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1. Introduction

n “Software Engineering means application of 
systematic, disciplined, quantifiable approach to 
development, operation and maintenance  of 
software”  [IEEE90]

n Software Process
n Systematic and disciplined approach
n Quantification

n Software Process
n Systematic and disciplined approach
n Quantification
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1. Introduction

Software 
Process

Resources

Product Idea Software Product

Software Process 
Complexity

To improve the 
software Process

Human 
involvement

“Experimentation provides a systematic, disciplined, 
quantifiable and controlled way of evaluating human-
based activities” Wholin 2000

“Experimentation provides a systematic, disciplined, 
quantifiable and controlled way of evaluating human-
based activities” Wholin 2000
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Experimentation in Software 
Engineering

n Zelkowitz (1997) conclusions over 612 papers: 
n The 30% of papers did not include experimentation and 

they needed it (20% in other sciences)
n Only the 10% of papers that include experimentation 

have  controlled experimentation methods

n Tichy (1995) conclusions over 400 paper:
n The 40% of papers did not include experimentation and 

they required empirical validation

n Zelkowitz (1997) conclusions over 612 papers: 
n The 30% of papers did not include experimentation and 

they needed it (20% in other sciences)
n Only the 10% of papers that include experimentation 

have  controlled experimentation methods

n Tichy (1995) conclusions over 400 paper:
n The 40% of papers did not include experimentation and 

they required empirical validation

Introduction
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Experimentation in Software 
Engineering

n ¿Why in software engineering a lot of asserts aren’t 
validated?
n It is a new science
n They need to obtain good quantitative data to make 

validations, but it often is hard

The way that can convert software engineering claims
into validated facts it is the experimental method

n ¿Why in software engineering a lot of asserts aren’t 
validated?
n It is a new science
n They need to obtain good quantitative data to make 

validations, but it often is hard

The way that can convert software engineering claims
into validated facts it is the experimental method

Introduction
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¿ ¿Why Software Engineer don’t use 
Experimentation?

If yesterday you said an important claim 
that today is not important, that is 
because it does not well defined

The technology changes 
speedily

The shows don’t prove nothingThe shows  are enough

It is possible to do a significant 
experiment that is not expensive 

The experiments are 
expensive

The software engineers don’t contrast 
their claims as much as other scientist

The level of 
experimentation is enough 

The software engineers have to observe 
the phenomenon, to formulate 
hypothesis and to contrast them

Scientific method is not 
suitable 

Introduction
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¿Why Software Engineer don’t use 
Experimentation?

n The software engineers think that 
n The scientific method is not necessary in software 

engineering
n ¿How testing the ideas against real world? 

n There is not a background of statistical knowledge, 
so it is very difficult to design an experiment or to 
analyse the experimental results

n There is not enough culture and bibliography about 
empirical software engineering 

n The software engineers think that 
n The scientific method is not necessary in software 

engineering
n ¿How testing the ideas against real world? 

n There is not a background of statistical knowledge, 
so it is very difficult to design an experiment or to 
analyse the experimental results

n There is not enough culture and bibliography about 
empirical software engineering 

Introduction
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¿Why Software Engineer don’t use 
Experimentation?

n The experimentation in Software Engineering is more 
difficult than in other sciences, because it is 
necessary a lot of variables
n ¿It  is a valid raison?   

n To publish a experimental study of Software 
Engineering is more difficult than in other sciences. 
Furthermore, the empirical studies that are 
replications era not as important as new  studies.  
n But other sciences have two sides:  Theory and Practice and 

both are related

n The experimentation in Software Engineering is more 
difficult than in other sciences, because it is 
necessary a lot of variables
n ¿It  is a valid raison?   

n To publish a experimental study of Software 
Engineering is more difficult than in other sciences. 
Furthermore, the empirical studies that are 
replications era not as important as new  studies.  
n But other sciences have two sides:  Theory and Practice and 

both are related

Introduction
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Resources

Software Engineering
A Laboratory Science

Researcher’s role: To understand the nature of 
Processes and Products in the context of the 
system

Process 
Products

Practitioner’s role: To build improve systems, 
using knowledge 
(Basili)

symbiotic

Introduction
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In Conclusion
n We know that Software Nature:

n It is development not production
n The discipline technologies are human-based
n There are a large number of variables that cause differences à

¿How measure their effects?

n We know that Software Nature:
n It is development not production
n The discipline technologies are human-based
n There are a large number of variables that cause differences à

¿How measure their effects?

Software Engineering needs more experimentation:
n To Confirm Theories and “Conventional Wisdom”

n ¿To limit McCabe’s cyclomatic measure assure quality?
n To Explore Relationships

n ¿How does the design complexity affect the productivity of the 
designers?

n To Evaluate the accuracy of Models
n ¿ Does the PF predict how large the code may be?

n To Validate Measures
n ¿Is the number of methods a valide measure of class complexity?

Software Engineering needs more experimentation:
n To Confirm Theories and “Conventional Wisdom”

n ¿To limit McCabe’s cyclomatic measure assure quality?
n To Explore Relationships

n ¿How does the design complexity affect the productivity of the 
designers?

n To Evaluate the accuracy of Models
n ¿ Does the PF predict how large the code may be?

n To Validate Measures
n ¿Is the number of methods a valide measure of class complexity?

Introduction
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n The engineering and empirical methods 
(scientific methodl)
n Observing the world
n Proposing a model or other solutions
n Measuring and analysing
n Validating or invalidating the proposed model

n The engineering and empirical methods 
(scientific methodl)
n Observing the world
n Proposing a model or other solutions
n Measuring and analysing
n Validating or invalidating the proposed model

Chemistry

Phisique

Mathematiques

Software E.

2. Research Methods

n The analytic method
n Propose a formal theory or set of axioms
n Develop and derive results
n If possible, verify the results empirically

n The analytic method
n Propose a formal theory or set of axioms
n Develop and derive results
n If possible, verify the results empirically

Type of studies
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Research Paradigms

n Quantitative Research
n Controlled measurement
n Objective
n Verification oriented

n Quantitative Research
n Controlled measurement
n Objective
n Verification oriented

n Qualitative Research
n Naturalistic and incontrolled 

observations
n Subjective

n Discovery oriented

n Qualitative Research
n Naturalistic and incontrolled 

observations
n Subjective

n Discovery oriented

n Study

n An act to test a hypothesis or discover something
n Can include quantitative and qualitative research

n Study

n An act to test a hypothesis or discover something
n Can include quantitative and qualitative research

Type of studies
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Research Paradigms

Qualitative Research
v We study, using a meeting, the reason because increase 

the productivity when a team have used a new 
language.

v This would be a Qualitative study about thinks like  
programs logic  and human reasoning.  

v The analysis will be about the words which can be 
organized in order to the researcher can test, compare,
analyze and identify patrons . 

Qualitative Research
v We study, using a meeting, the reason because increase 

the productivity when a team have used a new 
language.

v This would be a Qualitative study about thinks like  
programs logic  and human reasoning.  

v The analysis will be about the words which can be 
organized in order to the researcher can test, compare,
analyze and identify patrons . 

Type of studies
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Research Paradigms

Quantitative Research
v We study, using a quantitative study, the reason 

because increase the productivity when a team have 
used a new language.

v I must to define the hypothesis, to plan the process,  
to select the independent and dependent variables, 
and to control extraneous factors.

v The analysis will be about the numeric values 
observed as result of experiment execution, using 
statistical techniques  to test the hypothesis.

Quantitative Research
v We study, using a quantitative study, the reason 

because increase the productivity when a team have 
used a new language.

v I must to define the hypothesis, to plan the process,  
to select the independent and dependent variables, 
and to control extraneous factors.

v The analysis will be about the numeric values 
observed as result of experiment execution, using 
statistical techniques  to test the hypothesis.

Type of studies
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Empirical Strategies

Real WorldReal World

Type of studies

Observed DataObserved Data

ModelModel

HypothesisHypothesis

.S
tatistics

.S
tatistics

Statistical InferenceStatistical Inference

Empirical StrategiesEmpirical Strategies
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Empirical Strategies

First Level: Hypothesis (Model)  à Controlled 
experiments in laboratory, with replication 
possibility

First Level: Hypothesis (Model)  à Controlled 
experiments in laboratory, with replication 
possibility

Type of studies

Second Level: Hypothesis (Model)à in a 
real environment, using observational 
studies (case studies)

Second Level: Hypothesis (Model)à in a 
real environment, using observational 
studies (case studies)

Thirth  Level: Model applied in all real process, 
we must made a historical file (surveys). In the 
futur we have to test the Model with this file.  

Thirth  Level: Model applied in all real process, 
we must made a historical file (surveys). In the 
futur we have to test the Model with this file.  
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n Interviews
n Questionnaires
n Interviews
n Questionnaires

Empirical Strategies

n Surveyn Survey

Type of studies

n Retrospective

n The team are
n Descriptive
n Explicative
n Exploratory

n Retrospective

n The team are
n Descriptive
n Explicative
n Exploratory

n Data collection

n To avoid confounded 
factors

n Statistical Analysis
n Conclusions

n Generalization is difficult

n Data collection

n To avoid confounded 
factors

n Statistical Analysis
n Conclusions

n Generalization is difficult

n Case Studyn Case Study

n Observational

n With little control
n The team are

n To compare
n To establish relationship

n In a specific time-space

n Observational

n With little control
n The team are

n To compare
n To establish relationship

n In a specific time-space

nDepending of the degree of control over datanDepending of the degree of control over data



n10

© E. Manso U. de Valladolid 19

Empirical Strategies

Type of studies

n Experimentn Experiment

n Is a Process
n Statistical Analysis

n It is possible replication
n To confirm

n To generalize

n Is a Process
n Statistical Analysis

n It is possible replication
n To confirm

n To generalize

n Controlled Process
n The team are

n To Confirm Theories and 
“Conventional Wisdom”

n To Explore Relationships
n To Evaluate the accuracy 

of Models
n To Validate Measures

n Controlled Process
n The team are

n To Confirm Theories and 
“Conventional Wisdom”

n To Explore Relationships
n To Evaluate the accuracy 

of Models
n To Validate Measures

nDepending of the degree of control over datanDepending of the degree of control over data
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Empirical Strategies

Type of studies

Experiment
We want to compare two inspection methods, in a 
laboratory environment, that is, selecting variables 

and controlling extraneous factors, 

Experiment
We want to compare two inspection methods, in a 
laboratory environment, that is, selecting variables 

and controlling extraneous factors, 

Exploratory Survey

Why the developers think that a technique A is better 
than other B? 

Exploratory Survey

Why the developers think that a technique A is better 
than other B? 

Case study (Relationship)
We want to build a model to predict the number of 

faults in testing, in a enterprise 

Case study (Relationship)
We want to build a model to predict the number of 

faults in testing, in a enterprise 
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Empirical Strategies Factors

Type of studies

§ Execution Control
How much the researcher control the studie? 

§Measurement Control 
The degree to wich the researcher can decide upon 
wich measures to be collected 
¿In a survey?

§ Investigation Cost
related with the factors above

§ Easy Replication 
involves repeating the investigation under identical 
conditions, in another population

§ Execution Control
How much the researcher control the studie? 

§Measurement Control 
The degree to wich the researcher can decide upon 
wich measures to be collected 
¿In a survey?

§ Investigation Cost
related with the factors above

§ Easy Replication 
involves repeating the investigation under identical 
conditions, in another population
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Empirical Strategies 
Comparison

YesYesNoMeasurement 
Control

Low

Medium

No

Case Study

High

Low

No

Survey ExperimentFactor

HighInvestigation 
Cost
Easy 

Application

Execution 
Control

High

Yes

Type of studies
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Experimental Studies
(Another Classification)

n Controlled experiment
n To demonstrate feasibility in small

n Quasi-experiments
n To simulate the effects of the treatment variables in a 
realistic environment

Driven by hypothesis

Type of studies
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Observational Studies
(Another Classification)

Variable ScopesDriven by 
understanding

Case qualitative 
study

Case studyOne

More than one

# of sites

Field qualitative  
study

Field study

No a priori defined
Deduction: verbal 
propositions

A priori defined
Deductions: 
Mathematical 
formal logic

Type of studies
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Controlled Experiment

Process
X1...XnX1...Xn Y1...YrY1...Yr

Independent V. Dependent V.

C1...CmC1...Cm

r1...rkr1...rk

Controlled V.

Randomized V.

Extraneous Factors:
Bias and high 
Variability

TreatmentsTreatments

Type of studies Experimental Studies
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Basic Concepts

n Independent variables (factor, state, predictand)
n Which we can control and change in the experiment

n Dependent variables (response, predictor)
n They measure the effect of the treatments and appear in the 

Hypothesis test
n Controlled variables 

n They can be controlled by the design
n Randomized variables 

n They are considered as random error in the design
n Confounded variables 

n They aren’t controlled and change together with a independent 
variable

n Independent variables (factor, state, predictand)
n Which we can control and change in the experiment

n Dependent variables (response, predictor)
n They measure the effect of the treatments and appear in the 

Hypothesis test
n Controlled variables 

n They can be controlled by the design
n Randomized variables 

n They are considered as random error in the design
n Confounded variables 

n They aren’t controlled and change together with a independent 
variable

To convert 
in

Types of studies Experimental Studies
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Basic Concepts

n Treatment: each combination of  the levels of different 
independent variables. If there is only one, each level will be 
a treatment.

n Population of subjects: we can generalize the results over the 
population

n Sample: subjects selected from the population ( ¿subjects 
selection?à planning)

n Objects: objects of the study: products, process, resources, 
models, etc. (Is a part of the Goal definition template)

n Experiment: set of trials (treatment + subject +object)

n Treatment: each combination of  the levels of different 
independent variables. If there is only one, each level will be 
a treatment.

n Population of subjects: we can generalize the results over the 
population

n Sample: subjects selected from the population ( ¿subjects 
selection?à planning)

n Objects: objects of the study: products, process, resources, 
models, etc. (Is a part of the Goal definition template)

n Experiment: set of trials (treatment + subject +object)

Types of studies Experimental Studies
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Experiment Example

Analyze a new design tool and a old design tool, for the 
purpose of to compare their impact with respect to productivity,
from the point of view of developers, in the context of the 
university students.

¿ Dependent Variable?¿ Dependent Variable?
Productivity  ¿measurement?Productivity  ¿measurement?

¿ Independent Variables?¿ Independent Variables?
New Tool / Old ToolNew Tool / Old Tool

¿Extraneous Factor?¿Extraneous Factor?
Environment

Product Types

¿Any More?

Environment

Product Types

¿Any More?

Types of studies Experimental Studies

Population?  Objects? Sample?Population?  Objects? Sample?
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Experiment Example

Analyze the object oriented design method vs. process 
method, for the purpose of to evaluate with respect to 
quality, from the point of view of developers, in the context 
of the university students.

¿ Dependent Variable?¿ Dependent Variable?
QualityQuality

¿ Independent Variables?¿ Independent Variables?

Development method

OO vs. Process oriented

Development method

OO vs. Process oriented

¿Extraneous Factor?¿Extraneous Factor?
Experience

Type of product

Environment...

Experience

Type of product

Environment...

Experimental StudiesTypes of studies
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Experiment

Population: 

n Students

n Professionals

Population: 

n Students

n Professionals

Objects

n Toys

n Real product

Objects

n Toys

n Real product

¿Control of Extraneous 
Factor?

¿Control of Extraneous 
Factor?

Experience: 4 levels

Product Types: one type

Environment: one type
¿Any More?

Experience: 4 levels

Product Types: one type

Environment: one type
¿Any More?

Types of studies Experimental Studies

¿Experiment Validation? ¿ Conclusions Generalization? ¿Experiment Validation? ¿ Conclusions Generalization? 

samplesample
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3. Experimentation Process

Discussion & 
Conclusions

Discussion & 
Conclusions Summary

Experimentation Process

Summary

Experiment 
definition

Experiment 
definition

PlanningPlanning

OperationOperation

Analysis & 
Interpretation
Analysis & 

Interpretation

Goals

Experiment 
design

Data
Pilot studyPilot study

ThreatsThreats
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3.1 Experiment Definition 
¿Why?

Goal definition template
n Analyze <object of the study>
n For the purpose of <purpose>
n With respect to <quality focus>
n From the point of view of 

<perspective>
n In the context  of <context>

Experiment definition:
n The PBR and checklist techniques
n Evaluation
n Effectiveness and efficiency 
n The researcher

n M. Sc and Ph. D students

DefinitionExperimentation Process
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Experiment PlanningExperiment 
definition

3.2 Experiment Planning 
¿How?

Context 
selection Hypotesis

formulation Variables 
selection

Subjects 
selection

Experiment
DesignInstrumen-

tationValidity 
evaluationExperiment 

design

PlanningExperimentation Process
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Context Selection

Off-line vs. On-line Reduces the risk 
Produces extra costs

Students vs. 
Proffesional

Reduces the costs 
Easier to control
Context generalization?

Toy vs. Real 
problem

Reduces the costs & time 
Context generalization?

Specific vs. 
General

Reduces the costs & time 
Context generalization?...

Planning. ContextExperimentation Process
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Experiment Context 
Characterization

Blocked subject -
object study

Multi-test within 
object study

More 
than one

Multi-object variation 
study

Single object studyOne# 
subjects 
per 
object

More than oneOne 

#Objects
Characterization
(Basili)

Planning. ContextExperimentation Process
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Experiment Context 
Conclusion

Planning. ContextExperimentation Process

C1. “Be sure to specify as much of the industrial context 
as possible. In particular, clearly define the entities, 
attributes, and measures that are capturing the 
contextual information”

C1. “Be sure to specify as much of the industrial context 
as possible. In particular, clearly define the entities, 
attributes, and measures that are capturing the 
contextual information”

It is necessary in 
n Observational and 
n Experimental studies

It is necessary in 
n Observational and 
n Experimental studies

C2. “If  a specific hypothesis is being tested, state it clearly 
prior to performing the study and discuss the theory from 
which it is derived, so that its implication are apparent”

C2. “If  a specific hypothesis is being tested, state it clearly 
prior to performing the study and discuss the theory from 
which it is derived, so that its implication are apparent”
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Experiment Context 
Conclusion

Planning. ContextExperimentation Process

C3. “If the research is exploratory, state clearly and, 
prior to data analysis what questions the 
investigation is intended to address and how it will 
address them”

C3. “If the research is exploratory, state clearly and, 
prior to data analysis what questions the 
investigation is intended to address and how it will 
address them”

C4. “Describe research that is similar to, or has a 
bearing on, the current research and how current work 
relates it”

C4. “Describe research that is similar to, or has a 
bearing on, the current research and how current work 
relates it”
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Hypothesis Formulation

Experimentation Process

Derived from Experiment definition: one or more H0Derived from Experiment definition: one or more H0

Planning. Hypothesis

Goal definition template 
n Analyze The PBR and checklist techniques(CKL)
n For the purpose of Evaluation With respect to 
efficiency and effectiveness 
n From the point of view of The researcher
n In the context  of M. Sc and Ph. D students

Goal definition template 
n Analyze The PBR and checklist techniques(CKL)
n For the purpose of Evaluation With respect to 
efficiency and effectiveness 
n From the point of view of The researcher
n In the context  of M. Sc and Ph. D students

H01 : PBR efficiency = CKL efficiency H01 : PBR efficiency = CKL efficiency 

H02 : PBR effectiveness = CKL effectiveness H02 : PBR effectiveness = CKL effectiveness 
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Hypothesis Formulation

H0: The observed vehicle is a car 

H1: The observed vehicle is not a car à
Critical Area (C.A .)= {#wheels ≥ 5 or #wheels ≤3}

H0: The observed vehicle is a car 

H1: The observed vehicle is not a car à
Critical Area (C.A .)= {#wheels ≥ 5 or #wheels ≤3}

If we observe 3 or less wheels  or 5 or more wheels we 
reject H0   à ¿error?

If we observe 4 wheels we don’t reject H0      à ¿error?

If we observe 3 or less wheels  or 5 or more wheels we 
reject H0   à ¿error?

If we observe 4 wheels we don’t reject H0      à ¿error?
α= p(number of wheels ≠ 4/ car )

β= p(number of wheels = 4/ not car )

Experimentation Process Planning. Hypothesis
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Hypothesis Testing

H0: Null Hypothesis (Conservative, there is no treatment effect)

H1: Alternative Hypothesis    à Critical Area (C.A.)

H0: Null Hypothesis (Conservative, there is no treatment effect)

H1: Alternative Hypothesis    à Critical Area (C.A.)

Test Power =
P(C.A./H1)

α Error (significance 
level) =  P(C.A./H0)

Reject H0

(Significant result)

β Error = 
P(¬C.A./H1)

1- αNon reject H0

(Non significant result)

H1 is trueH0 is trueReally We 
decide...

Experimentation Process

Derived from Experiment definition: one or more H0Derived from Experiment definition: one or more H0

Planning. Hypothesis
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Hypothesis Testing
H0: Null Hypothesis

We need to select a “random measure” (m) of the effect 
of treatment: the estimate
n Time to understand a document

n Percentage of defects detected in a document

Parametric Test à the distribution pattern of m is 
knowledged 
n Time is N(µ,σ)
n Percentage is B(n,p) (aprox. N(p, (p*(1-p) 1/2) 

n Non Parametric Test à the distribution pattern of 
m is acknowledged 

H0: Null Hypothesis
We need to select a “random measure” (m) of the effect 
of treatment: the estimate
n Time to understand a document

n Percentage of defects detected in a document

Parametric Test à the distribution pattern of m is 
knowledged 
n Time is N(µ,σ)
n Percentage is B(n,p) (aprox. N(p, (p*(1-p) 1/2) 

n Non Parametric Test à the distribution pattern of 
m is acknowledged 

Experimentation Process Planning. Hypothesis
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Hypothesis Test: Performance
1. To define Hypothesis H0 and H1

2. To select the suitable estimate 
3. To determine the error α (usually 0,05 or 0,01)
4. Using 1, 2 and 3 to determine the Critical Area (C.A.)
5. Using n, H0 and H1, and the C.A. to determine β
6. To reject H0 or not from the observed (estimation)
7. value of estimate 

1. To define Hypothesis H0 and H1

2. To select the suitable estimate 
3. To determine the error α (usually 0,05 or 0,01)
4. Using 1, 2 and 3 to determine the Critical Area (C.A.)
5. Using n, H0 and H1, and the C.A. to determine β
6. To reject H0 or not from the observed (estimation)
7. value of estimate 

Experimentation Process Planning. Hypothesis

α1 = 0.05 à β = β1
α2 = 0.10 à β = β2 < β1
α3 = 0.01 à β = β3 > β1

α1 = 0.05 à β = β1
α2 = 0.10 à β = β2 < β1
α3 = 0.01 à β = β3 > β1
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Hypothesis Testing

n 1- β (Test  Power): probability that the test will reveal 
a true pattern if H0 is false
n The pattern when H0 is false can be unknown à ¿1- β?

n We should choose a test with as high power as 
possible (increasing n, for example)

n 1- β depends on α, sample size (n) and effect size
n 1- β is better when we have test parametric

n 1- β (Test  Power): probability that the test will reveal 
a true pattern if H0 is false
n The pattern when H0 is false can be unknown à ¿1- β?

n We should choose a test with as high power as 
possible (increasing n, for example)

n 1- β depends on α, sample size (n) and effect size
n 1- β is better when we have test parametric

Experimentation Process Planning. Hypothesis
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Mean,Std. dev.
0,7
15,7
-12,0,7

-47 -27 -7 13 33 53
0

0,01

0,02

0,03

0,04

0,05

0,06

T

f(T)

µo=0
σΤ =7

Hypothesis Testing

µ=15
σΤ =7

Experimentation Process

T=      = estimate with known pattern N(µ, σΤ) when  Ho is true

Ho: µ = 0 H1 : µ > µo

C.A.
α0

β0

µ1= 25 
µ0= 0
α= α0

X

α≤ α0
β= β0 β< β0

µ0= -12.0
µ1= 15

Ho: µ ≤ 0

Planning. Hypothesis
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Hypothesis Testing
Conclusions

Experimentation Process

D1. “Identify the population from which the subjects 
and objects are drawn ”
D1. “Identify the population from which the subjects 
and objects are drawn ”

Planning. Hypothesis

D2.”Define the process by which the subjects and 
objects were selected”
D2.”Define the process by which the subjects and 
objects were selected”
n The conclusion may be useful if the sample are
representative

nWe must to exclude the students with a lot of 
experience in the experiment. They are not 
representative.

n The conclusion may be useful if the sample are
representative

nWe must to exclude the students with a lot of 
experience in the experiment. They are not 
representative.
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Hypothesis Testing
Conclusions

Experimentation Process

D3. “Define the process by subjects and objects are 
assigned to treatments
D3. “Define the process by subjects and objects are 
assigned to treatments

Planning. Hypothesis

D4. “Restrict yourself to simple study designs or, at 
least, to designs that are fully analyses in the statistical 
literature. If you are not using a well-documented 
design and analysis method, you should consult a 
statistician to see whether yours is the most effective 
design for what you want to accomplish”

D4. “Restrict yourself to simple study designs or, at 
least, to designs that are fully analyses in the statistical 
literature. If you are not using a well-documented 
design and analysis method, you should consult a 
statistician to see whether yours is the most effective 
design for what you want to accomplish”



n24

© E. Manso U. de Valladolid 47

Hypothesis Testing
Conclusions

Experimentation Process

D5. “Define the experiment unit”D5. “Define the experiment unit”

Planning. Hypothesis

D6. “For formal experiments, perform a pre-experiment 
or precalculation to identify or estimate the minimum 
required sample size”

D6. “For formal experiments, perform a pre-experiment 
or precalculation to identify or estimate the minimum 
required sample size”

n The sample size determine the test powern The sample size determine the test power

n If you are evaluating teams but you get measures 
from each team member ¿what it is the experimental 
unit? à team

n If you are evaluating teams but you get measures 
from each team member ¿what it is the experimental 
unit? à team
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Variables Selection

n Independent variables
n Which we can control and change in the experiment

n Dependent variables
n They measure the effect of the treatments and appear in the 

Hypothesis test
n Controlled variables 

n They can be controlled by the design
n Randomized variables 

n They are considered as random error in the design
n Confounded variables 

n They aren’t controlled and change together with a independent 
variableTo convert 

in

Experiment Process Planning. Variables
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Subjects Selection

n ¿How to select the subjects?
n Can be probability or non-probability 

n Simple random sampling, systematic sampling …
n Convenience sampling, quota sampling …

n ¿Size of the sample? 
n If there is a large variability, a larger size we need

The Sample from the Population must be representative

n ¿How to select the subjects?
n Can be probability or non-probability 

n Simple random sampling, systematic sampling …
n Convenience sampling, quota sampling …

n ¿Size of the sample? 
n If there is a large variability, a larger size we need

The Sample from the Population must be representative

Experiment Process Planning. Subjects
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Experiment Design
Choice

n The experiment design define trials organization
n Is related with the analysis, interpretation and 

conclusions of the experiment

n The experiment design define trials organization
n Is related with the analysis, interpretation and 

conclusions of the experiment

Experiment Process

n ¿How many independent variables are 
there?
n Only one à Simple experiments
n More than one à Factorial experiments

n ¿How many treatments per subject? 
n ¿How “to control” extraneous factors?
n ¿How “to combine” the independent variables 

levels? à # treatments

Relevant

Questions

Planning. Design

Repeated measures

Blocking Randomization

Crossed design 
Nested design

The answers will depend on the validity Threats we want to controlThe answers will depend on the validity Threats we want to control
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General Design Principles
Randomization Blocking   Balancing

Randomization is used to
n Assure the observations are from independent random 

variables
n Allocate objects, subjects and in which order the test are 

performed 
n Average out the effect of a extraneous factor

Randomization is used to
n Assure the observations are from independent random 

variables
n Allocate objects, subjects and in which order the test are 

performed 
n Average out the effect of a extraneous factor

Experiment Process Planning. Design

Blocking 
n Blocking subjects is used to eliminate the undesired effect in 

the comparison among the treatments of a extraneous factor 
that we are not interested in
n Within a block the undesired effect is the same, and we 

can study the effect of treatments on that block
n Blocking increases the precision of the experiment
n Blocking treatments is used to reduce de amount of 

treatments for subject

Blocking 
n Blocking subjects is used to eliminate the undesired effect in 

the comparison among the treatments of a extraneous factor 
that we are not interested in
n Within a block the undesired effect is the same, and we 

can study the effect of treatments on that block
n Blocking increases the precision of the experiment
n Blocking treatments is used to reduce de amount of 

treatments for subject
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General Design Principles
Randomization Blocking   Balancing

Experiment Process Planning. Design

Balancing
n The number of subjects per treatment is the same
n It is not necessary, but is desirable from the point of view of 

statistical analysis of the data.

Balancing
n The number of subjects per treatment is the same
n It is not necessary, but is desirable from the point of view of 

statistical analysis of the data.

Treatment1 Treatment2 Treatment3 Treatment4
Subject3 Subject5 Subject4 Subject6
Subject8 Subject2 Subject1 Subject11

Subject10 Subject7 Subject13 Subject14

Subject15 Subject16 Subject9 Subject12

Randomized and Balanced 

Treatment1 Treatment2 Treatment3 Treatment4
Subject3 Subject5 Subject4 Subject6
Subject8 Subject2 Subject1 Subject11

Subject10 Subject7 Subject13 Subject14

Subject15 Subject16 Subject9 Subject12

Randomized and Balanced 
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General Design Principles
Experiment Process Planning. Design

The principal Claims of the experiment design 
are:
n To reduce the variability
n To control extraneous factors
n To reduce the different threats to experiment 

validity as much as possible

The principal Claims of the experiment design 
are:
n To reduce the variability
n To control extraneous factors
n To reduce the different threats to experiment 

validity as much as possible
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Experiment Design
A Taxonomy

Random groups

Random blocks (matched groups)

Randomization

Counterbalancing (2 levels)

Latin squares (3 or more levels)
Within Subjects 
(WS)

Between Subjects 
(BS)

Simple

Factorial
Complete 
(2 factors)

Partial Fractional

BS x BS

BS x WS

WS x WS

Complete confounding

Partial confounding

Experiment Process Planning. Design
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Simple Design Between Subjects
Characteristics

n Each subject has only one Treatment

n Threats to internal validity: Selection is the principal threat, 
it is the effect of natural variation in human performance. 

n To avoid this threat:
n Randomization: the subjects are assigned to the 

treatment randomly
n Blocking: We have subject in each block with the 

same value in the blocked variable. We assign 
randomly all treatments in each block

n Each subject has only one Treatment

n Threats to internal validity: Selection is the principal threat, 
it is the effect of natural variation in human performance. 

n To avoid this threat:
n Randomization: the subjects are assigned to the 

treatment randomly
n Blocking: We have subject in each block with the 

same value in the blocked variable. We assign 
randomly all treatments in each block

Experiment Process Planning. Design
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Simple Design Between Subjects
Statistical Hypothesis

Experiment Process Planning. Design

The most common is to compare the means of the
dependent variable for each treatment

Ho: µ1 = µ2 = ... = µk
Notation:
α the grand mean

µi the mean of the dependent variable for treatment i (the 
effect of treatment i)

yij the jth measure of the dependent variable for treatment i

Model: yij = α + µi + ε ij

The most common is to compare the means of the
dependent variable for each treatment

Ho: µ1 = µ2 = ... = µk
Notation:
α the grand mean

µi the mean of the dependent variable for treatment i (the 
effect of treatment i)

yij the jth measure of the dependent variable for treatment i

Model: yij = α + µi + ε ij Error: Random variableError: Random variable
parametersparameters
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Simple Between Subjects
Statistical Hypothesis

With k treatments
Example of hypothesis Ho: µ1 = µ2 =...= µk  H1: ¬ Ho
Example of Analysis: 

ANOVA (ANalysis Of VAriance) if the variables pattern is N(µ, σ)
Kruskall Wallis (non-parametric test)

With k treatments
Example of hypothesis Ho: µ1 = µ2 =...= µk  H1: ¬ Ho
Example of Analysis: 

ANOVA (ANalysis Of VAriance) if the variables pattern is N(µ, σ)
Kruskall Wallis (non-parametric test)

Experiment Process Planning. Design

With two treatments
Example of hypothesis

Ho: µA = µB H1 : µA ≠ µB (or H1 : µA > µB ) 
Example of Analysis:

estimate with known pattern N(o, σ)/ Ho à t-test
If the estimate has unknown pattern à Mann Whitney-test

With two treatments
Example of hypothesis

Ho: µA = µB H1 : µA ≠ µB (or H1 : µA > µB ) 
Example of Analysis:

estimate with known pattern N(o, σ)/ Ho à t-test
If the estimate has unknown pattern à Mann Whitney-test

BA XX −
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Simple Between Subjects
Example: Blocking

Experiment Process

75A69A18B29B84B25A49A2B[62, 95.8)

50B66B17B77A13A71A45A42B[45, 62)

83A33A80B55A1A4B64B24B[28.4, 45)

11A74B27A37A15B19A14B10B[6.4, 28.4)

Subjects (32) asigned to groups A and B
Matched groups

Subjects 
Experience

Experiment about documentation and maintainability relation
(Tryggeseth, 1997)

¿Balanced design?  à # A = # B

Planning. Design

If we have small size a randomized design is not adequate
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Simple B.S. Blocking Design
Example Cartwright, 1998

Experiment Process Planning. Design

n The experiment was a replication of an experiment 
previously conducted at other university:

n To investigate the impact of class inheritance 
upon the maintenance of C++ software

n The subjects had to make the same maintenance 
change to one of two versions  of a C++ program

n The first version was implemented using 
inheritance, the second version had no 
inheritance

n The experiment was a replication of an experiment 
previously conducted at other university:

n To investigate the impact of class inheritance 
upon the maintenance of C++ software

n The subjects had to make the same maintenance 
change to one of two versions  of a C++ program

n The first version was implemented using 
inheritance, the second version had no 
inheritance
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Simple B.S. Blocking Design
Example Cartwright, 1998

Experiment Process Planning. Design

n Dependent variable: Completion Time, in minutes, to 
modify a database program

n Treatments: version flat vs. Version with inheritance 

n E(Time/flat) =µflat E(Time/inheritence) = µinh

n Hypothesis for time:
Ho: That 3 levels of inheritance has no impact upon 
time to make a correct maintenance change as 
compared with no inheritance
H1: ¬ Ho  α= 0.05

Ho: µinh = µflat H1 : µinh ≠ µflat à T-statistic

n Dependent variable: Completion Time, in minutes, to 
modify a database program

n Treatments: version flat vs. Version with inheritance 

n E(Time/flat) =µflat E(Time/inheritence) = µinh

n Hypothesis for time:
Ho: That 3 levels of inheritance has no impact upon 
time to make a correct maintenance change as 
compared with no inheritance
H1: ¬ Ho  α= 0.05

Ho: µinh = µflat H1 : µinh ≠ µflat à T-statistic
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Simple B.S. Blocking Design
Example Cartwright, 1998

Experiment Process Planning. Design

n Dependent variable: size of maintenance change

n Treatments: version flat vs. Version with inheritance 

n E(Time/flat) =µflat E(Time/inheritence) = µinh

n Hypothesis for size of maintenance:
Ho: That 3 levels of inheritance has no impact upon 
size of a correct maintenance change as compared 
with no inheritance
H1: ¬ Ho  α= 0.05

Ho: µinh = µflat H1 : µinh ≠ µflat à T-statistic

n Dependent variable: size of maintenance change

n Treatments: version flat vs. Version with inheritance 

n E(Time/flat) =µflat E(Time/inheritence) = µinh

n Hypothesis for size of maintenance:
Ho: That 3 levels of inheritance has no impact upon 
size of a correct maintenance change as compared 
with no inheritance
H1: ¬ Ho  α= 0.05

Ho: µinh = µflat H1 : µinh ≠ µflat à T-statistic
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Simple B.S. Randomized Design
Example: one factor with more than two levels

Experiment Process Planning. Design

n Dependent variable: quality of software

n Treatments: programming languages C, C++ and JAVA 

n Hypothesis
Ho: These 3 programming languages has no impact 
upon quality of software
H1: ¬ Ho  α= 0.05
Ho: µC = µC++ = µJAVA H1: ¬ Ho à ANOVA

n Dependent variable: quality of software

n Treatments: programming languages C, C++ and JAVA 

n Hypothesis
Ho: These 3 programming languages has no impact 
upon quality of software
H1: ¬ Ho  α= 0.05
Ho: µC = µC++ = µJAVA H1: ¬ Ho à ANOVA

n Independent variable: ratio, interval or absolute scale
n SPSS: the treatments  have to have numeric codification
n Analysis and interpretation

n Independent variable: ratio, interval or absolute scale
n SPSS: the treatments  have to have numeric codification
n Analysis and interpretation
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Simple Design Within Subjects
Characteristics

Experiment Process Planning. Design

n Each subject is a block: he uses all treatments, so we 
have repeated measures
n We need to resolve threats to internal validity:

n Maturation (boring, learning...)
n Instrumentation
n Mortality

n Each subject is a block: he uses all treatments, so we 
have repeated measures
n We need to resolve threats to internal validity:

n Maturation (boring, learning...)
n Instrumentation
n Mortality

n Treatment Order (Practice) is controlled with
n Randomization
n Counterbalancing and Latin Square, that permit 
measure  the practice effect, as a independent 
variable

n Treatment Order (Practice) is controlled with
n Randomization
n Counterbalancing and Latin Square, that permit 
measure  the practice effect, as a independent 
variable
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Simple Within Subjects
Randomization: Characteristics

Experiment Process Planning. Design

¿Are you interested in the practice effect? NO¿Are you interested in the practice effect? NO

FDB-SDA41

FDA-SDB41

82 subjects

(randomization)

Session

Scanlan(1989)

n Levels of independent variable(treatments):
pseudocode (SD) and flow diagram (FD)

n Pattern of objects: A and B à to avoid maturation
Algorithms: simple, medium and  complex

n The sequence of the 6 objects is random

n Levels of independent variable(treatments):
pseudocode (SD) and flow diagram (FD)

n Pattern of objects: A and B à to avoid maturation
Algorithms: simple, medium and  complex

n The sequence of the 6 objects is random

Dependent variable 
: understandability
Dependent variable 
: understandability

So we can control Maturation, Instrumentation and Practice So we can control Maturation, Instrumentation and Practice 

Practice
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Simple Within Subjects
Randomization: Statistical Hypothesis

Experiment Process Planning. Design

ANOVA 
Notation:
µi the mean of the dependent variable for treatment i (the 
main effect of treatment i)

βj the main effect of subject j

yij the measure of the dependent variable for treatment i on 
subject j

Model: yij = α + µi + βj +εij

ANOVA 
Notation:
µi the mean of the dependent variable for treatment i (the 
main effect of treatment i)

βj the main effect of subject j

yij the measure of the dependent variable for treatment i on 
subject j

Model: yij = α + µi + βj +εij Error: Random variableError: Random variable
To compare the means of the dependent variable for each treatment

Ho: µ1 = µ2 = ... = µk
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Simple Within Subjects
Counterbalancing: Characteristics

Experiment Process Planning. Design

¿Are you interested in the practice effect (order)? YES
n The order of treatments(A,B) to each subject will
be  ABBA

Incomplete counterbalancing 
Group G1 with AB
Group G2, similar to G1, with BA

¿Are you interested in the practice effect (order)? YES
n The order of treatments(A,B) to each subject will
be  ABBA

Incomplete counterbalancing 
Group G1 with AB
Group G2, similar to G1, with BA

How can we have two “similar” groups?

1. Thinking about extraneous variables that can 
influence in the dependent variable

2. Blocking, Randomization

How can we have two “similar” groups?

1. Thinking about extraneous variables that can 
influence in the dependent variable

2. Blocking, Randomization
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Simple Within Subjects
Counterbalancing: Statistical Hypothesis

Experiment Process Planning. Design

ANOVA Notation:
µi the mean of the dependent variable for 
treatment i (the effect of treatment i)
βj the effect of group (order)
γ j(k)the main effect of subject k of group j
yijk the measure of the dependent variable for 

treatment i on subject k of group j

ANOVA  Model: yij = α + µi + βj + γ j(k) + εijk

ANOVA Notation:
µi the mean of the dependent variable for 
treatment i (the effect of treatment i)
βj the effect of group (order)
γ j(k)the main effect of subject k of group j
yijk the measure of the dependent variable for 

treatment i on subject k of group j

ANOVA  Model: yij = α + µi + βj + γ j(k) + εijk

Error: Random
variable
Error: Random
variable

Hot: µ1 = µ2 = ... = µk
Hog: β1 = β2 = ... = βk

Hot: µ1 = µ2 = ... = µk
Hog: β1 = β2 = ... = βk
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Simple W.S Counterbalancing
Example

Experiment Process Planning. Design

31 subjects
(randomization) Prog2notHProg1HGroup A (16)

Prog2HProg1notHGroup B (15)

Session 2Session 1

Daly et al(1996)

n Levels of independent variable(treatments):
with inherit (H) without inherit (notH) 

n The subjects was paired by programming OO skill, and 
then assigned randomly to Group A and Group B

n Instrumentation and maturation are confounded 
with session, so we can not measure them
nWe can measure the practice effect (order)

n Levels of independent variable(treatments):
with inherit (H) without inherit (notH) 

n The subjects was paired by programming OO skill, and 
then assigned randomly to Group A and Group B

n Instrumentation and maturation are confounded 
with session, so we can not measure them
nWe can measure the practice effect (order)
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Simple Within Subjects
Latin Square: Characteristics

Experiment Process Planning. Design

If we have more than 2 treatments (K) ¿How many 
“sequences” will have in a counterbalancing design? K!
If we have more than 2 treatments (K) ¿How many 

“sequences” will have in a counterbalancing design? K!

Latin Square design reduce the effort selecting a sequences 
subgroup of the K! 
n We have to select as sequences as treatments number (K)
n Each treatment has a different position per sequence

Latin Square design reduce the effort selecting a sequences 
subgroup of the K! 
n We have to select as sequences as treatments number (K)
n Each treatment has a different position per sequence

Session 3Session 2Session 1

Y

X

Z

Group C

Group B

Group A

XZ

ZY

YXA possibility with 3 
treatments X Y Z
A possibility with 3 
treatments X Y Z
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Simple Within Subjects
Latin Square: Statistical Hypothesis

Experiment Process Planning. Design

ANOVA Notation:
µi the mean of the dependent variable for treatment i 
(the main effect of treatment i)
βj the main effect of group (order)
γ j(k)the main effect of subject k of group j
yijk the measure of the dependent variable for 

treatment i on subject k of group j

ANOVA  Model: yijk= α + µi + βj + γj(k) +εijk

ANOVA Notation:
µi the mean of the dependent variable for treatment i 
(the main effect of treatment i)
βj the main effect of group (order)
γ j(k)the main effect of subject k of group j
yijk the measure of the dependent variable for 

treatment i on subject k of group j

ANOVA  Model: yijk= α + µi + βj + γj(k) +εijk

Error: Random
variable
Error: Random
variable

Hot: µ1 = µ2 = ... = µk
Hog: β1 = β2 = ... = βk

Hot: µ1 = µ2 = ... = µk
Hog: β1 = β2 = ... = βk
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Why we have to choose Factorial experiment?
n If the absence of a second (Or third or...) variable can affect 

performance in the first variable (in the others variables)

Why we have to choose Factorial experiment?
n If the absence of a second (Or third or...) variable can affect 

performance in the first variable (in the others variables)

Factorial Experiment
Characteristics

Experiment Process Planning. Design

Example: You are interested in the effects of a new design tool 
on productivity. This tool may be used differently by designers 
who are experts in object-oriented design from those who are 
new to o-o design.
n If you design a simple experiment randomized or blocking, 

you would get an incomplete or incorrect view of the tool 
effects.

Example: You are interested in the effects of a new design tool 
on productivity. This tool may be used differently by designers 
who are experts in object-oriented design from those who are 
new to o-o design.
n If you design a simple experiment randomized or blocking, 

you would get an incomplete or incorrect view of the tool 
effects.
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Factorial Experiment
Characteristics

Experiment Process Planning. Design

experience

Time to 
code

high

With Tool

Without Tool
Without Tool

With Tool

high low

No interaction effect

Time to 
code

With  interaction effect

low
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There are 2 independent variables (i.v.) A and B
n We have k1*k2 treatment, if  A has k1 levels and B has k2

levels
There are r independent variables (i.v.) A1 .. Ar

n We have k1*k2 *...* kr treatments, if  each Ai has Ki levels 

There are 2 independent variables (i.v.) A and B
n We have k1*k2 treatment, if  A has k1 levels and B has k2

levels
There are r independent variables (i.v.) A1 .. Ar

n We have k1*k2 *...* kr treatments, if  each Ai has Ki levels 

Factorial Experiment
Characteristics

Experiment Process Planning. Design

I need to include 3 factors which have 4, 3 and 2 levels 
¿How many treatments do we have?
¿How many subjects?

I need to include 3 factors which have 4, 3 and 2 levels 
¿How many treatments do we have?
¿How many subjects?
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Factorial Experiment
Characteristics

Experiment Process Planning. Design

Problems that we need to resolve: 
1. What factors should be included?
n Do we include experience as a factor?

2. How many levels of each factor?
n The percentiles can be a guide

3. How should the levels of the factor be spaced?
n Time, exam results, age...

4. How should the experimental units (subjects) be 
selected?
n Randomization? Blocking?

Problems that we need to resolve: 
1. What factors should be included?
n Do we include experience as a factor?

2. How many levels of each factor?
n The percentiles can be a guide

3. How should the levels of the factor be spaced?
n Time, exam results, age...

4. How should the experimental units (subjects) be 
selected?
n Randomization? Blocking?
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Factorial Experiment
Characteristics

Experiment Process Planning. Design

Problems that we need to resolve: 

5. How many subjects should be selected for each 
treatment?

n This is related with the test power

6. What steps should be taken to control experimental 
error? 

n Control of extraneous factors

7. What criterion measures should be used to evaluate 
the effects of the treatment factor?

n Do we consider interaction effects?
n Do we consider higher-order interaction effects?

Problems that we need to resolve: 

5. How many subjects should be selected for each 
treatment?

n This is related with the test power

6. What steps should be taken to control experimental 
error? 

n Control of extraneous factors

7. What criterion measures should be used to evaluate 
the effects of the treatment factor?

n Do we consider interaction effects?
n Do we consider higher-order interaction effects?
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Do we want to consider interaction effects?Do we want to consider interaction effects?

Factorial Experiment
Two Factors: Characteristics

Experiment Process Planning. Design

a2 b2a2 b1a2

a1 b2a1 b1a1Factor

A

b2b1

Factor BCrossed 
design

We can study A*B interactionWe can study A*B interaction

Nested Design

a2 b2a2 b1a1 b2a1 b1

b2b1b2b1

Factor BFactor B

a2a1

Factor A

We can not study A*B interactionWe can not study A*B interaction
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Factorial Experiment
Two Factors: Statistical Hypothesis

Experiment Process Planning. Design

ANOVA Notation crossed design:
µI the mean of the dependent variable A for treatment i 

(the main effect of treatment Ai)
β i the main effect of treatment Bj

γ ijthe interaction effect of treatments Ai Bj

yijk the measure of the dependent variable for subject k 
on Ai Bj treatment

ANOVA  Model: yijk = α + µi + β i + γij +εijk

ANOVA Notation crossed design:
µI the mean of the dependent variable A for treatment i 

(the main effect of treatment Ai)
β i the main effect of treatment Bj

γ ijthe interaction effect of treatments Ai Bj

yijk the measure of the dependent variable for subject k 
on Ai Bj treatment

ANOVA  Model: yijk = α + µi + β i + γij +εijk

Error: Random 
variable
Error: Random 
variable

HoA: µ1 = µ2 = ... = µk HoB: β1 = β2 = ... = βk

HoAB : γij = γ  ∀i,j

HoA: µ1 = µ2 = ... = µk HoB: β1 = β2 = ... = βk

HoAB : γij = γ  ∀i,j
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Complete Factorial Experiment
Two Factors: Example 

Experiment Process Planning. Design

Random Block x Random Block (Finney et al 1998) Random Block x Random Block (Finney et al 1998) 

Dependent variable: comprehension of the written 
specifications (z-formal language)

Independent variables: comments (yes or no) and
significant names(yes or no)

Dependent variable: comprehension of the written 
specifications (z-formal language)

Independent variables: comments (yes or no) and
significant names(yes or no)

DC1
BA0Comments

10

Significant 
names

Two factorial 
design

Four specification versionsFour specification versions

Control of the extraneous factor:  
Blocks C1..C6 (147students 
from 6 study types)

Cià random assigned to A, B, C 
and D 

Control of the extraneous factor:  
Blocks C1..C6 (147students 
from 6 study types)

Cià random assigned to A, B, C 
and D 



n40

© E. Manso U. de Valladolid 79

Factorial Experiment
Two Factors: Example 

Experiment Process Planning. Design

repeated measures x repeated measures in blocks
(Complete confusion) Basili et al 1997

repeated measures x repeated measures in blocks
(Complete confusion) Basili et al 1997

Dependent variable: defect detection rate

Independent variables: types of documents (ATM, PG) and reading 
techniques (USUAL, Perspective -Based Reading)

Dependent variable: defect detection rate

Independent variables: types of documents (ATM, PG) and reading 
techniques (USUAL, Perspective -Based Reading)

PBR/ATM
PBR/PG

Session 2

USUAL/PG
USUAL/ATM

Session 1

Group 2
Group 1

Two factorial 
design

12 subjects: random 
assignation to two blocks 
of treatments

12 subjects: random 
assignation to two blocks 
of treatments

Complete confusion of 
interaction effect with group

The main effects are within-
block effects

Complete confusion of 
interaction effect with group

The main effects are within-
block effects
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Factorial Experiment
Two Factors in Blocks: Statistical Hypothesis

Experiment Process Planning. Design

ANOVA Notation
µi the mean of the dependent variable A for treatment i (the 

main effect of treatment Ai)
βj the main effect of treatment Bj

γ ijthe interaction effect of treatments  A i Bj totally confounded 
with the group main effect λk

πm(k) the subject main effect, nested in group k
yijk the measure of the dependent variable for subject k on 

Ai Bj treatment

ANOVA  Model: yijkm = α + µi + β i + πm(k) + γ ij +εijkm

ANOVA Notation
µi the mean of the dependent variable A for treatment i (the 

main effect of treatment Ai)
βj the main effect of treatment Bj

γ ijthe interaction effect of treatments  A i Bj totally confounded 
with the group main effect λk

πm(k) the subject main effect, nested in group k
yijk the measure of the dependent variable for subject k on 

Ai Bj treatment

ANOVA  Model: yijkm = α + µi + β i + πm(k) + γ ij +εijkm

Error: 
Random 
variable

Error: 
Random 
variable

HoA: µ1 = µ2 = ... = µk HoB: β1 = β2 = ... = βk

HoAB : γij = γ  ∀i,j
HoA: µ1 = µ2 = ... = µk HoB: β1 = β2 = ... = βk

HoAB : γij = γ  ∀i,j
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Factorial Experiment
Two Factors: Example 

Experiment Process Planning. Design

repeated measures x repeated measures in blocks
Solution 2

repeated measures x repeated measures in blocks
Solution 2

Dependent variable: defect detection rate

Independent variables: types of documents (ATM, PG) and reading 
techniques (USUAL, Perspective -Based Reading)

Dependent variable: defect detection rate

Independent variables: types of documents (ATM, PG) and reading 
techniques (USUAL, Perspective -Based Reading)

PBR/ATM
USUAL/PG

Session 2

PBR/PG
USUAL/ATM

Session 1

Group 2
Group 1

Two factorial 
design

12 subjects: random 
assignation to two blocks 
of treatments

12 subjects: random 
assignation to two blocks 
of treatments

Complete confusion of ¿?
effect with group?
Complete confusion of ¿?
effect with group?
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Instrumentation

Data collection via manual forms, interviews etc. that 
must be validated

Measurement 
instruments

The participants need to be guided in the experiment 
(process description, checklist...) Additionaly training

Guidelines

To choose appropiated objects (specifications, code 
documents...)

Objects

The Instrumentation provides means for 
n Performing the experiment
n To monitor it

The experiment results shall be the same independently of 
the instrumentation

Experiment Process Planning. Instrumentation
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Validity Evaluation

n Internal Validity 
n ¿Does the treatment cause the effect?

n Conclusion validity 
n If you measure a phenomenon twice,the outcome shall be 

the same
n Construct validity 

n ¿The selected variables reflect the construct of the cause 
and the effect well?

n External validity 
n ¿Can the results be generalized outside of our scope?

Experiment Process Planning. Validity
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Threats to Internal Validity

Persons who drop out from the experimentMortality
¿How much know the subject about the treatment?Treatment Order

¿Are the artefacts used for experiment execution 
designed correctly? Documents to be inspected ...

Instrumentation

¿Is the sample representative for the whole 
population? It is the effect of natural variation in 
human performance. Volunteers are more motivated... 

Selection

The subjects react differently as time passes (tired, 
bored, learning)

Maturation

Different treatments applied to the same object at 
different times... ¿are the circumstances the same?

History

Experiment Process Planning. Validity
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Threats to Conclusion 
Validity

Fishing and error rate
Three investigations with α= 0,05 à (1-0,05) 3 = 0,14

Reliability of measures
Objective measures are better than subjective        ¿LDC or PFA?

Reliability of treatment implementation
The application of treatments to subjects must be standarized

Violated assumptions of statistical test
Some  statistical test are more robust than others ¿Yà N(µ, σ)? 

Random irrelevancies in experimental setting

Low statistical power
The ability of the test to reveal a true pattern if H0 is false ¿1-β =0,3?

Random heterogeneity of subjects

Experiment Process Planning. Validity
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Threats to Construct 
Validity

Hypothesis guessing: The subjects base their behaviour on their guesses about 
the hypothesis

Restricted generalizability across constructs: The treatment improved the  
productivity, but ¿What about the maintainability? 

Interaction of testing and treatment: the application of treatments can make 
the subjects more receptive to the treatment

Interaction of different treatments: We cannot conclude whether the effect is 
due to either of treatments or of a combination of treatments

Confounding constructs and levels of constructs: The difference depends on if 
the subjects have 1,3 or 5 years of language experience

Mono-operation bias: The experiment under-represent the construct

Experiment expectancies of the subjects can bias the results.  ¿Solution?

Inadequate preoperational explication of constructs
The method A is better than B ¿Does it means ....? 

Experiment Process Planning. Validity
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Threats to External 
Validity

Interaction of history and treatment
The experiment is conducted in a special time which affects  the
results

Interaction of setting and treatment
Material not representative
Toy problems, methods old-fashioned

Interaction of selection and treatment 

Sample not representative of the population
We select only programmers in an inspection experiment

Experiment Process Planning. Validity

© E. Manso U. de Valladolid 88

Priority of Validity Threats

There is a conflict between some of the types of validity 
threats

n The subjects measures several factors, which increase the 
construct validity but there is a risk about conclusion validityà
tedious measurements affect the reliability of measures

n Theory Testing: 
n Internal  Construct Conclusion External

n Applied Research
n Internal External  Construct Conclusion

Experiment Process Planning. Validity



n45

© E. Manso U. de Valladolid 89

3.3 Experiment Operation

Experiment Operation

Experiment 
design

Execution

Data 
Validation

Preparation

Experiment 
data

Experiment Process Operation
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Experiment Operation
Preparation

Inducements
To offer some kind of inducements in order to attract people

Deception
If it is necessary, it should be explained to the participants as 
soon as possible

Sensitive results
To assure the personal results confidentiality

Obtein consent
The participants have to agree to the research objectives

Experiment Process Operation
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Experiment Operation
Pilot Studies

Experiment Process Operation

Pilot studies era conducted

§ To find mistakes in the experimental procedure

§ To test that the instructions are clear

§ To check task have reasonable complexity, but 
they can be completed within the allotted time

§ To ensure performance of any automatic data 
collection techniques

§ To attempt to identify others unforeseen 
circumstances

Pilot studies era conducted

§ To find mistakes in the experimental procedure

§ To test that the instructions are clear

§ To check task have reasonable complexity, but 
they can be completed within the allotted time

§ To ensure performance of any automatic data 
collection techniques

§ To attempt to identify others unforeseen 
circumstances
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Experiment Operation
Execution & Data Validation

Data collection
n Manually by the participants that fill out forms

n Manually supported by tools in interviews
n Automatically by tools

Data validation
n The participants have understood the forms

n Someone may not have worked seriously (outliers)

n The experiment has been applied in the correct way

Experiment Process Operation
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3.4 Analysis and Interpretation

Quantitative Interpretation

Experiment 
data

Data set 
reduction

Hypothesis 
testing

Descriptive 
statistics

Conclusions

Experiment Process
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Descriptive Statistics

n To describe and graphically present relevant aspects of 
the data set

n The scale of measurement restricts the type of statistics

nAnalysis & InterpretationExperiment Process

Scale Type

Nominal Mode Frequency

Ordinal Median 
Percentiles

Interval of variation Spearman coef.
Kendall coef.

Interval Mean Standard deviation
Range

Pearson coef.

Ratio Geometric 
mean

Variation 
Coefficient 

Measures of 

Central 
Tendency

Dispersion Dependency
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Descriptive Statistics

Experiment Process nAnalysis & Interpretation

§ (Cartwright 1998) 

§ box-plot

§ Histograms 

§ Measures of central 
tendency etc.

§ (Cartwright 1998) 

§ box-plot

§ Histograms 

§ Measures of central 
tendency etc.

§ Scatter plot § Scatter plot 
Regresión Residuo tipificado

3,50
3,00

2,50
2,00

1,50
1,00

,500,00
-,50-1,00

-1,50

Histogram residuals  ( Wholin)

Dependent variable: DEVTIME

Fr
ec

ue
nc

ia

8

6

4

2

0

Desv. típ. = ,97  

Media = 0,00

N = 20,00
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Data Set Reduction

Experiment Process nAnalysis & Interpretation

To identify outliers
n Outlier: the data point is much 
smaller than one could expect 
looking at the other data points

n 3 or more standard 
deviations over the mean

n Related with data validation

To identify outliers
n Outlier: the data point is much 
smaller than one could expect 
looking at the other data points

n 3 or more standard 
deviations over the mean

n Related with data validation

size vs. development time
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2000

0
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Data Set Reduction

Experiment Process nAnalysis & Interpretation

To identify outliers
n Using a Box-Plot

d= P75 – P25 

Lower Tail: P25 – 1,5d  Upper Tail: P75 
+ 1,5d

Values outside the lower and upper 
tails are  called outliers

To identify outliers
n Using a Box-Plot

d= P75 – P25 

Lower Tail: P25 – 1,5d  Upper Tail: P75 
+ 1,5d

Values outside the lower and upper 
tails are  called outliers 101010N =

EXPXTRALOCTIME
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-20

45110
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P50
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P50

P75

38,25
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38,25
66,50
77,50

XTRALOCXTRALOC
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Parametric and no Parametric
Test 

Experiment Process nAnalysis & Interpretation

Applicability: What are the assumptions made by different test?

n About variables  distribution (Normality, independency etc)

n About scales

Power

n The power of parametric tests is generally higher than for 
non parametric tests. That is parametric test require smaller 
experiments

Applicability: What are the assumptions made by different test?

n About variables  distribution (Normality, independency etc)

n About scales

Power

n The power of parametric tests is generally higher than for 
non parametric tests. That is parametric test require smaller 
experiments

Some parametric test are robust, this means that permit 
some deviations from requirements
Some parametric test are robust, this means that permit 
some deviations from requirements
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Parametric and no Parametric Test 
Model Adequacy Cheking

Experiment Process nAnalysis & Interpretation

n Normal Distribution: The Chi-2 test can be made to asses to 
which degree the assumption about the data  normally distributed
is fulfilled

n Independence: when the test assumes that the data is a 
sample from several independent stochastic variables, we need to
check that there is not correlation between the sample sets 
(Pearson coefficient, Spearman coefficient, etc)

n Normal Distribution: The Chi-2 test can be made to asses to 
which degree the assumption about the data  normally distributed
is fulfilled

n Independence: when the test assumes that the data is a 
sample from several independent stochastic variables, we need to
check that there is not correlation between the sample sets 
(Pearson coefficient, Spearman coefficient, etc)

Residuals: In many statistical models, as ANOVA or Lineal 
models, there is a term that represent Residual (statistical error). 
Usually the residuals are normally distributed. We can check this 
property using a normal plot, or a chi-2 test

Residuals: In many statistical models, as ANOVA or Lineal 
models, there is a term that represent Residual (statistical error). 
Usually the residuals are normally distributed. We can check this 
property using a normal plot, or a chi-2 test
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Parametric and no Parametric
Test 

Experiment Process nAnalysis & Interpretation

Chi-2ANOVAMore tha one factor

Wilcoxon
Sign Test 

Paired t-testOne Factor 2 
treatments. Matched 

Non ParametricParametricDesign

Kruskall-WallisChi-
2

ANOVAOne factor more than 2 
treatments

Mann-Whitney
Chi-2

T-test
F-test

One Factor 2 
treatments. Completely
randomized 

Prediction Models: Lineal Models,  Logit, LogisticPrediction Models: Lineal Models,  Logit, Logistic
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Hypothesis Testing
One factor with 2 levels (Cartwright, 1998)

Experiment Process

n Dependent variable: Completion Time, in minutes, to 
modify a database program

n Treatments: version flat vs. Version with inheritance 

n E(Time/flat) =µflat E(Time/inheritence) = µinh

n Hypothesis
Ho: That 3 levels of inheritance has no impact upon 
time to make a correct maintenance change as 
compared with no inheritance
H1: ¬ Ho  α= 0.05

Ho: µinh = µflat H1 : µinh ≠ µflat à T-statistic

n Dependent variable: Completion Time, in minutes, to 
modify a database program

n Treatments: version flat vs. Version with inheritance 

n E(Time/flat) =µflat E(Time/inheritence) = µinh

n Hypothesis
Ho: That 3 levels of inheritance has no impact upon 
time to make a correct maintenance change as 
compared with no inheritance
H1: ¬ Ho  α= 0.05

Ho: µinh = µflat H1 : µinh ≠ µflat à T-statistic

nAnalysis & Interpretation
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Hypothesis Testing
ANOVA. One factor with K levels

Experiment Process

∑∑∑∑∑∑ −+−=−
= =

k n

jij

k n

j
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n

i
ij yyyyyy
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2
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2
.

1 1

2 )()()(

Total variation Treatment variation Residual variation

Dependent variable Y

Yij = µ + α i + εij  ε ij =N(0, σε ) independents

Dependent variable Y

Yij = µ + α i + εij  ε ij =N(0, σε ) independents

nAnalysis & Interpretation
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Hypothesis Testing
ANOVA : One factor with K levels

Experiment Process

Conclusions:  Fobserved >  Fk-1,n-k,α ? à to reject HoConclusions:  Fobserved >  Fk-1,n-k,α ? à to reject Ho

MSError

MSTreatment

Mean 
square

Fobserved =
MSTreatment/MSError

(k-1)SSTreatmentBetween 
treatments

SCT

SSError

Sum of
squares

Fk-1,n-k, α

Ho: αi =0

Degrees of 
freedom

Source of 
variation

N-1Total

N-kResidual 
(error)

nAnalysis & Interpretation

Results-SPSS     Example-LanguagesResults-SPSS     Example-Languages
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Hypothesis Testing
ANOVA: One factor within subjects

Experiment Process

Schematic representation of the analysisSchematic representation of the analysis

nAnalysis & Interpretation

Total Variation

Between-people 
Variation

Within-people 
Variation

Between-treatment 
Variation

Residual 
Variation

kn-1

n-1 n(k-1)

K-1 (n-1)(k-1)

Partition of degree of 
freedom
Partition of degree of 
freedom

Dependent variable Y
Yij = µ + α i + βi + εij  ε ij =N(0, σε ) independents

Dependent variable Y
Yij = µ + α i + βi + εij  ε ij =N(0, σε ) independents
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Hypothesis Testing
ANOVA: One factor within subjects

Experiment Process

Conclusions:  Fobserved >  Fk-1,(n-1)(k-1),α ? à to reject HoConclusions:  Fobserved >  Fk-1,(n-1)(k-1),α ? à to reject Ho

MSres(n-1)(k-1)SSresResidual 
(error)

MStreatK-1SStreatTreatments

MSw.peoplen(k-1)SSw.peopleWithin 
people

Fobserved =

MSTrea/MSres

MSb.people(n-1)SSb.peopleBetween 
people

Mean 
square

Sum of
squares

Fk-1,(n-1)(k-1), α

Ho: αi =0

Degrees of 
freedom

Source of 
variation

nAnalysis & Interpretation
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Hypothesis Testing
Daly 1995

Experiment Process nAnalysis & Interpretation

Pruebas de contrastes intra-sujetos

Medida: MEASURE_1

680,625 1 680,625 2,597 ,124

50,625 1 50,625 ,193 ,666
4717,250 18 262,069

TIME
Lineal
Lineal
Lineal

Fuente
TIME
TIME * GROUP
Error(TIME)

Suma de
cuadrados

tipo III gl
Media

cuadrática F Significación

ANOVA within subjects
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3.5 Drawing Conclusions

Experiment Process nDiscussion & Conclusions

n If the null hypothesis is rejected we can conclude that the 
results were significant. Then we can to make general 
conclusions about independent and dependent variables

n The conclusions can be generalized to  contexts that are 
similar to experimental setting (External validity).

n Conclusions practical  importance

n Although the result may be statistically significant, it is not 
necessarily that the result is of practical importance. And vice 
versa, the lesson learned from a non-significant experiment 
may be of practical importance

n If the null hypothesis is rejected we can conclude that the 
results were significant. Then we can to make general 
conclusions about independent and dependent variables

n The conclusions can be generalized to  contexts that are 
similar to experimental setting (External validity).

n Conclusions practical  importance

n Although the result may be statistically significant, it is not 
necessarily that the result is of practical importance. And vice 
versa, the lesson learned from a non-significant experiment 
may be of practical importance
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4. Conclusions

nConclusions

n It is necessary more Replication

n To study the concepts concerning object oriented

n inheritance

n agregation

n To show the results, including non significant results

n To elaborate a more specific guide to experiment in software 
engineering

n It is necessary more Replication

n To study the concepts concerning object oriented

n inheritance

n agregation

n To show the results, including non significant results

n To elaborate a more specific guide to experiment in software 
engineering
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Dissemination and Decision-
Making (Pfleeger)

To suggest changes to their 
development environment

To replicate the experiment
• To understand how the results are 
affected by controlled changes

To support decisions
• How I will develop software
• How I will maintain software

Results

nConclusions
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Signs of Maturity 

n Level of sophistication of the goals of an experiment 

n Understanding interesting thinks about the discipline

n Level of sophistication of the goals of an experiment 

n Understanding interesting thinks about the discipline

For software Engineering mean:
n Can we build models to measure and differentiate 
process and products?

n Can we measure the effect of a change in a 
particular process or product variable?

n Can we predict product variables based upon a 
process model in a context?

n Can we control for product effects, given a particular 
set of context variables?

For software Engineering mean:
n Can we build models to measure and differentiate 
process and products?

n Can we measure the effect of a change in a 
particular process or product variable?

n Can we predict product variables based upon a 
process model in a context?

n Can we control for product effects, given a particular 
set of context variables?

Conclusions
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Signs of Maturity 

n A pattern of knowledge built from a series of experimentsn A pattern of knowledge built from a series of experiments

n Does the discipline build in prior (Models, 
experiments, knowledge)?
n Was the study an isolated event? or
n Did it lead to other studies that used its information?
n Have studies been replicated?
n Does the building of knowledge exist in one research 
group or has it spread to others?

Family of Experiments and Replication

n Does the discipline build in prior (Models, 
experiments, knowledge)?
n Was the study an isolated event? or
n Did it lead to other studies that used its information?
n Have studies been replicated?
n Does the building of knowledge exist in one research 
group or has it spread to others?

Family of Experiments and Replication

Conclusions
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