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1. Introduction

m “Software Engineering means application of
systematic, disciplined, quantifiable approach to
development, operation and maintenance of
software” [IEEE90]

= Software Process
= Systematic and disciplined approach
= Quantification
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1. Introduction

ReSTU rces

Software Product

PrOdU&U&@—} Software

Process

Software Process — |To improve the — Human
r‘nmplpyify software Process involvement
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Introduction

Experimentation in Software
Engineering

m Zelkowitz (1997) conclusions over 612 papers:

= The 30% of papers did not include experimentation and
they needed it (20% in other sciences)

= Only the 10% of papers that include experimentation
have controlled experimentation methods

m Tichy (1995) conclusions over 400 paper:

= The 40% of papers did not include experimentation and
they required empirical validation
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Introduction

Experimentation in Software
Engineering

= ¢Why in software engineering a lot of asserts aren't

validated?
= It is a new science

= They need to obtain good quantitative data to make
validations, but it often is hard

The way that can convert software engineering claims

Into validated facts it is the experimental method
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Introduction

¢, ¢ Why Software Engineer don't use
Experimentation?

The software engineers have to observe

suldililie piel st o il the phenomenon, to formulate

sl hypothesis and to contrast them

>
The level of The software engineers don’t contrast
experimentation is enough [their claims as much as other scientist

>
The experiments are It is possible to do a significant
expensive experiment that is not expensive

L4
The shows are enough The shows don't prove nothing

If yesterday you said an important claim
that today is not important, that is
because it does not well defined

The technology changes
speedily

A\
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Introduction

¢ Why Software Engineer don’t use

Experimentation?
x| [The sc think that
The ] iS not necessary in software
engi
. deas against real world?
= There und of statistical knowledge,
SO it )| design an experiment or to
| alys al results
(] H ere i ture and bibliography abou
| pir eering
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Introduction

¢ Why Software Engineer don’t use

Experimentation?
e experimentation in Software Engineering is more
fic It 2 |- er | sciences,| | because | it ||is
) ot (of variables

[9))

|

'jrai
a |>4= ental study of Softwar
IS nore iicgl_t than in _other sciences,
s e plrlcal studies| | |that| | ar
eplications era not as important as new studies.

= But other sciences have [two sides: Theory and Practice and
both are re ied
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Introduction

symbiotic

Software Engineering
A Laboratory Science

Researcher’s role: To understand the nature of
Processes and Products in the context of the
system

Resources

< » Process _—

Products “

Practitioner’s role: To build improve systems,
using knowledge
(Basili)
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Introduction

In Conclusion

ere are a large number of
~¢How measure their effects? -

Software Engineering needs more experimentation:
= To Confirm Theories and “Conventional Wisdom”
= ;To limit McCabe’s cyclomatic measure assure quality?
= To Explore Relationships

= ;How does the design complexity affect the productivity of the
designers?

= To Evaluate the accuracy of Models
= ¢, Does the PF predict how large the code may be?
= To Validate Measures

= ;Is the number of methods a valide measure of class complexity?
© E. Manso U. de Valladolid 11

Type of studies

2. Research Methods

= The analytic method
= Propose a formal theory or set of axioms
= Develop and derive results

= If possible, verify the results empirically

Cher
Phisiqu

athematiques

Software E.
= The engineering and empirical methods
(scientific methodl)
= Observing the world
= Proposing a model or other solutions
= Measuring and analysing
i alicatino : -
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Type of studies

Research Paradigms

itative Research

Naturalistic and incontrolled
observations

= Subjective
= Discovery oriented

=

» Quantitative Researc
= Controlled measuremen
= Objective
= Verification oriented
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Type of studies

Research Paradigms

Jualitative Research
sing a meeting, the reason because increase
’c/tiyity/ when a team have used a new

;This/ would be a Qualitative study about thinks like
~ programs logic and human reasoning.

« The analysis will be about the words which can be
organized in order to the researcher can test, compare,
analyze and identify patrons.
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Type of studies

Research Paradigms

— =
-

Quantitative Research

- We study,/usmg a quantitative study the reason
becausemerease the productivity when a team have

=
=
=

=

useda{new language.
«« 1 must to define the hypothe3|s to plan the process

to select the independent and dependent variables,

and to controfextraneous factors. -

+» The” afnaIyS|s will be about the numeric values
~ observed as result of experiment execution, using

statistical techniques to test the hypothesis.

© E. Manso U. de Valladolid
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Type of studies

Empirical Strategies

|  Empirical Strategies

¥ Real World

hse WEthesis <
[SEGstical Inference
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Type of studies

Empirical Strategies

FlrSt Level: HypotheSIS (Model) > Controlled
expenments ln Iaboratory, thh repllcatlon <
~ possibility -

""""e"""ond Level HypotheS|s (Model)-) in a
= real environment, using observational
studies (case studies)

Thirth Level: Model applied in all real process,
we must made a historical file (surveys). In the
-~ futur we have to test the Model with this file.
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Type of studies

Empirical Strategies

~ Depending of the degree of

- Retrospective
= Survey = Interviews - E
_ - = The team are
= Questionnaires = Descriptive
= Explicative
= Case Study = Exploratory

= Data collection

= To avoid confounded
factors

= Statistical Analysis
= Conclusions
= Generalization is difficult

= Observational

= With little control
= The team are
= Tocompare
= To establish relationship

= In a specific time-space

© E. Manso U. de Valladolid
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Type of studies

Emplrlcal Strategles
Dependmg of t

= Experiment

= Is aProcess |

= Statistical Analysis = Controlled Process

= ltis possible replication & The team are

= To confirm = To Confirm Theories and
= To generalize “Conventional Wisdom”
= To Explore Relationships

= To Evaluate the accuracy
of Models

= To Validate Measures
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Type of studies

Empirical Strategies

Case study (Relatlonshlp)
We want to build a model to predict the number of
faults in testing, in a enterprise
Experiment
We want to compare two inspection methods, in a

laboratory environment, that is, selecting variables
and controlling extraneous factors,
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Type of studies

Empirical Strategies Factors

= ——

EXEC OH
How m
S
= Measurement Contro
. The degree to wicl

S

~wich measures to be
¢In a survey?

= Investigation Cost
= & SO \\\k\

related with the factors above
= Easy Replication -~
~involves repeating the investigation under identical
~ conditions, in another population =
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Type of studies

Empirical Strategies

Comparison
Factor Survey | Case Study | Experiment
Execution No No Yes 5
Control
Measurement No Yes Yes
Control
Investigation Low Medium High
Cost
Easy High Low High }
Annlication
TR v v v
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Type of studies

Experimental Studies
(Another Classification)

Driven by hypothesis

= Controlled experiment
= To demonstrate feasibility in small

= Quasi-experiments
= To simulate the effects of the treatment variables in a
realistic environment
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Type of studies

Observational Studies
(Another Classification)

Driven by Variable Scopes
understanding
>
# of sites A priori defined | No a priori defined
Deductions: Deduction: verbal
Mathematical propositions
formal logic
One Case study Case qualitative
Qtllriy
More than one | Field study Field qualitative
study

v
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Type of studies

Experimental Studies

Controlled Experiment

X,... X |
»

Independent V.
A

v

Treatments I

Controlled V

cl.i.cm |

_< -------

Process

1

M.l I r

Randomized V.
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Variability

Y., |

Dependent V.

Extraneous Factors:
Bias and high
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Types of studies

Basic Concepts

Experimental Studies

es(lco,stte
trol change in
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Types of studies Experimental Studies

Basic Concepts

ination of the levels of different
. If there is only one, each level will be

()

©

>

@D

N

<

=

g A
=
S
-3

ects: we can generalize the results over the

nple: subjects selected from the population ( ¢subjects

| |
N (N T T QO ="
€ S

f the study: products, process, resources,
part of the Goal definition template)
S

(treatment + subject +object)

m S O

© E. Manso U. de Valladolid 27

Types of studies Experimental Studies

Experiment Example

Analyze a new design tool and a old design tool, for the
purpose of to compare their impact with respect to productivity,
from the point of view of developers, in the context of the
university students.

;:;::&::':D:éﬁéh, sl

WMHMraneous Factor? Prde& f-f?\ypes;?
;Any More?

Population? Objects? Sample? l
© E. Manso U. de Valladolid 28




Types of studies Experimental Studies

Experiment Example

Analyze the object oriented design method vs. process
method, for the purpose of to evaluate with respect to
quality, from the point of view of developers, in the context
of the university students.

mmweous Factor?

© E. Manso U. de Valladolid

Types of studies Experimental Studies

Experiment
Population: IObjéEf?s\\T\
B Students mToys
Professionals B Real product ;
sample |

| of Extraneous |
actor?

Environment: one ty
¢Any More?

g i
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Experimentation Process

3. Experimentation Process

TR Experiment
(7' _\deagn
N

Operation

Experiment
deflnltlon

: Pilot study |
Analysis & |4 Data
Interpretation

Discussion & Threats H

Conclusions | summary
Summary
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Experimentation Process Definition
3.1 Experiment Definition
cWhy?

Goal definition template Experiment definition:
= Analyze <object of the study> = The PBR and checklist techniques
= For the purpose of <purpose> = Evaluation
= With respect to <quality focus> ® Effectiveness and efficiency
= From the point of view of = The researcher
<perspective>

« In the context of <context> = M- Scand Ph. D students
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Experimentation Process Planning

3.2 Experiment Planning
¢, How?

EXIO;N Experiment Planning

definition = Context

selection Hypotesis

(__—— | formulation Variables
( selection

( Subjects
selection
Experiment ’
Instrumen- Design

Validity tation '_)
EXSEN‘ evaluation
design
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Experimentation Process Planning. Context

Context Selection

» 'Reduces the risk
Produces extra costs

Easier to control
Context generalization?

. TR

Context generalization?

- ]
"Reduces the costs & time
Context generalization?...
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Experimentation Process Planning. Context

Experiment Context

Characterization
#0bjects
Characterization B
(Basili) One More than one
#H One Single object study |[Multiobject variationb
. tud
subjects p—
per More Multitest within Blocked subject -
object TOTIE object study object study
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Experimentation Process Planning. Context

Experiment Context
Conclusion
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Experimentation Process Planning. Context

Experiment Context
Conclusion
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Experimentation Process Planning. Hypothesis

Hypothesis Formulation

Goal definition template
= Analyze The PBR and checklist techniques(CKL)

— = For the purpose of Evaluation With respect to
efficiency and effectiveness

= From the point of view of The researcher
= In the context of M. Sc and Ph. D students

> Hoi: PBR efficiency = CKL efficiency

" Hy, : PBR effectiveness = CKL effectiveness |
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Experimentation Process Planning. Hypothesis

Hypothesis Formulation

Hy: The observed vehicle is a car
H1: The observed vehicle is not a car =
Critical Area (C.A.)= {#wheels 3 5 or #wheels £3}

If we observe 3 or less wheels or 5 or more wheels we
reject H, = ¢error?

a= p(number of wheels?® 4/ car)
If we observe 4 wheels we don't reject H, > ¢error?

b= p(number of wheels = 4/ not car )
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Experimentation Process Planning. Hypothesis

Hypothesis Testing

HO is true H1 is true
tecide
Non reject H, 1-a b Error =
(Non significant result) P(@C.A./H1)
Reject H, a Error (significance | Test Power =
(Significant result) level) = P(C.A./Hy) | P(C.A/H1)
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Experimentation Process Planning. Hypothesis

Hypothesis Testing

{ H,: Null Hypothesis

We need to select a “random measure” (m) of the effect
of treatment: the estimate

= Time to understand a document

= Percentage of defects detected in a document

Parametric Test - the distribution pattern of m is
knowledged

= Time is N(ms)
= Percentage is B(n,p) (aprox. N(p, (p*(1-p) ¥2)

= Non Parametric Test = the distribution pattern of
m is acknowledged

© E. Manso U. de Valladolid 41

Experimentation Process Planning. Hypothesis

Hypothesis Test: Performance

fine Hypothesis H, and H,
lect the suitable estimate

0
0
o determine t rror a (usually 0,05 or 0,01)
S
S
0

1,12 a to determine the Critical Area (¢
n, H , and the C.A. to determine b
erved (estimatio

)
>
~

_‘
D)
O
—*
I

o
o
=
=
-
55
o)
7

-
~

S o Ol B W Ve
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Experimentation Process Planning. Hypothesis

Hypothesis Testing

m 1- b (Test Power): probability that the test will reveal
a true pattern if H, is false

= We should choose a test with as high power as

possible (increasing n, for example)
— .

m 1- b is better when we have test parametric
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Experimentation Process Planning. Hypothesis

Hypothesis Testing

T= X = estimate with known pz

% Ho: m=0 H1: m> no
o-m
[0 Joi{ IR AR CCT
0,05 — my=-12.0
ooaf M= 15
ooaf of 2o
' E_b:bo
0,02;—
001 F
0k
47 27
bg:
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Experimentation Process Planning. Hypothesis

Hypothesis Testing
Conclusions

B We must to exclude the students with a lot of
experience in the experiment. They are not
representative.
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Experimentation Process . Planning. Hypothesis

Hypothesis Testing
Conclusions

design for what you want to acédmphsh-f"
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Planning. Hypothesis

Hypothesis Testing
Conclusions

Experimentation Process

D5. “Define th imentunit”
B |f you are evaluating teams but you get measures
from each team member ¢ what it is the experimental
unit? - team

D86. rmal
or precalculation to identif

required sample size”
B The sample size determine the test power
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Experiment Process Planning. Variables

Variables Selection

= Independent variables
= Which we can control and change in the experiment

= Dependent variables
= They measure the effect of the treatments and appear in the

Hypothesis test
= Controlled variables
v = They can be controlled by the design

= Randomized variables

= They are considered as random error in the design
Confounded variables
= They aren'’t controlled and change together with a independent
EFocorvene Vvariable
in
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Experiment Process Planning. Subjects
" ¢ subject ?L
. or non-probability
sampling, systematic sampling .|.
ampling, quata sampling ...
u CI e “
. afnability, a larger size we need
Th o Population must be representative
© E. Manso U. de Valladolid 49
Experiment Process Planning. Design

Experiment Design
Choice

= The experiment design define trials organization
= |s related with the analysis, interpretation and
—}—conclusions-of the experiment
Relevant = ¢(How many
there? -
= Only one - Simple exj
= More than one - Factori
Repeated measures « ¢How many treatments per subject?
Blocking Randomization = ¢HOw “to control” extraneous factors?

= ¢How “to combine” the independent variables
levels? - # treatments

Questions

Crossed design
Nested design

The answers will depend on the validity Threats we want to control |
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Experiment Process Planning. Design

General Design Principles

Randomization Blocking Balancing

Randomization is used to

= Assure the observations are from independent random
variables

= Allocate objects, subjects and in which order the test are
performed

= Average out the effect of a extraneous factor

Blocking

= Blocking subjects is used to eliminate the undesired effect in
the comparison among the treatments of a extraneous factor
that we are not interested in

= Within a block the undesired effect is the same, and we
can study the effect of treatments on that block

= Blocking increases the precision of the experiment

= Blocking treatments is used to reduce de amount of
treatments for subject

© E. Manso U. de Valladolid 51

Experiment Process Planning. Design

General Design Principles

Randomization Blocking Balancing

Balancing
= The number of subjects per treatment is the same

= [tis not necessary, but is desirable from the point of view of
statistical analysis of the data.

eatment; ent;  Treatment,

bject; ubjectg

bjectg ubject;

bject;, ubject;

bject;s ubject;
nced

© E. Manso U. de Valladolid 52




Experiment Process Planning. Design

General Design Principles

The principal Claims of the experiment design
are:
= To reduce the variability
= To control extraneous factors

= To reduce the different threats to experiment
validity as much as possible

© E. Manso U. de Valladolid
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Experiment Process Planning. Design

Experiment Design
A Taxonomy

Random groups
Between Subjects

(BS) Random blocks (matched groups)
Simple Randomization
Within Subjects Counterbalancing (2 levels)
(WS) Latin squares (3 or more levels)
BS x BS
] Complete BS x WS .
Factorial (2 factors) Complete confounding

WS XWS | partial confounding
artial Fractional

© E. Manso U. de Valladolid
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Experiment Process Planning. Design

Simple Design Between Subjects
Characteristics

= reatment
u (Th election is the principal threat,
iti n In human performance.
n T
] jects are assigned to the
. ject in each block with the
d variable. We assign
1 each block
© E. Manso U. de Valladolid 55
Experiment Process Planning. Design

Simple Design Between Subjects
Statistical Hypothesis

The most common is to compare the means of the
dependent variable for each treatment

_ Hoom=m=..=m
Notation:
a the grand mean

m the mean of the dependent variable for treatment i (the
effect of treatment i)

yij the jth measure of the dependent variable for treatment i
Model: yij = a + - iy e.Jﬂ\E

Pow—— Random variable |
parameters
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Experiment Process Planning. Design

Simple Between Subjects
Statistical Hypothesis

With two treatments
Example of hypothesis
Hoom=m Hi:m?®m (orHi:m >y )
Example of Analysis:
)TA- )TB estimate with known pattern N(o, s)/ Ho > t-test
If the estimate has unknown pattern - Mann Whitney-test

With k treatments
xample of hypothesis Ho: m =m, =... 1- 9 Ho
xample of Analysis:

ANOVA (ANalysis Of VAriance) if the variables pattern is N(m s
Kruskall Wallis (non-parametric test
© E. Manso U. de Valladolid 57
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Simple Between Subjects
Example: Blocking

Subjects Subjects (32) asigned to groups A and B
Experience Matched groups
=xperenceMViatenea-grodps
[6.4, 28.4) 10B 114B [19A [15B [37A [27A 174B 111A
[28.4, 45) 24B |164B 4B 1A 55A [80B |33A |83A
[45, 62) 42B [45A 171A [13A [77A [17B 166B |50R

[62, 95.8) 2B '"49A '25A '84B '29B '18B 'G9A '75HA
\A v v v v v v v v »w

Experiment about documentation and maintainability relation
(Tryggeseth, 1997)

If we have small size a randomized design is not adequate
¢Balanced design? > #A=#8B
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Experiment Process

Simple B.S. Blocking Design
Example Cartwright, 1998

= The experiment was a replication of an experiment
previously conducted at other university:

= TO investigate the impact of class inheritance
upon the maintenance of C++ software
= The subjects had to make the same maintenance
change to one of two versions of a C++ program
= The first version was implemented using
inheritance, the second version had no
inheritance

© E. Manso U. de Valladolid

Planning. Design
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Experiment Process

Simple B.S. Blocking Design
Example Cartwright, 1998

Planning. Design

= Dependent variable: Completion Time, in minutes, to
modify a database program

= Treatments: version flat vs. Version with inheritance
= E(Time/flat) =m,,, E(Time/inheritence) = m,,

= Hypothesis for time:
Ho: That 3 levels of inheritance has no impact upon
time to make a correct maintenance change as
compared with no inheritance
H1: @Ho a= 0.05

HOo: Mpn = Myae Hi: Mpn * Mhae = I-statistic

© E. Manso U. de Valladolid
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Experiment Process Planning. Design

Simple B.S. Blocking Design
Example Cartwright, 1998

= Dependent variable: size of maintenance change

= Treatments: version flat vs. Version with inheritance
= E(Time/flat) =m,,, E(Time/inheritence) = m,,

= Hypothesis for size of maintenance:
Ho: That 3 levels of inheritance has no impact upon
size of a correct maintenance change as compared
with no inheritance
H1: @Ho a= 0.05
Ho: rr]nh = rr\‘Iat le rr}nh 2 rr*Iat 2 m

© E. Manso U. de Valladolid 61

Experiment Process Planning. Design

Simple B.S. Randomized Design

Example: one factor with more than two levels

= Dependent variable: quality of software ‘
= Treatments: programming languages C, C++ an
= Hypothesis
Ho: These 3 programming languages has no impact
upon quality of software

H1: @ Ho a=0.05
Ho: m = m,, = Maya H1: @ Ho > ANOVA
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Experiment Process Planning. Design

Simple Design Within Subjects
Characteristics

= Each subject is a block: he uses all treatments, so we
have repeated measures

= We need to resolve threats to internal validity:
= Maturation (boring, learning...)
= Instrumentation
= Mortality

= Treatment Order (Practlce) lS controlled Wlth
= Randomization , -

= Counterbalancing and Latin Square, that permlt
measure the practice effect, as a independent
variable

© E. Manso U. de Valladolid 63

Experiment Process Planning. Design

Simple Within Subjects
Randomlzatlon Characteristics

(,Are you mterested in the practlce eﬁec ? NO

>
canlan(1989)
>
82 subjects Session

N >

(randomization) |, < v |Fpa-SPR
>

43— % _rpBopA
A 4 A 4 A 4 2

® |evels of independent variable(treatments): Dependent varia
pseudocode (SD) and flow diagram (FD) : understandability
B Pattern of objects: A and B - to avoid maturation
Algorithms: simple, medium and complex

e
B The sequence of the 6 objects is random » Practice
'So we can_control Maturation, Instrumentation and Practice |
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Experiment Process Planning. Design

Simple Within Subjects
Randomization: Statistical Hypothesis

ANOVA
Notation:

M the mean of the dependent variable for treatment i (the
main effect of treatment i)

b; the main effect of subject j

yij the measure of the dependent variable for treatment ion
subject j

Model: y;; =a +m + b; +e; <« FErro Randomvanable

To compare the means of the dependent variable for each treatment

Hoom=m=..=m
© E. Manso U. de Valladolid 65
Experiment Process Planning. Design

Simple Within Subjects
Counterbalancing: Characteristics

¢Are you interested in the practice effect (order)? YES

= The order of treatments(A,B) to each subject will
be ABBA .

Incomplete counterbalancing
Group G1 with AB
Group G2, similar to G1, with BA

How can we have two “similar” groups?

1. Thinking about extraneous variables that can 7
influence in the dependent variable

2. Blocking, Randomization
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Experiment Process Planning. Design

Simple Within Subjects
Counterbalancing: Statistical Hypothesis

ANOVA Notation:

m the mean of the dependent vanable for
treatment i (the effect of treatment i)

b; the effect of group (order)
Jithe main effect of subject k of group j
Yijk the measure of the dependent variable for

treatment i on subject k of group j o = Error Random
ANOVA Model:y; =a +m +b; + gj(k) + €jjx  variable

Hotm=m=.=m
Hog: b, =b, = —bk
© E. Manso U. de Valladolid 67
Experiment Process Planning. Design
Simple W.S Counterbalancing
Example
R s "

31 subjects Session 1 Session 2
— >
(fandomlzatl{% GroupA(16) |ProglH  [Prog2notH

»>| >
A 'Group B (15) ProglnotH 'Prog2H
v \J \4

v
B | evels of independent variable(frééim
with inherit (H) without inherit (notH)

B The subjects was paired by programming OO skill, and
then assigned randomly to Group A and Group B

B Instrumentation and maturation are confounded
with session, so we can not measure them

B We can measure the practice effect (order)
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Experiment Process Planning. Design

Simple Within Subjects
Latin Square: Characteristics

Latin Square desngn reduce the effort selec
subgroup of the K!
B We have to select as sequences as treatments nun
B Each treatment has a different position per sequence

Session 1 |Session 2 |[Session 3

A possibility with 3 X Y 7 Group A >z
treatments X Y Z >
Y Z X Group B
>
YA X Y Group C
© E. Manso U. de Valladolid 69
Experiment Process Planning. Design

Simple Within Subjects
Latin Square: Statistical Hypothesis

ANOVA Notatlon

m the mean of the dependent Vanable for treatment E
(the main effect of treatment i) ‘

b; the main effect of group (order)
Jthe main effect of subject k of group j
Yijk the measure of the dependent variable for

treatment i on subject k of group j ‘Error: Random
ANOVA Model: yuk— a +m+Db; + gy +e.,k variable

Hotm=m=..=m
Hog: b; =b, = ...—bk”"
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Experiment Process Planning. Design

Factorial Experiment

Characteristics
y we h cho ctorial iment?
» Ifth ce of nd (Or third or...) variable can affe
perfor e in the first variable (in the others variables)

you would get an mcomplete or mcorrect Vi
effects. ;
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Experiment Process Planning. Design
Factorial Experiment
Characteristics
No interaction effect With interaction effect
A
4
Timeto  |\without Tool Time to Without Tool
With Tool
With Tool
1 1 I I
| o | —
experience high low
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Experiment Process

Factorial Experiment
Characteristics

Planning. Design

There

There are r independent variables (i.v.) A; .
have k;rk; *...* k. treatments, if each A has K; levels

4

els

r

e 2 independent variables (i.,v.) Aand B
have k;*k; treatment, if A has k, levels and B h

ny trea ts do we have?
n bje

E s which|have 4, 3 and 2 levels
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Experiment Process

Factorial Experiment
Characteristics

Problems that we need to resolve:

&

What factors should be included?

B Do we include experience as a factor?
How many levels of each factor?

B The percentiles can be a guide

How should the levels of the factor be spaced?
B Time, exam results, age...

How should the experimental units (subjects) be
selected?

B Randomization? Blocking?

© E. Manso U. de Valladolid

Planning. Design
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Experiment Process Planning. Design

Factorial Experiment
Characteristics

Problems that we need to resolve:

5. How many subjects should be selected for each
treatment?

B This is related with the test power

6. What steps should be taken to control experlmental
error? ;

B Control of extraneous factors

; 7. What criterion measures should be used to evaluate k\
‘ the effects of the treatment factor? S

B Do we consider interaction effects?
B Do we consider higher-order interaction effects?
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Experiment Process Planning. Design

Factorial Experiment
Two Factors: Characteristics

Do we want to consid %r intera#ction effects? |
S ‘ S
Crossed Factor B Nested Design
design N »
b1 b2 Factor A <
> al a2
Factor [ al | albl | al b2
Factor B Factor B
A > >
a2 |[a2bl | a2 b2 bl b2 bl b2
>
albl 'alb2 'a2bl | a2 b2

%59 can no% s%u%y %!!E m%erac%lon
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Experiment Process Planning. Design

Factorial Experiment
Two Factors: statistical Hypothesis

ANOVA Notation cross

m, the mean of the dependent variable:
(the main effect of treatment A)
b; the main effect of treatment B
gjithe interaction effect of treatments A B,

Yijk the measure of the dependent variable for subject k
on A, B; treatment =

) Error: Random
variable

HOopg 1 G =0 " 1]
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Experiment Process Planning. Design

Complete Factorial Experiment
Two Factors: Example

%an%om %ioc% X %an%om %ioc% (Finney et al 1998) |

Independent variables: comments (yes or no) and
significant names(yes or no)

Ci= random assigned to A, B, C
Lo and D
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Planning. Design

Factorial Experiment
Two Factors: Example

Experiment Process

Independent variables: types of documents (ATM, PG) and reading
techniques (USUAL, Perspective -Based Reading)

Two factorial | Session 1 |[Session 2 12 (S lom |
de5|n assignation to two blocks |

USUAL/ATM PBR/PG of treatments

Group 2 USUAL/PG  |PBR/ATM

The main effects are within-
block effects
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Planning. Design

Factorial Experiment
Two Factors in Blocks: Statistical Hypothesis

Experiment Process

ANOVA l\totation =

m the mean of the dependent variabl
main effect of treatment A)

b the main effect of treatment\B-

Gij the interaction effect of treatments A B totaIIy confounde&
with the group main effect |

Pmk the subject main effect, nested in group K S

Yiik  the measure of the dependent variable for subject kon
A; B; treatment -

ANOVA Model yIlkm =a+m+b; + Pma + Gii +eIJkMaj

i

(0]

-
T
=

HOAB g}
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Experiment Process

Planning. Design

Factorial Experiment
Two Factors: Example

repeated measures x repeated measures in blocks

Solution 2

Dependent variable: defect detection rate

Independent variables: types of documents (ATM, PG) and reading
techniques (USUAL, Perspective -Based Reading)

© E. Manso U. de Valladolid

Two factorial Session 1 | Session 2 | 12 subjects: random
design assignation to two blocks
f treatment
Group 1 |USUAL/ATM |USUAL/PG | &' reaiments
Group 2 PBR/PG PBR/ATM Complete confusion of ¢ ?

effect with group?
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Experiment Process

Planning. Instrumentation

Instrumentation

The Instrumentation provides means for

= Performing the experiment
= TOo monitor it

The experiment results shall be the same independently of

the instrumentation

Objects To choose appropiated objects (specifications, code
doct |mnnfc___)
| 4
Guidelines The participants need to be guided in the experiment
: Lk s i g
>
Measurement Data collection via manual forms, interviews etc. that
instruments must be validated
A4
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Experiment Process

Planning. Validity

Validity Evaluation

= | Internal Validity
» ¢ Does the treatment cause the effect?
= | Conclusion validity

= If you measure a phenomenon twice,the outcome shall be
the same

= | Construct validity

= ¢ The selected variables reflect the construct of the cause
and the effect well?

= | External validity
» ¢ Can the results be generalized outside of our scope?
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Experiment Process

Planning. Validity

‘a Threats to Internal Validity

»

History Different treatments applied to the same object at
different times ¢ are the circumstances the same?
>
Maturation The subjects react differently as time passes (tired,
hored, Iparning)
>
Selection ¢Is the sample representative for the whole

population? It is the effect of natural variation in

hiyman narfnrmannn \Inlnnfnnrc ara maora matihgatad

Instrumentation

!
LA LRI R SAS A e vV OTOTIitCCro

¢Are the artefacts used for experiment execution
designed correctly? Documents to be inspected

3
o C o C otV ate T

Persons-who drnp out from-the nvpnrimonf

, Treatment Order

vz,How much know the subject about the treatment?
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Experiment Process Planning. Validity

Threats to Conclusion
Validity

Low statistical power
The ability of the test to reveal a true pattern if H; is false ¢1-b =0,3?

Violated assumptions of statistical test
Some statistical test are more robust than others ;Y-> N(m s)?

Fishing and error rate
Three investigations with a= 0,05 - (1-0,05) 3 = 0,14

Reliability of measures
Objective measures are better than subjective ¢LDC or PFA?

Reliability of treatment implementation
The application of treatments to subjects must be standarized

Random irrelevancies in experimental setting

. Random heterogeneity of subjects
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Experiment Process Planning. Validity

Threats to Construct
Validity

Inadequate preoperational explication of constructs

Interaction of testing and treatment: the application of treatments can make

Restricted generalizability across constructs: The treatment improved the

tproductivity_but :What about the maintainability?

>
Hypothesis guessing: The subjects base their behaviour on their guesses about

Experiment expectancies of the subjects can bias the results. ¢Solution?
v : | L 86




Experiment Process Planning. Validity

Threats to External
Validity

Interaction of selection and treatment

Sample not representative of the population
We select only programmers in an inspection experiment

Interaction of setting and treatment
Material not representative
Toy problems, methods old-fashioned

Interaction of history and treatment

The experiment is conducted in a special time which affects the
results
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Experiment Process Planning. Validity

Priority of Validity Threats

There is a conflict between some of the types of validity
threats

= The subjects measures several factors, which increase the
construct validity but there is a risk about conclusion validity >
tedious measurements affect the reliability of measures

= Theory Testing:

= Internal Construct Conclusion External
= Applied Research

= Internal External Construct Conclusion
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Experiment Process Operation

3.3 Experiment Operation

Experiment Operation
Engggn —— | Preparation
Execution
e
— Data
Validation
Experi
data
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Experiment Process Operation
Experiment Operation
Preparation

Obtein consent

Sensitive results

Inducements

Deception

If it is necessary, it should be explained to the participants as
,Soon as possible
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Experiment Process Operation

Experiment Operation
Pilot Studies

Pilot studies era conducted
= To find mistakes in the experimental procedure
= To test that the instructions are clear

= To check task have reasonable complexity, but
they can be completed within the allotted time

= To ensure performance of any automatic data
collection techniques

= To attempt to identify others unforeseen
circumstances
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Experiment Process Operation

Experiment Operation
Execution & Data Validation

Data collection
= Manually by the participants that fill out forms
= Manually supported by tools in interviews
= Automatically by tools

Data validation
= The participants have understood the forms
= Someone may not have worked seriously (outliers)
= The experiment has been applied in the correct way
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Experiment Process

3.4 Analysis and Interpretation

Quantitative Interpretation
Expsrl —=—| Descriptive
e statistics Data set
<&——— | reduction
<———— | Hypothesis
testing

© E. Manso U. de Valladolid

Conclusio
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Experiment Process

Analysis & Interpretation

Descriptive Statistics

= To describe and graphically present relevant aspects of

the data set

= The scale of measurement restricts the type of statistics
l\/‘naourns C'F

veasttT T

Scale Type Central
Tendency
Nominal Mode
Ordinal Median
Percentiles
Interval Mean
Ratio Geometric
mean

© E. Manso U. de Valladolid

Dispersion

Frequency
Interval of variation

Standard deviation
Range

Variation
Coefficient

Dependency

Spearman coef.
Kendall coet.
Pearson coef.
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Experiment Process Analysis & Interpretation

Descriptive Statistics

Histogram residuals ( Wholin)

Dependent variable: DEVTIME

= Histograms s

= Measures of central 4

tendency etc. P
§ 2 Desv. tip. =,97
§ Media = 0,00
i

oy . I N=20,00
. %ca%%er plo% Y% WY B

Regresion Residuo tipificado
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Experiment Process Analysis & Interpretation

Data Set Reduction

size vs. development time
16000

o
14000

m Outlier: the data po
smaller than one could 10000
‘ ( ir 8000

6000
a o

4000 m g o o o

® 3 or more standard
deviations over the m

2000 o

DEVTIME

m Related with data validation

0
600 800 1000 1200 1400 1600 180

SIZE
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Experiment Process Analysis & Interpretation

Data Set Reduction

120

100

B Using a Box-Plot

d= Pys— Py

Lower Tail: P,s— 1,5d Upper Tail: Pog

+ 1,5d ”

- 0 e

Values outside the lower and upper »

tails are called outliers Y e o e
P,s 3825

XTRALOC l P, 6650
P 7750
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Experiment Process Analysis & Interpretation

Parametric and no Parametric
Test

Applicability: What are the assumptions ma y
B About variables distribution (Normality, independe
B About scales

Power

B The power of parametric tests is generally higher than for
non parametric tests. That is parametric test require smaller
experiments

'some deviations from requirements
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Experiment Process Analysis & Interpretation

Parametric and no Parametric Test
Model Adequacy Cheking

m Normal Distribution: The Chi-2 test can be made t&r
which degree the assumption about the data normally distri :\
is fulfilled

B Independence: when the test assumes that the data is a
sample from several independent stochastic variables, we need to
check that there is not correlation between the sample sets
(Pearson coefficient, Spearman coefficient, etc)

”""??In many statistical models, as ANOVA or Lineal
ihere is a term that represent Residual (statistical error)
L [y the resrduals are normally distributed. We can check thrs
property using a normal plot, or a chi-2 test

© E. Manso U. de Valladolid
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Experiment Process Analysis & Interpretation
Parametric and no Parametric
Test

>
NDecian DPDarametric Non Parametrice
Desigh Parametric 'Non Parametric
One Factor 2 T-test Mann-Whitney
treatments. Completely |F-test Chi-2
randomized

>
One Factor 2 Paired t-test |Wilcoxon
treatments. Matched Sign Test
One factor more than 2 |[ANOVA KruskaII-WalllsChl-
treatments 2

| 4
More tha one factor ANOVA Chi-2

\4 v \4 R

Prediction Models: Lineal Models, Logit, Logistic
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Experiment Process Analysis & Interpretation

Hypothesis Testing

One factor with 2 levels (cartwright, 1998)

= Dependent variable: Completion Time, in minutes, to
modify a database program

= Treatments: version flat vs. Version with inheritance
= E(Time/flat) =m,,; E(Time/inheritence) = m,,

= Hypothesis
Ho: That 3 levels of inheritance has no impact upon
time to make a correct maintenance change as
compared with no inheritance
H1: @ Ho a= 0.05

Ho: My = Myae Hi:Mpp t Mhae = I-Statistic
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Experiment Process Analysis & Interpretation

Hypothesis Testing
ANOVA. One factor with K levels

Dependent variable Y
Yij =m+a;+ eij eij:N(O, S.) independents

=
aaw,-y=aaw, -y

Total variation Treatment variation Residual variation
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Experiment Process

Analysis & Interpretation

Hypothesis Testing
ANOVA : One factor with K levels

Source of [Sum of Degrees of |Mean Ereipren
variation squares |freedom square Ho: a, =0
Between SSTreatment (k' 1) MSTreatment Fobserved =
treatments IVlSTreatmentll\/lSError
Residual SSkrror N-k MSg ror

(error)

Total SCT N-1

Conclusions: F, cerveq™ Fr.inka ? = to reject Ho

Results-SPSS
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Example-Languages
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Experiment Process

Analysis & Interpretation

Hypothesis Testing

ANOVA: One factor within subjects

ot aviation - ka-1
/\
Between-people Within-people n-1 p(k-1)
\ariation \/ariation
Between-treatment Residual K-1 1l (n-1)(k-1)
\/ariation \/ariation

Schematic representation of the analysis |

Partition of degree of
freedom

Dependent variable Y

Yj=mt+a;+bhi+e =

© E. Manso U. de Valladolid

N(O, s.) independents |
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Experiment Process Analysis & Interpretation

Hypothesis Testing
ANOVA: One factor within subjects

Source of |Sum of Degrees of [Mean Frt,(n-1)k-1), a

variation squares freedom square Ho: a. =0
-

Between SSppeople | (N-1) MSp people | Fobserved =

people MSTrea/MSres

Within SSW.people n(k'l) MSW people

people

Treatments |SS;cat K-1 MS rcat

Residual SSies (N-1)(k-1) |MS,q

(error)

Conclusions: Fypeerved > Fir ke ? =2 to reject Ho
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Experiment Process Analysis & Interpretation

Hypothesis Testing
Daly 1995

Pruebas de contrastes intra-sujetos

Medida: MEASURE_1

Suma de
cuadrados Media
Fuente TIME tipo Il gl cuadratica F Significacion
TIME Lineal 680,625 1 680,625 2,597 124
TIME * GROUP Lineal 50,625 1 50,625 ,193 ,666
Error(TIME) Lineal 4717,250 18 262,069

ANOVA within subjects
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Experiment Process Discussion & Conclusions

3.5 Drawing Conclusions

—_—
m If the null hypothesis is rejected we cammm
results were significant. Then we can to make gem\\\\

conclusions about independent and dependent varlaliég\\\\

B The conclusions can be generalized to contexts that are ?
similar to experimental setting (External validity). ‘

W Conclusions practical importance

B Although the result may be statistically significant, it is not
necessarily that the result is of practical importance. And vice
versa, the lesson learned from a non-significant experiment
may be of practical importance
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Conclusions

4. Conclusions

B It is necessary more Replication

B To study the concepts concerning object oriented
B inheritance
B agregation

B To show the results, including non significant results

B To elaborate a more specific guide to experiment in software
engineering
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Conclusions

Dissemination and Decision-

Making (Pfleeger)

.m,L:SUItS To support decisions

< e How | will develop software
* How | will maintain software

.| To suggest changes to their

To replicate the experiment

e To understand how the results are
affected by controlled changes

development environment
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Conclusions

Signs of Maturity

process and
= Can we measure the eff
f;fi:particular process or product varia
-« Can we predict product variable
~ process model in a context?
= = Can we control for product effects, given a parti

set of context variables?
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Conclusions

Signs of Maturity

= Does the building of knowledge exist i
. group or has it spread to others?

Family of Experiments and Rebllcétlé\
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