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Experimentally Induced Visual Projections into 
Auditory Thalamus and Cortex 

MRIGANKA SUR,* PRESTON E. GARRAGHTY, ANNA W. ROE 

Retinal cells have been induced to project into the medial geniculate nucleus, the 
principal auditory thalamic nucleus, in newborn ferrets by reduction of targets of 
retinal axons in one hemisphere and creation of alternative terminal space for these 
fibers in the auditory thalamus. Many cells in the medial geniculate nucleus are then 
visually driven, have large receptive fields, and receive input from retinal ganglion cells 
with small somata and slow conduction velocities. Visual cells with long conduction 
latencies and large contralateral receptive fields can also be recorded in primary 
auditory cortex. Some visual cells in auditory cortex are direction selective or have 
oriented receptive fields that resemble those of complex cells in primary visual cortex. 
Thus, functional visual projections can be routed into nonvisual structures in higher 
mammals, suggesting that the modality of a sensory thalamic nucleus or cortical area 
may be specified by its inputs during development. 

W FEAT IS INTRINSICALLY "VISUAL" 

about visual thalamus and cor- 
tex? Can visual projections be 

induced into nonvisual targets, and are these 
projections functional? The organization of 
the visual pathway in ferrets is similar to that 
in cats (1); the visual system of cats has been 
studied extensively both anatomically and 
physiologically. However, unlike cats, retin- 
ofugal projections in ferrets are very imma- 
ture at birth (2); we reasoned that it might 
be possible to induce extensive plasticity in 
the retinothalamic pathway by surgery in 
neonatal ferrets. 

Retinal targets were reduced in newborn 
ferret pups by ablating the superior collicu- 
lus and visual cortical areas 17 and 18 of 
one hemisphere (3) (Fig. 1). Ablating visual 
cortex causes the lateral geniculate nucleus 
(LGN) in the ipsilateral hemisphere to atro- 
phy severely by retrograde degeneration. 
Concurrently, alternative target space for 
retinal afferents was created in the medial 
geniculate nucleus (MGN) by either ablat- 
ing the inferior colliculus or sectioning fi- 
bers ascending to the MGN in the brachium 
of the inferior colliculus (4, 5). 

Department of Brain and Cognitive Sciences, Massachu- 
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Experiments were done on 10 normal 
adult ferrets and 16 operated ferrets that 
were reared to adulthood. In five operated 
animals, intravitreal injections of antero- 
grade tracers (6) revealed retinal projections 
to normal thalamic targets, including the 
surviving, shrunken LGN, as well as aber- 
rant projections to auditory thalamic nuclei 
(Fig. 2). The new retinal projection zones 
included patches of the dorsal, medial, and 
ventral (or principal) divisions of the MGN, 
as well as parts of the lateral posterior 
nucleus and the posterior nuclear complex 
adjacent to the MGN. The retinal projec- 
tions to the MGN complex occupied up to 
one-third of the volume of the MGN. We 
confirmed that the MGN in operated ani- 
mals projected normally to auditory cortex 
(Fig. 1), both by the transneuronal label in 
auditory cortex after intraocular injections 
(6) and by the extensive retrograde labeling 
of cells in the MGN after restricted injec- 
tions of horseradish peroxidase (HRP) or 
fluorescent retrograde tracers into primary 
auditory cortex (Fig. 2). 

These experiments also indicated that the 
ipsilateral MGN is the major route for visual 
inputs to reach primary auditory cortex. 
Along with receiving major thalamic projec- 
tions from the various divisions of the MGN 
(7), the primary auditory cortex in operated 
animals retained its connections with other 

auditory cortical areas. These included ipsi- 
lateral and contralateral connections with 
the second auditory area located lateral to 
primary auditory cortex and with areas on 
the ectosylvian gyrus located anterior, poste- 
rior, and ventral posterior to primary audi- 
tory cortex (8). 

We next recorded responses of cells elec- 
trophysiologically from the MGN in operat- 
ed animals (9) and compared visual respons- 
es there with responses from the surviving 
LGN in the same animals as well as from the 
LGN in normal animals. We studied the 
visual responses of single cells to various 
tests (10). We also tested the auditory re- 
sponses of cells in the auditory thalamus 
with click or tone stimuli delivered through 
earphones. 

In the LGN of normal animals, we re- 
corded X, Y. and W cells (Fig. 3A); X and Y 
cells were found in the A laminae, and Y and 
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Fig. 1. The experimental design for induction of 
visual projections to the auditory system in fer- 
rets. (Top) Projections in normal animals. The 
retina projects to LGN and superior colliculus 
(SC). The LGN projects to cortical areas 17 
(primary visual cortex or striate cortex) and 18 as 
well as to other extrastriate areas including area 19 
and the lateral suprasylvian (LS) cortex. In the 
auditory system, the inferior colliculus (IC) pro- 
jects to the MGN. The ventral and the dorsal 
division of the MGN project heavily to primary 
auditory cortex (Al), as well as to other cortical 
areas including the anterior auditory field (AAF) 
and the posterior auditory field (PAF) in cortex 
(29). (Bottom) If cortical areas 17 and 18 are 
ablated in neonatal ferrets, the LGN atrophies 
severely by retrograde degeneration. Ablating the 
superior colliculus as well, and deafferenting the 
MGN by ablating the inferior colliculus or sec- 
tioning fibers ascending from it, causes the retina 
to project to the MGN and hence to auditory 
cortex. 
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Table 1. Visual cells recorded in primary auditory 
cortex of operated animals. Cells in primary audi- 
tory cortex were considered to receive retinal 
input if they were driven by electrical stimulation 
through electrodes implanted at the optic chiasm. 
They were then characterized by their responsive- 
ness to visual stimuli. 

Cell characteristic Number 
of cells 

Driven electrically from optic chiasm 57 
Driven visually 38 

Oriented receptive fields 6 
Nonoriented receptive fields 23 
Full-field flashes 9 

W cells were found in the C laminae (11). In 
the LGN of operated animals, we recorded 
almost exclusively Y cells in the A laminae 
(Fig. 3B). We ascribe the loss of X cells in 
the LGN to the retrograde degeneration of 
geniculate X cells after ablation of visual 
cortex. A similar result has been shown in 
cats (12); in cats, neonatal visual cortical 
ablation also leads to transneuronal retro- 
grade loss of X cells in the retina (13), and 
we have confirmed a reduction in medium- 
sized retinal ganglion cells in operated fer- 
rets (14). 

In the MGN of operated animals, we 
recorded cells with long latencies to optic 
chiasm stimulation (Fig. 3C). The conduc- 
tion latencies of cells in the MGN of operat- 
ed animals (range of latencies 2.8 to 11.0 
Ms, mean latency 4.8 ins, for 94 cells in five 
animals) were significantly longer than the 
latencies of X and Y cells in the LGN of 
normal animals (range of latencies 1.5 to 3.0 
Ms, mean latency 2.0 ms, for 101 cells in five 
animals; P < 0.005, Mann-Whitney U test, 
for a comparison of mean latencies in indi- 
vidual normal and operated animals). The 
visual responses of cells in the MGN were 
often variable or "sluggish" (15); cells re- 

sponded best to large, flashing, or moving 
spots of light. Receptive fields were large, 
with diameters that were two to five times 
the diameters of normal LGN X cell recep- 
tive fields and up to twice the diameter of 
LGN Y cell receptive fields at similar eccen- 
tricities. Neurons dorsal in the MGN repre- 
sented the upper visual field, neurons locat- 
ed ventrally represented lower visual field, 
neurons located medially represented central 
visual field, and those located laterally repre- 
sented peripheral field. Receptive fields were 
on, off, or on-off center and circular. Visual- 
ly driven cells were not orientation selective, 
although 2 of 32 visual units were direction 
selective (16). We used HRP to retrogradely 
fill retinal ganglion cells that projected to the 
LGN or superior colliculus in normal ani- 
mals and to the LGN or MGN in operated 
animals (17). In normal adult ferrets, retinal 
ganglion cells include large-sized ax (Y-like) 
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cells that project to the LGN and superior 
colliculus, medium-sized [ (X-like) cells that 
project mainly to the LGN, and a heteroge- 
neous population of small and medium- 
sized (W-like) cells that project to the LGN 
and to the superior colliculus (18). In oper- 
ated ferrets, the projection to the MGN 
arose mainly from the small retinal ganglion 
cells with heterogeneous morphologies 
(Fig. 3D). Our physiological and anatomi- 
cal results thus suggest that the retinal gan- 
glion cells that project to the MGN in 
operated animals belong to the W class. 
However, we cannot rule out the possibility 
that at least some cells that give rise to the 
aberrant projection are X or Y cells that fail 
to develop normally. 

We also recorded from single units in 
primary auditory cortex of operated animals 
to determine their visual response features. 
Visual responses were strongest in the mid- 
dle layers, at depths of 600 to 900 [Lm. In 
primary auditory cortex, as in the MGN, 
cells had long latencies to optic chiasm 
stimulation; the latencies ranged from 5.5 to 
17.0 ins, with a mean latency of 9.0 ms (57 

cells recorded in six operated animals). For 
comparison, latencies to optic chiasm stimu- 
lation in primary visual cortex of normal 
animals, which is dominated by the moder- 
ate- and fast-conducting X and Y pathways 
through the LGN (1), ranged from 2.0 to 
6.5 ms, with a mean latency of 4.2 ms (63 
cells recorded in four normal animals). The 
latencies in normal animals were significant- 
ly shorter than those in operated animals 
(P < 0.005, Mann-Whitney U test, for a 
comparison of mean latencies in individual 
animals). Cells in primary auditory cortex 
that were driven by visual stimulation 
formed a subset of the cells that were driven 
by electrical stimulation of the optic chiasm 
(Table 1). Visual cells in auditory cortex had 
large receptive fields and preferred slowly 
flashing or moving large spots or bars. As in 
the MGN, receptive fields were confined to 
the contralateral hemifield (19). About 25% 
of the cells that we could drive visually (10 
of 38 units) showed direction selectivity. 
About 20% of cells showed orientation se- 
lectivity (Table 1) (Fig. 4) (20). All of the 
oriented cells had coextensive on and off 
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Fig. 2. Experimentally induced retinal projections (hatched areas) to the auditory thalamus and the 
connections of auditory thalamus with auditory cortex. The eye contralateral to the operated 
hemisphere projects to the surviving dorsal LGN (LGd) and ventral LGN (LGv) as well as to patches 
within the dorsal and ventral divisions of the MGN (MGd and MGV, respectively). Numbered 
parasagittal sections of the thalamus are shown. In the same animal, an injection of HRP in primary 
auditory cortex (Al) (the injection site is shown at top left) fills cells (indicated by dots) retrogradely in 
MGV, MGd, and the lateral division of the posterior complex (PO). Many cells in MGd and MGv overlie 
the retinal projection zone. 
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zones and responded to light onset and 
offset or to light and dark edges, and we 
classified them as complex (21, 22). 

We could drive few neurons in the MGN 
or primary auditory cortex of the operated 
hemisphere with acoustic stimuli. This result 
was not unexpected because we had deaffer- 
ented the MGN, but it confirmed that sev- 

ered axons did not regenerate from the 
inferior colliculus to the MGN, at least not 
in large numbers. We could reliably elicit 
auditory responses from the MGN and pri- 
mary auditory cortex in the unoperated 
hemisphere. We could not elicit responses to 
either electrical stimulation of the optic tract 
or visual field stimulation from cells in pri- 

mary auditory cortex in normal animals 
(n = 48 single and multiple units) (23). 

These results demonstrate that retinal 
projections can be induced to grow into 
nonvisual thalamus in ferrets and that these 
projections can impart visual fimction (that 
is, visual driving and discernible receptive 
field properties) to cells in nonvisual thala- 

Fig. 3. Electrophysiological results from the thal- 
amus of operated and normal animals and ana- 
tomical labeling of retinal ganglion cells that 
provide input to the thalamus in these animals. 
(A) The distribution of the latencies of firing, 
after electrical stimulation of the optic chiasm, of 
X, Y, and W cells in the LGN of normal animals. 
The histogram includes 107 cells pooled from five 
animals. X and Y cells are found in the A laminae, 
whereas the C laminae contain Y and W cells (11). 
(B) The LGN of operated animals contains Y cells 
(found in the A and C laminae), along with W 
cells (found in the C laminae), but very few X 
cells. Data are from 81 cells pooled from five 
animals. (C) Cells in the MGN of operated ani- 
mals (94 cells in five animals) have long latencies 
to optic chiasm stimulation compared to cells in 
the LGN of normal animals [same data as in (A)]. 
(D) Histogram of soma sizes of retinal ganglion 
cells filled retrogradely from an HRP injection in 
the thalamus of a normal animal and an operated 
animal. The injection in the normal animal was 
centered on the LGN, and the injection in the 
operated animal was centered on the MGN. Each 
bar in the histogram represents the ganglion cells 
in a given size range as a percentage of the total population of backfilled cells, 
Retinal input to the thalamus in normal ferrets (18) arises from a or Y-likc 
cells [these are, in general, large (L) cells with soma sizes of 400 [rm2 and 
larger), ,3 or X-like cells [generally medium (M)-sized cells with soma size, 
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between 300 and 400 prm2), and a heterogeneous population of W-like cells 
[generally small (S) cells with soma sizes smaller than 300 prm2, although this 
class can include medium-sized cells as well]. In operated ferrets, the cells 
that project to the MGN lie mainly in the small size range. 

A B Fig. 4. Receptive fields of visual cells in primary 
auditory cortex of an operated animal with visual 

Et / 4 \ projections induced into the auditory system and 
comparison with receptive fields in primary visual 
cortex of a normal animal. Cells were classified as 
nonoriented or oriented simple or complex ac- 
cording to the criteria of Hubel and Wiesel (21). 

+ + A// X / % Simple cells have oriented fields with separate on 
(+)and off (-) zones, whereas complex cells have 
oriented fields usually with coextensive on and off 
zones. (A) Cells recorded in area 17 of a normal 
animal. Receptive field locations shifted progres- 
sively higher in the visual field as recording 
locations moved from dorsal to ventral in area 17, 
consistent with the map of visual space in area 17 

A- \ [ \ t _in ferrets (30). The cross denotes the location of 
+ the area centralis. Small arrows within the recep- 

< 50 :,+ tive field denote the direction of stimulus move- 
50--\ ment yielding maximal response. Oriented line 

+ Tut\ within each receptive field extending beyond re- 
___________________________ ceptive field edges denotes lack of end-stopping; 

lines that terminate at receptive field edges indi- 
cate end-stopped fields. (B) In primary auditory 
cortex of an operated ferret, visual cells had either 
nonoriented (circular) or oriented (rectangular) 

XL receptive fields. The oriented fields were complex- 0 L a\ v like. Receptive fields moved from dorsal to ventral 
0.5 s in the visual field as recording locations moved 

Jt k lv 41 

from posteromedial to anterolateral in auditory 

50 cortex. (Inset) Peristimulus time histogram of viulclanpiayadtr otxrsodn 
to a bar sweeping across the receptive field at the 
orientation and directions indicated above the 

____________________________ histogram. Bar width, 10; bar length, 200; velocity, 
50/s; 50 stimulus sweeps; sps/s, spikes per second. 
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mus and cortex. We suggest that, at least 
early in development, the modality of senso- 
ry thalamus or cortex can be specified by its 
inputs. Unlike rodents that have transient 
retinal projections to nonvisual thalamus 
that can be made permanent (24), in new- 
born ferrets the retina does not project to 
auditory thalamus (25). The novel retinal 
projections to the auditory thalamus thus 
represent sprouting from retinofugal fibers. 
If temporal factors play a role in the plastici- 
ty we describe, those retinal ganglion cells 
that have yet to establish stable thalamic or 
midbrain connections at the time of the 
lesions-including the smaller retinal gangli- 
on cells that are generated last in the retina 
(26)-would be the most likely to innervate 
novel targets. Thus, surgery performed even 
earlier in development might induce more 
ganglion cells and perhaps other ganglion 
cell classes to reroute their axons as well. 
Alternatively, only certain retinal axons, in- 
trinsically different from others, may be able 
to recognize cues in the denervated MGN 
and sprout into the nucleus. 

Apart from the retinal cell classes that are 
involved in novel projections to the auditory 
system, our experiments provide a direct 
comparison of visual responses of neurons 
in the normal visual pathway with those 
induced into a pathway through nonvisual 
thalamus to cortex resembling those in pri- 
mary visual cortex. Ideally, an evaluation of 
visual response features in primary auditory 
cortex and in normal striate cortex, for 
example, should inivolve cells that receive 
input from the same class of retinal ganglion 
cell in both structures (27). Still, our experi- 
ments suggest that some of the transforma- 
tions on visual input performed in visual 
structures such as primary visual cortex in 
normal animals are possible as well in the 
primary auditory cortex in operated animals. 
One possibility consistent with our results is 
that visual inputs induce the development of 
specific intrinsic connections in primary au- 
ditory cortex resembling those in primary 
visual cortex. An alternative possibility is 
that intrinsic processing in primary auditory 
cortex may be similar in certain respects to 
that in primary visual cortex. This similarity 
might allow auditory cortex to process visu- 
al information; indeed, a parsimonious ex- 
planation of our results is that primary areas 
of sensory neocortex perform certain simi- 
lar, stereotypical operations on input regard- 
less of modality (28). 
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Reconstitution and Phosphorylation of Chloride 
Channels from Airway Epithelium Membranes 

HECTOR H. VALDIVIA, WILLIAM P. DUBINSKY, ROBERTO CORONADO 

Airway epithelial chloride secretion is controlled by the apical-membrane chloride 
permeability. Purified apical-membrane vesicles from bovine tracheal epithelium have 
now been shown to contain finctional chloride channels by using the planar-bilayer 
technique. Three types of chloride channels were observed; a voltage-dependent, 
calcium-independent, 71-picoSiemen (in 150 mM NaCl) channel accounted for more 
than 80 percent of the vesicular chloride conductance and was under strict control of 
phosphorylation. The channel underwent a fast rundown in less than 2 to 3 minutes of 
recording, and reactivation required in situ exposure to a phosphorylating "cocktail" 
containing the catalytic subunit of the adenosine 3',5'-monophosphate (cAMP)- 
dependent protein kinase. Mean open time and open probability were increased after 
phosporylation, whereas slope conductance remained unchanged. Thus, metabolic 
control of tracheal chloride single channels can now be studied in vitro. 

C HLORIDE SECRETION THROUGH 

apical-membrane airway epithelium 
is a central process in respiratory 

tract fluid formation and mucociliary clear- 
ance. In cystic fibrosis (CF), a generalized 
exocrinopathy characterized by impaired 
CP- secretion (1), concentrated mucus col- 
lects in the respiratory tract and leads to 
recurrent infection, ultimately causing pa- 
tient death. In normal cells, Cl- accumulates 
against its electrochemical equilibrium via a 
co-transport mechanism (Cl--Na' and pos- 
sibly Cl--K+) located in the basolateral 
membrane. Chloride leaves the cell through 
apical membrane CF- channels, diffusing 
down its electrochemical gradient (2). A 
variety of hormones, neurotransmitters, and 
pharmacological agents with mechanisms of 
action that are mediated by elevation of 
Ca2' (3) or cAMP (4) leads to an increase in 
Cl- secretory activity. Electrophysiological 
studies in human tracheal epithelium have 
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shown that cAMP promotes opening of CF- 
channels by a mechanism that involves phos- 
phorylation of the channel protein or of a 
closely associated protein (5). Direct expo- 
sure of human tracheal cell patches to a 
phosphorylating "cocktail" containing the 
catalytic subunit of cAMP-dependent kinase 
results in opening of Cl- channels in normal 
but not in CF tissue. Thus the phosphoryl- 
ation target of protein kinase A is the most 
likely site of the defect in CF (5). As a first 
step to identify this phosphorylation site in 

Cl--secreting epithelium, we developed an 
in vitro assay for Cl- channels where puri- 
fied components can be selectively added. 
We report the use of planar bilayers (6) to 
record phosphorylated and nonphosphory- 
lated forms of the Cl- channel of purified 
apical-membrane vesicles of bovine trachea 
(7). The method requires little material com- 
pared to isotopic flux measurements (8), and 
membrane vesicles can be stored frozen for 
weeks without loss of CF- channel activity. 

We encountered five channel types in six 
different membrane preparations of bovine 
trachea (Table 1). In 15 of 56 recordings we 
observed two anion-selective types (52 and 
140 pS) and two cation-selective types (83 
and 201 pS). Anion and cation channels 
were identified as such on the basis of 
reversal potentials in asymmetric solutions. 
The anion-selective channels were sensitive 
to 4,4'-diisothiocyanostilbene-2,2'-disul- 
fonate (DIDS) (9), and cation-selective 
channels were sensitive to amiloride at high 
concentration (>2 mM). The 52-pS anion 
channel showed strong rectification and an 
open probability that increased at positive 
potentials. The 140-pS anion channel re- 
mained open at all tested potentials. In 40 of 
56 recordings we observed a 71-pS anion 
channel, which is the focus of this report. A 
large osmotic gradient across the planar 
bilayer was crucial in the detection of this 

Table 1. Channel types in purified bovine airway epithelium membranes. n, total number of recordings 
of the channel type. Slope conductance was measured near the reversal potential (Erev) for the indicated 
NaCl gradient. Permeability ratios (PCj/PNa) were calculated from the Goldman equation without 
correction for ionic activities. Results from successful recordings (n = 56) from a total of 72 trials from 
six membrane preparations are shown. 

Type Conductance Erev PCI/PNa or [NaCI] (M) 
(pS + SD) (mV ? SD) PNa/PCl (+ SD) (cis/trans) 

Anion 130 ? 12 +20 ? 2.5 15 ? 5 0.41/0.16 40 
71?4 0 - 0.15/0.15 2 

Anion 52 ? 5 +12 ? 1.2 4 ? 0.2 0.41/0.16 5 
Anion 140 ? 6 +18 + 0.8 7 ? 0.5 0.41/0.16 2 

Cation 83 ? 2 -27 ? 0.4 50 ? 3 0.45/0.15 4 
Cation 201 ? 10 -50 ? 2.4 >100 0.35/0.05 4 
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