counting at a rate R ≈ 4 kHz. If τ = 100 ns, then the accidental rate is
RA = 1.6/sec. This is a significant contribution to the observed coincidence
rate of a few per second, and must be dealt with.

Figure 19.8 shows the coincidence rate for our setup as a function of
resolving time. It is reminiscint of Fig. 19.6, but with a larger fraction of
accidental to true coincidences. The “knee” rises rather slowly (it is hard
to get a signal to turn on in a few ns), but by 80 ns it seems that we are
accumulating all the true coincidence events. We will operate, therefore, with
τ = 80 ns.

With everything now set up, you can take angular correlation data. Being
very careful not to disturb the setup between measurements, rotate the two
detectors relative to each other and measure the coincidence rate. It is a
very good idea to take a few measurements over again, after moving the
detectors to one angle and then back again, to make sure you get numbers
that are consistent to within error bars. You are trying to measure a small
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Figure 19.8: Coincidence rate as a function of resolving time for the γγ angu-
lar correlation apparatus, using the tracerlab

60Co source. The estimated
accidental rate, proportional to the resolving time, is indicated based on the
measured singles rates in the two detectors. It is a significant fraction of the
observed coincidences.

effect, about 16% difference between θ = 0◦ and θ = 90◦, so you should have
error bars that are only a couple of percent. This requires a few thousand
counts, so take data for about 1000 sec per point if the rate is a few per
second. One such set of data is shown in Fig. 19.9. The data point at 90◦

(i.e. cos θ = 1) was taken twice to check consistency. Note that the estimated
accidental coincidence rate has been subtracted. The curve drawn through
the points is given by

N ×
(
1 +

1

8
cos2 θ +

1

24
cos4 θ

)
where N is determined by minimizing the χ2 with respect to the data points.
The agreement is rather good, but the points at larger angles (smaller values
of cos θ) seem to be below the curve by a small amount. You might con-
sider writing a simple matlab program to vary the background level as well
as the normalization to see what background is predicted, or to allow the
coefficiencts of cos2 θ and cos4 θ to vary and compare them with the theory.

A more precise measurement of the accidental rates should be possible.
You were likely able to get good coincidence timing simply by setting the
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Figure 19.9: Accidental-subtracted rate for γγ coincidence events from a 60Co
source, as a function of the angle between the two detectors. The dotted line
is the theoretical curve, normalized by the value that minimizes the χ2.

two SCA’s to the same delay time. (The two detectors are set up almost
identically, and they are looking at the same energy gamma rays.) If you
use the delay time switch on the front of one of the SCA’s to set the pulses
very much out of time with respect to each other, then all you will count is
accidental background. In fact, you may want to experiment with the various
SCA settings in order to optimize the shape of the resolving time dependence
in Fig. 19.8.



Ch 20

Experiment 12: The Compton
Effect

Why we do we believe that light behaves sometimes as a wave and sometimes
as a particle? The answer, of course, is that experiments give us evidence of
both types of behavior, and our picture of nature emerges that is consistent
with experiment. Is there any experiment which is particularly compelling?

A particle is something of definite mass that can move with some velocity,
and therefore can have momentum and (kinetic) energy. Consider an elastic
collision of a moving particle with a stationary one. If you know the initial
momentum of the incident particle, then measuring the angle through which
it scatters tells you a lot of other things. In particular, conservation of
momentum and energy tells you the energy of the scattered particle, and the
recoil angle and energy of the target particle. What a fine way to demonstrate
the particle nature of light to show that light behaves in exactly this way.
This is called the Compton Effect. When it was discovered by A. H. Compton
in 1922, it was the final and most convincing evidence that light is indeed
“quantized”.

The Compton Effect has long been a standard experiment in most under-
graduate physics laboratories, and ours is modeled after them. It appears in
some of the standard textbooks, such as

375
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• The Art of Experimental Physics,
Daryl W. Preson and Eric R. Dietz, John Wiley and Sons (1991)
Experiment 19

• Experiments in Modern Physics,
Adrian C. Melissinos, Academic Press (1966)
Section 6.3

and there are several papers in the literature, such as

• Verification of Compton Collision and Klein-Nishina Formulas - An
Undergraduate Laboratory Experiment,
R. P. Singhal and A. J. Burns,
American Journal of Physics 46(1978)646

• Compton Scattering Experiment,
Michael Stamatelatos, American Journal of Physics 40(1972)1871

• Compton Effect: Historical Background,
A. A. Bartlett, American Journal of Physics 32(1964)120

• Compton Effect: A Simple Laboratory Experiment,
A. A. Bartlett, American Journal of Physics 32(1964)127

• Compton Effect: An Experiment for the Advanced Laboratory,
A. A. Bartlett, American Journal of Physics 32(1964)135

You will also find a lot of basic information on any introductory physics
textbook that includes a discussion of modern physics. For example,

• Introduction to the Structure of Matter,
John J. Brehm and William J. Mullin, John Wiley and Sons (1989),
Chapter Two
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Figure 20.1: Kinematics of Compton scattering.

20.1 Scattering Light from Electrons

First, we will work out the kinematics of scattering a photon (that is, a parti-
cle with zero rest mass) from an electron. Then we will discuss the scattering
probability, or cross section, for this reaction. We discuss the scattering cross
section in the classical limit (Thompson scattering) and compare it to the
quantum mechanical formula for Compton scattering.

20.1.1 Relativistic Kinematics

We consider the reaction

γ + e→ γ′ + e′ (20.1)

for a photon of energy E and with the electron initially at rest. We want
to calculate first the scattered photon energy E ′, when it scatters at an
angle θ with respect to its incident direction. This is shown schematically in
Fig. 20.1.

These kinematics are in fact all worked out in detail in Brehm and Mullin,
in section 2.7. They use a traditional approach of solving the equations for
conservation of momentum and energy to determine E ′ as a function of θ.
Instead, I will show you a different way to do the calculation, using something
called “four-vectors”.
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Four-vectors are simple extentions of the “three-vectors” you have been
using since high school. They actually have a very profound importance
which we won’t go into here, but for now just think of them as a shorthand.
If a particle has (three-)momentum ~p = (px, py, pz) and total energy E =
K + mc2, then its four-vector momentum (or just “four-momentum” for
short) is a combination of momentum and energy, namely

p = (E/c, px, py, pz) = (E/c, ~p) (20.2)

A key to using four-vectors is the definition of the “dot product”. It may
look a little weird to you at first, but the dot product of two four vectors p1

and p2 is given by

p1 · p2 ≡ E1E2/c
2 − p1xp2x − p1yp2y − p1zp2z

= E1E2/c
2 − ~p1 · ~p2 (20.3)

The power of four-vectors, and the reason for the weird-looking dot product,
starts to become clear when you consider the dot product of a four-vector
with itself:

p2 ≡ p · p = E2/c2 − |~p|2 = m2c2 (20.4)

That is, the “square” of a four-vector is the square of the rest mass of the
particle, after you’ve thrown in the appropriate factors of c.

So now let’s return to reaction 20.1. Let k, p, k′, and pe be the four-
momenta of the incident photon, target electron, scattered photon, and recoil
electron respectively. We can write down the equations for the conservation
of (total) energy and (each component of) momentum all just by writing

k + p = k′ + pe (20.5)

Now rearrange this equation and square both sides:

p2
e = (k + p− k′)2

= k2 + p2 + k′
2

+ 2k · p− 2k · k′ − 2p · k′ (20.6)

Now make use of Eq. 20.4. That is, p2
e = p2 = m2c2 (where m is the mass

of the electron), and k2 = k′
2

= 0. We also know that p = (mc,~0) since the
initial electron is at rest. We can then take Eq. 20.6 and write it as

0 = k · p− k · k′ − p · k′
= Em− k · k′ −mE ′ (20.7)
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Finally, we have k ·k′ = EE ′/c2−~k · ~k′ = [EE ′−EE ′ cos θ]/c2 since |~k| = E/c
for the massless photon. This allows us to solve for E ′ in Eq. 20.7. We find
that

E ′ =
E

1 + E
mc2

(1− cos θ)
(20.8)

This is what we were after. It tells the scattered photon energy E′ in terms
of the photon scattering angle θ.

Note that Eq. 20.8 says that for low photon energies, that is E � mc2,
E′ ≈ E. This is in fact the classical limit, that is, the result you expect from
classical scattering of electromagnetic radiation from electrons. Let’s discuss
that now.

20.1.2 Classical and Quantum Mechanical Scattering

Scattering is a fundamental concept in physics. We encounter it now, as we
discuss Compton scattering, but it shows up all over the place and you will
certainly see it again sometime. Nevertheless, we will be using light-electron,
or photon-electron, scattering to develop the principles.

As the electromagnetic wave passes by an atom, it makes the electrons
oscillate. Oscillating electrons, since they are charged, generate their own
electromagnetic radiation, which travels out from the atom in all directions.
Thus, the electron “scattters” the incident wave. The frequency ν of this
wave is the same as the frequency at which the electrons oscillate, which is
the same as the frequency of the incoming wave. That is, the scattered wave
has the same frequency and wavelength as the incident wave. In terms of
photons, the energy of the scattered photon, E ′ = hν, is the same as the
energy E of the incident photon. This is just what Eq. 20.8 predicts in the
limit where the photon energy is much smaller than the rest energy mc2 of
the electron.

However, scattering is a lot more than just kinematics. In fact, the prob-
ability that a particular scattering event occurs, and the angles at which
things prefer to scatter, tell us an enormous amount about the forces be-
tween the incident particle and the scatterer. To do this right, we have to
first introduce the idea of the “differential cross section”.
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Figure 20.2: Schematic of a typical scattering measurement.

Imagine some kind of beam incident on a target which may or may not
cause the beam to scatter. Let I0 be the intensity of the beam, either mea-
sured as area per unit area per second (as you would for a wave) or as particles
per unit area per second. If the target scatters the beam, you would detect
some intensity emanating from the target at some distance r away and at
some angle θ with respect to the incident beam. This is shown in Fig. 20.2.
There is some probability that the target scatters intensity out of the beam,
and you measure a scattered intensity I(θ). You would certainly expect that
the scattered intensity is proportional to the incident intensity, and that it
decreases like 1/r2 as you move farther away. If you let n = tρ be the thick-
ness of the target in particles per unit area (as viewed by the beam), where t
is the linear thickness and ρ is the density of particles per unit volume, then
you also expect I(θ) to be proportional to n. Finally, if the detector has
some small area dA, then the scattered intensity you measure would also be
proportional to dA. That is I(θ) ∝ I0 × n× dA/r2.

The proportionality constant only concerns the physics of the interaction
between the beam and the particles that make up the target. We’ve taken
out the dependence on everything else. We call the proportionality constant
the differential cross section. We use the words “cross section” because it has
the dimensions of an area, not because it has anything to do with a physical
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area. We write the differential cross section as dσ/dΩ,

I(θ) =
dσ

dΩ
× I0 × n × dA

r2
(20.9)

and it may be a function of the energy E of the beam, the scattering angle θ,
and any number of other things depending on the type of beam and target
particle.

The notation we use, i.e. dσ/dΩ, actually means something. The factor
dA/r2 in Eq. 20.9 is called the solid angle dΩ = dA/r2. (See the discussion
in Sec. 17.2.1.) If you were to integrate the cross section over all solid angle,
you would calculate the total cross section σ, that is

σ =
∫ dσ

dΩ
dΩ

which represents the probability of any kind of scattering at all. (Recall the
discussion in Expt. 2.)

Okay, now that we’ve got the machinery, we can talk about the differen-
tial cross section for scattering electromagnetic radiation, or photons, from
electrons. Before we deal with photon scattering by electrons, we will re-
view classical scattering of electromagnetic radiation by electrons. We will
only worry about photons with energies significantly larger than the bind-
ing energies of electrons in atoms, that is, wavelengths much shorter than a
few hundred nm. This process is called Thomson scattering and is covered
in most upper level undergraduate texts on electricity and magnetism1 The
differential cross section for Thomson scattering is calculated from the radi-
ation pattern made by the oscillating electron which was set in motion by
the incident wave. You find that

dσ

dΩ
= r2

0

1 + cos2 θ

2
Thomson Scattering (20.10)

where r0 = e2/4πε0mc
2 = 2.82 × 10−13 cm is called the “classical electron

radius”.

1See, for example, Reitz, Milford, and Christy, Foundations of Electromagnetic Theory,
4th Edition (1992), Section 20-5.
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The differential cross section for Compton scattering can be calculated
using a combination of relativity and quantum mechanics. The result is

dσ

dΩ
= r2

0

1 + cos2 θ

2

1

[1 + γ (1− cos θ)]2
(20.11)

×
[
1 +

γ2 (1− cos θ)2

(1 + cos2 θ) [1 + γ (1− cos θ)]

]
Compton Scattering

where we use the shorthand γ = E/mc2. This is called the Klein-Nishina
formula after the physicists who first calculated it. Note that the Klein-
Nishina formula reduces to the equation for Thomson scattering in the limit
where γ → 0, i.e. as the energy of the incident photon gets very small.

You will have the opportunity to measure the differential cross section
in this experiment. As you will see, however, it is very difficult to get the
systematic uncertainty to a level that allows you to actually determine a value
for the cross section to a decent level of precision. Instead, you can measure
the angular distribution of the cross section, after making some relatively
straightforward corrections. Note a striking difference in the cross sections
as a function of angle, between Thomson and Compton scattering. Thomson
scattering is symmetric about θ = 90◦, that is, it predicts that the ratio of
the differential cross sections at θ = 90◦+α and θ = 90◦−α should be unity.
This is not the same as for Compton scattering, where this ratio is less than
one, if α is positive.

So, Compton scattering, the scattering of photons from electrons, departs
clearly from the classical case as the energy of the photon increases and
becomes a significant fraction of the electron rest energy. This departure
shows up both in the kinematics (by a shift in the energy of the scattered
radiation) and by a change in the differential cross section. You will be able
to measure both of these in this experiment.

20.2 Measurements

The basic Compton scattering setup is shown in Fig. 20.3. There are three
essential components to a scattering experiment, namely the incident beam,
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Figure 20.3: Setup used for Compton scattering singles measurements.

the target, and a detector for the radiation or particles scattered by the
target. In our setup, the beam is provided by a 137Cs γ-ray source giving
monochromatic photons with E = 0.662 MeV. (See Expt. 10.) The detector
is a 3 in. diameter by 3 in. long NaI(Tl) detector. A few different targets will
be used, each of which is a long metal rod. You may consider each target
as a collection of electrons, but when you determine the cross section the
diameter and composition of the target will make an important difference in
the analysis.

The 137Cs source is from a commercial vendor, and they calibrated the
activity level as 9.14 mCi on January 1, 1993. Their quoted error on this
activity is ±3.2% at the 99% confidence level, i.e. ±2.58σ. To calculate the
photon rate produced this source when you make your measurements, you
need to know that only 94% of 137Cs decays produce 0.662 MeV photons,
and that the half life of 137Cs is 30.0 years. The source capsule is captured
inside a brass plug which in turn is inside the 4”× 4”× 8” lead house. The
brass plug has a conical hole init which allows a small fraction of the emitted
photons to emerge unimpeded. The angular profile of the beam2 is shown in

2Data taken by Rick Hullinger, Class of 1996
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Figure 20.4: Angular profile of the beam from the 137Cs source. Data was
taken at a distance of 3.2 m with a 2′′×2′′ NaI detector.

Fig. 20.4.

You might want to review the discussion on radiation safety in Sec. 17.1.4.
THIS IS A VERY HIGH INTENSITY γ-RAY SOURCE. DO NOT
ATTEMPT TO REMOVE THE BRASS PLUG OR THE SOURCE
CAPSULE FROM THE LEAD HOUSE. The front brick of the house
has a handle making it easy to remove when data taking begins.

The NaI(Tl) detector is powered with a positive HV DC power supply,
which should be set to ∼ 1300V . It is a good idea to turn it on and let
the photomultiplier tube base warm up for a half hour or so before you take
actual measurements.

The detector signal is amplified using a standard γ-ray spectroscopy pulse
amplifier, and the pulse height is processed with a multichannel analyzer.
You will use the Lecroy Model 3001 qVt Multichannel Analyzer. The qVt
is connected to a Model 3031 controller, which in turn communicates with
the IBM/PC through a Model 1691A general purpose PC interface. The
“V” input option should be used to analyze the amplifier output (i.e. you
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are analyzing the Voltage level of the amplified pulse), and you should use
the “internal” gate option. The BNC connector labeled “gate view” can be
used to compare the timing of the internal gate with the amplified signal,
using a dual trace oscilloscope. An XY oscilloscope should be connected to
the horizontal and vertical outputs of the qVt, and this will serve as a live
display.

You can control the qVt using the program graphwin which runs on the
PC, including reading spectra from the qVt and manipulating them. The
program is menu driven, and its use should be pretty much self explanatory.
In any case, more detailed instructions are available if you need them.

20.2.1 Procedure

The first thing you need to do is calibrate the energy scale of the qVt spectra.
You can do this using some or all of the standard energy calibration sources
provided in the wooden box, or with some of the other sources available in
the laboratory. If you arrange the gain of the amplifier so that the 0.662 MeV
peak from 137Cs is near the upper end of the range, then the sources you would
find most useful are (low intensity) 137Cs (662 KeV), annihilation photons
from 22Na β+-decay (511 KeV), and 133Ba (356 KeV, 302 KeV, and 80 KeV).
If you want to have a larger energy range, reduce the gain of the amplifier,
and you can also calibrate with the 60Co source (1.17 MeV and 1.33 MeV)
as well as with the 1.28 MeV photons from 22Na.

Place each of the calibration sources near the point where the photon
beam from the lead house would intersect the target. Then take a spectrum
for some period of time and make sure you can clearly pick out the peaks
corresponding to the calibration γ-rays. Read the spectra and store them.
You should probably use graphwin to write down the peak positions as you
take the data, and plot them versus energy in your log book, to determine
the energy calibration. That is, get at least a rough idea of the constants A
and B where

Energy = A× Channel + B

so that you can check your Compton scattering data as it is taken.
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Figure 20.5: Energy calibration of the NaI detector using various radioactive
sources.

An example3 of calibration data, fit to a straight line, is shown in Fig. 20.5.
If you are going to use your Compton scattering data to determine the dif-
ferential cross section (Sec. 20.3.2), then you should also record the intensity
calibration of each of the sources, as well as the amount of time you took
data with them.

For any given target or detector angle, you must take two sets of data to
get clean data on Compton scattering. This is because there is a good deal
of background in the NaI(Tl) detector, i.e. signals coming from γ-rays which
are scattered from the walls or perhaps leak out of the lead shield and have
nothing to do with your scattering target. To subtract this background, take
a set of data (for a fixed amount of time) with the target in place. Then
remove the target and take another set of data for the same amount of time.
graphwin allows you to subtract the two spectra, and the result should be
a clear peak from Compton scattering. It is probably best, however, to save
the individual spectra and do the subtraction in matlab.

Figure 20.6 plots data taken with the target in and target out. The
Compton scattering peak is clear, and the two spectra fall on top of each
other for energies greater than the peak. Below the peak, there is an excess

3Data taken by Ed Barnat, Class of 1996.
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Figure 20.6: Sample data taken with the target in and the target out.

of counts for target in, just as you would expect because of the detector
response to photons.

It is probably best to start at an angle near θ = 90◦ because the back-
ground turns out to be relatively small there. Then change the angle in either
direction, and keep track of the background rate. You might want to arrange
various lead bricks to try and minimize the background, but leave the source
house intact.

In principle, the answer you get should not depend on which target you
select. However, you will get a better count rate (relative to the background)
if the target presents a greater number of electrons to the photon beam. You
should take a couple of angles with more than one target, and consider the
results later. It should not be necessary to take data at all angles with more
than one target.

20.2.2 Analysis

There are lots of things you can do with this data. We’ll describe some of
them here, starting from the more straightforward ones.
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Figure 20.7: Test of Compton scattering kinematics. The quantity E/E ′ is
plotted versus 1− cos θ, and the result is fit to a straight line. The intercept
is 0.9996 and the slope, with an uncertainty given only by the straight line
fit, is 1.218±0.002.

Verification of Compton Scattering Kinematics

The first thing to do is verify Eq. 20.8. The peak position of the Compton
scattered γ-ray should be evident from your subtracted spectra. Use your
energy calibration to turn this peak position into a γ-ray energy E′. Plot E′

as a function of θ, and graph the result of Eq. 20.8 on top. Use a reasonable
estimate for the uncertainty in the peak position so you can plot the measured
values of E′ with an error bar.

You may also choose to plot your data as E/E ′ = 0.662 MeV/E′ versus
(1 − cos θ). The result should look like a straight line. You can fit this line
to get the best value for the slope and interecept, and compare these fitted
values and uncertainties to the values you expect. An example4 is shown in
Fig. 20.7. The data are fit to a straight line, and the (random) uncertainties
are determined using the formulas in Sec. 9.2.1. The result is

E

mc2
= 1.218± 0.002

4Data taken by Ed Barnat, Class of 1996
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Is this what you expect?

Consider the possible reasons that your may not agree within uncertain-
ties with the expected values. You might be able to identify the 0.662 MeV
peak from 137Cs source in your spectra, from γ−rays leaking out of the lead
house. Does the peak position stay constant over time? Can you use this
peak position to make a correction to your data?

Determining the Angular Distribution

You should be able to test whether or not the angular distribution is more
consistent with Compton scattering, or with Thomson scattering. That is,
see if the angular distribution is consistent with a higher rate at angles less
than 90◦ relative to angles greater than 90◦, or instead symmetric about
90◦. You have to be careful of corrections introduced because of the detector
efficiency, as we discuss below.

Don’t forget that the scattering “rate” is the number of counts under the
full absorption peak with background subtracted, divided by the running
time.

The simplest way to check the angular distribution is to tabulate the ratio
of rates for angles around 90◦, that is R(90◦+α)/R(90◦−α) for various values
of α. A different way is to plot the scattering rate as a function of angle. An
example is shown in Fig. 20.8. (You may want to normalize your plot to the
rate at one particular angle, and θ = 90◦ is a good choice.) This count rate,
or intensity, should change with angle because of the θ dependence of the
cross section dσ/dΩ. Does the result seem to be consistent with Eq. 20.10 or
with Eq. 20.12?

Even though Eq. 20.9 contains no explicit angular dependence (except
for the cross section), you have to be careful of corrections. One thing you
should check is that this angular distribution is independent of the type of
target you used. Use the angles at which there is data from more than one
target to check the relative dependence on rate. In Fig. 20.8, how important
is it to include the energy dependent efficiencies?
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Figure 20.8: The rates under the Compton scattering peak after background
subtraction, as a function of scattering angle θ. Energy dependent efficiencies
include the intrinsic and photopeak efficiencies, both of which increase as the
photon energy decreases. For this analysis, we used efficiencies as plotted in
the paper by Singhal and Burns.



20.3. ADVANCED TOPICS 391

The biggest correction you likely have to make is from the detector effi-
ciency. The efficiency is a function of angle because the Compton scattered
energy changes as a function of angle. It is important to take into account
both the intrinsic and photopeak efficiencies. These are tabulated and shown
in Tab. 17.3 and Fig. 17.8. Estimate those efficiencies, and the uncertainty
you get from reading the table or graph, and recalculate the angular dis-
tribution. Again, it might be wise to normalize to 90◦. Make another plot
including these corrections. Reconsider whether or not the result agrees with
Thomson or Compton scattering, or both, or neither.

20.3 Advanced Topics

You can actually do quite a lot more with this detector setup. You can discuss
some of the options with the teaching assistants or with me, but following
are a couple of suggestions.

20.3.1 Recoil Electron Detection

We haven’t really talked about another important piece of the Compton
scattering picture. The photon scatters off of the electron and we detect the
photon, but what about the electron? It carries off a considerable amount of
energy, namely Ee = E − E′. We should be able to detect it.

Our setup can be extended to include these “coincidence” measurements,
as opposed to the “singles” measurements where all we detect for any one
event is the scattered photon itself. The extended setup used to measure
Compton scattering is shown in Fig. 20.9. In this case, the “target” is actually
a plastic scintillator detector. This detector consists of a 1/8” thick piece of
plastic, mounted on a photomultiplier tube. The photomultiplier operates
at negative high voltage, and you should set it to around −2000 V. This
scintillator is thick enough so that the electrons which recoil in Compton
scattering with 662 keV photons will stop in the detector, assuming they
are produced not too far from the rear surface of the detector. (You should
confirm this by estimating the range of the electrons involved, as a function
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of θ, using the Bethe-Bloch formula, Eq. 17.1).

The simplest way to observe the recoil electron is to demonstrate a co-
incidence between the plastic scintillator and NaI(Tl) detectors. You can
do this by taking the output of the electron detector, passing it through a
discriminator and gate generator, and using the output of the gate generator
to control the qVt. Make sure that you switch to “external gate” mode when
running this way. See your teaching assistant or me for details of the setup.
You might also consult the paper by Stamatelatos.

First try to detect the Compton scattered γ-ray signal as before, but using
the plastic scintillator as a target. Do not turn the plastic detector on, and
leave the qVt mode in “internal gate”. This makes a very thin target, so the
peak will not be as clear as it was with the aluminum and brass cylinders,
but it should still be visible if you count for a longer time and subtract
background by removing the scintillator.

Next, set it up with the plastic scintillator turned on and the qVt in the
“external gate” mode. This means that you only will observe γ-rays that
are in coincidence with signals in the plastic scintillator detector. Most of
the plastic detector’s signals will come from photons which do not scatter
into the NaI(Tl) detector, so there will be a lot of points at “zero” in the
qVt spectrum. However, the Compton scattered γ-ray peak should appear
clearly above the noise. Is it in the same position as it was before? Try this
at a few different angles.

You can also demonstrate the change in the electron recoil energy, as you
change the angle of the scattered photon. Measure the coincidence rate as a
function of the discriminator threshold, for a few specific angles. How do you
expect the electron’s energy to change with angle? What does that imply for
the threshold value at which the coincidence rate starts to fall off? Can you
think of other ways to measure the electron energy?

20.3.2 Extracting the Differential Cross Section

It is possible, in principle, to determine the differential cross section abso-
lutely using this setup. It is important to know the source activity and
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effective target size to do this correctly, as well as to include the various
efficiency corrections. A rather detailed discussion of this procedure is given
in Melissinos, and in the paper by Singhal and Burns.

Because your ultimate experimental uncertainty will be dominated by
the systematic uncertainties in the detection efficiencies, there is no point in
reducing your relative background by using the plastic scintillator detector
as a target. This will only give you a more difficult problem (the plastic
scintillator efficiency must also be included), and the statistical (random)
uncertainty due to the background subtraction with an aluminum target will
make a negligible contribution.

Borrowing notation from Singhal and Burns, you determine the cross
section experimentally by turning Eq. 20.9 around and including the various
efficiency factors, thus

dσ

dΩ
=
Rate(θ)

Φγ ×Ne
× 1

ε(Eγ)× P (Eγ)× η
(20.12)

where Rate is the net number of counts per second, after subtracting the
background; Φγ is the photon flux, in photons per cm2 per sec incident on
the target, and Ne is the number of electrons viewed by both the beam and
the NaI(Tl) detector. You will have to estimate the geometry of the photon
beam (which is actually a cone whose half-angle is determined by Fig. 20.4)
and how much of the target illuminated by that cone that is seen by the
detector.

The factors ε(Eγ) and P (Eγ) are the intrinsic and photopeak efficiencies,
respectively, for photons of energy Eγ = E ′. (See Sec. 17.2.3.) The solid
angle factor dΩ is contained in the definition of intrinsic efficiency. The
factor η, which is actually a rather weak function of Eγ, takes into account
the fact that the photon beam (and the scattered photons) are attenuated
by the target, and so the beam intensity is reduced. One finds η ≈ 0.8
using a sophisticated numerical calculation (see Singhal and Burns), but you
have the opportunity to make a rough estimate of the effect and confirm this
number.

Photons get absorbed both on their way into and out of the target, and the
amount of absorption depends on the incident energy and scattered energy
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(and so the scattering angle). It also depends on the exact place where the
incident photon scattered, because this determines the thickness of material
through which the incident and scattered photons travel. We will sweep most
of this under the rug with a simple model, namely that η is just given by the
exponential attenuation formula for photons. (See Sec. 17.1.2.) That is,

η = e−µx (20.13)

Of course, the “true” values for both µ and x are different for every scattering
event, but like I said, this is a simple model. Let µ be a number representative
of the photons involved, perhaps µ−1 = (15 gm/cm2)/ρ where ρ is the density
of the target. You can then use your data to determine a representative value
for x, by measuring the scattered photon rate with, say, brass and aluminum
targets with the same dimensions. From Eq. 20.12,

Rate with Brass Target

Rate with Aluminum Target
=

NCu
e

NAl
e

× ηCu

ηAl

=
NCu

e

NAl
e

× e−x/(15 gm/cm2)[ρCu−ρAl]

(It is safe to assume that brass is the same as copper for these measurements.)

Your value for x should be about the same as the target thickness. Is it?
Use this value of x to get a model value for η in Eq. 20.13. Does it agree with
the value determined by Singhal and Burns? Do you get the same value for
x and η using data at different scattering angles? If you could make another
target out of a different material to further test your model, what materials
might you pick?
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Appendix A

Principles of Quantum Physics

Most of the experiments done in this course involve quantum mechanical
phenomena. You will learn a lot about these phenomena and about quantum
mechanics in general from doing the experiments. There are, however, a few
general points which you will always come up against, and I’ve tried to collect
them here.

Quantum mechanics implies that nature is “quantized”, based on its pos-
tulates. All this means is that matter and energy cannot existed with any
arbitrary value, but it instead must take on discrete values of one sort or
another.

Don’t try to figure out “why” quantum mechanics is the right way to de-
scribe the world. Nobody knows why. The principles of quantum mechanics
just seem to work, so we believe them, or at least work with them. It makes
no more sense to understand why quantum mechanics works than to wonder
why Newton’s laws of motion work.

There have been some fine experiments which looked for violations of
basic quantum principles, but there had never been any substantiated that
quantum mechanics is wrong.

397
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A.1 Photons

Electromagnetic radiation, including everything from radio waves to light to
gamma radiation, comes in packets of energy called photons. The energy of a
photon is E = hν where ν = c/λ and λ are the frequency and wavelength of
the electromagnetic radiation. (Remember that Maxwell’s equations insist
that νλ = c, at least in a vacuum.) The fundamental constant h is called
Planck’s constant, and we can only determine it from experiment.

Factors of 2π are ubiquitous in physics because we are always integrating
over a circle somewhere. For this reason, we have the definitions h̄ = h/2π,
ω = 2πν, and k = 2π/λ, and you might see the energy of a photon written
as E = h̄ω or E = h̄kc.

Of course, a photon has momentum as well as energy. It has no rest mass,
however, so according to special relativity we have

E =
√
p2c2 +m2c4 = pc

for a photon. The photon’s momentum can be written as p = h̄k = h/λ.

It is tempting to forget about all those factors of h̄ and c that show up
in quantum physics. I have tried to be consistent and keep them through-
out this book, but most people on the “outside” don’t bother. Most peo-
ple do the conversions when they need it by remembering that c ≈ 3 ×
108 m/sec ≈ 1 ft/ns and that h̄c ≈ 200 MeV fm.

Of course, the reason we believe that light is made of photons is be-
cause experiments strongly suggest it. Two examples of groundbreaking
experiments are blackbody, or cavity, radiation (Sec. 11.1.1) and Compton
Scattering (Experiment 12).

A.2 Wavelength of a Particle

Just as light can behave as a particle, i.e. the photon, particles can also
behave as waves. The wavelength of the particle was postulated by DeBroglie
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to be completely analagous to the photon, that is λ = h/p. Of course,
however, the relationship νλ = c is not valid for particles because the waves
are not governed by Maxwell’s equations. Instead, there is a different wave
equation that describes the motion of particles.

Before getting too technical, however, you can already see some important
consequences of DeBroglie’s hypothesis. If a particle is a wave with a definite
wavelength, then if it moves in some confined area it is important to make
sure that the wave doesn’t interfere with itself and cancel away the particle’s
existence! (How can there be a particle if there is no wave, i.e., if the wave has
no amplitude?) This leads, for example, to the Bohr Quantization Condition
for the energy of a hydrogen atom. (Sec. 12.1.)

A simpler example is just a particle confined to move in one dimension,
but constrained to be inside a “box” with walls at x = ±a. We take this to
mean that the wave corresponding to the particle must have zero amplitude
outside the box. Unless the waves corresponding to the particle have nodes
at x = ±a, i.e. they are standing waves, then the continued reflections at the
walls will destructively interfere the particle into oblivion. This means that
an integral number of half-wavelengths must fit in the box. Therefore the
allowed wavelengths must satisfy the condition (2a)/(λ/2) = n or λ = 4a/n
where n is an integer. The (nonrelativistic) kinetic energy for this particle
in a box can therefore take on the values

Ek =
p2

2m
=

h2

2m

1

λ2

=
h2

32ma2
n2 (A.1)

The allowed energies of the particle are quantized. They must have the dis-
crete values Ek = E0, 4E0, 9E0,/ldots, where E0 = h2/32ma2. These energy
levels are drawn in Fig. A.1. A particle is said to be in a definite “state”
if its energy corresponds exactly to one of these energy levels. Figure A.1
also plots the wave function ψ(x) which corresponds to the particle in that
particular energy state.

This kind of energy quantization happens whenever we restrict the motion
of a particle based on some kine of potential well. In particular, the well
does not have to have infinitely high walls. In this case, the energy will be
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Figure A.1: Energy levels for a particle confined in a one-dimensional box
with infinitely high walls.

quantized only if it lies below the highest value of the potential in the well.
These are called bound states.

Schrödinger formulated a wave equation that you can use to determine
the states and energy levels of any particle moving in any potential. It is
based on conservation of energy, and although it is simple to write down, it
can be hard to solve in practice. We discuss this in a bit more detail with
regard to the Ramsauer Effect (Experiment 2), but for more information you
need to go to a textbook on Quantum Mechanics.

A.3 Transitions between Bound States

Okay, so we have two manifestations of quantum mechanics. One is that
light (i.e. electromagnetic radiation) is bundled up into photons of discrete
energy. The other is that (massive) particles have wavelengths, and this leads
to their having discrete energies if confined in some kind of potential.
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Figure A.2: Transitions between energy levels.

These two things are connected. If a particle is in a specific state with
a specific energy, it can jump to another state with a different energy if it
makes up the energy difference with a photon. The two cases are shown
schematically in Fig. A.2. In case (a), a particle is initially in an upper
energy state with energy E2, when it spontaneously decides to drop down
to a lower state with energy E1. When this happens, a photon of energy
E = E2 − E1 is emitted. Something like this has to happen, of course, so
that energy is conserved. This is the principle used to produce the optical
photons detected in Experiment 6.

Case (b) shows the opposite. Here the particle is initially in the lower
energy state E1 when a photon comes along and knocks it up to the state
E2. This can only happen if the photon has precisely the right energy, namely
E = E2−E1. One example of this is the precise resonance condition observed
in Nuclear Magnetic Resonance (Experiment 9). In this case, the photons
(from the radio frequency transition coils) induce transitions from E2 to E1

and back again.

In principle, transitions can occur between any two states, with the release
or absorption of the right amount of energy. Sometimes, though, this energy
cannot be in the form of photons, and some other kind of interaction (besides
electromagnetism) must be invoked. One example is β-decay, studied in
Experiment 10, where the transition between two different nuclei occurs and
the energy release is shared between an electron (or positron) and a neutrino.
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Appendix B

Principles of Statistical
Mechanics

The physical interpretation of heat and temperature is the basis of Statistical
Mechanics. It is hard to appreciate many of the experiments in this course
without at least a cursory understanding of these principles. Some of the key
ideas are collected here.

If you’ve studied Thermodynamics without a good connection to Statis-
tical Mechanics, I suggest you put aside what you’ve learned about “temper-
ature” and “heat” so far. Thermodynamics takes these quantities and makes
them rather mysterious. I will approach them from the simple point of view
of classical mechanics.

B.1 The Ideal Gas

Consider a collection of atomic or molecular sized particles which move
around pretty freely inside some volume. Assume there is a very large num-
ber of such particles. We also assume that although the collide with each
other frequently, all the collisions are elastic. That is, particles never stick
to each other or excite each other in any way.

403
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Figure B.1: A cubical box of side L for calculating the ideal gas law.

This collection of particles is obviously a gas. In fact, since the particles
alway collide elastically, it turns out to be something called an ideal gas.
Most common gases at or near room temperature and atmospheric pressure
are pretty good approximations to the ideal gas.

Let’s use classical mechanics to derive something called the ideal gas law.
Put our collection of particles into a cubical box where the sides all have
length L. This is shown in Fig. B.1. The particles also collide elastically
with the sides of the box, so every time one of them bounces off of the wall
at x = L, it imparts an impulse ∆(mvx) = 2mvx to the wall, where m is the
mass of the particle and vx is the x-component of its velocity. This particle
will bounce around and come back again in a time 2L/vx, so the mean force
Fx imparted by this particle is the impulse divided by the mean time for a
bounce, i.e.

Fx = ∆(mvx)/(2L/vx) = mv2
x/L

This is the force from one particle. The mean force from all the particles
is obtained by summing over all particles. In fact, we want the pressure p
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which is the force per unit area, so

p =
1

L2
[Fx1 + Fx2 + · · ·]

=
m

L3

[
v2

x1
+ v2

x2
+ · · ·

]
= nm

[
v2

x1
+ v2

x2
+ · · ·

N

]
= nm〈v2

x〉
where N is the total number of particles and n = N/L3 is the number density
of the gas particles. (The mass density would just be ρ = nm.) It should also
be clear that we can write the average of the x−components of the velocities-
squared, i.e. 〈v2

x〉, as 1
3

of the average velocities-squared, since on the average,
the particles are moving one-third in each of the x, y, and z directions. We
can therefore write that

p =
1

3
nm〈v2〉 =

1

3
nmv2

RMS (B.1)

where vRMS =
√
〈v2〉.

Now we can make the connection to heat and temperature. Heat is just
the energy contained internally in the gas. For our ideal gas, the energy is
strictly in the kinetic energy of the particles, since we’ve assumed there are no
internal excitations like vibrations and rotations of the molecules. Therefore,

Heat Energy in Ideal Gas = EK1 + EK2 + · · ·
= N〈EK〉
= N

1

2
m〈v2〉

= N
1

2
mv2

RMS

Temperature is a measure of how much heat energy is in the gas. In fact, we
define temperature so that the mean kinetic energy of any particle in the gas
is proportional to the temperature. The way we write the proportionality
constant is a little weird, though. We define temperature with the relation

〈EK〉 =
3

2
kT
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(If the particles can rotate or vibrate or so on, then we include these motions
in the energy and the factor in front of the kT changes. Don’t worry about
this for now.) The constant k is called Boltzmann’s constant, which we
measure in a roundabout way in Experiment 7.

So now that we know what we mean by temperature, we can connect
pressure and temperature for the ideal gas. From Eq. B.1,

p =
2

3
n
[
1

2
mv2

RMS

]
=

2

3
n

3

2
kT

or p = nkT (B.2)

This is the Ideal Gas law. It is a relation between the pressure, temperature,
and density of an ideal gas. An alternative way to write the ideal gas law is

pV = NkT

where V = L3 is the volume of the container. A chemist may prefer to
express the number of particles in terms of the number of moles nm ≡ N/NA

where NA is Avogadro’s number. In this case, the ideal gas law becomes

pV = nmRT

where R = NAk is called the “gas constant”.

B.2 The Maxwell Distribution

We’ve learned a lot from this little exercise on the ideal gas law. It shows
how we can take our basic physics principles and apply them to atomic sized
particles to obtain properties of some big object like a gas-filled container.

Without making a big deal of it, though, we made a very important
assumption. That is, we assumed that the particles are moving randomly
through the entire volume, and that the number of particles is so large that we
could ignore the random statistical fluctuations. This is what gives meaning
to concepts like pressure, temperature, and heat energy.
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Before leaving our brief discussion of statistical mechanics, let’s take one
look at the details of this assumption. We will look at the distribution of
energies of the particles in the gas. That is, even though we know what
the mean or average energy or velocity is, how broad is the distribution?
For example, how probable is it to find a particle with energy much higher
or lower than the mean energy? You may want to review the material on
“distributions” in Section 9.4.

The concept of thermal energy distributions is very important. This can
be particularly true in the case of quantum mechanical systems. Remember
that to excite a particular quantum energy state, we need “precisely” the
right amount of energy or it won’t happen. Thermal distributions are a
very common way to get to that precise energy value, since a broad range of
energies are continuously covered.

It is not easy to derive the thermal distribution law, and we won’t do it
here. Be thankful that James Clerk Maxwell was so smart, and he derived
it for us back in the 19th century. The Maxwell Distribution says that the
particle speeds v are distributed according to the relation

dn

dv
= 4πN

(
m

2πkT

)3
2

v2e−mv2/2kT (B.3)

where dn = (dn/dv)dv is the number of particles with speeds between v and
v + dv. Examples of the Maxwell distribution are shown in Fig. B.2 for one
mole (N = 6.02 × 1023) of helium atoms (m = 6.65 × 10−27 kg) at various
temperatures.

The Maxwell distribution has some important properties, which you can
prove, namely ∫ ∞

0

dn

dv
dv = N

which just says that if you add up all the particles you get the total number
of particles, and

1

2
mv2

RMS =
1

2
m
∫ ∞

0
v2dn

dv
dv =

3

2
kT

which is simply our definition of temperature. Note that the Maxwell distri-
bution is asymmetric. The most probable value of the distribution, i.e. the
velocity at which dn/dv peaks, is not the same as the average velocity.
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Figure B.2: Maxwell distribution of particle velocities in an ideal gas at
different temperatures. As the temperature increases, the average shifts to
higher velocities, but there is still plenty of overlap.
.
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Finally, we take a moment to rewrite the Maxwell distribution in terms
of the kinetic energy of the particles, EK = 1

2
mv2. You can do this yourself

and find that
dN

dEK
=

2N√
π

1

(kT )3/2
E

1
2
Ke

−EK/kT

This is in fact called the Maxwell-Boltzmann energy distribution. It tells you
how the (kinetic) energy is distributed for an ideal gas.

If we are working with systems other than ideal gases, the form of the
distribution changes somewhat, but the factor

e−E/kT

is always present and dominates the behavior of the distribution at low and
high temperatures.
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Appendix C

Principles of Mathematics

We take some time to review the basic principles of mathematics. Some of
this is aimed at making the kinds of approximations physicists use all the
time.

C.1 Derivatives and Integrals

Don’t forget your basics. The definition of the derivative of a function y =
f(x) is just

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x

If you need to approximate a derivative, just pick a small interval ∆x, and
estimate the value of ∆y, perhaps from a graph of y vrs. x, and take dy/dx ≈
∆y/∆x. Obviously, if ∆x is small enough, then

∆y ≈ dy

dx
∆x

is essentially a perfect approximation. If ∆x and ∆y are indeed small enough,
we call them dx and dy, that is

dy =
dy

dx
dx

411
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and the “differential” notation seems pretty obvious.

Deal with partial derivatives like ∂z/∂x and ∂z/∂y where z = f(x, y) in
exactly the same way. If you’re deailing with x then make believe y is a
constant, and vice versa.

To approximate integrals, again make use of the fundamental definition,
which just boils down to calculating the area under a curve. Depending
on the situation, you can use a more or less simple approximations to the
area. For example, if you use a simple rectangular approximation with a
manageable number of intervals, depending on how you draw your boxes you
might be either overestimating or underestimating the integral. Do both,
take the average as your best value, and one-half of the difference as your
uncertainty.

More sophisticated techniques are possible for estimating integrals (trape-
zoidal rule, Simpson’s rule, gaussian integration,. . . ) and they come with
ways of estimating the uncertainty in the technique, but remember to not
spend more time beating one level of uncertainty into the ground when some-
where else in your experiment, some source of uncertainty is sticking out like
a sore thumb.

C.2 Taylor Series

Any curve can be approximated by a straight line. In fact, that is just what
the derivative tells you. In other words, near any point x0, the derivative of
a function f(x) is

df

dx
≈ f(x)− f(x0)

x− x0

and therefore

f(x) ≈ f(x0) +
df

dx

∣∣∣∣∣
x0

(x− x0)

Taylor’s theorem simply points out that you can go further and approx-
imate any curve by a polynomial, not just a straight line. In fact, if you
go to infinite order in the polynomial, then you’ve got the exact function.
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Each successive term in the polynomial comes with the next higher order
derivative, divided by the factorial of the order. That is,

f(x) = f(x0) +
∞∑

k=1

1

k!

dkf

dxk

∣∣∣∣∣
x0

(x− x0)
k

It is usually common to arrange things so that you expand about x0 = 0.
In this case, some of the more used Taylor expansions are

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

sin x = x− x3

3!
+
x5

5!
+ · · ·

cos x = 1− x2

2!
+
x4

4!
+ · · ·

ln(1 + x) = x− x2

2
+
x3

3
+ · · ·

(1 + x)α = 1 + αx+ α(α − 1)
x2

2!
+ · · ·

Note how the last example truncates the infinite expansion and turns into
the simple polynomial if α is a positive integer.

The importance of Taylor expansions in science cannot be overstated,
mainly as they are used in approximations. They typically converge rapidly,
and a limited number of terms (usually only one) is good enough to make
the pertinent physics point. An important place this is used in physics is
estimating the vibration frequency for a particle placed near the bottom of
some arbitrary potential well. If you Taylor expand the potential function
V (x) around the minimum of the potential, then the first derivative is zero
and the expansion is quadratic in the displacement - a harmonic oscillator!
Even the simple first order approximation is often used, and the second order
term becomes our estimate of the uncertainty.
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C.3 Natural Logarithms

The idea of natural logarithms and the value of e is one of the sweetest pieces
of mathematics, I can’t resist reviewing it. The reason I like it so much is
because it makes you realize why e is such an important number.

One of the first things we realize when studying calculus is that

d

dx
xn = nxn−1

and therefore ∫
xndx =

1

n+ 1
xn+1

where n can be anything. But how can you do the integral when n = −1?
That is, what is

∫ 1
x
dx, since the formula obviously gives you nonsense? Let’s

try to answer the question scientifically. We’ll use guesswork!

Define the function

f(x) ≡
∫ x

1

1

t
dt

and let’s examine some of its properties. Obviously, we have

f(1) = 0

By using a change of variables u = 1/t it is pretty easy to see that

f
(

1

a

)
= −f(a)

By doing some other simple tricks, you can also see that

f(ab) = f(a) + f(b)

These are all properties of the logarithm function logb(x), where b is the base
of the logarithm and can have any value. So, maybe f(x) = logb(x)?

Let’s try it. We know that the derivative of f(x) must be 1/x since that
is where it came from in the first place. Go back to the definition of the
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derivative and apply it to the function logb(x):

d

dx
logb(x) = lim

∆x→0

logb(x+ ∆x)− logb(x)

∆x

= lim
∆x→0

logb

(
1 + ∆x

x

)
∆x

=
1

x
lim

∆x→0

x

∆x
logb

(
1 +

∆x

x

)

=
1

x
lim

∆x→0
logb

(
1 +

∆x

x

) x
∆x

Well that’s a mouthful, but all it boils down to is that

d

dx
logb(x) =

1

x

if and only if

b = lim
ε→0

(1 + ε)
1
ε ≡ e

in which case logb b = 1. We call this special base the number e since it
obviously will be used a lot. It is the base of the “natural” logarithm, that
is, the logarithm that has the simplest derivative.

This of course points up a simple way to estimate e. Just take “one plus
a small number” raised to “one over that small number”:

(1 + 1)1 = 2

(1 + 0.5)2 = 2.25

(1 + 0.1)10 = 2.5937

(1 + 0.01)100 = 2.7048

(1 + 0.001)1000 = 2.7169

The correct value for e, quoted to several decimal places, is e = 2.71828.

Notation is a bit of bugaboo. Most people use lnx to mean loge x. I try
to stick with that, but it is more natural to just use log x to mean the natural
log, and explicitly put in the base if it is something else.
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C.4 Complex Variables

Complex numbers are based on the “imaginary” number ı ≡ √−1. A com-
plex number is the sum of a “real” number (whose square is positive) and an
imaginary number (whose square is negative, i.e., proportional to ı). Com-
plex numbers can be explicitly written as

z = x+ ıy

where x and y are both real. We say that z has both real and imaginary
“parts” and write

Re(z) = x

and Im(z) = y

which are both real numbers. The “complex conjugate” number z∗ is given
by

z∗ = x− ıy

The “magnitude” of z, written as |z|, is given by

|z| = √
z∗z =

√
x2 + y2

and is obviously a real number. It is no accident that the same symbol is
used for the magnitude of a complex number, as for the absolute value of a
real number. If z has no imaginary part, then these are the same thing.

It is natural to say that a complex number lies somewhere in the “complex
plane”. The horizontal (i.e. x) axis in this plane represents the real numbers
and the vertical (i.e. y) axis represents the purely imaginary numbers. This
is shown in Fig. C.1. You can get a simple pictoral representation of complex
numbers this way. For example, the magnitude is the length of the line from
the origin to the point (x, y) and the complex conjugate is the reflection in
the real axis. We will take this further in a moment.

It is simple to do operations with complex numbers. Just remember that
ı2 = −1 and you will have no problem. For example,

z1z2 = (x1x2 − y1y2) + ı (x1y2 + x2y1)

and
1

z
=

x

|z|2 − ı
y

|z|2
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Figure C.1: A number z = x+ ıy = reıθ in the complex plane.

and in particular, 1/ı = −ı.

The real power of complex numbers starts to become clear when you use
“Euler’s Formula” which states that

eıθ = cos θ + ı sin θ (C.1)

You can think of this as a change from the cartesian coordinates (x, y) to
polar coordinates (r, θ) (see Fig. C.1), where r = 1 in Eq. C.1 and r = |z| in
general.

The formal theory of complex numbers is lovely and plenty of important
applications, but they are not really necessary for this course so I won’t go
into them. Just realize that the mathematical basis for doing some “natural”
things is in fact on quite solid footing. For example, you can convince yourself
that Eq. C.1 is valid by expanding eıθ in a Taylor series (Appendix C.2). You
know that for any real number x, you can write

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

so you assume that for any complex number z you can do the same, i.e.

ez = 1 + z +
z2

2!
+
z3

3!
+ · · ·
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Now if you put z = ıθ, you get

eıθ = 1 + ıθ +
(ıθ)2

2!
+

(ıθ)3

3!
+ · · ·

=

[
1− θ2

2!
+ · · ·

]
+ ı

[
θ − θ3

3!
+ · · ·

]
= cos θ + ı sin θ

which is just Eq. C.1.

So, we can now write any complex number z as

z = |z|eıφ and z∗ = |z|e−ıφ (C.2)

where

φ = tan−1

[
Im(z)

Re(z)

]
(C.3)

is called the “phase” of z. The phase is critically important in many areas
of physics, not the least of which is in electronics. For example, we might
specify a sinusoidally varying voltage VIN = V0e

ıωt as an “input” to some
kind of device. The output voltage will have the same angular frequency ω
(assuming that the device behaves linearly), so we can express the output
voltage in terms of the input voltage and a “gain” g = |VOUT/VIN | and a
relative phase φ which tells where the output sinusoid “starts” relative to the
input.



Appendix D

A Short Guide to MATLAB

This appendix collects some information that should help you navigate your
way through matlab. The matlab User’s Guide is a very useful reference,
but there is much more in there than you will need in this course. Also
remember that you can get help online from the world wide web at

http://www.mathworks.com

This site includes a long, searchable list of frequently asked questions, and
it’s a good bet that yours is among them.

D.1 A MATLAB Review

This review was prepared by Prof. Peter Persans.

The following is a brief summary of key matlab commands and procedures
gleaned from the body of these notes, and from The Student Edition of
matlab Version 4 User’s Guide. The on-line introductory tutorial is also
worthwhile.

419
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A lot of the stuff mentioned here is used in the example in section 9.5 in
these notes.

Input Modes. Commands can be executed one by one in the command-
line mode in matlab or you can write a program consisting of the appropriate
command lines in a convenient word processor such as notes in Windows or
nedit on RCS and store it as a file with the “.m” extension such as program-
name.m.

Data input. See pages 15 and 16 in these notes. Lists of data points are
usually input as one-dimensional matrices (vectors). You can do this in a
command line within matlab:

x=[1 2 3 4 5 6];

y=[0.1 0.2 0.3 0.4];

(The semicolon at the end of the line is not necessary, but if you do not
include it, then matlab will echo values.) You can also store data in ASCII
columns in a file with the “.dat” extension, such as mydata.dat. If the x data
is in the first column and the y data is in the second column of your ASCII
file, then you would use the following commands to load it into your matlab

session:

load mydata.dat

x=mydata(:,1);

y=mydata(:,2);

Simple arithmetic. To get an on-line list of simple functions, type help
elfun. Formatting for simple calculations with numbers is straightforward:
Addition is a+b, subtraction is a-b, multiplication is a*b, division is a/b, and
raising to a power is aˆb. Scientific functions include

• abs(x) for absolute value
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• round(x) to round to the nearest integer

• real(x) to take the real part of a complex number

• sign(x) to find the sign (it returns +1, −1, or 0)

• log(x) for the natural logarithm

• log10(x) for the logarithm to base 10

• sqrt(x) to find the square root

as well as the familiar trigonometric and hyperbolic functions and their in-
verses, sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), sinh(x), cosh(x), tanh(x),
and so on.

Vector construction. The easiest way to create a vector with regularly
spaced elements is with the command

x=(start:increment:last)

where start is the first element of a vector, last is the last element, and
increment is the step size between the elements. For example, x=(0:0.1:1)
creates the vector

x = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]

(The parenetheses “()” are optional, or they could be replaced with brackets
“[]”.) This is also equivalent to using the function linspace(start,last,number),
where number is the number of entries in the vector. If you’d like to define
a vector where the increments are logarithmic, i.e. separated by a constant
factor instead of a constant difference, use logspace(start,last,number).
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Array arithmetic. To get an on-line list of matrix functions, type help
elmat. For operations between a scalar and an array, addition, subtraction,
multiplication, and division of an array by a scalar looks just like simple
arithmetic and the operation applies to every member of the array.

For operations between two arrays of the same length, addition, subtrac-
tion, multiplication, and division apply on an element-by-element basis, but
the syntax for multiplication and division is different than for simple arith-
metic. Multiplication is written a.*b and division is a./b, where a and b
are vectors of the same length. (Multiplication and division without the dot
correspond to normal matrix multiplication and division.)

Data analysis. See section 6.2.3 (page 94) of these notes. There are some
simple matlab functions for calculating often-used quantities for analyzing
a vector x of data values:

• length(x) returns the number of elements in the vector

• sum(x) adds all the elements in the vector

• mean(x) averages all the elements in the vector

• std(x) finds the standard deviation of the elements

Note that std(x) is equivalent to sqrt(sum((x-mean(x)).ˆ2)/(length(x)-1)).

The command [n,x]=hist(y,nb) takes a vector y of data values, calculates
a histogram with nb equally spaced bins, and returns vectors n and x which
give the frequencies and midpoints, respectively, of the binned data.

Least squares fitting. This is discussed in some detail in the notes, on
pages 134–138. When the data points are equally weighted, all of the opera-
tions necessary to fit a polynomial to a set of (x,y) data points are included
in the command p=polyfit(x,y,m) where m is the order of the polynomial.
A fit to a straight line is therefore p=polyfit(x,y,1). The vector p holds the
best fit values in order of decreasing polynomial order. For example, if m=2,
then you are fitting to a quadratic function ax2 + bx+ c and polyfit returns
p=[a,b,c].
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The values of the fitted function can be computed for a set of x values
x1 using the command y1=polyval(p,x1). (If you want to compute the fitted
function at the data points, just use something like yfit=polyval(p,x).)

If the data points are not equally weighted, then you can use Garcia’s
function linreg (Table 9.1, page 136) to fit to a line. Note that you can
retrieve this code (and lots more!) from the matlab web site.

Nonlinear least squares fitting. If you can’t express the function you
want to fit as a polynomial, then you can’t use polyfit or linreg. If the function
is still linear in the fitting parameters, though, you can use matrix techniques
to solve the equations. However, it may be simpler just to resort to numerical
techniques to minimize χ2 directly. You are forced into this situation if
the function is nonlinear in the fitting parameters anyway. For example, if
you want to fit some decay data to y = Ae−x/λ then you can instead fit a
straight line to log y = logA− x/λ, but if there is a background term, as in
y = Ae−x/λ +B, then you have to use numerical techniques.

Defining the χ2 function in matlab is quite straightforward, and there is
a matlab function called fmins which will do all the hard work of finding the
values of the parameters which minimize the χ2 function. This is outlined in
some detail for the case of radioactive decay in these notes, pages 354–355.

Simple plots. See page 15 in these notes. There are several simple varia-
tions on the plot command which will give you everything you need for this
course. If you really want to do more, see the next section of this appendix.

• plot(y) plots the column values of y versus index. It autoscales the axes.
Points are connected by solid lines.

• plot(x,y) plots vector y y (vertical) versus vector x (horizontal) on an
autoscaled plot. Points are connected by solid lines.

• plot(x,y,’linetype’) allows you to specify the type of line which connects
the points of the type of symbol which is printed on a data point.
For “linetype” use “-”, “:”, “- -”, or “-.” for solid, dotted, dashed, or
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dot-dash lines, respectively; or use “.”, “o”, “x”, “+”, or “*” for the
corresponding plot symbol.

• bar(y) draws a bar graph of the elements of y versus index.

• bar(x,y) draws a bar graph of y at the locations specified by vector x.

• stairs(y) and stairs(x,y) draw “stairstep” histogram plots.

You can plot more than one set of data, or data and a fit, by specifying
more than one set of vectors in plot. For example, plot(x,y,’o’,x,yfit,’-’) plots
“data” vector y versus x as little circles, and then overplots the “fit” vector
yfit as a solid line through the points. Another way to overlay plots is to hold
a plot and then just repeat the plot command with new vectors. When you
are finished collecting overlays, use the command hold off.

Simple labels are put on the graph using the commands

• xlabel(’label on the x-axis’)

• ylabel(’label on the y-axis’)

• title(’title for your plot’)

• text(x,y,’some text’) puts some text at point (x,y)

To print your plot on the default printer, use print. Printing to files or to
other printers will depend on which system you are using to run matlab.
Consult the online help or the User’s Manual for details.

D.2 Making Fancy Plots in MATLAB

It is simple to make matlab plots with the default characteristics. Some-
times, however, that isn’t quite what you want, especially if you are preparing
a formal lab report.

You can also, of course, consult the Mathworks web page help directly for
some hints. For example, if you want to know how to add Greek characters
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to your plot, click “Tech Support Solution Search” on the web page, and
search for keywords “Greek AND plot”. You will find

“492 How can I place Greek characters in my plot?”

in the search results list. Clicking on this solution tells you not only how to
do it, but also tells you how to get an m-file which will make a chart for you
that shows the mappings for all the various Greek letters and symbols.

You can dress up plots quite a bit in matlab using what is called “handle
graphics”. You can read about it in the manuals, but following is a primer
written by Drea Thomas of The Mathworks that gets you through the basics
very quickly. This primer is from “Drea’s Desk”, which is featured in old
issues of the Mathworks digest. If you want to subscribe to the digest, consult
the web page.

D.2.1 Drea’s Handle Graphics Primer

Whenever I go to a conference or a tradeshow, I’m struck by the number of
questions I get that are fairly basic Handle Graphics ones. It seems there
are a lot of people that have been using MATLAB for quite a while but
haven’t taken the leap into learning Handle Graphics. The reason for this
is probably that it is a little difficult to get started unless you read the
manual or someone points out the two or three things you need to know.
Since reading the manual is clearly out of the question (I never read manuals
unless it is absolutely necessary), this Desk will be a brief introduction to
Handle Graphics.

There are only two commands you need to know to master handle graph-
ics. They are,

• GET – Get the properties of an object.

• SET – Set a property (or properties) of an object.
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Every MATLAB graphics object has a unique handle and a set of proper-
ties (hence, “handle” graphics). The handle is just a number used to identify
an object.

Handle graphics objects have a hierarchy that looks like,

Root

Figure

Axes Uicontrol Uimenu

Image Patch Line Surface Text

In handle graphics parlance, we’d say that Axes are children of Figures,
Lines are children of Axes. An Image’s parent is an Axes.

Let’s look at a simple case,

figure

h = plot(1:10)

h is the handle to the line on the plot.

get(h)

You will see a list of properties of the line, most of which are settable. For
instance, let’s change the width of the line,

set(h,’LineWidth’,10)

One property that is not settable is the Parent. This contains a handle to
the axes that “owns” the line. To look at some axes properties,

ha = get(h,’Parent’);

get(ha)
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In this case, ha is the current axis so you could use GCA (get current axis).

get(gca)

Similarly, GCF gets the current figure and GCO gets the current object.

If you want to see what the possible values are of each property (and you
don’t want to open the manual), just,

set(h)

The root (handle 0) has some very interesting properties, including:

• Diary: You can turn diary on and off and set the diary filenames with
this property.

• PointerLocation: You can tell where the pointer is on the screen and
even modify it (*shudder*). For some fun, take a look at an M-file
developed by someone with *way* too much free time,

ftp://ftp.mathworks.com/pub/contrib/games/dropcurs.m

Figure window objects also have a number of interesting properties as
well including,

• PaperPosition: Along with PaperOrientation, PaperUnits, and Paper-
Type, this property specifies the size and orientation of hardcopy.

• KeyPressFcn: Want to capture keyboard input from a figure window
without using an editable text uicontrol? This contains a string that
gets evaluated each time someone presses a key while focus is in the
figure window. The key pressed is stored in CurrentCharacter. For
instance,

set(gcf,’keypressfcn’,’get(gcf,’’CurrentCharacter’’)’)

echos keystrokes to the command window.
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• WindowButtonMotionFcn: This contains a string that gets executed as
often as possible when the pointer is in motion over the figure window.
Here is an example of how to use it.

load clown;image(X);colormap(map)

set(gcf,’windowbuttonmotionfcn’, ...

’map=colormap;colormap([map(2:length(map),:);

map(1,:)]);’)

Axes objects have a very large number of settable properties that allow
you to customize virtually all aspects of a plot. Particularly useful ones
include:

• X/Y/ZTick: These properties allow you to control where tick marks
are placed and with X/Y/ZTickLabels, you can control what strings
are used to label them.

• X/Y/Zdir: You are an oceanographer and are used to seeing plots with
depth going down rather than up. By setting YDir to “reverse”, you
can flip the direction of the Y axis.

• ButtonDownFcn: This is a string that is executed whenever you click
on an axis (the actual axes, not the line in the axis). For instance, if
you want to animate your plots try,

subplot(2,2,1);plot(1:10);

set(gca,’buttondownfcn’,’for i=1:36,view(i*10,90);

drawnow;end’)

subplot(2,2,4);plot(magic(10));

set(gca,’buttondownfcn’,’for i=1:36,view(i*10,90);

drawnow;end’)

Click on each plot and see what happens.

• ColorOrder: Don’t like the default colors we choose for lines on a plot?
Use this property to set your own. The easiest way to use this property
is to set the default axes colororder of the figure window.

set(gcf,’defaultAxesColorOrder’,hot(16))
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hot(16) returns a 16x3 matrix that represents the red, green, and blue
values of 16 colors. Let’s contour peaks now and see what happens.

contour(peaks,16)

Virtually all the settable properties of objects can be given default values.
See Drea’s Desk in the April 1994 edition of the digest for details,

ftp://ftp.mathworks.com/pub/doc/tmw-digest/apr94

I could go on forever about interesting object properties (but I won’t)
but it is more enjoyable to experiment yourself. The reference manual has
verbose descriptions of each object and their properties so if you can’t figure
out what a property does from the name, that is your best bet. If you want
to put buttons and sliders on your figure windows, there is a manual called
“Building a Graphical User Interface” that talks about it in detail.

Happy matlabing.

-Drea-


