
Expert
Oracle JDBC

Programming
R. M. MENON

Expert Oracle JDBC Programming
Copyright © 2005 by R. M. Menon

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-407-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis
Technical Reviewers: Rob Harrop, Thomas Kyte, Torben Holm, Julian Dyke
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Sofia Marchant
Copy Editor: Nicole LeClerc
Production Manager: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Van Winkle Design Group
Proofreader: Nancy Sixsmith
Indexer: Broccoli Information Management
Artist: Diana Van Winkle, Van Winkle Design Group
Interior Design: Diana Van Winkle, Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.
You will need to answer questions pertaining to this book in order to successfully download the code.

I dedicate this book to the fond memories of my beloved sister,
Manjula Menon, and my dear nephew, Anil Menon.

Contents at a Glance

About the Author . xvii
About the Technical Reviewers. xix
Acknowledgments . xxi
Introduction . xxiii
About the OakTable Network . xxix

CHAPTER 1 Performance Toolkit . 1

CHAPTER 2 Oracle Fundamentals . 33

CHAPTER 3 Introduction to JDBC . 79

CHAPTER 4 Transactions. 115

CHAPTER 5 Statement and PreparedStatement . 139

CHAPTER 6 CallableStatement . 187

CHAPTER 7 Result Sets Explored . 209

CHAPTER 8 Oracle Objects: An Objective Analysis . 277

CHAPTER 9 Using Weakly Typed Struct Objects . 323

CHAPTER 10 Using Strongly Typed Interfaces with JPublisher 345

CHAPTER 11 Using Oracle Collections and References . 387

CHAPTER 12 Using LOBs and BFILEs . 447

CHAPTER 13 Statement Caching . 495

CHAPTER 14 Connection Pooling and Caching . 529

CHAPTER 15 Security-Related Issues. 575

CHAPTER 16 Locking-Related Issues . 599

CHAPTER 17 Selected PL/SQL Techniques . 629

APPENDIX . 689

INDEX . 693

v

Contents

About the Author . xvii
About the Technical Reviewers. xix
Acknowledgments . xxi
Introduction . xxiii
About the OakTable Network . xxix

■CHAPTER 1 Performance Toolkit . 1

Setting Up the SQL*Plus Environment . 1

Setting Up autotrace in SQL*Plus . 5

Effect of Setting echo on in SQL*Plus . 6

Setting Up the SCOTT/TIGER Schema . 7

Setting Up the BENCHMARK/BENCHMARK Schema 7

Performance Tools. 8

timed_statistics . 8

sql_trace and tkprof . 8

runstats . 12

JDBC Wrapper for runstats . 19

Timing Java Programs . 28

A Utility to Pause in a Java Program . 31

Summary . 32

■CHAPTER 2 Oracle Fundamentals . 33

Selected Oracle Concepts . 34

Database vs. Instance. 34

Schemas . 34

Tablespaces . 35

Data Blocks. 35

What Makes Oracle Different? . 36

Oracle’s Locking Mechanism. 36

Multiversion Read Consistency . 37

Writing Effective Code . 39

Use Bind Variables . 39

Minimize I/O, Undo, and Redo . 45

Understand SQL and PL/SQL . 57

Get Your Database Schema Design Right . 70 vii

General Guidelines for Writing High-Performance Code. 73

Know the Features Offered by Oracle. 73

Design to Optimize the Most Important Business Functions First . . 74

Incorporate Performance from Day One . 75

Instrument Your Code Extensively. 75

Test for Performance. 76

Elapsed Time Is Less Than Half the Story . 76

Beware Universal Truths . 76

Summary . 77

■CHAPTER 3 Introduction to JDBC . 79

What Is JDBC? . 79

JDBC Driver Types. 80

Oracle JDBC Drivers . 80

JDBC Thin Driver . 81

JDBC OCI Driver . 81

JDBC Server-Side Thin Driver . 81

JDBC Server-Side Internal Driver . 81

Choosing the Right Driver . 82

Software Requirements and Setup Instructions. 83

JDBC Thin Driver on UNIX. 84

JDBC Thin Driver on Windows. 85

JDBC OCI Driver on UNIX and Windows (10g Only) 85

JDBC OCI Driver on UNIX and Windows (9i) . 86

Overview of JDBC API. 86

Connecting to a Database . 89

Using DriverManager . 90

Using a Data Source . 96

A Complete JDBC Program . 105

Potential Errors When Executing Your First Program. 109

Exception Handling in JDBC . 110

Introducing JDBCUtil. 111

Summary . 113

■CHAPTER 4 Transactions. 115

What Is a Transaction? . 115

Committing a Transaction . 115

Rolling Back a Transaction. 116

Transaction Isolation Levels . 116

Transaction Isolation Levels in JDBC . 119

■CONTENTSviii

Sizing Your Transaction Resources According to Your Business Needs . 124

The Autocommit Feature and Turning It Off . 129

Transaction Savepoints . 130

Using Savepoints in JDBC . 131

An Example of Using Savepoints. 132

Summary . 138

■CHAPTER 5 Statement and PreparedStatement . 139

Overview of How Oracle Processes SQL Statements (DML) 140

JDBC API for Statements . 141

The Statement Interface. 144

The PreparedStatement Interface . 150

Creating a PreparedStatement Object . 150

Using Bind Variables with PreparedStatements 151

Example of Using PreparedStatement to Query Data 152

Example of Using PreparedStatement to Modify Data 157

Using Bind Variables Makes Your Program More Secure 160

Nuances of Bind Variable Usage . 166

Update Batching . 167

Types of Statements Supported
by Oracle’s Batching Implementation . 168

Standard Update Batching . 168

Oracle Update Batching . 172

Mixing Interdependent Statements in a Batch 175

Oracle Update Batching vs. Standard Update Batching 179

Summary . 185

■CHAPTER 6 CallableStatement . 187

A Brief Introduction to Stored Procedures and PL/SQL. 187

Invoking Stored Procedures from JDBC . 189

Formulating the CallableStatement String. 190

Creating a CallableStatement Object . 191

Binding Input (in or in out) Parameters . 191

Registering Output (out or in out) Parameters 193

Executing CallableStatement and Retrieving Results 195

Putting It All Together in a Working Example. 195

CallableStatement Common Errors and Resolutions. 202

Where Should Your SQL Statements Reside, in Java or PL/SQL? 204

Summary . 207

■CONTENTS ix

■CHAPTER 7 Result Sets Explored . 209

Handling Null Values . 210

Prefetching . 212

Setting and Getting Fetch Size . 213

Prefetching Example . 214

Performance Impact of Fetch Size . 226

Scrollability, Positioning, and Sensitivity . 230

Updatability . 231

Creating Different Categories of Result Sets . 232

Result Set Limitations and Downgrade Rules . 233

Result Set Limitations . 234

Result Set Downgrade Rules . 234

Positioning in a Scrollable Result Set. 236

Methods to Move Within a Result Set. 236

Methods to Check Current Position Within a Result Set 237

Example of Positioning . 238

Updating, Inserting, and Deleting Result Set Rows 241

Deleting a Row. 242

Updating a Row . 242

Inserting a Row . 242

Example of Updatability . 242

Lost Updates. 245

Refetching Rows . 245

Example of Refetching Rows . 246

Refetching and Scroll-Sensitive Result Sets 249

Database Changes Visible to a Result Set. 251

A Result Set’s Ability to Detect Database Changes 252

Paginating Through a Result Set . 252

Dynamically Building a Query with an
Unknown Number of Bind Variables. 259

PreparedStatement-Based Solution . 260

CallableStatement-Based Solution . 264

ResultSetMetaData . 269

DatabaseMetaData . 273

Summary . 275

■CONTENTSx

■CHAPTER 8 Oracle Objects: An Objective Analysis . 277

Introducing Oracle Objects and Collections . 278

Object Type (Equivalent of a Java Class) . 278

Declaring and Using Object Variables in PL/SQL 282

Collections (Nested Tables and Varrays) . 283

Using Objects As Programming Constructs . 287

Using the Object-Oriented Features of Oracle Objects 287

Using Objects to Store Data (Not Recommended) 289

Using Varrays to Store Data . 290

Using Nested Tables to Store Data . 293

Storage Considerations for Nested Table Columns 298

Why It Is Not Recommended to Use Objects to Store Data 300

Using Object Views on Top of Relational Tables . 301

Defining an Object Type . 302

Defining an Object View . 303

Performing Queries on the Object View . 303

Defining instead of Triggers . 304

Object Views vs. Nested Tables vs. Relational Tables 313

Summary . 321

■CHAPTER 9 Using Weakly Typed Struct Objects . 323

Weakly Typed Struct Objects. 324

The Struct Interface. 325

The oracle.sql.STRUCT Class. 326

Performing DML Operations Using Struct Objects. 327

Creating the Example Database Schema . 327

Using the Struct Interface to Select Oracle Objects 330

Using the oracle.sql.STRUCT Class to Insert Oracle Objects 335

Using the oracle.sql.STRUCT Class to Update Oracle Objects 338

Deleting Objects. 344

Summary . 344

■CHAPTER 10 Using Strongly Typed Interfaces with JPublisher 345

Strongly Typed Interfaces. 345

An Introduction to JPublisher . 346

Setting Up the JPublisher Environment . 347

JPublisher Commonly Used Options. 347

JPublisher Property File Syntax. 350

JPublisher Input File Syntax. 350

■CONTENTS xi

Using the SQLData Interface . 352

Generating Custom Classes That Implement SQLData 352

Manually Adding a Method to a Generated Class. 358

Using a Type Map to Map Object Types to Java Classes 360

Performing DML Using Custom SQLData Classes 361

Generating Wrapper Method(s) Automatically 366

Using the ORAData and ORADataFactory Interfaces 371

Generating Custom Classes that Implement the
ORAData and ORADataFactory Interfaces 372

SQLData vs. ORAData and ORADataFactory . 384

A Note on Separating Domain Objects
from the Persistence Mechanism. 385

Summary . 385

■CHAPTER 11 Using Oracle Collections and References 387

Weakly Typed Collection Classes . 388

The java.sql.Array Interface . 388

The oracle.sql.ARRAY Class . 389

Strongly Typed Collection Classes . 390

Materializing Collections of Built-in Types As Weakly Typed Objects . . . 390

Creating the Schema for Collections of Built-in Types 390

Manifesting Collections of Built-in Types As ARRAY Objects 392

Materializing Collections of Object Types . 407

Creating a Schema for a Collection of Object Types 407

Accessing a Collection of Oracle Objects As STRUCT Objects 409

Accessing a Collection of Oracle Objects Using Custom Classes . . 411

ARRAY Class Performance Extensions. 422

ARRAY Automatic Element Buffering . 422

ARRAY Automatic Indexing . 423

Benchmarking Auto-buffering and Auto-indexing 423

References . 429

A Brief Introduction to References . 430

Using References in JDBC . 433

Using Strongly Typed Custom Classes to Query References 439

Summary . 446

■CONTENTSxii

■CHAPTER 12 Using LOBs and BFILEs . 447

What Are LOBs?. 447

LOBs vs. LONGs . 447

Types of LOBs. 448

LOB Locator . 449

Internal LOBs (CLOBs, NCLOBs, and BLOBs) . 449

Using Internal LOBs in SQL . 450

Using Internal LOBs in PL/SQL . 451

External LOBs (BFILEs) in SQL and PL/SQL . 457

Using LOBs in JDBC . 459

Reading from and Writing to a CLOB . 460

Reading from and Writing to a BLOB . 468

Reading BFILE Data. 473

Alternatives to BFILEs for File Operations . 480

Using the UTL_FILE PL/SQL Package to
Read from and Write to a Text File. 480

Using the UTL_FILE PL/SQL Package to
Read from and Write to a Binary File . 483

Using External Tables to Read Text Files . 485

BFILE vs. UTL_FILE vs. External Table . 486

Summary . 493

■CHAPTER 13 Statement Caching. 495

Cursors . 495

Cursors in PL/SQL (Explicit and Implicit) . 495

Ref Cursors (or Cursor Variables) . 497

Prepare Once, Bind and Execute Many Times . 500

Session Cursor Cache and “Softer” Soft Parses . 504

Session Cursor Cache in Action. 504

PL/SQL Cursor Cache . 508

Statement Caching in JDBC . 511

Statement Caching Fundamentals . 511

Implicit and Explicit Statement Caching . 512

Session Cursor Cache vs. PL/SQL Cursor Cache
vs. JDBC Statement Caching. 527

Summary . 528

■CONTENTS xiii

■CHAPTER 14 Connection Pooling and Caching . 529

Connections and Sessions in Oracle . 529

Client/Server Applications and Connections. 531

Web Applications and Connection-Related Challenges 532

Cost of Opening and Closing a Connection. 532

What Is Connection Pooling?. 534

What Is Connection Caching? . 535

Oracle9i Connection Pooling Framework . 536

Related JDBC Standard and Oracle Interfaces 536

Example of Creating a Pooled Connection
and Obtaining a Logical Connection . 538

Oracle9i Connection Caching . 540

Oracle’s Implementation of Connection Cache. 541

Steps in Using OracleConnectionCacheImpl 542

Example of Using OracleConnectionCacheImpl 544

Oracle 10g Implicit Connection Caching . 547

Using the Oracle 10g Implicit Connection Cache 547

An Example of Using Implicit Connection Caching. 551

The OracleConnectionCacheManager Class 554

Using Connection Attributes and Attribute Weights (10g Only) . . . 558

OCI Connection Pooling . 560

Creating an OCI Connection Pool . 561

Configuring the OCI Connection Pool Properties 561

Retrieving a Connection from the OCI Connection Pool 563

Analyzing Connections and Sessions When
OCI Connection Pooling Is in Use. 563

Summary . 573

■CHAPTER 15 Security-Related Issues . 575

The Principle of Least Privilege and Defense in Depth 575

Mapping an End User to a Database User . 576

Separating the End User Database Schema, Data Schema,
and Data Access Layer Schema . 578

An Example Application . 579

Creating the Database Schemas. 580

Creating the Application Data Tables . 581

Granting DML Privileges to db_data_access_layer 582

Creating the PL/SQL Packages . 582

Creating Database Roles and Schema for End Users 585

■CONTENTSxiv

Authenticating an Application End User to the Database 587

Authentication Using the End User’s Database Password 588

Proxy Authentication (N-Tier Authentication) 589

Summary . 598

■CHAPTER 16 Locking-Related Issues . 599

Locking in Oracle. 599

Lost Updates . 599

Setting the Transaction Isolation Level to SERIALIZABLE 603

Pessimistic Locking. 605

Optimistic Locking. 607

Pessimistic Locking vs. Optimistic Locking. 627

Summary . 628

■CHAPTER 17 Selected PL/SQL Techniques . 629

Further Motivation for Using PL/SQL . 629

PL/SQL Is Close to Your Data . 629

PL/SQL Is Portable . 630

PL/SQL Code Is Compact (Fewer Lines of Code) 630

Tuning SQL in PL/SQL Is Easier . 631

Adding Code to PL/SQL Is Easier . 631

PL/SQL Code May Result in Fewer Round-trips 631

Common Mistakes When Using PL/SQL . 631

Using PL/SQL When a SQL Solution Exists . 631

Reinventing the Wheel . 635

Selected PL/SQL Tips . 635

Packaging Matters! . 635

Using Bulk Operations to Boost Performance 640

Preferring Static SQL over Dynamic SQL. 651

Returning Data via a Ref Cursor . 653

Understanding the Invoker Rights and Definer Rights Modes 653

PL/SQL Debugging . 662

Seamless Instrumentation of PL/SQL and JDBC Code 668

Summary . 687

■APPENDIX . 689

■INDEX . 693

■CONTENTS xv

About the Author

■R.M. MENON has worked with the Oracle database for over nine years,
the last six of which have been at Oracle Corporation, where he is cur-
rently Project Lead in the Server Technologies division. For the past five
years, he has used JDBC and other J2EE technologies extensively as
part of his work. When he is not doing research on Oracle, Menon
learns Indian classical vocal music and performs at local cultural
events as a singer. Occasionally, he also dabbles in sketching portraits,
and drawing paintings and cartoons.

xvii

About the Technical Reviewers

■ROB HARROP is Principal Consultant for Interface21, specializing in
delivering high-performance, highly scalable enterprise applications.
He is an experienced architect with a particular flair for understanding
and solving complex design issues. With a thorough knowledge of both
Java and .NET, Rob has successfully deployed projects across both plat-
forms. He has extensive experience across a variety of sectors, in particular
retail and government. Rob is the author of five books, including Pro Spring
(Apress, 2005), a widely acclaimed, comprehensive resource on the Spring
Framework.

Rob has been a core developer of the Spring Framework since June 2004 and currently
leads the JMX and AOP efforts. He cofounded UK-based software company Cake Solutions
Limited in May 2001, having spent the previous two years working as Lead Developer for a
successful dot-com startup. Rob is a member of the JCP and is involved in the JSR-255 Expert
Group for JMX 2.0. Rob can be reached at rob.harrop@interface21.com.

■TOM KYTE is a Vice President in Oracle’s Public Sector division. Before
starting at Oracle, Kyte worked as a systems integrator building large-
scale, heterogeneous databases and applications, mostly for military
and government customers. Kyte spends a great deal of time working
with the Oracle database and, more specifically, working with people
who are working with the Oracle database. In addition, Kyte is the Tom
behind the “Ask Tom” column (http://asktom.oracle.com) in Oracle
Magazine, answering people’s questions about the Oracle database and
its tools. Kyte is also the author of Expert One-on-One Oracle (Apress,

2004) and Effective Oracle by Design (Osborne McGraw-Hill/Oracle Press, 2003), and a coau-
thor of Beginning Oracle Programming (Apress, 2004). These are books about the general use
of the database and how to develop successful Oracle applications.

■TORBEN HOLM has been in the computer business since 1987, and
he has been working with Oracle as a developer and DBA since 1992.
He worked for four years in the Royal Danish Airforce as a systems
analyst, application developer, and DBA. Later he moved on to work
at Oracle Denmark in the Premium Services group as Senior Principal
Consultant, where he performed application development and DBA
tasks. He has taught PL/SQL, SQL, DBA, and WebDB courses as well.
For the last four years he has worked for Miracle A/S as a consultant.
He is Developer 6i Certified (and partly 8i Certified, for what it’s worth).
He is also a member of the OakTable network.

xix

Acknowledgments

I would like to thank many people who helped me in writing my first book. To begin
with, I want to thank Thomas Kyte of Oracle Corporation, from whose books and site
(http://asktom.oracle.com) I have learned many Oracle concepts. Thank you, Tom, for
generously agreeing to review this book, for patiently answering many of my questions on
Oracle (several times on weekends), and for being such a tremendous inspiration to me
and to the Oracle community at large. This book would not have happened without your
support and generosity.

I would also like to express my deepest gratitude to Rob Harrop, whose meticulous
review comments made this book that much better and technically accurate. My sincere
thanks are also due to the reviewers Torben Holm and Julian Dyke.

Several other folks at Oracle Corporation have also helped me a lot. In particular, I would
like to thank Douglas Surber of the JDBC group, who always responded promptly to my queries.
I also appreciate the timely help Quan Wang extended to me on issues related to the JPublisher
utility. In the same vein, I am grateful to Debu Chatterjee, Kuassi Mensah, and Rajkumar Iruda-
yaraj for clarifying some of the connection pooling–related concepts. I would also like to express
my gratitude to John Beresniewicz for kindly reviewing the chapter on PL/SQL.

My sincere thanks to Apress for giving me the opportunity to write this book. Many thanks
to Tony Davis for the patient and untiring application of his exceptional editorial skills on this
book. My heartfelt thanks to Sofia Marchant for keeping this project on track, to Nicole LeClerc
for her scrupulous copy editing, to Kelly Winquist for doing an excellent production-editing
job, and to all others at Apress who worked hard behind the scenes to make this book a reality.

On a personal note, I would like to express my deepest gratitude to my family and friends.
In particular, I thank my dear parents, P.K.R. Menon and Padma Menon, my ever-supportive
brother, Madhu, and my delightful in-laws, Mr. and Mrs. Raveendran, without whose constant
love and tireless support I would be completely lost. I would also like to thank my dear cousin
brother, Vishwanathan Menon, for giving me some excellent feedback on my writing style.
Last, but not least, many thanks go to my wonderful and darling wife, Shyamala Raveendran,
who has endured the countless hours I spent on this book that should otherwise have been
spent in her company.

xxi

Introduction

With the popularity of Java language, JDBC is now perhaps the most commonly used API
to access databases. Oracle is one of the premium databases of the world. This book is about
accessing and manipulating data in Oracle using JDBC, with a focus on performance and scal-
ability.

Why another book on JDBC and Oracle, you may ask? I wrote this book because I realized
that most of the other JDBC books available today more or less regurgitate the JDBC specifica-
tion and the Oracle JDBC documentation that is freely available on the Internet. This book is
different. The central aim of this book is to complement the available documentation on JDBC
and Oracle, and to teach you how to use JDBC with Oracle effectively. This book is also different
from other JDBC books because of its focus on performance and scalability of applications.
Using this book, you will discover the following, among other things:

• How to use all the major features of standard JDBC and its Oracle extensions (Oracle 10g
and 9i)

• The most important architectural features of Oracle, an understanding of which will
enable you to write solid Oracle applications

• How to write and run your own benchmarks to validate (or invalidate) various perform-
ance claims, using invaluable Oracle performance tools such as tkprof, SQL trace, etc.

• The importance of understanding how to effectively exploit SQL and PL/SQL in your
applications

Please note that this book does not cover related technologies such as OC4J, JSP, Spring
Framework, and so on. Instead, it maintains focus on the JDBC API and the database tier.
Within the JDBC API, I have skipped some of the less commonly used JDBC features such as
distributed transactions, some of the RAC-related topics, and rowsets. The section “Overview
of JDBC API” in Chapter 3 explains in detail the different interfaces of the JDBC API and the
chapters that cover them (and it provides appropriate references if a topic is not covered).

Who This Book Is For
This book is for those who want to learn how to write effective JDBC code when developing
an Oracle application. The book assumes that you are familiar with Java and have some basic
knowledge of SQL and PL/SQL. The book does not assume any prior knowledge of JDBC. All
concepts are illustrated with detailed examples accompanied by interspersed comments
explaining the examples. Your best bet to make the most out of this book is to run the exam-
ples while you are reading along.

xxiii

What This Book Covers
The book consists of 17 chapters covering a wide range of topics. The following sections pres-
ent chapter-by-chapter breakdowns.

Chapter 1: Performance Toolkit
The very first chapter introduces you to the various performance tools you’ll use throughout
the book. These include tools such as tkprof that come bundled with Oracle, as well as tools
I wrote in Java for your convenience. This is a reference chapter that I recommend you revisit
whenever you need to refresh your memory about a tool used elsewhere in the book.

Chapter 2: Oracle Fundamentals
This chapter explores some of the fundamental architectural features of Oracle that you as a
developer should know. You’ll be introduced to topics such as multiversioning read consis-
tency, the locking mechanism used by Oracle, shared pool, latches, undo, redo, and so on,
with illustrative examples. I also provide performance guidelines applicable in general when
developing an application. I recommend that you read this chapter before you read any other
remaining chapters in this book.

Chapter 3: Introduction to JDBC
In this chapter, you’ll learn the software you need to install to develop and run JDBC programs
on either UNIX or the Windows platform. You’ll examine the various types of JDBC drivers, and
which ones to use when. You’ll also get a good overview of the JDBC API and learn how to con-
nect to a database. You’ll then go on to write your first JDBC program.

Chapter 4: Transactions
Transactions form the basis of any database. In this chapter, you’ll take a brief look at transac-
tions in the context of JDBC. You’ll see how to commit and roll back a transaction in JDBC. You’ll
learn what transaction isolation levels are and which ones are supported by Oracle. You’ll learn
about some important principles you need to follow when writing transactions for an Oracle
application. You’ll also examine transaction savepoints, a feature exposed to Java programs in
JDBC 3.0.

Chapter 5: Statement and PreparedStatement
In this chapter, you’ll first be introduced to the mechanics of how Oracle processes SQL state-
ments. You’ll then examine two of the fundamental statement interfaces of JDBC: Statement
and PreparedStatement. You’ll look at why you should almost always prefer PreparedStatement
over Statement. You’ll learn about how using PreparedStatement can help avoid SQL injection
(a security hacking technique) attacks. You’ll also learn about standard and Oracle update
batching, and compare the two in terms of performance and other features.

■INTRODUCTIONxxiv

Chapter 6: CallableStatement
In this chapter, you’ll explore in detail how to invoke stored SQL procedures from JDBC using
the CallableStatement interface. You’ll learn how to use SQL92 syntax or Oracle syntax when
invoking a stored procedure using the CallableStatement interface.

Chapter 7: Result Sets Explored
This chapter describes the advanced features of the ResultSet interface, including prefetch-
ing, scrollability, positioning, sensitivity, and updatability. You’ll learn the various strengths
and weaknesses of these features, and you’ll examine how to paginate through the results of a
query efficiently. You’ll learn how you can dynamically build query statements with unknown
number of bind variables using either the PreparedStatement or CallableStatement interface.
The ResultSetMetaData and DatabaseMetaData interfaces are also covered.

Chapter 8: Oracle Objects: An Objective Analysis
This chapter introduces Oracle objects and collections. You’ll critically examine how these fea-
tures should be used in Oracle applications in general. Note that this chapter doesn’t discuss
how to access objects and collections from JDBC; those topics are covered in the next three
chapters. I strongly recommend you read this chapter, though, since it forms the basis of the
following three chapters that discuss Oracle objects and collections.

Chapter 9: Using Weakly Typed Struct Objects
In this chapter, you’ll learn how to materialize Oracle objects as weakly typed objects in Java. A
weakly typed object refers to a Java object that represents objects using an array of attributes.

Chapter 10: Using Strongly Typed Interfaces with JPublisher
Here, you’ll learn how to materialize objects as strongly typed objects in Java. A strongly typed
object refers to an object belonging to a custom Java class specifically created to represent a
given database object type in Java. Along the way, you’ll learn how to use the JPublisher utility
to generate custom classes representing Oracle objects.

Chapter 11: Using Oracle Collections and References
This chapter explains how to retrieve the collections in Oracle as either a weakly typed or
strongly typed array of custom class objects (generated using the JPublisher utility). You’ll crit-
ically examine some of the performance extensions Oracle provides you with, and you’ll also
study suitable benchmarks evaluating the effectiveness of these extensions. You’ll then move
on to learn about references, and how to access and manipulate them using JDBC.

Chapter 12: Using LOBs and BFILEs
In this chapter, you’ll learn what LOBs (large objects) are and how they’re stored in Oracle.
You’ll then examine how to retrieve and manipulate them. You’ll also compare various alter-
natives when manipulating LOBs through the JDBC API.

■INTRODUCTION xxv

Chapter 13: Statement Caching
In this chapter, you’ll learn about statement caching, its different flavors in JDBC, and how it
improves the performance of JDBC programs. As a background to the statement-caching con-
cept, you’ll also examine cursors and ref cursors in detail. In addition, you’ll look at two other
related caches Oracle provides you with: the PL/SQL cursor cache (which is the PL/SQL equiv-
alent of the JDBC statement cache) and session cached cursors.

Chapter 14: Connection Pooling and Caching
In this chapter, you’ll learn about connection pooling and caching, and how they can improve
the performance of your application. You’ll look at the 9i and 10g implementations separately.
Finally, you’ll examine Oracle’s OCI driver connection pooling feature.

Chapter 15: Security-Related Issues
This chapter examines some of the security issues involved in a three-tier architecture that uses
connection pooling. In particular, it delves into various alternatives of mapping an application
end user to a database end user, and different ways in which an application can authenticate to
the database on behalf of an end user. You’ll also learn about the proxy authentication feature.

Chapter 16: Locking-Related Issues
In this chapter, you’ll look at some of the issues related to locking in Oracle. In particular, you’ll
learn about the infamous lost update problem and various ways to address it. Along the way,
you’ll examine different strategies to implement two solutions to the lost update problem,
namely optimistic locking and pessimistic locking. You’ll also compare these two solutions
and determine when to use each strategy.

Chapter 17: Selected PL/SQL Techniques
In the final chapter, you’ll learn why it is critical for a JDBC programmer working with Oracle
databases to learn and master PL/SQL. You’ll also examine a few selected PL/SQL techniques
that will help you in writing high-performance and maintainable PL/SQL code.

Appendix
The Appendix includes two reference tables that list mappings between SQL object types and
Java types.

Recommended Reading Order
The book is best read in sequential order. If you do want some flexibility in the order in which
you read the book, then please follow these guidelines.

To begin with, I recommend you read Chapters 1 through 7 in sequential order. The remain-
der of the book is divided into two (more or less) self-contained parts. The first part consists of
Chapters 8 through 11, which describe Oracle objects and how to use them in JDBC. You should
read these chapters in sequential order. The second part consists of Chapters 12 through 17,
which are fairly self-contained and can be read in any order, except for the fact that you may
want to read Chapter 13 before Chapter 14.

■INTRODUCTIONxxvi

Contacting the Author
I welcome any comments or questions you may have about the book. You may contact me at
rmenon.us@gmail.com.

■INTRODUCTION xxvii

About the OakTable Network

In and by itself, the OakTable network is just a bunch of people who would like to talk to and
be in contact with like-minded people—that is, people with a scientific approach (and inquir-
ing mind) regarding Oracle’s database technology.

It all started sometime in 1998 when a group of Oracle experts, including Anjo Kolk, Cary
Millsap, James Morle, and a few others, started meeting once or twice a year, on various pre-
texts. Each would bring a bottle of Scotch or Bourbon and in return earn the right to sleep on
the floor somewhere in my house.

We spent most of our time sitting around my dining table, with computers, cabling,
paper, and other stuff all over the place, discussing Oracle, relaying anecdotes, and experi-
menting with new and better ways of working with the database. By the spring of 2002, the
whole thing had grown. One evening, I realized that I had 16 world-renowned Oracle scien-
tists sitting around my dining table. We were sleeping three or four to a room and even had to
borrow the neighbor’s shower in the mornings. Anjo Kolk suggested we call ourselves the
“OakTable network” (after my dining table), and about 2 minutes later,
http://www.OakTable.net was registered.

James Morle now maintains the website along with his wife Elaine, and although it doesn’t
get updated with new content perhaps as often as it should, it is useful at least for providing the
links, names, and such. We also use it for the Challenge questions and answers.

The Challenge is something we occasionally run during conferences. Ask us anything
(technical) about Oracle, and if we can’t find the answer (whether it be yes, no, or a solution)
within 24 hours, the person who asked the question gets a T-shirt stating that he or she beat
the OakTable.

The Challenge, though, is not used as much as we’d like, probably because it looks as if we
want to be challenged with questions to which we cannot find answers. The opposite is actu-
ally true—the purpose is to answer questions from anybody, regardless how “simple” or “easy”
they might seem.

The Members
I recently read the book Operation Certain Death, about an operation in Sierre Leone by the
British Special Forces. I want to make perfectly clear that in no way can the physical abilities
of the OakTable members be compared to those of the Special Forces. In fact, not at all.

But somewhere in the book the author makes the observation that the Special Forces sol-
diers are all totally convinced of the maxim that anything can be done with two elastic bands
and a piece of rope, if you think long and hard enough about it. In other words, never, ever
give up.

xxix

That struck me as something I also have observed with the OakTable members: they all
believe that there’s always one more option, always one more way of looking at things. It
might take a chat with another member, maybe even a Chinese parliament, but the idea of
giving up on a problem really is not acceptable, unless you’re ordered to.

So imagine bringing a bunch of people with that attitude (and a tremendous respect for
each other) together for even just a few days. It’s never boring, and you very rarely see them
waiting on an idle wait event, as we put it.

Imagine standing on the cold, gray cement in the exhibition hall at Oracle World in Copen-
hagen, realizing that we hadn’t paid for carpeting or anything, just 6 × 6 meters of cement floor.
Well, it turned out the Intel guys had some spare super-quality AstroTurf carpet, but needed beer.
It was Gary Goodman who brokered that deal within half an hour.

Then Johannes Djernes saw the BMC guys bringing all their advanced exhibition stuff in,
placed in two crates that each measured 2.5 × 1 × 1 meters. Two cases of beers later we had
borrowed the empty crates. Then Johannes went out and bought various bits and pieces, and
within a few hours we had the tallest tower (5 meters high) in the whole exhibition area. It was
possibly also the ugliest, but people noticed it.

During the same event, James Morle fought like a lion to establish the World’s Biggest
Laptop RAC Cluster, using a NetApp filer, a Linux boot CD, and the laptops of anybody who
happened to pass by. It was a huge success, but without the Never Give Up attitude of James
and of others like Michael Möller and Morten Egan, it would never have happened.

A committee, consisting of James Morle, Cary Millsap, Anjo Kolk, Steve Adams, Jonathan
Lewis, and myself, review suggestions for new OakTable members. At the time of this writing,
the number of members is approaching 50, and I have no doubt we will continue to add
members with the inquiring, scientific, never-give-up attitude that is the hallmark of this
extraordinary group of humans.

The Politics
How often have you heard the phrase “Oracle says that . . .” or “Oracle Support promised . . .”?
Well, most of the time it isn’t Oracle as a corporation that “says” something, but an individual
who has an opinion or an idea. I know, because I spent 10 years working for Oracle Support,
and it is indeed a strange feeling to hear one’s own words later repeated as the words of Oracle
Corporation (or at least Oracle Denmark).

It is the same with the OakTable. We don’t act as a single body, but as individuals. Some
(technical) views might be shared, but that’s just lucky coincidence. There are no guidelines
regarding the individual member’s conduct or attitudes, except that ideas should be shared
and guessing should be eliminated by constantly testing and pushing boundaries.

Sharing ideas openly between peers and striving for scientific methods is what the
OakTable network is all about. On those aims there can and will be no compromise.

The Books
One day in Kenilworth, UK, during an Oracle SIG meeting, James Morle came up with the idea
of the BAARF Party (Battle Against Any RAID Five/Four/and err . . . Free) while having a Larsen
cognac. That same evening we had dinner with Tony Davis from Apress, and that’s when James
came up with this idea of a press label called OakTable Press. Tony thought that was a splendid
idea, and a few days later it was a reality.

■ABOUT THE OAKTABLE NETWORKxxx

The idea was to let OakTable members either write books or at least review books before
they were published under this label. At least two OakTable members must review and OK a
book before it can be published.

Along with the book you have in your hands now, the current catalog consists of the
following:

• Mastering Oracle PL/SQL: Practical Solutions: Connor McDonald et al. show you how
to write PL/SQL code that will run quickly and won’t break in high load, multiuser
environments.

• Oracle Insights: Tales of the Oak Table: A bunch of OakTable members (including me)
present a series of stories about our experiences (good and bad) using the Oracle soft-
ware: where it’s been, where it’s going, how (and how not) to use it successfully, and
some frightening tales of what can happen when fundamental design principles are
ignored.

• PeopleSoft for the Oracle DBA: David Kurtz provides a “survival guide” for any Oracle
DBA charged with maintaining a PeopleSoft application. The book shows you how to
effectively implement common Oracle database administration techniques using the
PeopleSoft toolset, how to analyze application activity, and how to obtain the critical
data that will allow you to track down the causes of poor performance.

• Mastering Oracle SQL and SQL*Plus: Lex de Haan covers the SQL fundamentals in com-
plete and accurate detail with a wealth of nontrivial examples that clearly illustrate how
to use the SQL language in an effective manner. Lex has knowledge you can trust: he has
14 years of experience with the Oracle database and 25 years of teaching experience, and
he is a member of the ANSI/ISO SQL standardization national body.

We hope that every book published by OakTable Press will be imbued by the qualities that
we admire: they will be scientific, rigorous, accurate, innovative, and fun to read. Ultimately,
we hope that each book is as useful a tool as it can possibly be in helping make your life easier.

—Best,
Mogens Nørgaard

Managing Director of Miracle A/S
(http://www.miracleas.dk)

and cofounder of the OakTable network

■ABOUT THE OAKTABLE NETWORK xxxi

Performance Toolkit

In this chapter, you’ll learn how to set up an environment so that you can test the example
code in this book. You’ll also learn about some common utilities for benchmarking perform-
ance used throughout this book. The chapter covers the following topics:

• Setting up your SQL*Plus environment

• Setting up the SCOTT/TIGER demonstration schema

• Setting up the BENCHMARK/BENCHMARK schema, which we’ll use throughout the book for
executing some of our code examples

• Setting up sql_trace, timed_statistics, and tkprof, two parameters and a command-
line tool that will tell you what SQL your application executed and how that SQL
performed

• Setting up and using various performance tools, including the runstats utility and its
Java counterpart, JRunstats

• Using the JBenchmark class to time Java programs in general

Note that I provide only basic setup instructions here for the various performance tools,
so that you may quickly configure your environment to run the examples in this book. For full
instructions and information on how to interpret the data that these tools provide, refer to the
Oracle documentation set or a relevant book, such as Thomas Kyte’s Expert One-on-One Oracle
(Apress, ISBN: 1-59059-243-3). The Java utility JRunstats invokes stored procedures from the Java
program using the JDBC API—you will learn about stored procedures in detail in the Chapter 6.

Setting Up the SQL*Plus Environment
Some of the examples in this book are designed to run in the SQL*Plus environment. SQL*Plus
provides many handy options and commands that we’ll use frequently throughout this book.
For example, some of the examples in this book use dbms_output. For dbms_output to work, the
following SQL*Plus command must be issued:

SQL> set serveroutput on

1

C H A P T E R 1

■ ■ ■

CHAPTER 1 ■ PERFORMANCE TOOLKIT2

Alternatively, SQL*Plus allows you to set up a login.sql file, a script that is executed
each and every time you start a SQL*Plus session. In this file, you can set parameters such as
serveroutput automatically. An example of a login.sql script (taken from Chapter 2, “Your
Performance Toolkit,” of Tom Kyte’s Effective Oracle by Design [Osborne McGraw-Hill, ISBN:
0-07-223065-7]) with self-explanatory comments is as follows (you can edit it to suit your own
particular environment):

REM turn off the terminal output - make it so SQLPlus does not
REM print out anything when we log in
set termout off
set head off

REM default your editor here. SQLPlus has many individual settings
REM This is one of the most important ones
REM define _editor=vi

REM serveroutput controls whether your DBMS_OUTPUT.PUT_LINE calls
REM go into the bit bucket (serveroutput off) or get displayed
REM on screen. I always want serveroutput set on and as big
REM as possible - this does that. The format wrapped elements
REM causes SQLPlus to preserve leading whitespace - very useful
set serveroutput on size 1000000

REM Here I set some default column widths for commonly queried
REM columns - columns I find myself setting frequently, day after day
column object_name format a30
column segment_name format a30
column file_name format a40
column name format a30
column file_name format a30
column what format a30 word_wrapped
column plan_plus_exp format a100

REM by default, a spool file is a fixed width file with lots of
REM trailing blanks. Trimspool removes these trailing blanks
REM making the spool file significantly smaller
set trimspool on

REM LONG controls how much of a LONG or CLOB sqlplus displays
REM by default. It defaults to 80 characters which in general
REM is far too small. I use the first 5000 characters by default
set long 5000

REM This sets the default width at which sqlplus wraps output.
REM I use a telnet client that can go up to 131 characters wide -
REM hence this is my preferred setting.
set linesize 131

REM SQLplus will print column headings every N lines of output

REM this defaults to 14 lines. I find that they just clutter my
REM screen so this setting effectively disables them for all
REM intents and purposes - except for the first page of course
set pagesize 9999

REM here is how I set my signature prompt in sqlplus to
REM username@database> I use the NEW_VALUE concept to format
REM a nice prompt string that defaults to IDLE (useful for those
REM of you that use sqlplus to startup their databases - the
REM prompt will default to idle> if your database isn't started)
define gname=idle
column global_name new_value gname
select lower(user) || '@' ||

substr(global_name, 1, decode(dot,
0, length(global_name),

dot-1)) global_name
from (select global_name, instr(global_name,'.') dot

from global_name);
set sqlprompt '&gname> '

REM and lastly, we'll put termout back on so sqlplus prints
REM to the screen
set termout on

Furthermore, you can use this script to format the SQL*Plus prompt so you always know
who you’re logged in as and on which database. For example, as you work through this book,
you’ll encounter prompts of the following format:

scott@ORA10G>

This tells you that you’re logged into the SCOTT schema on the ORA10G database. The fol-
lowing is the code in the login.sql script that achieves this:

REM here is how I set my signature prompt in sqlplus to
REM username@database> I use the NEW_VALUE concept to format
REM a nice prompt string that defaults to IDLE (useful for those
REM of you who use sqlplus to start up your databases - the
REM prompt will default to idle> if your database isn't started)
define gname=idle
column global_name new_value gname
select lower(user) || '@' ||

substr(global_name, 1, decode(dot,
0, length(global_name),

dot-1)) global_name
from (select global_name, instr(global_name,'.') dot

from global_name);
set sqlprompt '&gname> '

REM and lastly, we'll put termout back on so sqlplus prints
REM to the screen
set termout on

CHAPTER 1 ■ PERFORMANCE TOOLKIT 3

When you use SQL*Plus 9i and before, this login script will be run only once, at startup.
So, if you log in at startup as SCOTT and then change to a different account, this won’t register
on your prompt (this isn’t an issue if you’re using a 10g database):

ora92 33> sqlplus scott/tiger

SQL*Plus: Release 9.2.0.1.0 - Production on Wed Dec 8 20:38:31 2004

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

Note in the following code that the prompt still shows SCOTT even though you are con-
nected as the user BENCHMARK:

scott@ORA92I> conn benchmark/benchmark
Connected.
scott@ORA92I>

The following connect.sql script will solve this:

set termout off
connect &1
@login
set termout on

Then you simply run this script (which connects and then runs the login script) every time
you want to change accounts:

scott@ ORA92I> @connect benchmark/benchmark
benchmark@ORA92I>

To get SQL*Plus to run the login script automatically on startup, you need to save it in a
directory (put connect.sql in the same directory) and then set the SQLPATH environment vari-
able to point at that directory. On UNIX, the command to set the environment variable is
different, depending on the shell you use. For example, in tcsh shell, you would use

setenv SQLPATH /home/rmenon/mysqlscripts

In Windows, there are many ways to run the login script automatically on startup, but the
easiest is to set it in the Environment Variables section of the System Properties. In Windows
XP, follow this procedure:

1. Right-click the My Computers icon and select Properties.

2. Select the Advanced tab and then click the Environment Variables button. Create a
new variable as required (or edit it if it already exists).

CHAPTER 1 ■ PERFORMANCE TOOLKIT4

In Windows you can also use the set command and put the script in your autoexec.bat file:

set SQLPATH=C:\MYSQLSCRIPTS

Setting Up autotrace in SQL*Plus
Throughout the book, it will be useful for us to monitor the performance of the queries we
execute. SQL*Plus provides an autotrace facility that allows us to see the execution plans of
the queries we’ve executed and the resources they used. The report is generated after the suc-
cessful execution of a SQL Data Manipulation Language (DML) statement. There is more than
one way to configure the autotrace facility; the following is a recommended method.

1. Execute cd $ORACLE_HOME/rdbms/admin.

2. Log into SQL*Plus as any user with create table and create public synonym privileges.

3. Run @utlxplan to create a plan_table for use by autotrace.

4. Run create public synonym plan_table for plan_table, so that everyone can access
this table without specifying a schema.

5. Run grant all on plan_table to public, so that everyone can use this table.

6. Exit SQL*Plus and change directories as follows: cd $ORACLE_HOME/sqlplus/admin.

7. Log into SQL*Plus as SYSDBA.

8. Run @plustrce.

9. Run grant plustrace to public.

You can test your setup by enabling autotrace and executing a simple query:

SQL> set AUTOTRACE traceonly
SQL> select * from emp, dept
2 where emp.deptno=dept.deptno;

14 rows selected.

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 MERGE JOIN
2 1 SORT (JOIN)
3 2 TABLE ACCESS (FULL) OF 'DEPT'
4 1 SORT (JOIN)
5 4 TABLE ACCESS (FULL) OF 'EMP'

Statistics
--

0 recursive calls
8 db block gets

CHAPTER 1 ■ PERFORMANCE TOOLKIT 5

2 consistent gets
0 physical reads
0 redo size

2144 bytes sent via SQL*Net to client
425 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
2 sorts (memory)
0 sorts (disk)
14 rows processed

SQL> set AUTOTRACE off

For full details on the use of autotrace and interpretation of the data it provides, see the
chapter titled “Using Application Tracing Tools” of Oracle Database Performance Tuning Guide
and Reference (10g Release 1) in the Oracle documentation set or the chapter titled “Tuning
SQL*Plus” of SQL*Plus User’s Guide and Reference (10g Release 1).

Effect of Setting echo on in SQL*Plus
Prior to running the SQL*Plus code examples in this book, the script issues the set echo on
command:

SQL> set echo on

The effect of this on SQL*Plus output can be explained by the following simple example.
Suppose we are running a script, demo_echo_option.sql, the contents of which are as follows:

set echo on
drop table t1;
create table t1
(
x number,
y varchar2(30),
z date

);

The output of the preceding script when executed as the user SCOTT looks like this:

scott@ORA10G> set echo on
scott@ORA10G> drop table t1;

Table dropped.

scott@ORA10G> create table t1
2 (
3 x number,
4 y varchar2(30),
5 z date
6);

Table created.

CHAPTER 1 ■ PERFORMANCE TOOLKIT6

Note in particular the SQL prompt (due to the login.sql script) and the fact that the line
numbers are shown. You need to be familiar with the preceding form of output, as all
SQL*Plus examples in this book use it.

Setting Up the SCOTT/TIGER Schema
Many of the examples in this book draw on the emp/dept tables in the SCOTT schema. I recom-
mend that you install your own copy of these tables in some account other than SCOTT to avoid
side effects caused by other users using and modifying the same data. In Oracle9i and earlier,
follow these steps to create the SCOTT demonstration tables in your own schema:

1. From the command line, run cd [ORACLE_HOME]/sqlplus/demo.

2. Log into SQL*Plus as the required user.

3. Run @demobld.sql.

The demobld.sql script will create and populate five tables for you. When the script is
complete, it exits SQL*Plus automatically, so don’t be surprised when SQL*Plus disappears
after running the script. If you would like to drop this schema at any time to clean up, simply
execute [ORACLE_HOME]/sqlplus/demo/demodrop.sql.

In 10g, you install the SCOTT schema by executing [ORACLE_HOME]/rdbms/admin/utlsampl.sql.

Setting Up the BENCHMARK/BENCHMARK Schema
Some of the code examples in this book have a user called BENCHMARK with the password
BENCHMARK. You can install this user by executing the script cr_benchmark_user.sql in the direc-
tory code\mysqlscripts. You can find this script in the code download area for this book at
http://www.apress.com. The content of the script follows. As you can see, the script also con-
tains various grants and privileges used when I discuss concepts in different chapters, and
also required by some utilities that we execute as the user BENCHMARK:

create user benchmark identified by benchmark default tablespace users quota
unlimited on users;

grant create any directory,
create session,
create table,
create view,
create synonym,
create materialized view,
create procedure,
create trigger,
create sequence,
create type to benchmark;

grant select on v_$session_cursor_cache to benchmark;

CHAPTER 1 ■ PERFORMANCE TOOLKIT 7

grant select on v_$sesstat to benchmark;
grant select on v_$open_cursor to benchmark;
grant select on v_$sql to benchmark;
grant select on v_$sqlarea to benchmark;
grant create any context to benchmark;
grant drop any context to benchmark;
grant select on sys.col$ to benchmark; -- query data dict
grant select on sys.dba_segments to benchmark; -- for block dump
grant select on v_$process to benchmark

Performance Tools
We’ll also make use of other performance tools throughout the book. This section presents
brief setup instructions for these tools.

timed_statistics
The timed_statistics parameter specifies whether Oracle should measure the execution time
for various internal operations. Without this parameter set, there is much less value to the trace
file output. As with other parameters, you can set timed_statistics either on an instance level
(in init.ora) or on a session level. The former shouldn’t affect performance, so it’s generally
recommended. Simply add the following line to your init.ora file, and the next time you
restart the database, timed_statistics will be enabled:

timed_statistics=true

On a session level, you would issue this

SQL> alter session set timed_statistics=true;

Use the preceding method to set this parameter from your JDBC programs when
required.

sql_trace and tkprof
Together, the sql_trace facility and the tkprof command-line utility enable detailed tracing of
the activity that takes place within the database. In short, sql_trace is used to write perform-
ance information on individual SQL statements down to trace files in the file system of the
database server. Under normal circumstances, these trace files are hard to comprehend
directly. For that purpose, you use the tkprof utility to generate text-based report files from
the input of a given trace file.

sql_trace
The sql_trace facility is used to trace all SQL activity of a specified database session or instance
down to a trace file in the database server operating system. Each entry in the trace file records
a specific operation performed while the Oracle server process is processing a SQL statement.
sql_trace was originally intended for debugging, and it’s still well suited for that purpose, but
it can just as easily be used to analyze the SQL activity of the database for tuning purposes.

CHAPTER 1 ■ PERFORMANCE TOOLKIT8

Setting Up sql_trace

sql_trace can be enabled for either a single session or a whole database instance. It is, however,
rarely enabled at a database level, because that would cause serious performance problems.
Remember that sql_trace writes down every SQL statement processed down to a log file, with
accompanying input/output (I/O) activity.

To enable tracing for the current session, issue alter session, as shown here:

SQL> alter session set sql_trace=true;

Enable tracing for a session at a selected interval and avoid having tracing in effect for
long periods of time. To disable the current trace operation, execute the following:

SQL> alter session set sql_trace=false;

In this book, I use the following command to set SQL tracing; this gives the
maximum level of tracing output. You can read more about it in Cary Millsap’s article at
http://www.oracle.com/technology/oramag/oracle/04-jan/o14tech_perf.html.

SQL> alter session set events '10046 trace name context forever, level 12';

Controlling the Trace Files

The trace files generated by sql_trace can eventually grow quite large. A few global initializa-
tion parameters, set in init.ora for the database instance or session settings, affect the trace
files. If enabled, sql_trace will write to a file in the operating system directory indicated by
the user_dump_dest initialization parameter. You should note that trace files for user processes
(dedicated servers) go to the user_dump_dest directory. Trace files generated by Oracle back-
ground processes, such as the shared servers used with a multithreaded server (MTS) and job
queue processes used with the job queues, will go to background_dump_dest. Use of sql_trace
with a shared server configuration isn’t recommended—it will result in your session hopping
from shared server to shared server, generating trace information in not one, but many trace
files, rendering it useless.

Trace files are usually named ora<spid>.trc, where <spid> is the server process ID of
the session for which the trace was enabled. On Windows, you may use the following query to
retrieve your session’s trace file name (you may have to tweak the query since Oracle changes
the naming scheme sometimes; also the parameter tracefile_identifier affects a trace file
name, as you will see shortly):

SQL> select c.value || '\ORA' || to_char(a.spid,'fm00000') || '.trc'
2 from v$process a, v$session b, v$parameter c
3 where a.addr = b.paddr
4 and b.audsid = userenv('sessionid')
5 and c.name = 'user_dump_dest';

On UNIX, this query can be used to retrieve the session’s trace file name:

SQL> select c.value || '/' || d.instance_name || '_ora_' ||
2 to_char(a.spid,'fm99999') || '.trc'

CHAPTER 1 ■ PERFORMANCE TOOLKIT 9

3 from v$process a, v$session b, v$parameter c, v$instance d
4 where a.addr = b.paddr
5 and b.audsid = userenv('sessionid')
6 and c.name = 'user_dump_dest';

You can also set an identifier that would be part of the trace file name by issuing the fol-
lowing command:

SQL> alter session set tracefile_identifier='my_trace_file';

Session altered.

The size of the trace files is restricted by the value of the max_dump_file_size initialization
parameter set in init.ora for the database instance. You may also alter this at the session level
using the alter session command, for example:

SQL> alter session set max_dump_file_size = unlimited;
Session altered.

tkprof
The tkprof utility takes a sql_trace trace file as input and produces a text-based report file as
output. It’s a simple utility that summarizes a large set of detailed information in a given trace
file so that it can be understood for performance tuning. This section explains briefly how to
use this very useful utility.

In its simplest form, tkprof can be invoked as shown here:

tkprof <trace-file-name> <report-file-name>

To illustrate the joint use of tkprof and sql_trace, we’ll set up a simple example. Specifi-
cally, we’ll trace the query used previously in the autotrace example and generate a report
from the resulting trace file. First, we log into SQL*Plus as the intended user, and then execute
the following code:

SQL> select c.value || '\ORA' || to_char(a.spid,'fm00000') || '.trc'
2 from v$process a, v$session b, v$parameter c
3 where a.addr = b.paddr
4 and b.audsid = userenv('sessionid')
5 and c.name = 'user_dump_dest';

C.VALUE||'\ORA'||TO_CHAR(A.SPID,'FM00000')||'.TRC'
--

C:\oracle\admin\oratest\udump\ORA01528.trc

SQL> alter session set timed_statistics=true;

Session altered.

CHAPTER 1 ■ PERFORMANCE TOOLKIT10

SQL> alter session set sql_trace=true;

Session altered.

SQL> select * from emp, dept
2 where emp.deptno=dept.deptno;

SQL> alter session set sql_trace=false;

SQL> exit

Now we simply format our trace file from the command line using tkprof, as follows:

C:\oracle\admin\oratest\udump>tkprof ORA01528.TRC tkprof_rep1.txt

We can open the tkprof_rep1.txt file and view the report. I don’t intend to discuss the
output in detail here, but briefly, at the top of the report we should see the actual SQL state-
ment issued. Next, we get the execution report for the statement.

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------
Parse 1 0.01 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.00 0.00 0 2 8 14
------- ------ -------- ---------- ---------- ---------- ---------
total 4 0.01 0.02 0 2 8 14

This report illustrates the three different phases of Oracle SQL processing: parse, execute,
and fetch. For each processing phase, we see the following:

• The number of times that phase occurred

• The CPU time elapsed for the phase

• The real-world time that elapsed

• The number of physical I/O operations that took place on the disk

• The number of blocks processed in “consistent-read” mode

• The number of blocks read in “current” mode (reads that occur when the data is
changed by an external process during the execution of the statement)

• The number of blocks that were affected by the statement

■Note If you are not familiar with physical I/O, and “consistent-read” and “current” mode of blocks, see
the section “Logical I/O and Physical I/O” in Chapter 2 for more details.

CHAPTER 1 ■ PERFORMANCE TOOLKIT 11

Following the execution report, we can see the optimizer approach used and the user ID
of the session that enabled the trace (we can match this ID against the all_users table to get
the actual username):

Misses in library cache during parse: 0
Optimizer goal: CHOOSE
Parsing user id: 52

Additionally, we see the number of times the statement wasn’t found in the library cache.
The first time a statement is executed, this count should be 1, but it should be 0 in subsequent
calls if bind variables are used. Again, watch for the absence of bind variables—a large num-
ber of library cache misses would indicate that.

Finally, the report displays the execution plan used for this statement. This information is
similar to that provided by autotrace, with the important difference that the number of actual
rows flowing out of each step in the plan is revealed:

Rows Row Source Operation
------- ---

14 MERGE JOIN
5 SORT JOIN
4 TABLE ACCESS FULL DEPT
14 SORT JOIN
14 TABLE ACCESS FULL EMP

For full details on the use of sql_trace and tkprof, and interpretation of the trace data,
see Chapter 10 of Oracle9i Database Performance Tuning Guide and Reference. Another excel-
lent reference is Chapter 10, “Tuning Strategies and Tools,” in Tom Kyte’s Expert One-on-One
Oracle (Apress, ISBN: 1-59059-243-3). The most comprehensive (and an eminently readable)
book on tracing in general is Cary Millsap’s Optimizing Oracle Performance (O’Reilly, ISBN: 0-
596-00527-X).

runstats
runstats is a simple test harness that allows comparison of two executions of code and dis-
plays the costs of each in terms of the elapsed time, session-level statistics (such as parse
calls), and latching differences. The latter of these, latching, is the key piece of information
that this tool provides.

■Note The runstats tool was originally built by Tom Kyte, the man behind the http://asktom.oracle.com
website. You can find full information and an example usage of runstats at http://asktom.oracle.com/
~tkyte/runstats.html.

CHAPTER 1 ■ PERFORMANCE TOOLKIT12

■Note Latches are lightweight serialization resources Oracle uses when accessing shared memory
structures. See the section titled “Locks and Latches” in Chapter 2 of this book for more details. You can
also read more about latches in Oracle Database Concepts Guide (10g Release 1).

To run this test harness, you must have access to V$STATNAME, V$MYSTAT, and V$LATCH. You
must be granted direct select privileges (not via a role) on SYS.V_$STATNAME, SYS.V_$MYSTAT,
and SYS.V_$LATCH. You can then create the following view:

SQL> create or replace view stats
2 as select 'STAT...' || a.name name, b.value
3 from v$statname a, v$mystat b
4 where a.statistic# = b.statistic#
5 union all
6 select 'LATCH.' || name, gets
7 from v$latch;

View created.

All you need then is a small table to store the statistics:

create global temporary table run_stats
(runid varchar2(15),
name varchar2(80),
value int)

on commit preserve rows;

The code for the test harness package is as follows:

create or replace package runstats_pkg
as

procedure rs_start;
procedure rs_middle;
procedure rs_stop(p_difference_threshold in number default 0);

end;
/

create or replace package body runstats_pkg
as

g_start number;
g_run1 number;
g_run2 number;

procedure rs_start
is
begin

delete from run_stats;

CHAPTER 1 ■ PERFORMANCE TOOLKIT 13

insert into run_stats
select 'before', stats.* from stats;

g_start := dbms_utility.get_time;
end;

procedure rs_middle
is
begin

g_run1 := (dbms_utility.get_time-g_start);

insert into run_stats
select 'after 1', stats.* from stats;
g_start := dbms_utility.get_time;

end;

procedure rs_stop(p_difference_threshold in number default 0)
is
begin

g_run2 := (dbms_utility.get_time-g_start);

dbms_output.put_line
('Run1 ran in ' || g_run1 || ' hsecs');
dbms_output.put_line
('Run2 ran in ' || g_run2 || ' hsecs');
dbms_output.put_line
('run 1 ran in ' || round(g_run1/g_run2*100,2) ||
'% of the time');

dbms_output.put_line(chr(9));

insert into run_stats
select 'after 2', stats.* from stats;

dbms_output.put_line
(rpad('Name', 30) || lpad('Run1', 10) ||
lpad('Run2', 10) || lpad('Diff', 10));

for x in
(select rpad(a.name, 30) ||

to_char(b.value-a.value, '9,999,999') ||
to_char(c.value-b.value, '9,999,999') ||
to_char(((c.value-b.value)-(b.value-a.value)), '9,999,999') data

from run_stats a, run_stats b, run_stats c
where a.name = b.name
and b.name = c.name
and a.runid = 'before'

CHAPTER 1 ■ PERFORMANCE TOOLKIT14

and b.runid = 'after 1'
and c.runid = 'after 2'
and (c.value-a.value) > 0
and abs((c.value-b.value) - (b.value-a.value))

> p_difference_threshold
order by abs((c.value-b.value)-(b.value-a.value))

) loop
dbms_output.put_line(x.data);

end loop;

dbms_output.put_line(chr(9));
dbms_output.put_line
('Run1 latches total versus runs -- difference and pct');
dbms_output.put_line
(lpad('Run1', 10) || lpad('Run2', 10) ||
lpad('Diff', 10) || lpad('Pct', 8));

for x in
(select to_char(run1, '9,999,999') ||

to_char(run2, '9,999,999') ||
to_char(diff, '9,999,999') ||
to_char(round(run1/run2*100,2), '999.99') || '%' data

from (select sum(b.value-a.value) run1, sum(c.value-b.value) run2,
sum((c.value-b.value)-(b.value-a.value)) diff

from run_stats a, run_stats b, run_stats c
where a.name = b.name
and b.name = c.name
and a.runid = 'before'
and b.runid = 'after 1'
and c.runid = 'after 2'
and a.name like 'LATCH%'

)
) loop

dbms_output.put_line(x.data);
end loop;

end;

end;
/

Using runstats
To demonstrate the information we can get out of runstats, we’ll compare the performance of
a query in the following two cases:

• Using the cost-based optimizer (CBO): The CBO is the engine that generates an execu-
tion plan for SQL statements in Oracle based on statistics gathered on our schema
objects. It is the only optimizer that is supported starting with 10g.

CHAPTER 1 ■ PERFORMANCE TOOLKIT 15

• Using the rule-based optimizer (RBO): The RBO is no longer supported, starting with
10g. It is an alternative optimizer that generates plans based on a set of rules (and
hence is not very intelligent). We can still use hints to force the use of the RBO in our
SQL statements. Of course, this should not be done in production code.

■Note If you aren’t familiar with the CBO, it’s a good idea to read up on it in the section “Overview of the
Optimizer” in the chapter “SQL, PL/SQL, and Java” in Oracle Database Concepts Guide (10g Release 1).

Let’s now create the tables on which we’ll run the query. First we create a table, t, with just
one number column, x:

benchmark@ORA10G> create table t (x number);

Table created.

Then we insert 10,000 0s and 10,000 1s into table t. For this, we use the mod function on
the rownum pseudo column in a query from a Cartesian product of the views all_objects and
all_users:

benchmark@ORA10G> insert into t select mod(rownum, 2)
from all_objects, all_users where rownum <= 20000;

20000 rows created.

benchmark@ORA10G> select count(*) from t where x = 0;

10000

benchmark@ORA10G> select count(*) from t where x = 1;

10000
benchmark@ORA10G> commit;

Commit complete.

Next, we create an index on column x:

benchmark@ORA10G> create index t_idx on t(x);

Index created.

We then create an identical table, t1, with identical data in it. We also create an index,
t1_idx, on t1:

benchmark@ORA10G> create table t1 (x number);

Table created.

CHAPTER 1 ■ PERFORMANCE TOOLKIT16

benchmark@ORA10G> insert into t1 select mod(rownum, 2)
from all_objects, all_users where rownum <= 20000;

20000 rows created.

benchmark@ORA10G> select count(*) from t1 where x = 0;

10000

benchmark@ORA10G> select count(*) from t1 where x = 1;

10000

benchmark@ORA10G> commit;

Commit complete.

benchmark@ORA10G> create index t1_idx on t1(x);

Index created.

The CBO works on statistics gathered on a table’s data. We collect statistics on both tables
and indexes next:

benchmark@ORA10G> begin
2 dbms_stats.gather_table_stats(
3 ownname => 'BENCHMARK',
4 tabname => 'T',
5 cascade => true);
6 dbms_stats.gather_table_stats(
7 ownname => 'BENCHMARK',
8 tabname => 'T1',
9 cascade => true);
10 end;
11 /
PL/SQL procedure successfully completed.

We’ll compare the following two queries now (we execute them along the way so that Oracle’s
cache gets warmed up):

benchmark@ORA10G> select count(*)
2 from t1, t
3 where t1.x = t.x
4 and t1.x = 0;

100000000

CHAPTER 1 ■ PERFORMANCE TOOLKIT 17

benchmark@ORA10G> select /*+ RULE */count(*)
2 from t1, t
3 where t1.x = t.x
4 and t1.x = 0;

100000000

Note that the queries are the same except that in the second query, we give the RULE hint
to force Oracle to use the RBO to generate its execution plan.

Let’s now use the RUNSTATS package to compare these two queries. The first step when
using RUNSTATS is to mark the beginning of the comparison by invoking the rs_start proce-
dure. This procedure takes a snapshot of all database statistics that we want to compare in our
two approaches:

benchmark@ORA10G> exec runstats_pkg.rs_start;

PL/SQL procedure successfully completed.

We execute our first query:

benchmark@ORA10G> select count(*)
2 from t1, t
3 where t1.x = t.x
4 and t1.x = 0;

100000000

We now mark the middle of our benchmark to take another snapshot of the database
statistics:

benchmark@ORA10G> exec runstats_pkg.rs_middle;

PL/SQL procedure successfully completed.

and execute the second query:

benchmark@ORA10G> select /*+ RULE */count(*)
2 from t1, t
3 where t1.x = t.x
4 and t1.x = 0;

100000000

Finally, we end the benchmarking by invoking the rs_stop method, which also prints out
our comparison results:

benchmark@ORA10G> exec runstats_pkg.rs_stop;
Run1 ran in 1199 hsecs
Run2 ran in 2687 hsecs
run 1 ran in 44.62% of the time

CHAPTER 1 ■ PERFORMANCE TOOLKIT18

Name Run1 Run2 Diff
STAT...buffer is not pinned co 0 1 1
LATCH.session switching 1 0 -1
LATCH.ksuosstats global area 1 2 1
STAT...session cursor cache co 0 1 1
LATCH.sort extent pool 1 0 -1
STAT...sorts (memory) 2 1 -1
STAT...parse count (hard) 0 1 1
STAT...active txn count during 5 6 1
STAT...enqueue releases 0 1 1
<- trimmed to conserve space ->
STAT...table scan rows gotten 40,000 0 -40,000
STAT...no work - consistent re 70 180,019 179,949
STAT...consistent gets from ca 81 190,028 189,947
STAT...consistent gets 81 190,028 189,947
STAT...session logical reads 765 190,71 189,951
LATCH.cache buffers chains 3,663 383,485 379,822

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
4,941 396,481 391,540 1.25%.

In this book, we’ll focus on two numbers that runstats displays:

• Difference in execution times: In the example, notice that the first query ran in 12 seconds
(1199 hsecs and 1 hsec = 1/100 of a second) and the second query ran in 27 seconds. The
first query ran in 44.62% of the time that the second query took.

• Difference in latches consumed: Another number to focus on is the difference in latches
consumed at the end of the output. For the preceding comparison, the first query con-
sumed only 1.25% of the latches compared to the second query. Latch consumption
is a good indicator of the scalability of an approach—the fewer number of latches an
approach takes, the more scalable it will be. This implies that in the preceding case,
the first query is much more scalable than the second one.

Thus, in the previous comparison case, runstats showed that the CBO generated an exe-
cution plan that ran the query in less than half the time while consuming a fraction of the
resources as compared to the RBO plan.

Overall, I hope that this section has demonstrated how useful runstats can be in bench-
marking two approaches. Please note that for runstats results to be accurate, you should run
it in a database in isolation. This is because you’re measuring latches and other statistics as
just shown, and you don’t want other database activities to influence your benchmark results.

JDBC Wrapper for runstats
Since this is a book on JDBC, it makes sense to have a JDBC wrapper on the runstats utility
so that we can use it in our Java programs. The runstats utility uses the PL/SQL procedure
dbms_output to print its final results. To get these results in Java (without modifying runstats

CHAPTER 1 ■ PERFORMANCE TOOLKIT 19

in any way), we need a way to get the dbms_output results in the Java layer. The following class,
DbmsOutput (written originally by Tom Kyte), does exactly that. I explain the workings of this
program in comments interspersed throughout the code. However, since the program uses
JDBC concepts that I will cover later in Chapter 6, you may want to revisit this section after
having read that chapter. You can also find an explanation of this program in the section
“DBMS_OUTPUT” in Appendix A of Tom Kyte’s Expert One-on-One Oracle (Apress, ISBN:
1-59059-243-3):

package book.util;
// originally written by Tom Kyte – I have made some minor modifications
import java.sql.CallableStatement;
import java.sql.SQLException;
import java.sql.Connection;
public class DbmsOutput
{

We declare the instance variables as shown in the following code. We use the
CallableStatement JDBC class to invoke PL/SQL code in this class. We use three statements
in this class. The first statement enables dbms_output, which is equivalent to set serveroutput
on in SQL*Plus. The second statement disables dbms_output in a similar way to how we do it in
SQL*Plus using set serveroutput off. The last statement displays the results of DBMS_OUTPUT
using the System.out method in Java.

private CallableStatement enable_stmt;
private CallableStatement disable_stmt;
private CallableStatement show_stmt;

The constructor simply prepares the three statements we plan on executing. Preparing a
statement is a step that creates a statement with placeholders for us to bind input parameters
and register output parameters. The statement we prepare for SHOW is a block of code to return
a string of dbms_output output.

public DbmsOutput(Connection conn) throws SQLException
{
enable_stmt = conn.prepareCall("begin dbms_output.enable(:1); end;");
disable_stmt = conn.prepareCall("begin dbms_output.disable; end;");
show_stmt = conn.prepareCall(
"declare " +
" l_line varchar2(255); " +
" l_done number; " +
" l_buffer long; " +
"begin " +
" loop " +
" exit when length(l_buffer)+255 > :1 OR l_done = 1; " +
" dbms_output.get_line(l_line, l_done); " +
" l_buffer := l_buffer || l_line || chr(10); " +
" end loop; " +
" :2 := l_done; " +
" :buffer := l_buffer; " +

CHAPTER 1 ■ PERFORMANCE TOOLKIT20

"end;");
}

The method enable() simply sets the dbms_output size and executes the
dbms_output.enable call:

public void enable(int size) throws SQLException
{
enable_stmt.setInt(1, size);
enable_stmt.executeUpdate();

}

The method disable() executes the dbms_output.disable call:

public void disable() throws SQLException
{
disable_stmt.executeUpdate();

}

The method show() does most of the work. It loops over all of the dbms_output data,
fetching it in this case 32,000 bytes at a time (give or take 255 bytes). It then prints this output
on stdout:

public void show() throws SQLException
{
int done = 0;
show_stmt.registerOutParameter(2, java.sql.Types.INTEGER);
show_stmt.registerOutParameter(3, java.sql.Types.VARCHAR);
for(;;)
{
show_stmt.setInt(1, 32000);
show_stmt.executeUpdate();
System.out.print(show_stmt.getString(3));
if ((done = show_stmt.getInt(2)) == 1) break;

}
}

The method close() closes the callable statements associated with the DbmsOutput class:

public void close() throws SQLException
{
enable_stmt.close();
disable_stmt.close();
show_stmt.close();

}
}

CHAPTER 1 ■ PERFORMANCE TOOLKIT 21

Now we’re ready to write a Java program that invokes runstats. The class JRunstats
shown shortly is a wrapper around runstats. This program does the following:

• Invokes runstats and prints out the resulting comparison results

• Prints out the runtime difference between the two approaches being compared, as seen
from the Java client (using the System.currentTimeMillis() method)

Usually, the runtime difference shown as a result of runstats and the one printed sepa-
rately by JRunstats should be the same, but the two may differ if a PL/SQL optimization is
used that is not available in JDBC layer.

Once again the class uses the CallableStatement JDBC class, which is explained in detail
in Chapter 6:

/* This program is a Java wrapper around the runstats utility written
* by Tom Kyte and available at http://asktom.oracle.com/~tkyte/runstats.html.
*/
package book.util;
import java.sql.Connection;
import java.sql.CallableStatement;
import java.sql.SQLException;
import java.sql.Statement;
public class JRunstats
{

The method markStart() invokes the method rs_start in the runstats utility. We invoke
this method before starting the first of the two approaches we’re comparing in a given bench-
mark run:

public static void markStart(Connection connection)
throws SQLException

{
_startTime = System.currentTimeMillis();
_benchmarkStatementArray[BENCHMARK_START_INDEX].execute();

}

The method markMiddle() invokes the method rs_middle in the runstats utility. We
invoke this method before starting the second of the two approaches we’re comparing in a
given benchmark run:

public static void markMiddle(Connection connection)
throws SQLException

{
_middleTime = System.currentTimeMillis();
_benchmarkStatementArray[BENCHMARK_MIDDLE_INDEX].execute();

}

The method markEnd() invokes the method rs_stop in the runstats utility. We invoke this
method at the end of the benchmark run. The method also takes a threshold that controls the
amount of data printed. It results in JRunstats printing only latches and statistics whose

CHAPTER 1 ■ PERFORMANCE TOOLKIT22

absolute difference value between the two benchmarked approaches is greater than this
threshold:

public static void markEnd(Connection connection,
int benchmarkDifferenceThreshold)
throws SQLException

{
_markEnd(connection, benchmarkDifferenceThreshold);

}

The method markEnd() is an overloaded method that invokes the method rs_stop in the
runstats utility with a default value for the threshold mentioned earlier:

public static void markEnd(Connection connection) throws SQLException
{
_markEnd(connection, DEFAULT_BENCHMARK_DIFFERENCE_THRESHOLD);

}

The method closeBenchmarkStatements() closes all benchmark-related statements and is
invoked before the program ends:

public static void closeBenchmarkStatements (
Connection connection) throws SQLException

{
for(int i=0; i < _benchmarkStatementArray.length; i++)
{
_benchmarkStatementArray[i].close();

}
}

The method prepareBenchmarkStatements() prepares all benchmark-related statements:

public static void prepareBenchmarkStatements (
Connection connection) throws SQLException

{
_benchmarkStatementArray[BENCHMARK_START_INDEX]=
connection.prepareCall(BENCHMARK_START);

_benchmarkStatementArray[BENCHMARK_MIDDLE_INDEX]=
connection.prepareCall(BENCHMARK_MIDDLE);

_benchmarkStatementArray[BENCHMARK_STOP_INDEX]=
connection.prepareCall(BENCHMARK_STOP);

_dbmsOutput = new DbmsOutput (connection);
_dbmsOutput.enable (DBMS_OUTPUT_BUFFER_SIZE);

}
//////////////////////////// PRIVATE SECTION ///////////////

CHAPTER 1 ■ PERFORMANCE TOOLKIT 23

The private method _printBenchmarkResults() prints the benchmark results (I follow a
coding convention of starting a private method with an underscore character in this book):

private static void _printBenchmarkResults() throws SQLException
{
System.out.println("------- Benchmark Results --------");
System.out.println("Results from RUNSTATS utility");
_dbmsOutput.show();
_dbmsOutput.close();
System.out.println("");
System.out.println("Runtime Execution Time Differences " +
"as seen by the client");

long run1 = _middleTime-_startTime;
long run2 = _endTime-_middleTime;
System.out.println("Run1 ran in " + run1/10 + " hsecs");
System.out.println("Run2 ran in " + run2/10 + " hsecs");
System.out.println("Run1 ran in " +
Math.round((run1*100.00)/(run2)) + "% of the time");

}

The method _markEnd is a helper method invoked by the overloaded versions of the public
method markEnd():

private static void _markEnd(Connection connection,
int benchmarkDifferenceThreshold)
throws SQLException

{

_endTime = System.currentTimeMillis();
_benchmarkStatementArray[BENCHMARK_STOP_INDEX].setInt(1,
benchmarkDifferenceThreshold);

_benchmarkStatementArray[BENCHMARK_STOP_INDEX].execute();
printBenchmarkResults();

}

At the end, we declare all the variables used by the program:

private static long _startTime;
private static long _middleTime;
private static long _endTime;
private static String BENCHMARK_START = "begin runstats_pkg.rs_start; end;";
private static String BENCHMARK_MIDDLE = "begin runstats_pkg.rs_middle; end;";
private static String BENCHMARK_STOP = "begin runstats_pkg.rs_stop(?); end;";
private static CallableStatement[] _benchmarkStatementArray =
new CallableStatement[3];

private static DbmsOutput _dbmsOutput;
private static final int DBMS_OUTPUT_BUFFER_SIZE = 1000000;
private static final int BENCHMARK_START_INDEX = 0;

CHAPTER 1 ■ PERFORMANCE TOOLKIT24

private static final int BENCHMARK_MIDDLE_INDEX = 1;
private static final int BENCHMARK_STOP_INDEX = 2;
private static final int DEFAULT_BENCHMARK_DIFFERENCE_THRESHOLD = 0;

}

Once again, you should revisit this class to understand the mechanics of it after reading
Chapter 6. For now, let’s focus on how to invoke this program to compare the same two
queries compared in the section “Using runstats.” The following program, DemoJRunstats,
does just that. It uses the PreparedStatement class to execute the queries (you’ll learn about
the PreparedStatement classes in Chapter 5). The program begins by importing JDBC classes:

/* This program demonstrates how to use the JRunstats utility */
package book.util;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
public class DemoJRunstats
{
public static void main(String[] args) throws Exception
{

Then we define two query statements in string variables:

String queryUsingCBO = "select count(*) " +
"from t1, t " +
"where t1.x = t.x " +
"and t1.x = ?";

String queryUsingRBO = "select /*+ RULE */ count(*) " +
"from t1, t " +
"where t1.x = t.x " +
"and t1.x = ?";

Next, we obtain the JDBC connection as the user BENCHMARK using the utility class
JDBCUtil (the logic of how to get a JDBC connection is explained in Chapter 3):

Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

We prepare all the benchmarking statements in JRunstats:

JRunstats.prepareBenchmarkStatements(conn);

Then we mark the beginning of the runstats run (this internally invokes
runstats_pkg.rs_start):

JRunstats.markStart(conn);

CHAPTER 1 ■ PERFORMANCE TOOLKIT 25

We execute our first query by invoking a private method defined later:

_executeQuery(conn, queryUsingCBO);

We mark the middle of the benchmark (this internally invokes
runstats_pkg.rs_middle()):

JRunstats.markMiddle(conn);

Now we execute the second query by invoking the private method _executeQuery() again:

_executeQuery(conn, queryUsingRBO);

We mark the middle of the benchmark (this internally invokes runstats_pkg.rs_stop):

JRunstats.markEnd(conn);
}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JRunstats.closeBenchmarkStatements(conn);
JDBCUtil.close(conn);

}
}

The following private method uses PreparedStatement to execute a given query:

private static void _executeQuery(Connection conn,
String query) throws SQLException

{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{
pstmt = conn.prepareStatement(query);
pstmt.setInt(1, 0);
rset = pstmt.executeQuery();
System.out.println("printing query results ...\n");
while (rset.next())
{
int count = rset.getInt (1);
System.out.println("count = " + count);

}
}
finally
{

CHAPTER 1 ■ PERFORMANCE TOOLKIT26

// release JDBC related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

}

Once again, don’t worry if you don’t completely understand the mechanics of this pro-
gram (or that of JRunstats)—at this stage, you aren’t expected to. Once you’ve learned about
the PreparedStatement and CallableStatement classes, the workings of this program should
be clear to you. Right now, simply focus on how to use this program and how to interpret its
results. The output of the preceding program DemoJRunstats is as follows:

URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
printing query results ...

count = 100000000

printing query results ...

count = 100000000

------- Benchmark Results --------

Results from RUNSTATS utility

Run1 ran in 1009 hsecs
Run2 ran in 2524 hsecs
run 1 ran in 39.98% of the time

Name Run1 Run2 Diff
STAT...free buffer requested 11 10 -1
STAT...active txn count during 2 1 -1
<- trimmed to conserve space ->
STAT...session uga memory max 196,392 0 -196,392
LATCH.cache buffers chains 3,626 383,533 379,907

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
4,691 396,076 391,38 1.18%

Runtime Execution Time Differences as seen by the client

Run1 ran in 1011 hsecs

Run2 ran in 2525 hsecs

Run1 ran in 40% of the time

CHAPTER 1 ■ PERFORMANCE TOOLKIT 27

As you can see, the program first prints the results of the runstats utility under the line
Results from RUNSTATS utility. At the end, after the line Runtime Execution Time Differences
as seen by the client, we also print out the execution time differences as seen by your Java
client (in this case, they are pretty much the same as the ones shown by runstats). The results
are slightly different from the original run, which indicates that we should run these bench-
marks multiple times and average their results.

Timing Java Programs
When benchmarking Java programs, it’s a good idea to let the Java Virtual Machine (JVM)
reach a steady state, which takes a few minutes. One way to achieve this is to make sure that
we run the program (or method) being benchmarked enough times for the entire benchmark
to take around five minutes. For this, we first find out how many runs it takes for the method
being benchmarked to consume five minutes. Then, we run the method that number of times
and find out the average time per run by dividing the total time by the number of runs. Since
we’ll benchmark many times, I wrote a simple program called JBenchmark.java for this pur-
pose. This section explains the program workings—as usual, you can get the actual code from
the Downloads section of http://www.apress.com.

JBenchmark allows up to three methods to be timed at a time; we can, of course, modify
it to enable more methods. Following is the program listing interspersed with explanations.

First, we import the relevant classes and declare methods that need to be benchmarked:

package book.util;
import java.sql.Connection;
public class JBenchmark
{
// classes must override the method that they are
// timing - by default these methods don't do anything.
public void firstMethod(Connection conn, Object[] parameters)
throws Exception{ }

public void secondMethod(Connection conn, Object[] parameters)
throws Exception { }

public void thirdMethod(Connection conn, Object[] parameters)
throws Exception{ }

public void firstMethod() throws Exception{ }
public void secondMethod() throws Exception{ }
public void thirdMethod() throws Exception{ }

A program that wants to use the preceding utility program for benchmarking would
extend it and override the correct number of methods. For example, if we want to time two
methods, we’ll override the methods firstMethod() and secondMethod() of JBenchmark in
our program. By default the methods don’t do anything. Note that each of the methods
firstMethod(), secondMethod(), and thirdMethod() is overloaded to take a connection and
an array of objects since most of our benchmarks require a connection to be passed. The
object array is useful if we want to pass additional parameters to each method.

CHAPTER 1 ■ PERFORMANCE TOOLKIT28

The following timeMethod() method runs the actual timing of the method being bench-
marked. It takes as parameters a method number indicating which method to benchmark
(firstMethod(), secondMethod(), or thirdMethod()), a connection, an array of optional object
parameters, and a message to print before the benchmark is run.

public final void timeMethod(int methodNumber,
Connection conn, Object[] parameters, String message) throws Exception

{
System.out.println(message);

In the same method, we first find out how many times we need to run the method so that
it runs for five minutes. The following _runMethod() method (I explain it when we look at its
definition soon) simply runs the appropriate method depending on the method number
passed.

// find out how many runs it takes to run for 5 minutes
long startTime = System.currentTimeMillis();
_runMethod(methodNumber, conn, parameters);
long endTime = System.currentTimeMillis();
long numOfRuns = (long)((5*60*1000)/(endTime-startTime));

If the number of runs is 0, it means that the method being benchmarked took more than
five minutes in the first run, so we need to run it only once for benchmarking purposes; hence
we set the number of runs to 1 in this special case.

if(numOfRuns == 0)
{
System.out.println("One run took more than 5 minutes.");
numOfRuns = 1;

}

Finally, we take the average time it takes to run the method being benchmarked for the
number of runs we just established, and print the results.

// average over the number of runs calculated above
startTime = System.currentTimeMillis();
for(int i=0; i < numOfRuns; i++)
{
_runMethod(methodNumber, conn, parameters);

}
endTime = System.currentTimeMillis();
long averageRunTime = (endTime-startTime)/numOfRuns;
System.out.println("\tOn an average it took " +
averageRunTime + " ms (number of runs = " + numOfRuns + ".)");

}

CHAPTER 1 ■ PERFORMANCE TOOLKIT 29

The following _runMethod() method simply selects the correct method to invoke based on
the method number. If the connection is null, invoke the versions of firstMethod() and so on
that don’t take any parameters.

private void _runMethod(int methodNumber,
Connection conn, Object[] parameters) throws Exception

{
if(conn != null)
{
if(methodNumber == FIRST_METHOD)
firstMethod(conn, parameters);

else if(methodNumber == SECOND_METHOD)
secondMethod(conn, parameters);

else if(methodNumber == THIRD_METHOD)
thirdMethod(conn, parameters);

else
{
System.err.println("Invalid method number: " + methodNumber);
System.exit(1);

}
}
else
{
if(methodNumber == FIRST_METHOD)
firstMethod();

else if(methodNumber == SECOND_METHOD)
secondMethod();

else if(methodNumber == THIRD_METHOD)
thirdMethod();

else
{
System.err.println("Invalid method number: " + methodNumber);
System.exit(1);

}
}

}

At the end of the program, we declare three constants denoting method numbers to be
passed as parameters to runMethod() by the program that overrides JBenchmark.

public static final int FIRST_METHOD = 1;
public static final int SECOND_METHOD = 2;
public static final int THIRD_METHOD = 3;

}// end of class

The program DemoJBenchmark compares the time taken by two methods by overriding
firstMethod() and secondMethod() of JBenchmark. The first method concatenates 1,000 strings

CHAPTER 1 ■ PERFORMANCE TOOLKIT30

using the string concatenation approach, and the second does the same using the String-
Buffer class’s append method.

import book.util.JBenchmark;
public class DemoJBenchmark extends JBenchmark
{
public static void main(String[] args) throws Exception
{
new DemoJBenchmark()._runBenchmark();

}

public void firstMethod() throws Exception
{
String x = "";
for(int i=0; i < 1000; i++)
x = x + Integer.toString(i);

}

public void secondMethod() throws Exception
{
StringBuffer x = new StringBuffer();
for(int i=0; i < 1000; i++)
x.append(Integer.toString(i));

String y = x.toString();
}

private void _runBenchmark() throws Exception
{
timeMethod(JBenchmark.FIRST_METHOD, null, null, "Concatenating Using String");
timeMethod(JBenchmark.SECOND_METHOD, null, null,
"Concatenating Using StringBuffer");

}

Sample output when I ran the program DemoJBenchmark is as follows. It indicates (as
expected) that StringBuffer-based concatenation outperforms string concatenation.

Concatenating Using String
On an average it took 66 ms (number of runs = 1910.)

Concatenating Using StringBuffer
On an average it took 1 ms (number of runs = 150000.)

A Utility to Pause in a Java Program
Listing 1-1 shows a utility that I use in some of my programs to generate a pause. I use it when
I want to run something separately (e.g., a query to some tables being modified by the pro-
gram), but want to do so at intermediate stages in the program. The program uses standard
Java I/O classes in the overloaded method waitTillUserPressesEnter().

CHAPTER 1 ■ PERFORMANCE TOOLKIT 31

Listing 1-1. The InputUtil class generates a pause in Java programs

package book.util;

import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

public class InputUtil
{
public static void main(String[] args)
throws Exception

{
String line = waitTillUserHitsEnter();
System.out.println(line);

}

public static String waitTillUserHitsEnter(String message)
throws IOException

{
System.out.println(message);
return waitTillUserHitsEnter();

}

public static String waitTillUserHitsEnter()
throws IOException

{
System.out.println("Press Enter to continue...");
BufferedReader standardInput = new BufferedReader(
new InputStreamReader(System.in));

String line = null;
line = standardInput.readLine();

return line;
}

}

Summary
This chapter covered some of the tools that we will use throughout this book, mainly in our
performance benchmark programs. Many of these tools involve concepts that are explained in
the references provided where the tool was mentioned. Some of these tools are written using
JDBC concepts, which are explained elsewhere in this book. I recommend revisiting the code
for these utilities once you’ve grasped the underlying concepts from the later chapters.

In the next chapter, we’ll look at some of the fundamental concepts related to Oracle that
every Oracle application programmer (including JDBC programmers) should be familiar with.

CHAPTER 1 ■ PERFORMANCE TOOLKIT32

Oracle Fundamentals

This is one of the most important chapters of the book, even though it is not directly about JDBC.
My objective here is to convince you, through examples, that there is more to writing effective Java
database applications than an in-depth understanding of the JDBC API. Furthermore, I want to
convey that to write correct, robust, and high-performance Oracle applications using JDBC (or
any other API for that matter), you need to

• Understand how Oracle works. You should understand the fundamentals of Oracle’s
architecture and how to design your application accordingly.

• Learn and master SQL and PL/SQL. JDBC on Oracle works on top of SQL and PL/SQL.
If your SQL and PL/SQL code is suboptimal, your application will run in a suboptimal
fashion. I use these languages, where appropriate, throughout the book.

• Know what features Oracle offers. Unless you are familiar with the features offered by
Oracle, you will end up developing, debugging, and maintaining code that is already
available to you in Oracle.

If you are interested in jumping directly to JDBC mechanics, you should start with the
next chapter. However, I strongly recommend that you read this chapter first or at least skim
through it. The reason for this is that, in my opinion, if you don’t understand how Oracle
works and what features it offers, more often than not you’ll write incorrect and/or nonper-
forming code. This statement may come as a surprise to you, but by the time you’ve finished
this chapter, I hope to have convinced you of its validity.

Of course, in a single chapter, we can only really scratch the surface of Oracle and its fea-
tures, although we will cover enough so that their significance and their impact on the way in
which you write your Java programs will be apparent.

■Note If you wish to learn more, I strongly urge you to get hold of the following two books: Expert
One-on-One Oracle (Apress, ISBN: 1-59059-243-3) and Effective Oracle by Design (Osborne McGraw-Hill,
ISBN: 0-07-223065-7), both written by the well-known Oracle expert Tom Kyte. Additionally, Tom’s site,
http://asktom.oracle.com, is a treasure trove of information on Oracle. You can ask questions on most
Oracle-related topics on this site and get well-researched, correct answers unbelievably fast and for free.

33

C H A P T E R 2

■ ■ ■

CHAPTER 2 ■ ORACLE FUNDAMENTALS34

Let’s now look at some selected Oracle concepts that you need to be aware of to build
applications on top of Oracle.

Selected Oracle Concepts
Although it is not necessary to know the intimate details of how the Oracle kernel works, it is
very useful to be familiar with certain Oracle architectural details, such as its concurrency
model, how it manages data in its memory and disk, and so on.

Database vs. Instance
Two terms that are commonly used in reference to basic Oracle architecture, and that often
cause confusion, are “database” and “instance.” In simple terms,

• A database is a collection of physical data files (operating system files) that reside
on disk.

• An instance is a set of Oracle processes along with their shared memory area. These
processes (referred to as background processes) are what actually operate on the data-
base files, performing such tasks as storing and retrieving the data.

So, a database is a collection of physical storage files, and an instance is set of processes
and an area of memory that allows you to operate on those files. You do not have to do any-
thing special in your JDBC code to account for this distinction, but it is useful to be aware of it.

Schemas
A schema is simply the collection of objects (tables, indexes, views, stored procedures, and so
on) owned by a database user. A database user can own exactly one schema, though the same
user may have access to multiple schemas.

Included in the database are two important users/schemas: the SYS and SYSTEM users. The
SYS user/schema contains, among other things, the data dictionary for the database. The data
dictionary consists of various tables and views that contain all the metadata for the rest of the
database, including definitions for all of the objects in a schema (as well as the database as a
whole).

For example, the user_tables view contains a great deal of information about each of the
tables in the schema for the current user. You may need to occasionally look up information
about objects in the database such as size, location, or creation date, for example, and the
data dictionary is the place to do it. Accessing the information in the data dictionary is per-
formed in the same manner as accessing any other information in the database. However,
since the data dictionary is read-only, only select statements are permitted.

■Note See Oracle Database Concepts Guide (10g Release 1) or the Oracle Database Reference (10g Release 1)
in the Oracle-supplied documentation for complete details on the tables and views in the data dictionary.

The SYS user is the user with the highest privileges in an Oracle database and may be
viewed as the database equivalent of the “Administrator” or “root” operating system accounts.
Second in command to the SYS user is the SYSTEM user. This user contains important schema
objects that are used internally by Oracle in much the same way as those belonging to the SYS
schema. Under normal circumstances, these users should not be used for anything other than
database administration tasks.

Tablespaces
Tablespaces are used to logically group functionally related schema objects. For example,
the system tablespace contains all the objects for the SYS and SYSTEM schemas.

A schema object that requires physical storage must belong to a tablespace. When a
schema object is created, you may specify a tablespace in which to create the object or you
may allow it to be created in the default tablespace for that user. The default tablespace for a
user is defined when the user is initially created, and it may be altered after the user has been
created if needed or desired. If the default tablespace for a user is altered after creation, any
objects previously created for the user will not automatically move or migrate to the new
default tablespace; only new objects created after the new default tablespace has been
assigned will be created in that tablespace.

■Caution You should never specify the system tablespace as the default tablespace for a “normal” user.
The SYS and SYSTEM users use the system tablespace, and this tablespace “belongs” to Oracle. Consider it
off-limits.

Data Blocks
Oracle manages the storage space in the data files of a database in units called data blocks
(aka DB blocks or database blocks). A data block is the smallest unit of data used by Oracle
during its I/O operations. As you are probably aware, each operating system itself has a block
size. Oracle requests data in multiples of Oracle data blocks, not operating system blocks. The
standard block size is specified by the db_block_size initialization parameter. A table’s data is
stored in data blocks. Note that one data block may contain more than one row of a table.

It is important to understand data blocks, as any discussion about performance measure-
ment in Oracle invariably includes this concept. For example, when we measure performance,
the number of data blocks accessed forms an important criterion in deciding between two
approaches, as you will learn later in the section “Logical and Physical I/O.”

■Note See the section “Overview of Data Blocks” in Chapter 2 of the Oracle Database Concepts Guide
(10g Release 1) document for more details on this topic.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 35

What Makes Oracle Different?
There are, of course, many ways in which Oracle differs from other RDBMSs, but from a
developer’s perspective, possibly the two major concepts to understand are Oracle’s locking
mechanism and its multiversion read consistency model.

Oracle’s Locking Mechanism
Locks (and latches) are constructs used to regulate concurrent access to a shared resource within
Oracle. These constructs play a crucial role in maintaining data integrity during concurrent modi-
fication of the shared resources. In Oracle, a shared resource is not just your data; it could also be
your code (e.g., a PL/SQL package procedure cannot be altered when it is being executed).

Oracle automatically obtains necessary locks to execute SQL statements; in general, users
need not be concerned with managing locks in Oracle. The following are some important facts
about Oracle’s locking policy:

• Oracle uses row-level locking, as appropriate, to ensure that only one transaction can
modify (write) a piece of data at a given time. Oracle does not lock data during reads
(selects).

• There is no significant overhead to locking in Oracle. Oracle stores the lock status of a
row in the data block holding the row, rather than in the data dictionary or a “lock man-
ager,” thus avoiding contention on a “row lock status” table.

• Oracle never escalates locks to the table level. Even if you are modifying every row of a
1,000-row table, Oracle will place a row-level lock on each row.

■Note See the section “How Oracle Locks Data” of Chapter 13 in Oracle Database Concepts Guide
(10g Release 1) for a detailed explanation of how locks work in Oracle.

The consequence of this row-level locking scheme is that writes don’t block writes unless
the contending write operations are “writing” a common set of rows. For example, if two ses-
sions are updating the same table but update a mutually exclusive set of rows, they don’t block
each other. Only when they try to update the same row(s) does one of the sessions get blocked
until the other session issues a commit or a rollback to end its transaction.

Furthermore,

• Reads don’t block writes.

• Writes don’t block reads.

CHAPTER 2 ■ ORACLE FUNDAMENTALS36

Reads (selects) don’t block writes (inserts, updates, deletes, etc.). If you’re reading a piece
of data, don’t assume that another transaction can’t modify that same piece of data. After all,
Oracle doesn’t, by default, place any locks during reads. A user can be updating a row of data
at the same time as another user is querying that row. If you really want your read to block
other writes, you have to “lock” the selected row with the for update clause of the select
statement. For example, if you want to lock the row in the table emp corresponding to the
employee BLAKE, you would issue the following statement:

select ename from emp where ename = 'BLAKE' for update;

This statement will block any update statement trying to update the row corresponding
to the employee BLAKE in the table emp until the current session completes its transaction.

What may seem even more surprising is that writes don’t block reads. Consider a query
that starts at time t1 and will read 10,000 rows. While this query is reading row number 5,000,
a second SQL statement is executed that modifies row number 7,000 in the set of rows that the
query is reading, changing the value of a column being read in that row from 1 to 2. What hap-
pens when the query hits row number 7,000 may surprise you:

• If the update has been committed, the query will simply read the data in row number
7,000. Oracle performs a check to find out if the value in the row has changed since
time t1. When Oracle finds that the value has changed, it retrieves and uses the value as
it was at time t1.

• If the update has not been committed, a lock will still be in place on row number 7,000.
However, this is only to prevent other writers from modifying that same data; it does
not prevent us from reading it. Thus, Oracle reads through the lock, reconstructs the
value as it was at time t1, and uses this value.

What this effectively means is that, without using any unnecessary locking, Oracle can
present a consistent view of the data with respect to a given point in time—in this case with
respect to the time the query started, t1. The reason Oracle is able to do this relates to its abil-
ity to maintain multiple versions of the data based on a concept called multiversion read
consistency, which we’ll examine next.

Multiversion Read Consistency
When you make a change to a block of Oracle data, Oracle makes a copy of that block and
stores it in an undo (or rollback) segment. This undo segment contains enough information
about the block of data to undo (hence the name) the changes made to it and make it look like
it did at the beginning of the transaction. Oracle has a special internal “clock” known as the
system change number (SCN). Oracle is able to compare the current SCN with the SCN that
existed at the start of a transaction. If you are querying data that is (or was) being updated at
the time your query started, Oracle is able to look through the undo segment(s) to find the
proper copy of the data as it existed at the time your query began. This feature of Oracle is
known as multiversion read consistency.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 37

So, in Oracle, in the default transaction mode of READ COMMITTED (you’ll learn about transac-
tions and transaction modes in Chapter 4), the data a query sees and returns comes from a single
point in time. In other words, the results are consistent with respect to the point in time at which
the query began execution. This phenomenon is called statement-level read consistency. The vast
majority of Oracle applications use the default transaction mode of READ COMMITTED.

Oracle can also provide transaction-level read consistency, which means all queries within
a transaction see and return data from a single point of time—the point at which the transac-
tion began. Transaction-level read consistency is triggered when you set the transaction mode
to either SERIALIZABLE or READ ONLY. The term “multiversion read consistency” encapsulates
both statement-level and transaction-level read consistency.

Because multiversion read consistency directly impacts the results of a query that devel-
opers write, you must take it into account when designing your system.

Let’s now look at an example that illustrates statement-level read consistency. In this
example, we first create a simple table, t1, with one number column, x, as follows:

benchmark@ORA10G> create table t1
2 (
3 x number
4);

Table created.

We insert and commit a record in this table next:

benchmark@ORA10G> insert into t1 values (1);

1 row created.

benchmark@ORA10G> commit;

Commit complete.

We then create a PL/SQL procedure, p, which returns in its out parameter, p_cursor, a ref
cursor pointing to a query that selects all records from table t1. In the same procedure, we
insert and commit four more records into table t1 after opening the cursor:

benchmark@ORA10G> create or replace procedure p (p_cursor out sys_refcursor) is
2 begin
3 open p_cursor for
4 select * from t1;
5 insert into t1 values (5);
6 insert into t1 values (2);
7 insert into t1 values (3);
8 insert into t1 values (4);
9 commit;
10 end;
11 /

Procedure created.

CHAPTER 2 ■ ORACLE FUNDAMENTALS38

We then execute the procedure and print the results of the ref cursor we opened (repre-
senting the result set of the query):

benchmark@ORA10G> variable c refcursor;
benchmark@ORA10G> exec p(:c)

PL/SQL procedure successfully completed.

benchmark@ORA10G> print c;

1

If we were not aware of the multiversion read consistency feature, we might expect the cur-
sor to print all five records that we know exist in table t1 at this point of time. After all, at the point
where we retrieve the cursor values, there are five records inserted and committed in table t1. But
the results show that only one record is printed. This demonstrates the concept of multiversion
read consistency, due to which our query’s result set was preordained at the time its execution
began (or in this case, at the time we opened the cursor pointing to the query).

■Note For further details on this very important concept, please see Chapters 4 and 13 of Oracle Database
Concepts Guide (10g Release 1).

Writing Effective Code
By “writing effective code,” I mean writing application code that uses the Oracle database in
the most efficient manner. It is quite easy to write code that “works” with the Oracle database,
but you will often find, if you investigate, that your code is performing much slower than with
other available alternatives, is hogging shared resources in the database (thus affecting per-
formance and scalability), or is simply making the database do unnecessary work in achieving
a particular task.

The mantra in this book is that we should not just produce code that “works”; we should pro-
duce code that works well. We test our code rigorously at every stage, using the tools described in
Chapter 1, and we prove that it doesn’t consume too many system resources, and that it doesn’t
make the database perform more work than is necessary to complete a given task.

The following sections cover techniques to help you achieve these goals.

Use Bind Variables
We now come to the first architectural feature that directly affects the way in which you should
write your JDBC programs, namely that of the shared pool and the use of bind variables.

An Oracle instance consists of certain memory structures that allow you to operate on a
physical database. Possibly the most important memory structure associated with an instance
is the shared global area (SGA), and the most important component of the SGA for a JDBC
programmer is the shared pool, because the manner in which you use the shared pool via
your code has an enormous bearing on the performance of your code.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 39

The shared pool is an Oracle memory structure that consists of shared program constructs
accessed and executed on your behalf by Oracle. These include stored PL/SQL procedures and
packages, shared cursors, data dictionary objects, etc. When you submit a SQL statement (such
as select, insert, update, delete, or merge) to Oracle, it has to parse the statement and generate
an execution plan to execute it.

■Note I cover the topic of SQL statement parsing in more detail in the section “Overview of How Oracle
Processes SQL Statements (DML)” of Chapter 5.

Since the step of generating the execution plan is very CPU-intensive, Oracle stores the
results of this step in the shared pool to avoid reparsing a statement if it is submitted again.

It follows from the previous discussion that, in general, you should strive to improve reuse
of the shared code in the shared pool so that overall parsing overhead is kept to a minimum.
Using bind variables is an excellent way of achieving this goal.

A bind variable is a variable (or a parameter) in a SQL statement that is replaced (or
bound) at runtime with a valid value in order for the statement to successfully execute. The
following code shows a SQL statement with and without a bind variable:

-- SQL with a literal
select ename from emp where empno = 7788;

-- The same SQL with a bind variable in place of the literal
select ename from emp where empno = ?;

In the former case, every time this statement is submitted with a different empno value in
the where clause, it will be treated as a completely new statement and it will have to be parsed,
an execution plan will have to be generated, and so on. In the latter case, all subsequent exe-
cutions of similar SQL statements after the first one will reuse the existing execution plan for
the statement from the shared pool.

You can use bind variables in virtually all languages that can talk to Oracle (JDBC in Java,
Pro*C, C++, and, of course, PL/SQL). As you’ll see, in general, the performance of a system
degrades rapidly if you don’t use bind variables.

Let’s look at an example. First we need to create a simple table, t1:

benchmark@ORA10G> create table t1
2 (
3 x number
4);

Table created.

The following JDBC class, DemoBind, compares two approaches of inserting 10,000 records
into table t1, first without using bind variables and then using bind variables.

CHAPTER 2 ■ ORACLE FUNDAMENTALS40

■Note I cover the JDBC concepts used in this example in much more detail in Chapter 5, where I also
discuss bind variables in more depth. Don’t worry if you aren’t able to fully understand the mechanics of
this program for now—the focus at this stage is to demonstrate the importance of bind variables to the
performance of your JDBC programs.

We’ll use the JRunstatsprogram described in the previous chapter to compare the two
approaches. The program first uses the PreparedStatement class to execute the insert state-
ments with bind variables. It then uses the Statement class to execute the insert statements
without bind variables. The program begins by importing relevant Java classes and getting a
connection to our 10g database:

/* This program demonstrates the importance of using bind variables*/
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Statement;
import java.sql.Connection;
import book.util.JDBCUtil;
import book.util.JRunstats;
public class DemoBind
{
public static void main(String[] args) throws Exception
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

We then prepare all the statements used by the JRunstats program:

JRunstats.prepareBenchmarkStatements(conn);

We follow this up by marking the beginning of the benchmark run. We then invoke
_insertWithBinds() (a private method that inserts 10,000 records with bind variables), mark
the middle of the benchmark run, and invoke _insertWithoutBinds() (a private method that
inserts 10,000 records without bind variables):

JRunstats.markStart(conn);
_insertWithBind(conn);
JRunstats.markMiddle(conn);
_insertWithoutBind(conn);

Finally, we invoke the JRunstats methodthat marks the end of the benchmarking and
prints out the benchmarking results:

JRunstats.markEnd(conn);
}
catch (SQLException e)

CHAPTER 2 ■ ORACLE FUNDAMENTALS 41

{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JRunstats.closeBenchmarkStatements(conn);
JDBCUtil.close(conn);

}
}

The _insertWithBind() method uses the PreparedStatement interface to execute the
10,000 inserts:

private static void _insertWithBind(Connection conn) throws SQLException
{
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement("insert into t1(x) values(?) ");
for(int i=0; i < 10000; i++)
{
pstmt.setInt(1, i);
pstmt.executeUpdate();

}
}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(pstmt);

}
}

The _insertWithoutBind() method uses the Statement interface to execute the 10,000
inserts without using bind variables:

private static void _insertWithoutBind(Connection conn) throws SQLException
{
Statement stmt = null;
try
{
stmt = conn.createStatement();
for(int i=0; i < 10000; i++)
{
stmt.executeUpdate("insert into t1(x) values(" + i + ")");

}
}

CHAPTER 2 ■ ORACLE FUNDAMENTALS42

finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(stmt);

}
}

}

The important thing to note in the DemoBind class is that in the case where we use bind
variables, only one statement string is submitted to Oracle: insert into t1 (x) values (?
). Here, ? is the bind variable that is bound at runtime to the values 1, 2, . . . 10,000 in the loop.
In the case where we don’t use bind variables, Oracle sees a different insert statement for
each value being inserted (insert into t1 (x) values (0) for a value of 0, insert into
t1 (x) values (1) for a value of 1, and so on). Since Oracle has to parse each new query
and generate a query execution plan, this approach doesn’t scale well at all. In our example,
Oracle has to process 10,000 spuriously different statements when we don’t use bind variables.
Let’s run the program to see how these two approaches compare:

URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))

------- Benchmark Results --------

Results from RUNSTATS utility

Run1 ran in 43 hsecs
Run2 ran in 214 hsecs
run 1 ran in 20.09% of the time

As you can see, the approach that uses bind variables runs substantially faster. It com-
pletes in about 1/5 the time of the alternative that does not use bind variables. This in itself
is a very good reason to use bind variables in your code. However, it is even more critical to
understand the importance of differences in consumption of latches in the two approaches.
You can see this from the next section of the JRunstatsreport:

Name Run1 Run2 Diff
STAT...messages sent 3 4 1
STAT...calls to kcmgcs 5 6 1
<-- trimmed to conserve space -->
STAT...session pga memory max 131,072 0 -131,072

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
16,883 126,673 109,790 13.33%

The approach that uses bind variables consumes approximately 13% of the latches as
compared to the alternative that does not use bind variables.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 43

Latches are lightweight serialization resources Oracle uses when accessing shared mem-
ory structures. While one session is parsing, Oracle will place latches on common resources
in the shared pool so that no other sessions may modify them. The more latches there are in
place, and the longer they are held, the longer the subsequent sessions have to wait in order
to gain access to these resources. When approach 1 consumes 13% of the latches consumed
by approach 2, as is true in the preceding example, the scalability of the system that uses
approach 1 is substantially superior to the one that employs approach 2. In other words, as
more and more users start using the system concurrently, the performance of the system
employing approach 2 will degrade rapidly.

To demonstrate this point in terms of its impact on elapsed time when multiple users
are using the system, I ran the preceding program simultaneously for two, three, four, and
five sessions separately. For example, to run it simultaneously in three sessions, I opened
three windows on my PC and ran the program in each window simultaneously. The result is
plotted in the graph shown in Figure 2-1.

Figure 2-1. This graph compares runtimes with and without bind variables for simultaneous
sessions. I did the comparison for two, three, four, and five simultaneous sessions each.

From the graph in Figure 2-1, we can conclude that as the number of sessions increases,
the performance of the approach that doesn’t use bind variables deteriorates rapidly and at a
much faster rate as compared to the approach that uses bind variables. This is mainly because
Oracle is unable to reuse the work it did in generating a query’s execution plan for different
input values for the same query when we don’t use bind variables. Thus, when you write an
application on Oracle, your goal typically is to choose an approach that consumes the mini-
mum amount of latches. Using bind variables is one of the most fundamental techniques
that can help you achieve this goal in most cases.

2

With Binds

Without Binds

Number of Simultaneous Sessions

Ru
nt

im
e

(C
en

tis
ec

on
ds

)

14000

12000

10000

8000

6000

4000

2000

0
3 4 5

CHAPTER 2 ■ ORACLE FUNDAMENTALS44

■Note You can set CURSOR_SHARING to SIMILAR or FORCE to force all queries in your database to use
bind variables. Generally, this technique is useful in cases where a third-party application you have isn’t
using bind variables and you don’t have access to the code to change it. Note that setting CURSOR_SHARING
to SIMILAR or FORCE has its own drawbacks; you should use it only as a temporary solution. The best and
cleanest approach at the end of the day is to use bind variables in the first place. For more details on this
topic, see the section “Cursor Sharing for Applications” of Chapter 7 in Oracle Database Performance Tuning
Guide and Reference (10g Release 1).

Minimize I/O, Undo, and Redo
Unfortunately, the trigger for many performance investigations is a complaint from its users
that the application is running too slowly. In most cases, the root cause is poorly written SQL
code or poorly written database access code (e.g., absence of bind variables). In the previous
examples, this caused unnecessary parsing and unnecessary latching, resulting in poor per-
formance and poor scalability. The following sections cover other types of work that the
database performs and some techniques for minimizing such work.

Logical and Physical I/O
When Oracle executes a query, it needs to perform I/O, either to its shared pool to retrieve
cached data or to the disk. This section discusses the types of I/O Oracle performs and how
you should incorporate these in your application development strategy.

Oracle stores frequently used data in a memory cache called the database buffer cache.

• A logical I/O (LIO for short) occurs whenever the database buffer cache is accessed
to satisfy a request from the Oracle kernel. If the kernel does not find the data in the
cache, it asks the operating system to get the data from the disk.

• A physical I/O (PIO for short) occurs whenever the Oracle kernel asks the operating sys-
tem to fulfill a request, since it cannot fulfill the request from the database buffer cache.
Please note that not all PIOs translate to a disk read, as many of them can be satisfied
from the operating system’s internal buffer cache, but from Oracle’s point of view they
are all disk reads or PIOs.

Although it may seem counterintuitive, in general, your goal should be to focus on reduc-
ing LIOs rather than PIOs, for the following reasons:

• Typically, LIOs require use of latches and/or serialization devices, which can have a
seriously negative impact on the scalability of the system.

• If you reduce LIOs, PIOs take care of themselves naturally because most PIOs are pre-
ceded by LIO calls in the first place.

• PIOs may not be as costly as they seem, since many times they can be satisfied by oper-
ating system’s internal data buffer cache.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 45

■Tip See http://www.hotsos.com/downloads/registered/00000006.pdf for an excellent article on
this topic by Cary Millsap (Please note that to access the article, you need to be a registered member of the
website.)

■Tip In general, you should focus on reducing Logical I/Os as opposed to Physical I/Os generated by your
system.

Logical I/Os are of two types:

• Consistent gets: These are logical I/Os that occur typically when you execute a query.
Recall that when a query is executed in Oracle, in the default transaction mode, Oracle
gets the data as of the time the query started (i.e., the data retrieved is consistent with the
time the query started). This mode of retrieval of data is called consistent-read mode.

• DB block gets or current gets: These are logical I/Os in which the database gets the
data as it exists right now (not as of a point of time in the past). This LIO mode is called
current mode. During data modification, Oracle reads the database blocks being modi-
fied in the current mode before modifying them.

Measuring Logical I/O

The total number of logical I/Os performed is the sum of consistent gets and DB block gets.
For a single SQL statement, you can use the autotrace facility to easily find out the number of
database blocks read in consistent-read mode and the number of blocks read in current
mode. In the following query, 25 blocks were read in consistent get mode (25 consistent
gets) and zero blocks were read in current mode (0 db block gets). There were zero physical
reads or PIOs.

benchmark@ORA10G> set autotrace traceonly statistics
benchmark@ORA10G> select count(*)
2 from all_users;

Statistics
--

0 recursive calls
0 db block gets
25 consistent gets
0 physical reads
0 redo size

393 bytes sent via SQL*Net to client
508 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

CHAPTER 2 ■ ORACLE FUNDAMENTALS46

You can also use the performance tool tkprof (discussed in the section “tkprof” of Chapter 1)
to find out the LIOs and PIOs of one or more SQL or PL/SQL statements. Note that in a tkprof
report, the consistent gets are shown under the total value of the column query, and DB block
gets are shown under the total value of the column current, as shown in the following tkprof
report for the preceding query:

select count(*)
from
all_users

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.00 0.00 0 25 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 0.00 0.00 0 25 0 1

Reducing Logical I/O

There are many ways to reduce LIOs in your system.

• Eliminate work being done in the system that is not being used by the end user. It is
amazing how a large portion of your system may not actually be doing anything useful
for the end user. Get rid of these activities, and you can reduce the burden on the data-
base considerably. Cary Millsap, a famous Oracle performance analyst, puts it well
when he says, “The fastest way to speed up something is to not do it at all!”

• Tune individual queries that are bottleneck in your system. Tuning queries can appear
to be an “art” or “magic” if you don’t have a full command of SQL, but doing so is vital
to the performance of your applications, and it becomes much easier once you under-
stand your basic goals and have knowledge of various tools at your disposal.

You should always benchmark your tuning results to prove that you’ve actually
improved the performance of a query (e.g., by using runstats or its JDBC equivalent,
JRunstats). Don’t blindly follow any advice you get from others. Myths abound in the
SQL tuning area, so ask for proof or examples of where something does or does not
work. Besides, a piece of advice, even if it is sound, may not directly apply to your appli-
cation. For example, a common myth is that full table scans are always bad, and using
an index to retrieve data is always good. You’ll see an example that proves this isn’t the
case shortly.

• Employ array processing techniques to improve performance. Array processing refers to
the idea of reducing network round-trips and LIOs by processing more than one row at
a time in your SQL statements. You’ll learn how to do array processing in JDBC in the
section “Prefetching” of Chapter 7. In PL/SQL, you can achieve these objectives by
using bulk operations, which are covered in the section “Using Bulk Operations to
Boost Performance” of Chapter 17.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 47

Example: Index Access vs. Full Table Scan

Let’s look at a simple example of how reducing LIOs can help you tune your system. In many
ways, the actual example used isn’t as important as the demonstration of how drastically
unnecessary I/O can affect performance and how to measure that. In addition, this example
serves to debunk the myth that index-based data access is “always best.” Of course, indexing is
an important component in ensuring optimal data access, but many developers are shocked
to find that the database isn’t actually using a particular index and take steps (such as using
hints) to force it to do so. This example demonstrates that, in fact, a full table scan can some-
times perform much better than an index access; the reason being that the index access
causes more LIOs.

We first create a table, t, using data from the all_objects view:

benchmark@ORA10G> create table t as select object_name as x,
mod(rownum, 2) as y, owner as z from all_objects
where rownum <= 5000;

Table created.

Note that the table will have 2,500 rows with a value of 1 and 2,500 rows with a value of 0
in the column y. We then create an index on the y column:

benchmark@ORA10G> create index t_idx on t(y);

Index created.

We create another identical table, t1, with identical data:

benchmark@ORA10G> create table t1 as select object_name as x,
mod(rownum, 2) as y, owner as z from all_objects
where rownum <= 5000;

Table created.

Next, we gather statistics for the Oracle optimizer to use:

benchmark@ORA10G> begin
2 dbms_stats.gather_table_stats(
3 ownname => 'BENCHMARK',
4 tabname => 'T');
5 dbms_stats.gather_index_stats(
6 ownname => 'BENCHMARK',
7 indname => 'T_IDX');
8 dbms_stats.gather_table_stats(
9 ownname => 'BENCHMARK',
10 tabname => 'T1');
11 end;
12 /

PL/SQL procedure successfully completed.

CHAPTER 2 ■ ORACLE FUNDAMENTALS48

We then set the autotrace option that would show us the query plans and the statistics.
We also set the timing on so we can see elapsed time for each query.

benchmark@ORA10G> set autotrace traceonly;
benchmark@ORA10G> set timing on

Our first query is a simple join between the two tables:

benchmark@ORA10G> select *
2 from t, t1
3 where t.y = t1.y
4 and t.y = 0;

6250000 rows selected.

Elapsed: 00:01:15.83

Execution Plan
--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=15084
Card=6250000 Bytes=337500000)

1 0 MERGE JOIN (CARTESIAN) (Cost=15084 Card=6250000
Bytes=337500000)
2 1 TABLE ACCESS (FULL) OF 'T' (TABLE) (Cost=8 Card=2500

Bytes=67500)
3 1 BUFFER (SORT) (Cost=15076 Card=2500 Bytes=67500)
4 3 TABLE ACCESS (FULL) OF 'T1' (TABLE) (Cost=6 Card=2500

Bytes=67500)

Statistics
--

0 recursive calls
0 db block gets

2542 consistent gets
0 physical reads
0 redo size

209911567 bytes sent via SQL*Net to client
4583834 bytes received via SQL*Net from client
416668 SQL*Net roundtrips to/from client

1 sorts (memory)
0 sorts (disk)

6250000 rows processed

As you can see, the optimizer uses a full table scan on both tables for this query. The query
took 2,542 LIOs (2,542 consistent gets + 0 DB block gets) and completed in 1 minute 16 seconds
as shown by the highlighted elapsed time.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 49

In the second query, we give the RULE hint, which will force Oracle to use the rule-based
optimizer (RBO). RBO uses an index blindly whenever one is available, as follows:

benchmark@ORA10G> select /*+ RULE*/*
2 from t, t1
3 where t.y = t1.y
4 and t.y = 0;

6250000 rows selected.

Elapsed: 00:01:55.67

Execution Plan
--

0 SELECT STATEMENT Optimizer=HINT: RULE
1 0 TABLE ACCESS (BY INDEX ROWID) OF 'T' (TABLE)
2 1 NESTED LOOPS
3 2 TABLE ACCESS (FULL) OF 'T1' (TABLE)
4 2 INDEX (RANGE SCAN) OF 'T_IDX' (INDEX)

Statistics
--

1 recursive calls
0 db block gets

918352 consistent gets
0 physical reads
0 redo size

209911567 bytes sent via SQL*Net to client
4583834 bytes received via SQL*Net from client
416668 SQL*Net roundtrips to/from client

0 sorts (memory)
0 sorts (disk)

6250000 rows processed

The same query, when using the index, takes 918,352 LIOs (918,352 consistent gets + 0 DB
block gets). This is 360 times the LIOs taken by the execution plan that used the full table scan.
As you can see, it consumes 1 minute 56 seconds (roughly 1.50 times more than the first
query). In a multiuser environment, this query will perform even worse since it consumes
many more latches due to the additional LIOs it incurs.

CHAPTER 2 ■ ORACLE FUNDAMENTALS50

■Note The number of LIOs increases when you use an index in the earlier example, because indexes read
one block at a time in the sorted order of the data in the index key columns (not in the order in which the
blocks are physically stored on the disk). Thus, when using an index, you might end up rereading the same
block many times, since different rows being accessed may very well reside on the same block.

For example, if the index is reading 100 rows in the order of row 1, row 2, . . . row 100, and the rows 1, 20,
and 30 are on the database block block1, then it would read block1 three times during the course of exe-
cution of the query. A full table scan, on the other hand, reads large chunks of data sequentially and does not
need to reread the same block. So when you are retrieving a large set of rows of a table, a full table scan
usually performs much better.

More important, perhaps, in general, when you’re comparing the performance of two queries that get you
the same answer, make sure you render your judgment based on the number of LIOs, not on whether a
particular index is being used or not.

Undo (or Rollback)
Undo was introduced earlier as the information that Oracle maintains to create a multiversion
read consistent image of the data. Oracle uses information stored in undo segments (referred
to as rollback segments before 9i) to reconstruct a data block as required to give you data as of
the point of time the query (or the transaction) started.

Undo information is generated by Oracle whenever a statement that changes something
(user data or an internal Oracle structure) in the database is issued. Oracle also uses this
information when you roll back a transaction. In this case, Oracle uses the undo segments
to retrieve the “pretransaction” state of the system. So, if you insert ten rows into table t and
issue a rollback, Oracle gets back to the pretransaction state by using the transaction’s undo
stored in undo segments.

Measuring Undo

In general, the more undo your transaction generates, the more resources Oracle consumes
in terms of disk space and CPU. Hence, at the minimum, you need to be able to measure the
undo generated and know what you can do to minimize it. For measuring the undo used by
a transaction, you can look at the column used_ublk of the view v$transaction, which gives
the undo held by your transaction in the number of database blocks. For example, if your
database block size is 8,192, the undo size (in bytes) used by your transaction at any given
time can be measured by running the following query:

select used_ublk *8192 as "Undo in Bytes"
from v$transaction;

CHAPTER 2 ■ ORACLE FUNDAMENTALS 51

The following function returns the undo generated at a given point of time (it requires
direct select privileges on the views v_$transaction and v_$instance; the underscores are
relevant):

benchmark@ORA10G> create or replace function get_undo
2 return number
3 is
4 l_undo number := 0;
5 begin
6 begin
7 select used_ublk * (select value from v$parameter

where name='db_block_size')
8 into l_undo
9 from v$transaction;
10 exception
11 when no_data_found then
12 null; -- ignore - return 0
13 when others then
14 raise;
15 end;
16 return l_undo;
17 end;
18 /

Function created.

To measure the undo generated for any code block, you have to take a snapshot of the
undo generated before and after the code block, and subtract them to get the undo generated
by the code block.

Minimizing Undo

Many times, you can rewrite the same piece of code in a way that the undo generated is mini-
mized. There are no fixed rules in general to achieve this. One common technique of reducing
the undo generated is to use SQL if possible instead of procedural code. We’ll look at an exam-
ple of this technique in the next section.

Example: Procedural Processing vs. SQL

Again, at this stage, the specific example is less important than the measurement technique
and the understanding that suboptimal code can result in the generation of excessive undo in
the database, causing performance degradation.

However, this example does emphasize a point that recurs several times in this book:
although using procedural code is often necessary, using a SQL alternative (if available) will
often increase performance.

To demonstrate this concept, we’ll insert into a table, t1 (which has one number column,
x), 100,000 numbers (from 1 to 100,000). We’ll first do this a row at a time using procedural
code, and then we’ll compare that (in terms of the undo generated) with performing the same
task with a simple SQL statement.

CHAPTER 2 ■ ORACLE FUNDAMENTALS52

In the row-by-row procedure, we open a cursor that selects the 100,000 rows from
all_objects. We fetch each row and insert the row into t1:

benchmark@ORA92I> create or replace procedure row_by_row
2 as
3 begin
4 for i in (select rownum from all_objects, all_users where rownum <= 100000)
5 loop
6 insert into t1(x) values(i.rownum);
7 end loop;
8 end;
9 /

Procedure created.

In the single_stmt_insert procedure, we do the same thing using a single insert into
select clause:

benchmark@ORA92I> create or replace procedure single_stmt_insert
2 as
3 begin
4 insert into t1
5 select rownum
6 from all_objects, all_users
7 where rownum <= 100000;
8 end;
9 /

Procedure created.

We first execute the row_by_row procedure:

benchmark@ORA92I> exec row_by_row

PL/SQL procedure successfully completed.

We next print out the undo generated by this procedure by invoking the function
get_undo, which was discussed earlier:

benchmark@ORA92I> exec dbms_output.put_line(get_undo);
7069696

PL/SQL procedure successfully completed.

benchmark@ORA92I> select count(*) from t1;

100000

CHAPTER 2 ■ ORACLE FUNDAMENTALS 53

We roll back to end this transaction:

benchmark@ORA92I> rollback;

Rollback complete.

We execute our second procedure in a new transaction, printing out the undo generated
afterward:

benchmark@ORA92I> exec single_stmt_insert

PL/SQL procedure successfully completed.

benchmark@ORA92I> exec dbms_output.put_line(get_undo);
253952

PL/SQL procedure successfully completed.

benchmark@ORA92I> select count(*) from t1;

100000

■Note From the SQL prompt in the preceding example, you may have noticed that I ran the preceding
code against Oracle9i (instead of 10g). This is because of a bug in Oracle 10g Release 1, due to which the
undo information generated is more than actually is required, which in turn makes it difficult to demonstrate
the concept on 10g. The bug is being worked on at the time of this writing.

As you can see, the procedure row_by_row generates only 7,069,696 bytes of undo, which is
around 28 times the 253,952 bytes of undo generated by the procedure single_stmt_insert. In
general, if you use single SQL statement instead of doing row-by-row procedural processing,
your code will generate less undo, run faster, and be more scalable.

■Tip All things being equal, you should choose an approach that generates the least amount of undo.

■Tip In general, row-by-row processing (as is done by the previous row_by_row procedure) is almost
always slower than a single SQL statement approach (as is done by single_stmt_insert).

Let’s look at the concept of redo next.

CHAPTER 2 ■ ORACLE FUNDAMENTALS54

Redo
Redo refers to information stored in redo log files by Oracle for use in recovering a database
after a crash. During the recovery of a database instance after a crash, Oracle “replays” the
actions in redo log files to get back to the point in the system before the crash. An important
thing for developers to remember is that Oracle updates the redo log files very frequently to
minimize data loss in the event of a recovery. The redo log file data is written at least

• Every three seconds

• When the memory structure maintaining redo information (called the redo log buffer)
is one-third or 1MB full

• Whenever a transaction is committed

Since the frequency with which redo log files are written to is necessarily high by design,
the process that does this job can easily become a systemwide bottleneck if the following con-
ditions are true:

• The redo log files have not been optimally sized or configured to minimize systemwide
contention. This is, strictly speaking, a DBA’s job.

• The code written by you as the developer is generating more redo than necessary.

The second point highlights the fact that the more redo your code generates, the more
time it takes to complete your operation and, perhaps more importantly, the slower the entire
system becomes, since redo log synchronization is a systemwide point of contention. So, at a
minimum, you need to be able to measure the redo generated by your code and know what
you can do in general to minimize it.

Measuring Redo

For a single SQL statement, you can easily measure the redo generated by using the SQL*Plus
autotrace facility, as shown in the following code snippet:

benchmark@ORA92I> set autotrace on statistics
benchmark@ORA92I> insert into t1
2 select rownum
3 from all_objects;

23554 rows created.
Statistics
--
results snipped for clarity …

…
367656 redo size

…
results snipped for clarity …

23554 rows processed

CHAPTER 2 ■ ORACLE FUNDAMENTALS 55

In the insert statement, 367,656 bytes of redo information was generated. For PL/SQL
code blocks, autotrace does not work. For such cases, the following PL/SQL function gives you
the redo generated by your session at a given point in time (note that you need to have direct
select privileges on the views v_$mystat and v_$statname for the following code to compile):

benchmark@ORA10G> create or replace function get_redo_size
2 return number
3 as
4 l_redo_size number;
5 begin
6 select value
7 into l_redo_size
8 from v$mystat m, v$statname s
9 where s.name like 'redo size'
10 and m.statistic# = s.statistic#;
11 return l_redo_size;
12 end;
13 /

Function created.

For example, the following code snippet shows that we generated 60,092 bytes of redo at
this point in time in our session:

benchmark@ORA10G> exec dbms_output.put_line(get_redo_size);
60092

To measure redo generated for any code block, you have to take a snapshot of the redo size
generated before and after the code block, and subtract them to get the redo generated by the
code block. For example, to find out the redo generated by the procedure single_stmt_insert
defined earlier, we first store the current amount of redo generated in a variable:

benchmark@ORA10G> variable value number;
benchmark@ORA10G> exec :value := get_redo_size;

PL/SQL procedure successfully completed.

And execute our procedure:

benchmark@ORA10G> exec single_stmt_insert

PL/SQL procedure successfully completed.

Then we print out the redo generated by the procedure by subtracting the previously
stored redo size value from the current amount of redo generated:

benchmark@ORA10G> exec dbms_output.put_line('redo consumed = ' ||
(get_redo_size - :value));
redo consumed = 23738012

PL/SQL procedure successfully completed.

CHAPTER 2 ■ ORACLE FUNDAMENTALS56

In general, you should choose the approach that generates the least amount of redo.

Minimizing Redo

One technique for reducing the overall amount of redo generated is to avoid committing more
frequently than required by your transaction semantics. I discuss this scenario in more detail in
the section “Sizing Your Transaction Resources According to Your Business Needs” in Chapter 4.

Understand SQL and PL/SQL
In the previous sections, we looked at some selected topics and examples and covered how it
is important for you to understand the inner workings of Oracle. In this section, I will demon-
strate why you need to have a solid grasp of SQL and PL/SQL in your quest for writing
high-performance applications.

First, let’s look at a straightforward logical argument. Listed here are the high-level steps a
typical JDBC program goes through:

1. Obtain an Oracle connection to the database.

2. Set up resources required to execute SQL statements.

3. Execute a set of SQL and/or PL/SQL statements.

4. Give back (or close) resources required to execute SQL statements.

5. Give back (or close) the connection to the database.

The total time spent in your JDBC program will be the sum of the time spent in all the
preceding steps. In a typical, well-written, nontrivial JDBC program, the majority of time is
spent on step 3. From this simple observation, we conclude that there are two main aspects
of writing a high-performance JDBC program:

• Optimal use of JDBC API (involves all the previously listed steps)

• Optimal use of SQL and/or PL/SQL code executed by the JDBC layer (involves step 3)

Even if you have written your application so that the use of the JDBC layer is optimal, if
the SQL or PL/SQL code that gets invoked is poorly written, your program is bound to operate
at a suboptimal (read: dog-slow in many cases) level.

However, before we explore further the topic of optimal SQL, I’d like to discuss the perhaps
controversial idea that the best environment from which to execute SQL in your applications is
PL/SQL, rather than Java (so in step 3 you would call a PL/SQL program to execute SQL, rather
than executing SQL directly from within JDBC).

Why Use PL/SQL?
The following sections contain the arguments put forward in favor of avoiding PL/SQL, along
with my counter arguments:

CHAPTER 2 ■ ORACLE FUNDAMENTALS 57

Using PL/SQL Locks My Application into Using Oracle

An equivalent argument is the one that promotes the idea of writing database-independent
code. The idea of writing database-independent code by avoiding the use of database features,
such as the use of PL/SQL, is foolhardy in my opinion because

• In the majority of cases, your code really does not need to be run against different data-
bases. In such cases, this requirement is bogus.

• If you try to write code that is supposed to work on more than one database by avoiding
database features, you would be rewriting, debugging, and maintaining code for features
that are already available in the database, which can lead to skyrocketing costs in terms
of developer time.

• In order for your code to perform and scale well, you have to understand and exploit
features exposed in the database anyway, as you have already witnessed to a large
extent in this chapter.

• In many cases, you will still end up using database-specific features unknowingly (such
as the connect by feature in SQL written against Oracle).

• When porting code from one database to another (assuming it comes to that), you will
end up rewriting most of the code anyway, because a solution that works well in the
original database may well work poorly (or even incorrectly) in the second database
to which your application is being ported.

Using PL/SQL Doesn’t Give Me Anything That I Couldn’t Get from Java

This is not true for the following reasons (among others):

• PL/SQL code can create a layer of code above which the code can truly be database-
independent (in the rare case when database independence is a genuine requirement).
The code within PL/SQL is free to exploit all features of Oracle. If you want to move to a
different database, you need to typically just replace the implementation of the stored
procedure layer with an implementation of the layer in the stored procedure language
of the new database.

• The PL/SQL code can be invoked by any language that can talk to Oracle (e.g., C, C++,
Perl, etc.). Thus, your central logic that deals with data is not locked into a particular
layer of code written in one language or technology stack (such as Java/J2EE), which is
inaccessible from other languages.

• Writing code in PL/SQL allows you to write code that exploits many of the PL/SQL
features, such as

• Benefits of static SQL caching (as discussed in the section ”PL/SQL Cursor Cache”
of Chapter 13)

• Code compactness and robustness

• Bulk bind, bulk collect, etc. (as explained in the section "Using Bulk Operations to
Boost Performance" of Chapter 17)

• Ability to write more secure code (since you only need to grant the execute privi-
lege on the PL/SQL procedures instead of having to grant direct select, insert,
and update privileges on the underlying schema to the database user)

• It is much easier to tune SQL written in PL/SQL code.

CHAPTER 2 ■ ORACLE FUNDAMENTALS58

■Note We’ll look at many more reasons to use PL/SQL extensively when writing an Oracle application
in later chapters (especially Chapters 6 and 17). Also, Chapter 1 of Mastering Oracle PL/SQL by Connor
McDonald (Apress, ISBN: 1-59059-217-4) provides useful discussion on this topic.

Use PL/SQL Effectively
Once you’ve decided to exploit PL/SQL in your applications, it makes sense that, as with SQL,
you should understand it in enough depth to write it efficiently. The next section presents an
example that shows how having good knowledge of PL/SQL can improve the performance of
your code considerably.

Example: Row-by-Row Processing vs. Bulk Binding

The example in this section makes use of the bulk binding feature of PL/SQL to improve perform-
ance of code that needs to copy data from one table to another while dealing appropriately with
any bad records in the source table. Very briefly, bulk binding allows you to improve performance
of inserts, updates, and deletes in a loop. With bulk binding, you insert, delete, or update tables
using values from an initialized collection (such as a varray, a nested table, or associative arrays).

Say we want to copy data from the table source_table to another table,
destination_table, in our JDBC program. source_table may contain some bad records, which
would result in errors when we insert them into destination_table.

Let’s first create and populate source_table with some data to simulate this scenario. We
create a table with just the column x, which contains numbers. We assume that a zero or nega-
tive number in the table represents a bad record. In the following SQL, we create source_table
with numbers ranging from –10 to –1 (representing ten bad records), and from 1 to 100,000
(representing 100,000 good records):

benchmark@ORA10G> create table source_table
2 as select rownum x
3 from all_objects, all_users
4 where rownum <= 100000
5 --10 bad records - a negative number
6 union all
7 select rownum * -1
8 from all_objects
9 where rownum <= 10;

Table created.

Next, we create the destination_table table, to which the data will be copied. Note that
the table has constraint checks, so that it accepts only non-negative numbers greater than 0:

benchmark@ORA10G> create table destination_table (
x number constraint check_nonnegative check(x > 0));

Table created.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 59

We create a third table, bad_records_table, where our code will insert any bad records,
with the record value (the bad number) and an appropriate error message:

benchmark@ORA10G> create table bad_records_table (
x number, error_message varchar2(4000));

Table created.

One solution that comes to mind is to write procedural code that loops through the
records of the table source_table and filters out the bad records, inserting the bad records
into bad_records_table while inserting the valid records into destination_table. The follow-
ing row_by_row procedure does just that. It inserts the records into destination_table, and if
there is an exception raised, it inserts the appropriate information into bad_records_table:

benchmark@ORA10G> create or replace procedure row_by_row
2 as
3 cursor c is select x from source_table;
4 l_x source_table.x%type;
5 l_error_message long;
6 begin
7 open c;
8 loop
9 fetch c into l_x;
10 exit when c%notfound;
11 begin
12 insert into destination_table(x) values(l_x);
13 exception
14 when others then
15 l_error_message := sqlerrm;
16 insert into bad_records_table(x, error_message)
17 values(l_x, l_error_message);
18 end;
19 end loop;
20 commit;
21 end;
22 /

Procedure created.

To test the code, let’s execute it:

benchmark@ORA10G> exec row_by_row;

PL/SQL procedure successfully completed.

and select out records from bad_records_table:

benchmark@ORA10G> select * from bad_records_table;

CHAPTER 2 ■ ORACLE FUNDAMENTALS60

-1
ORA-02290: check constraint (BENCHMARK.CHECK_NONNEGATIVE) violated

-2
<-- trimmed to save space -->
ORA-02290: check constraint (BENCHMARK.CHECK_NONNEGATIVE) violated

-10

Although the procedure row_by_row does the job, it turns out that we can do much better
in PL/SQL in terms of performance at the cost of a little bit more code complexity. We will use
the PL/SQL feature known as bulk binding (this feature is discussed at length in the section
“Using Bulk Binding” of Chapter 17; here we just focus on its impact on performance).

We first create a SQL nested table type that can store numbers:

benchmark@ORA10G> create or replace type number_table as table of number;
2 /

Type created.

In the following bulk_bind procedure, we first collect all the records into the nested table
using the bulk collect clause. We then use the forall clause to insert the records into the
table destination_table. Finally, we use the save_exceptions clause to save any exceptions
that may have occurred, and we insert these exceptions into bad_records_table.

benchmark@ORA10G> create or replace procedure bulk_bind
2 as
3 l_number_table number_table;
4 l_error_message long;
5 l_error_row_number number;
6 l_error_code number;
7 begin
8 select x
9 bulk collect into l_number_table
10 from source_table;
11 begin
12 forall i in 1..l_number_table.count save exceptions
13 insert into destination_table(x) values(l_number_table(i));
14 exception
15 when others then
16 for j in 1..sql%bulk_exceptions.count loop
17 l_error_row_number := sql%bulk_exceptions(j).error_index;
18 l_error_code := sql%bulk_exceptions(j).error_code;
19 l_error_message := sqlerrm(-1 * l_error_code);
20 insert into bad_records_table(x, error_message)
21 values(l_number_table(l_error_row_number),
22 l_error_message);
23 end loop;
24 end;

CHAPTER 2 ■ ORACLE FUNDAMENTALS 61

25 commit;
26 end;
27 /

Procedure created.

After deleting all records from destination_table and bad_records_table, we find that the
procedure does its job correctly:

benchmark@ORA10G> exec bulk_bind;

PL/SQL procedure successfully completed.

benchmark@ORA10G> select * from bad_records_table;

-1
ORA-02290: check constraint (.) violated

-2
ORA-02290: check constraint (.) violated

-3
ORA-02290: check constraint (.) violated

<-- trimmed to save space -->
-10

ORA-02290: check constraint (.) violated

10 rows selected.

■Note You may point out that the error message in the procedure bulk_bind is not as complete as in the
case of row_by_row (the constraint name is missing). I am assuming that this is an acceptable trade-off for
the performance gain achieved by using bulk bind in this example.

In my tests with JRunstats for invoking the preceding two JDBC procedures, I found that
the procedure row_by_row took around 19 times the time and consumed about 99 times the
number of latches as compared to the procedure bulk_bind. Clearly, even if we had optimized
our JDBC layer, we would have written a severely suboptimal program had we not used
PL/SQL efficiently in this case.

This example underlines the fact that you have to know PL/SQL well to write a high-
performance JDBC application using PL/SQL (which is very common). In Chapter 6, I present
strong arguments for using PL/SQL extensively in your code and using CallableStatement to
invoke the PL/SQL code from your Java programs.

CHAPTER 2 ■ ORACLE FUNDAMENTALS62

Use SQL Effectively
You have just seen that PL/SQL bulk binding can be more effective than processing one row at
a time. However, the fact is that if an equivalent pure SQL solution exists, then there is a good
chance that this solution will provide better performance still.

It’s a good idea to use PL/SQL, as appropriate, in your applications, but don’t use it to do
the job of SQL. In the following examples, you’ll learn how, with good knowledge of SQL, you
can improve performance even further.

Example 1: PL/SQL Bulk Bind vs. SQL Multitable Insert

We compare two approaches in this section:

• In the first approach, we use the bulk_bind method defined in the previous section
(see the example in the previous section).

• In the second approach, we use a single multitable insert statement to accomplish
the same goal (please see section “INSERT” of Oracle Database SQL Reference
(10g Release 1) if you are not familiar with multitable insert syntax).

As part of our SQL solution, we define a second procedure called single_sql_statement
as follows:

benchmark@ORA10G> create or replace procedure single_sql_statement
2 as
3 begin
4 insert all
5 when (x > 0) then
6 into destination_table(x) values (x)
7 when (x <= 0) then
8 into bad_records_table(x, error_message) values (x, error_message)
9 select x, case
10 when x > 0 then null
11 when x <= 0 then 'invalid record: negative or zero number'
12 end error_message
13 from source_table;
14 commit;
15 end;
16 /
Procedure created.

In my tests using JRunstats, on average, the SQL-based approach ran in 50% of the time
and consumed 75% of the latches as compared to the PL/SQL bulk bind approach. In general,
you will find that a SQL-based solution, if available, will almost always outperform an equiva-
lent PL/SQL procedural solution, often by a wide margin.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 63

■Tip In general, a SQL solution will outperform a PL/SQL solution. SQL is a very powerful language, and the
more you master it, the more you will be able to exploit it, thereby improving the performance and scalability
of your code tremendously.

Example 2: Using the Power of Analytic Functions

Let’s end this section with another example that illustrates the power of SQL. We first imple-
ment a small specification in PL/SQL. Next, we improve upon our PL/SQL solution by using
SQL. Finally, we further improve our SQL solution by using SQL analytic functions.

If you are unfamiliar with SQL analytic functions, you have been missing out on one of
the greatest innovations of the Oracle SQL engine. SQL analytic functions have been available
since version 8.1.6, and they have improved in functionality and features with each subse-
quent release.

■Note Analytic functions are documented in Chapter 21 of Oracle Database Data Warehousing Guide
(10g Release 1). Don’t be misled by the fact that they are documented in the Data Warehousing Guide docu-
ment; they are very useful in any application that uses SQL on Oracle.

Now, on to our example. Suppose the requirement of our code is as follows:

For each department, get all the employees who earn an above average or average salary

for the department, and insert these records into a table called above_avg_emp. Insert the

remaining employee records into the below_avg_emp table.

Let’s create the schema for this scenario. We first create a table called emp in our schema
and populate it with 20,000 employees (dummy data) who work in three departments (depart-
ment numbers 10, 20, and 30):

benchmark@ORA10G> create table emp as
2 select 'name' ||rownum as ename,
3 (mod(rownum, 3) + 1)*10 as deptno,
4 trunc(dbms_random.value(1000, 6000)) as sal
5 from all_objects
6 where rownum <= 20000;

Table created.

benchmark@ORA10G> select count(*), count(distinct deptno) from emp;

20000 3

CHAPTER 2 ■ ORACLE FUNDAMENTALS64

benchmark@ORA10G> select distinct deptno from emp;

10
20
30.

We also create two tables, above_avg_emp and below_avg_emp, which are essentially copies
of table emp with no data:

benchmark@ORA10G> create table above_avg_emp as select * from emp where 1!=1;

Table created.

benchmark@ORA10G> create table below_avg_emp as select * from emp where 1!=1;

Table created.

Our requirement specification can be directly translated into a PL/SQL procedure,
insert_emp_plsql, which we will define soon. First, we create an object type, dept_avg_sal,
that can hold a department number and its average salary. We also create a nested table of the
preceding type called dept_avg_sal_list:

benchmark@ORA10G> create or replace type dept_avg_sal as object
2 (
3 deptno number(2),
4 avg_sal number
5);
6 /

Type created.

benchmark@ORA10G> create or replace type dept_avg_sal_list as table of dept_avg_sal;
2 /

Type created.

We are now ready to define our PL/SQL procedure called insert_emp_plsql, which will
implement our requirements. In this procedure (defined in the following code), we first bulk
collect the department-wide average salary into a variable of type dept_avg_sal_list (please
see the section “Using Bulk Operations to Boost Performance” of Chapter 17 if you are not
familiar with the bulk collect clause). We then loop through a join between the emp table and
the nested table variable l_dept_avg_sal_list (see Chapter 8 if you are not familiar with the
table clause we use), and insert the data into the appropriate table based on our requirements:

benchmark@ORA10G> create or replace procedure insert_emp_plsql
2 as
3 l_dept_avg_sal_list dept_avg_sal_list;
4 begin
5 -- first store the average salary
6 select dept_avg_sal(deptno, avg(sal))

CHAPTER 2 ■ ORACLE FUNDAMENTALS 65

7 bulk collect into l_dept_avg_sal_list
8 from emp
9 group by deptno;
10
11 for i in (select emp.deptno, ename, sal, t.avg_sal as avg_sal
12 from emp, table(l_dept_avg_sal_list) t
13 where emp.deptno = t.deptno)
14 loop
15 if(i.sal >= i.avg_sal) then
16 insert into above_avg_emp(deptno, ename, sal)
values(i.deptno, i.ename, i.sal);
17 else
18 insert into below_avg_emp(deptno, ename, sal)
values(i.deptno, i.ename, i.sal);
19 end if;
20 end loop;
21 end;
22 /

Procedure created.

This procedure works, but can we use our SQL knowledge to improve upon it? Yes, indeed
we can (we will compare performance of all these alternatives later). We need a SQL statement
that selects the department name, employee name, and salary, and a flag that indicates
whether or not the employee salary is above the average salary for the department. We can
then use the multitable insert technique to write a single SQL statement that does our job. We
will test our SQL statement in the SCOTT schema. We will also set autotrace on to measure the
LIOs incurred.

The following SQL statement uses a co-related subquery to achieve our objective (note
again that we run it in the SCOTT schema). Apart from the required columns, it computes a flag
called above_avg_flag, which has the value Y for employees with above average salaries, and
the value N otherwise:

scott@ORA10G> select deptno, ename, sal, 'Y' as above_avg_flag
2 from emp e1
3 where e1.sal >= (select avg(sal)
4 from emp e2
5 where e1.deptno = e2.deptno)
6 union all
7 select deptno, ename, sal, 'N'
8 from emp e1
9 where e1.sal < (select avg(sal)
10 from emp e2
11 where e1.deptno = e2.deptno)
12 order by deptno, ename, sal;

CHAPTER 2 ■ ORACLE FUNDAMENTALS66

DEPTNO ENAME SAL ABOVE_AVG_FLAG
---------- ---------- ---------- ---------------

10 CLARK 2450 N
10 KING 5000 Y
10 MILLER 1573 N
20 ADAMS 1100 N
20 FORD 3000 Y
20 JONES 2975 Y
20 SCOTT 3000 Y
20 SMITH 800 N
30 ALLEN 1600 Y
30 BLAKE 2850 Y
30 JAMES 950 N
30 MARTIN 1350 N
30 TURNER 1500 N
30 WARD 1250 N

14 rows selected.

Statistics
--

…
0 db block gets
28 consistent gets
0 physical reads
….
14 rows processed

As you can see, the query required 28 LIOs to complete. It turns out that we can do even
better if we use the SQL analytic function–based approach. The following query uses the SQL
analytic function–based approach to achieve the same objective in seven LIOs (half of that
used by the previous query):

scott@ORA10G> select deptno, ename, sal,
2 case when sal >= avg_sal then 'Y' else 'N' end above_avg_flag
3 from
4 (
5 select deptno, ename, sal, avg(sal) over(partition by deptno) avg_sal
6 from emp
7);

DEPTNO ENAME SAL ABOVE_AVG_FLAG
---------- ---------- ---------- ---------------

10 CLARK 2450 N
10 KING 5000 Y
10 MILLER 1573 N
20 SMITH 800 N
20 ADAMS 1100 N

CHAPTER 2 ■ ORACLE FUNDAMENTALS 67

20 FORD 3000 Y
20 SCOTT 3000 Y
20 JONES 2975 Y
30 ALLEN 1600 Y
30 BLAKE 2850 Y
30 MARTIN 1350 N
30 JAMES 950 N
30 TURNER 1500 N
30 WARD 1250 N

14 rows selected.

Statistics
--
…

0 db block gets
7 consistent gets
0 physical reads

…
14 rows processed

The following insert_emp_sql procedure implements our requirements using a multitable
insert statement and our first SQL solution:

benchmark@ORA10G> create or replace procedure insert_emp_sql
2 as
3 begin
4 insert
5 when above_avg_flag = 'Y' then
6 into above_avg_emp(deptno, ename, sal) values(deptno, ename, sal)
7 when above_avg_flag = 'N' then
8 into below_avg_emp(deptno, ename, sal) values(deptno, ename, sal)
9 select deptno, ename, sal, 'Y' as above_avg_flag
10 from emp e1
11 where e1.sal >= (select avg(sal)
12 from emp e2
13 where e1.deptno = e2.deptno)
14 union all
15 select deptno, ename, sal, 'N'
16 from emp e1
17 where e1.sal < (select avg(sal)
18 from emp e2
19 where e1.deptno = e2.deptno);
20 end;
21 /

Procedure created.

CHAPTER 2 ■ ORACLE FUNDAMENTALS68

The following procedure, insert_emp_sql_analytics, encapsulates our SQL analytic func-
tion–based solution in a procedure using multitable insert again:

benchmark@ORA10G> create or replace procedure insert_emp_sql_analytics
2 as
3 begin
4 insert
5 when sal >= avg_sal then
6 into above_avg_emp(deptno, ename, sal) values(deptno, ename, sal)
7 when sal < avg_sal then
8 into below_avg_emp(deptno, ename, sal) values(deptno, ename, sal)
9 select deptno, ename, sal, avg_sal
10 from
11 (
12 select deptno, ename, sal, avg(sal) over(partition by deptno) avg_sal
13 from emp
14);
15 end;
16 /

Procedure created.

I compared the elapsed times and latches of all three solutions (one PL/SQL-based and
two SQL-based) that we discussed on the schema that we created in the benchmark schema.
Table 2-1 shows the results.

Table 2-1. Comparing the PL/SQL Solution with Two SQL Solutions (with and Without the Use of
SQL Analytic Functions)

Approach Average Elapsed Relative Number of Latches
Time (Seconds)

PL/SQL solution in procedure 1.87 7 times that of insert_emp_sql
insert_emp_plsql

SQL solution in procedure 0.23 1.5 times that of insert_emp_sql
insert_emp_sql_analytics

SQL solution based on analytic function in 0.17
procedure insert_emp_sql_analytics

Once again, we see that SQL-based solutions outperformed the PL/SQL solution. Within
the SQL-based solutions, we were able to further improve performance and scalability by
using analytic function–based techniques. Overall, our best SQL-based solution ran in less
than 10% of the time and consumed around 10% of the latches our PL/SQL solution took.
These performance improvements will, of course, directly translate to performance improve-
ments in JDBC programs that invoke them.

The examples we went through in this and the previous section have hopefully convinced
you that that you need to have a solid grasp of performance improvement techniques and
approaches in PL/SQL and SQL to write high-performance and scalable JDBC applications. In
the next section, we will look at the importance of getting your database schema design right.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 69

Get Your Database Schema Design Right
Like everything else, your database schema should also be designed according to your appli-
cation’s business needs. From a developer’s point of view, the database schema typically
includes tables, indexes, views, and various constraints, among other things. As a developer,
you will write SQL that works against database tables. Hence, you need to understand how
these tables are designed, since schema design has a direct impact on your SQL.

One of the central themes of table design is that you should design tables with prioritized
performance requirements in mind from day one. Various aspects of table design include
choosing the appropriate normalization level, table organization type (heap, index-organized,
etc.), indexing strategy, integrity checks, constraints, and column data types for your tables.
In this section, we will consider just one aspect of table design: choosing the appropriate table
type based on your requirements. We will see how this single factor can significantly affect the
performance of an application.

■Tip I strongly urge you to read Chapter 7 of the book Effective Oracle by Design by Tom Kyte (Osborne
McGraw-Hill, ISBN: 0-07-223065-7) for a very interesting discussion on this topic. Similarly, I suggest you
read Chapters 6 and 7 of Expert One-on-One Oracle (Apress, ISBN: 1-59059-243-3), also by Tom Kyte, to
understand how to use indexes and constraints as part of your database schema design.

Say the requirement is that of a table that will be loaded with a large amount of data once
during night, but queried lots of times during the day. Furthermore, the most frequently used
queries select based on the table’s primary key. We have the following facts:

• Our queries (based on primary keys) should be fast (since they are used frequently).

• Somewhat slower inserts are acceptable (since data is loaded once during off-peak
hours).

• It would be a bonus if we can save space on the large amount of data.

This is an ideal design scenario to try out an index-organized table structure. Normally
when you create a table in Oracle, it is organized as a heap by default. In a heap-organized
table, data is managed as a heap—that is, the inserts fill up the first available free space with
no particular maintained order. The primary key of a heap table uses a separate index struc-
ture. By contrast, in an index-organized table (IOT for short), the table data is stored in the
primary key index structure itself in a sorted order according to the primary key values. This
has the following implications:

• In an IOT, since the data is stored sorted by the primary key, we need fewer logical I/Os
compared to a heap table to get the same data for primary key–based lookups. This is
because, in a heap table, typical data access by index occurs in two steps:

1. Index access to get the ROWID.

2. Table data access by the ROWID obtained in step 1.

CHAPTER 2 ■ ORACLE FUNDAMENTALS70

In the case of an IOT, step 2 is not required, since the index and table are in the same
structure.

• We require less storage in an IOT because the primary key values are stored only once
in an IOT (in the index structure). In the case of a heap table, primary key values are
stored as part of the table and again as part of the index structure.

• Inserts, deletes, and updates on an IOT may be slower since the data has to be inserted
in the correct place in the IOT index structure.

For more details on IOTs (and all the other types of tables Oracle provides), please see the
section “Overview of Tables” in Oracle Database Concepts Guide (10g Release 1).

Let’s compare the performance of queries on these two types of tables for our design case
using tkprof. First, we create a heap-organized table called heap:

benchmark@ORA10G> create table heap
2 (
3 a varchar2(30),
4 b varchar2(30),
5 c varchar2(30),
6 constraint heap_pk primary key (a, b)
7);

Table created.

Next, we create another table, iot, with same column information, but we create it with
the organization index (as shown by the highlighted organization clause):

benchmark@ORA10G> create table iot
2 (
3 a varchar2(30),
4 b varchar2(30),
5 c varchar2(30),
6 constraint iot_pk primary key (a, b)
7)
8 organization index;

Table created.

We then create the procedures insert_heap and insert_iot to insert data into the heap
and the IOT tables, respectively:

benchmark@ORA10G> create or replace procedure insert_heap
2 is
5 begin
6 for i in 1 .. 100 loop
7 for j in 1 .. 1000 loop
8 insert into heap values ('a'||i, 'a'||i||j, 'cccc');
9 end loop;
10 end loop;

CHAPTER 2 ■ ORACLE FUNDAMENTALS 71

11 commit;
12 end;
13 /

Procedure created.

benchmark@ORA10G> create or replace procedure insert_iot
2 is
3 begin
4 for i in 1 .. 100 loop
5 for j in 1 .. 1000 loop
6 insert into iot values ('a'||i, 'a'||i||j, 'cccc');
7 end loop;
8 end loop;
9 commit;
10 end;
11 /

Procedure created.

Finally, we create the procedures select_heap and select_iot:

benchmark@ORA10G> create or replace procedure select_heap
2 is
3 l_a heap.a%type;
4 begin
5 for i in 1 .. 100 loop
6 l_a := 'a'||i;
7 for x in (select * from heap where a=l_a) loop
8 null;
9 end loop;
10 end loop;
11 end;
12 /

Procedure created.

benchmark@ORA10G> create or replace procedure select_iot
2 is
3 l_a iot.a%type;
4 begin
5 for i in 1 .. 100 loop
6 l_a := 'a'||i;
7 for x in (select * from iot where a=l_a) loop
8 null;
9 end loop;
10 end loop;
11 end;
12 /

Procedure created.

CHAPTER 2 ■ ORACLE FUNDAMENTALS72

We now populate both tables by invoking the procedures insert_heap and insert_iot:

benchmark@ORA10G> show errors;
No errors.
benchmark@ORA10G>
benchmark@ORA10G> begin
2 insert_heap;
3 insert_iot;
4 end;
5 /

PL/SQL procedure successfully completed.

I compared invocation of select_heap and select_iot from a JDBC program using JRun-
stats. In my benchmark runs, the heap table–based solution took almost twice the amount of
time and, more important perhaps, consumed more than five times the latches as compared to
the IOT-based solution. We can further improve our IOT solution by using the compress option
available in IOT to reduce space consumption (I leave this as an exercise for the reader).

In this section we demonstrated how a single aspect of database table design, when
combined with our knowledge of the different database types offered by Oracle, allowed us
to significantly improve our application’s performance.

This chapter concludes by summarizing some general guidelines for writing high-
performance code in the next section.

General Guidelines for Writing High-Performance Code
Up to now, we have discussed the need to write application code that performs well and does
not make the database do unnecessary work. We have also seen how a solid grasp of PL/SQL and
SQL will help you succeed in your quest to write high-performance applications. In this section,
we will look at some general guidelines for achieving high performance in your applications.

Know the Features Offered by Oracle
Time and again, I have seen that developers don’t take enough time to gain knowledge about
the features offered by Oracle. This proves very costly as we reinvent the wheel by rewriting
what has already been written by Oracle for us. In the past, I myself have been guilty of this.

For example, in one of the systems I worked on, I needed to maintain a history of changes
to records in a set of tables. It took my team about a man-month to write procedural code for
this purpose before we realized that there is a feature called Workspace Management in Oracle
that will do this for us already (see Oracle Application Developer's Guide – Workspace Manager
[10g Release 1] for more details). I was able to write pretty much the same code in half a day
using the Workspace Management feature! Had I known about this feature earlier, I could
have potentially saved the team at least that one man-month’s worth of effort (assuming that
the restrictions that this feature imposed were acceptable to our system).

CHAPTER 2 ■ ORACLE FUNDAMENTALS 73

I have seen people routinely coding for features that are part of the Oracle database offer-
ing. Some common examples are

• Coding referential integrity in the application instead of using database features such
as foreign keys

• Not using materialized views when applicable

• Creating query joins in the application layer (a very bad idea indeed)

People recode features already available in Oracle for one or more of the following reasons:

• Unawareness of these features: This can be avoided by actively learning about Oracle.
See Appendix B for a list of resources I recommend strongly. You can also learn a lot by
attending conferences, joining Oracle user groups in your area, and reading the articles
at http://otn.oracle.com.

• Fear of new features: Some people are wary of a new feature from a release-stability
point of view. However, it’s still worth reading up on and learning about new features
and using them actively; otherwise, you’ll continue to write the same code. (And don’t
forget that you may also introduce your own bugs.) In general, if you’re about to write
an application feature that seems like something that might already be present in
Oracle, do some research on what Oracle offers before you jump in and start coding.

• “Attitude problem” (i.e., the mistaken belief that you could do a better job than Oracle):
My philosophy is to trust the database to do its job well. If you reinvent code already
written by Oracle, you’ll inevitably spend lots of effort in writing code that performs
terribly, is incorrect, and is hard to maintain. The time and effort you spend in learning
a new Oracle feature will pay off many times over later on.

Design to Optimize the Most Important Business Functions First
Performance is all about making conscious trade-offs between various resources such as
development time, hardware and software resources, customer requirements, etc. You should
design in a way that the most important business needs of a user are given the highest priority
in terms of meeting performance expectations. An excellent book that discusses this theme in
great detail is Cary Millsap’s Optimizing Oracle Performance (O’Reilly, ISBN: 0-596-00527-X).

■Tip Design in a way that the most important business needs of a user are given the highest priority in
terms of meeting performance expectations.

CHAPTER 2 ■ ORACLE FUNDAMENTALS74

Incorporate Performance from Day One
Many developers start the tuning process toward the end of the development cycle—or worse
still, after deployment! This approach is a recipe for disaster, especially if you have overlooked
the scalability aspect of performance in your design. The following are some reasons why you
should consider performance from day one.

• Performance is part of your end user’s requirements; it is an important feature that the
user demands (implicitly or explicitly). For an end user, bad performance implies that
you have not delivered the desired functionality or that your code is buggy.

• Fixing something in the performance area as an afterthought can lead to expensive
code rewrites, customer dissatisfaction and, many times, a failed project.

• Considering performance early in the process gives you a better idea of various trade-offs
and choices that you can present to the user, who can then make informed decisions.

Instrument Your Code Extensively
The process of writing the code so that you can find out (by messages emitted by the code in
an output stream such as a file or screen) what the code does at any point of time is called
instrumentation. Instrumenting your code is critical for you to be able to diagnose perform-
ance (and even nonperformance) problems in your code during development and after
deployment. Effectively instrumenting your code gives the following benefits:

• It enables faster development since you identify logical errors and performance bottle-
necks much more easily and early on based on diagnostic outputs.

• It enables you to debug any performance issues much faster and more efficiently, even
after deployment. This increases the supportability of your product and saves tremen-
dously on overall resources.

An example of the power of instrumentation is the Oracle kernel. You can enable it to
emit extremely useful information in a trace file during a diagnostic session. You can then use
utilities such as tkprof to format these trace files and analyze them. Trace file–based diagnosis
is one of the most powerful features used by performance analysts today. It would be impossi-
ble to tune an Oracle-based system without the trace file generation feature.

Note that your instrumentation code should be designed in such a way that it is possible
to turn it on and off at will. This way, the users don’t pay a performance penalty during normal
business operations, and the code is right there when you need it to diagnose a problem later.
Recall that the Oracle kernel instrumentation also needs to be turned on specifically to emit
information in the trace files. In the section “Seamless Instrumentation of PL/SQL and JDBC
Code” of Chapter 17, you will learn about a powerful PL/SQL and JDBC instrumentation
technique.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 75

Test for Performance
There are two types of performance tests that form the core of the strategy of writing high-
performance applications:

• Testing code in isolation using utilities such as JRunstats for scientifically proving
which approach out of a set of approaches is suitable for your system. You have already
seen how useful this test harness is in some of the previous examples.

• A suite of tests for systemwide testing that enables the following:

• A way to load the system with typical representative data sets. The data loading
logic should be maintained and enhanced as you learn more about the system
later on. The code that does this should also be an inherent part of the rest of your
checked-in source code.

• A set of tests that test out the performance of the most important business functions
of your end user.

• A way to preserve the systemwide performance data in the test and production
systems. This enables you to compare your current code with how it did in the
past, and to identify new performance bottlenecks as soon as they are introduced
in the system. One way to do this for an Oracle-based system is to use the statspack
utility (in 10g, the feature Automatic Workload Repository has replaced statspack;
see Oracle Database Performance Tuning Guide and Reference [10g Release 1] for
more details).

Elapsed Time Is Less Than Half the Story
You have already seen this principle in action in previous sections. If approach 1 works 10%
faster than approach 2 in a single-user environment, but it consumes 100% more resources (in
terms of latches, etc.), then approach 2 is much more likely to be suitable for a multiuser envi-
ronment. In this book, we will always consider scalability of an approach as well as the response
time before coming to a conclusion on which approach is better. We will use the runstats utility
and its Java version, JRunstats, for this purpose throughout the book.

Beware of Universal Truths
Perhaps the only universal truth when it comes to performance guidelines is that there are
no universal truths! A sound approach in one situation often turns out to be a lousy one in
another. The only sane approach is to know the tools at your disposal, know how to use them,
and benchmark to prove that your approach is the appropriate one in your particular case.
Beware of guidelines that tell you to “always” take an approach, because more often than
not there will be situations when that approach will not be the best one at hand (and it could
easily be the worst one!).

For example, take the guideline that says, “Always use bind variables.” It is true that in the
majority of systems, this guideline holds true. However, if you are writing a data warehouse
system, using bind variables may not be a good approach. This is because, in a data ware-
house system, the execution time of queries is much higher than the parsing time, and the
number of queries executed by the system per second is very small. In this case, it may make
sense not to use bind variables so that the Oracle query optimizer gets more information to
arrive at a better query plan based on the input data.

CHAPTER 2 ■ ORACLE FUNDAMENTALS76

Summary
In this chapter, you looked at some examples that demonstrate why it is critical for an Oracle
application developer to know about Oracle’s features and the Oracle architecture. You
learned some important Oracle concepts, such as multiversion read consistency, undo, redo,
and so on, that should whet your appetite and motivate you to learn more about Oracle. You
also learned why mastering SQL and PL/SQL is crucial in achieving your goal of being an
effective JDBC programmer. You may need to put in some additional effort to learn more
about the concepts touched on in this chapter from the many references I gave throughout.
In the next chapter, you will consider the JDBC API and write your first JDBC program.

CHAPTER 2 ■ ORACLE FUNDAMENTALS 77

Introduction to JDBC

This chapter discusses the fundamentals of JDBC. It provides an overview of the JDBC inter-
face and explains the different types of JDBC drivers that implement JDBC API and how to
choose between these drivers.

The chapter largely focuses on writing JDBC connection code, both using the old-style
DriverManager, and the more elegant and flexible technique that employs data sources and,
optionally, the Java Naming and Directory Interface (JNDI).

The chapter wraps up by demonstrating a fully working JDBC program that executes a
query against an Oracle database and prints out the query results. This program uses some of
the key JDBC interfaces (Statement, ResultSet, etc.) that we will investigate fully in subse-
quent chapters.

What Is JDBC?
JDBC is a standard Application Programming Interface (API) in Java you use to access a rela-
tional database. The API itself was developed by Sun Microsystems.

■Note Officially, JDBC is a trademarked name and not an abbreviation, but for all intents and purposes we
can assume it is shorthand for Java Database Connectivity.

Various relational database vendors such as Oracle Corporation, Sybase Inc., and so on
provide the underlying JDBC drivers that implement the standard JDBC API, and offer vendor-
specific extensions. The standard JDBC API consists of two packages:

• java.sql: This package contains the core JDBC API to access and manipulate informa-
tion stored in a database.

• javax.sql: This package contains APIs for accessing server-side data sources from
JDBC clients.

79

C H A P T E R 3

■ ■ ■

CHAPTER 3 ■ INTRODUCTION TO JDBC80

Oracle’s core JDBC implementation lies in the following two packages:

• oracle.jdbc: This package implements and extends functionality provided by
the java.sql and javax.sql interfaces (e.g., OraclePreparedStatement and
OracleCallableStatement)..

• oracle.sql: This package contains classes and interfaces that provide Java mappings to
SQL data types (e.g., OracleTypes).

You can browse through the standard JDBC packages on the http://java.sun.com site.
Currently, the exact URL is http://java.sun.com/j2se/1.4.2/docs/api/index.html (this may
change in the future).

JDBC Driver Types
A JDBC driver is the code that implements the JDBC API. Many vendors supply implementa-
tions of JDBC drivers (obviously, we will use the ones supplied by Oracle in this book). JDBC
driver implementations are categorized into following four types:

• Type 1 drivers implement the JDBC API as a mapping to another data access API, such
as ODBC. These drivers are generally dependent on a native client library, which limits
their portability. Sun’s JDBC-ODBC Bridge driver is an example of a Type 1 driver. This
driver has many limitations, including limited support for JDBC 3.0 and the fact that it
is not multithreaded.

• Type 2 drivers are written partly in the Java programming language and partly in native
code. These drivers require a native client library specific to the data source to which
they connect and are therefore often referred to as thick drivers. Again, due to the
native code, their portability is limited.

• Type 3 drivers use a pure Java client and communicate with a middleware server using
a database-independent protocol. The middleware server then translates the client’s
requests to the data source using the database-dependent protocol.

• Type 4 drivers are implemented completely in Java (hence, they are platform independ-
ent). They communicate directly with the data source using a standard Java socket and
require no extra client-side software. They are commonly referred to as thin drivers.

Oracle JDBC Drivers
Oracle currently provides four JDBC drivers, two client-side and two server-side:

• Client side: JDBC thin driver (Type 4) and JDBC OCI driver (Type 2)

• Server side: JDBC server-side thin driver (Type 4) and JDBC server-side internal driver
(Type 2)

The client-side drivers are used for JDBC code running outside the database (e.g., in an
application, an applet, a servlet, etc.), and the server-side drivers are for JDBC code running
inside the database.

The 10g Release 1 JDBC drivers can access Oracle 8.1.7 and higher version of database.
While all Oracle JDBC drivers are similar, some features apply only to JDBC OCI drivers and
some apply only to the JDBC thin driver.

Besides implementing all the interfaces in the JDBC standard java.sql package, all four
drivers implement Oracle’s own extensions in the oracle.jdbc package. The following sections
detail each of the Oracle driver types and help you choose an appropriate driver for your
application.

JDBC Thin Driver
Oracle’s JDBC thin driver is used for accessing a database from a Java program running on an
application or an applet. This driver is written 100% in Java and hence is platform independ-
ent. It does not require any additional Oracle software on the client (i.e., the machine from
which you run your JDBC program). This driver supports only TCP/IP-based communication.
This means that this driver requires the server to be configured with a TCP/IP listener.

JDBC OCI Driver
Oracle’s JDBC OCI driver (also known as the thick driver) is meant for accessing a database from
an application (i.e., not an applet). OCI stands for Oracle Call Interface, an API that allows you
to access and manipulate data in the Oracle database server using a third-generation language
(3GL) such as C/C++. The JDBC OCI driver is a wrapper around the OCI layer and is Oracle plat-
form–specific since it requires the OCI C libraries, Oracle Net libraries, CORE libraries, and other
necessary files to be present on the client machine on which the JDBC program runs.

Until 9i Release 2, this driver required the entire Oracle client installation to be present on
the machine on which the JDBC program using this driver runs. Starting with 10g, there is an
option called Instant Client that simplifies the use of this driver by significantly reducing the
number of files it requires on the client machine. The OCI driver supports all installed Oracle
Net adapters, including IPC, named pipes, and TCP/IP.

JDBC Server-Side Thin Driver
The JDBC server-side thin driver is the same as JDBC thin driver, except it runs inside a data-
base server. It can also be used to access a remote database server or a different database
session from within the database it runs on. The code written for a JDBC thin driver is the
same as that for a JDBC server-side thin driver for a given application.

JDBC Server-Side Internal Driver
The JDBC server-side internal driver supports code running inside the database such as in
Java stored procedures. Since it runs in the same process space as the database, SQL calls
executed from code using the JDBC server-side internal driver do not incur any network
round-trip overhead.

CHAPTER 3 ■ INTRODUCTION TO JDBC 81

Choosing the Right Driver
You should consider the following factors before choosing a JDBC driver for your application:

• If your code runs inside the Oracle database that acts as a middle tier (implying it
accesses other remote databases), then you could use the JDBC server-side thin driver.
Note that you should also consider other database features such as using database links
as an alternative when dealing with such a scenario (for more details on database links,
see the “Database Links” section of the chapter titled “Distributed Database Concept”
in the Oracle Database Administrator’s Guide [10g Release 1] document).

• If your code runs inside the Oracle database server and accesses only that server, then
you should use the JDBC server-side internal driver.

• If you want to use JDBC in applets, the JDBC thin driver is your only option.

• If you are using any of the following features specific to the JDBC OCI driver (as of
Oracle 10g Release 1), you need to use the JDBC OCI driver:

• You want to connect to Oracle using a network protocol other than TCP/IP.

• You want to use OCI connection pooling (see the section “OCI Connection Pooling”
of Chapter 14 for more information).

• You want to use Transparent Application Failover (TAF), which is relevant if you
are using the Oracle Real Application Cluster (RAC) technology. We don’t cover
RAC-specific features in this book (see the chapter titled “OCI Driver Transparent
Application Failover” of Oracle Database JDBC Developer’s Guide and Reference
[10g Release 1]).

• You want to use the HeteroRM XA feature related to distributed transactions (i.e.,
transactions that span multiple databases). We don’t cover distributed transactions
in this book (see the chapter titled “Distributed Transactions” of Oracle Database
JDBC Developer’s Guide and Reference [10g Release 1]).

• You want to use third-party authentication features supported by Oracle Advanced
Security, such as those provided by RADIUS, Kerberos, or SecureID (see Oracle
Advanced Security Administrator’s Guide [10g Release 1]).

• If you have many clients from which your JDBC program would be accessing the Oracle
database, you should use the JDBC thin driver. This is because you won’t need to install
or maintain any additional client-side software (required by the JDBC OCI driver) on
each of the client machines, thus saving you from the associated administrative has-
sles. Please note that starting with 10g, you no longer need to install the entire Oracle
client software—the special installation option OCI Instant Client lets you download
only files relevant for programming with OCI drivers.

• If portability across platforms is important for your application, use the JDBC thin
driver, since it is written in 100% Java.

CHAPTER 3 ■ INTRODUCTION TO JDBC82

• If you are using JDBC in your server code (e.g., the code running in your middle tier
hosted on an application server), then the JDBC OCI driver may be a better choice in
some cases because of its extra features and slight edge in performance (see the next
point). The downside associated with the JDBC OCI driver of having to maintain addi-
tional software may be mitigated in this case by the fact that the number of middle-tier
machines is usually small.

• Performance-wise, the JDBC thin driver has been catching up with the JDBC OCI driver
over the years. Before 9i, the OCI driver used to be considerably faster than the thin
driver in many cases. In 9i and 10g, most of the time the performance between the two
drivers is comparable. Thus, performance may no longer be an important criterion
when choosing a driver.

Note that the feature list specific to the JDBC OCI and thin drivers changes from release
to release, and you should consult the Oracle JDBC documentation to find this information
for your particular Oracle database and driver release. A comprehensive list of such features is
available at http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm.
In any case, it is easy to switch between the two drivers (and you should be ready to do so)
since, barring the centralized code to connect to the database and the code that uses a driver-
specific feature, the majority of the JDBC code in a typical application is independent of the
driver you choose. In this book, most examples will use the JDBC thin driver simply because it
requires less software to set up.

Software Requirements and Setup Instructions
All code examples in this book have been tested against Oracle Database 10g Enterprise Edition
Release 10.1.0.2.0. The examples should also run successfully on all platforms supported by
Oracle running the same or higher versions of Oracle software. Unless otherwise stated, these
examples have also been tested successfully against Oracle9i Enterprise Edition Release 9.2.0.1.0.
Examples using Oracle 10g–specific features will be highlighted as we encounter them.

■Note At the time of this writing, you can download 10g Oracle software from http://www.oracle.com/

technology/software/products/database/oracle10g/index.html. The link may change, but the
download should be easy enough to locate from Oracle’s home page (http://www.oracle.com). Be sure
to review the licensing terms carefully before downloading and using the software.

This section covers the setup instructions for the JDBC thin and OCI drivers, as we use
these drivers in this book. If you do need to use the JDBC server-side internal and server-side
thin drivers, note that no separate classes files are available or needed since both of these
drivers run only in the Oracle Server JVM and their classes are installed as part of installing
the JVM.

CHAPTER 3 ■ INTRODUCTION TO JDBC 83

■Tip For more information on the different files used by the different JDBC drivers, please see the official
Oracle JDBC FAQ at http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm.

You will also need JDK 1.4 installed on your machine. The book’s examples have been run
using Sun’s JDK 1.4.2, which you can download from http://java.sun.com.

JDBC Thin Driver on UNIX
Assuming you have installed 10g Release 1 (or 9i Release 2) and Sun’s JDK 1.4.2, Table 3-1 shows
how to set the required environment variables for running examples in this book based on the
JDBC thin driver on a UNIX machine (e.g., Solaris or Linux).

Table 3-1. Environment Variables for JDBC Thin Driver Applications on Oracle 10g and 9i
Release 2 on UNIX (Solaris, Linux, Etc.)

Environment Oracle 10g (10.1.0.2.0) Oracle9i Release 2 (9.2.0.1.0)
Variable

CLASSPATH .:$ORACLE_HOME/jdbc/lib/ .:$ORACLE_HOME/jdbc/lib/
ojdbc14.jar:$ORACLE_HOME/ ojdbc14.jar:$ORACLE_HOME/
jdbc/lib/orai18n.jar jdbc/lib/nls_charset12.jar

PATH $ORACLE_HOME/bin:$JAVA_HOME/bin $ORACLE_HOME/bin:$JAVA_HOME/bin

Please note the following:

• The environment variable JAVA_HOME points to your JDK 1.4 installation directory.

• You don’t need to have ORACLE_HOME or ORACLE_SID environment variables set to use the
thin driver; your code just needs the correct JAR files in your CLASSPATH.

• The JAR files ojdbc14.jar and classes12.jar represent the same classes, except that
ojdbc14.jar contains only those classes compatible with JDK 1.4. Oracle JDBC class
files are now named ojdcbXX.jar, where XX is the Java version number. Note that this
naming convention does not apply to the classes12 files. Also, Oracle will not provide
ZIP files version of classes12 files (i.e., classes12.zip) for Java 1.4 and beyond.

• The JAR file nls_charset12.jar for the 9i database contains classes to support all Ora-
cle character sets in Advanced Data Types (objects) when using a Java 1.4 (or Java 1.2 or
Java 1.3 VM). If the database character set is one other than US7ASCII, W8DEC, or
ShiftJIS, and the application uses objects, then you must include this class in your
CLASSPATH. Note that this JAR file is replaced in 10g by the file orai18n.jar.

• The CLASSPATH has the present working directory represented by a period (.).

CHAPTER 3 ■ INTRODUCTION TO JDBC84

• In addition to the previously mentioned JAR files, you may need to add the JAR file
corresponding to this book’s code in your CLASSPATH if you are using any of the exam-
ples or generic utilities written as part of this book’s code. The code is available from
the Downloads area of the Apress website (http://www.apress.com).

• Additional JAR files may be required in your CLASSPATH for certain functionalities. Such
information will be provided as and when required.

JDBC Thin Driver on Windows
Table 3-2 shows how to set the required environment variables for running the JDBC thin
driver examples in this book on a Windows machine.

Table 3-2. Environment Variables for JDBC Thin Driver Applications on Oracle 10g and 9i
Release 2 on Windows

Environment Oracle 10g (10.1.0.2.0) Oracle9i Release 2 (9.2.0.1.0)
Variable

CLASSPATH .;%ORACLE_HOME%\jdbc\lib\ .;%ORACLE_HOME%\jdbc\lib\
ojdbc14.jar;%ORACLE_HOME%\ ojdbc14.jar;%ORACLE_HOME%\
jdbc\lib\orai18n.jar jdbc\lib\nls_charset12.jar

PATH %ORACLE_HOME%\bin;%JAVA_HOME%\bin %ORACLE_HOME%\bin;%JAVA_HOME%\bin

Note that the environment requirements for JDBC programs using thin drivers on Win-
dows are essentially the same as that on UNIX (as explained in the previous section), except
for how the Windows variables are specified. In particular, note that the separator between
different directories is a semicolon (;) in Windows; in UNIX it is a colon (:).

JDBC OCI Driver on UNIX and Windows (10g Only)
For 10g JDBC OCI driver–based examples, we will set up the environment using the new
Instant Client option (see Chapter 20 of Oracle Database JDBC Developer’s Guide and
Reference [10g Release 1]). Table 3-3 shows the files we need for this purpose. These files
can be downloaded from http://www.oracle.com/technology/tech/oci/instantclient/
instantclient.html.

Table 3-3. Additional Files Required to Set Up the OCI Instant Client for 10g to Use the
JDBC OCI Driver*

UNIX Windows Description

libclnstsh.so.10.1 oci.dll Client code library

libociei.so oraociei10.dll OCI Instant Client data shared library

libnnz10.so orannzsbb10.dll Security library

libocijdbc10.so oraocijdbc10.dll OCI Instant Client JDBC library

* Table information from Oracle Database JDBC Developer’s Guide and Reference (10g Release 1).

CHAPTER 3 ■ INTRODUCTION TO JDBC 85

You can set up the Instant Client as follows:

1. Create a directory called ociclient in a convenient place.

2. Put all the files listed in Table 3-3 (and available as part of the Instant Client installa-
tion) in the ociclient directory.

3. On UNIX, set the environment variable LD_LIBRARY_PATH to the directory ociclient
you created in step 1. On Windows, set the environment variable PATH to include the
ociclient directory.

4. You also need to set NLS_LANG to the appropriate National Language Support (NLS)
language setting for using the OCI driver. For example, in my case I set it to AMERICAN.
If you are not sure which setting to use, you can query NLS_LANG from your database as
follows:

scott@ORA10G> select * from nls_session_parameters
where parameter='NLS_LANGUAGE
';

PARAMETER VALUE
------------------------------ --------------
NLS_LANGUAGE AMERICAN

5. As a reminder, you also need to set the environment variables defined earlier in Table
3-1 (for UNIX) and Table 3-2 (for Windows).

JDBC OCI Driver on UNIX and Windows (9i)
To run the OCI examples in 9i Release 2, you need to install Oracle client software on your
machine. Please see the Oracle client installation details in Oracle Database Installation Guide
Release 2 (9.2.0.1.0) for more details. After installing the Oracle client software, you need to do
the following:

• On UNIX (Solaris/Linux), add the directory $ORACLE_HOME/lib to your LD_LIBRARY_PATH
environment variable.

• On Windows, add the directory %ORACLE_HOME%\lib to your PATH environment variable.

Let’s now go through an overview of the JDBC API.

Overview of JDBC API
This section provides a brief overview of the JDBC API, which consists mainly of interfaces
that are implemented by the JDBC drivers. Figure 3-1 shows the main interfaces and classes in
the java.sql, oracle.jdbc, and oracle.sql packages. Interfaces in the figure are shown in ital-
ics, and classes are displayed in bold. For each standard interface, the Oracle extension of the
same interface is shown in brackets.

CHAPTER 3 ■ INTRODUCTION TO JDBC86

Figure 3-1. List of the main JDBC interfaces and classes in the java.sql, oracle.jdbc, and
oracle.sql packages

Following is a brief description of the main JDBC interfaces and classes in the java.sql
package, along with their Oracle extension in the oracle.jdbc package (Oracle extension
interfaces and classes are shown in parentheses, while all classes are shown in bold):

• Connection (OracleConnection): This interface encapsulates a connection (or session)
with a specific database. A JDBC program executes all SQL statements within the context
of a connection (introduced in this chapter and discussed in later chapters whenever we
use different methods in this interface related to the topic under discussion).

• Savepoint (OracleSavepoint): This interface represents a savepoint within a transac-
tion to which the transaction can be rolled back (discussed in Chapter 4).

• Statement (OracleStatement): This interface allows you to execute SQL statements
(including stored procedures) without using bind variables. You should avoid using this
interface since it does not support bind variables (discussed in Chapter 5).

• PreparedStatement (OraclePreparedStatement): This extends the Statement interface
to add methods that allow you to execute SQL statements using bind variables (dis-
cussed in Chapter 5).

• CallableStatement (OracleCallableStatement): This extends the PreparedStatement
interface to add methods that allow you to execute and retrieve data from stored proce-
dures (discussed in Chapter 6).

Connection
(OracleConnection)

Statement
(OracleStatement)

PreparedStatement
(OraclePreparedStatement)

CallableStatement
(OracleCallableStatement)

ResultSet
(OracleResultSet)

ResultSetMetaData
(OracleResultSetMetaData)

Array
(ARRAY)

Blob
(BLOB)

Clob
(CLOB)

DriverManager
Driver

(OracleDriver)

SavePoint
(OracleSavePoint)

SQLData
(ORAData)

SQLInput
(OracleJdbc2QLInput)

SQLOutput
(OracleSQLOutput)

Struct
(STRUCT)

Ref
(REF)

DatabaseMetaData
(OracleDatabaseMetaData)

Types
(OracleTypes)

(BFILE)

CHAPTER 3 ■ INTRODUCTION TO JDBC 87

• ResultSet (OracleResultSet): This encapsulates results returned by a query (discussed
in this chapter and Chapter 7).

• ResultSetMetaData (OracleResultSetMetaData): This encapsulates information about
the types and properties of the columns in a ResultSet object (discussed in Chapter 7).

• DatabaseMetaData (OracleDatabaseMetaData): This encapsulates information about the
database as a whole (discussed in Chapter 7).

• Types (oracle.sql.OracleTypes): This defines constants for SQL data types (discussed
as and when required in this book).

• SQLData (oracle.sql.ORAData): This interface is used for the custom mapping of a SQL
user-defined type (UDT) or object type to a class in Java (discussed in Chapter 10).

• SQLInput (oracle.sql.OracleJdbc2SQLInput): This interface encapsulates an input
stream that contains values representing an instance of a SQL structured type (dis-
cussed in Chapter 10).

• SQLOutput (oracle.sql.OracleSQLOutput): This interface encapsulates the output
stream for writing the attributes of a UDT (or object types) back to the database
(discussed in Chapter 10).

• Struct (oracle.sql.STRUCT): This interface encapsulates standard mapping in Java for
a SQL structured type (discussed in Chapter 9).

• Ref (oracle.sql.REF): This interface encapsulates mapping in Java of a SQL REF value,
which is a reference to a SQL structured type value in the database (discussed in
Chapter 11).

• Array (oracle.sql.ARRAY): This interface encapsulates mapping in Java for the SQL
type ARRAY (discussed in Chapter 11).

• Blob (oracle.sql.BLOB): This interface encapsulates mapping in Java for the SQL type
BLOB (discussed in Chapter 12).

• Clob (oracle.sql.CLOB): This interface encapsulates mapping in Java for the SQL type
CLOB (discussed in Chapter 12).

• BFILE (oracle.sql.BFILE): This class represents the Oracle-specific data type BFILE
(discussed in Chapter 12). There is no corresponding class or interface in the standard
JDBC API at the time of this writing.

Not shown in Figure 3-1 are the classes in the package javax.sql, of which the following
are the main classes:

• javax.sql.DataSource (oracle.jdbc.pool.OracleDataSource): This interface encapsu-
lates a set of methods to connect to a data source (discussed in this chapter and in
Chapter 14).

CHAPTER 3 ■ INTRODUCTION TO JDBC88

• javax.sql.RowSet (oracle.jdbc.rowset.OracleRowSet): This interface adds support to
a JavaBeans-style interface for the JDBC API. (This topic is not covered in this book; see
the chapter titled “Row Set” in Oracle Database JDBC Developer’s Guide and Reference
[10g Release 1]).

Now that we have gone through an overview of the JDBC API, let’s move on to discuss how
to perform the first step in a JDBC program: establishing a connection to the database.

Connecting to a Database
Before we write our first JDBC program, we need to understand how to connect to a database.
To connect to a database, an application may use either of the following:

• The DriverManager class working with one or more Driver interface implementations

• A DataSource implementation optionally using the JNDI naming service

Using the DataSource method is preferred over the method using the DriverManager class
for the following reasons:

• Using DataSource makes it possible for an application to transparently make use of
connection pooling and distributed transactions. You’ll learn how connection pooling
is vital for your application’s scalability and performance in Chapter 14.

• In the future, Sun Microsystems may deprecate DriverManager and its related classes.

• Using the DataSource method enhances application portability over different data-
bases, assuming your application needs to be designed with this requirement in mind.
This is because the JDBC programmer doesn’t need to specify any vendor-specific
driver class names in the code. This is more of a convenience than a major advantage
since even in the case of using DriverManager, you can achieve this by using property
files containing driver class names that are loaded dynamically in your Java code.
Besides, the logic of obtaining a connection to a database should be designed as a cen-
tralized piece of code and hence should be relatively easy to modify when required.

• Using DataSource with JNDI can improve the maintenance of your code since your
application obtains a connection through a logical name—the physical implementa-
tion encapsulated by the DataSource is hidden and can be changed dynamically at
runtime. Again, in the old-fashioned DriverManager, this can be achieved using prop-
erty files.

You are likely to encounter the DriverManager approach in the code you read for some
time in the future, so we’ll examine that approach first, and then we’ll move on to cover the
new recommended way of connecting using a DataSource.

CHAPTER 3 ■ INTRODUCTION TO JDBC 89

Using DriverManager
To connect to the Oracle database using this technique, follow these steps:

1. Import the required classes.

2. Register the appropriate JDBC driver. This causes the driver class to be loaded into
the JVM.

3. Formulate the database URL to which you will connect.

4. Establish the connection.

The following sections describe these four steps in turn, in the creation of the
JDBCOldStyleConnection Java class that is used to connect to the Oracle database. Also covered
are potential errors when compiling or executing the JDBCOldStyleConnection Java class.

Importing Classes
The first step in the creation of the JDBCOldStyleConnection class is to import the appropriate
Java classes before the main() method declaration:

/* This class demonstrates how to connect to a database using DriverManager.
* COMPATIBLITY NOTE: tested against 10.1.0.2.0. and 9.2.0.1.0 */
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import oracle.jdbc.OracleDriver;

class JDBCOldStyleConnection
{
public static void main (String args[])
{

■Note I recommend that you avoid using the code syntax import java.sql.*. Instead, always explicitly
import each class the code depends on. Explicitly importing packages makes your dependencies completely
clear, and it also helps avoid ambiguities that come from two classes with the same name in different
packages.

Registering the JDBC Driver (Thin or OCI)
This step registers the JDBC driver that we’ll use and causes the JVM to load the driver in
memory. We need to perform this step only once in our program. Continuing with the class
JDBCOldStyleConnection, the following code loads and registers the driver by calling the
registerDriver method of the DriverManager class:

CHAPTER 3 ■ INTRODUCTION TO JDBC90

try
{
DriverManager.registerDriver(new OracleDriver());

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("ERROR: Could not register the driver! Exiting ..");
e.printStackTrace();
Runtime.getRuntime().exit(1);

}

Alternatively, we can use the forName() method of the java.lang.Class class to load the
JDBC drivers as well, for example:

Class.forName ("oracle.jdbc.OracleDriver").newInstance();.

Formulating a Database URL and Establishing a Connection
A database URL is a string that defines the address of the Oracle database to which you wish
to connect (using JDBC in our case). It is of the following form:

jdbc:oracle:driver_type:@database

where

• driver_type specifies the type of JDBC driver to use for the connection. The following
options exist:

• oci is for the Oracle9i and 10g OCI driver.

• thin is for the Oracle thin driver.

• kprb is for the Oracle internal driver.

• database specifies the address of the database to which to connect. The following
options exist:

• host:port:sid: This option works for the thin and OCI drivers. Here, host is the host
name or IP address of the database server, port is the port number of the Oracle
listener, and sid is the Oracle system identifier or Oracle service name of the data-
base (discussed shortly).

• Net service name: This is only used for the OCI driver. It is a tnsnames.ora file entry
that resolves to a connect descriptor (discussed shortly).

• Connect descriptor: This is only used for the OCI or thin driver. This is the Net8
address specification (discussed shortly).

CHAPTER 3 ■ INTRODUCTION TO JDBC 91

Please note the following:

• SID is an Oracle term that stands for system identifier. The SID, represented by the envi-
ronment variable ORACLE_SID combined with the directory pointed to by the environment
variable ORACLE_HOME and the host name, uniquely identifies an Oracle instance.

• tnsnames.ora is a configuration file that contains net service names mapped to connect
descriptors for the local naming method, or net service names mapped to listener pro-
tocol addresses.

• A net service name is an alias mapped to a database network address contained in a
connect descriptor.

• A connect descriptor contains the location of the listener through a protocol address and
the service name of the database to which to connect. Simply put, it has information to
completely identify a database instance. Clients and database servers (that are clients of
other database servers) use the net service name when making a connection to the data-
base. By default, the tnsnames.ora file is located in the $ORACLE_HOME/network/admin
directory on UNIX and in the %ORACLE_HOME%\network\admin directory on Windows. It
may also be stored in the directory pointed to by the TNS_ADMIN environment variable
on UNIX or Windows.

■Note For more information on the topics discussed in this section, please see Oracle Database Net Ser-
vices Administrator’s Guide (10g Release 1).

Table 3-4 lists examples containing various combinations of choices in a JDBC URL. For
these examples, we assume the following:

• The database server name is rmenon-lap (on my laptop machine with 10g and 9i
installed on it).

• The listener port is 1521.

• The Oracle SID is ora10g.

• The net service name is ora10g.us.oracle.com.

• The connect descriptor is as follows:

(DESCRIPTION = (ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP)(HOST = rmenon-lap)
(PORT = 1521)))(CONNECT_DATA =(SERVER = DEDICATED)(SERVICE_NAME =
ora10g.us.oracle.com)))

As you can see, the connect descriptor has all the information to identify a database
instance.

CHAPTER 3 ■ INTRODUCTION TO JDBC92

Table 3-4. Examples of Formulating Database URLs for Establishing a JDBC Connection to the
Oracle Database

Type of Connection Database URL

Thin driver using host:port:sid jdbc:oracle:thin:@rmenon-lap:1521:ora10g

Thin driver using connect descriptor jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS_LIST
=(ADDRESS = (PROTOCOL = TCP)(HOST = rmenon-lap)
(PORT = 1521)))(CONNECT_DATA =(SERVER = DEDICATED)
(SERVICE_NAME = ora10g.us.oracle.com)))

OCI driver using net service name of ora10g jdbc:oracle:oci:@ora10g

OCI driver using connect descriptor jdbc:oracle:oci:@(DESCRIPTION =(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = rmenon-lap)
(PORT = 1521)))(CONNECT_DATA =(SERVER = DEDICATED)
(SERVICE_NAME = ora10g.us.oracle.com)))

■Caution For code that uses the OCI driver, make sure that you have an instantclient directory,
where you installed the OCI Instant Client files, in the beginning of the PATH environment variable. Other-
wise, on Windows you may get an error something to effect of “The procedure entry point kpuhhalo could
not be located in the dynamic link library oci.dll.” In my case, this happened once because my Oracle 9i

%ORACLE_HOME%\bin directory was before the instantclient directory in the PATH environment variable
on my PC.

Connecting Using the Thin Driver

To get a thin driver connection using the format host:port:sid, we initialize the database URL
and establish the connection (assume that the username is SCOTT and the password is TIGER)
as follows:

Connection thinDriverConnection = null;
try
{
String thinDriverURL = "jdbc:oracle:thin:@rmenon-lap:1521:ora10g";
thinDriverConnection = DriverManager.getConnection (
thinDriverURL, "scott", "tiger");

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("ERROR: Could not get connection! Exiting ..");
e.printStackTrace();
Runtime.getRuntime().exit(1);

}
finally

CHAPTER 3 ■ INTRODUCTION TO JDBC 93

{
try
{
if(thinDriverConnection != null)
thinDriverConnection.close();

}
catch (SQLException ignore) {}

}

The preceding code snippet also shows how to close a connection in the finally clause
once we’re done using the connection (e.g., for querying data from the database). Next, we
obtain a thin driver connection using a connect descriptor:

String connectDescriptor = "(DESCRIPTION = (ADDRESS_LIST = (ADDRESS =
(PROTOCOL = TCP)(HOST = rmenon-lap)(PORT = 1521))) (CONNECT_DATA =
(SERVER = DEDICATED) (SERVICE_NAME = ora10g.us.oracle.com)))";
// Thin driver connection using a connect descriptor
try
{
String thinDriverConnectDescriptorURL =
"jdbc:oracle:thin:@" + connectDescriptor;

thinDriverConnection = DriverManager.getConnection (
thinDriverConnectDescriptorURL, "scott", "tiger");

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("ERROR: Could not get connection! Exiting ..");
e.printStackTrace();
Runtime.getRuntime().exit(1);

}
finally
{
try
{
if(thinDriverConnection != null)
thinDriverConnection.close();

}
catch (SQLException ignore) { }

}

Connecting Using the OCI Driver

We next obtain a connection using the OCI driver and the net service name specified in the
file tnsnames.ora:

CHAPTER 3 ■ INTRODUCTION TO JDBC94

// OCI driver connection using net service name of ora10g
Connection ociDriverConnection = null;
try
{
String ociDriverURL = "jdbc:oracle:oci:@ora10g";

ociDriverConnection = DriverManager.getConnection (
ociDriverURL, "scott", "tiger");

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("ERROR: Could not get connection! Exiting ..");
e.printStackTrace();
Runtime.getRuntime().exit(1);

}
finally
{
try
{
if(ociDriverConnection != null)
ociDriverConnection.close();

}
catch (SQLException ignore) { }

}

Finally, we use the connect descriptor we defined earlier in the variable connectDescriptor
to get a connection, this time with an OCI driver:

// OCI driver connection using a connect descriptor
try
{
String ociDriverConnectDescriptorURL =
"jdbc:oracle:oci:@" + connectDescriptor;

ociDriverConnection = DriverManager.getConnection (
ociDriverConnectDescriptorURL, "scott", "tiger");

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("ERROR: Could not get connection! Exiting ..");
e.printStackTrace();
Runtime.getRuntime().exit(1);

}
finally

CHAPTER 3 ■ INTRODUCTION TO JDBC 95

{
try
{
if(ociDriverConnection != null)
ociDriverConnection.close();

}
catch (SQLException ignore) { }

}
}//end of main

}// end of program

Potential Errors When Compiling or Executing JDBCOldStyleConnection
You may encounter some problems when compiling or executing JDBCOldStyleConnection. If
this happens, please ensure that you have the correct version of the JDK (JDK 1.4.1 or above)
and that your PATH environment variable points to the correct version of the JDK. In particular,
you can check the version of your JDK as follows:

B:\>java -version
java version "1.4.2_05"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_05-b04)
Java HotSpot(TM) Client VM (build 1.4.2_05-b04, mixed mode)

You should also be working with the correct version of Oracle (10g or 9i Release 2). Table 3-5,
on the following page, lists some other errors that you may encounter when compiling or
executing the program JDBCOldStyleConnection, along with the possible causes and actions
you can take to remedy the errors.

Using a Data Source
JDBC 2.0 introduced the concept of data sources that are standard objects for specifying a
source of data such as an Oracle database. As mentioned earlier, this is a more flexible way of
establishing a database connection than the method using DriverManager discussed in the
previous section. Let’s look at the DataSource interface and its properties.

DataSource Interface and Properties
In JDBC, a data source is a class that implements the interface javax.sql.DataSource, the
main two methods of which are as follows. (In case of Oracle, the class that implements this
interface is oracle.jdbc.pool.OracleDataSource.)

public interface DataSource
{
Connection getConnection() throws SQLException;
Connection getConnection(String username, String password)
throws SQLException;

...
}

CHAPTER 3 ■ INTRODUCTION TO JDBC96

CHAPTER 3 ■ INTRODUCTION TO JDBC 97

Ta
bl

e
3-

5.
P

ot
en

ti
al

 E
rr

or
s W

h
il

e
C

om
p

il
in

g
or

 E
xe

cu
ti

n
g
JD
BC
Ol
dS
ty
le
Co
nn
ec
ti
on

an
d

 T
h

ei
r

Fi
xe

s

St
ep

Er
ro

r M
es

sa
ge

 (T
rim

m
ed

)
Po

ss
ib

le
 C

au
se

Fi
x

C
o

m
p

ila
ti

o
n

>
ja
va
c
JD
BC
Ol
dS
ty
le
Co
nn
ec
ti
on
.j
av
a

Yo
u

r
CL
AS
SP
AT
H

is
 n

o
t

Se
e

ea
rl

ie
r

se
ct

io
n

s
o

n
 s

et
ti

n
g

JD
BC
Ol
dS
ty
le
Co
nn
ec
ti
on
.j
av
a:
6:
 p
ac
ka
ge
 o
ra
cl
e.
jd
bc

do
es
 n
ot
 e
xi
st

se
t p

ro
p

er
ly

.
u

p
 th

e
re

q
u

ir
ed

 e
n

vi
ro

n
m

en
t

im
po
rt
 o
ra
cl
e.
jd
bc
.O
ra
cl
eD
ri
ve
r;

va
ri

ab
le

s.
.
.
.

^

E
xe

cu
ti

o
n

ER
RO
R:
 C
ou
ld
 n
ot
 g
et
 c
on
ne
ct
io
n!
 E
xi
ti
ng

 .
.

OR
AC
LE
_H
OM
E

an
d

/o
r

Se
t O

RA
CL
E_
HO
ME

an
d
OR
AC
LE
_S
ID

ja
va
.s
ql
.S
QL
Ex
ce
pt
io
n:
 O
RA
-1
21
54
:
TN
S:
co

ul
d
no
t
re
so
lv
e
th
e

➥
OR
AC
LE
_S
ID

is
 n

o
t s

et
.

ap
p

ro
p

ri
at

el
y

(r
eq

u
ir

ed
 fo

r
th

e
co
nn
ec
t
id
en
ti
fi
er
 s
pe
ci
fi
ed
 a
t

O
C

I
d

ri
ve

r
o

n
ly

).
or
ac
le
.j
db
c.
dr
iv
er
.D
at
ab
as
eE
rr
or
.t
hr
ow
Sq
lE
xc
ep
ti
on

➥
(D
at
ab
as
eE
rr
or
.j
av
a:
12
5)

.
.
.

at
 J
DB
CO
ld
St
yl
eC
on
ne
ct
io
n.
ma
in
(J
DB
CO
ld
St
yl
eC
on
ne
ct
io
n.
ja
va
:1
06
)

E
xe

cu
ti

o
n

ER
RO
R:
 C
ou
ld
 n
ot
 g
et
 c
on
ne
ct
io
n!
 E
xi
ti
ng
 .
.

T
h

e
O

ra
cl

e
lis

te
n

er

St
ar

t t
h

e
d

at
ab

as
e

if
 it

 is
 d

ow
n

;
ja
va
.s
ql
.S
QL
Ex
ce
pt
io
n:
 I
o
ex
ce
pt
io
n:
 T
he
 N
et
wo
rk
 A
da
pt
er
 c
ou
ld
 n
ot

m
ay

 b
e

d
ow

n
, o

r
st

ar
t t

h
e

lis
te

n
er

 u
si

n
g

th
e

es
ta
bl
is
h
th
e
co
nn
ec
ti
on
 a
t
.
.
.

th
e

d
at

ab
as

e
m

ay

fo
llo

w
in

g
co

m
m

an
d

 (
se

e
b

e
d

ow
n

.
O

ra
cl

e
D

at
ab

as
e

N
et

 S
er

vi
ce

s
A

d
m

in
is

tr
at

or
’s

G
u

id
e

[1
0g

 R
el

ea
se

 1
]f

o
r

m
o

re
 d

et
ai

ls
):

$O
RA
CL
E_
HO
ME
/b
in
/l
sn
rc
tl
 s
ta
rt

E
xe

cu
ti

o
n

ER
RO
R:
 C
ou
ld
 n
ot
 g
et
 c
on
ne
ct
io
n!
 E
xi
ti
ng
 .
.

NL
S_
LA
NG

is
 n

o
t s

et
 a

n
d

Se

t t
h

e
NL
S_
LA
NG

en
vi

ro
n

m
en

t
ja
va
.s
ql
.S
QL
Ex
ce
pt
io
n:
 O
RA
-1
27
05
:
in
va
li

d
or
 u
nk
no
wn
 N
LS
 ➥

is
 r

eq
u

ir
ed

 fo
r

th
e

O
C

I
va

ri
ab

le
 a

s
d

is
cu

ss
ed

 in
 th

e
pa
ra
me
te
r
va
lu
e
sp
ec
if
ie
d
.
.
.

d
ri

ve
r

co
n

n
ec

ti
o

n
 .

se
ct

io
n

 “
JD

B
C

 O
C

I
D

ri
ve

r
o

n

to
 w

o
rk

U
N

IX
an

d
 W

in
d

ow
s

(1
0g

O
n

ly
).”

E
xe

cu
ti

o
n

OR
A-
01
01
7:
 i
nv
al
id
 u
se
rn
am
e/
pa
ss
wo
rd
;
lo
go
n
de
ni
ed

T
h

e
u

se
rn

am
e

o
r

D
o

u
b

le
-c

h
ec

k
th

e
u

se
rn

am
e

ja
va
.s
ql
.S
QL
Ex
ce
pt
io
n:
 O
RA
-0
10
17
:
in
va
li
d
us
er
na
me
/p
as
sw
or
d;
 l
og
on

p
as

sw
o

rd
 is

 in
va

lid
.

o
r

p
as

sw
o

rd
; t

ry
 c

o
n

n
ec

ti
n

g
de
ni
ed
 a
t
or
ac
le
.j
db
c.
dr
iv
er
.D
at
ab
as
eE
rr
or
.t
hr
ow
Sq
lE
xc
ep
ti
on

u
si

n
g

th
e

sa
m

e
u

se
rn

am
e

an
d

 p
as

sw
o

rd
 th

ro
u

gh
 S

Q
L*

P
lu

s.

If
 th

e
SC
OT
T

u
se

r
d

o
es

 n
o

t e
xi

st
,

in
st

al
l i

t b
y

ru
n

n
in

g
%O
RA
CL
E_
HO
ME
/

sq
lp
lu
s/
de
mo
/d
em
ob
ld
.s
ql

as
 th

e
sy
s

u
se

r
(o

r
se

e
th

e
se

ct
io

n

“S
et

ti
n

g
U

p
 th

e
SC

O
T

T
/T

IG
E

R

Sc
h

em
a”

 o
f C

h
ap

te
r

1)
.

The OracleDataSource class provides a set of properties that can be used to specify a data-
base to connect to (we will cover this topic shortly). Table 3-6 shows the standard JDBC data
source properties implemented by OracleDataSource.

Table 3-6. Standard DataSource Properties

Name Data Type Description

databaseName String Name of the particular database on the server; also known as
the SID in Oracle terminology.

dataSourceName String Name of the underlying data source class (for connection
pooling, this is an underlying pooled connection data
source class).

description String Description of the data source.

networkProtocol String Network protocol for communicating with the server. For
Oracle, this applies only to the OCI drivers and defaults to tcp
(other possible settings include ipc; see Oracle Database
Net Services Administrator’s Guide [10g Release 1] for more
information).

password String Login password for the username.

portNumber int Number of the port where the server listens for requests.

serverName String Name of the database server.

user String Name for the login account.

For each property in Table 3-6, OracleDataSource implements a getter and a setter
method (there is no getter method for password property for security reasons). For example,
for the property databaseName these methods are

public synchronized void setDatabaseName(String dbname);
public synchronized String getDatabaseName();

Apart from implementing the preceding standard properties, Oracle also implements the
properties specific to the Oracle database (called the Oracle extended data source properties).
Table 3-7 lists these properties. (Please note that only the properties covered in this book are
listed in Table 3-7. For a complete list of these properties, please see Oracle Database JDBC
Developer’s Guide and Reference [10g Release 1]).

The getter and setter methods are based on the JavaBeans naming style. For example, for
the property connectionCacheProperties, these methods are

void setConnectionCacheProperties(java.util.Properties properties);
java.util.Properties getConnectionCacheProperties();

CHAPTER 3 ■ INTRODUCTION TO JDBC98

Table 3-7. Oracle Extended Data Source Properties*

Name Data Type Description

connectionCacheName String Name of the cache. This cannot be
changed after the cache has been
created (see Chapter 14).

connectionCacheProperties java.util.Properties Properties for Implicit Connection
Cache (see Chapter 14).

connectionCachingEnabled Boolean Specifies whether Implicit Connection
Cache is in use (see Chapter 14).

connectionProperties java.util.Properties Connection properties. See Javadoc for
a complete list.

DriverType String Oracle JDBC driver type: oci, thin, or
kprb (server-side internal).

ImplicitCachingEnabled Boolean Whether the implicit connection cache
is enabled (see Chapter 14).

loginTimeout int Maximum time in seconds that this data
source will wait while attempting to
connect to a database.

LogWriter java.io.PrintWriter Log writer for this data source.

maxStatements int Maximum number of statements in the
application cache (see Chapter 14).

serviceName String Database service name for this data
source.

url String URL of the database connect string.
Provided as a convenience, it can help
you migrate from an older Oracle
database. You can use this property
in place of the Oracle tnsEntry and
driverType properties, and the
standard portNumber, networkProtocol,
serverName, and databaseName
properties.

* Table information from Oracle Database JDBC Developer’s Guide and Reference (10g Release 1).

CHAPTER 3 ■ INTRODUCTION TO JDBC 99

We will use many of these methods in subsequent examples. Please note the following
(quoted verbatim from Oracle Database JDBC Developer’s Guide and Reference [10g Release 1]):

If you are using the server-side internal driver—i.e., the driverType property is
set to kprb—then any other property settings are ignored. If you are using the
thin or OCI drivers then:

• A URL setting can include settings for user and password, as in the following
example, in which case this takes precedence over individual user and
password property settings:

jdbc:oracle:thin:scott/tiger@localhost:1521:orcl

• Settings for user and password are required, either directly, through the URL
setting, or through the getConnection() call. The user and password settings
in a getConnection() call take precedence over any property settings.

• If the urlproperty is set, then any tnsEntry,driverType,portNumber,networkProtocol,
serverName, and databaseName property settings are ignored.

• If the tnsEntry property is set (which presumes the url property is not set),
then any databaseName, serverName, portNumber, and networkProtocol settings
are ignored.

• If you are using an OCI driver (which presumes the driverType property is set
to oci) and the networkProtocol is set to ipc, then any other property settings
are ignored.

Before we move on, you need to understand briefly the JNDI standard API. JNDI allows an
application to use logical names in accessing remote services, thus removing vendor-specific
syntax from application code. For a JDBC application, a remote service would typically be a
database connection. There are two alternatives to using data sources to connect to an Oracle
database: One uses JNDI and the other does not. The following sections explain each method.

Using a Data Source Without JNDI
The process of connecting to an Oracle database without JNDI involves creating an
OracleDataSource instance, initializing it with one or more of the properties (standard or
Oracle-extended) that we saw in the previous section, and using the getConnection() method.
This process is illustrated by the class JDBCDataSourceConnectionWithoutJNDI, which begins
with import statements followed by the declaration of the main() method:

/* This class demonstrates how to connect to a database using the
DataSource interface without using JNDI.

* COMPATIBLITY NOTE: tested against 10.1.0.2.0. and 9.2.0.1.0 */
import java.sql.Connection;
import java.sql.SQLException;

CHAPTER 3 ■ INTRODUCTION TO JDBC100

import java.util.Properties;
import oracle.jdbc.pool.OracleDataSource;
class JDBCDataSourceConnectionWithoutJNDI
{
public static void main (String args[])
{

We declare a variable of type OracleDataSource. Note that to set any data source property
(standard or vendor-specific), you have to use the vendor-specific interface (OracleDataSource
in our case). This is because the DataSource interface does not define any getter or setter
methods for these properties:

// Connecting to Oracle using DataSource without JNDI
OracleDataSource ods = null;

Next, we instantiate the OracleDataSource object:

try
{
ods = new OracleDataSource();

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("ERROR: Could not instantiate data source! Exiting ..");
System.err.println (e.getMessage());
e.printStackTrace();
Runtime.getRuntime().exit (1);

}

and set the data source properties that define our connection:

// set the properties that define the connection
ods.setDriverType ("thin"); // type of driver
ods.setServerName ("rmenon-lap"); // database server name
ods.setNetworkProtocol("tcp"); // tcp is the default anyway
ods.setDatabaseName("ora10g"); // Oracle SID
ods.setPortNumber(1521); // listener port number
ods.setUser("scott"); // username
ods.setPassword("tiger"); // password

Finally, we obtain our connection using the getConnection() method. This part of the
program depends only on the methods of the standard DataSource interface:

// get the connection without JNDI
Connection connection = null;
try
{
connection = ods.getConnection();
System.out.println("SUCCESS!");

CHAPTER 3 ■ INTRODUCTION TO JDBC 101

// do some work with the connection
}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("ERROR: Could not get the connection! Exiting ..");
System.err.println (e.getMessage());
e.printStackTrace();
Runtime.getRuntime().exit (1);

}
finally
{
try
{
if(connection != null)
connection.close();

}
catch (SQLException ignore) {}

}
}// end of main

}// end of class

Note that we could also use the overloaded version of getConnection() of the standard
DataSource interface to connect with a different username and password:

Connection conn = ods.getConnection("benchmark", "benchmark");

If you run this program, you should get the following output:

B:\>java JDBCDataSourceConnectionWithoutJNDI
SUCCESS!

Using a Data Source with JNDI
This involves initializing an OracleDataSource instance with appropriate properties, register-
ing with JNDI to associate a logical name with the connection resource, and then obtaining
the connection in the rest of the application using the logical name. If you use this method,
the vendor-dependent part of the code is present only in the portion of code that binds a data
source instance to a JNDI logical name. From that point onward, you can create maintainable
code by using the logical name in creating data sources from which you will get your connec-
tion instances. If later the data source or information about it changes, the properties of the
DataSource object can simply be modified to reflect the changes; no change in application
code is necessary. This method can be used if your code already is using JNDI in the context
of a database access layer (e.g., to access users stored in a centralized LDAP directory that is
accessed using JNDI). In other cases, using DataSource without JNDI is easier and is recom-
mended. In both cases, you should design your application such that the portion of the code
that retrieves the connection is separated from the portion of the code that sets the connec-
tion properties (since the latter uses a vendor-specific interface).

CHAPTER 3 ■ INTRODUCTION TO JDBC102

For running the example in this section, you will need to get a JNDI reference implemen-
tation that can be used to store the connection properties and logical mapping of the data
source and its name. I ran my example on Sun’s JNDI file systems reference implementation.

■NOTE You can download the classes for Sun’s JNDI file systems implementation from http://java.sun.com/
products/jndi/downloads/index.html, although please note that this URL might change in the future.

After downloading a reference implementation (I used JNDI 1.2.1, File Systems Service
Provider 1.2, Beta 3), unzip the files into any directory. Then add the full path of the two
JAR files in the directory, fscontext.jar and providerutil.jar, in your CLASSPATH (the path
should include the JAR file name). You also need to add $ORACLE_HOME/jlib/jndi.jar to your
CLASSPATH for the example in this section to work. You then create a directory (in my example,
B:\code\book\ch03\jndi_test) for specifying the root of the JNDI context.

The class JDBCDataSourceConnectionWithJNDI demonstrates this. It begins with the import
statements followed by the main() method declaration:

/* This class demonstrates how to connect to a database using the
DataSource interface using JNDI.

* COMPATIBLITY NOTE: tested against 10.1.0.2.0. and 9.2.0.1.0 */
import java.sql.Connection;
import java.sql.SQLException;
import java.util.Properties;
import oracle.jdbc.pool.OracleDataSource;
import javax.sql.DataSource;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
class JDBCDataSourceConnectionWithJNDI
{
public static void main (String args[])
{
OracleDataSource ods = null;
Connection connection = null;
try
{

First, we initialize a Properties object with two properties. The first property,
Context.INITIAL_CONTEXT_FACTORY, is initialized to the fully qualified class name of the factory
class that will create an initial context (in our case, Sun’s file systems reference implementa-
tion’s factory class):

Properties properties = new Properties();
properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

CHAPTER 3 ■ INTRODUCTION TO JDBC 103

Then, we specify the value of the property Context.PROVIDER_URL, which specifies the
configuration information for the service provider to use. (Note that the directory you specify
should exist in your machine where the program is running, and you should have
read/write/execute permissions on this directory.)

properties.setProperty(Context.PROVIDER_URL,
"file:B:/code/book/ch03/jndi_test");

We create the javax.naming.Context object that will define the JNDI context for our program:

Context context = new InitialContext(properties);

We then create an OracleDataSource object in the same way we did in the previous section,
initializing it with properties defining our connection:

// create the data source
ods = new OracleDataSource();
ods.setDriverType ("thin"); // type of driver
ods.setServerName ("rmenon-lap"); // database server name
ods.setNetworkProtocol("tcp"); // tcp is the default anyway
ods.setDatabaseName("ora10g"); // Oracle SID
ods.setPortNumber(1521); // listener port number

Finally, we associate the data source with a name of our choice (in my case, I chose
jdbc/testdb). This name can be used in other programs to look up the data source later.

// associate a logical name with the connection service.
// Following recommended convention, we use a subcontext,
// jdbc, and put our name under it as jdbc/testdb
context.bind ("jdbc/testdb", ods);

In a real-world application, you would perform the steps listed so far only once.
(In fact, if you try to reuse a logical name to bind some other data source, you’ll get a
javax.naming.NameAlreadyBoundException.)

You can then obtain the connection from any other program by looking up the data
source using JNDI and using it to get the connection as follows. Note that we can now use the
standard DataSource interface to obtain the connection.

DataSource dsUsingJNDI = (DataSource) context.lookup("jdbc/testdb");
connection = dsUsingJNDI.getConnection("scott", "tiger");
System.out.println("SUCCESS!");

}
catch (NamingException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.out.println ("ERROR: in registering with JNDI! Exiting ..");
System.out.println (e.getMessage());
e.printStackTrace();
System.exit (1);

}

CHAPTER 3 ■ INTRODUCTION TO JDBC104

catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("ERROR: Could not get the connection! Exiting ..");
System.err.println (e.getMessage());
e.printStackTrace();
Runtime.getRuntime().exit (1);

}
finally
{
try
{
if(connection != null)
connection.close();

}
catch (SQLException ignore) {}

}
}// end of main

}// end of program

The program JDBCDataSourceConnectionWithJNDI prints “SUCCESS!” on a successful run.
Please note that after a successful run, you would find a “hidden” text file called .bindings in the
directory corresponding to the property Context.PROVIDER_URL (B:/code/book/ch03/jndi_test in
the preceding example). This file stores all the data source properties, along with other informa-
tion. Note that if in the preceding example we had configured the username and password also as
part of the data source property (instead of passing them as arguments to the getConnection()
method invocation), the text would contain this sensitive information in plain text. So, you need
to be careful about where your data source properties get stored.

A Complete JDBC Program
This section assumes that you have set up the software and environment successfully as
described in the previous section(s). We are now ready to run our first JDBC program! Our aim
in this program is to run a query against the database and print out the results. We run the
query against the SCOTT user to select the employee number, name, and job from the emp table
of all employees. First, we run the query using SQL*Plus as follows to see what results to
expect in our JDBC program:

scott@ORA10G> select empno, ename, job from emp;
EMPNO ENAME JOB

---------- ---------- ---------
7369 SMITH CLERK
7499 ALLEN SALESMAN
7521 WARD SALESMAN
7566 JONES MANAGER
7654 MARTIN SALESMAN

CHAPTER 3 ■ INTRODUCTION TO JDBC 105

7698 BLAKE MANAGER
7782 CLARK MANAGER
7788 SCOTT ANALYST
7839 KING PRESIDENT
7844 TURNER SALESMAN
7876 ADAMS CLERK
7900 JAMES CLERK
7902 FORD ANALYST
7934 MILLER CLERK

14 rows selected.

Then we run the same query in our first JDBC program. This program illustrates the fol-
lowing:

• How to connect to Oracle (covered in the previous section)

• How to execute a query against Oracle and retrieve data

• How to release the various resources that we acquired

The complete listing of the class GetEmpDetails, interspersed with comments, follows.
The main() method comes up after the import statements:

/* This class runs a query against the SCOTT schema.
* COMPATIBLITY NOTE: tested against 10.1.0.2.0. and 9.2.0.1.0 */
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.Connection;
import oracle.jdbc.pool.OracleDataSource;
class GetEmpDetails
{
public static void main(String args[])
{

We initialize variables holding the data source properties. Notice that we use the thin
driver (also, remember to change the variables’ values according to your environment):

String user = "scott"; // modify this value to your db user
String password = "tiger"; // modify this value to your db user password
String host = "rmenon-lap"; // modify this value to your db host
String port = "1521"; // modify this value to your db listener port
String dbService = "ora10g"; // modify this value to your db service name

Next, we concatenate the preceding variables to form a JDBC URL and print it out. This is
another alternative to setting each of the properties separately, as we did in the earlier exam-
ples. Notice that we also put the username and password in the URL, though it is not
necessary to do so.

String thinDriverPrefix = "jdbc:oracle:thin";
String thinConnectURL = thinDriverPrefix + ":" + user + "/" +

CHAPTER 3 ■ INTRODUCTION TO JDBC106

password + "@" + host + ":" + port + ":" + dbService;
// the string value = "jdbc:oracle:thin:scott/tiger@rmenon-lap:1521:ora10g";
System.out.println("Database connect url: " + thinConnectURL);
System.out.print("Establishing connection to the database...");

We declare the three variables that will hold JDBC data. The Connection object will hold
the connection, Statement will hold the SQL statement, and ResultSet will hold the query’s
results:

ResultSet rset = null;
Connection conn = null;
Statement stmt = null;
try
{

Inside the try catch block, we first initialize the data source with the JDBC URL and
obtain the connection using the getConnection() method:

// instantiate and initialize OracleDataSource
OracleDataSource ods = new OracleDataSource();
ods.setURL(thinConnectURL);
// get the connection
conn = ods.getConnection();
System.out.println("Connected.\nPrinting query results ...\n");

Next, we create a Statement object:

// Create a stmt
stmt = conn.createStatement();

We execute the query by invoking the method executeQuery() on the Statement object.
The executeQuery() method executes the query in Oracle and returns the result of the query
as a java.sql.ResultSet object:

// execute the query
rset = stmt.executeQuery("select empno, ename, job from emp");

A ResultSet object is a data structure that represents rows and columns returned by any
query. It maintains a cursor pointing to its current row of data. Initially, the cursor is posi-
tioned before the first row. We use the next() method to move the cursor to the next row, thus
iterating through the result set as shown. The next() method returns false when there are no
more rows in the ResultSet object, at which point we exit the loop. Within the loop, we use the
appropriate getXXX() method of the ResultSet object, where XXX corresponds to an appropri-
ate Java type. For example, we know that the data type for the columns ename and job of table
emp in our example is String, whereas for the empno column, it is int. Thus, we use getString()
method of the ResultSet object for the ename and job column values, and we use the getInt()
method of the ResultSet object for the empno column value, as shown in the following code.
These methods take an integer value that represents the index of the column in the select
clause. In our example, the indexes of the columns empno, ename, and job are 1, 2, and 3,
respectively. We first declare the column indexes as constants:

CHAPTER 3 ■ INTRODUCTION TO JDBC 107

// declare constants for column indexes in the query (indexes begin with 1)
final int EMPNO_COLUMN_INDEX = 1;
final int ENAME_COLUMN_INDEX = 2;
final int JOB_COLUMN_INDEX = 3;

and loop through the result set, printing out the value in each column of a row:

// print the results
while (rset.next())
{
int empNo = rset.getInt (EMPNO_COLUMN_INDEX);
String empName = rset.getString (ENAME_COLUMN_INDEX);
String empJob = rset.getString (JOB_COLUMN_INDEX);
System.out.println(empNo + " " + empName + " " + empJob);

}
}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and stack trace and exit the application
System.err.println ("error message: " + e.getMessage());
e.printStackTrace();
Runtime.getRuntime().exit(1);

}

■Note The preceding example uses the default ResultSet type. In Chapter 7, we cover other, more
advanced features of the ResultSet interface, including prefetching and scrollability.

Once we are done printing the results, we use the close() method on the ResultSet,
Statement, and Connection objects in the finally clause of the try catch block to end our pro-
gram:

finally
{
// close the result set, statement, and connection.
// ignore any exceptions since we are in the
// finally clause.
try
{
if(rset != null)
rset.close();

if(stmt != null)
stmt.close();

if(conn != null)
conn.close();

CHAPTER 3 ■ INTRODUCTION TO JDBC108

}
catch (SQLException ignored) {ignored.printStackTrace(); }

}
}

}

It is important to realize the need to close the ResultSet, Statement, and Connection
objects explicitly in your JDBC application when you are done using them. Failure to do so
can result in serious memory leaks and running out of cursors on the database server. Note
that the cursor is not released until you close both the Statement and ResultSet objects. It is
also critical to do the cleanup activities in the finally clause so that the resources are
released, even if an exception is raised.

■Tip Remember to close the ResultSet, Statement, and Connection objects when you are done using
them in the finally clause of the try catch block.

When you compile and run the code, you should see the following output:

B:\>java GetEmpDetails
Database connect url: jdbc:oracle:thin:scott/tiger@rmenon-lap:1521:ora10g
Establishing connection to the database...Connected.
Printing query results ...

7369 SMITH CLERK
7499 ALLEN SALESMAN
7521 WARD SALESMAN
7566 JONES MANAGER
7654 MARTIN SALESMAN
7698 BLAKE MANAGER
7782 CLARK MANAGER
7788 SCOTT ANALYST
7839 KING PRESIDENT
7844 TURNER SALESMAN
7876 ADAMS CLERK
7900 JAMES CLERK
7902 FORD ANALYST
7934 MILLER CLERK

Potential Errors When Executing Your First Program
If you were able to successfully run the GetEmpDetails program discussed in the previous sec-
tion, you may skip to the next section. Otherwise, please read on, as it is vital for you to get this
program working to proceed further. These are some of the checks you should make:

CHAPTER 3 ■ INTRODUCTION TO JDBC 109

• Make sure you have taken care of all potential errors mentioned in the section “Poten-
tial Errors When Compiling or Executing JDBCOldStyleConnection.” Many of these
error conditions are applicable even though you get your connection using DataSource.

• When you run the program, you may get runtime exceptions. Table 3-8 summarizes
some common scenarios (other than those mentioned in the section “Potential Errors
When Compiling or Executing JDBCOldStyleConnection”), the probable cause, and the
action you need to take to rectify the problem.

Table 3-8. Common Runtime Exceptions When Running GetEmpDetails and Corresponding
Remedial Actions

Error Message (Trimmed) Possible Cause Fix
error message: ORA-00904: "EPNO": invalid identifier Invalid column Correct your
java.sql.SQLException: ORA-00904: "EPNO": invalid identifier . . . name in the query statement

query string string to ensure
that all column
names are valid.

java.sql.SQLException: ORA-00942: table or view does not exist Invalid table Correct the table
name in your name in your
query query. Ensure

you have the
database
privilege to
select from
the table.

Exception Handling in JDBC
When an error occurs, Oracle throws an instance of the java.sql.SQLException object.
You handle this exception just like any other Java exception. The errors can originate in the
JDBC driver or in the database. You can retrieve basic error information with the following
SQLException methods.

For errors originating in the JDBC driver, the following method returns the error message
with no prefix. For errors originating in the RDBMS, it returns the error message prefixed with
the corresponding ORA number.

getMessage()

For errors originating in either the JDBC driver or the RDBMS, this method returns the
five-digit ORA number:

getErrorCode()

For errors originating in the database, this method returns a five-digit code indicating the
SQL state:

getSQLState()

Like any exception, this method prints out the exception stack trace:

printStackTrace()

CHAPTER 3 ■ INTRODUCTION TO JDBC110

Introducing JDBCUtil
JDBCUtil is a class I wrote that contains useful utility methods that you will add to as and
when you learn different concepts in this book. In this chapter, you learned how to obtain a
connection to a database and release resources associated with Connection, Statement, and
ResultSet objects. These are ideal candidates for being incorporated in the JDBCUtil class for
use in code written in later chapters.

I have put the JDBCUtil class in the package book.util. You can download this class from
the Downloads area of the Apress website (http://www.apress.com). Let’s look at the method
getConnection() in this class, which takes as parameters a username, password, and database
name (SID or service name):

public static Connection getConnection(String username,
String password, String dbName)
throws SQLException

{
OracleDataSource ods = null;
Connection connection = null;
ods = new OracleDataSource();
// set the properties that define the connection
ods.setDriverType ("thin"); // type of driver
ods.setServerName ("rmenon-lap"); // database server name
ods.setNetworkProtocol("tcp"); // tcp is the default anyway
ods.setDatabaseName(dbName); // Oracle SID
ods.setPortNumber(1521); // my 10g listener port number
ods.setUser(username); // username
ods.setPassword(password); // password
System.out.println("URL:" + ods.getURL());System.out.flush();
connection = ods.getConnection();
connection.setAutoCommit(false);
return connection;

}

The method should be self-explanatory. The only thing that I have not explained is the
invocation of setAutoCommit(), which is explained in the next chapter in the section “The
Autocommit Feature and Turning It Off.”

The various overloaded versions of the following close() methods simply invoke the
close() method on a ResultSet, Statement, or Connection object and are self-explanatory:

public static void close (ResultSet resultSet, Statement statement,
Connection connection)

{
try
{
if(resultSet != null)
resultSet.close();

if(statement != null)
statement.close();

if(connection != null)

CHAPTER 3 ■ INTRODUCTION TO JDBC 111

connection.close();
}
catch (SQLException ignored) { }

}

public static void close (ResultSet resultSet, Statement statement)
{
try
{
if(resultSet != null)
resultSet.close();

if(statement != null)
statement.close();

}
catch (SQLException ignored) { }

}

public static void close (ResultSet resultSet)
{
try
{
if(resultSet != null)
resultSet.close();

}
catch (SQLException ignored) { }

}

public static void close (Statement statement)
{
try
{
if(statement != null)
statement.close();

}
catch (SQLException ignored) { }

}

public static void close (Connection connection)
{
try
{
if(connection != null)
connection.close();

}

CHAPTER 3 ■ INTRODUCTION TO JDBC112

catch (SQLException ignored) { }
}

Finally, the method printException() in the JDBCUtil class prints the SQLException error
message along with the stack trace:

public static void printException (Exception e)
{
System.out.println ("Exception caught! Exiting ..");
System.out.println ("error message: " + e.getMessage());
e.printStackTrace();

}

Summary
In this chapter, you were introduced to the JDBC API. You looked at different types of JDBC
drivers and how to choose the one appropriate for your software development requirements.
You discovered how to set up an environment for using the JDBC thin and OCI drivers, and
you examined the various options of establishing a connection to the Oracle database and
why you should consider using DataSource instead of DriverManager to establish such a con-
nection. Finally, you wrote and analyzed your first JDBC program, which executes a query
against Oracle database and prints out the query results. In the next chapter, you will look at
the JDBC API associated with database transactions.

CHAPTER 3 ■ INTRODUCTION TO JDBC 113

Transactions

In this chapter, you’ll take a brief look at transactions in the context of JDBC. You’ll see how to
commit and roll back a transaction in JDBC, and you’ll learn what transaction isolation levels
are and which ones are supported by Oracle. In addition, I’ll explain why it’s important to turn
off the autocommit feature in JDBC in production code. Finally, you’ll examine transaction
savepoints, a feature exposed to Java programs in JDBC 3.0.

What Is a Transaction?
A transaction is a set of SQL statements that performs an atomic logical unit of work in the
database. Oracle Database Concepts Guide (10g Release 1) states

According to the ANSI/ISO SQL standard, with which Oracle is compatible, a
transaction begins with the user’s first executable SQL statement.

In practice, in Oracle, a transaction usually begins with the issue of a select ... for
update, insert, update, delete, or merge statement, and ends with an explicit or implicit com-
mit or rollback statement.

■Note Other scenarios mark the beginning of a transaction in Oracle, some of which we’ll look at in this
chapter. For example, a transaction begins when we set the transaction to READ ONLY by using the com-
mand set transaction read only, as we will cover later in the section “Transaction Isolation Levels.”

Committing a Transaction
Committing a transaction makes permanent in the database the effects of all statements
(inserts, updates, deletes, etc.) issued since the previous commit or rollback. It’s a way of say-
ing, “OK, I’m sure that these changes to the database data are fine, and I want them to be
made permanent in the database.” Committing a transaction also releases all locks and other
resources acquired by the database during the transaction. In JDBC, you commit a transaction
by invoking the commit() method on the Connection object as follows (assume connection is
an initialized variable of type Connection):

connection.commit(); 115

C H A P T E R 4

■ ■ ■

CHAPTER 4 ■ TRANSACTIONS116

Rolling Back a Transaction
Rolling back a transaction undoes all the changes to the database data made in the current
transaction and releases any locks acquired by the database during the current transaction. In
JDBC, you roll back a transaction by invoking the rollback() method on the Connection object
as follows (assume connection is an initialized variable of type Connection):

connection.rollback();

Typically, a rollback is issued if you have encountered an error condition in your transaction.
Let’s now look at the concept of transaction isolation levels.

Transaction Isolation Levels
Transaction isolation levels within a database specify what data is visible to our application
within a transaction. Transaction isolation levels are defined in terms of three types of scenar-
ios being permitted or not at a given isolation level:

Dirty read: A transaction with an isolation level that allows for dirty reads implies that
within that transaction you can see changes to data not yet committed by other transac-
tions. If the changes are rolled back later instead of being committed, it is possible for
other transactions to have done work based on incorrect, transient data. Obviously, this is
not conducive to maintaining data integrity in a database. Table 4-1 outlines a scenario
that is possible if dirty reads are allowed.

Table 4-1. Scenario Illustrating the Negative Impact of Dirty Reads on Data Integrity

Point of Time Transaction TXN1 Transaction TXN2

1 Execution of select sum(sal)
from emp begins.

2 Execution of update emp set sal =
sal*1.50 where ename='BLAKE' begins
and ends successfully.

3 Since TXN1 can see changes being
made by TXN2, it sums up the
salary based on the updated data
for BLAKE.

4 Issues a rollback.

5 Outputs incorrect information.
The sum includes the incorrect
salary of BLAKE based on data that
no longer exists, and never actually
existed, in the database.

Nonrepeatable read: A nonrepeatable read occurs when

1. A transaction, TXN1, reads a row.

2. Another transaction, TXN2, updates (or deletes) the row and commits.

3. The transaction TXN1 rereads the row and is able to see the changes made by transac-
tion TXN2 (the row is different or has been deleted).

Phantom read: A phantom read occurs when the following occur in sequential order:

1. A transaction, TXN1, executes a query against a table, table1, at a point of time, t1.

2. Another transaction, TXN2, inserts a new row in table table1 at point of time t2 and
commits (or it does an update such that the same query will return additional rows).

3. The transaction TXN1 re-executes the query and sees the additional rows resulting from
inserts or updates done by transaction TXN2, thus getting a different answer for the
same query.

The difference between a nonrepeatable read and a phantom read is subtle. A nonrepeat-
able read refers to changes in rows propagated through updates and deletes in transaction
TXN2 being visible in the re-execution of a query in transaction TXN1. On the other hand, a
phantom read refers to additional rows being visible to transaction TXN1 when a query is re-
executed—the additional rows resulting from inserts and updates done by another
transaction, TXN2.

Based on the preceding three scenarios, the SQL92 standard defines four transaction iso-
lation levels, and Oracle defines an additional one (READ ONLY). I discuss all five transaction
isolation levels briefly here in order of increasing restrictiveness:

1. READ UNCOMMITTED: This isolation level allows transactions to see uncommitted data.
This means dirty reads, nonrepeatable reads, and phantom reads are allowed. Data
integrity is compromised severely in this isolation level, as explained earlier. Oracle
does not support it. The constant TRANSACTION_READ_UNCOMMITTED defined in the
Connection interface denotes this isolation level.

2. READ COMMITTED: This isolation level allows transactions to see only committed data.
This prevents dirty reads, but nonrepeatable and phantom reads are still allowed. This
is by far the most common isolation level used by applications. Oracle supports it. The
constant TRANSACTION_READ_COMMITTED defined in the Connection interface denotes this
isolation level.

3. REPEATABLE READ: This isolation level disallows dirty reads and nonrepeatable reads.
Phantom reads are still allowed. Dirty reads being disallowed means that you can only
see data committed by other transactions. Furthermore, since nonrepeatable reads are
not allowed, you cannot see the updates and deletes done by other transactions (com-
mitted or uncommitted) to the same rows, but you can see any new data visible to the
query due to inserts or updates done by other transactions, since phantom reads are
allowed. The intent of allowing REPEATABLE READ is to solve the issue of lost updates.
A lost update occurs when the following sequence of events happens:

a. user1 queries a row.

b. user2 queries the same row in a different session.

c. user1 updates the row and commits.

CHAPTER 4 ■ TRANSACTIONS 117

d. user2 updates the row to a different value and commits, overwriting the updates
done by user1. Updates done by user1 are “lost,” hence the name “lost updates.”

Later in Chapter 17, we will examine various alternatives to solve the lost update prob-
lem in Oracle. Oracle does not support this isolation level, which is denoted by the
constant TRANSACTION_REPEATABLE_READ defined in the Connection interface.

■Note In Oracle, you can implement REPEATABLE READ, if required, by using the for update clause in
your queries. However, this isolation level should be used only after careful consideration, since it locks up
the relevant rows, thereby inhibiting concurrency.

4. SERIALIZABLE: This isolation level does not allow dirty reads, nonrepeatable reads, or
phantom reads. This means that a transaction can see only those changes that were
committed at the time the transaction began. When you set the transaction isolation
level to SERIALIZABLE, all queries are read-consistent with respect to the beginning of
the transaction. In other words, the answers to all queries are fixed as of the beginning
of the transaction. A side effect of this behavior is that in a serializable transaction, if
you attempt to update the same row that some other user is trying to update, you wait
until the user commits and then get an error. This fact can be used to solve the lost
updates problem just mentioned, as we will cover in Chapter 17 (the chapter also dis-
cusses other solutions to this problem). Oracle supports this isolation level, which is
denoted by the constant TRANSACTION_SERIALIZABLE defined in the Connection inter-
face.

5. READ ONLY: Apart from the aforementioned SQL92 standard transaction isolation levels,
Oracle provides a transaction isolation level called READ ONLY. Read-only transactions
see only those changes that were committed at the time the transaction began and
do not allow any statements that modify data (such as insert, update, and delete
statements). The READ ONLY transaction isolation level is more restrictive than the
SERIALIZABLE transaction isolation level in that it doesn’t allow any statement
modifications from within a transaction. This transaction isolation level is useful
in generating reports that

• Consist of multiple queries

• Require that all data shown be consistent from the point of time the report genera-
tion begins

Table 4-2 shows all five isolation levels, along with different scenarios allowed in each.

CHAPTER 4 ■ TRANSACTIONS118

Table 4-2. SQL92 Isolation Levels and the Oracle-Specific READ ONLY Isolation Level

Isolation Level Supported Dirty Read Nonrepeatable Phantom Data Modifying
in Oracle? Read Read Statements (Inserts,

Updates, Deletes,
Etc.) Allowed?

READ UNCOMMITTED No Yes Yes Yes Yes

READ COMMITTED Yes No Yes Yes Yes
(the default)

REPEATABLE READ No No No Yes Yes

SERIALIZABLE Yes No No No Yes

READ ONLY Yes No No No No
(Oracle-specific)

Transaction Isolation Levels in JDBC
To the four standard transaction isolation levels, JDBC adds a fifth nominal isolation level
denoted by the constant Connection.TRANSACTION_NONE, which simply means that transactions
are not supported within a database. The constants Connection.TRANSACTION_READ_COMMITTED,
Connection.TRANSACTION_READ_UNCOMMITTED, Connection.TRANSACTION_REPEATABLE_READ, and
Connection.TRANSACTION_SERIALIZABLE denote the various transaction isolation levels for a
database. We set a transaction isolation level at a Connection object by invoking the method
setTransactionIsolation() in the Connection interface:

public void setTransactionIsolation(int level) throws SQLException;

In Oracle applications, only Connection.TRANSACTION_READ_COMMITTED and
Connection.TRANSACTION_SERIALIZABLE are valid constants to use. We get a given transaction’s
isolation level by invoking the method getTransactionIsolation() in the Connection
interface:

public int getTransactionIsolation() throws SQLException;

Since the JDBC standard does not allow for the transaction isolation level READ ONLY, we
have to set it in a slightly different way, as we’ll cover shortly.

We can set all three transaction levels allowed by Oracle using the set transaction com-
mand in the beginning of the transaction as follows (we’ll look at how to do this from JDBC in
a moment):

benchmark@ORA10G> set transaction isolation level read committed;

Transaction set.

CHAPTER 4 ■ TRANSACTIONS 119

Note that we cannot use the set transaction command in the middle of a transaction.
For example, the preceding set transaction command has already started a transaction
with an isolation level of READ COMMITTED. If we try to reset the transaction isolation level to
SERIALIZABLE now in the middle of the transaction, we will get an error:

benchmark@ORA10G> set transaction isolation level serializable;
set transaction isolation level serializable
*
ERROR at line 1:
ORA-01453: SET TRANSACTION must be first statement of transaction

This means that we have to end this transaction by issuing either a rollback or a commit
in the transaction before issuing any other set transaction statement that sets an isolation
level:

benchmark@ORA10G> rollback;

Rollback complete.

Next, we set the transaction isolation level to SERIALIZABLE:

benchmark@ORA10G> set transaction isolation level serializable;

Transaction set.

benchmark@ORA10G> rollback;

Rollback complete.

Finally, we set the transaction to be READ ONLY. Note the difference in syntax; we don’t use
the isolation level keyword here.

benchmark@ORA10G> set transaction read only;

Transaction set.

benchmark@ORA10G> rollback;

Rollback complete.

We can also set the transaction isolation level to either READ COMMITTED or SERIALIZABLE
(but not to READ ONLY) at a session level. In fact, this is what the Oracle JDBC driver’s imple-
mentation of setTransactionIsolation() does internally:

benchmark@ORA10G> alter session set isolation_level=serializable;

Session altered.

benchmark@ORA10G> rollback;

Rollback complete.

CHAPTER 4 ■ TRANSACTIONS120

benchmark@ORA10G> alter session set isolation_level=read committed;

Session altered.

The differences between using set transaction... and alter session set
isolation_level... are as follows. The first difference, of course, is that when we use alter
session set isolation_level, we can only change the isolation level to either SERIALIZABLE
or READ COMMITTED (the default). Using set transaction..., we can change the isolation level
to READ ONLY in addition to these isolation levels. The second, subtler difference is that set
transaction... changes settings at a transaction level only. At the end of the transaction
(i.e., after a commit or a rollback), the settings revert back to the default (READ COMMITTED).
So if we are not using the default of READ COMMITTED, we have to reset the transaction again at
the beginning of each transaction, incurring a round-trip even if we are in the same session.
In contrast, alter session set isolation_level... works at the session level. Thus, all trans-
actions for the same session are impacted by the change and retain the settings. It follows
that if, using the same session, we need to have multiple transactions involving nondefault
transaction mode, we save one round-trip per transaction if we use alter session set
isolation_level.... Since JDBC implements the method setTransactionIsolation() inter-
nally using alter session set isolation_level..., this is the behavior we should expect.
Thus, if we use set transaction... to set the transaction isolation level to READ ONLY via JDBC
(as we will do soon), we should be aware that we will have to set it at the beginning of each
transaction if required, even if we use the same Connection object for each such transaction.

The following DemoTransactionIsolationLevels class demonstrates how to set the trans-
action isolation level to different permissible values for an Oracle database transaction. Please
see the interspersed comments for an explanation of the class.

/* This class demonstrates how to set different transaction levels in Oracle.
* COMPATIBLITY NOTE: tested against 10.1.0.2.0. and 9.2.0.1.0 */
import java.sql.Connection;
import java.sql.CallableStatement;
import java.sql.SQLException;
import book.util.JDBCUtil;
class DemoTransactionIsolationLevels
{
public static void main(String[] args) throws Exception
{
Connection conn = null;
try
{

Inside the try catch block, we first get the connection using the JDBCUtil.getConnection()
method (explained in the section “Introducing JDBCUtil” of Chapter 3):

conn = JDBCUtil.getConnection("scott", "tiger", args[0]);

CHAPTER 4 ■ TRANSACTIONS 121

Next, we get and print the transaction isolation level. Since we haven’t changed
it yet, this will be the default transaction level (i.e., READ COMMITTED). The method
getTransactionIsolationDesc() simply translates each of the standard constants
into a descriptive text (as you’ll see in its definition at the end of this program):

int txnIsolationLevel = conn.getTransactionIsolation();
System.out.println("Default transaction isolation level: " +
_getTransactionIsolationDesc(txnIsolationLevel));

We then proceed to set the transaction isolation level to SERIALIZABLE, and print a
description of it again to end the first try catch block. We close the connection in the finally
clause:

conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);
txnIsolationLevel = conn.getTransactionIsolation();
System.out.println("transaction isolation level is now " +
_getTransactionIsolationDesc(txnIsolationLevel));

}
finally
{
JDBCUtil.close(conn);

}

So far we have set the transaction isolation level to the two values that have direct JDBC
API support (through the setTransactionIsolation() method and defined constants in the
Connection interface). Since there is no constant in the Connection interface corresponding to
the Oracle-specific isolation level of READ ONLY, we need to use a procedural call (a PL/SQL
anonymous block) using the CallableStatement interface (the CallableStatement interface is
discussed in detail in Chapter 6). In the anonymous block, we invoke the set transaction
read only command discussed earlier. First, we declare a String variable containing the
PL/SQL anonymous block, and then we declare a CallableStatement variable outside the
try catch block:

String stmtString = "begin set transaction read only; end;";
CallableStatement cstmt = null;
try
{

We then obtain a connection:

conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");

Next, we prepare and execute the CallableStatement, thus setting the transaction isola-
tion level to READ ONLY:

System.out.println("Setting the transaction isolation level to READ ONLY");
cstmt = conn.prepareCall(stmtString);
cstmt.execute();

CHAPTER 4 ■ TRANSACTIONS122

We obtain the transaction level and print out its description to end the main() method:

int txnIsolationLevel = conn.getTransactionIsolation();
System.out.println("transaction isolation level is now " +
_getTransactionIsolationDesc(txnIsolationLevel));

}
finally
{
JDBCUtil.close(cstmt);
JDBCUtil.close(conn);

}
}

At the end of the program is the definition of the method _getTransactionIsolationDesc,
which prints out the description of a given transaction isolation level:

private static String _getTransactionIsolationDesc (int txnIsolationLevel)
{
switch(txnIsolationLevel)
{
case Connection.TRANSACTION_READ_COMMITTED:
return "READ_COMMITTED";

case Connection.TRANSACTION_SERIALIZABLE:
return "TRANSACTION_SERIALIZABLE";

case Connection.TRANSACTION_READ_UNCOMMITTED:
return "TRANSACTION_READ_UNCOMMITTED";

case Connection.TRANSACTION_REPEATABLE_READ:
return "TRANSACTION_REPEATABLE_READ";

case Connection.TRANSACTION_NONE:
return "TRANSACTION_NONE";

}
return "UNKNOWN";

}
}

■Note Apart from invoking an anonymous PL/SQL block containing a set transaction read only
command to make your transaction read-only, you can also invoke the method read_only() of the
PL/SQL-supplied package dbms_transaction (see PL/SQL Packages and Types Reference
[10g Release 1] for more details on this package).

CHAPTER 4 ■ TRANSACTIONS 123

■Note In 10g Release 1 and 9i Release 2, the method setReadOnly() of the Connection interface inter-
nally does a set transaction read only. This is a bug, as it isn’t the intended behavior of the method
setReadOnly()—the intended behavior is a hint to the driver to possibly do some performance optimiza-
tions. Oracle implementations don’t really do any performance optimizations on the basis of this hint (except
for issuing set transaction read only which, as just mentioned, turns out to be a bug).

The following is the output of the program DemoTransactionIsolations (note that it takes
the database name as a command-line parameter):

B:\>java DemoTransactionIsolationLevels ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
Default transaction isolation level: READ_COMMITTED
transaction isolation level is now TRANSACTION_SERIALIZABLE
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
Setting the transaction isolation level to READ ONLY
transaction isolation level is now READ_COMMITTED

Note that the transaction isolation level printed after we set the transaction isolation level
to READ ONLY is READ COMMITTED, which is incorrect. This happened because the getter method
getTransactionIsolation() does not actually query the database to find out the transaction
isolation level—it only looks at the Connection object in memory. Normally, this works, since
we go through the setter method setTransactionIsolation(), modifying the in-memory
Connection object as well, but if we want to set a transaction to READ ONLY, we have to
circumvent setTransactionIsolation(), which leads to the wrong result when you
invoke the getTransactionIsolation() method afterward.

Now that you have a good understanding of transaction isolation levels, let’s look at an
important principal related to transactions that you should follow when developing an appli-
cation on Oracle.

Sizing Your Transaction Resources According to
Your Business Needs
Let’s take a simple banking transaction. Say a wealthy bank customer wants to transfer
$1,000,000 from his savings account to his checking account. To satisfy this request, the data-
base may carry out the following steps (as instructed by the banking application):

1. Decrease the savings account balance by $1,000,000.

2. Increase the checking account balance by $1,000,000.

3. Do the banking application’s financial transaction–related actions.

CHAPTER 4 ■ TRANSACTIONS124

All the preceding steps may translate to any number of SQL statements, depending on
how the banking application is implemented. Regardless, the atomicity of the transaction dic-
tates that all three steps should either succeed or fail in their entirety. For example, say the
customer gave a wrong checking account number by mistake. The second step would fail in
that case. Now, if only the first step succeeds and the data in the database is committed at this
point, then in technical jargon, the bank database’s data integrity has been compromised (in
practical terms, you have a really unhappy customer at hand!). A well-behaved application, on
the other hand, would give a meaningful error message after rolling back the entire transac-
tion. The customer then would get a chance to re-enter his information and proceed further.

As described in Chapter 2, when you create a transaction that modifies the database, Ora-
cle internally generates undo data to maintain the pretransaction image of the database. This
data needs to be retained in undo segments, at least until you issue a commit (at which point
the data modifications become permanent) or a rollback (at which point the data modifica-
tions are undone). Once a commit or a rollback for a transaction, T1, is issued, the undo data
generated by T1 is free to be overwritten by any other transaction. However, if you don’t have
sufficient undo space left before your transaction completes (meaning it commits or rolls
back), you get an error message (specifically, ORA-30036: unable to extend segment ...) and
you end up (typically) rolling back your transaction.

Now, say you have a large transaction, T1, that issues 1,000 SQL statements generating a
lot of undo data. Suppose your database runs out of undo space when it is executing the five-
hundredth SQL statement. As mentioned earlier, this would result in you typically issuing a
rollback, thus undoing all the work done so far.

To solve this problem, the following solutions exist from a developer’s point of view:

• Tune the SQL statements to reduce the overall resources consumed by them (including
the undo space required). This is the best solution to the problem, is possible in the
majority of cases, and is what you as a developer should consider first.

• Ask your DBA to allocate more undo space so that you don’t run out of it in the midst of
the transaction. This is a perfectly acceptable solution if you have already gone through
step 1 and are still encountering the problem. Remember, disks are cheap nowadays—
developer time is not!

• Divide the transaction into shorter transactions so that you issue intermittent commits
to reduce the amount of undo space each of these transactions consumes. Do not do
this! This is the worst solution for the problem, for the following reasons:

• It compromises your data integrity. Remember the banking transaction? One
equivalent of this solution would be issuing an intermittent commit after steps 1,
2, and 3 as shown.

1. Decrease the savings account balance by $1,000,000.

2. Issue a commit.

3. Increase the checking amount in the checking account by $1,000,000.

4. Issue another commit.

5. Do the banking application’s financial transaction–related actions.

6. Issue the final commit.

CHAPTER 4 ■ TRANSACTIONS 125

Now imagine what happens if the bank’s hotshot customer gave the wrong check-
ing account number. Step 2 will fail, but this time the entire original transaction
will not be rolled back because step 1 has already been committed to the database,
thus compromising data integrity.

• The second reason you don’t want to commit in the middle of your transaction is
that doing so can increase the complexity of your code enormously. Since you have
introduced commits in the middle of a transaction, you need to make sure that
your code is able to restart in the event of a failure from any of those intermediate
points where a commit has been issued. Depending on where you have placed
these commits and how many such commits exist, this can soon lead to hugely
complex code with multiple intermediate states from which you need to be able to
reach the final state (after the last commit) to maintain the correctness of the logic.
This means you need to develop, debug, and maintain more code.

• The last reason you don’t want to issue intermittent commits in Oracle is that
doing so slows down your entire system. This happens because each commit
results in extra redo-log generation (see the “Redo” section of Chapter 2 for more
details on redo), and redos are a systemwide point of contention.

To illustrate the last point of performance degradation due to intermittent commits just
mentioned, let’s run a simple benchmark using the JRunstats utility (see the section “JRun-
stats: The JDBC Wrapper for runstats” of Chapter 2 for more details on how to run this utility
and interpret its results). This benchmark program will implement a transaction that inserts
10,000 records into a table, t1, created as shown here:

benchmark@ORA10G> create table t1 (x number);
Table created.

In this example, we’ll compare two different ways of inserting 10,000 records. One will
commit inside the loop, and the other will commit at the end of the transaction. The program
is as follows, with comments in between the code listings:

/* This class demonstrates why you should only commit at the end of your
transaction - it showcases the performance degradation when you issue a
commit in the middle of your transaction.
* COMPATIBLITY NOTE: tested against 10.1.0.2.0. and 9.2.0.1.0 */
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import book.util.JDBCUtil;
import book.util.JRunstats;
class BenchmarkIntermittentCommits
{
public static void main(String[] args) throws Exception
{

In the main() method, we first get the connection inside the try catch block:

Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

CHAPTER 4 ■ TRANSACTIONS126

We prepare our benchmarking statements in the JRunstats utility, and mark the begin-
ning of the benchmark by invoking markStart():

JRunstats.prepareBenchmarkStatements(conn);
JRunstats.markStart(conn);

We invoke the procedure _doInsertCommitInLoop() (defined later in the program), which
inserts the 10,000 records in a loop but commits within the loop:

_doInsertCommitInLoop(conn);

We then mark the middle of the program and invoke the procedure
_doInsertCommitOutsideLoop()(defined later in the program), which commits outside the loop:

JRunstats.markMiddle(conn);
_doInsertCommitOutsideLoop(conn);

Finally, we end the benchmarking by calling the method markEnd() and closing all bench-
marking statements in the JRunstats program:

JRunstats.markEnd(conn);
}
finally
{
JRunstats.closeBenchmarkStatements(conn);
JDBCUtil.close(conn);

}
}

The following procedure, _doInsertCommitInLoop(), inserts 10,000 records into t1 in a
loop and commits within the loop (shown in bold):

private static void _doInsertCommitInLoop(Connection conn) throws SQLException
{
String stmtString = "insert into t1(x) values (?)";
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement(stmtString);
for(int i=0; i < NUM_OF_RECORDS; i++)
{
pstmt.setInt(1, 1);
pstmt.executeUpdate();
conn.commit();

}
}
finally
{
JDBCUtil.close(pstmt);

}
}

CHAPTER 4 ■ TRANSACTIONS 127

The procedure _doInsertCommitOutsideLoop() does the same thing, except the commit is
outside the loop (shown in bold):

private static void _doInsertCommitOutsideLoop(Connection conn)
throws SQLException

{
String stmtString = "insert into t1(x) values (?)";
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement(stmtString);
for(int i=0; i < NUM_OF_RECORDS; i++)
{
pstmt.setInt(1, 1);
pstmt.executeUpdate();

}
conn.commit();

}
finally
{
JDBCUtil.close(pstmt);

}
}

private static final int NUM_OF_RECORDS = 10000;
}

Note that the PreparedStatement interface just used is covered in more detail in Chapter 5.
When we run the program BenchmarkIntermittentCommits, we get the following output:

B:\>java BenchmarkIntermittentCommits
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))

------- Benchmark Results --------

Results from RUNSTATS utility

Run1 ran in 1300 hsecs
Run2 ran in 363 hsecs
run 1 ran in 358.13% of the time

Name Run1 Run2 Diff
STAT...commit txn count during 0 1 1
<- trimmed to conserve space ->
STAT...redo size 5,361,548 2,462,672 -2,898,876

CHAPTER 4 ■ TRANSACTIONS128

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct

585,190 126,639 -458,551 462.09%

Runtime Execution Time Differences as seen by the client

Run1 ran in 1318 hsecs

Run2 ran in 365 hsecs

Run1 ran in 361% of the time

As you can see, the method _doInsertCommitInLoop() took around 360% of the time
and consumed approximately 460% of latches as compared to the method
_doInsertCommitOutsideLoop().

From the previous discussion, we can conclude that in Oracle we should issue commits
based on our transaction needs, not based on the amount of resources (such as disk space)
that would be consumed. This is because issuing intermittent commits in the misguided
attempt to save resources leads to compromised data integrity, an overall increase in resource
consumption, and more complex and bug-ridden code that runs slowly and does not scale.
Thus, we should adjust the Oracle resources consumed in a transaction according to our
transaction needs (which, in turn, are based on business requirements), not the other way
around. Of course, we should strive to use all Oracle resources optimally.

■Note Splitting a transaction seems to be a common (and possibly sound) performance optimization
technique in many other databases, such as Microsoft SQL Server, since these databases have a large
transaction overhead. Note, however, that even for these databases, other disadvantages such as compro-
mised data integrity and increased code complexity still remain. Oracle was designed from the ground up to
deal with large transactions and, as we’ve seen in this section, using this technique in Oracle isn’t required
and isn’t a good idea.

The Autocommit Feature and Turning It Off
In JDBC, when we obtain a connection, by default it is in autocommit mode. This means that
a commit is automatically issued after every SQL statement has been successfully executed.
In other words, every SQL statement we issue is treated as a separate transaction. From the
discussion in the previous section, you should know why this is not a good idea. Thus, after
getting a connection, we should always turn this feature off by invoking the setAutoCommit()
method on the Connection object, as highlighted in the following code snippet:

Connection connection = null;
try
{

CHAPTER 4 ■ TRANSACTIONS 129

// ods is an initialized OracleDataSource object elsewhere
connection = ods.getConnection();
connection.setAutoCommit(false);
. . .

}
. . .

In fact, we do this in the getConnection() method in the JDBCUtil class. One implication
of turning off autocommit is that if we have made any changes, we need to explicitly commit
them in case of success or roll them back in case of error (since we would be turning off the
autocommit feature).

The commit and rollback methods could throw a SQLException, though this is a rare situa-
tion and cannot typically be handled by the application. Note that when autocommit is off,
and a connection is closed without a commit or a rollback, an implicit commit is issued by
Oracle, thus committing any uncommitted changes.

■Note There is an inconsistency in the Oracle JDBC driver (including the 10g driver) wherein if you com-
mit once (with autocommit off), execute some other DMLs, and then forget to commit, the DMLs are rolled
back (as opposed to being implicitly committed as the document Oracle Database JDBC Developer’s Guide
and Reference states).

However, we should always explicitly commit or roll back our transactions, since the
default action may not be what we desire. Typically, we commit at the end of the transaction
and roll back if there is an exception before reaching the commit statement in our program.

■Tip Turn off the JDBC autocommit feature right after you obtain a connection in your JDBC application
running on Oracle. Explicitly issue a commit on a successful transaction or a rollback on failure.

Transaction Savepoints
The JDBC 3.0 specification exposes a database feature called savepoints. Savepoints offer finer
demarcation within transactions. Without savepoints, a JDBC application (or any application,
for that matter) has only two ways of controlling the effects of a transaction. The first way is to
call the commit() method, as shown earlier, which causes all the modifications associated with
the transaction to be saved. The second way is to call the rollback() method, which causes
all unsaved modifications in the current transaction to be discarded. In other words, the only
options are to save all the changes or abandon all the changes associated with the current
transaction. Note that these options are not a bad thing and are in fact what we require most
of the time.

CHAPTER 4 ■ TRANSACTIONS130

■Note Savepoints have been around for quite some time in Oracle, but they were not exposed through a
specific method in the JDBC API before JDBC 3.0. Even with pre-JDBC 3.0 drivers that support calling stored
procedures, you can issue a savepoint by invoking either the savepoint command or the savepoint()
method of the dbms_transaction PL/SQL-supplied package (see PL/SQL Packages and Types Reference
[10g Release 1] for more details on this package).

With the introduction of savepoints in JDBC, applications can set a savepoint within a
transaction using the standard JDBC API and then roll back to the savepoint. This implies that
all work done up to the savepoint in the transaction is not discarded and can be committed
later in the transaction. Code operating within the transaction is allowed to preserve partial
states of the transaction.

■Note Savepoints are supported for local transactions only. Specifying a savepoint within a distributed
transaction causes a SQLException to be thrown.

Using Savepoints in JDBC
Three steps are involved in using savepoints in a JDBC application:

1. Create a savepoint to mark a point in the transaction to which you may want to roll
back later.

2. Roll back to the savepoint somewhere in your program.

3. Release the resources associated with the savepoint at the end of the transaction.

Let’s look at each of these steps separately.

Creating a Savepoint
You create a savepoint either by using the setSavepoint() method of the Connection interface,
which returns a java.sql.Savepoint object, or by invoking the oracleSetSavepoint() method
of the OracleConnection interface, which returns an oracle.jdbc.OracleSavepoint object.
The following line shows how to create a savepoint using the standard Connection interface,
assuming you have a connection object in the conn variable:

Savepoint savepoint = conn.setSavepoint();

You can give a savepoint a name by supplying a string to the setSavepoint() method; if
you do not specify a name, the savepoint is assigned an integer ID. You retrieve a name using
the getSavepointName() method of the Savepoint interface, and you retrieve an ID using the
getSavepointId() method of the Savepoint interface.

CHAPTER 4 ■ TRANSACTIONS 131

Rolling Back to a Savepoint
You roll back to a savepoint using the rollback(Savepoint savepoint) method of the
Connection interface:

public void rollback(java.sql.Savepoint) throws SQLException;

You can also use the oracleRollback() method of the OracleConnection interface:

public abstract void oracleRollback(oracle.jdbc.OracleSavepoint)
throws SQLException;

Note that if you try to roll back to a savepoint that has been released, a SQLException is
thrown.

Releasing the Resources Associated with a Savepoint
The method releaseSavepoint() in the Connection interface takes a Savepoint object as a
parameter and removes it from the current transaction:

public void releaseSavepoint(java.sql.Savepoint) throws SQLException;

Note the following:

• Once a savepoint has been released, attempting to reference it in a rollback operation
results in a SQLException being thrown.

• Rolling a transaction back to a savepoint automatically releases and makes invalid any
other savepoints that were created after the savepoint in question.

• Any savepoints that have been created in a transaction are automatically released and
become invalid when the transaction is committed or rolled back.

An Example of Using Savepoints
Savepoints have limited use in a JDBC application. This is because, in most cases, the require-
ment is to either commit the entire transaction or undo the effect of the entire transaction.
However, savepoints may come in handy in some cases. Consider the requirement to log a
transaction’s identifying name and its success or failure in a table, transaction_log, which is
created as follows:

benchmark@ORA10G> create table transaction_log
2 (
3 txn_name varchar2(15),
4 log_message varchar2(500)
5);

Table created.

If a transaction is successful, we want to insert a “success” message in this table. If a
transaction fails, we want to log a message to the effect that the transaction has failed with
a message indicating what caused the failure. Before any transaction, we also want to log a
message indicating when the transaction began.

CHAPTER 4 ■ TRANSACTIONS132

Consider the following pseudo code that tries to do this without savepoints:

Step 1: Log the message "beginning transaction at <timestamp>".
Step 2: Do the transaction. If there is an error then go to step 3. Otherwise go to

Step 4.
Step 3: Since a rollback will undo the changes done by Step 1, we do the following:

Step 3a. Redo the step 1 – hopefully, we have saved the original timestamp.
Step 3b. Log the transaction failure message.
Step 3c. Commit and raise an exception.

Step 4: Log the transaction success message.
Step 5: Commit the transaction.

Notice how in the case of a transaction failure, we need to redo the work done by step 1.
Now if we use savepoints, the pseudo code changes to the following:

Step 1: Log the message "beginning transaction at <timestamp>".
Step 2: Create a savepoint save_point1.
Step 3: Do the transaction. If there is an error then go to Step 4. Otherwise go to

Step 5.
Step 4a. Roll back to save_point1.
Step 4b. Log the transaction failure message.
Step 4c. Commit and raise an exception.

Step 5: Log the transaction success message.
Step 6: Commit the transaction.

In case of success, the basic steps are the same. In case of an error in the transaction, we
can simply roll back to the savepoint, log a failure message, commit, and raise an exception.
Essentially, we did not have to redo the work done in step 1 because we used a savepoint. Let’s
see the same example in a working JDBC program. The transaction involves inserting three
numbers into the table t1 created as follows:

benchmark@ORA10G> create table t1
2 (
3 x number primary key
4);

Table created.

Notice that column x in table t1 is a primary key. Thus, we cannot insert the same num-
ber twice in this table. The following DemoSavepoint program shows how to execute this simple
transaction and use a savepoint to implement the pseudo code presented earlier. The class
definition begins with the imports before the definition of the main() method:

/*This program demonstrates how to use the Savepoint feature
* that has been introduced in JDBC 3.0.
* COMPATIBLITY NOTE:
* runs successfully on 10.1.0.2.0 and 9.2.0.1.0 */
import java.util.Date;
import java.sql.SQLException;
import java.sql.Savepoint;

CHAPTER 4 ■ TRANSACTIONS 133

import java.sql.PreparedStatement;
import java.sql.Connection;
import book.util.JDBCUtil;
public class DemoSavepoint
{
public static void main(String args[]) throws SQLException
{

Along with the usual connection variable, we also declare two PreparedStatement vari-
ables: one to insert the log statement and the other to insert into table t1 as part of the main
transaction. We also declare a Savepoint variable:

Connection conn = null;
PreparedStatement pstmtLog = null;
PreparedStatement pstmt = null;
Savepoint savepoint = null;

The following insert statement would be used to log messages into the transaction_log
table:

String insertTxnLogStmt =
"insert into transaction_log(txn_name, log_message) " +
"values(?, ?)";

The following insert statement would be used to insert records into table t1:

String insertStmt = "insert into t1(x) values(?)";
try
{
try
{

Inside the try catch block, we first get the connection:

conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

Then we prepare the statement to insert the log messages and invoke the method _log()
(defined later), which simply inserts a given transaction name and log message into the
transaction_log table:

pstmtLog = conn.prepareStatement(insertTxnLogStmt) ;
_log(pstmtLog, "demo_savepoint",

"starting the txn to demo savepoints at: " + new Date());

■Note Once again, don’t worry if you’re not yet comfortable with the PreparedStatement interface.
Chapter 5 covers it in detail.

CHAPTER 4 ■ TRANSACTIONS134

Next, we create a savepoint here because we don’t want to lose the work done in logging
in case of an error:

savepoint = conn.setSavepoint();

Then, we carry out the transaction of inserting three constant numbers—1, 2, and 3—in
table t1:

// our real transaction begins
pstmt = conn.prepareStatement(insertStmt) ;
pstmt.setInt(1, 1);
pstmt.executeUpdate();
pstmt.setInt(1, 2);
pstmt.executeUpdate();
pstmt.setInt(1, 3);
pstmt.executeUpdate();

}

In case of an error (which is indicated by a SQLException being thrown), we roll back to
the savepoint, log a failure message, issue a commit, and rethrow the exception:

catch (SQLException e)
{
// an error occurred, we roll back to our savepoint
conn.rollback(savepoint);
// and log the error message
_log(pstmtLog, "demo_savepoint", "Failed with error: " + e.getMessage());
// we commit the log data
conn.commit();
// and throw the exception
throw e;

}

Otherwise, in case of success, we log a success message and commit the transaction:

// if we reach here - it means transaction was successful
// so we log the "success" message
_log(pstmtLog, "demo_savepoint", "Successfully ended at: " + new Date());
// commit the changes to the database including the log message
conn.commit();

}
finally
{
// release JDBC resources in the finally clause.
JDBCUtil.close(pstmtLog);
JDBCUtil.close(pstmt);
JDBCUtil.close(conn);

}
}

CHAPTER 4 ■ TRANSACTIONS 135

At the end of the program is the definition of the _log() method, which simply logs a
message into transaction_log:

private static void _log(PreparedStatement pstmtLog, String txnName,
String logMessage) throws SQLException

{
pstmtLog.setString(1, txnName);
pstmtLog.setString(2, logMessage);
pstmtLog.executeUpdate();

}
}

If we execute the program DemoSavepoint for the first time, we’ll get the following results:

B:\code\book\ch04>java DemoSavepoint ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))

Let’s look at the data in the tables t1 and transaction_log:

benchmark@ORA10G> column txn_name format a14
benchmark@ORA10G> column log_message format a30
benchmark@ORA10G> select * from transaction_log;

TXN_NAME LOG_MESSAGE
-------------- ------------------------------
demo_savepoint starting the txn to demo savep

oints at: Wed Dec 29 00:26:16
PST 2004

demo_savepoint Successfully ended at: Wed Dec
29 00:26:16 PST 2004

benchmark@ORA10G> select * from t1;

X

1
2
3

As you can see, the transaction was successful, and the transaction start and success mes-
sages were logged in the table transaction_log as per the requirements.

CHAPTER 4 ■ TRANSACTIONS136

If we rerun the DemoSavepoint program, we’ll get an error since we’re trying to reinsert the
same value in column x of table t1, which is a primary key:

B:\code\book\ch04>java DemoSavepoint ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
Exception in thread "main" java.sql.SQLException: ORA-00001: unique constraint (
BENCHMARK.SYS_C005868) violated
...

When we execute a select from the tables t1 and transaction_log, we get the following:

benchmark@ORA10G> select * from transaction_log;

TXN_NAME LOG_MESSAGE
-------------- ------------------------------
demo_savepoint Failed with error: ORA-00001:

unique constraint (BENCHMARK.S
YS_C005868) violated

demo_savepoint starting the txn to demo savep
oints at: Wed Dec 29 00:26:16
PST 2004

demo_savepoint Successfully ended at: Wed Dec
29 00:26:16 PST 2004

demo_savepoint starting the txn to demo savep
oints at: Wed Dec 29 00:29:33
PST 2004

benchmark@ORA10G> select * from t1;

X

1
2
3

As you can see, the failure messages in transaction_log were also logged as required.
Note that from a coding perspective, re-executing the statements before the savepoint may
not be an issue, but doing so may be undesirable from a performance standpoint if these
statements do a lot of work. Without savepoints, you may be potentially undoing a lot of work,
only to redo it immediately afterward.

CHAPTER 4 ■ TRANSACTIONS 137

Summary
In this chapter, we briefly covered transactions, the different transaction isolation levels avail-
able, and the transaction isolation levels supported by Oracle. We discussed why we should
commit a transaction based on business need, rather than on the amount of resources the
transaction consumes. As you learned, breaking your transaction into smaller chunks with
intermittent commits can lead to compromised data integrity, increased code complexity, and
an overall slower system. You learned the importance of always turning off autocommit and
explicitly executing a commit or rollback as required to end your transaction. You also exam-
ined transaction savepoints as applicable to JDBC applications, and you saw a use case
illustrating savepoints.

In the next two chapters, we will look at statements that enable you to do all the work
within your transaction.

CHAPTER 4 ■ TRANSACTIONS138

Statement and
PreparedStatement

In this chapter, you’ll briefly look at how Oracle processes SQL statements and then start your
journey into the world of statements in JDBC. JDBC statements provide a mechanism for cre-
ating and executing SQL statements to query and modify the data stored in a database. As a
quick introduction, JDBC offers the following flavors of statement interfaces:

• Statement: A Statement object lets you execute SQL statements, but does not allow you
to vary input variables to the statement at runtime. An example of using this interface
appears in Chapter 3.

• PreparedStatement: A PreparedStatement object represents a precompiled SQL state-
ment that can be executed multiple times. It extends the Statement interface and adds
the ability to use bind variables. Bind variables are parameter markers represented by ?
in the SQL string, and they are used to specify input values to the statement that may
vary at runtime.

• CallableStatement: This interface extends PreparedStatement with methods to execute
and retrieve results from stored procedures.

You can browse the javadoc API for these and other JDBC classes and interfaces at
http://java.sun.com. In this chapter, we’ll focus on the Statement and PreparedStatement inter-
faces and their Oracle extensions. We’ll cover CallableStatement and its Oracle extensions in the
next chapter. By the end of this chapter, I hope to convince you that, in production code, you
should always use PreparedStatement (or CallableStatement) objects instead of Statement
objects. In fact, in the next chapter, I make a strong case for almost exclusively using
CallableStatement in production code.

Before starting the discussion of the Statement objects, let’s take a quick look at how
Oracle processes SQL statements submitted by a client (through SQL*Plus, a JDBC applica-
tion, etc.). This information will be useful in helping us arrive at certain performance-related
conclusions later in this chapter.

139

C H A P T E R 5

■ ■ ■

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT140

Overview of How Oracle Processes
SQL Statements (DML)
For this discussion, we only consider Data Manipulation Language (DML) statements. In par-
ticular, we exclude Data Definition Language (DDL) statements, as these are typically (and
should be) done at install time and are not part of the application code.

DML statements are the statements that you will encounter most often, as you use them
to query or manipulate data in existing schema objects. They include select, insert, update,
delete, and merge statements. Oracle goes through the following stages to process a DML
statement:

1. Parsing: In this step, the statement’s syntax and semantics are parsed.

2. Generating an execution plan: For each statement, an execution plan is generated
and stored in a shared memory area called the shared pool (see the section “Memory
Structures: Shared Pool” in Chapter 2).

3. Executing: The statement executes, using the plan generated in step 2.

Step 2, generating the execution plan, can be very CPU-intensive. To skip this step in most
cases, Oracle saves the results of the execution plan in a shared memory structure called the
shared pool (see the section “Shared Pool and Bind Variables” of Chapter 2). When you submit
a statement to Oracle, as part of the first step of parsing, it checks against the shared pool to
see if the same statement was submitted by your session or some other, earlier session. If Ora-
cle does not find the statement in the shared pool, it has to go through all three steps. This
phenomenon is called a hard parse. On the other hand, if Oracle gets a hit in its shared pool
cache, then it can skip the second step of generating the execution plan and directly go to the
execution step. This phenomenon is called a soft parse.

■Note There is a third category of parsing loosely called softer soft parse. This happens if you have
enabled your session to cache a set of cursors related to statements (we look at session cached cursors in
more detail in Chapter 14). If there is a hit in a session cache, Oracle does a check in the shared pool to see
if the cached cursor points to a valid SQL statement (the statement could become invalid for a variety of rea-
sons, such as schema changes). If the entry is valid, then Oracle can reuse the results of an earlier soft
parse done for this statement and go directly to execution step. Basically, this avoids repeated soft parses
and saves Oracle resources, thus improving scalability of the applications even further.

Figure 5-1 shows the steps Oracle takes to execute a DML statement.

Figure 5-1. The steps Oracle takes to process and execute a DML statement (see
http://asktom.oracle.com and Chapter 5 of Tom Kyte’s Effective Oracle by Design
[Osborne McGraw-Hill, ISBN: 0-07-223065-7] for a detailed explanation of this algorithm)

The goal when writing SQL statements in Oracle is to avoid repeated hard parsing and to
minimize soft parsing. In this chapter, we’ll focus on how to avoid hard parsing in JDBC pro-
grams. In Chapter 14, we’ll cover techniques for minimizing soft parsing.

JDBC API for Statements
You’re now ready to enter the exciting world of statements in JDBC. Recall that the standard
JDBC API consists of two packages (see the section “Overview of JDBC API” in Chapter 3):

• java.sql: Contains the core JDBC API to access and manipulate information stored in a
database, which includes the Statement interface and those that inherit from it (e.g.,
PreparedStatement and CallableStatement)

• javax.sql: Contains APIs for accessing server-side data sources from JDBC clients

Found error?

Oracle’s Statement Processing Algorithm

Check syntax and
semantics

No

No

Hard Parse:
Generate an optimal execution plan

Is statement in shared
memory pool?

No

Execute the
statement

Does cursor exist in
session cache?

Does it point to a valid
statement in shared pool?

DML statement
submitted

No

Give error
message
and exit

Yes

Yes

Soft Parse:
Reuse execution plan

generated earlier

Yes

Yes

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 141

Oracle’s core JDBC implementation lies in the following two packages:

• oracle.jdbc (and packages beneath it): Implements and extends functionality
provided by java.sql and javax.sql interfaces (e.g., OraclePreparedStatement and
OracleCallableStatement)

• oracle.sql: Contains classes and interfaces that provide Java mappings to SQL data
types (e.g., oracle.sql.OracleTypes)

Figure 5-2 shows the JDBC classes pertinent to statements (also shown are the Connection
and ResultSet interfaces, since they are relevant to most JDBC code using statements).

Figure 5-2. JDBC Connection, ResultSet, and Statement interfaces and the implementing (or
extending) Oracle interfaces

On the left side of Figure 5-2 are JDBC interfaces in java.sql package, and on the
right side are the corresponding Oracle interfaces in the oracle.jdbc package. Note that
OracleStatement is an interface that extends Statement, OraclePreparedStatement is an
interface that extends both OracleStatement and PreparedStatement, and so on.

Connection

Standard JDBC interfaces
from java.sql package

OracleConnection

ResultSet OracleResultSet

Statement OracleStatement

PreparedStatement

CallableStatement

Standard JDBC interfaces
from oracle.jdbc package

Connection, ResultSet, and Statement Interfaces

OraclePreparedStatement

OracleCallableStatement

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT142

■Tip I frequently use the command javap (available with the JDK) to examine the public methods
of a class or an interface. For example, for finding out all public methods of the class oracle.jdbc
.OraclePreparedStatement, you can execute the following command (after setting the environment
and CLASSPATH as explained in Chapter 3):

javap oracle.jdbc.OraclePreparedStatement

In general, the prefix Oracle denotes an interface or a class that extends a JDBC standard
interface or class, and provides its own Oracle-specific extensions in addition to the standard
JDBC API functionality. For example, java.sql.Connection is a JDBC standard interface, and
oracle.jdbc.OracleConnection is an interface that extends java.sql.Connection. Table 5-1
shows an overview of Oracle’s key interfaces related to Connection, Statement, and ResultSet
functionality.

Table 5-1. JDBC Standard and Oracle Proprietary Interfaces Related to Connection, Statement,
and ResultSet

Class or Interface in the Extends or Implements Main Functionality
oracle.jdbc Package

OracleConnection java.sql.Connection Encapsulates a database
connection. It has methods to
return Oracle statement objects
and methods to set Oracle
performance extensions for
any statement executed by the
current connection.

OracleStatement java.sql.Statement Has methods to execute SQL
statements (including stored
procedures) without bind
variables.

OraclePreparedStatement java.sql.PreparedStatement, Has methods to execute SQL
OracleStatement statements (including stored

procedures) with bind variables.
In the case of stored procedures,
you cannot retrieve any result
values back using PreparedStatement.

OracleCallableStatement OraclePreparedStatement, Adds methods to PreparedStatement
java.sql.CallableStatement to execute and retrieve data from

stored procedures.

OracleResultSet java.sql.ResultSet Contains data representing a data
base result set, which is obtained
by executing queries against a
database.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 143

The Statement Interface
The Statement interface is used to execute a SQL statement and return its results to the JDBC
program. Chapter 3 presented an example of using this interface in the class GetEmpDetails. In
this section, we will cover how to query and modify data using the Statement interface. For use
in our example, we first create a simple table, t1, and a PL/SQL procedure, p2, that inserts a
row in table t1 as shown:

scott@ORA10G> create table t1
2 (
3 x number
4);

Table created.
scott@ORA10G> create or replace procedure p2(p_x in number)
2 as
3 begin
4 insert into t1 values(p_x);
5 end;
6 /

Procedure created.

Assuming you have a connection object initialized (as explained in Chapter 3), the steps
involved in using a Statement interface are as follows:

1. Create a Statement object for the SQL statement:

Statement stmt = conn.createStatement();

2a. The method used to execute a Statement object depends on the type of SQL statement
being executed. If you want to execute a query using a select statement, then use the
executeQuery() method:

public ResultSet executeQuery(String sql) throws SQLException;

2b. If you want to execute a data-modifying statement such as insert, delete, update, etc.,
or a SQL statement that does not return anything, such as a DDL statement, use the
executeUpdate() method of the Statement object. The method returns either the row
count for the insert, update, delete, or merge statement, or 0 for SQL statements that
return nothing. The signature of the method follows:

public int executeUpdate(String sql) throws SQLException;

2c. If you don’t know the statement type, you can use the execute() method of the
Statement interface. For example, if the statement string is a query and you don’t
know that (because, for example, it is in a variable passed to you by some other
program), you could use the execute() method:

public boolean execute(String sql) throws SQLException;

2d. If you want to execute a stored procedure (without using bind variables and without
being able to retrieve data returned from the procedure), you can use the execute()
method.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT144

■Caution As you may have already guessed, using the Statement interface for executing stored proce-
dures is not a good idea. You should use CallableStatement, as explained in the next chapter, for this
purpose because it allows you to pass parameters as bind variables and it also allows you to retrieve
values returned by a stored procedure.

The following DemoStatement class illustrates the methods in the Statement interface. We
first look at the main() method after importing the requisite classes:

/* This program demonstrates how to use the Statement interface
* to query and modify data and execute stored procedures.
* Note that you should not use the Statement class for executing
* SQL in your production code since it does not allow you to
* use bind variables. You should use either the PreparedStatement
* or the CallableStatement class.
* COMPATIBLITY NOTE: runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.ResultSet;
import java.sql.Date;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.Connection;
import book.util.JDBCUtil;
public class DemoStatement
{
public static void main(String args[])
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", args[0]);
_demoQuery(conn);
_demoInsert(conn);
_demoExecute(conn, "select empno, ename from emp where job = 'CLERK'");
_demoExecute(conn, "insert into t1(x) values(2) ");
_demoInvokingSQLProcedure(conn);
conn.commit();

}
catch (SQLException e)
{
// handle the exception - in this case, we
// roll back the transaction and
// print an error message and stack trace.
JDBCUtil.printExceptionAndRollback (conn, e);

}
finally

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 145

{
// release resources associated with JDBC
// in the finally clause.
JDBCUtil.close(conn);

}
} // end of main

In the main() method, we get the connection as SCOTT, using the
JDBCUtil.getConnection() method as explained in Chapter 3. We invoke the following meth-
ods, which I explain shortly:

• _demoQuery: Demonstrates executing a query using the Statement interface

• _demoInsert: Demonstrates executing an insert using the Statement interface

• _demoExecute: Demonstrates executing any DML (a query or an insert, update, etc.)
using the Statement interface

• _demoInvokingSQLProcedure: Demonstrates invoking a SQL procedure without using
bind variables and without being able to retrieve values back from the stored procedure

Let’s look at each of these methods in detail now, starting with the first half of _demoQuery():

// execute a query using the Statement interface
private static void _demoQuery(Connection conn) throws SQLException
{
ResultSet rset = null;
Statement stmt = null;
try
{

Inside the try catch block, we first create the statement:

stmt = conn.createStatement();

Next, we use the executeQuery() method on the Statement object, passing the select
statement that we want to execute. The invocation returns query results in the form of a
ResultSet object.

// execute the query
rset = stmt.executeQuery(
"select empno, ename, hiredate from emp where job = 'CLERK'");

As explained in Chapter 3, a ResultSet object maintains a cursor pointing to its current
row of data. Initially, the cursor is positioned before the first row. We use the next() method to
move the cursor to the next row, thus iterating through the result set as shown in the following
code. The next() method returns false when there are no more rows in the ResultSet object,
at which point we exit the loop. Within the loop, we retrieve each column value of a row using
the appropriate getXXX() method of the ResultSet interface. This means using getInt() with
the integer column empno, getString() with the string column ename, and getDate() with the

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT146

date column hiredate. The first parameter of these methods is the positional index of the col-
umn in the select clause in the query (the index starts from 1).

// loop through the result set and print
while (rset.next())
{
int empNo = rset.getInt (1);
String empName = rset.getString (2);
Date hireDate = rset.getDate (3);
System.out.println(empNo + "," + empName + "," + hireDate);

}

We end the try catch block with a finally clause in which we close the result set and the
statement objects. Putting these objects in the finally clause ensures that they always get
called (e.g., even in the case of an exception); otherwise, the database can run out of cursor
resources.

}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(stmt);

}
}

The next method, _demoInsert(), illustrates how to insert data using the executeUpdate()
method of the Statement interface:

// demonstrate inserting record using the Statement interface
private static void _demoInsert(Connection conn) throws SQLException
{
Statement stmt = null;
try
{
stmt = conn.createStatement();
// execute the insert
int numOfRowsInserted = stmt.executeUpdate(
"insert into t1(x) values(1) ");

System.out.println("Number of rows inserted = " + numOfRowsInserted);
}
finally
{
JDBCUtil.close(stmt);

}
}

As you can see, most of the code is similar to the method _demoQuery() shown earlier. The
only difference is that this time we use the executeUpdate() method to insert a row in the table
t1 and print the number of rows inserted successfully as returned by executeUpdate(). The
same technique can also be used to update and delete rows from a table.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 147

The following method, _demoExecute(), takes a connection object and a SQL statement
and executes the statement using the execute() method of the Statement interface. It can be
invoked for a query statement as well as a nonquery DML statement, such as an insert, as
illustrated in the main() program:

// demonstrate the execute() method of the Statement interface
private static void _demoExecute(Connection conn, String sqlStmt)
throws SQLException

{
ResultSet rset = null;
Statement stmt = null;
try
{
stmt = conn.createStatement();
// execute the query

After creating the statement, we execute it and get the boolean value that tells us if the
statement was a query or a not.

boolean isQuery = stmt.execute(sqlStmt);

If it is a query, we get the ResultSet and print the results. In this example, we have to
know the column type and position (or name) of the query to retrieve the results. Notice how
we use the column names (instead of column’s positional index) to get the results this time.

// if it is a query, get the result set and print the results
if(isQuery)
{
rset = stmt.getResultSet();
while (rset.next())
{
int empNo = rset.getInt ("empno");
String empName = rset.getString ("ename");
System.out.println(empNo + "," + empName);

}
}

If it is not a query, we assume it is an insert, update, or delete and get the number of rows
affected using the getUpdateCount() method. We also close the statement and result set at the
end of the method:

else
{
// we assume it is an insert, update, or delete statement
int numOfRowsAffected = stmt.getUpdateCount();
System.out.println("Number of rows affected by execute() = " +
numOfRowsAffected);

}
}
finally

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT148

{
JDBCUtil.close(rset);
JDBCUtil.close(stmt);

}
}

As mentioned earlier, we can also use the execute() method to execute a stored proce-
dure, although we cannot use bind values, and we cannot retrieve any values returned by the
stored procedure. The method _demoInvokingSQLProcedure at the end of the program
DemoStatement illustrates this:

private static void _demoInvokingSQLProcedure(Connection conn)
throws SQLException

{
Statement stmt = null;
try
{
stmt = conn.createStatement();
// execute the sql procedure
boolean ignore = stmt.execute("begin p2(3); end;");

}
finally
{
JDBCUtil.close(stmt);

}
}

} // end of program

We use the Oracle style anonymous block enclosed in the begin/end block to invoke the
procedure. We will look at another style, called SQL92, in Chapter 6.

Now that you’ve learned about the Statement interface, let’s look at why it isn’t a good
idea to use it in your code. The basic problem with the Statement interface is that it accepts
only literal parameters. In the preceding example, the value of employee number would be
hard-coded into the query each time, and every variation of the query—even though it may
vary only by the value of supplied employee number—would be treated as a brand-new query
by Oracle and would be hard-parsed. For example, the query select ename from emp where
empno = 1234 is treated as distinct from the query select ename from emp where empno =
4321, whereas both queries are the same except for the user input of the employee number.
As already discussed, this is something to avoid. When we use a PreparedStatement object, we
replace the literal value with a placeholder (? in JDBC)—in other words, a bind variable—so
that Oracle will treat it as the same statement each time. The actual values (1234 and 4321 in
the example) are bound to the query at runtime. In this case, Oracle performs a hard parse the
first time it encounters the statement, and it performs much less expensive soft parses subse-
quently.

If you want to see proof of how much difference this can make in terms of performance,
I refer you to the example in the “Bind Variables Example” section of the Chapter 2, which
showed the vast decrease in execution time and resource uses obtained when inserting 10,000
records in a table with bind variables rather than without.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 149

Another problem with using the Statement interface is that the program becomes vulner-
able to SQL injection attacks by hackers. We’ll look at SQL injection in more detail when we
cover the PreparedStatement interface in the upcoming section titled “Using Bind Variables
Makes Your Program More Secure.”

■Tip Never use the Statement class in your production code, as it does not allow you to use bind
variables, which in turn makes your program slower, less scalable, and more vulnerable to SQL injection
attacks. To use bind variables in JDBC, you have to use PreparedStatement/OraclePreparedStatement
(or CallableStatement or OracleCallableStatement in the case of stored procedures, as we will see in
the next chapter) instead of the Statement class.

The PreparedStatement Interface
A PreparedStatement object represents a precompiled SQL statement that lets you efficiently
execute a statement multiple times using different bind variables. Using prepared statements
lets Oracle compile the statement only once instead of having to compile it once with each
call that changes one of the input parameters. An analogy would be a Java program that takes
some input parameters.

The first option is to hard-code your input parameter values in the program. In this case,
every time you need to deal with a different input value, you will have to change the program
and recompile it. Using a Statement class is somewhat similar to this: Oracle has to compile
your statement each time an input value changes, since the value is hard-coded in the state-
ment itself.

A second, smarter option is to get the user input as a command-line parameter. In this
case, you compile the program only once before invoking it many times with different values
of the command-line parameters. Using PreparedStatement with bind values is similar to this
scenario, in that you compile the statement only once and bind it at runtime with different
values.

The next few sections discuss the PreparedStatement interface in detail.

Creating a PreparedStatement Object
The first step is to create a PreparedStatement object by invoking the prepareStatement()
method of the Connection object, whose signature follows:

public PreparedStatement prepareStatement(String sql) throws SQLException

This method takes a statement and compiles it. Later, we can execute the same statement
binding it with different values at runtime, for example:

PreparedStatement pstmt = conn.prepareStatement(
"select empno, ename, job from emp where empno = ? and hiredate < ?");

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT150

Notice how the actual values of the employee number and the hire date have been
replaced by the literal ?. The ? in the query string acts as the placeholder for input variables
that need to be bound subsequently in a statement. Let’s now look at how we can use bind
variables when working with a PreparedStatement object.

Using Bind Variables with PreparedStatements
There are two ways of binding parameters to the SQL statement:

• By parameter index or ordinal position: In this case, you use the parameter’s index posi-
tion to bind the parameter. The indexes begin with 1.

• By parameter name: In this case, you bind the parameter by its name. This requires the
use of Oracle extension methods in the OraclePreparedStatement interface.

Binding Parameters by Index (or by Ordinal Position)
To bind a parameter by index, we use the appropriate setXXX() method depending on the
data type of the input variable being bound. Here the index refers to the ordinal position of
the ? value in the query string. For example, consider the SQL statement

select empno, ename, job from emp where empno = ? and hiredate < ?"

In the preceding statement, the first literal value has to be replaced by an integer repre-
senting the employee number, so we will use the setInt() method of the PreparedStatement
interface:

public void setInt(int parameterIndex, int x) throws SQLException;

Similarly, the second literal value is a date, so we use the setDate() method to bind it with
a date value:

public void setDate(int parameterIndex, java.sql.Date date) throws SQLException

Next, we’ll look at how to bind parameters by name.

Binding Parameters by Name (Oracle 10g Only)
An alternative to using ? as a placeholder for our bind variables is to bind by parameter name.
This is an Oracle 10g-specific feature that improves the readability of the prepared statement
string.

To use named parameters, we have to use the appropriate setXXXAtName() method
of the OraclePreparedStatement interface. For example, if we want to bind the query discussed
in the previous section by name, we would first use the following query string while preparing
the statement:

select empno, ename, job from emp where empno = :empno and hiredate < :hiredate"

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 151

Notice that the literal placeholder ? has been replaced by a parameter name of our choice
preceded with a colon (:). We then use setIntAtName() of the OraclePreparedStatement inter-
face for the first parameter and setDataAtName() for the second parameter:

public void setIntAtName(java.lang.String parameterName,
java.sql.Date value) throws SQLException;

public void setDateAtName(java.lang.String parameterName,
java.sql.Date value) throws SQLException;

Executing a PreparedStatement
To execute a PreparedStatement, you can use one of the following three methods:

public boolean execute()throws SQLException
public ResultSet executeQuery()throws SQLException
public int executeUpdate()throws SQLException

The logic of when to use each method is the same as that for the methods with the same
names in the Statement interface discussed in the section “The Statement Interface.” Notice,
however, that unlike their counterparts in Statement interface, these methods don’t take a SQL
string. This is because the SQL statement itself has already been precompiled at the time you
invoke the prepareStatement() method of the Connection object.

It’s time for some examples that illustrate all of the steps just described. Let’s first look at
an example that queries data.

Example of Using PreparedStatement to Query Data
The class DemoPreparedStatementQuery described in this section illustrates how to use the
PreparedStatement interface in JDBC programs to select data from a database. It illustrates
binding by parameter index and binding by parameter name. After the necessary imports,
we have the main() method of the class:

/* This program demonstrates how to query data from a table
* using the PreparedStatement interface. It illustrates
* binding a parameter both by index and by name.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0.
* against 9.2.0.1.0, you have to comment out the
* code using the binding by name feature to compile and
* run this, as bind by name is not supported in 9i.
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import oracle.jdbc.OraclePreparedStatement;
import book.util.JDBCUtil;
import book.ch03.Util;
class DemoPreparedStatementQuery
{

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT152

public static void main(String args[])
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", args[0]);
_demoBindingByParameterIndex(conn);
_demoBindingByParameterName(conn);

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

In the main() method, after getting the JDBC connection, we invoke two methods:

• demoBindingByParameterIndex(): Demonstrates binding by parameter index

• demoBindingByParameterName(): Demonstrates binding by parameter name

We then close the connection in the finally clause to end the main() method.
The method _demoBindingByParameterIndex() starts by declaring required variables and

beginning a try catch block (notice the constants declared for column indexes later):

/* demo parameter binding by index */
private static void _demoBindingByParameterIndex(Connection conn)
throws SQLException

{
String stmtString =
"select empno, ename, job from emp where job = ? and hiredate < ?";

System.out.println("\nCase 1: bind parameter by index");
System.out.println("Statement: " + stmtString);
PreparedStatement pstmt = null;
ResultSet rset = null;
final int JOB_COLUMN_INDEX = 1;
final int HIREDATE_COLUMN_INDEX = 2;
final int SELECT_CLAUSE_EMPNO_COLUMN_INDEX = 1;
final int SELECT_CLAUSE_ENAME_COLUMN_INDEX = 2;
final int SELECT_CLAUSE_JOB_COLUMN_INDEX = 3;
try
{

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 153

Notice how the select statement has ? for input parameters. The query will get us all
employees of a given job title and hire date earlier than a given date. Next, we prepare the
statement

pstmt = conn.prepareStatement(stmtString);

We then bind the parameters. The first parameter is a string for the job column of the
emp table; hence we use the setString() method, passing the constant that defines the job
column index value of 1 and the parameter value of CLERK.

pstmt.setString(JOB_COLUMN_INDEX, "CLERK");

For the hiredate column, we pass the current date. The parameter index is the constant
HIREDATE_COLUMN_INDEX with the value 2 in this case:

pstmt.setDate(HIREDATE_COLUMN_INDEX, new java.sql.Date(
new java.util.Date().getTime()));

Notice that the date value is of type java.sql.Date, not java.util.Date.
We execute the statement next. Since it is a query, we use the executeQuery() method:

rset = pstmt.executeQuery();

Finally, we end the method after printing the results of the query and closing the result set
and statement:

// print the result
System.out.println("printing query results ...\n");
while (rset.next())
{
int empNo = rset.getInt (1);
String empName = rset.getString (2);
String empJob = rset.getString (3);
System.out.println(empNo + " " + empName + " " + empJob);

}
}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

Let’s look at how we can execute the same query, but this time binding parameters by
name. The method _demoBindingByParameterName() begins by declaring variables and starting
a try catch block:

private static void _demoBindingByParameterName(Connection conn)
throws SQLException

{
String stmtString = "select empno, ename, job " +

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT154

"from emp where job = :job and hiredate < :hiredate";
System.out.println("\nCase 2: bind parameter by name\n");
System.out.println("Statement: " + stmtString);
OraclePreparedStatement opstmt = null;
ResultSet rset = null;
final int SELECT_CLAUSE_EMPNO_COLUMN_INDEX = 1;
final int SELECT_CLAUSE_ENAME_COLUMN_INDEX = 2;
final int SELECT_CLAUSE_JOB_COLUMN_INDEX = 3;
try
{

Note that this time we use the parameter names :job and :hiredate for our input param-
eters. Notice also that we have to use the OraclePreparedStatement interface. The first step
involves preparing the statement with the query:

opstmt = (OraclePreparedStatement) conn.prepareStatement(stmtString);

Next, we bind the job parameter with the value CLERK using the setStringAtName()
method of the OraclePreparedStatement interface (note that there is no : in the string we pass
as the parameter name):

opstmt.setStringAtName("job", "CLERK");

We bind the hiredate parameter with the current date value:

opstmt.setDateAtName("hiredate", new java.sql.Date(
new java.util.Date().getTime()));

The next steps of executing the query, printing the results, and releasing the resources are
the same as in the previous example. This also ends our class listing.

// execute the query
rset = opstmt.executeQuery();
// print the result
System.out.println("printing query results ...\n");
while (rset.next())
{
int empNo = rset.getInt (SELECT_CLAUSE_EMPNO_COLUMN_INDEX);
String empName = rset.getString (SELECT_CLAUSE_ENAME_COLUMN_INDEX);
String empJob = rset.getString (SELECT_CLAUSE_JOB_COLUMN_INDEX);
System.out.println(empNo + " " + empName + " " + empJob);

}
}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(opstmt);

}
}

} // end of program

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 155

This is the sample execution output of the DemoPreparedStatementQuery program:

B:\code\book\ch05>java DemoPreparedStatementQuery ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))

Case 1: bind parameter by index
Statement: select empno, ename, job from emp where job = ? and hiredate < ?
printing query results ...

7369 SMITH CLERK
7876 ADAMS CLERK
7900 JAMES CLERK
7934 MILLER CLERK

Case 2: bind parameter by name

Statement: select empno, ename, job from emp where job = :job and hiredate < :hir
edate
printing query results ...

7369 SMITH CLERK
7876 ADAMS CLERK
7900 JAMES CLERK
7934 MILLER CLERK

So should you bind parameters by index or by name? This choice comes into play only if
you are using Oracle 10g. In my benchmark tests, I found no material difference in perform-
ance between binding by index and binding by name. If portability across databases is critical
for you, you should bind parameters by index. Otherwise, using OraclePreparedStatement and
binding by parameter name can marginally improve the readability of your code. You can (and
should) also improve readability in the case of binding by parameter index by defining mean-
ingful constants for the parameter indexes as we did here (in other examples in this book, we
may not follow this convention for simplicity). However, the SQL constants for statement
strings still contain the not-so-readable ? in this case.

■Caution Under certain circumstances, previous versions of the Oracle JDBC drivers allowed binding
PreparedStatement variables by name when using the standard setXXX methods. This capability to bind
by name using the setXXX methods is not part of the JDBC specification, and Oracle does not support it.
The JDBC drivers can throw a SQLException or produce unexpected results if you use this method, so I
strongly recommend that you not use this technique.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT156

Example of Using PreparedStatement to Modify Data
In this section, we’ll look at how to make some modifications to existing data in our database.
First, let’s create a table, t1, and insert some data in it in the BENCHMARK schema as follows:

benchmark@ORA10G> create table t1 (x number primary key,
2 y varchar2(100),
3 z date);

Table created.
benchmark@ORA10G> insert into t1 values (1, 'string 1', sysdate+1);
1 row created.
benchmark@ORA10G> insert into t1 values (2, 'string 2', sysdate+2);
1 row created.
benchmark@ORA10G> insert into t1 values (3, 'string 3', sysdate+3);
1 row created.
benchmark@ORA10G> insert into t1 values (4, 'string 4', sysdate+4);
1 row created.
benchmark@ORA10G> commit;

The following DemoInsUpdDelUsingPreparedStatement class illustrates how to use a pre-
pared statement to insert, update, and delete data from table t1. The program begins by
importing statements and defining the main() method that invokes other private methods:

/* This program shows how to insert, update, and delete data using
the PreparedStatement interface.

* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0.
* against 9.2.0.1.0, you have to comment out the
* code using the binding by name feature to compile and
* run this, as bind by name is not supported in 9i.
*/
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import oracle.jdbc.OraclePreparedStatement;
import book.util.JDBCUtil;
import book.util.Util;
class DemoInsUpdDelUsingPreparedStatement
{
public static void main(String args[])
{
Util.checkProgramUsage(args);
Connection conn = null;
PreparedStatement pstmt = null;
try
{
// get connection
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);
_demoInsert(conn);
_demoUpdate(conn);

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 157

_demoDelete(conn);
conn.commit();

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and roll back
JDBCUtil.printExceptionAndRollback(conn, e);

}
finally
{
// release JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
}

After getting the connection, the main() method invokes three private methods:

• demoInsert(): Demonstrates inserting data

• demoUpdate(): Demonstrates updating data, and binds parameters by name

• demoDelete(): Demonstrates deleting data

The method _demoInsert() begins by preparing a statement to insert a row into t1:

// demo insert
private static void _demoInsert(Connection conn) throws SQLException
{
PreparedStatement pstmt = null;
try
{
// prepare the statement
pstmt = conn.prepareStatement("insert into t1 values (?, ?, ?)");

Next, we bind the values for the three columns x, y, and z:

pstmt.setInt(1, 5); // bind the value 5 to the first placeholder
pstmt.setString(2, "string 5");
pstmt.setDate(3, new java.sql.Date(new java.util.Date().getTime()));

We execute the statement using the executeUpdate() method, which returns the number
of rows inserted. We print out the number of rows inserted and close the prepared statement
to end the method:

int numOfRowsInserted = pstmt.executeUpdate();
System.out.println("Inserted " + numOfRowsInserted + " row(s)");

}
finally
{
// release JDBC related resources in the finally clause.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT158

JDBCUtil.close(pstmt);
}

}

The _demoUpdate() method updates one row of table t1. We use binding by parameter
name this time. The method begins by creating a prepared statement and casting it to the
OraclePreparedStatement interface:

// demo update use bind by name
private static void _demoUpdate(Connection conn) throws SQLException
{
OraclePreparedStatement opstmt = null;
try
{
// prepare the statement
opstmt = (OraclePreparedStatement)
conn.prepareStatement("update t1 set y = :y where x = :x");

We bind the two named parameters x and y next:

// bind the values by name.
opstmt.setStringAtName("y", "string 1 updated");
opstmt.setIntAtName("x", 1);

The process of executing the statement is the same as that in the case of _demoInsert():

// execute the statement
int numOfRowsUpdated = opstmt.executeUpdate();
System.out.println("Updated " + numOfRowsUpdated + " row(s)");

}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(opstmt);

}
}

We end the program with the _demoDelete() method, which is similar to the
_demoInsert() method:

// demo delete
private static void _demoDelete(Connection conn) throws SQLException
{
PreparedStatement pstmt = null;
try
{
// prepare the statement
pstmt = conn.prepareStatement("delete from t1 where x = ?");
// bind the values
pstmt.setInt(1, 2);

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 159

// execute the statement
int numOfRowsDeleted = pstmt.executeUpdate();
System.out.println("Deleted " + numOfRowsDeleted + " row(s)");

}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(pstmt);

}
}

} // end of program

When we execute the program DemoInsUpdDelUsingPreparedStatement, we get the follow-
ing output:

B:\code\book\ch05>java DemoInsUpdDelUsingPreparedStatement ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
Inserted 1 row(s)
Updated 1 row(s)
Deleted 1 row(s)

Using Bind Variables Makes Your Program More Secure
By now you should be convinced that using bind variables is critical for your program’s per-
formance and scalability. However, there is another equally important (in some cases, more
important) reason to use bind variables. Using bind variables can protect your application
from SQL injection attacks.

SQL injection is a technique that enables a hacker to execute unauthorized SQL state-
ments by taking advantage of applications that use input criteria to dynamically build a SQL
statement string and execute it. Let’s look at an example. Consider an application that stores
its username and password information in a table. For simplicity, we’ll store this information
in an unencrypted form, although in real-world applications better alternatives exist. We first
create a table, user_info, with two columns, username and password:

benchmark@ORA10G> create table user_info
2 (
3 username varchar2(15) not null,
4 password varchar2(15) not null
5);

We insert ten usernames and passwords. For illustration purposes, the data is such that
the user user1 has the password password1, the user user2 has the password password2, and
so on.

benchmark@ORA10G> begin
2 for i in 1..10
3 loop

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT160

4 insert into user_info(username, password)
5 values('user'||i, 'password'||i);
6 end loop;
7 end;
8 /

PL/SQL procedure successfully completed.
benchmark@ORA10G> select username, password from user_info;
USERNAME PASSWORD
--------------- ---------------
user1 password1
user2 password2
user3 password3
user4 password4
user5 password5
user6 password6
user7 password7
user8 password8
user9 password9
user10 password10

Let’s now look at DemoSQLInjection, a program that authenticates an application user by
validating the combination of username and password input from the command line against
table user_info’s data. The usage of the program is

java DemoSQLInjection <bind|nobind> <username> <password>

The program takes three parameters from the command line. The first parameter can
have two possible values: bind or nobind. If we give an option of nobind, the program verifies
the username and password without using bind variables; otherwise, it does so using bind
variables. The second parameter is the username, and the third parameter is the password.
The class listing begins with import statements and declaration of the main() method:

/* This program demonstrates how using bind variables can prevent SQL
injection attacks.

* COMPATIBLITY NOTE: runs successfully against 9.2.0.1.0 and 10.1.0.2.0.
*/
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.Connection;
import book.util.JDBCUtil;
class DemoSQLInjection
{
public static void main(String args[])
{

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 161

Inside main(), we invoke _validateProgramInputs() (defined later), which performs
simple input validation and prints program usage if required. We then store the three
command-line parameters in string variables:

_validateProgramInputs(args);
String selectedOption = args[0];
String username = args[1];
String password = args[2];

The next step is to get the database connection within the try catch block.

Connection conn = null;
try
{
// get connection
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

If the first parameter is nobind, we invoke the method _authenticateWithoutUsingBind➥

Values(), which performs the authentication without using bind variables. Otherwise, it
invokes _authenticateUsingBindValues(), which validates the username and password using
bind variables. We end the main() method with the usual catch and finally clauses:

if(NO_BIND.equals(selectedOption))
{
_authenticateWithoutUsingBindValues(conn, selectedOption,
username, password);

}
else
{
_authenticateUsingBindValues(conn, selectedOption, username, password);

}
}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print a message and roll back
JDBCUtil.printExceptionAndRollback(conn, e);

}
finally
{
// release JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
}

The definition of _authenticateWithoutUsingBindValues() follows. The main point to
note is that the query statement string is computed by concatenating the input username and
password to the query string. We use the Statement class to emphasize that we are not using
bind variables in this case.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT162

// authenticate without using bind values
private static void _authenticateWithoutUsingBindValues(Connection conn,
String selectedOption, String username, String password) throws SQLException

{
Statement stmt = null;
ResultSet rset = null;
try
{
stmt = conn.createStatement();
String verifyStmtString = "select count(*) from user_info " +

"where username = '" + username + "'" +
" and password = '" + password + "'";

System.out.println("verify statement: " + verifyStmtString);

We execute the query next. If we find no records matching the input username and pass-
word, we print a message indicating that the authentication failed. Otherwise, authentication
succeeds and a message to that effect is printed:

rset = stmt.executeQuery(verifyStmtString);
while(rset.next())
{
int count = rset.getInt(1);
if(count == 0)
System.out.println("Invalid username and password - access denied!");

else
System.out.println("Congratulations! You have been " +
"authenticated successfully!");

}
}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(stmt);

}
}

The following method, authenticateUsingBindValues(), also executes the same select
statement, except this time we use a PreparedStatement object and bind our input parameter
values:

private static void _authenticateUsingBindValues(Connection conn,
String selectedOption, String username, String password) throws SQLException

{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 163

String verifyStmtString = "select count(*) from user_info " +
"where username = ? "+
" and password = ?";

System.out.println("verify statement: " + verifyStmtString);
// prepare the statement
pstmt = conn.prepareStatement(verifyStmtString);
// bind the values
pstmt.setString(1, username);
pstmt.setString(2, password);
// execute the statement
rset = pstmt.executeQuery();
while(rset.next())
{
int count = rset.getInt(1);
if(count == 0)
System.out.println("Invalid username and password - access denied!");

else
System.out.println("Congratulations! You have been " +
"authenticated successfully!");

}
}
finally
{
// release JDBC related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

The program ends after defining the _validateProgramInputs() method:

// check command-line parameters.
private static void _validateProgramInputs(String[] args)
{
if(args.length != 3)
{
System.out.println(" Usage: java <program_name> " +
"<bind|nobind> <username> <password>");

System.exit(1);
}
if(!(NO_BIND.equals(args[0]) || BIND.equals(args[0])))
{
System.out.println(" Usage: java <program_name> " +
"<bind|nobind> <username> <password>");

System.exit(1);
}

}

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT164

private static final String NO_BIND= "nobind";
private static final String BIND= "bind";

} // end of program

When we execute the preceding program with the nobind option while giving a valid
username and password, it works fine:

B:\code\book\ch05>java DemoSQLInjection nobind user1 password1
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
verify statement: select count(*) from user_info where username = 'user1' and pa
ssword = 'password1'
Congratulations! You have been authenticated successfully!

If we use the same option, but give a wrong username password combination, we are
denied access, as expected:

B:\>java DemoSQLInjection nobind user1 password2
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
verify statement: select count(*) from user_info where username = 'user1' and pa
ssword = 'password2'
Invalid username and password - access denied!!

So far, the program looks rock-solid even if we don’t use bind variables. Unfortunately,
that is not really the case. Consider the following invocation with the option of nobind:

B:\> java DemoSQLInjection nobind invalid_user "junk_password' or 'x'='x"
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
verify statement: select count(*) from user_info where username = 'invalid_user'
and password = 'junk_password' or 'x'='x'
Congratulations! You have been authenticated successfully!

Even though an invalid username and password was given, the authentication was suc-
cessful. What happened? A careful examination reveals that the input was engineered in such
a way that the where clause of the query had the criterion " or 'x' = 'x'" appended to the
end. And since this last criterion is always true, the executing select statement will always
return a nonzero count, resulting in a successful authentication.

Let’s see what happens if we use the same input parameters, but choose the bind option
this time:

B:\code\book\ch05>java DemoSQLInjection bind invalid_user "junk_password' or 'x'
='x"
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=localhost))(CONNECT_DATA=(SID=ora10g)))
verify statement: select count(*) from user_info
where username = ? and password = ?
Invalid username and password - access denied!

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 165

The hacker would be disappointed in this case. When we use bind variables, the query
itself remains the same, since we use ? in place of actual parameter values. Hence, it does not
matter what the input parameter values are—the program will work as expected.

The SQL injection attack has caused a lot of grief at many websites that use relational
databases. Note that the SQL injection attack is not specific to the Oracle database. Much has
been written on this topic, as a simple search on Google will reveal. In Oracle, using bind vari-
ables can protect applications from this dangerous attack most of the time.

Now that you have seen how to use bind variables in the PreparedStatement and all the
benefits of using bind variables, let’s move on to look at some nuances related to bind variable
usage.

Nuances of Bind Variable Usage
As you know by now, a bind variable is a parameter used in a SQL statement, the value of
which is bound at runtime. So, for example, you could have the following statement, in which
the values to be inserted into the emp table are bound at runtime:

PreparedStatement pstmt = conn.prepareStatement(
"insert into emp values (?, ?, ?)");

However, can you run the following statement, in which the table name is bound at run-
time?

PreparedStatement pstmt = conn.prepareStatement(
"insert into ? values (?, ?, ?)");

The answer is no. If you try to run such code, you will get the exception
java.sql.SQLException: ORA-00903: invalid table name.

Recall that the concept of bind variables exists so that Oracle can reuse the generated exe-
cution plans for a statement by substituting placeholders with literal values. Also, the parsing
and query plan generation of a statement occur before the bind variables are evaluated. In the
preceding case, for example, the parsing cannot be done because the optimizer needs to know
the table name to generate a plan, to carry out the semantic checks (e.g., whether the user has
the privilege to insert into the table), and so on. In other words, the optimizer does not have
enough information to generate a query plan. A simple test to find out if something can be
used as a bind variable is to ask, “Can I substitute a literal value (a string, an integer—what-
ever is appropriate) in its place and have SQL*Plus run it legally?” If the answer is yes, then
you can use a bind variable there; otherwise, you cannot.

Table 5-2 gives some examples (with explanations) of correct and incorrect uses of ? as a
bind variable placeholder.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT166

Table 5-2. Examples of Valid and Invalid Uses of Bind Variables in Statements

Statement Value(s) to Be Bound With Valid?

? into t1 values (?, ?, ?) insert No

Explanation: insert is a keyword—you can’t use bind variables for keywords.
(Try running 'insert' into t1 values (...) in SQL*Plus.)

update emp set job=? where ename = ? CLERK, KING Yes

Explanation: You can legally run update emp set job='CLERK' where ename = 'KING'.

delete emp where ename=? KING Yes

Explanation: You can legally run delete emp where ename='KING'.

select ?, ename from emp where empno=? 1, 7629 Yes

Explanation: You can legally run select 1, ename from emp where empno=7629.

select ?, ename from emp where empno=? empno, 7629 No

Explanation: You can bind values but not column names or table names in the select clause.
If you bind with a constant string value of empno, there won’t be a runtime exception, though you
will get a constant string value of empno for all rows returned instead of the value of column empno,
which is most likely what you intended.

Update Batching
The update batching feature is relevant for data modification statements such as insert,
delete, and update. It allows you to submit multiple data modification statements in one
batch, thus saving network round-trips and improving performance significantly in many
cases. Oracle supports two models for batch updates:

• The standard model implements the JDBC 2.0 specification and is referred to as stan-
dard update batching.

• The Oracle-specific model is independent of the JDBC 2.0 specification and is referred
to as Oracle update batching. Note that to use Oracle update batching, you need to cast
the PreparedStatement object to the OraclePreparedStatement object.

Whether you use standard or Oracle update batching, you must disable autocommit
mode. In case an error occurs while you are executing a batch, this gives you the option to
commit or roll back the operations that executed successfully prior to the error. This is yet
another argument in favor of disabling autocommit.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 167

Types of Statements Supported by Oracle’s Batching
Implementation
Oracle does not implement true batching for generic Statement and CallableStatement
objects, even though it supports the use of standard update batching syntax for these objects.
Thus, for Oracle databases using Oracle’s JDBC drivers, update batching is relevant only
for PreparedStatement objects. In other words, only PreparedStatement and, by extension,
OraclePreparedStatement objects can gain performance benefits by using batch updates,
regardless of whether we use standard or Oracle update batching. In a CallableStatement
object, both the connection default batch value and the statement batch value are overridden
with a value of 1. In a generic Statement object, there is no statement batch value, and the
connection default batch value is overridden with a value of 1.

■Tip Whether you use standard update batching or Oracle update batching, you will gain performance
benefits only when your code involves PreparedStatement objects.

Standard Update Batching
In standard update batching, you manually add operations to the batch and then explicitly
choose when to execute the batch. This batching is recommended when JDBC code portabil-
ity across different databases and JDBC drivers is a higher priority than performance. Instead
of using the executeUpdate() method to execute an insert, update, or delete, you add an
operation to a batch using the addBatch() method of the Statement interface:

public void addBatch(String sql) throws SQLException;

At the end, when you want to send the entire batch for execution, you manually execute
the batch by invoking the executeBatch() method of the Statement interface:

public int[] executeBatch() throws SQLException;

This method submits the batch of operations to the database for execution, and if they
all execute successfully, the database returns an array of update counts. The elements of the
returned array are ordered to correspond to the batch commands, which maintain the order
in which they were added to the batch. In the Oracle implementation of standard update
batching, the values of the array elements are as follows:

• For a prepared statement batch, it is not possible to know the number of rows affected
in the database by each individual statement in the batch. Therefore, all array elements
have a value of –2 (or the constant Statement.SUCCESS_NO_INFO). According to the JDBC
2.0 specification, a value of –2 indicates that the operation was successful but the num-
ber of rows affected is unknown.

• For a Statement batch or a CallableStatement batch, the array contains the actual
update counts indicating the number of rows affected by each operation. The actual
update counts can be provided because Oracle JDBC cannot use true batching for
generic and callable statements in the Oracle implementation of standard update
batching, as mentioned earlier.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT168

If one of the batched operations fails during an executeBatch() call, then execution stops
and a java.sql.BatchUpdateException (a subclass of java.sql.SQLException) is thrown. After
a batch exception, the update counts array can be retrieved using the getUpdateCounts()
method of the BatchUpdateException object. This returns an int array of update counts, just
as the executeBatch() method does, the contents of which are as follows:

• For a prepared statement batch, each element has a value of –3 (or
Statement.EXECUTE_FAILED), indicating that an operation did not complete successfully.
In this case, presumably just one operation actually failed, but because the JDBC driver
does not know which operation that was, it labels all the batched operations as failures.

• For a generic statement batch or callable statement batch, the update counts array is
only a partial array that contains the actual update counts up to the point of the error.
The actual update counts can be provided because Oracle JDBC cannot use true batch-
ing for generic and callable statements in the Oracle implementation of standard
update batching.

If you want to clear the current batch of operations instead of executing it, simply use the
clearBatch() method of the Statement interface. A clearBatch() essentially resets the batch
contents to empty.

public void clearBatch();

Standard Update Batching Example
First, we create a simple table, t1, with one column, x, which is also the primary key:

scott@ORA10G> create table t1
2 (
3 x number primary key
4);

Table created.

The class DemoStandardBatching illustrates standard update batching:

/* This program illustrates the use of standard update batching.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0. and 9.2.0.1.0.
*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.BatchUpdateException;
import java.sql.PreparedStatement;
import java.sql.Statement; // for accessing constants only
import book.util.JDBCUtil;
import book.util.Util;
class DemoStandardUpdateBatching
{
public static void main(String args[])
{

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 169

Inside main(), we first validate program arguments, declare variables, and obtain
a connection in the try catch block. Recall that autocommit is set to false in the
JDBCUtil.getConnection() method:

Util.checkProgramUsage(args);
Connection conn = null;
PreparedStatement pstmt = null;
int[] updateCounts = null;
try
{
// get connection, set autocommit to false in JDBCUtil method
// Note: setting autocommit to false is required,
// especially when you are using update batching.
// of course, you should do this anyway for
// transaction integrity and performance, especially
// when developing applications on Oracle.
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

We prepare an insert statement next:

// prepare a statement to insert data
pstmt = conn.prepareStatement("insert into t1(x) values (?)");

The batching begins now. Instead of executing the statement after binding it with differ-
ent values, we add it to a batch. We add three inserts to the batch, each with different values
for column x:

// first insert
pstmt.setInt(1, 1);
pstmt.addBatch();
// second insert
pstmt.setInt(1, 2);
pstmt.addBatch();
// third insert
pstmt.setInt(1, 3);
pstmt.addBatch();

We then send the batch of three insert statements to be executed in one shot by using
the sendBatch() method. The method returns an array of update counts. In the case of suc-
cess, this count gives us the total number of successful insert operations. We conclude the
transaction by committing it:

// Manually execute the batch
updateCounts = pstmt.executeBatch();
System.out.println("Inserted " + updateCounts.length + " rows successfully");
conn.commit();

}

In case one of the insert operations fails, a BatchUpdateException is thrown. We handle
this exception by obtaining the update count array from the exception object and printing out

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT170

the values. In Oracle, there is not much value in the logic of this loop since it does not tell us
which operation failed; it tells us only that one of the operations failed. After the loop, we print
the exception and roll back:

catch (BatchUpdateException e)
{
// Check if each of the statements in batch was
// successful - if not, throw Exception
updateCounts = e.getUpdateCounts();
for(int k=0; k < updateCounts.length; k++)
{
/*

For a standard prepared statement batch, it is impossible
to know the number of rows affected in the database by
each individual statement in the batch.
According to the JDBC 2.0 specification, a value of
Statement.SUCCESS_NO_INFO indicates that the operation
was successful but the number of rows affected is unknown.

*/
if(updateCounts[k] != Statement.SUCCESS_NO_INFO)
{
String message = "Error in standard batch update - Found a value" +
" of " + updateCounts[k] + " in the update count "+
"array for statement number " + k;

System.out.println(message);
}

}
// print the exception error message and roll back
JDBCUtil.printExceptionAndRollback(conn, e);

}

At the end of the class, we have the standard handling of the generic exception and the
finally clause to release JDBC resources:

catch (Exception e)
{
// handle the generic exception; print error message and roll back
JDBCUtil.printExceptionAndRollback(conn, e);

}
finally
{
// release JDBC resource in the finally clause.
JDBCUtil.close(pstmt);
JDBCUtil.close(conn);

}
} // end of main

} // end of program

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 171

When we execute the preceding program with table t1 empty, we get the following output:

B:\>java DemoStandardUpdateBatching ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
Inserted 3 rows successfully

If we execute it again, we will get an error, because x is a primary key:

B:\>java DemoStandardUpdateBatching ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
Error in standard batch update - Found a value of -3 in the update count array f
or statement number 0
Error in standard batch update - Found a value of -3 in the update count array f
or statement number 1
Error in standard batch update - Found a value of -3 in the update count array f
or statement number 2
Exception caught! Exiting ..
error message: ORA-00001: unique constraint (BENCHMARK.SYS_C005873) violated

java.sql.BatchUpdateException: ORA-00001: unique constraint (BENCHMARK.SYS_C0058
73) violated…

Regardless of how many rows result in an error, the Oracle JDBC driver puts a value of –3
(indicating failure) in the update count for all of the rows.

Let’s now turn our attention to Oracle update batching.

Oracle Update Batching
With Oracle update batching, the first step is to define a batch value, which is the number of
operations you want to process per round-trip. You can set this batch value in two ways:

• By invoking the setDefaultExecuteBatch() method on the OracleConnection object:

public void setDefaultExecuteBatch(int);

This sets the batch size on all the statements associated with the connection to the
specified value. As you may have guessed, there is a corresponding getDefault➥

ExecuteBatch() method available in the OracleConnection interface as well.

• By invoking the setExecuteBatch() method on the OraclePreparedStatement object:

public void setExecuteBatch(int);

This sets the batch size on a particular statement and is usually the way applications
use the batching feature. A corresponding getExecuteBatch() method is available in the
OraclePreparedStatement interface as well. Remember that the statement-level batch
overrides the one set at the connection level.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT172

If you want to explicitly execute accumulated operations before the batch value in effect
is reached, then you can use the sendBatch() method of the OraclePreparedStatement inter-
face, which returns the number of operations successfully completed:

public int sendBatch(int);

Just as in the case of standard update batching, you can clear the current batch of opera-
tions instead of executing it by using the clearBatch() method of the Statement interface. A
clearBatch() essentially resets the batch contents to empty.

public void clearBatch();

Oracle Update Batching Example
In this section, we’ll look at an example that illustrates Oracle update batching. The
DemoOracleUpdateBatching class begins with the import statements and the main()
method declaration. Within the main() method, we obtain the connection as usual:

/* This program illustrates use of Oracle update batching.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0. and 9.2.0.1.0.
*/
import java.sql.SQLException;
import java.sql.Statement; // for accessing constants only
import oracle.jdbc.OraclePreparedStatement;
import oracle.jdbc.OracleConnection;
import book.util.JDBCUtil;
import book.util.Util;
class DemoOracleUpdateBatching
{
public static void main(String args[])
{
Util.checkProgramUsage(args);
OracleConnection oconn = null;
OraclePreparedStatement opstmt = null;
try
{
// get connection, set it to autocommit within JDBCUtil.getConnection()
oconn = (OracleConnection)JDBCUtil.getConnection(
"benchmark", "benchmark", args[0]);

We prepare an insert statement, casting the returned object to the
OraclePreparedStatement interface:

// prepare a statement to insert data
opstmt = (OraclePreparedStatement) oconn.prepareStatement(
"insert into t1(x) values (?)");

We set the batch size to 3 at the statement level:

opstmt.setExecuteBatch(3);

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 173

We then insert three rows, printing out the number of rows returned each time. Since the
batch size is 3, Oracle queues up the batches and executes them all together with the third
insert.

// first insert
opstmt.setInt(1, 1);
// following insert is queued for execution by JDBC
int numOfRowsInserted = opstmt.executeUpdate();
System.out.println("num of rows inserted: " + numOfRowsInserted);
// second insert
opstmt.setInt(1, 2);
// following insert is queued for execution by JDBC
numOfRowsInserted = opstmt.executeUpdate();
System.out.println("num of rows inserted: " + numOfRowsInserted);
// third insert
opstmt.setInt(1, 3);
// since batch size is 3, the following insert will result
// in JDBC sending all three inserts queued so far (including
// the one below) for execution
numOfRowsInserted = opstmt.executeUpdate();
System.out.println("num of rows inserted: " + numOfRowsInserted);

We next insert another row. This insert will get queued again in a fresh batch.

// fourth insert
opstmt.setInt(1, 4);
// following insert is queued for execution by JDBC
numOfRowsInserted = opstmt.executeUpdate();
System.out.println("num of rows inserted: " + numOfRowsInserted);

We send this batch explicitly using the sendBatch() method:

// now if you want to explicitly send the batch, you can
// use the sendBatch() method as shown below.
numOfRowsInserted = opstmt.sendBatch();
System.out.println("num of rows sent for batch: " + numOfRowsInserted);

Finally, we commit our transaction and end the program:

oconn.commit();
}
catch (Exception e)
{
// handle the exception properly - in this case, we just
// print a message and roll back
JDBCUtil.printExceptionAndRollback(oconn, e);

}
finally
{
// close the result set, statement, and connection.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT174

// ignore any exceptions since we are in the
// finally clause.
JDBCUtil.close(opstmt);
JDBCUtil.close(oconn);

}
}

}

When we execute the preceding program (after deleting any pre-existing rows from t1),
we get the following output:

B:\>java DemoOracleUpdateBatching ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
num of rows inserted: 0
num of rows inserted: 0
num of rows inserted: 3
num of rows inserted: 0
num of rows sent for batch: 1

As expected, the first two inserts were actually queued up and sent along with the third
insert, as is evident from the number of rows inserted. The next insert is, however, executed
explicitly when we use the sendBatch() method.

Now that you’re familiar with both types of batching, next we’ll cover a caveat regarding
mixing interdependent statements in a batch.

Mixing Interdependent Statements in a Batch
Both update batching implementations generally work as expected. There are cases where the
results may be surprising to you (especially when you use Oracle update batching). Intuitively,
you would expect that changing the batch size should impact only the performance of the
application, not the actual data inserted, deleted, and so on. However, this is not the case if
you have multiple statements using batching in a loop, and some of these statements can
have an impact on the rows manipulated by other statements in the loop.

Consider the following class (based on a test case supplied by Tom Kyte), which uses
Oracle update batching. It takes a batch size as a command-line parameter and uses Oracle
update batching to set the execution batch size on an insert and a delete from the same table
t1 that we created in the earlier examples:

/* This program illustrates a special case of Oracle update batching
where the results are nonintuitive although correct as per
the JDBC specification.

* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0. and 9.2.0.1.0.
*/
import java.sql.Statement;
import java.sql.Connection;
import java.sql.PreparedStatement;
import oracle.jdbc.OraclePreparedStatement;
import book.util.JDBCUtil;

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 175

class TestUpdateBatching
{
public static void main(String args[])throws Exception
{
if(args.length != 1)
{
System.out.println("Usage: java TestUpdateBatching <batch_size>");

}
int batchSize = Integer.parseInt(args[0]);
Connection conn = null;
Statement stmt = null;
OraclePreparedStatement ipstmt = null;
OraclePreparedStatement dpstmt = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");
stmt = conn.createStatement ();
ipstmt = (OraclePreparedStatement) conn.prepareStatement(

"insert into t1(x) values (?)");
ipstmt.setExecuteBatch(batchSize);
dpstmt = (OraclePreparedStatement) conn.prepareStatement(
"delete from t1 where x = ?");

dpstmt.setExecuteBatch(batchSize);

After creating the insert and delete statements and setting their batch size, we go in a
loop where the insert statement inserts the loop index i, and the delete statement deletes
the values matching 1 added to the loop index (i.e., i + 1).

for(int i = 0; i < 2; i++)
{
ipstmt.setInt(1, i);
int numOfRowsInserted = ipstmt.executeUpdate();
System.out.println("num of rows inserted: " + numOfRowsInserted);
dpstmt.setInt(1, i+1);
int numOfRowsDeleted = dpstmt.executeUpdate();
System.out.println("num of rows Deleted: " + numOfRowsDeleted);

}

We send the batches for any remaining rows outside and commit the transaction at the
end of the program:

ipstmt.sendBatch();
dpstmt.sendBatch();
conn.commit();

}
catch (Exception e)
{
// handle the exception properly - in this case, we just
// print a message and roll back
JDBCUtil.printExceptionAndRollback(conn, e);

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT176

}
finally
{
// close the result set, statement, and connection.
// ignore any exceptions since we are in the
// finally clause.
JDBCUtil.close(ipstmt);
JDBCUtil.close(dpstmt);
JDBCUtil.close(conn);

}
}

}

When we run the program with a batch size of 1, we get the following output:

B:\>java TestUpdateBatching 1
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
num of rows inserted: 1
num of rows Deleted: 0
num of rows inserted: 1
num of rows Deleted: 0

A select from table t1 gives

benchmark@ORA10G> select * from t1;
0
1

After deleting all rows from table t1, let’s run the program with a batch size of 2:

B:\>java TestUpdateBatching 2
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
num of rows inserted: 0
num of rows Deleted: 0
num of rows inserted: 2
num of rows Deleted: 1

When we do a select this time, we get a different result from the one we got when the
batch size was 1:

benchmark@ORA10G> select * from t1;
0

This is a case in which changing the batch size apparently changed the program’s out-
come! Although this looks like a bug, it turns out that this behavior is correct. Recall that in
Oracle update batching, a batch is automatically sent to the database once the batch size is
reached. When the batch size is 1, the delete statement does not affect any rows, since it
attempts to delete values that do not exist in the database. So, we get two rows as expected.
Table 5-3 lists the steps the JDBC driver goes through when the batch size is 2.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 177

Table 5-3. Steps in the for Loop When the Batch Size is 2 While Executing the
TestUpdateBatching Class

Loop Index Value Statement What Happens
(Value of i)

0 insert The batch size is 2. The statement gets queued up.

delete Since this is a new statement with a batch size of 2,
it also gets queued up.

2 insert This is the second insert, which implies we have
reached the batch size limit. The JDBC driver sends both
inserts inserting two rows, with column values of 0 and 1
for column x in table t1.

delete This is the second delete, which implies we have reached
the batch size limit. The JDBC driver sends and executes
both deletes. The first delete deletes the value of a row
with a column value of 1. The second delete does not
delete any rows since no rows match the criteria. Hence,
we are left with just one row with a value of 0 for column x.

The key thing to note is that the delete statements in the loop directly affect the values
inserted by the insert statement. In the case of a batch size of 1, the deletes worked on the
data available after the inserts had been applied to the database. In the case of a batch size of
2, the state of the database on which deletes worked was different (since all deletes were sent
after the two inserts were executed, not just the preceding ones). Since in the case of Oracle
update batching this happens implicitly, it looks more confusing.

From this discussion, we can conclude that the batch size can impact the results when we
mix different statements where the following statements affect the results of the preceding
ones. In such cases, we should either ensure that our logic does not get impacted by the batch
size or avoid using batches altogether. For example, we can change the loop structure of the
program TestUpdateBatching to the following to get consistent results (assuming we want all
inserts applied before all deletes):

for(int i = 0; i < 2; i++)
{
ipstmt.setInt(1, i);
int numOfRowsInserted = ipstmt.executeUpdate();
System.out.println("num of rows inserted: " + numOfRowsInserted);

}
ipstmt.sendBatch();
for(int i = 0; i < 2; i++)
{
dpstmt.setInt(1, i+1);
int numOfRowsDeleted = dpstmt.executeUpdate();
System.out.println("num of rows Deleted: " + numOfRowsDeleted);

}
dpstmt.sendBatch();
conn.commit();

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT178

Oracle Update Batching vs. Standard Update Batching
In Oracle update batching, as soon as the number of statements added to the batch reaches
the batch value, the batch is executed. Recall that

• You can set a default batch at the Connection object level, which applies to any pre-
pared statement executed using that connection.

• You can set a statement batch value for any individual prepared statement. This value
overrides any batch value set at the Connection object level.

• You can explicitly execute a batch at any time, overriding both the connection batch
value and the statement batch value.

In contrast to Oracle update batching, standard update batching involves an explicit
manual execution of the batch, as there is no batch value. You should choose standard update
batching if you are concerned about the portability of your Java code across databases. Other-
wise, choose Oracle update batching because you get better performance out of it (as you’ll
learn in the next section).

■Caution You can’t mix and match the standard update batching syntax and Oracle update batching
syntax. If you do so, you will get a SQLException.

Batching Performance Analysis
The following StandardVsOracleBatching class compares the elapsed time and the latches
consumed for inserting 10,000 records for the case of standard update batching and Oracle
update batching. The StandardVsOracleBatching class uses the utility class (discussed in the
section “JDBC Wrapper for RUNSTATS” of Chapter 1) to compare the latches consumed and
the time taken for the preceding three cases.

After the imports, the class begins by declaring some private variables:

/* This program compares standard update batching with Oracle update
batching for elapsed times and latches consumed using the
JRunstats utility.

* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0. and 9.2.0.1.0.
*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import oracle.jdbc.OraclePreparedStatement;
import book.util.JDBCUtil;
import book.util.JRunstats;
class StandardVsOracleBatching
{
private static int s_numberOfRecords = 0;

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 179

private static int s_batchSize = 1;
private static long s_start = 0;
private static long s_middle = 0;
private static long s_end = 0;
private static int[] s_batchSizeArr =
{ 1, 5, 10, 50, 75, 100, 150, 200, 300, 400, 500,
750, 1000, 2000, 3000, 5000, 10000 };

In particular, the static variable s_batchSizeArr declares an array of batch sizes that we
will run our three cases with. The following _checkUsage() method simply checks the program
usage. The program takes the total number of records that we want to insert as a command-
line parameter:

private static void _checkUsage (String[] args)
{
int argc = args.length;
if(argc != 1)
{
System.err.println(
"Usage: java StandardVsOracleBatching <number of records>");

Runtime.getRuntime().exit(1);
}
s_numberOfRecords = Integer.parseInt(args[0]);

}

In the main() method, we invoke _checkUsage() and get the connection in the try catch
block after declaring some variables:

public static void main(String args[])
public static void main(String args[])

{
_checkUsage(args);
Connection conn = null;
PreparedStatement pstmt = null;
OraclePreparedStatement opstmt = null;
String insertStmtStr = "insert into t1(x, y) values (?, ?)";
try
{
// get connection; set autocommit to false within JDBCUtil.
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

We prepare the statements to be used for standard and Oracle update batching, respec-
tively:

pstmt = conn.prepareStatement(insertStmtStr);
opstmt = (OraclePreparedStatement) conn.prepareStatement(insertStmtStr);

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT180

For each batch size, we execute the two cases, beginning with the case of standard update
batching:

for(int x=0; x < s_batchSizeArr.length; x++)
{

In the loop, we first prepare the benchmark statements in JRunstats:

JRunstats.prepareBenchmarkStatements(conn);

We set the current batch size in a variable:

s_batchSize = s_batchSizeArr[x];

Then we mark the beginning of the execution of the inserts based on standard update
batching. We also mark our start time.

// mark beginning of execute with standard update batching
JRunstats.markStart(conn);
s_start = System.currentTimeMillis();

The following for loop inserts 10,000 records using the current batch size:

// execute with standard update batching
for(int i=0; i < s_numberOfRecords; i++)
{
// batch s_batchSize number of statements
// before sending them as one round-trip.
int j = 0;
for(j=0; j < s_batchSize; j++)
{
pstmt.setInt(1, i);
pstmt.setString(2, "data" + i);
pstmt.addBatch();
// System.out.println("Inserted " + numOfRowsInserted + " row(s)");
}
i += (j-1);
int[] updateCounts = pstmt.executeBatch();
//System.out.println("i = " + i);

}

Next, we insert the same number of records using Oracle update batching after marking
the middle of our benchmark:

// mark beginning of execute with Oracle update batching
JRunstats.markMiddle(conn);
s_middle = System.currentTimeMillis();
// set the execute batch size
opstmt.setExecuteBatch(s_batchSize);
// bind the values
for(int i=0; i < s_numberOfRecords; i++)
{

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 181

// bind the values
opstmt.setInt(1, i);
opstmt.setString(2, "data"+i);
int numOfRowsInserted = opstmt.executeUpdate();

}

We mark the end of the benchmark run, and then we print out the results followed by var-
ious close() statements being invoked to release JDBC resources in the finally clause:

s_end = System.currentTimeMillis();
JRunstats.markEnd(conn, 10000);
System.out.println("Standard Update batching (recs="+
s_numberOfRecords+ ", batch=" + s_batchSize + ") = "
+ (s_middle - s_start) + " ms");

System.out.println("Oracle Update batching (recs="+
s_numberOfRecords+ ", batch=" + s_batchSize + ") = " +
(s_end - s_middle) + " ms");

conn.commit();
JRunstats.closeBenchmarkStatements(conn);

}
}
catch (Exception e)
{
// handle the exception properly - in this case, we just
// print a message and roll back
JDBCUtil.printExceptionAndRollback(conn, e);

}
finally
{
// release JDBC resources in the finally clause.
JDBCUtil.close(pstmt);
JDBCUtil.close(opstmt);
JDBCUtil.close(conn);

}
}

}

I ran the StandardVsOracleBatching program with multiple values of batch sizes for
inserting 10,000 records into table t1 that I created as follows:

benchmark@ORA10G> create table t1 (x number, y varchar2(20));
Table created.

Table 5-4 and Figure 5-3 show the results of comparing elapsed times taken when I inserted
10,000 records for the cases of standard update batching and Oracle update batching. For no
batching, it took an average of 13,201 milliseconds to insert 10,000 records.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT182

Table 5-4. Comparing Standard Update Batching with Oracle Update Batching for Inserting
10,000 Records

Batch Size Standard Update Batching (Milliseconds) Oracle Update Batching
(Milliseconds)

1 13,201 13,201

5 2,861 2,629

10 1,554 1,406

30 702 613

50 532 440

75 456 359

100 402 322

150 370 304

200 278 274

300 349 280

400 345 269

500 320 263

750 345 282

1,000 327 232

2,000 328 236

3,000 406 207

5,000 372 375

10,000 490 461

Figure 5-3. Comparing standard update batching with Oracle update batching for inserting
10,000 records

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 183

Figure 5-4 shows a comparison of latches consumed for standard versus Oracle update
batching. The case of no batching is shown as batch size 1.

Figure 5-4. Comparing standard update batching with Oracle update batching in
terms of latches consumed

We can make the following observations from the charts in Figure 5-3 and Figure 5-4:

• Batching makes a huge difference, both in elapsed time and in latches consumed. With-
out batching enabled (or equivalently with a batch size of 1), the average time taken is
13,201 milliseconds compared to the worst case of 2,861 milliseconds and the best case
of 207 milliseconds when batching is used. Similarly, the latches consumed go down
dramatically once batching is used, as shown in Figure 5-4.

• In general, in terms of elapsed time, Oracle update batching performs better than stan-
dard update batching. In the preceding experiment, standard update batching took
between 1% to 30% more time as compared to Oracle update batching, depending on
the batch size.

• In terms of latch consumption, the difference between Oracle update batching and
standard update batching seems to be negligible.

• Although Oracle documentation recommends a batch size of 5 to 30 as optimal, the
preceding case shows that a batch size of around 200 was best for standard update
batching, and a batch size of around 3,000 was best for Oracle update batching in terms
of elapsed times. In terms of latch consumption, a batch size of 2,000 was best for stan-
dard update batching, whereas a batch size of 750 resulted in the lowest number of
latches consumed for Oracle update batching. Of course, this does not prove that these
batch sizes are always optimal—it only demonstrates that you should benchmark criti-
cal portions of code using an experiment such as that just presented to find out what
the optimal batch size is in your case.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT184

• Notice that as the batch size increases, you gain in terms of elapsed time initially, and
then you start witnessing a negative effect. For example, in the case of Oracle update
batching, after a batch size of 3,000 you start seeing decreasing performance. This indi-
cates that you cannot blindly set the batch size to the maximum number of records you
modify; rather, you have to benchmark your particular scenario to arrive at an optimal
batch size.

• It is a good idea to parameterize the batch size for an important set of operations so
that you can easily change it.

Summary
In this chapter, you learned how to query and modify data using the JDBC classes Statement,
PreparedStatement, and OraclePreparedStatement. You also learned the reasons you should
not use the Statement class in production code, as it does not support using bind variables. By
using bind variables in your program, you not only make your application more performant
and scaleable, but you also make it more secure by preventing SQL injection attacks.

You discovered how to boost application performance tremendously by using update
batching, which in Oracle is available only when you use prepared statements. You saw a
comparison of standard and Oracle update batching in terms of elapsed times and latch
consumption, and you observed that Oracle update batching outperforms standard update
batching in terms of elapsed time (in terms of latches, the difference between the two is negli-
gible). You also saw how batching can dramatically reduce the latch consumption, thus
improving scalability. You looked at how mixing interdependent batch statements in your
application can sometimes lead to unexpected results.

A major take-away message from this chapter is that, if you are embedding SQL state-
ments in your JDBC code, you should use a PreparedStatement object and use bind variables
wherever appropriate. However, a strong case can also be made for wrapping your DML
statements in PL/SQL packaged procedures and invoking them from JDBC using
CallableStatement objects. This is what we will examine in the next chapter.

CHAPTER 5 ■ STATEMENT AND PREPAREDSTATEMENT 185

CallableStatement

A CallableStatement interface extends PreparedStatement to execute and retrieve data from
stored SQL procedures. In this chapter, you’ll explore in detail how to invoke stored SQL pro-
cedures from JDBC using the SQL92 syntax and Oracle syntax. Toward the end of the chapter,
I’ll make a strong case for almost always wrapping code in stored SQL procedures, and invok-
ing the stored procedures using CallableStatement as opposed to embedding them in a JDBC
program and using PreparedStatement to execute them.

A Brief Introduction to Stored Procedures
and PL/SQL
Stored procedures allow you to perform certain tasks procedurally in the database that you
can’t perform using the set-oriented SQL language. When executing a stored procedure, you’re
already in the database, so network round-trips aren’t an issue.

In Oracle, you can write stored procedures in either PL/SQL or Java. Since the syntax for
calling Java stored procedures is the same as the syntax for calling PL/SQL stored procedures,
we will deal only with PL/SQL procedures in this book. In particular, in this chapter the term
“stored procedure” refers to PL/SQL stand-alone procedures, functions, packaged procedures,
or packaged functions.

Please note that this section by no means presents a detailed introduction to stored pro-
cedures and PL/SQL—entire tomes have been written on this subject. I assume that you are
reasonably familiar with PL/SQL; if not, I recommend reading PL/SQL User’s Guide and Refer-
ence before you proceed further. I also highly recommend Connor McDonald’s Mastering
Oracle PL/SQL (Apress, ISBN: 1-59059-217-4) for advanced PL/SQL users. Having said that,
let’s briefly go through an example PL/SQL package that we’ll subsequently invoke from Java
in this chapter.

■Note For the uninitiated, a PL/SQL package is a schema object that groups logically related PL/SQL
types, variables, and subprograms. A package has a specification that declares its subprograms and a body
that actually implements these subprograms. You’ll see the advantages of using packages in the section
“Packaging Matters!” of Chapter 18.

187

C H A P T E R 6

■ ■ ■

The following code snippet shows the specification of our PL/SQL package:

scott@ORA10G> create or replace package callable_stmt_demo
2 as
3 function get_emp_details_func(p_empno in number)
4 return sys_refcursor;
5 procedure get_emp_details_proc(p_empno in number,
6 p_emp_details_cursor out sys_refcursor);
7 procedure get_emps_with_high_sal(p_deptno in number,
8 p_sal_limit in number default 2000 ,
9 p_emp_details_cursor out sys_refcursor);
10 procedure give_raise(p_deptno in number);
11 end;
12 /

Package created.

As you can see, the PL/SQL package is called callable_stmt_demo. It defines three proce-
dures, get_emp_details_proc, get_emps_with_high_sal, and give_raise, and a function,
get_emp_details_func. The data type sys_refcursor used in these procedures refers to a ref
cursor. Ref cursors are cursor variables typically used to return a query’s result to a client pro-
gram (e.g., one using JDBC). In a JDBC program, the ref cursor is seen as a ResultSet object
(which you should be familiar with by now). The data type sys_refcursor is Oracle’s built-in
type (starting from 9i) that represents a ref cursor. Thus, when we invoke the function
get_emp_details_func later using JDBC, we will get a ResultSet object that corresponds
to the ref cursor returned by the function.

Let’s now look at the package body that shows us the implementation of the package pro-
cedures and functions declared in the specification.

scott@ORA10G> create or replace package body callable_stmt_demo
2 as
3 function get_emp_details_func(p_empno in number)
4 return sys_refcursor
5 is
6 l_emp_details_cursor sys_refcursor;
7 begin
8 open l_emp_details_cursor for
9 select empno, ename, job
10 from emp
11 where empno = p_empno;
12
13 return l_emp_details_cursor;
14 end;
15 procedure get_emp_details_proc(p_empno in number,
16 p_emp_details_cursor out sys_refcursor)
17 is
18 begin
19 p_emp_details_cursor := get_emp_details_func(

CHAPTER 6 ■ CALLABLESTATEMENT188

20 p_empno => p_empno);
21 end;
22 procedure get_emps_with_high_sal(p_deptno in number,
23 p_sal_limit in number default 2000 ,
24 p_emp_details_cursor out sys_refcursor)
25 is
26 begin
27 open p_emp_details_cursor for
28 select empno, ename, job, sal
29 from emp
30 where deptno = p_deptno
31 and sal > p_sal_limit;
32 end;
33 procedure give_raise(p_deptno in number)
34 is
35 begin
36 update emp
37 set sal = sal * 1.5
38 where deptno = p_deptno;
39 end;
40 end;
41 /

Package body created.

As you can see, the function get_emp_details_func returns a cursor to a query that
contains selected details of the employee whose employee number matches the function
parameter p_empno. The procedure get_emp_details_proc returns a cursor to the same query
in an out parameter. The procedure get_emps_with_high_sal gets the details of employees
who earn a salary higher than the salary passed as a parameter to the procedure. And finally,
the procedure give_raise gives a generous 50% raise to all employees of a given department.

In the next section, we discuss how to call these stored procedures using CallableStatement
from JDBC.

Invoking Stored Procedures from JDBC
Calling a stored procedure from Java using JDBC involves the following steps:

1. Formulate the CallableStatement string.

2. Create a CallableStatement object.

3. Bind input parameters.

4. Register output parameters.

5. Execute CallableStatement and retrieve the results.

We’ll go through each of these steps in the following sections.

CHAPTER 6 ■ CALLABLESTATEMENT 189

Formulating the CallableStatement String
There are two syntaxes you can use to formulate a CallableStatement string: the SQL92 syntax
and the Oracle syntax. The SQL92 syntax is more portable (note that it makes only your JDBC
calls portable—the underlying stored procedures follow proprietary syntax). Since there is no
cost associated with using one syntax over the other, you should use the SQL92 syntax in your
production code. Let’s look at the SQL92 syntax first.

SQL92 Syntax
For stand-alone procedures or packaged procedures, the SQL92 syntax is

{call [schema.][package.]procedure_name[(?, ?, ..)]}

For stand-alone functions or packaged functions, the SQL92 syntax is

{? = call [schema.][package.]function_name[(?, ?, ..)]}

Note the following points:

• The square brackets [] denote optionality of an element (e.g., the schema in which the
procedure was created is optional). The curly braces {}, on the other hand, are part of
the syntax—they don’t denote optionality.

• The other elements break down as follows:

• schema: The schema of the owner of the stored procedure.

• package: The package name if the procedure is in a package.

• procedure_name or function_name: The name of the procedure or function.

• ?: The placeholder for the in, in out, and out parameters of the procedure, or the
return value of a function. In 10g, you can also use binding by named parameters,
in which case each ? can be replaced by the actual formal parameter name in the
called procedure.

• When you call a procedure/function in PL/SQL, you include a semicolon ; at the end.
Note, however, that there is no semicolon at the end of the SQL92 CallableStatement
string.

If we apply the preceding syntaxes to call the callable_demo_package’s procedure and
function, we get the following string for the procedure:

{call callable_stmt_demo.get_emp_details_proc(?, ?)}

and the following string for the function:

{? = call callable_stmt_demo.get_emp_details_func(?, ?)}

Let’s now look at the Oracle syntax.

CHAPTER 6 ■ CALLABLESTATEMENT190

Oracle Syntax
If you are familiar with anonymous blocks, then you should be comfortable with the following
Oracle syntax. For stand-alone procedures or packaged procedures, the Oracle syntax is

begin [schema.][package.]procedure_name[(?, ?, ...)]; end;

For stand-alone functions or packaged functions, the Oracle syntax is

begin ? := [schema.][package.]function_name[(?, ?, ...)]; end;

The meaning of most elements is the same as explained in the previous section for the
SQL92 syntax. Note in addition that begin appears at the beginning and end; (with a semi-
colon) appears at the end. Also note that := is used instead of = (as in SQL92 syntax) when
invoking a function.

For our example procedure and function in the package callable_demo_package, the pre-
ceding syntax yields the following CallableStatement string for the procedure:

"begin callable_stmt_demo.get_emp_details_proc(?, ?) end;",

and this string for the function:

"begin ? := callable_stmt_demo.get_emp_details_func(?, ?) end;",

Let’s move on to create a CallableStatement using these strings next.

Creating a CallableStatement Object
We use the Connection object’s prepareCall() method to create a CallableStatement object.
For example, if we use the SQL92 syntax to invoke it, the creation of CallableStatement looks
like

CallableStatement cstmt = null;
try
{
String sql92Style =
"{ call callable_stmt_demo.get_emp_details_proc(?,?) }";

. . .
}

Now that we have the CallableStatement object, let’s look at how to bind the input
parameters.

Binding Input (in or in out) Parameters
For binding input parameters for a CallableStatement, we use the appropriate setXXX()
method based on the type of the parameter to be bound. Recall the signature of the procedure
get_emp_details_proc:

procedure get_emp_details_proc(p_empno in number,
p_emp_details_cursor out sys_refcursor);

CHAPTER 6 ■ CALLABLESTATEMENT 191

Here, the first parameter is an in (input) parameter, and the second parameter is an out
(output) parameter. We can bind the input parameter (which is parameter number 1) by ordi-
nal number (the index of the parameter) or by named parameter. The following snippet
illustrates binding by parameter index:

CallableStatement cstmt = null;
try
{
. . .
String sql92Style =
"{ call callable_stmt_demo.get_emp_details_proc(?,?) }";

// create the CallableStatement object
cstmt = conn.prepareCall(sql92Style);
cstmt.setInt(1, inputEmpNo);
. . .
}

The last line in the preceding code tells us that the first parameter is an int and its bind
value is inputEmpNo.

In 10g, we can also use named parameters to bind input parameters.

■Note Binding or registering by named parameter is a new feature in 10g. Also, you can’t mix named
parameter binding and ordinal parameter binding for the same statement-related code.

To use named parameters in the preceding example, we replace the last statement in the
code snippet with the following:

cstmt.setInt("p_empno", inputEmpNo);

Here, p_empno is the formal parameter name of the first parameter of the procedure
get_emp_details_proc. This parameter name does not necessarily appear anywhere in the
SQL string. This differs from the setXXXatName() method of the OraclePreparedStatement
interface discussed in the previous chapter, whose first argument is a substring of the SQL
string.

■Note As of 10g Release 1, there’s no support for named parameters for a PL/SQL function, because
there’s no “name” of the returned parameter, and you can’t mix and match binding by name and binding by
ordinal parameter index.

Named parameters are especially useful if we have one or more parameters in a stored
procedure with default values. In this case, we can specify only the parameters that do not
have default values. For example, consider the following procedure in the package
callable_stmt_demo:

CHAPTER 6 ■ CALLABLESTATEMENT192

procedure get_emps_with_high_sal(p_deptno in number,
p_sal_limit in number default 2000 ,
p_emp_details_cursor out sys_refcursor)

is
begin
open p_emp_details_cursor for
select empno, ename, job, sal
from emp
where deptno = p_deptno
and sal > p_sal_limit;

end;

It returns a set of employees for a given department who earn a salary higher than a given
limit as a ref cursor in its out parameter. The default value for the passed salary limit is 2,000.
If we use ordinal parameter binding, we have to bind both input parameters (p_deptno and
p_sal_limit), even if the default value of the p_sal_limit parameter is acceptable to us. How-
ever, if we use named parameters, we can just bind the input parameter p_deptno as follows
(note that our SQL string has only the number of ?s that we are actually binding, which in this
case is two: one for the in parameter p_deptno and the other for the out parameter
p_emp_details_cursor):

try
{
// formulate a CallableStatement string using SQL92
// syntax
String oracleStyle =
"begin callable_stmt_demo.get_emps_with_high_sal(?, ?); end;";

// create the CallableStatement object
cstmt = conn.prepareCall(oracleStyle);
// bind the input value by name
cstmt.setInt("p_deptno", 10);
// no need to pass the second parameter "p_sal_limit"
// which gets a default value of 2000

. . .

Registering Output (out or in out) Parameters
To get results back from a stored procedure, we have to register any output parameters (out or
in out parameters) before executing the callable statement. Here, too, we can choose to use
ordinal binding or named parameter binding (starting from Oracle 10g). We use the register-
OutParameter() method. The following code snippet illustrates how to register the cursor
output parameter for the procedure callable_stmt_demo.get_emp_details_proc:

CallableStatement cstmt = null;
try
{
. . .
// register the output value

CHAPTER 6 ■ CALLABLESTATEMENT 193

cstmt.registerOutParameter(2, OracleTypes.CURSOR);
. . .

}

As in the case of binding the input parameter, the first parameter in registerOutParameter()
is the formal parameter index of the called procedure, and the second parameter is the type of the
output parameter (in this case, a ResultSet that maps to OracleTypes.CURSOR). For binding by
name, we would use the formal parameter name instead of the index number, as follows:

try
{
. . .
// register the output value
cstmt.registerOutParameter(“p_emp_details_cursor”, OracleTypes.CURSOR);
. . .

}

NAMED PARAMETERS VS. ORDINAL PARAMETERS FOR CALLABLESTATEMENT

So should you use ordinal binding/registering or named parameter binding/registering? The decision is more
of a style issue than anything else. Table 6-1 summarizes the pros and cons of using ordinal parameters
versus using named parameters.

Table 6-1. Ordinal Parameters vs. Named Parameters

Ordinal Parameters: Binding or Registering Named Parameters: Binding or Registering

You have to bind all input parameters even You can skip the input parameters with
if the stored procedure has a default value. default values.

There is no impact on the JDBC code if you This impacts the JDBC code if you change the
change the name of a formal parameter formal parameter name, since you refer to it
(e.g., as part of a code cleanup). in JDBC.

The code is less readable since you have More readable since you use parameter names.
to know which parameter corresponds to
which index. However, you can improve
the readability of the calling code by using
meaningful constants for the parameter
indexes.

This impacts the JDBC code if you change There is no impact on the JDBC code if you
the positions of the formal parameters, change the positions of the formal parameters,
even if you retain their names. as long as you retain their names.

CHAPTER 6 ■ CALLABLESTATEMENT194

Executing CallableStatement and Retrieving Results
After we have set the in, in out, and out parameters, we can execute CallableStatement using
its execute() method, as follows:

try
{
. . .
cstmt.execute();
. . .

}

■Note For CallableStatement objects that invoke PL/SQL procedures resulting in data modification
(such as insert, delete, update, and merge), you could also use the executeUpdate() method. How-
ever, this method seems to always return 0 as the number of rows affected in my tests. I’ll stick to using
execute() in examples containing CallableStatement.

If we registered any out or in out parameters, we can get their returned values by calling
the appropriate getXXX() method on the CallableStatement object. For example, to get a
ResultSet object returned by the procedure callable_stmt_demo.get_emps_with_high_sal,
we use the following (named parameter method):

try
{
. . .
cstmt.execute();
rset = (ResultSet) cstmt.getObject("p_emp_details_cursor");

}

Putting It All Together in a Working Example
Now that you’ve gone through all the steps required to execute a callable statement, you’re
ready for a complete example that includes the relevant pieces of code you’ve studied so far.
The following DemoCallableStatement class offers many examples of using CallableStatement.
I provide explanatory comments in-between the code. I also list common errors and their
resolutions in the next section, which should help you out when you encounter
CallableStatement-related errors in your programs.

The class DemoCallableStatement demonstrates how to use

• SQL92 syntax for calling stored procedures

• Oracle syntax for calling stored procedures

• Binding by parameter index and binding by named parameters (including the case of
PL/SQL procedures having parameters with default values)

CHAPTER 6 ■ CALLABLESTATEMENT 195

The program begins by importing the requisite classes and checking the parameters (it
accepts one parameter, which is the database name):

/** This program demonstrates how to use CallableStatement.
* COMPATIBLITY NOTE:
* runs successfully against 10.1.0.2.0.
* Against 9.2.0.1.0, you have to comment out the
* code using the binding by name feature to compile and
* run this, as bind by name is not supported in 9i.
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.CallableStatement;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
import book.util.Util;
class DemoCallableStatement
{
public static void main(String args[])
{
Util.checkProgramUsage(args);

We declare some variables and get a connection inside the try catch block:

ResultSet rset = null;
Connection conn = null;
CallableStatement cstmt = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", args[0]);

The first example invokes _demoSql92SyntaxProcedureBindByIndex(), which, as its name
indicates, demonstrates how to use the SQL92 syntax to invoke a procedure with binding by
parameter index:

_demoSql92SyntaxProcedureBindByIndex(conn);

The second example invokes _demoOracleSyntaxFunctionBindByIndex(), which demon-
strates how to use the Oracle syntax to invoke a procedure using binding by parameter index:

_demoOracleSyntaxFunctionBindByIndex(conn);

The third example invokes _demoOracleSyntaxProcedureBindByName(), which demon-
strates how to use the Oracle syntax to invoke a procedure using binding by named
parameter:

_demoOracleSyntaxProcedureBindByName(conn);

CHAPTER 6 ■ CALLABLESTATEMENT196

The fourth example invokes _demoOracleSyntaxProcedureBindByNameWithDefault(),
which demonstrates how to use Oracle syntax to invoke a procedure using binding by named
parameter, with one of the parameters having a default value:

_demoOracleSyntaxProcedureBindByNameWithDefault(conn);

The final example invokes _demoOracleSyntaxProcedureBindByNameUpdate(), which
demonstrates how to use Oracle syntax to invoke a procedure that performs an update and
uses binding by named parameter:

_demoOracleSyntaxProcedureBindByNameUpdate(conn);
}
catch (SQLException e)
{
// print stack trace.
JDBCUtil.printException(e);

}
finally
{
// close the connection in finally clause
JDBCUtil.close(conn);

}
}

The definition of each of the procedures begins as follows, starting with
_demoSql92SyntaxProcedureBindByIndex() (please see the interspersed comments for
further details):

//////////// PRIVATE SECTION ////////////////
private static void _demoSql92SyntaxProcedureBindByIndex(Connection conn)
throws SQLException

{
System.out.println("Example 1, SQL 92 syntax, calling a procedure, " +
"binding by index");

int inputEmpNo = 7369;
CallableStatement cstmt = null;
ResultSet rset = null;
try
{
// The procedure invoked below has a signature of:
// procedure get_emp_details_proc(p_empno in number,
// p_emp_details_cursor out sys_refcursor)

First, we formulate a CallableStatement string using the SQL92 syntax:

String sql92Style =
"{ call callable_stmt_demo.get_emp_details_proc(?,?) }";

Next, we create the CallableStatement object:

cstmt = conn.prepareCall(sql92Style);

CHAPTER 6 ■ CALLABLESTATEMENT 197

Then we bind the input value using parameter by index:

cstmt.setInt(1, inputEmpNo);

We register the output value using the method registerOutParameter():

cstmt.registerOutParameter(2, OracleTypes.CURSOR);

We are now ready to execute the procedure:

cstmt.execute();

Next, we retrieve the result set (which is the second parameter). We loop through the
result set to print it out, followed by the finally clause, in which we release JDBC resources:

rset = (ResultSet) cstmt.getObject(2);
// print the result
while (rset.next())
{
int empNo = rset.getInt (1);
String empName = rset.getString (2);
String empJob = rset.getString (3);
System.out.println(empNo + " " + empName + " " + empJob);

}
}
finally
{
// release JDBC resources in finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}

Next is the definition of _demoOracleSyntaxFunctionBindByIndex():

private static void _demoOracleSyntaxFunctionBindByIndex(Connection conn)
throws SQLException

{
System.out.println("\nExample 2, Oracle syntax, calling a function," +
" binding by index");

int inputEmpNo = 7369;
ResultSet rset = null;
CallableStatement cstmt = null;
try
{
// The function invoked below has a signature of:
// function get_emp_details_func(p_empno in number)
// return sys_refcursor

CHAPTER 6 ■ CALLABLESTATEMENT198

We formulate a CallableStatement string using the Oracle syntax:

String oracleStyle =
"begin ? := callable_stmt_demo.get_emp_details_func(?); end;";

We create the CallableStatement object:

cstmt = conn.prepareCall(oracleStyle);

And then we bind the input variable and register the out parameter:

cstmt.setInt(2, inputEmpNo);
cstmt.registerOutParameter(1, OracleTypes.CURSOR);

Next, we execute the query, get the result set, and print the query results:

cstmt.execute();
rset = (ResultSet) cstmt.getObject(1);
// print the result
while (rset.next())
{
int empNo = rset.getInt (1);
String empName = rset.getString (2);
String empJob = rset.getString (3);
System.out.println(empNo + " " + empName + " " + empJob);

}
}
finally
{
// release JDBC resources in finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}

The definition of _demoOracleSyntaxProcedureBindByName() follows:

private static void _demoOracleSyntaxProcedureBindByName(Connection conn)
throws SQLException

{
System.out.println("\nExample 3, Oracle syntax, calling a procedure," +
" bind by name");

int inputEmpNo = 7369;
ResultSet rset = null;
CallableStatement cstmt = null;
try
{
// The procedure invoked below has a signature of:
// procedure get_emp_details_proc(p_empno in number,
// p_emp_details_cursor out sys_refcursor)

CHAPTER 6 ■ CALLABLESTATEMENT 199

// formulate a CallableStatement string using SQL92
// syntax
String oracleStyle =
"begin callable_stmt_demo.get_emp_details_proc(?, ?); end;";

// create the CallableStatement object
cstmt = conn.prepareCall(oracleStyle);

Note how we use p_empno as the parameter name. This is the formal parameter name in
the procedure:

// bind the input value by name
cstmt.setInt("p_empno", inputEmpNo);
// register the output value
cstmt.registerOutParameter("p_emp_details_cursor", OracleTypes.CURSOR);
// execute the query
cstmt.execute();

We use the formal parameter again while retrieving results:

rset = (ResultSet) cstmt.getObject("p_emp_details_cursor");
// print the result
while (rset.next())
{
int empNo = rset.getInt (1);
String empName = rset.getString (2);
String empJob = rset.getString (3);
System.out.println(empNo + " " + empName + " " + empJob);

}
}
finally
{
// release JDBC resources in finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}

The definition of _demoOracleSyntaxProcedureBindByNameWithDefaul() demonstrates
how binding by name makes it easier to invoke a procedure with default values:

private static void _demoOracleSyntaxProcedureBindByNameWithDefault(
Connection conn)
throws SQLException

{
System.out.println("\nExample 4, Oracle syntax, calling a procedure," +
" named parameter (with default value)");

int inputEmpNo = 7369;
ResultSet rset = null;

CHAPTER 6 ■ CALLABLESTATEMENT200

CallableStatement cstmt = null;
try
{
// The procedure invoked below has a signature of:
// procedure get_emps_with_high_sal(p_deptno in number,
// p_sal_limit in number default 2000 ,
// p_emp_details_cursor out sys_refcursor)

Note that while formulating the CallableStatement string, you should give only two
parameter placeholders (there should not be a ? for the parameter with the default value in
the statement string):

// formulate a CallableStatement string using SQL92
// syntax
String oracleStyle =
"begin callable_stmt_demo.get_emps_with_high_sal(?, ?); end;";

// create the CallableStatement object
cstmt = conn.prepareCall(oracleStyle);
// bind the input value by name
cstmt.setInt("p_deptno", 10);
// no need to pass the second parameter "p_sal_limit"
// which gets a default value of 2000
// register the output value
cstmt.registerOutParameter("p_emp_details_cursor",
OracleTypes.CURSOR);

// execute the query
cstmt.execute();
rset = (ResultSet) cstmt.getObject("p_emp_details_cursor");
// print the result
while (rset.next())
{
int empNo = rset.getInt (1);
String empName = rset.getString (2);
String empJob = rset.getString (3);
int empSal = rset.getInt (4);
System.out.println(empNo + " " + empName + " " + empJob + " " +
empSal);

}
}
finally
{
// release JDBC resources in finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}

CHAPTER 6 ■ CALLABLESTATEMENT 201

The procedure _demoOracleSyntaxProcedureBindByNameUpdate() simply does an update
using binding by named parameters:

private static void _demoOracleSyntaxProcedureBindByNameUpdate(Connection conn)
throws SQLException

{
System.out.println("\nExample 5, Oracle syntax, calling a procedure," +
" update example");

CallableStatement cstmt = null;
try
{
// The procedure invoked below has a signature of:
// procedure give_raise(p_deptno in number)

// formulate a CallableStatement string using SQL92
// syntax
String oracleStyle =
"begin callable_stmt_demo.give_raise(?); end;";

// create the CallableStatement object
cstmt = conn.prepareCall(oracleStyle);
// bind the input value by name
cstmt.setInt("p_deptno", 10);
// execute
cstmt.execute();
conn.commit();

}
catch (SQLException e)
{
// print a message and roll back.
JDBCUtil.printExceptionAndRollback(conn, e);

}
finally
{
// release JDBC resources in finally clause.
JDBCUtil.close(cstmt);

}
}

}

CallableStatement Common Errors and Resolutions
Table 6-2 lists some common error conditions that you may encounter when using
CallableStatement and their resolutions.

CHAPTER 6 ■ CALLABLESTATEMENT202

CHAPTER 6 ■ CALLABLESTATEMENT 203

Ta
bl

e
6-

2.
C

om
m

on
 E

rr
or

s W
h

il
e

U
si

n
g
Ca
ll
ab
le
St
at

em
en

t
an

d
 T

h
ei

r
Su

gg
es

te
d

 R
es

ol
u

ti
on

s

Ex
ce

pt
io

n
M

es
sa

ge
*

Po
ss

ib
le

 C
au

se
(s

)
Ac

tio
n(

s)

ja
va
.s
ql
.S
QL
Ex
ce
pt
io
n:
 M
al
fo
rm
ed
 S
QL
92

T
h

e
fo

rm
at

 o
f t

h
e

ca
lla

b
le

D
o

u
b

le
-c

h
ec

k
yo

u
r
Ca
ll
ab
le
St
at
em
en
t

st
ri

n
g.

st
ri
ng
 a
t
po
si
ti
on
:
51
 .
 .
 .

st
ri

n
g

is
 in

co
rr

ec
t.

Fo
r

SQ
L9

2-
st

yl
e

st
ri

n
gs

, l
o

o
k

fo
r

m
is

si
n

g/
m

is
m

at
ch

ed
 c

u
rl

y
b

ra
ce

s,
 fo

r
ex

am
p

le
.

OR
A-
06
55
0:
 l
in
e
1,
 c
ol
um
n
60
:

T
h

e
fo

rm
at

 o
f t

h
e
Ca
ll
ab
le
St
at
em
en
t

Yo
u

 m
ay

 h
av

e
fo

rg
o

tt
en

 th
e

se
m

ic
o

lo
n

 a
t t

h
e

en
d

o
fP

LS
-0
01
03
:
En
co
un
te
re
d
th
e
sy
mb
ol

st
ri

n
g

is
 in

co
rr

ec
t f

o
rm

at
.

th
e

O
ra

cl
e-

st
yl

e
Ca
ll
ab
le
St
at
em
en
t

st
ri

n
g.

"e
nd
-o
f-
fi
le
"
wh
en
 e
xp
ec
ti
ng
 o
ne
 o
f

th
e
fo
ll
ow
in
g:

;
<a
n
id
en
ti
fi
er
>
<a
 d
ou
bl
e-
qu
ot
ed

de
li
mi
te
d-
id
en
ti
fi
er
>
.
.
.

Mi
ss
in
g
IN
 o
r
OU
T
pa
ra
me
te
r
at
 i
nd
ex
::
 1

Yo
u

 d
id

 n
o

t b
in

d
 a

ll
in

p
u

t p
ar

am
et

er
s

M
ak

e
su

re
 y

o
u

 b
in

d
 a

ll
in

p
u

t p
ar

am
et

er
s

an
d

ja
va
.s
ql
.S
QL
Ex
ce
pt
io
n:
 M
is
si
ng
 I
N
or
 O
UT

o
r

re
gi

st
er

 a
ll

o
u

tp
u

t p
ar

am
et

er
s.

re
gi

st
er

 a
ll

o
u

tp
u

t p
ar

am
et

er
s.

pa
ra
me
te
r
at
 i
nd
ex
::
 1
 .
 .
 .

OR
A-
06
55
0:
 l
in
e
1,
 c
ol
um
n
13
:

T
h

er
e

is
 a

 p
ar

am
et

er
 ty

p
e

m
is

m
at

ch
.

M
ak

e
su

re
 th

at
 y

o
u

 u
se

 th
e

co
rr

ec
t s

et
XX
X(
)

PL
S-
00
38
2:
 e
xp
re
ss
io
n
is
 o
f
wr
on
g
ty
pe

m
et

h
o

d
 fo

r
b

in
d

in
g

in
p

u
t p

ar
am

et
er

s
an

d
 th

e
co

rr
ec

t t
yp

e
w

h
ile

 r
eg

is
te

ri
n

g
o

u
tp

u
t p

ar
am

et
er

s.

.
.
.o
pe
ra
ti
on
 n
ot
 a
ll
ow
ed
:
or
di
na
l

Yo
u

 a
re

 u
si

n
g

b
o

th
 o

rd
in

al
 a

n
d

 n
am

ed

M
ak

e
su

re
 y

o
u

 u
se

 o
n

ly
 o

r d
in

al
 b

in
d

in
g

o
r

n
am

ed
bi
nd
in
g
an
d
Na
me
d
bi
nd
in
g
ca
nn
ot
 b
e

p
ar

am
et

er
 b

in
d

in
g

fo
r

th
e

sa
m

e
p

ar
am

et
er

 b
in

d
in

g—
d

o
n’

t m
ix

 a
n

d
 m

at
ch

.
co
mb
in
ed
!

st
at

em
en

t e
xe

cu
ti

o
n

.
ja
va
.s
ql
.S
QL
Ex
ce
pt
io
n:
 o
pe
ra
ti
on
 n
ot

al
lo
we
d:
 O
rd
in
al
 b
in
di
ng
 a
nd
 N
am
ed

bi
nd
in
g
ca
nn
ot
 b
e
co
mb
in
ed
!
.
.
.

OR
A-
06
55
0:
 l
in
e
1,
 c
ol
um
n
26
:P
LS
-0
03
02
:

E
it

h
er

 th
e

p
ro

ce
d

u
re

 d
o

es
 n

o
t e

xi
st

 o
r

C
h

ec
k

th
e

in
vo

ke
d

 p
ro

ce
d

u
r e

 n
am

e.
 M

ak
e

su
re

co
mp
on
en
t
'G
ET
_E
MP
S_
WI
TH
_H
IG
H_
SA
L'

th
e

u
se

r
d

o
es

 n
o

t h
av

e
th

e
ex

ec
u

te
th

e
d

at
ab

as
e

u
se

r
h

as
 th

e
ex

ec
u

te
 p

ri
vi

le
ge

 o
n

mu
st
 b
e
de
cl
ar
ed

p
ri

vi
le

ge
 o

n
 it

.
th

e
p

ro
ce

d
u

re
.

Where Should Your SQL Statements Reside,
in Java or PL/SQL?
In Chapter 5, we built a DemoPreparedStatementQuery class to fetch employee details given an
employee number, using a PreparedStatement object. The relevant portion of the class is
reproduced here:

try
{
pstmt = conn.prepareStatement(stmtString);
// bind the values
pstmt.setString(JOB_COLUMN_INDEX, "CLERK");
pstmt.setDate(HIREDATE_COLUMN_INDEX, new java.sql.Date(
new java.util.Date().getTime()));

// execute the query
rset = pstmt.executeQuery();
// print the result
System.out.println("printing query results ...\n");
while (rset.next())
{
int empNo = rset.getInt (SELECT_CLAUSE_EMPNO_COLUMN_INDEX);
String empName = rset.getString (SELECT_CLAUSE_ENAME_COLUMN_INDEX);
String empJob = rset.getString (SELECT_CLAUSE_JOB_COLUMN_INDEX);
System.out.println(empNo + " " + empName + " " + empJob);

}
}
finally
{
// release JDBC related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}

Another way to achieve the same objective is to use CallableStatement (or
OracleCallableStatement). We covered how to do this in the class DemoCallableStatement,
the relevant portion of which is reproduced here:

try
{
// The function invoked below has a signature of:
// function get_emp_details_func(p_empno in number)
// return sys_refcursor

// formulate a CallableStatement string using Oracle-style
// syntax
String oracleStyle =
"begin ? := callable_stmt_demo.get_emp_details_func(?); end;";

// create the CallableStatement object

CHAPTER 6 ■ CALLABLESTATEMENT204

cstmt = conn.prepareCall(oracleStyle);
// bind the input value
cstmt.setInt(2, inputEmpNo);
// register the output value
cstmt.registerOutParameter(1, OracleTypes.CURSOR);
// execute the query
cstmt.execute();
rset = (ResultSet) cstmt.getObject(1);
// print the result
while (rset.next())
{
int empNo = rset.getInt (1);
String empName = rset.getString (2);
String empJob = rset.getString (3);
System.out.println(empNo + " " + empName + " " + empJob);

}
}

...

In this case, we wrap our select statement in a packaged function and invoke it from
Java. Both alternatives achieve the same result, so which one should you prefer? In terms
of performance, there is no material difference, since the hard parsing of the anonymous
PL/SQL block that gets invoked should get done only once, and soft parsing can be controlled
by the techniques mentioned in Chapter 14.

However, wrapping the select statements in PL/SQL and invoking them using
CallableStatement has the following advantages:

• It creates a clear-cut work separation among developers. Those who love to do the
middle-tier (or the front-end) code focus on the Java layer. They just invoke methods
wrapped in PL/SQL interfaces when dealing with the database. Database experts, on
the other hand, work on providing a robust and performant PL/SQL interface for the
J2EE developers. Database developers using standard SQL tuning tools such as tkprof
can do any tuning independently.

• Instead of giving select, insert, and other such privileges to the database user directly
on tables, you can grant an execute privilege to the packages and procedures. This is a
significant improvement in terms of security. Chapter 16 examines this further.

• If you want to extend your logic, add some additional validation, enable auditing, and
so on, it is much easier to do so if your code resides in PL/SQL packages.

• It is much easier to tune, change, test, and deploy procedure queries (and inserts, etc.)
in PL/SQL than in Java. You just need to update the database, and everyone sees the
changes instantly. You don’t need to update Java classes at multiple places where your
middle-tier code is deployed. Also, the tuning process becomes infinitely easier. In
most cases, you can just run the procedure (or the SQL statement) independent of the
application, and use tkprof to tune it. You don’t need to go through the compile/tune
cycle on the middle-tier code in Java. I personally find this very convenient during
development.

CHAPTER 6 ■ CALLABLESTATEMENT 205

• If your code resides in PL/SQL, it is reusable by any application that can connect to a
database. You have effectively put the logic inside the database, and your Java program
accesses it through a well-defined PL/SQL interface. As a side effect, the system logic is
open to access from other clients/applications using the same PL/SQL API (e.g., from
an application written using Pro*C). For example, you could later on easily decide to
expose the PL/SQL layer as an SDK API to your end users for customization purposes.

• If your logic resides in PL/SQL, you can take maximum advantage of all database fea-
tures. Although it may seem a bit contradictory, this is the best way to make your code
database-independent if your application needs to run against a database other than
Oracle. (All major databases support a procedural language equivalent to Oracle’s
PL/SQL.) This way, you get the best of both worlds:

• You exploit the database fully by using its proprietary technology, which exposes
many powerful, database-specific features.

• You have essentially only one layer of code to worry about when porting to a differ-
ent database.

Of course, this assumes that you are using the SQL92 syntax to invoke stored procedures.

■Note A lot has been said and written about the fallacy of trying to make your application database-
independent by not using the database proprietary features, so I won’t repeat those arguments in this book.
There’s no harm in doing this if you can achieve it without any loss of functionality (e.g., by using the SQL92
syntax for invoking stored procedures instead of using the Oracle syntax). However, in the majority of cases,
trying to make the code database-independent only leads to severe problems, especially in terms of per-
formance. For more discussion on this topic, please see the section “Avoid the Black Box Syndrome” in
Chapter 1 of Effective Oracle by Design (Osborne McGraw-Hill, ISBN: 0-07-223065-7), or read through
Chapter 1 of Expert One-on-One Oracle (Apress, ISBN: 1-59059-243-3), both by Tom Kyte. You can also
visit Tom’s site at http://asktom.oracle.com to find discussions on this very important topic.

• You get all the other advantages that come with the PL/SQL. For example, PL/SQL is
tightly integrated with SQL, so you can easily mix SQL statements in PL/SQL code.
You also get the benefit of implicit cursor caching provided by PL/SQL (this feature
is discussed in Chapter 14).

There is an exception where you may want to consider using PreparedStatement (or
OraclePreparedStatement). This is when you bulk load a large amount of data into one or
more tables from a source external to the database (e.g., a file visible to the client but not to
the database server).

CHAPTER 6 ■ CALLABLESTATEMENT206

■Note If the external data source is visible to the database, other solutions such as using bfile,
utl_file, and so on become viable (see Chapter 13). Of course, if the data source is within the database
(e.g., in some other tables), or it is in some other database accessible to your database, you can and should
use straight SQL-based solutions such as insert into <table_name> select col1, co2 from

In this case, you could use PreparedStatement with update batching (standard update
batching or Oracle update batching) and gain performance. (Recall that in Oracle, update
batching is effectively available only for PreparedStatement and OraclePreparedStatement
objects.) You could conceivably implement a JDBC call to a stored procedure using array pro-
cessing (which we’ll cover in Chapter 12), where you take advantage of the bulk insert option
in PL/SQL (see Chapter 18). However, in this case, your code becomes more complex (since
you need to store the records in an array first and pass the array to the PL/SQL) and poten-
tially less performant. Except for this case, my recommendation is to always wrap your code in
PL/SQL packages (or in the procedural language equivalent to PL/SQL if you are using a non-
Oracle database) and invoke them using CallableStatement (or OracleCallableStatement).

■Tip In general, it is a good idea to wrap your SQL statements in PL/SQL packages and use
CallableStatement (or OracleCallableStatement) to invoke them, instead of putting your statements
in Java and using PreparedStatement (or OraclePreparedStatement). One exception to this guideline
is when you can take advantage of update batching to improve performance while bulk-loading a large
amount of data from a data source that is external to database.

Summary
In this chapter, you looked at the CallableStatement and OracleCallableStatement
interfaces and how you can use them to invoke stored SQL procedures using both the
SQL92 syntax and the Oracle syntax. In addition, I made a strong case for almost exclusively
using CallableStatement in programs to invoke logic that resides in PL/SQL packaged
subprograms.

CHAPTER 6 ■ CALLABLESTATEMENT 207

Result Sets Explored

You’ve already seen how result sets work in their simplest form in the earlier chapters. In this
chapter, you’ll explore many other capabilities of the ResultSet object, most of which were
introduced in JDBC 2.0. In particular, this chapter covers the following topics:

• Prefetching: The ability to set the number of rows to be retrieved with each trip to the
database.

• Scrollability: The ability to scroll backward and forward through the rows of a result set.
A ResultSet object with this ability is called a scrollable result set.

• Positioning: The ability of a scrollable result set to move to a particular row using a posi-
tion number relative to the current row, or an absolute row number counting from the
beginning or the end of the result set.

• Sensitivity: The ability to see internal and external changes made to the underlying
tables in the result set rows.

• Updatability: The ability to update rows of a result set and propagate the changes to the
underlying tables in the database.

Out of all these capabilities, prefetching is my favorite, as it can give excellent returns in
terms of performance without imposing any artificial restrictions on the query itself. In my
opinion, the remaining features can be considered “syntactic sugar” rather than useful
because

• They impose various limitations on the query itself (see the section “Result Set Limita-
tions” for a full list of these limitations). For example, for a result set to be updatable,
the query can select from only a single table and can’t contain any join operations,
which severely limits the capabilities of your SQL code. The worst part is that in return
you don’t get anything that you can’t achieve otherwise by using simple ResultSet
objects.

• There are simpler alternatives to all these capabilities when it comes to using them in a
real-world scenario. For example, instead of using the updatability feature to update
data, you can use plain old SQL update statements in a PreparedStatement object.
Another example is the use of a scrollable result set in scrolling through a fixed window
of records, something that can be accomplished with SQL and a simple ResultSet
much more efficiently (as you’ll learn in the section “Paginating Through a Result Set”).

209

C H A P T E R 7

■ ■ ■

CHAPTER 7 ■ RESULT SETS EXPLORED210

Although the official Oracle JDBC documentation does not state it specifically, out of the
preceding features, only prefetching is supported for result sets returned via stored proce-
dures invoked by the CallableStatement interface. (Even this feature does not work in both
10g and 9i due to a bug at the CallableStatement level, but you can easily work around it by
using the API at the ResultSet level, as you’ll see later.)

■Note Scrollability, positioning, sensitivity, and updatability—none of these features is implemented for
CallableStatement objects in Oracle JDBC drivers. If you need to use these features, you should use
PreparedStatement.

Before we move on to cover these features, let’s quickly look at how to deal with null val-
ues retrieved from the database and how to set a value to null using the ResultSet interface.

Handling Null Values
A Java variable that holds a reference to an object can hold a null value. But a primitive data
type such as an int or a double can’t hold a null value. So when you retrieve a null value into a
primitive data type, the value retrieved is set to 0. However, you can use the method wasNull()
of the ResultSet interface to check if the value you retrieved was a null or not. Note that you
must first call one of the getter methods on a column to try to read its value and then call the
method wasNull() to see if the value read was null or not:

public boolean wasNull() throws SQLException;

Similarly, to set any column value to null, you can use the setNull() method of the
PreparedStatement interface, which also takes in the SQL type of the column as the second
parameter:

public void setNull(int parameterIndex, int sqlType) throws SQLException;

The following program, DemoNullValues, starts with an empty table, t1, with just one
number column, x. The program first inserts a null value into the table using the setNull()
method. It then retrieves the null value into the Java primitive data type int and uses the
wasNull() method to check if the value was null.

/* This program demonstrates how to deal with null values in JDBC.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
class DemoNullValues
{

public static void main(String args[]) throws Exception
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

The method _insertNull() inserts a null value into column x of table t1. The method
_retrieveNull() selects the same value later:

_insertNull(conn);
conn.commit();
_retrieveNull(conn);

}
catch (SQLException e)
{
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()
private static void _insertNull(Connection conn) throws SQLException
{
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement("insert into t1 (x) values (?)");

Notice how we pass the data type in our call to setNull():

pstmt.setNull(1, OracleTypes.NUMBER);
int numOfRows = pstmt.executeUpdate();
System.out.println("Inserted " + numOfRows + " rows with null value");

}
finally
{
JDBCUtil.close(pstmt);

}
}
private static void _retrieveNull(Connection conn) throws SQLException
{
String queryStmt = "select x from t1 where x is null";
ResultSet rset = null;
PreparedStatement pstmt = null;
try
{

CHAPTER 7 ■ RESULT SETS EXPLORED 211

pstmt = conn.prepareStatement(queryStmt);
rset = pstmt.executeQuery();
while(rset.next())
{
int value = rset.getInt(1);

The call to wasNull() returns a boolean value indicating whether or not the getInt()
method just executed was null:

if(rset.wasNull())
{
System.out.println("got a null value...");

}
System.out.println("The value is retrieved as " + value);

}
}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

} // end of program

On running the program, we get the following output:

B:\>java DemoNullValues
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
Inserted 1 rows with null value
got a null value...
The value is retrieved as 0

Next, we’ll look at the ability to prefetch values retrieved from the database and its impact
on query performance.

Prefetching
JDBC 2.0 allows you to specify for a query the number of rows retrieved at a time with each
database round-trip. This number is known as the fetch size, and the process of getting rows in
advance is called prefetching. The default value of a fetch size in Oracle JDBC is 10. This means
that by default, when you execute a query, the JDBC driver retrieves ten rows at a time per
round-trip. By changing this number, you can control the number of round-trips your queries
make to the database. For example, with the default fetch size value of 10, a query resulting in
a total of 100 rows would actually make 11 round-trips (the eleventh round-trip is required to
detect that the query has no more rows to return). But if you use a fetch size of, say, 50, the
query would make only three round-trips to fetch 100 rows.

CHAPTER 7 ■ RESULT SETS EXPLORED212

Note that the number of times you iterate through the result set loop is not affected by
the fetch size you set; only the number of round-trips your application makes is affected.
Consider a typical while loop iteration through an initialized ResultSet variable rset:

ResultSet rset = pstmt.executeQuery();
while(rset.next())
{
…

}

Assume that the preceding query returns 100 rows and the fetch size is 10. The very first
fetch happens when you get the ResultSet object by invoking executeQuery(). The first ten
iterations in the loop would get their data from the JDBC cache. When the program encoun-
ters the eleventh invocation of next(), JDBC would get ten more rows from the database
(thus incurring a second network round-trip), and so on. Clearly, there is a trade-off in that
for a higher fetch size you need more client-side memory to cache the rows. If fetchSize is
the fetch size of the result set and rowSize is the size of a row, the JDBC cache size is propor-
tional to fetchSize×rowSize. In this chapter, a large result set means a result set for which
fetchSize×rowSize is large.

Setting and Getting Fetch Size
The following standard JDBC methods are available in the Statement, PreparedStatement,
CallableStatement, and ResultSet interfaces for setting and getting the fetch size:

void setFetchSize(int rows) throws SQLException
int getFetchSize() throws SQLException

Oracle had the concept of prefetching before it came along in JDBC 2.0. This can lead to
some confusion, as there are methods implemented as Oracle extension methods to set a
fetch size, and those are still available. Thus, in addition to the preceding JDBC 2.0 API meth-
ods, if you use the Oracle extension class OracleConnection, you can get and set the default
fetch size for all statements of a Connection object at the Connection level using the following
methods (note that there is no equivalent method in the JDBC 2.0 Connection interface to set a
default fetch size):

public int getDefaultRowPrefetch();
public void setDefaultRowPrefetch(int value) throws SQLException;

Finally, you can use the setRowPrefetch() and getRowPrefetch() methods in the
OracleStatement interface (inherited by OraclePreparedStatement and OracleCallableStatement):

public int getRowPrefetch();
public void setRowPrefetch(int size) throws SQLException;

The settings at the statement level override the settings at the Connection level (except
for CallableStatement, which is due to a bug I’ll cover soon), and the settings at the ResultSet
level override those at the Statement level. Overriding the fetch size at the ResultSet level
affects only subsequent trips (see the following note) to the database to get more rows for the
original query or during refetching of the query results (see the upcoming section “Refetching
Rows”).

CHAPTER 7 ■ RESULT SETS EXPLORED 213

■Note As mentioned earlier, regardless of the fetch size you set at the ResultSet level, in the case of the
Oracle implementation, the moment you execute a statement (e.g., by using the executeQuery() method
on a PreparedStatement object), the JDBC driver silently does the first fetch. This first fetch will always
use the fetch size set at the Statement level (or at the OracleConnection level if the Statement-level
fetch size has not been set), since the ResultSet object is created only after the fact. This will become
clearer shortly through an example.

Let’s summarize the preceding discussion on setting and getting fetch size at different
interface levels:

• JDBC 2.0 supports fetch size at the Statement and ResultSet levels with the methods
getFetchSize() and setFetchSize().

• Oracle supports, through its extension methods, setting a default fetch size
at the Connection level in the OracleConnection interface using the methods
getDefaultRowPrefetch() and setDefaultRowPrefetch(). The default value of a row
prefetch in Oracle is 10. The values set at the OracleConnection level are used as
the default values for the fetch size at the Statement and ResultSet interface levels.
Oracle also supports getting and setting the fetch size in the OracleStatement and
OracleResultSet interfaces using getRowPrefetch() and setRowPrefetch().

• In general, you should not mix the JDBC 2.0 API with the Oracle extension APIs (see the
next bullet point for an exception to this rule). I recommend that at the Statement and
ResultSet levels you use JDBC 2.0 methods to set and get the fetch size for the simple
reason that it improves portability across databases without any associated penalty.

• However, since JDBC does not support setting a default fetch size at the
Connection level, to do so you can actually use the getDefaultRowPrefetch() and
setDefaultRowPrefetch() methods of the OracleConnection interface if required.

• Finally, in the case of CallableStatement, due to a bug the setFetchSize() and
getFetchSize() methods seem to work, but the returned result sets actually use the
default fetch size set at the OracleConnection interface level (which is 10 by default).
Fortunately, you can always set the fetch size on the ResultSet object itself using the
preceding API, so this is not really an issue.

Prefetching Example
Let’s look at an example that demonstrates the following:

• How to get and set fetch size at the PreparedStatement and ResultSet levels

• How any override of the ResultSet object’s fetch size affects all fetches except the very
first one

• The CallableStatement bug mentioned previously and its workaround

CHAPTER 7 ■ RESULT SETS EXPLORED214

We first create a simple table, t1, populated with around 78,000 numbers:

benchmark@ORA10G> create table t1 as
2 select rownum as x from all_objects
3 union all
4 select rownum as x from all_objects;

Table created.

benchmark@ORA10G> commit;

Commit complete.

benchmark@ORA10G> select count(*) from t1;

78228

We use the rownum pseudo column on the table all_objects (which usually has a decent
number of rows) to populate table t1 with numbers. The rownum pseudo column returns a
number for each row, indicating the order in which Oracle selected the row. The first row
selected has a rownum value of 1, the second has a value of 2, and so on.

Next, we create a PL/SQL package, prefetch_pkg, that contains a single procedure called
get_details. We will use this package to demonstrate the CallableStatement bug and its
workaround:

benchmark@ORA10G> create or replace package prefetch_pkg
2 as
3 procedure get_details(p_num_of_rows in number,
4 p_sql_tag in varchar2, p_cursor in out sys_refcursor);
5 end;
6 /

Package created.

The package body defines the procedure get_details. It simply returns a ref cursor
containing values of column x for a given number of rows. It uses the rownum pseudo column
to restrict the number of rows returned. Note that we also have a SQL tag in the parameter
p_sql_tag, using which we tag the SQL within the PL/SQL with the fetch size information we
set at the OracleConnection, CallableStatement, and ResultSet interface levels. This helps us
identify the SQL in the tkprof output, which is the tool we’ll use to peek at what really goes on
internally for a given prefetch size:

benchmark@ORA10G> create or replace package body prefetch_pkg
2 as
3 procedure get_details(p_num_of_rows in number, p_sql_tag in varchar2,
4 p_cursor in out sys_refcursor)
5 is
6 begin
7 open p_cursor for

CHAPTER 7 ■ RESULT SETS EXPLORED 215

8 'select '|| p_sql_tag || 'x from t1 where rownum <= :p_fetch_size '
using p_num_of_rows;

9 end;
10 end;
11 /

Package body created.

The following program, DemoPrefetch, has explanatory comments interspersed with the
code:

/* This program demonstrates how to set and get fetch size for your
* queries using PreparedStatement.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0, and 9.2.0.1.0
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.CallableStatement;
import java.sql.Connection;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;

class DemoPrefetch
{
public static void main(String[] args)
{

This program takes three command-line parameters for fetch sizes that we need to set at
the Connection, Statement, and ResultSet levels. The main() method begins with a check of
these command-line parameters and puts them in three int variables:

if(args.length != 3)
{
System.err.println("Usage: java DemoPrefetch " +

"<connection level fetch size> <statement level fetch size>" +
" <result set level fetch size>");

Runtime.getRuntime().exit(1);
}
int connLevelDefaultPrefetch = Integer.parseInt(args[0]);
int stmtLevelFetchSize = Integer.parseInt(args[1]);
int rsetLevelFetchSize = Integer.parseInt(args[2]);

We then obtain the connection to our database:

Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

CHAPTER 7 ■ RESULT SETS EXPLORED216

Next, we print out the default Connection-level fetch size and set it to the Connection level
fetch size passed as the command-line parameter:

System.out.println("\nDefault connection fetch size: " +
((OracleConnection) conn).getDefaultRowPrefetch());

System.out.println("setting the default fetch size at connection level to "
+ connLevelDefaultPrefetch);

((OracleConnection) conn).setDefaultRowPrefetch(connLevelDefaultPrefetch);
System.out.println("Now the connection fetch size: " +
((OracleConnection) conn).getDefaultRowPrefetch());

We set the SQL trace so that we can generate tkprof output:

JDBCUtil.startTrace(conn);

We then invoke four methods. The first method, _demoPstmtFetchSize(), sets the fetch
size on a PreparedStatement object, but doesn’t override it at the ResultSet level:

_demoPstmtFetchSize(conn, connLevelDefaultPrefetch, stmtLevelFetchSize);

The second method, _demoPstmtFetchSizeWithRsetOverride(), sets the fetch size on a
PreparedStatement object, but overrides it at the ResultSet level:

_demoPstmtFetchSizeWithRsetOverride(conn, connLevelDefaultPrefetch,
stmtLevelFetchSize, rsetLevelFetchSize);

The third method, _demoCstmtFetchSize(), sets the fetch size on a CallableStatement
object without overriding it at the ResultSet level:

_demoCstmtFetchSize(conn, connLevelDefaultPrefetch, stmtLevelFetchSize);

The final method, _demoCstmtFetchSizeWithRsetOverride(), sets the fetch size on a
CallableStatement object, overriding it later at the ResultSet level:

_demoCstmtFetchSizeWithRsetOverride(conn, connLevelDefaultPrefetch,
stmtLevelFetchSize, rsetLevelFetchSize);

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

CHAPTER 7 ■ RESULT SETS EXPLORED 217

Let’s look at the definition of the _demoPstmtFetchSize() method:

private static void _demoPstmtFetchSize(Connection conn,
int connLevelDefaultPrefetch, int stmtLevelFetchSize) throws SQLException

{
System.out.println("Inside _demoPstmtFetchSize");

First, we create a SQL tag enclosed within the Oracle hint strings "/*+" and "*/" so that
we can identify the statement within the tkprof output. Since the enclosed string is not a valid
hint, Oracle will ignore it. Note that if you use "/*" instead of "/*+", Oracle will treat the hint
string as a comment and strip it away in 10g (in 9i this is not the case). Within the dummy
hint, we tuck away the fetch sizes set at the OracleConnection and PreparedStatement levels:

String sqlTag = "/*+" +
"(CONN=" + connLevelDefaultPrefetch + ")" +
"(PSTMT=" + stmtLevelFetchSize + ")" +

"*/";

Next, we form our SQL statement string, which selects a given number of rows. Note how
we tag it with the sqlTag value we just created:

String stmtString = "select x "+ sqlTag + " from t1 where rownum <= ?";

We prepare our PreparedStatement object:

PreparedStatement pstmt = null;
ResultSet rset = null;

try
{
pstmt = conn.prepareStatement(stmtString);

And we print the default statement fetch size, which is the one it inherits from the
OracleConnection interface:

System.out.println("\tDefault statement fetch size: " +
pstmt.getFetchSize());

We then set the fetch size at the PreparedStatement object and set the total number of
rows to be retrieved as 100. Finally, we execute the statement and iterate through the result
set, which is followed by the finally clause:

pstmt.setFetchSize(stmtLevelFetchSize);
System.out.println("\tnew statement fetch size: " + pstmt.getFetchSize());
pstmt.setInt(1, 100);
rset = pstmt.executeQuery();
System.out.println("\tResult set fetch size: " + rset.getFetchSize());
int i=0;
while (rset.next())
{
i++;

}

CHAPTER 7 ■ RESULT SETS EXPLORED218

System.out.println("\tnumber of times in the loop: " + i);
}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

The method _demoPstmtFetchSizeWithRsetOverride() is exactly the same as the method
_demoPstmtFetchSize(), except that we override the fetch size at the ResultSet object as well.
Note that the SQL tag also has the ResultSet fetch size used in this case:

private static void _demoPstmtFetchSizeWithRsetOverride(Connection conn,
int connLevelDefaultPrefetch, int stmtLevelFetchSize,
int rsetLevelFetchSize) throws SQLException

{
System.out.println("Inside _demoPstmtFetchSizeWithRsetOverride");
String sqlTag = "/*+" +

"(CONN=" + connLevelDefaultPrefetch + ")" +
"(PSTMT=" + stmtLevelFetchSize + ")" +
"(RSET=" + rsetLevelFetchSize + ")" +

"*/";
String stmtString = "select x "+ sqlTag + " from t1 where rownum <= ?";
PreparedStatement pstmt = null;
ResultSet rset = null;

try
{
pstmt = conn.prepareStatement(stmtString);
System.out.println("\tDefault statement fetch size: " +
pstmt.getFetchSize());

pstmt.setFetchSize(stmtLevelFetchSize);
System.out.println("\tnew statement fetch size: " + pstmt.getFetchSize());
pstmt.setInt(1, 100);
rset = pstmt.executeQuery();
rset.setFetchSize(rsetLevelFetchSize);
System.out.println("\tnew result set fetch size: " + rset.getFetchSize());
int i=0;
while (rset.next())
{
i++;

}
System.out.println("\tnumber of times in the loop: " + i);

}
finally
{

CHAPTER 7 ■ RESULT SETS EXPLORED 219

// release JDBC-related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

The method _demoCstmtFetchSize() is similar to the method _demoPstmtFetchSize(),
except that here we set the fetch size at the CallableStatement level by invoking our procedure
prefetch_pkg.get_details() (the setting of fetch size won’t really work, as you’ll see shortly).
Note also that we create the SQL tag with the Connection level and CallableStatement-level
fetch size information, and pass it to the PL/SQL procedure:

private static void _demoCstmtFetchSize(Connection conn,
int connLevelDefaultPrefetch, int stmtLevelFetchSize)
throws SQLException

{
System.out.println("Inside _demoCstmtFetchSize");
String sqlTag = "/*+" +

"(CONN=" + connLevelDefaultPrefetch + ")" +
"(CSTMT=" + stmtLevelFetchSize + ")" +

"*/";
String stmtString = "{ call prefetch_pkg.get_details (?, ?, ?) }";
CallableStatement cstmt = null;
ResultSet rset = null;
try
{
cstmt = conn.prepareCall(stmtString);
System.out.println("\tDefault statement fetch size: " +
cstmt.getFetchSize());

cstmt.setFetchSize(stmtLevelFetchSize);
System.out.println("\tnew statement fetch size: " + cstmt.getFetchSize());
cstmt.setInt(1, 100); // number of rows to be fetched
cstmt.setString(2, sqlTag);
cstmt.registerOutParameter(3, OracleTypes.CURSOR);
// execute the query
cstmt.execute();
rset = (ResultSet) cstmt.getObject(3);
System.out.println("\tresult set fetch size: " + rset.getFetchSize());
System.out.println("\tHowever, in case of callable statement, " +
"the real fetch size for all result sets obtained from the statement" +
" is the same as the one set at the connection level.");

int i=0;
while (rset.next())
{
i++;

}
System.out.println("\tnumber of times in the loop: " + i);

}

CHAPTER 7 ■ RESULT SETS EXPLORED220

finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}

Our final method of the class DemoPrefetch is the same as the previous method, except
that we override the fetch size at the ResultSet level as well. The SQL tag this time will have
information about fetch sizes at the Connection, Statement, and ResultSet levels:

private static void _demoCstmtFetchSizeWithRsetOverride(Connection conn,
int connLevelDefaultPrefetch, int stmtLevelFetchSize,
int rsetLevelFetchSize) throws SQLException

{
System.out.println("Inside _demoCstmtFetchSizeWithRsetOverride");
String sqlTag = "/*+" +

"(CONN=" + connLevelDefaultPrefetch + ")" +
"(CSTMT=" + stmtLevelFetchSize + ")" +
"(RSET=" + rsetLevelFetchSize + ")" +

"*/";
String stmtString = "{ call prefetch_pkg.get_details (?, ?, ?) }";
CallableStatement cstmt = null;
ResultSet rset = null;
try
{
cstmt = conn.prepareCall(stmtString);
System.out.println("\tDefault statement fetch size: " +
cstmt.getFetchSize());

cstmt.setFetchSize(stmtLevelFetchSize);
System.out.println("\tnew statement fetch size: " + cstmt.getFetchSize());
cstmt.setInt(1, 100); // number of rows to be fetched
cstmt.setString(2, sqlTag);
cstmt.registerOutParameter(3, OracleTypes.CURSOR);
// execute the query
cstmt.execute();
rset = (ResultSet) cstmt.getObject(3);
rset.setFetchSize(rsetLevelFetchSize);
System.out.println("\tnew result set fetch size: " + rset.getFetchSize());
System.out.println("\tHowever, in case of callable statement, " +
"the real fetch size for all result sets obtained from the " +
"statement is the same as the one set at the connection level.");

int i=0;
while (rset.next())
{
i++;

}

CHAPTER 7 ■ RESULT SETS EXPLORED 221

System.out.println("\tnumber of times in the loop: " + i);
}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}

} // end of program

In all four methods, we also increment a counter within the while loop pertaining to the
ResultSet object and print it out at the end.

When we run the preceding program with values of 5, 20, and 50 for the Connection level,
Statement level, ResultSet level fetch sizes, respectively, we get the following output:

B:\>java DemoPrefetch 5 20 50
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))

Default connection fetch size: 10
setting the default fetch size at connection level to 5
Now the connection fetch size: 5
Inside _demoPstmtFetchSize

Default statement fetch size: 5
new statement fetch size: 20
Result set fetch size: 20
number of times in the loop: 100

Inside _demoPstmtFetchSizeWithRsetOverride 14.150
Default statement fetch size: 5
new statement fetch size: 20
new result set fetch size: 50
number of times in the loop: 100

Inside _demoCstmtFetchSize
Default statement fetch size: 5
new statement fetch size: 20
result set fetch size: 5
However, in case of callable statement, the real fetch size for all

result sets obtained from the statement is the same as the one set at the connection
level.

number of times in the loop: 100
Inside _demoCstmtFetchSizeWithRsetOverride

Default statement fetch size: 5
new statement fetch size: 20
new result set fetch size: 50
However, in case of callable statement, the real fetch size for all

result sets obtained from the statement is the same as the one set at the connection
level.

number of times in the loop: 100

CHAPTER 7 ■ RESULT SETS EXPLORED222

The output confirms that in the case of PreparedStatement, the result set inherits the
statement fetch size, whereas in the case of CallableStatement, though the Statement-level
fetch size was changed to 12, the ResultSet-level fetch size was still 5 (as inherited from the
Connection-level fetch size). In other words, the setting of fetch size at CallableStatement did
not really do anything.

Let’s now look at the tkprof of select statements for each of the four methods. The rele-
vant portion of the tkprof output for _demoPstmtFetchSize() is as follows:

select x /*+(CONN=5)(PSTMT=20)*/
from
t1 where rownum <= :1

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.01 0.00 0 0 0 0
Fetch 6 0.00 0.01 0 8 0 100
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 8 0.01 0.01 0 8 0 100

Notice how the SQL tag containing the string "/*+CONN=5PSTMT=20*/ tells us that the fetch
size at Connection level for this select was 5, and at the PreparedStatement level the fetch size
was 20. Recall that we did not override it in this case at the ResultSet level.

The actual number of fetches is 6 (see column count of row Fetch in the tkprof output).
This is because the very first fetch of 20 rows happened transparently with the executeQuery()
method invocation on the PreparedStatement object and used the fetch size of 20 set at the
PreparedStatement level. The remaining four fetches also used the fetch size of 20 set at the
PreparedStatement object, since we did not override it at the ResultSet level. The last fetch is
required to detect that there are no more records to fetch, as shown in Table 7-1.

Table 7-1. Step-by-Step Account of the Number of Fetches for the _demoPstmtFetchSize() Method

Fetch Number(s) Fetch Size (Level Inherited From) Total Records Fetched So Far

1 20 (PreparedStatement) 20

2, 3, 4, 5 20 (PreparedStatement) 100

6 20 (PreparedStatement) 100 (Last fetch to detect that no
more records exist)

The number of logical I/Os (for a discussion on logical I/Os, see the section “Logical and
Physical I/O” in Chapter 2) is 8 (the sum of totals for the current column, 0, and the query col-
umn, 8).

CHAPTER 7 ■ RESULT SETS EXPLORED 223

The relevant portion of the tkprof output for _demoPstmtFetchSizeWithRsetOverride() is
as follows:

select x /*+(CONN=5)(PSTMT=20)(RSET=50)*/
from
t1 where rownum <= :1

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 3 0.00 0.00 0 6 0 100
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 5 0.00 0.01 0 6 0 100

Note that the SQL tag containing the string "/*+CONN=5PSTMT=20(RSET=50)*/ tells us that
the fetch size at the Connection level for this select was 5, at the PreparedStatement level it was
20, and at the ResultSet level it was overridden to 50.

The actual number of fetches is 3 (see column count of row Fetch in the tkprof output).
This is because, once again, the very first fetch of 20 rows was based on the fetch size of 20 set
at the PreparedStatement object. The second and third fetches used the fetch size of 50 set at
the ResultSet object, as shown in Table 7-2.

Table 7-2. Step-by-Step Account of the Number of Fetches for the
_demoPstmtFetchSizeWithRsetOverride() Method

Fetch Number(s) Fetch Size (Level Inherited From) Total Records Fetched So Far

1 20 (PreparedStatement) 20

2 50 (ResultSet) 70

3 50 (PreparedStatement) 100

The number of logical I/Os is 6. Note that the number of logical I/Os has decreased as the
fetch size has increased.

The relevant portion of the tkprof output for _demoCstmtFetchSize() is as follows:

select /*+(CONN=5)(CSTMT=20)*/x
from
t1 where rownum <= :p_fetch_size

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.01 0.01 0 0 0 0
Fetch 21 0.01 0.02 0 23 0 100
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 23 0.03 0.03 0 23 0 100

Note that from the SQL tag string "/*+CONN=5CSTMT=20*/, we see that the fetch size at
Connection level for this select was 5, at the CallableStatement level it was 20, and at the
ResultSet level it was 20, since it was not overridden.

CHAPTER 7 ■ RESULT SETS EXPLORED224

The actual number of fetches is 21 (see column count of row Fetch in the tkprof output).
Note how the number of fetches is different from the corresponding result in the method
_demoPstmtFetchSize(), where it was 3 for the same fetch size configuration. This is because
the fetch size set at the CallableStatement level never really worked. All the fetches used the
fetch size of 5 set at the Connection level, as shown in Table 7-3.

Table 7-3. Step-by-Step Account of the Number of Fetches for the _demoCstmtFetchSize() Method

Fetch Number(s) Fetch Size (Level Inherited From) Total Records Fetched So Far

1 through 20 5 (OracleConnection) 100

21 5 (OracleConnection) 100 (Last fetch to detect that
no more records exist)

The number of logical I/Os has increased to 23 since the overall fetch size has decreased.
The relevant portion of the tkprof output for _demoCstmtFetchSizeWithRsetOverride() is

as follows:

select /*+(CONN=5)(CSTMT=20)(RSET=50)*/x
from
t1 where rownum <= :p_fetch_size

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 3 0.00 0.00 0 5 0 100
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 5 0.00 0.00 0 5 0 100

Notice that the SQL tag containing the string "/*+CONN=5CSTMT=20(RSET=50)*/ tells us
that the fetch size at the Connection level for this select was 5, at the CallableStatement level it
was 20, and at the ResultSet level it was overridden to 50.

The actual number of fetches is 3 (see column count of row Fetch in the tkprof output).
This is because the very first fetch of five rows in the while loop was based on the fetch size of
5 set at the Connection object (remember that the CallableStatement fetch size does not really
work). The second and third fetches used the fetch size of 50 set at the ResultSet object, as
shown in Table 7-4.

Table 7-4. Step-by-Step Account of the Number of Fetches for the
_demoPstmtFetchSizeWithRsetOverride() Method

Fetch Number(s) Fetch Size (Level Inherited From) Total Records Fetched So Far

1 5 (OracleConnection) 5

2 50 (ResultSet) 55

3 50 (PreparedStatement) 100

The number of logical I/Os is 5 in this case.

CHAPTER 7 ■ RESULT SETS EXPLORED 225

The main points to note from the program DemoPrefetch are

• PreparedStatement inherits the fetch size set at the OracleConnection level.

• For PreparedStatement, we can change the fetch size at the Statement level (it works).

• For CallableStatement, we have to set the fetch size at the ResultSet level, since setting
it at the CallableStatement level does not work due to a bug.

• If we override the fetch size at the ResultSet level, the very first fetch uses the fetch size
set at the PreparedStatement level (or the OracleConnection level if it is not set at the
PreparedStatement level). The subsequent fetches use the fetch size set at the ResultSet
level.

• Fetch size does not have an impact on the total number of rows returned by query. It
just sets the number of rows that would be transparently cached by the JDBC client.
This is shown in our example by the fact that the number of iterations in the loop is
always 100 because the query retrieves a total of 100 rows.

• Increasing the fetch size (to a certain limit) reduces the number of logical I/Os, which
usually improves performance as demonstrated in the section “Logical and Physical
I/Os” in Chapter 2. We’ll measure this performance improvement in the next section.

Performance Impact of Fetch Size
To get an idea of the impact on performance of changing fetch size, I wrote a benchmark pro-
gram, BenchmarkPrefetch, that finds the elapsed time of a query retrieving 50,000 rows from
t1. This program extends the utility class JBenchmark discussed in the section “Timing Java
Programs” in Chapter 1. The program begins with import statements, getting a connection
and invoking the method _runBenchmark():

/* This program benchmarks the impact of prefetch on a query.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0, and 9.2.0.1.0
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.CallableStatement;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
import book.util.JBenchmark;

class BenchmarkPrefetch extends JBenchmark
{
public static void main(String args[])
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");
new BenchmarkPrefetch()._runBenchmark(conn);

CHAPTER 7 ■ RESULT SETS EXPLORED226

}
catch (Exception e)
{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

The following method, _runBenchmark(), prepares the statement to run our query that
retrieves 50,000 rows. Before running the query, we start the SQL trace by invoking the method
JDBCUtil.startTrace(). The query runs through a number of executions, each time retrieving
a total of 50,000 rows using a given fetch size. The static array s_fetchSizes (declared later)
defines all fetch sizes this program will benchmark our query on. Inside the loop, we find out
the time taken by passing the fetch size information in an object array to the method
timeMethod() inherited from JBenchmark:

private void _runBenchmark(Connection conn) throws Exception
{
String stmtString = "{ call prefetch_pkg.get_details (?, ?, ?) }";
try
{
s_cstmt = conn.prepareCall(stmtString);
JDBCUtil.startTrace(conn);
for(int i=0; i < s_fetchSizes.length; i++)
{
Integer fetchSize = new Integer (s_fetchSizes[i]);
timeMethod(JBenchmark.FIRST_METHOD, conn, new Object[]{fetchSize},
"Fetch Size: " + fetchSize);

}
}
finally
{
JDBCUtil.close(s_cstmt);

}
}

We override the method firstMethod() to execute our query for a given fetch size. Note
that we once again put the fetch size inside a dummy hint that acts as our SQL tag:

public void firstMethod(Connection conn, Object[] parameters)
throws Exception

{
ResultSet rset = null;
Integer fetchSize = (Integer) parameters[0];

CHAPTER 7 ■ RESULT SETS EXPLORED 227

try
{
String sqlTag = "/*+ FETCH_SIZE=" + fetchSize + "*/";
s_cstmt.setInt(1, 50000);
s_cstmt.setString(2, sqlTag);
s_cstmt.registerOutParameter(3, OracleTypes.CURSOR);
s_cstmt.execute();
rset = (ResultSet) s_cstmt.getObject(3);
rset.setFetchSize(fetchSize.intValue());
int i=0;
while (rset.next())
{
i++;

}
}
finally
{
// release JDBC-related resources in the finally clause.
JDBCUtil.close(rset);

}
}

Finally, we declare the array containing fetch sizes for which this program was executed
along with the static variable containing the CallableStatement object:

private static int[] s_fetchSizes = {10, 20, 50, 100, 500, 1000, 5000,
10000, 30000};

private static CallableStatement s_cstmt;
} // end of program

The results of my run are shown in the chart in Figure 7-1.

Figure 7-1. Elapsed times for a query with different fetch sizes

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Elapsed Time

Elapsed Time

El
ap

se
d

Ti
m

e
(M

ill
is

ec
on

ds
) Elapsed Time with Prefetch Size

Fetch Size (Rows)

CHAPTER 7 ■ RESULT SETS EXPLORED228

Table 7-5 shows the actual data used in Figure 7-1. The third column shows the percent-
age of the elapsed time for the current fetch size as compared to the previous fetch size. For
example, the elapsed time for a fetch size of 20 was 50.61% of the elapsed time for a fetch size
of 10.

Table 7-5. Elapsed Times with Changing Fetch Sizes

Fetch Size Elapsed Time (Milliseconds) Percentage of Previous Time

10 96,982 --
20 50,386 51.95

50 20,046 39.78

100 10,219 50.98

500 2,882 28.20

1,000 1,753 60.83

5,000 1,008 57.50

10,000 951 94.35

30,000 1,109 116.61

As you can see, the elapsed time decreases dramatically as the fetch size increases. The
optimal elapsed time corresponding to a fetch size of 10,000 in our run had an elapsed time
that was only 0.98% of the elapsed time corresponding to the default fetch size of 10. As is
expected, though, after a certain point, diminishing returns set in (in this case because of the
increase in memory required in the client-side cache that stores these prefetched results), and
eventually the elapsed time starts showing an upward trend.

Next, we plot the number of logical I/Os for each fetch size, as shown in Figure 7-2.

Figure 7-2. Logical I/Os for a query with different fetch sizes

Logical I/Os vs. Fetch Size

0

1000

2000

3000

4000

5000

6000

Logical I/Os

Logical I/Os

CHAPTER 7 ■ RESULT SETS EXPLORED 229

Table 7-6 shows the logical I/Os performed with each fetch size. The third column shows
the percentage of the logical I/Os for the current fetch size as compared to the previous fetch
size. For example, logical I/Os for a fetch size of 20 were 50.78% of the logical I/Os for a fetch
size of 10.

Table 7-6. Logical I/Os with Changing Fetch Sizes

Fetch Size Logical I/Os Percentage of Previous Time

10 5,075

20 2,577 50.78

50 1,079 41.87

100 580 53.75

500 180 31.03

1,000 130 72.22

5,000 90 69.23

10,000 85 94.44

30,000 82 96.47

As Table 7-6 shows, the logical I/Os decrease in general with a decrease in fetch size.
Toward the end, though, diminishing returns do set in as expected.

A critical fact to remember is that the preceding benchmark was run with the assumption
that you want all rows to be returned as soon as possible. Many times that is not what you want.
For example, a query may return a total of 50,000 rows, but you may be interested in getting only
the first 15 rows as soon as possible. This could be your requirement if your query results are
being displayed on a web page 15 rows at a time. In such cases, it does not make sense to set
the fetch size for your query to a large value such as 1,000, even though that may be optimal in
terms of getting all rows in your query as fast as possible; a smaller value of somewhere between
15 and 50 (or even retaining the default value of 10) may be more appropriate. Setting the fetch
size becomes somewhat less critical in such a situation.

From the preceding discussion, we can conclude that tuning the fetch size can have a
dramatic impact on the performance of your application, depending on the size of each row
and how costly a network round-trip is to your application. You should be aware of what your
goals are when you set this value for a given query (e.g., to get all rows as fast as possible or to
get the first n rows as fast as possible).

Scrollability, Positioning, and Sensitivity
Scrollability refers to the ability to move backward and forward through the rows of a result
set. A result set created with this ability to move backward and forward is called a scrollable
result set. A result set without this ability (the default) is called a forward-only result set. The
result sets in the earlier chapter code examples were of the forward-only type.

CHAPTER 7 ■ RESULT SETS EXPLORED230

Within a scrollable result set, you can move your position using either relative or absolute
positioning:

• Relative positioning allows you to move a given number of rows forward or backward
from the current row.

• Absolute positioning allows you to move to a specified row number, counting from
either the beginning or the end of the result set.

■Note You cannot use positioning (relative or absolute) with forward-only result sets.

When creating a scrollable result set, you must also specify sensitivity:

• A scroll-insensitive result set is a scrollable result set that does not automatically detect
certain changes made to the database while the result set is open, thus providing a static
view of the underlying data. This is the default behavior. You would need to retrieve a new
result set to see changes made to the database. Note that there are several limitations to
the way this works in Oracle, as you will see in the section “Result Set Limitations and
Downgrade Rules.”

• A scroll-sensitive result set is a scrollable result set with a limited ability to detect certain
changes made to the underlying result set data in the database from the current session
or a different session while the result set is open.

Updatability
Updatability refers to the ability to insert, delete, or update rows in a result set and propagate
these changes to the database. The updatability of a result set is determined by its concurrency
type. Under JDBC 2.0, the following concurrency types are available:

• Updatable: Updates, inserts, and deletes can be performed on the result set and propa-
gated to the database.

• Read-only: The result set cannot be modified in any way (the default behavior).

■Note The updatability of a result set can be specified independently of the scrollability or sensitivity of
the result set.

CHAPTER 7 ■ RESULT SETS EXPLORED 231

Table 7-7 lists six different combinations of result set categories available in Oracle, along
with their capabilities.

Table 7-7. Different Result Set Categories and Their Capabilities

Result Set Category Description

Forward-only/read-only (default) Not scrollable. Cannot perform insert, update, and delete
operations on the ResultSet object. Cannot detect any
changes made to the database while the ResultSet is open.

Scroll-insensitive/read-only Scrollable. Does not automatically detect certain changes
made to the database while the ResultSet is open. Cannot
perform insert, update, and delete operations on the
ResultSet object.

Scroll-sensitive/read-only Scrollable. Limited ability to detect certain changes made to
the underlying ResultSet data in the database. Cannot
perform insert, update, and delete operations on the
ResultSet object.

Forward-only/updatable Not scrollable. Can perform insert, update, and delete
operations on the ResultSet object.

Scroll-insensitive/updatable Scrollable. Does not automatically detect certain changes
made to the database while the ResultSet is open. Can
perform insert, update, and delete operations on the
ResultSet object.

Scroll-sensitive/updatable Scrollable. Limited ability to detect certain changes made
to the underlying ResultSet data in the database. Cannot
perform insert, update, and delete operations on the
ResultSet object.

Creating Different Categories of Result Sets
To create any of the six combinations of result sets, you can use one of the following methods
in the Connection object:

• Statement createStatement (int resultSetType, int resultSetConcurrency)

• PreparedStatement prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

• CallableStatement prepareCall(String sql, int resultSetType, int
resultSetConcurrency)

As mentioned earlier, although the Oracle JDBC documentation states that the result set
scrollability and updatability are implemented in CallableStatement, I discovered that the
current implementation does not work for result sets returned via stored procedures. This is
not a real problem since updatability, as implemented currently, can be easily accomplished
using standard SQL statements to update, insert, and delete rows. As far as scrollable result
sets go, their most common use is to display a subset of rows at a time for a given result set
and allow the user to scroll through it, say, ten rows at a time. For this scenario, as explained in

CHAPTER 7 ■ RESULT SETS EXPLORED232

the section “Paginating Through a Result Set,” you can use an alternative implementation that
uses forward-only result sets and yet accomplishes many of the goals of scrollable result sets
more efficiently and without running into its limitations.

■Caution As of 10g Release 1, the Oracle JDBC implementation of scrollable and updatable result sets
don’t work with result sets returned by stored procedures via the CallableStatement interface.

In all the preceding methods, the first parameter, resultSetType, determines the scrollabil-
ity and sensitivity of the result set, and the second parameter, resultSetConcurrency, determines
if the result set is updatable or read-only.

You can specify one of the following constants defined in the ResultSet interface to set
the scrollability/sensitivity attribute of the result set:

• ResultSet.TYPE_FORWARD_ONLY (the default)

• ResultSet.TYPE_SCROLL_INSENSITIVE

• ResultSet.TYPE_SCROLL_SENSITIVE

You can specify one of the following constants in the ResultSet interface to set the
updatability attribute of the result set:

• ResultSet.CONCUR_READ_ONLY (the default)

• ResultSet.CONCUR_UPDATABLE

Result Set Limitations and Downgrade Rules
There are several limitations in the Oracle implementation of the result set’s scrollability and
updatability features to keep in mind. From a performance point of view, an important factor
to consider is that scrollable/updatable result sets necessarily require a client-side cache. This
means that if your result set contains many rows, many columns, or large columns, then it can
have a severe performance impact on the JDBC application due to high memory consump-
tion. Thus, the scrollability feature should be used only for small result sets.

■Caution Do not use the scrollability feature for large result sets.

Besides the performance implications of using a client-side cache, certain types of result
sets are not feasible for certain kinds of queries. If you specify an infeasible result set type or
concurrency type for the query you execute, the JDBC driver follows a set of downgrade rules
to select “the next best” ResultSet type. In this section, we’ll look at the various limitations of
ResultSet.

CHAPTER 7 ■ RESULT SETS EXPLORED 233

Result Set Limitations
The following restrictions exist when you are trying to create an updatable ResultSet:

• The query can select from only a single table and cannot contain any join operations.
In addition, for inserts to be feasible, the query must select all non-nullable columns
and all columns that don’t have a default value (unless a trigger or a default column
value kicks in and populates the column value even if you don’t explicitly specify it).
This clearly is a considerable restriction and one of the main reasons I’m not a fan of
this feature.

• The query can’t use select *. However, you can easily work around this restriction by
specifying table aliases. Thus, select * from emp won’t work, but select e.* from emp
e will give you an updatable result set.

• The query must select table columns only. It can’t select derived columns or aggregates
such as the sum, count, or max of a set of columns.

For an insert to work, you can’t have an order by in the query for which the updateable
result set is created. (This isn’t noted in the official JDBC documentation.) If you try to per-
form an insert on a result set whose select statement has an order by clause, you’ll get this
SQLException: java.sql.SQLException: ORA-01732: data manipulation operation not legal
on this view.

To create a scroll-sensitive result set

• A query cannot use select *. Once again, you can easily work around this by specifying
table aliases.

• A query can select from only a single table.

These limitations mean that the scrollability and updatability features, as implemented
currently, are useful only in very simple queries. The updatability feature in particular does
not add any value over the regular way of doing updates using SQL statements—I have never
found a need to use this feature.

Result Set Downgrade Rules
If you specify, for example, an updatable ResultSet, but the JDBC driver cannot fulfill this
request due to the nature of the query, then the result set type will be silently downgraded to
the nearest equivalent. These downgrade rules are as follows:

• If the specified result set type is TYPE_SCROLL_SENSITIVE, but the JDBC driver cannot
fulfill that request, then the driver attempts a downgrade to TYPE_SCROLL_INSENSITIVE.

• If the specified (or downgraded) result set type is TYPE_SCROLL_INSENSITIVE, but the
JDBC driver cannot fulfill that request, then the driver attempts a downgrade to
TYPE_FORWARD_ONLY.

• If the specified (or downgraded) concurrency type is CONCUR_UPDATABLE, but the JDBC
driver cannot fulfill that request, then the driver attempts a downgrade to
CONCUR_READ_ONLY.

CHAPTER 7 ■ RESULT SETS EXPLORED234

You can and always should verify the actual result set type and concurrency type by using
the following two methods in the ResultSet interface (both throw a SQLException):

• int getType(): This method returns an int value for the result set type used for the
query.

• int getConcurrency(): This method returns an int value for the concurrency type used
for the query.

■Note According to the documentation, in case of a downgrade, the driver should issue a SQLWarning
on the statement object with information on the reason the downgrade occurred. However, this did not work
during my tests. A simple workaround is to always check the type and concurrency type at the ResultSet
level.

An easy way to find out if your result set can be scroll-sensitive or updatable is to run the
same query in SQL*Plus but add the pseudo column rowid to the query’s list of columns (the
rowid pseudo column returns the address of the row in Oracle). If the query works, then most
likely the request for a scrollable result set would succeed without a downgrade.

For example, if we add the pseudo column rowid to the query select ename from emp, it
works as follows:

scott@ORA10G> select rowid, ename from emp;

ROWID ENAME
------------------ ----------
AAAL+ZAAEAAAAAdAAA SMITH
… <trimmed for saving space>

14 rows selected.

But if we add the pseudo column rowid to the query select e.ename, d.deptno from emp e,
dept d where e.deptno = d.deptno, it does not work:

scott@ORA10G> select rowid, e.ename, d.deptno from emp e, dept d
where e.deptno = d.deptno;

select rowid, e.ename, d.deptno from emp e, dept d where e.deptno = d.deptno
*

ERROR at line 1:
ORA-00918: column ambiguously defined

Thus, the second query will go through a downgrade based on the rules stated earlier.
The reason the preceding test works is that the JDBC driver silently (and blindly) adds a rowid
pseudo column to the list of columns for such queries and uses the selected rowids to perform
various operations, such as updates on result sets, as you will see later.

CHAPTER 7 ■ RESULT SETS EXPLORED 235

■Note The fact that the JDBC driver silently (and blindly) adds a rowid pseudo column to the list of
columns for such queries and uses the selected rowids to perform various operations also explains why
select * from emp does not work but select e.* from emp does.

Positioning in a Scrollable Result Set
As mentioned earlier, scrollable result sets (scroll-sensitive and scroll-insensitive) allow you to
iterate through the result set either forward or backward, and to modify the current position
in the result set to any desired row number using a relative or an absolute row number. This
section covers some of these methods.

Methods to Move Within a Result Set
The following methods allow you to move to a new position in a scrollable result set (all of
them throw a SQLException, although I don’t show that specifically). The word “cursor” here
refers to the current row position in the result set.

• void beforeFirst(): This method moves the cursor to a position before the first row of
the result set, and it has no effect if there are no rows in the result set. This is the default
initial position for any kind of result set. Note that after invoking this method, there is
no valid current row, so you cannot position relatively from this point.

• void afterLast(): This method moves the cursor to a position after the last row of
the result set, and it has no effect if there are no rows in the result set. You can use this
method to position the current row of the result set after the final row to start process-
ing the rows backward. Note that after invoking this method, you are outside the result
set bounds. Thus, there is no valid current row, so you cannot position relatively from
this point. Another implication of invoking this method is that Oracle has to read all the
rows of the result set to reach the last row; it has performance implications that we will
look at shortly.

• boolean first(): This method moves the cursor to the first row of the result set or
returns false if there are no rows in the result set.

• boolean last(): This method moves the cursor to the last row of the result set or
returns false if there are no rows in the result set.

• boolean absolute(int row): This method moves the cursor to an absolute row from
either the beginning or the end of the result set. If you input a positive number, it posi-
tions from the beginning; if you input a negative number, it positions from the end.
This method returns false if there are no rows in the result set.

CHAPTER 7 ■ RESULT SETS EXPLORED236

■Note Attempting to move forward beyond the last row will move the cursor to after the last row and have
the same effect as an afterLast() call. Similarly, attempting to move backward beyond the first row will
move the cursor to before the first row and have the same effect as a beforeFirst() call. Also note that
calling absolute(1) is equivalent to calling first(), and calling absolute(-1) is equivalent to calling
last().

• boolean relative(int row): This method moves the cursor to a position relative to the
current row, either forward if you input a positive number or backward if you input a
negative number. It returns false if there are no rows in the result set.

■Caution Attempting to position relatively from before the first row (which is the default initial position) or
after the last row will result in a SQLException.

• boolean next(): You are already familiar with this method. It moves the cursor to the
next row and returns a boolean indicating if the new row is a valid row.

• boolean previous(): This method is similar to the next method, but it moves the cursor
to the previous row instead and returns a boolean indicating if the new row is a valid row.

■Caution Attempting to use previous() in a nonscrollable (forward-only) result set will result in a
SQLException.

Methods to Check Current Position Within a Result Set
The following ResultSet methods allow you to find out your current position in a scrollable
result set (all of them throw a SQLException):

• boolean isBeforeFirst(): Returns true if the position is before the first row

• boolean isAfterLast(): Returns true if the position is after the last row

• boolean isFirst(): Returns true if the position is at the first row

• boolean isLast(): Returns true if the position is at the last row

• int getRow(): Returns the row number of the current row or 0 if there is no valid cur-
rent row

CHAPTER 7 ■ RESULT SETS EXPLORED 237

Example of Positioning
The following DemoPositioning class demonstrates some of the positioning methods
just described. The main() method in the class simply gets the connection and invokes
_demoPositioning, which contains the main logic:

/* This program demonstrates positioning in a scrollable result set.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import book.util.JDBCUtil;
class DemoPositioning
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");
_demoPositioning(conn);

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

The method _demoPositioning() first prepares a statement whose result sets will be
scroll-insensitive and read-only. (Note that the example also works for scroll-insensitive result
sets.)

private static void _demoPositioning(Connection conn)
throws SQLException
{
ResultSet rset = null;
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement("select x from t1 order by x",
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);

CHAPTER 7 ■ RESULT SETS EXPLORED238

We then invoke the utility method printRsetTypeAndConcurrencyType in the JDBCUtil
class (shown right after this class code explanation), which simply prints out the statement’s
result set type and concurrency type based on the methods getResultSetType() and
getResultSetConcurrencyType(), respectively:

JDBCUtil.printRsetTypeAndConcurrencyType(pstmt);

We next get the result set and use the overloaded version of printRsetTypeAnd➥

ConcurrencyType in the JDBCUtil class (shown right after this class code explanation),
which prints out the result set type and concurrency type using the methods getType()
and getConcurrencyType() in the ResultSet interface. This finds out if the result set was
downgraded due to some JDBC driver limitations.

rset = (ResultSet) pstmt.executeQuery();
JDBCUtil.printRsetTypeAndConcurrencyType(rset);

We now start demonstrating the various positioning methods. First, we go to the last row
and print out the row number:

rset.last(); // go to the last row
System.out.println("current position: " + rset.getRow());

We then go to the first row and print out a boolean indicating if it is the first row:

rset.first(); // go to the first row
System.out.println("Is it the first row?: " + rset.isFirst());

Next, we go to the row number 4 and print out our current position:

rset.absolute(4); // go to the row number 4
System.out.println("current position: " + rset.getRow());

We then move three rows forward, print the current position, move two rows backward,
and print the current position:

rset.relative(+3); // go to the next 3 rows from current row
System.out.println("current position: " + rset.getRow());
rset.relative(-2); // go to the previous 2 rows from current row
System.out.println("current position: " + rset.getRow());

Next, we move to the row before the first row and move to the first row by executing the
next() method. We print the current position:

rset.beforeFirst(); // go to the position before the first row
rset.next(); // now go to first row
System.out.println("current position: " + rset.getRow());

Finally, we move to the row after the last row and move to the last row by executing the
previous() method. We print the current position:

rset.afterLast(); // go to the position after the last row
rset.previous(); // now go to last row
System.out.println("current position: " + rset.getRow());

CHAPTER 7 ■ RESULT SETS EXPLORED 239

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

} // end of program

The printRsetTypeAndConcurrencyType() method in the JDBCUtil class based on the
Statement interface is as follows:

public static void printRsetTypeAndConcurrencyType(Statement stmt)
throws SQLException
{
System.out.print("\tResult set category (using Statement API): ");
int resultSetType = stmt.getResultSetType();
switch(resultSetType)
{
case ResultSet.TYPE_FORWARD_ONLY:
System.out.print("Forward only");
break;

case ResultSet.TYPE_SCROLL_INSENSITIVE:
System.out.print("Scroll insensitive");
break;

case ResultSet.TYPE_SCROLL_SENSITIVE:
System.out.print("Scroll sensitive");
break;

}
int resultSetConcurrency = stmt.getResultSetConcurrency();
switch(resultSetConcurrency)
{
case ResultSet.CONCUR_READ_ONLY:
System.out.println(", Read only");
break;

case ResultSet.CONCUR_UPDATABLE:
System.out.println(", Updatable");
break;

}
}

The printRsetTypeAndConcurrencyType() method in the JDBCUtil class based on the
ResultSet interface is as follows:

public static void printRsetTypeAndConcurrencyType(ResultSet rset)
throws SQLException
{

CHAPTER 7 ■ RESULT SETS EXPLORED240

int resultSetType = rset.getType();
System.out.print("\tResult set category (using ResultSet API): ");

switch(resultSetType)
{
case ResultSet.TYPE_FORWARD_ONLY:
System.out.print("Forward only");
break;

case ResultSet.TYPE_SCROLL_INSENSITIVE:
System.out.print("Scroll insensitive");
break;

case ResultSet.TYPE_SCROLL_SENSITIVE:
System.out.print("Scroll sensitive");
break;

}
int resultSetConcurrency = rset.getConcurrency();
switch(resultSetConcurrency)
{
case ResultSet.CONCUR_READ_ONLY:
System.out.println(", Read only");
break;

case ResultSet.CONCUR_UPDATABLE:
System.out.println(", Updatable");
break;

}
}

This is the output of the program DemoPositioning:

java DemoPositioning
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))

Result set category (using Statement API): Scroll insensitive, Read only
Result set category (using ResultSet API): Scroll insensitive, Read only

current position: 30
Is it the first row?: true
current position: 4
current position: 7
current position: 5
current position: 1
current position: 30

Updating, Inserting, and Deleting Result Set Rows
Assuming that you have a result set with a concurrency type of ResultSet.CONCUR_UPDATABLE,
you can directly update rows in the result set, insert rows into the result set, or delete rows
from the result set.

CHAPTER 7 ■ RESULT SETS EXPLORED 241

After an update or insert operation in a result set, you propagate the changes to the data-
base in a separate step that you can skip if you want to cancel the changes. A delete operation
in a result set, however, is immediately executed (but not necessarily committed) in the data-
base. Let’s look at each of these, starting with the delete operation.

Deleting a Row
To delete the current row, you can invoke the method deleteRow() on the result set:

void deleteRow() throws SQLException;

Updating a Row
To update one or more columns of the current row, you can call the appropriate updateXXX()
method for each column, based on the type of the column you want to update. A ResultSet
object has an updateXXX() method for each data type. Each of these methods takes an int for
the column number or a string for the column name, along with an item of the appropriate
data type to set the new value. For example, if you want to update a column of type double in
the current row, you can use one of the following methods:

public void updateDouble(int columnIndex, double x) throws SQLException;
public void updateDouble(String columnName, double x) throws SQLException;

Inserting a Row
To insert a row, perform the following steps:

1. Move to a blank row by invoking the moveToInsertRow() method:

public void moveToInsertRow() throws SQLException

2. Update all the columns of the row using the updateXXX() methods discussed earlier
in the context of the update operation. Note that you have to update all non-nullable
columns to non-null values. The nullable columns, if left untouched, retain a null
value after the insert is complete, unless a trigger or a default column value kicks in.

3. Propagate the changes to the database by invoking the method insertRow():

public void insertRow() throws SQLException

Example of Updatability
The class DemoUpdatability illustrates how to update, insert, and delete rows from a table
by performing these operations on the rows of the result set. Before running the program,
re-create the table and populate it with numbers 1 to 30 in column x:

scott@ORA10G> drop table t1;

Table dropped.

CHAPTER 7 ■ RESULT SETS EXPLORED242

scott@ORA10G> create table t1 as
2 select rownum as x
3 from all_objects
4 where rownum <= 30;

Table created.

scott@ORA10G> select count(*) from t1;

COUNT(*)

30

scott@ORA10G> commit;

The program DempUpdatability begins with the import statements followed by the main()
method, which invokes the _demoUpdatability() method containing the bulk of the logic:

/* This program demonstrates the updatability of a result set.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0, and 9.2.0.1.0 */
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
class DemoUpdatability
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");
_demoUpdatability(conn);

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

CHAPTER 7 ■ RESULT SETS EXPLORED 243

The method _demoUpdatability() first obtains a scroll-insensitive and updatable result
set. (Note that the example would also work for scroll-sensitive result sets.) It then prints out
the result set’s type and concurrency type:

private static void _demoUpdatability(Connection conn)
throws SQLException
{
System.out.println("Inside _demoUpdatability");
ResultSet rset = null;
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement("select x from t1",
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATABLE);

JDBCUtil.printRsetTypeAndConcurrencyType(pstmt);
rset = (ResultSet) pstmt.executeQuery();
JDBCUtil.printRsetTypeAndConcurrencyType(rset);

Next, we move to row number 3 and update the value (originally 3) to 31:

// demo update row
rset.absolute(3);
rset.updateInt(1, 31);
rset.updateRow();

We then move to row number 4 and delete it:

// demo delete row
rset.absolute(4);
rset.deleteRow();

Finally, we insert a new row with a value of 35 for the x column. We also print the original
row where we were before we did the insert. Finally, we commit and end the method with the
usual finally clause:

// demo insert row
rset.moveToInsertRow();
rset.updateInt(1, 35);
rset.insertRow();
System.out.println("\tMoving to row where I was before inserting");
rset.moveToCurrentRow();
System.out.println("\tThe row where I was before inserting: " +
rset.getRow());

conn.commit();
}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

CHAPTER 7 ■ RESULT SETS EXPLORED244

}
}

}// end of program

The output of the program is as follows:

>java DemoUpdatability
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
Inside _demoScrollInsensitiveUpdatable

Result set category (using Statement API): Scroll insensitive, Updatable

Result set category (using ResultSet API): Scroll insensitive, Updatable

Moving to row where I was before inserting
The row where I was before inserting: 3

Inside _demoScrollSensitiveUpdatable
Result set category (using Statement API): Scroll sensitive, Updatable
Result set category (using ResultSet API): Scroll sensitive, Updatable
Before delete current row number 4 has value: 5
After delete current row number 3 has value: 31

Lost Updates
Whether you perform an update using the standard update statement or you use the update
capability of a result set, JDBC (or Oracle) does not guarantee that someone else has not mod-
ified the row since the query was executed. Please see the section “Lost Updates” of Chapter 16
to read up on how to resolve the situation where your update operation conflicts with another
transaction’s DML operation.

Refetching Rows
Refetching of rows is defined as reobtaining the rows that correspond to n rows in a result set,
starting with the current row, where n is the fetch size of the result set. As of 10g Release 1
(including 9i releases), you can refetch rows for the following types of result sets:

• Scroll-sensitive/read-only

• Scroll-sensitive/updatable

• Scroll-insensitive/updatable

To refetch the rows, you need to move to a valid row (not on a blank row created to per-
form an insert operation) and then invoke the refreshRow() method on the result set:

void refreshRow() throws SQLException;

Please note that you can only see any updates done on the n rows being refreshed. You
won’t see any new inserts or deletes that would be visible should you reissue the current

CHAPTER 7 ■ RESULT SETS EXPLORED 245

query. For example, even if a row has been deleted from the database, if it existed in the result
set originally, its value would be retained within the cached result set. This reduces the utility
of the refreshRow() operation.

Example of Refetching Rows
First, we repopulate table t1 with numbers from 1 to 30 as we did in the beginning of the sec-
tion “Example of Updatability.” The following DemoRefreshRow program invokes the method
_demoRefreshRow() in the main() method to illustrate the concept of refetching rows. Note that
the query is ordered by column x, so we expect row number 1 to have a value of 1, row number
2 to have a value of 2, and so on.

/* This program demonstrates refetching of rows in a result set.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.io.IOException;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import book.util.JDBCUtil;
import book.util.Benchmark;
import book.util.InputUtil;
class DemoRefreshRow
{
public static void main(String args[]) throws Exception, IOException
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");
_demoRefreshRow(conn, "select x from t1 order by x");

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

CHAPTER 7 ■ RESULT SETS EXPLORED246

The following _demoRefreshRow() method first obtains a scroll-insensitive, updatable
result set, and prints the result set’s type and concurrency type:

private static void _demoRefreshRow(Connection conn, String stmtString)
throws SQLException, IOException
{
ResultSet rset = null;
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement(stmtString,
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATABLE);

System.out.print("For statement: " + stmtString + ", ");
//JDBCUtil.printRsetTypeAndConcurrencyType(pstmt);
rset = (ResultSet) pstmt.executeQuery();
JDBCUtil.printRsetTypeAndConcurrencyType(rset);

Next, we set the fetch size to 7 and invoke the next() method to move to row number 1,
which becomes our current row:

rset.setFetchSize(7);
rset.next(); // moves to first row

We then invoke the InputUtil.waitTillUserHitsEnter() method (see the section “A Util-
ity to Pause in a Java Program” in Chapter 1 for a description of this method), which simply
waits until the user presses Enter. We do this so we can go to another session as SCOTT and
delete the first row (our current row) from t1. We also update the second row’s value to some-
thing different. This is to verify that a delete operation indeed is not visible to our result set,
whereas updates are visible. The next statement starts a SQL trace, which helps us understand
how Oracle implements refetching. We then refetch the row using the refreshRow() method.
We print out the current row value and end the program after the finally clause:

InputUtil.waitTillUserHitsEnter("Perform delete/update and ");
//start trace
Benchmark.startTrace(conn);
rset.refreshRow();
System.out.println("Row number 1 has a value = " + rset.getInt(1));
rset.next(); // moves to second row
System.out.println("Row number 2 has a value = " + rset.getInt(1));

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

} // end of program

CHAPTER 7 ■ RESULT SETS EXPLORED 247

When we run the program, we see the following output:

>java DemoRefreshRow
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))

For statement: select x from t1 order by x, Result set category (using
ResultSet API): Scroll insensitive, Updatable
Perform delete/update and
Press Enter to continue...

During this wait, in a different session we delete the first row, update the second row to a
value of 222, and commit the transaction:

scott@ORA10G> delete from t1 where x = 1;

1 row deleted.

scott@ORA10G> update t1 set x= 222 where x = 2;

1 row updated.

scott@ORA10G> commit;

Commit complete.

We then come back to our running program and press Enter to see the following output:

Row number 1 has a value = 1
Row number 2 has a value = 222

As shown, the result set still displayed the deleted row value that contained a value of 1.
However, the new updated value of the second row correctly contains the latest value. We then
run tkprof on the trace file generated by this program (see Chapter 1 for details on how to use
tkprof). The relevant section from the following tkprof output tells us what the JDBC driver
did when we issued the refreshRow() method:

select rowid, x from t1
WHERE (ROWID = :rowid0 OR ROWID = :rowid1 OR ROWID = :rowid2 OR ROWID =
:rowid3 OR ROWID = :rowid4 OR ROWID = :rowid5 OR ROWID = :rowid6)

order by x

As you can see, JDBC silently added the pseudo column rowid to obtain the result set
when we issued the query. When we did a refresh, JDBC issued a query that reselected all
seven rows (remember, the fetch size was 7 in our case), starting from the current row, using
their rowids. In the preceding select, :rowid0 stands for the bind variable with the value of first
rowid, :rowid1 stands for the bind variable with the value of second rowid, and so on. From
the results of this query, the JDBC driver repopulated its cache with the new set of rows.

CHAPTER 7 ■ RESULT SETS EXPLORED248

■Note Since a deleted row will not get selected if we requery using a rowid, we can conclude that JDBC
internally does not update its cache for a deleted row, even though the query would not fetch that row.

Refetching and Scroll-Sensitive Result Sets
Now that you understand the concept of refetching rows, you can look at how Oracle imple-
ments scroll-sensitive result sets. Oracle’s implementation of scroll-sensitive result sets involves
a window of rows. The window consists of n rows, starting with the current row where n is the
fetch size. The window size affects how frequently the rows in the result set are refreshed to the
latest rows.

As you scroll through the rows, as long as your current row remains within the window,
no refresh takes place. As soon as your current row moves to a new window, you redefine the
window to be n rows, starting with the new current row. Whenever the window is redefined,
the n rows corresponding to the new window are automatically refreshed through an implicit
call to refreshRow(). Thus, with scroll-sensitive result sets, you see external changes only when
the window is refreshed. Obviously, this can have a performance impact depending on your
network round-trip cost, your result set’s fetch size, and the size of each row in the result set.

The class DemoScrollSensitiveResultSet shows how this works. The main() method sim-
ply invokes _demoScrollSensitiveResultSet(), passing in the connection and the familiar
query from table t1.

/* This program demonstrates a scroll-sensitive result set.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.io.IOException;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import book.util.JDBCUtil;
import book.util.InputUtil;
class DemoScrollSensitiveResultSet
{
public static void main(String args[]) throws Exception, IOException
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");
_demoScrollSensitiveResultSet(conn, "select x from t1 order by x");

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print the stack trace.

CHAPTER 7 ■ RESULT SETS EXPLORED 249

JDBCUtil.printException (e);
}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

The method _demoScrollSensitiveResultSet() gets a scroll-sensitive, read-only result set:

private static void _demoScrollSensitiveResultSet(Connection conn,
String stmtString)

throws SQLException, IOException
{
ResultSet rset = null;
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement(stmtString,
ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet. CONCUR_READ_ONLY);

System.out.print("For statement: " + stmtString + ", ");
rset = (ResultSet) pstmt.executeQuery();
JDBCUtil.printRsetTypeAndConcurrencyType(rset);

After printing the result set type and concurrency type, we set the fetch size to 5. We move
to the first row of the result set:

rset.setFetchSize(5);
System.out.println("New fetch size: " + rset.getFetchSize());
rset.first(); // moves to first row

Next, we insert a program pause, during which we update the first row from SQL*Plus:

System.out.println("Row number " + rset.getRow() + " has a value = "
+ rset.getInt(1));

InputUtil.waitTillUserHitsEnter("Perform update on first row and ");

We then move to the last row; this will refresh just the last row. We move back to the first
row; this will refresh the first five rows. We should see latest values of all these rows. To verify
this, we print out the value of x in the first row, since we would have modified it during our
pause:

rset.last(); // moves to last row changing the window size
rset.first(); // moves back to first row changing the window size
System.out.println("Row number " + rset.getRow() + " now has a value = "
+ rset.getInt(1));

}
finally
{

CHAPTER 7 ■ RESULT SETS EXPLORED250

// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

} // end of program

We assume that t1 contains the numbers 1 to 30 in its column x before running this pro-
gram. When we run the program, we get the following output:

>java DemoScrollSensitiveResultSet
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
For statement: select x from t1 order by x, Result set category (using Resul
tSet API): Scroll sensitive, Read only
New fetch size: 5
Row number 1 has a value = 1
Perform update on first row and
Press Enter to continue...

We modify the first row as follows:

scott@ORA10G> update t1 set x = 111 where x = 1;

1 row updated.

scott@ORA10G> commit;

Commit complete.

When we press Enter, we should see the latest value as follows:

Press Enter to continue...

Row number 1 now has a value = 111

In the next section, we will look at the database changes visible to a ResultSet object.

Database Changes Visible to a Result Set
In this section, we briefly outline the ability of a result set to see two types of changes:

• Internal changes: Changes made within the result set by using the update, delete, or
insert operation on the result set itself

• External changes: Changes made outside the result set, either from the current transac-
tion or from a different session

CHAPTER 7 ■ RESULT SETS EXPLORED 251

A change being “visible” means that you can automatically (i.e., without refetching rows)
see new data values from internal or external changes made to the result set rows. Table 7-8
summarizes the result set’s visibility into different type of changes depending on the result
set type.

Table 7-8. Result Set’s Visibility Depending on Type

Result Set Type Visibility Internal Internal Internal External External External
of Delete Update Insert Delete Update Insert

Forward-only No Yes No No No No

Scroll-insensitive Yes Yes No No No No

Scroll-sensitive Yes Yes No No Yes No

A Result Set’s Ability to Detect Database Changes
A result set is said to be able to detect the database changes if it is aware that a particular row
contains a new value since the result set was first populated. However, Oracle result sets can-
not detect any operation (insert, update, or delete). Hence the following methods in the JDBC
2.0 would always return false in the case of an Oracle JDBC implementation (as of 10g
Release 1):

boolean rowDeleted() throws SQLException
boolean rowInserted() throws SQLException
boolean rowUpdated()throws SQLException

Paginating Through a Result Set
A common scenario where you may think of using scrollable result sets is when you want to pagi-
nate through a query’s results. By “paginate,” I mean scrolling back and forth n rows out of a total
number of m rows. For example, say n equals 10 and m equals 100. In this case, the first ten rows
would be displayed to the user in the beginning. The user can navigate to the next ten rows
by clicking a Next button (or its GUI equivalent). The user navigates to the previous ten rows by
clicking a Previous button. At any given time, the user is looking at a window of ten rows out of a
total of 100 rows. A typical requirement in this case is to also be able to sort the query results
based on one or more of the columns. There are many approaches to solving this scenario.

• Use a scrollable result set and scroll back and forth n rows using one of the many posi-
tioning methods you learned about earlier. This approach has the following limitations:

• Since a ResultSet is associated with a Connection object, you have to hold the con-
nection across requests in the case of web applications. This is feasible only in the
case of client/server applications and is not a recommended practice for web
applications, as discussed in the section “Web Applications and Connection-
Related Challenges” of Chapter 14.

• For sorting on query columns, you will have to reissue the query.

CHAPTER 7 ■ RESULT SETS EXPLORED252

• This would only work for small result sets, since caching a large result set can bring
down your JVM due to excessive memory consumption.

• This suffers from various limitations associated with scrollability, as discussed in
the section “Result Set Limitations.”

• Use a forward-only result set and cache all the rows in the middle tier. Subsequent user
interactions work on the cached rows. This approach has the following limitations:

• You can sort your rows in the middle-tier cache, but you have to write extra code
for that. This gets more complicated if you want to sort multiple columns.

• It has the drawback of excessive memory consumption in the middle tier in the
case of large result sets.

• Use a forward-only result set and issue a query each time the user navigates to a new
window. This is an interesting approach, and it is the one we look at in detail in this
section.

At first glance, it may seem that issuing a query every time the user clicks Next or Previous
would result in unnecessary network traffic. Though this is true, in many cases this disadvan-
tage is more than compensated for by the following advantages:

• Your query doesn’t need to hold the connection across requests in the case of web-
based applications.

• Your query doesn’t have any restrictions mentioned in the section “Result Set Limita-
tions and Downgrade Rules” that a scrollable result set would impose.

• You don’t need to cache the rows in the middle tier, so this approach scales far better
with large result sets.

For sorting, you don’t need to sort in the middle tier (which is required if you take the
approach of caching in the middle tier). Instead of sorting in the middle tier, you can simply
issue the same query with an appropriate order by clause. This means less code to write and
fewer maintenance headaches. The sorting code in the middle tier can get pretty hairy if your
requirement is to be able to sort on one or more columns in ascending or descending order.

We will use the following well-known template1 for writing queries that gets n out of m
rows for a given query:

select *
from
(
select /*+ FIRST_ROWS */ a.*, rownum rnum
from
(YOUR_QUERY_TEXT) a
where rownum <= :max_row_number

)
where rnum >= :min_row_number;

CHAPTER 7 ■ RESULT SETS EXPLORED 253

1 Tom Kyte, Effective Oracle by Design (Emeryville, CA: Osborne McGraw-Hill, 2003), p. 496. This code is
also available from http://asktom.oracle.com/~tkyte/paginate.html.

The template uses the pseudo column rownum to restrict the window of rows between the
values :min_row_number and :max_row_number. The clause /*+ FIRST_ROWS */ is a hint to the
optimizer to generate a plan of execution, the goal of which is to return the first rows as soon
as possible. This is almost always the requirement, since you are trying to display n rows of the
result set to the end user as soon as you can, instead of trying to get the entire set of rows and
then displaying the window of n rows.

Let’s walk through an example. First, we create and populate a table, t2, which has a num-
ber column, x, and a date column, y:

scott@ORA10G> create table t2 as
2 select rownum as x, sysdate+rownum as y
3 from all_objects;

Table created.

scott@ORA10G> commit;

Commit complete.

scott@ORA10G> desc t2
Name Null? Type
------- -------- -----------
X NUMBER
Y DATE

scott@ORA10G> select count(*) from t2;

41013

Assume that our user interface displays the columns x and y, and allows the user to pagi-
nate ten rows at a time. We also allow the user to sort by column x or y. The query that we
issue using the preceding template would look like the following:

select *
from
(
select /*+ FIRST_ROWS */ a.*, rownum rnum
from
(select x, y from t2 order by x, y) a
where rownum <= :max_row_number

)
where rnum >= :min_row_number;

Using the preceding query form, we create a package, demo_pagination, with a single pro-
cedure, get_details, that fulfills our requirements. The procedure takes four parameters: two
numbers representing minimum and maximum row numbers that need to be displayed, one
string representing our order by clause, and a ref cursor out parameter that contains our
result set with the rows.

CHAPTER 7 ■ RESULT SETS EXPLORED254

scott@ORA10G> create or replace package demo_pagination
2 as
3 procedure get_details(p_min_row_number in number,
4 p_max_row_number in number, p_order_by_clause in varchar2,
5 p_cursor in out sys_refcursor);
6 end;
7 /

Package created.

The package body first declares a string with our query with the where clause appended to it:

scott@ORA10G> create or replace package body demo_pagination
2 as
3 procedure get_details(p_min_row_number in number,
4 p_max_row_number in number, p_order_by_clause in varchar2,
5 p_cursor in out sys_refcursor)
6 is
7 l_our_select_str long;
8 l_pagination_select_str long;
9 begin
10 l_our_select_str := 'select x, y from t2 ' || p_order_by_clause;

We then declare the actual pagination query that we will construct dynamically:

11 l_pagination_select_str := 'select x, y ' ||
12 'from ' ||
13 '(' ||
14 ' select /*+ FIRST_ROWS */ a.*, rownum rnum ' ||
15 ' from ' ||
16 ' (' || l_our_select_str ||
17 ') a ' ||
18 ' where rownum <= :max_row_number ' ||
19 ') ' ||
20 ' where rnum >= :min_row_number';

We print out the relevant variables in case we want to test them from SQL*Plus:

21 dbms_output.put_line(l_our_select_str);
22 dbms_output.put_line(l_pagination_select_str);

and open the cursor, returning it via the out parameter:

23 open p_cursor for l_pagination_select_str using p_max_row_number,
p_min_row_number;

24 end;
25 end;
26 /

Package body created.

CHAPTER 7 ■ RESULT SETS EXPLORED 255

The following program, DemoPagination, simply invokes the procedure
demo_pagination.get_details() using a callable statement. It takes three command-line
parameters. The first two are the minimum and maximum row numbers, respectively, and the
third parameter is the order by clause. These parameters are passed straight to our procedure,
demo_pagination.get_details(). The program is fairly self-explanatory and is listed here with-
out any further explanation:

/* This program demonstrates a generic solution for paginating through
query results.

* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.CallableStatement;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
class DemoPagination
{
public static void main(String args[]) throws Exception
{
if(args.length != 0 && args.length != 2 && args.length != 3)
{
System.err.println("Usage: java DemoPagination [<min_row_number> " +
"<max_row_number> <order_by_clause>]");

System.exit(1);
}
if(args.length >= 2)
{
s_minRowNumber = Integer.parseInt(args[0]);
s_maxRowNumber = Integer.parseInt(args[1]);

}
if(args.length == 3)
s_orderByClause = args[2];

Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");
long startTime = System.currentTimeMillis();
_showCurrentSetOfRows(conn, s_minRowNumber, s_maxRowNumber,
s_orderByClause);

long endTime = System.currentTimeMillis();
System.out.println("time taken: " + (endTime-startTime) + " milliseconds");

}
catch (SQLException e)
{
// handle the exception properly - in this case, we just
// print the stack trace.
JDBCUtil.printException (e);

CHAPTER 7 ■ RESULT SETS EXPLORED256

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()
private static void _showCurrentSetOfRows(Connection conn, int minRowNumber,
int maxRowNumber, String orderByClause)
throws SQLException

{
ResultSet rset = null;
CallableStatement cstmt = null;
try
{
cstmt = conn.prepareCall("{call demo_pagination.get_details(?, ?, ?, ?)}");
cstmt.setInt(1, minRowNumber);
cstmt.setInt(2, maxRowNumber);
cstmt.setString(3, orderByClause);
cstmt.registerOutParameter(4, OracleTypes.CURSOR);
cstmt.execute();
rset = (ResultSet) cstmt.getObject(4);
rset.setFetchSize(10);
while(rset.next())
{
System.out.println(rset.getInt(1) + ", " + rset.getDate(2));

}
}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}
private static int s_minRowNumber = 1;
private static int s_maxRowNumber = 10;
private static String s_orderByClause = "order by x, y";

} // end of program

When we run the program, we get the following results for the rows between row num-
bers 1 and 10:

>java DemoPagination 1 10
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
1, 2004-11-23
2, 2004-11-24
3, 2004-11-25
4, 2004-11-26

CHAPTER 7 ■ RESULT SETS EXPLORED 257

5, 2004-11-27
6, 2004-11-28
7, 2004-11-29
8, 2004-11-30
9, 2004-12-01
10, 2004-12-02
time taken: 260 milliseconds

For the second run, we choose a window between rows 30,000 and 30,010:

>java DemoPagination 30000 30010
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
30000, 2087-01-11
30001, 2087-01-12
30002, 2087-01-13
30003, 2087-01-14
30004, 2087-01-15
30005, 2087-01-16
30006, 2087-01-17
30007, 2087-01-18
30008, 2087-01-19
30009, 2087-01-20
30010, 2087-01-21
time taken: 271 milliseconds

Although in our example, the first window and the thirty-thousandth window take about
the same time, in more complex queries, as you page through, each subsequent page takes a
little more time than the previous one. That is OK, since users typically don’t keep clicking the
Next button for, say, 100 times.

I have found this solution to implement pagination very elegant and effective in that it
avoids the middle-tier cache overhead and the inherent sorting hassles, doesn’t have any arti-
ficial restrictions on the main query, and works efficiently.

■Note Some of you may wonder if the fact that you have an order by clause would not impact the per-
formance adversely, since Oracle would presumably have to sort the entire query result set before it starts
returning rows. Fortunately, Oracle does not have to sort the entire result set—it employs a clever algorithm
to maintain just the n rows in memory in a sorted order. For more details on this sorting algorithm, I refer you
to page 502 of Tom Kyte’s book Effective Oracle by Design (Osborne McGraw-Hill, ISBN: 0-07-223065-7).

In the query template discussed previously, one challenge is to dynamically build the
query that we substitute in place of YOUR_QUERY_TEXT, especially if we are dealing with an
unknown number of bind variables. In the next section, we will examine two approaches for
dealing with this problem.

CHAPTER 7 ■ RESULT SETS EXPLORED258

Dynamically Building a Query with an Unknown
Number of Bind Variables
In this section, we will cover how to dynamically build a query that has a where clause with the
bind values known only at runtime. We will examine the problem by way of an example, and
then we will look at a solution.

Imagine that we are developing a search page. The where clause of the query that retrieves
the searched records changes depending on what the user selects. For example, the user may
search for an employee by name, by department number, or both. Figure 7-3 shows a drawing
of the relevant portion of the search page.

Figure 7-3. Portion of a search page where a user can search based on employee information

Assume that the following four cases represent the expected behavior of the search page
along with the query that would get us the search results (we use the scott.emp table for this
example):

Case 1: If the user enters neither of the fields and clicks the Go! button, we should get
records for all employees (the query is select ename, deptno, job, sal from emp).

Case 2: If the user enters a string to match the employee name and clicks the Go! button,
we should get all records where the employee name begins with the entered value (the
query is select ename, deptno, job, sal from emp where ename like ?).

Case 3: If the user enters only the department number and clicks the Go! button, we
should get all records matching the department number (the query is select ename,
deptno, job, sal from emp where deptno=?).

Case 4: If the user enters both a string to match the employee name and the department
number before clicking the Go! button, we should get all records where the employee
name begins with the entered value and the department number matches the entered
value (the query is select ename, deptno, job, sal from emp where ename like ? and
deptno = ?).

The problem boils down to creating dynamically the where clause of a query based on the
user input and executing it. As you can see, the number of possible queries that need to be
generated can explode depending on the number of fields. For two fields, we have four differ-
ent queries; for three fields, there would be eight different queries; in general for n fields, there
would be 2n queries. Of course, we also want to use bind variables for performance and scala-
bility, so simply creating a query that concatenates the query field values into the where clause
will not work. We will look at two solutions for this problem—the first is based on the
PreparedStatement interface, and the second uses the CallableStatement interface.

Employee Name

Department Name

Go!

CHAPTER 7 ■ RESULT SETS EXPLORED 259

PreparedStatement-Based Solution
The PreparedStatement-based solution simply generates the PreparedStatement object with
the appropriate number of ? placeholders. We then bind the query based on the input values
and execute it. The following DemoDynamicQueryUsingPstmt class demonstrates this technique:

/* This program prepares dynamically a query where the number of binds are known
only at runtime.

* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import book.util.JDBCUtil;
class DemoDynamicQueryUsingPstmt
{
public static void main(String args[]) throws Exception
{

Our program can take two optional inputs: the first one for the employee name and the
second one for the department number. If we don’t give either of them, the program assumes
the first case. If we give a value of null for the first parameter (ename) in the command line, the
program assumes we want to get records corresponding to all employee names and whatever
department number we specified. If we give a value of -1 in the second parameter (department
number) or omit it, the program assumes we want to get records corresponding to all depart-
ment numbers and whatever employee name we specified. The following if statements
essentially implement this logic, and at the end of it, we have the two variables ename and
deptno initialized with the appropriate values based on which the query needs to be generated:

if(args.length != 0 && args.length != 1 && args.length != 2)
{
System.err.println("Usage: java DemoDynamicQueryUsingPstmt [ename_value] " +
"[dept_no_value]. A value of \"null\" for first parameter will indicate " +
"that you did not specify any value for ename . A value of -1 for the " +
"second parameter indicates you did not specify any value for deptno" ");

Runtime.getRuntime().exit(1);
}

if((args.length == 1) && (!"null".equals(args[0])))
{
ename = args[0];

}
else if(args.length == 2)
{
if(!"null".equals(args[0]))
{
ename = args[0];

}

CHAPTER 7 ■ RESULT SETS EXPLORED260

deptno = Integer.parseInt(args[1]);
}
if(ename != null)
{
System.out.println("ename = " + ename);

}
if(deptno != -1)
{
System.out.println("deptno = " + deptno);

}

The next step is to get the connection:

Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");

The method _buildDynamicQuery() builds the query, and the method
executeDynamicQuery() executes it after binding the parameters appropriately:

String queryStmt = _buildDynamicQuery(ename, deptno);
_executeDynamicQuery(conn, queryStmt, ename, deptno);

}
catch (SQLException e)
{
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

The method _buildDynamicQuery() begins by initializing a default query string. Note that
we have a where clause of where 0 = 0, which will always be true. We do this so that we don’t
have to worry about starting the where clause based on the input values later—we can simply
append to it:

private static String _buildDynamicQuery(String ename, int deptno)
{
StringBuffer queryStmt = new StringBuffer(
"select ename, deptno, job, sal from emp where 0 = 0");

Next, we append as many binding placeholders as required based on the user input to
generate our query string:

if(ename != null)
{

CHAPTER 7 ■ RESULT SETS EXPLORED 261

queryStmt.append(" and ename like ?");
}
if(deptno != -1)
{
queryStmt.append(" and deptno = ?");

}
return queryStmt.toString();

}

We begin _executeDynamicQuery() by executing the query inside the try catch block:

private static void _executeDynamicQuery(Connection conn, String queryStmt,
String ename, int deptno)
throws SQLException

{
ResultSet rset = null;
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement(queryStmt);

We then dynamically bind values based on the input values and based on our knowledge
of each input data type. Note that the percent sign (%) represents all employee names begin-
ning with the given input value. Finally, we execute the query and print out the results:

int colIndex = 1;
if(ename != null)
{
pstmt.setString(colIndex++, ename+"%");

}
if(deptno != -1)
{
pstmt.setInt(colIndex, deptno);

}
rset = pstmt.executeQuery();
while(rset.next())
{
System.out.println(rset.getString(1) + ", " +
rset.getInt(2) + ", " +
rset.getString(3) + ", " +
rset.getInt(4));

}
}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}

CHAPTER 7 ■ RESULT SETS EXPLORED262

}
private static String ename = null;
private static int deptno = -1;

} // end of program

Let’s run the program now. For Case 1, to retrieve all records, we execute the program as
follows:

B:\>java DemoDynamicQueryUsingPstmt
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
SMITH, 20, CLERK, 800
ALLEN, 30, SALESMAN, 1600
<- trimmed to conserve space ->
FORD, 20, ANALYST, 3000
MILLER, 10, CLERK, 5308

To print employees whose name begins with “A” (Case 2), we execute the program as fol-
lows:

B:\>java DemoDynamicQueryUsingPstmt A
ename = A
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
ALLEN, 30, SALESMAN, 1600
ADAMS, 20, CLERK, 1100

To print all records of department 10 (Case 3), we execute the program as follows:

B:\>java DemoDynamicQueryUsingPstmt null 10
deptno = 10
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
CLARK, 10, MANAGER, 8268
KING, 10, PRESIDENT, 16875
MILLER, 10, CLERK, 5308

And finally, to print all records of department 20 and for which the employee names begin
with “A” (Case 4), we execute the program as follows:

B:\>java DemoDynamicQueryUsingPstmt A 20
ename = A
deptno = 20
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
ADAMS, 20, CLERK, 1100

Next, we’ll look at an approach that solves the same problem, but this time using PL/SQL
code in conjunction with the CallableStatement interface.

CHAPTER 7 ■ RESULT SETS EXPLORED 263

CallableStatement-Based Solution
The CallableStatement-based solution uses a PL/SQL stored procedure to dynamically gener-
ate the query and return a ref cursor to it to the Java program. There are two methods to
generate and execute a dynamic SQL statement in PL/SQL:

• Use the DBMS_SQL PL/SQL package. Please see the description of this package in the doc-
ument PL/SQL Packages and Types Reference (Oracle 10g Release 1). Unfortunately, it is
not possible to return a ref cursor using this PL/SQL package, which is what we need.

• Use execute immediate (native dynamic SQL). This category of dynamic SQL uses the
execute immediate statement to dynamically execute an SQL command. Please see
the section “Performing SQL Operations Using Native Dynamic SQL” in PL/SQL User’s
Guide and Reference (Oracle 10g Release 1). This technique to generate a query requires
that the number of bind variables be known at compile time. Recall that in our particu-
lar scenario, the number of bind variables is only known at runtime. Fortunately, we
can overcome this problem by combining the concept of application contexts and
native dynamic SQL. Let’s briefly look at application contexts next.

Application Contexts
An application context provides you with a namespace with which you can associate arbitrary
string name/value pairs. The application context itself is bound to a trusted PL/SQL package
or procedure. To set a name/value pair in an application context, you have to use the PL/SQL
package or procedure. This is for security reasons, to ensure that no one can set a value in the
application context because the values in these contexts may be driving query criteria and the
corresponding results. To get the value of a given name stored as a name/value pair in an
application context, use the sys_context() function, which works in both SQL and PL/SQL.
To create an application context, the user needs to have the create any context privilege
apart from the privileges connect and resource.

We will grant create any context to the SCOTT user first:

sys@ORA10G> grant create any context to scott;
Grant succeeded.

Next, we’ll create the application context:

scott@ORA10G> create or replace context hr_app_ctx using hr_app_ctx_pkg;

Context created.

We create a context called HR_APP_CTX, which we can set using the PL/SQL package
HR_APP_CTX_PKG. To set a value in a context, we need to use the dbms_session.set_context
procedure (please see PL/SQL Packages and Types Reference [10g Release 1] for more details
on this package).

To verify that we can set the values in this context only via the package HR_APP_CTX_PKG,
we’ll try to set the value in an anonymous PL/SQL block:

scott@ORA10G> begin
2 dbms_session.set_context('HR_APP_CTX', 'ENAME', 'BLAKE');
3 end;

CHAPTER 7 ■ RESULT SETS EXPLORED264

4 /
begin
*
ERROR at line 1:
ORA-01031: insufficient privileges
ORA-06512: at "SYS.DBMS_SESSION", line 82
ORA-06512: at line 2

We get an error as expected. Now we’ll define the package. The package HR_APP_CTX_PKG has
one procedure that builds the query dynamically and returns a ref cursor as an out parameter:

scott@ORA10G> create or replace package hr_app_ctx_pkg
2 as
3 procedure build_dynamic_query(p_ename in varchar2,

p_deptno in number, p_cursor in out sys_refcursor);
4 end;
5 /

Package created.

The package body follows and has explanatory comments embedded within:

scott@ORA10G> create or replace package body hr_app_ctx_pkg
2 as
3 procedure build_dynamic_query(p_ename in varchar2,

p_deptno in number, p_cursor in out sys_refcursor)
4 is
5 l_query long;
6 begin

We begin our query with a where clause similar to the one in the earlier section in the Java
program. The where clause always returns true and exists merely as a programming convenience.

7 l_query := 'select ename, deptno, job, sal from emp where 0 = 0';

Next, we define our query string. This is where we use the dbms_session.set_context()
method to set a value in the context. We set the employee name (if it is not null) in a name,
ename, of the context. We append % to it also as required. Notice that the use of sys_context()
in the query ensures that our values are actually bound at runtime. This is what enables us to
dynamically bind any number of values in a query:

8 if(p_ename is not null) then
9 dbms_session.set_context('HR_APP_CTX', 'ENAME', p_ename ||'%');
10 l_query := l_query ||
11 ' and ename like sys_context(''HR_APP_CTX'', ''ENAME'')';
12 end if;

CHAPTER 7 ■ RESULT SETS EXPLORED 265

Similarly, we bind the value of the p_deptno parameter as another name/value pair in the
context. Notice that in this case we use the to_number() SQL function to convert the string
value into a number value explicitly. At the end, we return a cursor to the query:

13 if(p_deptno is not null) then
14 dbms_session.set_context('HR_APP_CTX', 'DEPT_NO', p_deptno);
15 l_query := l_query ||
16 ' and deptno = to_number(sys_context(''HR_APP_CTX'',

''DEPT_NO''))';
17 end if;
18 dbms_output.put_line(l_query);
19 open p_cursor for l_query;
20 end;
21 end;
22 /

Package body created.

The Java program DemoDynamicQueryUsingCstmt that invokes the preceding package to
implement our functionality is relatively straightforward:

/* This program prepares dynamically a query where the number of binds are
known only at runtime.

* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.CallableStatement;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
class DemoDynamicQueryUsingCstmt
{
public static void main(String args[]) throws Exception
{

The meaning of the command-line parameters and the associated processing is the same
as that of the program DemoDynamicQueryUsingPstmt discussed in the previous section:

if(args.length != 0 && args.length != 1 && args.length != 2)
{
System.err.println("Usage: java DemoDynamicQueryUsingCstmt [ename_value] " +
"[dept_no_value]. A value of \"null\" for first parameter will indicate " +
"that you did not specify any value for ename. A value of -1 for the " +
"second parameter indicates you did not specify any value for deptno");

Runtime.getRuntime().exit(1);
}

if((args.length == 1) && (!"null".equals(args[0])))

CHAPTER 7 ■ RESULT SETS EXPLORED266

{
ename = args[0];

}
else if(args.length == 2)
{
if(!"null".equals(args[0]))
{
ename = args[0];

}
deptno = Integer.parseInt(args[1]);

}
if(ename != null)
{
System.out.println("ename = " + ename);

}
if(deptno != -1)
{
System.out.println("deptno = " + deptno);

}

After getting the connection, we simply invoke the method _executeDynamicQuery():

Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");
_executeDynamicQuery(conn, ename, deptno);

}
catch (SQLException e)
{
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

The _executeDynamicQuery() method simply invokes the method HR_APP_CTX_PKG.
EXECUTE_DYNAMIC_QUERY we defined earlier. Note how we use the setNull() method to pass
null values to the procedure when required:

private static void _executeDynamicQuery(Connection conn, String ename,
int deptno)
throws SQLException

{
String stmtStr = "{call hr_app_ctx_pkg.execute_dynamic_query(?, ?, ?)}";
ResultSet rset = null;

CHAPTER 7 ■ RESULT SETS EXPLORED 267

CallableStatement cstmt = null;
try
{
cstmt = conn.prepareCall(stmtStr);
if(ename != null)
{
cstmt.setString(1, ename);

}
else
{
cstmt.setNull(1, OracleTypes.VARCHAR);

}
if(deptno != -1)
{
cstmt.setInt(2, deptno);

}
else
{
cstmt.setNull(2, OracleTypes.NUMBER);

}
cstmt.registerOutParameter(3, OracleTypes.CURSOR);
cstmt.execute();
rset = (ResultSet) cstmt.getObject(3);
while(rset.next())
{
System.out.println(rset.getString(1) + ", " +
rset.getInt(2) + ", " +
rset.getString(3) + ", " +
rset.getInt(4));

}
}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}
private static String ename = null;
private static int deptno = -1;

} // end of program

CHAPTER 7 ■ RESULT SETS EXPLORED268

As an example, to print employees whose names begin with “A” (Case 2), you would exe-
cute the program as follows:

B:\>java DemoDynamicQueryUsingCstmt A
ename = A
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
ALLEN, 30, SALESMAN, 1600
ADAMS, 20, CLERK, 1100

In the next section, we look at the ResultSetMetaData interface.

ResultSetMetaData
A ResultSetMetaData object can be used to get information about the types and properties of
the columns in a ResultSet object. It represents the metadata about the ResultSet object. You
can get a ResultSetMetaData object by invoking the method getMetaData() at the ResultSet
interface level or at the PreparedStatement interface level:

public ResultSetMetaData getMetaData() throws SQLException;

Using the ResultSetMetaData interface, you can retrieve the number of columns, the
data type of each column, and the column name, among other pieces of information, from
a ResultSet object. For a full list of all methods of this interface, please see the JDK 1.4 API
documentation at http://www.sun.com. Here are some of the more commonly used methods:

• int getColumnClassName(): Returns a fully qualified class name whose instances are
created when you invoke the method getObject() to retrieve the value from a column

• int getColumnCount(): Returns the number of columns in the ResultSet object

• int getColumnDisplaySize(int column): Returns the display size of the column

• String getColumnName(int column): Returns the column name or column alias name
of the column in the query

• int getColumnType(int column): Returns the SQL type of the column

• String getColumnTypeName(int column): Returns the name of the SQL type of the column

• String getTableName(int column): Returns the table name of the column (see the
following note)

• String getSchemaName(int column): Returns the name of the schema to which the
column’s table belongs (see the following note)

■Note The methods getTableName() and getSchemaName() currently return an empty string in the
Oracle implementation. This is documented in Oracle Database JDBC Developer’s Guide and Reference.

CHAPTER 7 ■ RESULT SETS EXPLORED 269

ResultSetMetaData is useful in writing applications and utilities that need to process a
ResultSet in a generic manner. For example, say we want to write a generic utility that prints
rows down the page with columns stacked vertically instead of across the page for a given
ResultSet. This is useful if we’re dealing with a query for which the results wrap around the
computer screen. So instead of getting an output as

EMPNO ENAME
---------- ----------

7369 SMITH
7499 ALLEN

we want output in the following format:

EMPNO : 7369
ENAME : SMITH

EMPNO : 7499
ENAME : ALLEN

The following DemoResultSetMetaData class shows how to achieve this in principle:

/* This program demonstrates the use of the ResultSetMetaData interface.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.math.BigDecimal;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Date;
import java.sql.PreparedStatement;
import java.sql.Connection;
import book.util.JDBCUtil;
class DemoResultSetMetaData
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

The class takes a query as a command-line parameter so that we can test it easily with
different queries. We check that we have at least one command-line parameter:

if(args.length != 1)
{

CHAPTER 7 ■ RESULT SETS EXPLORED270

System.err.println("Usage: java DemoResultSetMetaData <query>");
Runtime.getRuntime().exit(1);

}

Next, we get the connection and prepare a statement. For simplicity, let’s assume that
there is no where clause in the query statement itself (or at least no where clause that has bind
variables). We can, of course, execute any other query (not passed from the command-line
parameter) after binding any parameters as needed as well:

conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");
pstmt = conn.prepareStatement(args[0]);

We execute the query:

rset = pstmt.executeQuery();

and pass the result to the method printResults(), which takes a ResultSet as parameter and
prints the results with columns listed in a top-to-bottom fashion:

printResults(rset);
}
catch (SQLException e)
{
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);
JDBCUtil.close(conn);

}
} // end of main()

The definition of the method printResults() follows. We process the ResultSet rows in a
while loop as usual:

public static void printResults(ResultSet rset) throws SQLException
{
while(rset.next())
{

The method getMetaData() of the ResultSet interface returns an object of type
ResultSetMetaData:

ResultSetMetaData rsetMetaData = rset.getMetaData();
System.out.println("----------------------------");

We then loop through each column in the ResultSet:

for(int i=0; i < rsetMetaData.getColumnCount(); i++)
{

CHAPTER 7 ■ RESULT SETS EXPLORED 271

We store the value of the column in an Object variable first:

Object columnValue = rset.getObject(i + 1);

Just for demonstration purposes, we use getClassName() to get the class name to which
the object belongs and use that to cast the object to the right class. This is useful if we want to
use these objects later in our method. Note that we could have done this also by using the
instanceof operator in Java. The only difference is that we would have to check for a null
value separately, since instanceof always returns false when we compare a null object with
any class.

String className = rsetMetaData.getColumnClassName(i + 1);
if("java.math.BigDecimal".equals(className))
{
BigDecimal bigDecimalValue = (BigDecimal) columnValue;

}
else if("java.lang.String".equals(className))
{
String strValue = (String) columnValue;

}
else if("java.sql.Timestamp".equals(className))
{
// Due to a bug, class for a date is printed as java.sql.Timestamp
// instead of "java.sql.Date"
Date dateValue = (Date) columnValue;

}

Please note the following:

• We deal with only three SQL types here for brevity. We could add more data types to the
preceding if statement.

• Due to a bug in the Oracle JDBC implementation, we get a wrong class value for a date
column. It returns java.sql.Timestamp for a column that actually is manufactured as an
object of type java.sql.Date. You can see this in the last else if clause in the preceding
code.

Next, we get the column name from the ResultSetMetaData object and print it out after
appending to it the column value:

String columnName = rsetMetaData.getColumnName(i + 1);
StringBuffer columnInfo = new StringBuffer();
columnInfo.append(columnName).append(": ").append(columnValue);
System.out.println(columnInfo.toString());

}
System.out.println("----------------------------");

}
}

} // end of program

CHAPTER 7 ■ RESULT SETS EXPLORED272

When I ran the program on my PC, I got the following output:

B:\>java DemoResultSetMetaData "select empno, ename from emp"
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))

EMPNO: 7369
ENAME: SMITH

EMPNO: 7499
ENAME: ALLEN

EMPNO: 7521
ENAME: WARD

<- trimmed to conserve space ->

DatabaseMetaData
The DatabaseMetaData interface is implemented by driver vendors to let users know the capa-
bilities of a database in conjunction with the JDBC drivers being used to access it. Different
relational databases implement and support different features in various ways, and use differ-
ent data types. The DatabaseMetaData interface is mainly useful for tools that need to work
with different databases and need to query the capabilities of the database/driver combina-
tion they use.

To get a DatabaseMetaData object, you need to invoke the getMetaData() method on the
Connection object:

public DatabaseMetaData getMetaData() throws SQLException;

Close to 70 methods exist in this interface. For a detailed list of all methods, please consult
the JDBC API at http://www.sun.com. The following DemoDatabaseMetaData program demonstrates
invoking some of these methods. It is self-explanatory and is listed here without any further
accompanying text:

/* This program demonstrates querying information about the database and JDBC
driver using the DatabaseMetaData interface.

* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0 and 9.2.0.1.0.
*/
import java.sql.DatabaseMetaData;
import java.sql.SQLException;
import java.sql.Connection;
import book.util.JDBCUtil;
class DemoDatabaseMetaData
{
public static void main(String args[]) throws Exception

CHAPTER 7 ■ RESULT SETS EXPLORED 273

{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");
DatabaseMetaData dbMetaData = conn.getMetaData();
System.out.println("Database Major version: " +
dbMetaData.getDatabaseMajorVersion());

System.out.println("Database Minor version: " +
dbMetaData.getDatabaseMinorVersion());

System.out.println("Default Transaction isolation: " +
dbMetaData.getDefaultTransactionIsolation());

System.out.println("Driver major Version: " +
dbMetaData.getDriverMajorVersion());

System.out.println("Driver minor Version: " +
dbMetaData.getDriverMinorVersion());

System.out.println("JDBC major version: " +
dbMetaData.getJDBCMajorVersion());

System.out.println("JDBC minor version: " +
dbMetaData.getJDBCMinorVersion());

System.out.println("Maximum char literal length: " +
dbMetaData.getMaxCharLiteralLength());

System.out.println("Maximum column name length: " +
dbMetaData.getMaxColumnNameLength());

System.out.println("Maximum columns in group by: " +
dbMetaData.getMaxColumnsInGroupBy());

System.out.println("Maximum columns in select: " +
dbMetaData.getMaxColumnsInSelect());

System.out.println("Maximum columns in table: " +
dbMetaData.getMaxColumnsInTable());

System.out.println("Maximum tables in select: " +
dbMetaData.getMaxTablesInSelect());

}
catch (SQLException e)
{
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
} // end of main()

} // end of program

CHAPTER 7 ■ RESULT SETS EXPLORED274

When I execute the preceding program on my PC, which uses a 10g database and Oracle 10g
JDBC drivers, I get the following output:

B:\>java DemoDatabaseMetaData
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)(HOST=rmeno
n-lap))(CONNECT_DATA=(SID=ora10g)))
Database Major version: 10
Database Minor version: 1
Default Transaction isolation: 2
Driver major Version: 10
Driver minor Version: 1
JDBC major version: 10
JDBC minor version: 1
Maximum char literal length: 2000
Maximum column name length: 30
Maximum columns in group by: 0
Maximum columns in select: 0
Maximum columns in table: 1000
Maximum tables in select: 0

Note that a 0 returned for any maximum limit denotes that the maximum limit is
either unknown or there is no limit. For example, the value of 0 returned by the method
getMaxColumnsInSelect() indicates that there are no known limits in the columns in a select
clause in an Oracle 10g database when used in conjunction with Oracle 10g JDBC drivers.

Summary
In this chapter, you examined several ResultSet enhancements that came with JDBC 2.0. You
began by learning how to deal with SQL null values in a ResultSet object. You then looked at
prefetching, scrollability, positioning, and updatability of result sets. You covered a technique
for the common scenario of paging through a query’s results, and you learned two methods of
building a query dynamically when you don’t know the number of bind variables at compile
time. You also examined the interfaces ResultSetMetaData and DatabaseMetaData.

Here’s a summary of some of the key lessons you learned in this chapter:

• Prefetching can be a powerful tool to improve the performance of a query depending
on how the query results are used. It is especially useful if you are trying to optimize the
time required to retrieve all records of the query. It is less relevant if you are trying to
optimize getting n rows out of a total of m rows in a query.

• I strongly recommend performing inserts, updates, and deletes using the Prepared➥

Statement and CallableStatement interfaces instead of using the updatability feature of
a ResultSet. This is mainly because the updatability feature puts too many restrictions
on a query.

• Consider using the pagination technique discussed in the section “Paginating Through a
Result Set” to implement scrolling backward and forward using a normal forward-only
ResultSet. Again, this is mainly because scrollability of a ResultSet also puts many
restrictions on a query.

CHAPTER 7 ■ RESULT SETS EXPLORED 275

277

C H A P T E R 8

■ ■ ■

Oracle Objects:
An Objective Analysis

Oracle is a relational database that supports objects. Objects within Oracle make it possible to
model real-world objects such as Customer, Order, etc. as objects in a more intuitive fashion.

In this chapter, we’ll first briefly cover Oracle objects and collections. Next, we’ll examine
how objects can be used in Oracle applications in general. Note that this chapter does not dis-
cuss how to access objects and collections from JDBC. We’ll cover that topic in detail in the
next three chapters. Instead, in this chapter, we’ll look at the following topics:

• Introduction to objects and collections: We’ll briefly walk through an introduction to the
concepts of objects and collections. The main purpose of the introduction is to cover
enough material so that you (hopefully) don’t have to refer to the Oracle manuals to
understand this chapter’s examples. Please bear in mind, however, that there is no
substitute for reading the Oracle document Oracle Database Application Developer’s
Guide —Object Relational Features (10g Release 1) to fully grasp the various capabilities
of Oracle objects.

• Guidelines on how to use Oracle objects: We’ll examine how we can meaningfully use
objects within Oracle applications. The following are the three main ways of using
objects within Oracle that we’ll explore in this chapter:

• As programming constructs in any PL/SQL code you write: In the sections “Why Use
PL/SQL?” of Chapter 2 and “Where Should Your SQL Statements Reside, in Java or
PL/SQL?” of Chapter 6, we explored many reasons why you might consider using
PL/SQL code alongside your JDBC programs. In this scenario, you use objects to
enhance the power of your PL/SQL code using object-oriented (OO) programming
techniques. You can also use these constructs to boost the performance of PL/SQL
code, as described in Chapter 17.

• As a mechanism to store data in object tables: As you will learn shortly, in Oracle,
you can create tables with one or more column of an object type, which is an equiv-
alent of a Java class. As a Java programmer, you may be tempted to think that
Oracle objects can be used to solve the problem of mapping the mismatch
between Java objects and data stored in the relational schema by storing data as
objects directly in object tables. Unfortunately, using Oracle objects to store data
can result in overly complex code and performance-related issues, as you will see
in this chapter. Therefore, I do not advocate the use of Oracle objects as a mecha-
nism to store data in tables.

• To access data by forming object views on top of existing relational schema: Object
views are views built on top of relational tables, such that the data in the view is
accessed as if the underlying tables were defined as tables with object type
columns. When you use object views, you can potentially get the best of both
worlds: You can use queries against object views to retrieve data as objects directly,
while retaining the flexibility of using SQL directly on the underlying relational
tables when required.

Toward the end of this chapter, we’ll compare relational tables, tables containing object
types as columns, and object views when used to store data. We’ll compare these three tech-
niques in terms of performance and code maintainability. This chapter begins with a brief
introduction to Oracle objects and collections in the next section.

Introducing Oracle Objects and Collections
Although Oracle terms the object features as “object-relational” (mainly in the context of
using objects in tables to store data), Oracle objects support many traditional OO features.
Chief among these are inheritance, polymorphism, and substitutability of types in an object
type hierarchy. Oracle’s implementation of the encapsulation feature, though, is undermined
considerably by the fact that it does not support the equivalent of Java private or protected
variables and methods in objects as of Oracle 10g Release 1.

This section will introduce you to objects and collections, and you’ll examine the syntax
of using these objects in your SQL and PL/SQL code. You’ll also briefly look at how to use
objects and collections in tables, and the associated syntax to access and manipulate data
stored in object type columns in tables. First up is a discussion of the fundamental concept
of object type.

Object Type (Equivalent of a Java Class)
An object type is a user-defined type (as opposed to a built-in data type, such as varchar2,
number, and so on) that makes it possible to model real-world entities as objects. You can use
object types in a fashion similar to how you use built-in types such as varchar2, date, and so
on. In particular, you can declare variables of object types and also specify an object type as a
data type of a table column.

An object type consists of attributes that contain object data and methods that implement
the object interface. The object type definition consists of two parts: the type definition and
the type body. The type definition lists all attributes of the objects and optionally declares any
methods the object type may have. The type body (required only if you need to define any
methods) consists of the implementation of any methods declared in the type definition itself.
Let’s look at an example.

Consider a Java class called Person defined as follows. The class consists of two attributes,
_name and _dateOfBirth; the getter and setter methods corresponding to these attributes; and
a static method, describe(), that prints a simple message describing the class:

import java.util.Date;
class Person
{
private String _name;

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS278

private Date _dateOfBirth;
public Person()
{
}
public Person(String name, Date dateOfBirth)
{
_name = name;
_dateOfBirth = dateOfBirth;

}
public String getName()
{
return _name;

}
public void setName(String name)
{
_name = name;

}
public Date getDateOfBirth()
{
return _dateOfBirth;

}
public void setDateOfBirth(Date dateOfBirth)
{
_dateOfBirth = dateOfBirth;

}
public static void describe()
{
System.out.println ("This is a simple Java class that encapsulates a

person.");
}
public static void main(String[] args)
{
Person person = new Person("Varun", new Date());
System.out.println (person.getName() + ", " + person.getDateOfBirth());

}
}

To implement the preceding class using an Oracle object, we first create an object type
definition called person as follows:

benchmark@ORA10G> create or replace type person as object
2 (

We declare the attributes that an object belonging to the object type person would con-
tain, in this case, the name and the date of birth:

3 name varchar2(50),
4 date_of_birth date,

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 279

Next, we declare a user-defined constructor that takes no arguments. Oracle provides, by
default, such a constructor even if you don’t supply one. The keyword self that is returned
by the constructor represents an object instance and is equivalent to the keyword this in Java.

5 constructor function person return self as result,

On lines 6 and 7, we define an overloaded user-defined constructor that takes both the
name and date_of_birth attributes as an argument. Oracle also provides a default constructor
called an attribute value constructor. This constructor takes all the attributes as its arguments.
Note that the constructor defined in line 6 replaces the attribute value constructor provided
by the system since it takes the complete set of attributes as its arguments (name and
date_of_birth).

6 constructor function person(name in varchar2,
7 date_of_birth in date)
8 return self as result,

On lines 9 to 12, we declare the member functions and procedures. These functions and
procedures are equivalent to the nonstatic member methods in the Person class. These typi-
cally operate on (read/write) the attributes of the object.

9 member function get_name return varchar2,
10 member procedure set_name(p_name in varchar2),
11 member function get_date_of_birth return date,
12 member procedure set_date_of_birth(p_date_of_birth in date),

On line 13, we declare the only static method, describe(), of the person object type. It
is equivalent to the static method with the same name in the Person class. As you may have
guessed, it is a method that operates at the object type itself (as opposed to instances of object
types).

13 static procedure describe

On line 15, we declare the object type to be not final. Doing so implies that this object can
have subtypes (just like a Java class can have subclasses, unless declared to be a final class).

14)
15 not final;
16 /

Type created.

Next, we implement all the methods declared in the person object type in the object type
body as follows:

benchmark@ORA10G> create or replace type body person
2 as

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS280

First, we override the default no-arg constructor (a constructor with no arguments) with
our own implementation:

3 constructor function person return self as result
4 is
5 begin
6 self.name := null;
7 self.date_of_birth := null;
8 return;
9 end;

Next, we override the attribute value constructor with our version:

11 constructor function person(name in varchar2,
12 date_of_birth in date)
13 return self as result
14 is
15 begin
16 self.name := name;
17 self.date_of_birth := date_of_birth;
18 return;
19 end;

We implement the getter and setter methods for the two attributes next:

21 member function get_name return varchar2
22 is
23 begin
24 return name;
25 end;
26
27 member procedure set_name(p_name in varchar2)
28 is
29 begin
30 name := p_name;
31 end;
32
33 member function get_date_of_birth return date
34 is
35 begin
36 return date_of_birth;
37 end;
38
39 member procedure set_date_of_birth(p_date_of_birth in date)
40 is
41 begin
42 date_of_birth := p_date_of_birth;
43 end;

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 281

Finally, our static method, describe, simply prints a message using the dbms_output built-
in PL/SQL package:

45 static procedure describe
46 is
47 begin
48 dbms_output.put_line ('This is a simple Oracle object type
that encapsulates a person.');
49 end;
50 end;
51 /

Type body created.

Declaring and Using Object Variables in PL/SQL
In this section, we will look at a simple example that demonstrates how to declare and use a
variable of an object type in PL/SQL. Note that a variable of an object type, just like any other
variable, is stored in the Oracle memory corresponding to your user session. The following is
our example using a PL/SQL anonymous block:

benchmark@ORA10G> declare

We first declare a variable, l_person, of type person:

2 l_person_obj person;
3 begin

We then use the person constructor that takes all arguments to initialize the variable:

5 l_person_obj := person('Varun', sysdate - (12*365));

Next, we print out the value in the object created:

7 dbms_output.put_line ('Name = ' || l_person_obj.name);
8 dbms_output.put_line ('Name (using getter method) = ' ||
9 l_person_obj.get_name());
10 dbms_output.put_line ('Date of birth = ' ||
11 l_person_obj.date_of_birth);

Finally, we invoke the static method describe in the person object type:

12 person.describe;
13 end;
14 /
Name = Varun
Name (using getter method) = Varun
Date of birth = 22-MAR-93
This is a simple Oracle object type that encapsulates a person.

PL/SQL procedure successfully completed.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS282

Collections (Nested Tables and Varrays)
Collections represent a data type that allows you to store more than one element of a built-in
data type or an object type. Oracle supports two types of collection data types:

• Varray: A varray is an ordered collection of a fixed number of elements of the same data
type (very similar to arrays in Java).

• Nested table: A nested table is an unordered set of data elements, all of the same data type.

Let’s look at each of these collection types in detail.

Varrays
A varray is an ordered set of data elements, belonging to the same data type, with the maximum
number of elements defined at the time of creation. The elements are accessed based on their
index positions (an index starts from 1). The maximum number of elements and even the data
type (with some limitations) can be changed later.

Creating a Varray Type

You create a varray type once in Oracle, typically as part of your application schema installa-
tion (as is the case with tables in your schema). For example, the following code creates a
varray type that can store up to 25 numbers:

benchmark@ORA10G> create or replace type varray_of_numbers as varray(25) of number;
2 /

Type created.

The following code creates a varray type that can store up to ten objects of type person
that we created in the earlier examples:

benchmark@ORA10G> create or replace type varray_of_persons as varray(10) of person;
2 /

Type created.

Declaring and Using Variables of Type Varray in PL/SQL

You can declare variables of type varray and store elements in them. For example, in the fol-
lowing PL/SQL code, we initialize and use the variable varray_of_numbers of type varray, each
member of which is of type number:

benchmark@ORA10G> declare
2 l_varray_of_numbers varray_of_numbers;
3 begin

We first initialize the varray variable using the Oracle-supplied default constructor:

5 l_varray_of_numbers := varray_of_numbers();
6 -- extend it to store 3 numbers.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 283

7 l_varray_of_numbers.extend(3);
8 l_varray_of_numbers(1) := 1;
9 l_varray_of_numbers(2) := 2;

Next, we loop through it, printing each element:

10 for i in 1..l_varray_of_numbers.count
11 loop
12 dbms_output.put_line(l_varray_of_numbers(i));
13 end loop;
14 end;
15 /
1
2

PL/SQL procedure successfully completed.

Let’s look at another example. This time, we declare a varray of type varray_of_persons:

benchmark@ORA10G> declare
2 l_varray_of_persons varray_of_persons;
3 begin

We initialize the variable with three person objects, this time using a different syntax:

4 l_varray_of_persons :=
5 varray_of_persons(person('Joe', sysdate-23*365),
6 person('John Doe', sysdate-25*365),
7 person('Tim Drake', sysdate-27*365)
8);

The next part of this example might expose a possibly surprising capability to you. In this
example, we loop through the members of the varray variable l_varray_of_persons. How-
ever, we do that by running a select on the variable. Look at the select statement in the
following implicit for loop carefully. The table keyword instructs the Oracle database to treat
the collection as a table value that can be used in the from clause of a query. Note that we need
to give this “in-memory table” an alias (such as the alias vp given in the following example) for
the query to work. This amazing and very useful capability allows us to exploit all our SQL
skills on collection variables of type varray and of type nested table (examples for nested
tables follow shortly). For example, we use a where clause in the following example to filter out
the contents of the varray variable:

9 for i in(
10 select vp.name, vp.date_of_birth
11 from table(l_varray_of_persons) vp
12 where vp.name like 'J%'
13)
14 loop
15 dbms_output.put_line(i.name || ', ' || i.date_of_birth);
16 end loop;

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS284

17 end;
18 /
Joe, 25-MAR-82
John Doe, 25-MAR-80

PL/SQL procedure successfully completed.

We can also declare a column type in a table as varray. We’ll cover this capability later in
the section “Using Varrays to Store Data.” Let’s now look at nested tables.

Nested Tables
A nested table is an unordered set of data elements, all of the same data type. Unlike varrays,
there is no maximum limit on the number of elements, and the order of the elements is not
preserved. You can declare variables of type nested table in your PL/SQL in a fashion similar
to varray variables. You can also use them as part of a database table, as you’ll see in the sec-
tion “Using Nested Tables to Store Data.” In this section, we’ll look at how to create a nested
table type and how we can use nested tables in our PL/SQL code.

Creating a Nested Table Type

You create a nested table type once in Oracle, typically as part of your application schema
installation (as is the case with tables in your schema). The following code shows how to cre-
ate a nested table type of type varchar2(50):

benchmark@ORA10G> create or replace type varchar_nt as table of varchar2(50);
2 /

Type created.

This code shows how to create a nested table type, each element of which is of type person:

benchmark@ORA10G> create or replace type person_nt as table of person;
2 /

Type created.

Declaring and Using Variables of the Nested Table Type in PL/SQL

You can declare variables of the nested table type and store elements in them. For example, in
the following PL/SQL code, we initialize and use a variable of nested table type varchar2_nt:

benchmark@ORA10G> declare
2 l_nt_variable varchar_nt;
3 begin

First, we initialize the varchar2_nt variable with some values:

5 l_nt_variable := varchar_nt('A', 'B','C');

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 285

Next, we carry out a select on the nested table variable. The select uses the table con-
struct introduced earlier to display the contents of the variable. Note the use of the keyword
column_value to get the value of the built-in type varchar2. The keyword column_value is useful
when you are selecting a nested table (or a varray) whose inner type itself is a built-in type
and hence does not have a corresponding attribute name, using which we could refer to it.

11 for i in (select nt.column_value
12 from table(l_nt_variable) nt)
13 loop
14 dbms_output.put_line('i = ' || i.column_value);
15 end loop;
16 end;
17 /
i = A
i = B
i = C

PL/SQL procedure successfully completed.

The following example initializes and uses a variable of nested table type person_nt. The
example is very similar to the earlier example using a varray of the person type:

benchmark@ORA10G> declare
2 l_person_nt person_nt;
3 begin
4 /* initializing the nested table variable with some values */
5 l_person_nt := person_nt
6 (person('Joe', sysdate-23*365),
7 person('John Doe', sysdate-25*365),
8 person('Tim Drake', sysdate-27*365)
9);
10 for i in(
11 select nt.name, nt.date_of_birth
12 from table(l_person_nt) nt
13 where nt.name like 'J%'
14)
15 loop
16 dbms_output.put_line(i.name || ', ' || i.date_of_birth);
17 end loop;
18 end;
19 /
Joe, 25-MAR-82
John Doe, 25-MAR-80

PL/SQL procedure successfully completed.

Now that you’re familiar with objects and collections, let’s look at how to use them as
programming constructs.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS286

Using Objects As Programming Constructs
When I talk of using objects as programming constructs, I am referring to using the object
types and collections (nested tables and varrays) to enhance the power of your PL/SQL code.
This section illustrates some of these techniques.

There are two main ways in which you can exploit object capabilities in your code:

• Use the object-oriented features of Oracle objects. As mentioned earlier, Oracle objects
support many OO capabilities, such as inheritance, polymorphism, etc. Using these
features, you can create sophisticated OO business logic.

• Use objects to improve the performance of PL/SQL. This is perhaps the most common
and useful way in which you can use Oracle objects. This technique involves using col-
lections (usually nested tables) in conjunction with techniques such as bulk collect
and bulk bind within your PL/SQL code to significantly improve its performance.
I don’t cover this topic in this chapter; I cover it in detail in the section “Using Bulk
Operations to Boost Performance” in Chapter 17.

In the next section, we’ll look at an example that demonstrates how to exploit the OO
features of objects.

Using the Object-Oriented Features of Oracle Objects
This section illustrates the concept of inheritance when using objects. For this, we create
an object type, employee, that inherits from the person object type introduced earlier. The
employee object type adds a third attribute, employee_id, that will store an employee’s ID. The
inheritance itself is signified by the under person phrase in the first line of the following code:

benchmark@ORA10G> create or replace type employee under person
2 (

We declare the new attribute employee_id:

3 employee_id number,

We declare a getter and setter for the new attribute:

4 member function get_employee_id return number,
5 member procedure set_employee_id(p_employee_id in number),

Just for illustration purposes, we override the member function get_name() that is inher-
ited from the person object type (the keyword overriding signifies that we are overriding an
inherited method):

6 overriding member function get_name return varchar2
7)
8 not final;
9 /

Type created.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 287

The methods declared in the employee object type are defined in the type body as
follows (the code should be self-explanatory). Please note that we put a message using the
dbms_output package inside the overriding function get_name().

benchmark@ORA10G> create or replace type body employee
2 as
3 member function get_employee_id return number
4 is
5 begin
6 return employee_id;
7 end;
8
9 member procedure set_employee_id(p_employee_id in number)
10 is
11 begin
12 employee_id := p_employee_id;
13 end;
14 -- an example of overriding
15
16 overriding member function get_name return varchar2
17 is
18 begin
19 dbms_output.put_line('In employee get_name() method');
20 return name;
21 end;
22
23 end;
24 /

Type body created.

Next, we instantiate the employee objects in PL/SQL using the default constructor sup-
plied by Oracle, and invoke the overridden method:

benchmark@ORA10G> declare
2 l_employee employee;
3 begin
4 l_employee := employee('John the King', sysdate - 43*365, 1);
5 dbms_output.put_line(l_employee.get_name());
6 end;
7 /

In employee get_name() method
John the King

PL/SQL procedure successfully completed.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS288

As confirmed by the output, the overridden version of the method get_name() was
invoked. This example demonstrates how to use inheritance in code using Oracle objects.
Using the concept of inheritance and other similar OO features of Oracle objects, you can
write sophisticated PL/SQL programs that can then be invoked by the JDBC layer. Note that in
the preceding example, the objects were not being used to store persistent data as part of
tables. We’ll cover that topic in the next section.

Using Objects to Store Data (Not Recommended)
As mentioned earlier, Oracle allows you to declare a table with one or more columns, the data
type of which is an object type or a collection type. There are two categories of such tables:

• Object table: An object table is a special kind of table in which each row represents an
entire object. Essentially, this type of table consists of only one column, the data type of
which is an object type. In the following code snippet, we create an object table of type
person:

benchmark@ORA10G> create table person_table of person;

Table created.

• Table with column objects: A table in which at least one column is of an object type or
collection type is called (for lack of a better name) a table with column objects. A column
object is an object stored as a column of a table in a row that contains at least one more
attribute. For example, the table contacts defined as follows falls under this category:

benchmark@ORA10G> create table contacts
2 (
3 contact_person person,
4 contact_type varchar2(20)
5);

Table created.

Tables can also have columns whose data type is a varray or a nested table. These are
typically used in lieu of storing a parent/child relationship.

In this section, we’ll first discuss how objects can be stored, retrieved, and updated in
tables in Oracle in the form of nested tables and varrays. We’ll then discuss the reasons this is
not, in general, a recommended practice (mainly because it leads to poor performance and
increases code complexity). Let’s begin with a discussion of how to store varrays in tables.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 289

Using Varrays to Store Data
In this section, we’ll walk through the various steps involved in creating and populating a
table with a varray column. While examining some of the techniques involved in populating
and retrieving data from a table that contains a varray column, you’ll likely start to appreciate
the increased code complexity that using objects and collections in tables introduces. Using
varrays in tables involves the following steps:

1. Create the varray type.

2. Create the table containing a column of the varray type.

3. Perform Data Manipulation Language (DML) statements on the table containing a
column of the varray type.

Let’s look at each of these steps separately.

Creating a Varray Type
The first step is to create the varray type itself. The following code creates a varray of varchar2
variables called varray_of_varchars that can store up to ten varchar2(50) entries:

benchmark@ORA10G> create or replace type varray_of_varchars as
2 varray(10) of varchar2(50);
3 /

Type created.

Creating a Table Containing a Column of the Varray Type
The next step is to create the table with the varray column. In the following code, we create a
table, dep_email_addresses, that stores up to ten e-mail addresses of a department in the col-
umn email_addresses of type varray_of_varchars:

benchmark@ORA10G> create table dep_email_addresses
2 (
3 dep_no number,
4 email_addresses varray_of_varchars
5);

Table created.

Performing DML on a Table Containing a Column of the Varray Type
We insert some values into the table dep_email_addresses next. Notice how we initialize the
varray column using the Oracle-supplied constructor:

benchmark@ORA10G> insert into dep_email_addresses(dep_no, email_addresses)
2 values(10, varray_of_varchars('king@mycompany.com',
3 'joe@mycompany.com', 'john@mycompany.com'));

1 row created.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS290

We query the values we inserted so far to get one row we inserted. The result shows the
column email_addresses as a single entity representing all the e-mail addresses nested within:

benchmark@ORA10G> select * from dep_email_addresses;
DEP_NO EMAIL_ADDRESSES
------ --

10 VARRAY_OF_VARCHARS('king@mycompany.com', 'joe@mycompany.com',
'john@mycompany.com')

To “unnest” the individual e-mail address values tucked away in the varray column into
separate rows, we can use the table clause along with the keyword column_value in our query as
follows. Essentially, we have to do a join of the table dep_email_addresses with our varray col-
umn cast as a table using the table clause. As you can see, what would be a simple select joining
a parent/child table looks more complicated when we use objects to store data in tables:

benchmark@ORA10G> select c.dep_no, a.column_value
2 from dep_email_addresses c, table(c.email_addresses) a;

DEP_NO COLUMN_VALUE
------ --

10 king@mycompany.com
10 joe@mycompany.com
10 john@mycompany.com

3 rows selected.

Next, we insert another row into dep_email_addresses. This row is obtained as the
result of a query from the same table (this shows how to use the syntax for insert into
<table_name> <select from>-type statements with tables containing columns of the collec-
tion type). The code is even more complicated in this case. The innermost select uses the
syntax to unnest the varray column values, as you saw in the previous example. The keyword
multiset is used to specify that the subquery can return more than a row (without it, Oracle
will give an error if the subquery returns more than one row). The cast function casts a value
from one type to another. We use it here to cast the resulting query rows into our varray type:

benchmark@ORA10G> insert into dep_email_addresses
2 select 20,
3 cast
4 (
5 multiset
6 (
7 select a.column_value
8 from dep_email_addresses c, TABLE(c.email_addresses) a
9)
10 as varray_of_varchars
11)
12 from dep_email_addresses
13 where dep_no = 10;

1 row created.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 291

To update a value in the varray column, you have to replace the entire varray with a new
varray value—you cannot selectively replace or add an element. Thus for a simple update,
you will have to use procedural code. This is a huge limitation that should more or less con-
vince you that using varrays in tables is not a good idea in general. Not only does the code
complexity increase, but also the performance of an update decreases since you are now
forced to use procedural code instead of SQL.

As an example of a procedural update, see the following code for the procedure
add_email_address. The procedure adds a new a e-mail address to a given department
number in the dep_email_addresses table:

benchmark@ORA10G> create or replace procedure add_email_address(
2 p_dep_no in number, p_email_address in varchar2)
3 is
4 l_prev_email_addresses dep_email_addresses.email_addresses%type;
5 begin
6

First, we select the old varray column value into a varray variable:

8 select c.email_addresses
9 into l_prev_email_addresses
10 from dep_email_addresses c
11 where dep_no = p_dep_no;
12

Next, we extend the varray variable to store the new e-mail address:

14 l_prev_email_addresses.extend(1);

We then store the new e-mail address as the last element of the varray variable:

16 l_prev_email_addresses(l_prev_email_addresses.count)
17 := p_email_address;

Finally, we replace the varray column in the table with the new varray variable value:

20 update dep_email_addresses d
21 set d.email_addresses = l_prev_email_addresses
22 where dep_no = p_dep_no;
23 end add_email_address;
24 /

Procedure created.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS292

We invoke the procedure to add an e-mail address to the department number 10:

benchmark@ORA10G> exec add_email_address(10, 'new_contact@mycompany.com')

PL/SQL procedure successfully completed.

We run a query to verify that the “update” went through successfully:

benchmark@ORA10G> select a.column_value
2 from dep_email_addresses c, TABLE(c.email_addresses) a
3 where dep_no=10;

king@mycompany.com
joe@mycompany.com
john@mycompany.com
new_contact@mycompany.com

Next, we’ll take a quick peek at how Oracle internally stores a varray column.

Storage Considerations for Varray Columns
Oracle decides how to store the varray based on the maximum possible size of the varray com-
puted using the limit of the declared array. According to the official Oracle documentation, if
the size exceeds approximately 4,000 bytes, Oracle stores the varray as a LOB; otherwise, Oracle
stores it as a raw value. However, it turns out that a raw data type can store only a maximum of
2,000 bytes. Thus it is highly likely that Oracle actually stores the varray as a varchar2 (not as a
raw) when the size is less than 4,000 bytes.

Now that we have discussed varrays in tables and their associated disadvantages in terms
of increased code complexity and potential performance issues, let’s move on to look at how
we can use nested tables to store data.

Using Nested Tables to Store Data
In this section, I’ll illustrate how to use nested tables to store data. You can use a nested table
column in a table as an alternative to creating separate parent/child tables (I’ll discuss the
pros and cons of both approaches subsequently). To compare and contrast methods, we’ll
also create a relational schema for the same example.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 293

The Application Scenario
Our simple example consists of creating a schema for the scenario illustrated in Figure 8-1.
The entity Component consists of zero or more parts.

Figure 8-1. The components and parts relationship

Relational Tables–Based Approach
Using the traditional relational schema–based approach, this scenario can be modeled as a
parent table, components_rel, and a child table, parts_rel, with a foreign key relationship as
shown in the following code. First, we create the parent table components_rel (the prefix rel
reminds us that this is part of a pure relational approach):

benchmark@ORA10G> create table components_rel
2 (
3 component_id number primary key,
4 component_name varchar2(50)
5);

Table created.

Next, we create the child table parts_rel. For simplicity, assume that one part can belong
to at most one component.

benchmark@ORA10G> create table parts_rel
2 (
3 component_id number references components_rel on delete cascade,
4 part_id number primary key,
5 part_name varchar2(50),
6 part_desc varchar2(500)
7);

Table created.

1

0..*

component _id

component _name

Part

part_id

component_id

part_name

part_desc

Component

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS294

We also create an index on the foreign key column in the child table parts_rel. Almost
always, this index is required in real-life applications to speed up the access to queries on
child tables and to avoid unnecessary locking and even deadlocks during a delete cascade
operation (see http://asktom.oracle.com/~tkyte/unindex/index.html for more details).

benchmark@ORA10G> create index parts_id_rel_idx on parts_rel(component_id);

Nested Tables–Based Approach
Let’s now look at an alternative solution that uses nested tables to store the same data. Using
nested tables to store data involves the following steps:

1. Create the nested table type.

2. Create the table containing a column of the nested table type.

3. Perform DMLs on the table containing a column of the nested table type.

Let’s look at each of these steps separately.

Creating a Nested Table Type

The first step is to create an object type, part_type, to represent the child table columns:

benchmark@ORA10G> create or replace type part_type as object
2 (
3 component_id number,
4 part_id number,
5 part_name varchar2(50),
6 part_desc varchar2(500)
7);
8 /

Type created.

Then we can create the nested table type, part_type_tab, representing a collection of
part_type objects:

benchmark@ORA10G> create or replace type part_type_tab as table of part_type;
2 /

Type created.

Creating a Table Containing a Column of the Nested Table Type

Finally, we create the components table called components_nt, wherein we have the parts
column of the nested table type representing the parts of a component. Thus the child table is
embedded or “nested” within the parent table in this approach. The nested table column data
is actually stored in a real, physical table called parts_nt, as specified by the nested table
parts stored as parts_nt clause:

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 295

benchmark@ORA10G> create table components_nt
2 (
3 component_id number primary key,
4 component_name varchar2(50),
5 parts part_type_tab
6)
7 nested table parts store as parts_nt;

Table created.

Attempting to create a foreign key constraint on the nested table does not work because
nested tables do not allow referential integrity constraints, as shown in the following code.
We will address this issue shortly.

benchmark@ORA10G> alter table parts_nt add constraint
parts_nt_fk foreign key(component_id)
2 references components_nt(component_id);

alter table parts_nt add constraint parts_nt_fk foreign key(component_id)
*
ERROR at line 1:
ORA-30730: referential constraint not allowed on nested table column

Performing DML on a Table Containing a Column of the Nested Table Type

Let’s now look at how to carry out DML operations on a table containing a nested table column.
We can insert a row in the table components_nt as follows:

benchmark@ORA10G> insert into components_nt values
2 (1, 'component 1',
3 part_type_tab((part_type(1,1, 'part1', 'part1 description')),
4 (part_type(1,2, 'part2', 'part2 description'))
5)
6);

1 row created.

The syntax should be familiar to you by now: It uses nested table constructors, which we
have already covered. The following example runs a simple select on table components_nt:

benchmark@ORA10G> select * from components_nt;

COMPONENT_ID COMPONENT_NAME PARTS(COMPONENT_ID, PART_ID, PART_NAME, PART_DESC)
------------ --

1 component 1 PART_TYPE_TAB(PART_TYPE(1, 1, 'part1', 'part1
description'), PART_TYPE(1, 2, 'part2', 'part2
description'))

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS296

If we want to “unnest” the nested table contents, we can run the following select using
the table construct to “join” the nested table with its parent table (very similar to the case of
varrays):

benchmark@ORA10G> select p.*
2 from components_nt c, TABLE(c.parts) p;

COMPONENT_ID PART_ID PART_NA PART_DESC
------------ ---------- ------- --------------------

1 1 part1 part1 description
1 2 part2 part2 description

This provides a way to treat the nested table contents as any relational table contents
when writing queries (which should make you wonder why, instead of using a relational child
table, you would ever use nested table in the first place). Notice that we don’t have to give a
where clause to join the two tables; Oracle internally does that for us. Alternatively, we could
also use the hint nested_table_get_refs to get the same results as follows:

benchmark@ORA10G> select /*+ nested_table_get_refs */ part_id, part_name, part_desc
2 from parts_nt;

PART_ID PART_NA PART_DESC
---------- ------- --------------------

1 part1 part1 description
2 part2 part2 description

Let’s look at some more DML examples. The first one inserts into the components_nt table
with a select from the same table. This example is similar to the earlier example presented
during the varrays discussion. Here again, the multiset keyword is used to specify that the
subquery inside can return one row (without it, Oracle will give an error if the subquery
returns more than one row). Similarly, the cast keyword casts a value from one type to
another; we use it here to cast the resulting query value to our nested table type. Note that
we use the hint nested_table_get_refs to unnest the nested table data in the inner select.
Once again, the code is complicated for what would be a simple SQL statement in the case
of a relational approach:

benchmark@ORA10G> insert into components_nt
2 select 2, 'component 2',
3 cast
4 (
5 multiset
6 (
7 select /*+ nested_table_get_refs */ 2,3, part_name, part_desc
8 from parts_nt
9 where component_id = 1
10) as part_type_tab
11)
12 from components_nt c
13 where c.component_id = 1;

1 row created.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 297

By now, you are perhaps convinced at least that the code complexity of tables containing
object types or collections as columns is, in general, higher than that of the equivalent rela-
tional tables.

Next, we’ll examine in more detail how Oracle internally stores a nested table in a table. This
should give you some additional reasons to avoid using nested tables as a storage mechanism.

Storage Considerations for Nested Table Columns
A peek into the internal mechanism that Oracle uses to store nested tables reveals some addi-
tional issues with using nested tables to store data. To discover the internal “magic” that Oracle
does behind the scenes to store tables with nested table columns, we run the following query
that selects the column names and their maximum lengths for the table components_nt. Note
that for this query to work, we need the select privilege on table col$, which is owned by the
SYS user.

benchmark@ORA10G> select name, length
2 from sys.col$ c, user_objects uo
3 where uo.object_id = c.obj#
4 and uo.object_name = 'COMPONENTS_NT';

NAME LENGTH
-------------------- ---------
COMPONENT_ID 22
COMPONENT_NAME 50
PARTS 16
SYS_NC0000300004$ 16

Note that Oracle stores a hidden column called SYS_NC0000300004$ (these columns are
system-generated, and the names may be different in your database runs). This column con-
tains a key generated internally by Oracle, as shown by the following select on the two rows
we inserted earlier:

benchmark@ORA10G> select component_id, SYS_NC0000300004$
2 from components_nt;

COMPONENT_ID SYS_NC0000300004$
------------ --------------------------------

1 450F0E036B3D4AD39F1026235CDBA8C6
2 FE2F3FD8316A4EAA949A1D90A1286CFB

The purpose of storing the hidden column SYS_NC0000300004$ will be clear in a moment.
First, let’s look at how Oracle stores internally the nested table parts_nt:

benchmark@ORA10G> select name, length
2 from sys.col$ c, user_objects uo
3 where uo.object_id = c.obj#
4 and uo.object_name = 'PARTS_NT';

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS298

NAME LENGTH
-------------------- ---------
NESTED_TABLE_ID 16
SYS_NC_ROWINFO$ 1
COMPONENT_ID 22
PART_ID 22
PART_NAME 50
PART_DESC 500

As shown, the nested table itself has two hidden internal columns: nested_table_id and
sys_nc_rowinfo$. A quick select reveals the values in these two columns as follows:

benchmark@ORA10G> select /*+ nested_table_get_refs */ nested_table_id,
2 sys_nc_rowinfo$
3 from parts_nt;

NESTED_TABLE_ID SYS_NC_ROWINFO$(COMPONENT_ID, PART_ID, PART_NAME,
-------------------------------- --
450F0E036B3D4AD39F1026235CDBA8C6 PART_TYPE(1, 2, 'part2', 'part2 description')
FE2F3FD8316A4EAA949A1D90A1286CFB PART_TYPE(2, 3, 'part1', 'part1 description')
FE2F3FD8316A4EAA949A1D90A1286CFB PART_TYPE(2, 3, 'part2', 'part2 description')

PART_TYPE(1, 4, 'part3', 'part3 description
updated')

From the preceding select we can see that the hidden column sys_nc0000300004$ in the
parent table components_nt has the same key values that the hidden column nested_table_id
in the child table parts_nt. Thus the hidden column sys_nc0000300004$ in the parent table is
the foreign key to the column nested_table_id in the nested child table. Also, as shown in the
preceding select, the column sys_nc_rowinfo$ is another hidden column in the nested table
that Oracle uses to internally reference the entire nested table row as a single object.

We can see that behind the scenes Oracle internally works on two different tables (a par-
ent table and a child table) with an internally generated foreign key that connects the two
tables. This mitigates the shortcoming of not being able to create a referential integrity con-
straint on nested tables that we encountered earlier. Let’s look at the constraints and indexes
that Oracle creates for us internally on the parent table components_nt and the child table
parts_nt:

benchmark@ORA10G> select c.table_name,
2 c.constraint_name,
3 case
4 when c.constraint_type = 'P'
5 then 'Primary Key'
6 when c.constraint_type = 'U'
7 then 'Unique Key'
8 end constraint_type_desc,
9 i.index_name, i.column_name
10 from all_ind_columns i, user_constraints c
11 where i.index_name = c.index_name
12 and c.table_name in('COMPONENTS_NT', 'PARTS_NT');

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 299

TABLE_NAME CONSTRAINT_NAME CONSTRAINT_TYPE INDEX_NAME COLUMN_NAME
------------- -------------------- --------------- ------------- -------------
COMPONENTS_NT SYS_C006271 Primary Key SYS_C006271 COMPONENT_ID
COMPONENTS_NT SYS_C006272 Unique Key SYS_C006272 PARTS

As you can see, Oracle created a unique index, sys_c006272, on the hidden column
sys_nc0000300004$ (shown as being against the column parts in the result of the first query).
However, as of Oracle 10.1.0.2.0, Oracle does not create the index on the corresponding child
table column nested_table_id. As discussed earlier, it is imperative to create an index on this
column in most cases. If you do use nested tables in your schema for storing data, you must
remember to create an index on the nested_table_id column yourself. For example, in our case,
we create an index as follows:

benchmark@ORA10G> create index parts_nt_idx on
parts_nt(nested_table_id);

Index created.

Thus you can see that behind the scenes Oracle works in terms of relational tables, which
adds to code complexity as well. In the next section, we summarize these and other reasons
that we have uncovered so far justifying the recommendation to avoid objects as a way to
store data in tables.

Why It Is Not Recommended to Use Objects to Store Data
Now that we’ve looked at how we can use either varrays or nested tables to store data, let’s
summarize the various reasons for not doing so in the first place. In the case of nested tables,
the following are the major disadvantages of using them to store data in tables:

• Oracle ultimately stores nested tables data in the relational tables. The overhead of doing
so comes in the form of hidden columns, which may be mostly extraneous had we
decided to use simple relational schema. For example, Oracle internally created two hid-
den columns of 16 bytes each in the parent table and the hidden nested tables as part of
its attempt to simulate the foreign key relationship. These two columns are thrust upon
the user. In the equivalent relational schema, you would simply have created a foreign
key on the child table. You also have the flexibility of creating a sequence-based column as
a primary key if need be. The bottom line is that the two hidden columns take additional
(unnecessary, in most cases) space in your schema and constrain your design choices.

■Note You can improve the nested table performance and reduce the overall storage incurred by
creating the nested tables as index-organized tables with the compress option in the first place.
However, all other disadvantages mentioned in this section still hold true. For more details on using
index-organized tables for creating nested tables, please see section “Nested Table in an Index-
Organized Table (IOT)” in Oracle Database Application Developer’s Guide – Object Relational
Features (10g Release 1).

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS300

• The code becomes overly complex if you use nested tables. You have to be aware of the
nested table type, the nested table column in the parent table, and the internally cre-
ated relational table where the nested table column data is actually stored. Moreover,
the syntax of retrieving, inserting, and modifying data becomes more complicated, as
you saw in the examples presented in earlier sections of this chapter.

• The hint nested_table_get_refs (or the equivalent exotic syntax using a combination
of the table and cast keywords) needs to be used if you want to select, insert, delete, or
update the individual columns. The fact that in the majority of cases you do need to
manipulate the child table contents independent of the parent tables and end up using
this hint really begs the question as to why you need to use nested tables in the first
place. Why not simply create a relational parent and child table instead?

• The data stored in tables containing nested table columns may not be accessible to many
third-party tools that don’t understand the syntax to retrieve and store data in them. Your
application may become less “open” and accessible from third-party tools that under-
stand only the more standard relational SQL.

• DMLs can run substantially slower and scale much less when you use nested tables
rather than relational tables. We will do a comparison of different alternatives later in
section “Object Views vs. Relational Tables vs. Nested Tables” to establish this fact.

Most of the preceding arguments hold true in principle when you use varrays in tables
as well. In addition, varrays are even less flexible when it comes to updating them, since they
don’t allow selective updates; you have to replace the entire varray even if you want to change
only one value in the varray. Besides, you can’t create indexes on individual varray object
columns. Thus, you can conclude that using nested tables or varrays as a mechanism to per-
sist your data isn’t really a good idea. The question becomes, is there a middle ground? In
other words, can you have the flexibility of storing data in relational tables, and yet access
them as objects when needed? Object views, covered in the next section, may provide you
with one such mechanism.

Using Object Views on Top of Relational Tables
Object views allow you to access and manipulate relational data as if the data were stored in
tables containing object type or collection columns. Object views give you the flexibility to
store data in relational tables. Thus you can selectively choose to use object features when it
makes sense (e.g., to retrieve data directly as objects for your Java applications). For the most
part, you can use relational SQL directly on the underlying relational schema, thus avoiding
the code complexity and performance problems associated with storing data in tables con-
taining objects.

The process of creating object views on relational tables involves the following steps:

1. Define an object type. In this step, we define an object type where each attribute
corresponds to a relational table column. This object type will be used in creating
the object view.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 301

2. Define an object view. Next, we define an object view with a query that represents the
object-oriented view we have in mind.

3. Define the instead of triggers. In this step, we write instead of triggers on the view
to support required DML statements such as insert, update, and delete that work
directly on the object view. This step is required only if we want to insert, delete, and
update directly on the object view. The alternative is to do these operations directly on
the underlying tables. As you’ll see shortly, the instead of triggers can be quite com-
plex, and the resulting DMLs on the object view can result in very poor performance.
Hence I recommend that you avoid creating these triggers and instead use object
views only to perform selects on them.

We’ll look at each of the preceding steps in the following sections. We will demonstrate the
use of object views by creating an object view on top of the relational tables, components_rel
and parts_rel, that we created in the earlier section “Relational Tables–Based Approach.” We
assume that our relational schema consisting of the tables components_rel and parts_rel has
the following data to begin with:

benchmark@ORA10G> select * from components_rel;

COMPONENT_ID COMPONENT_NAME
------------ --------------

1 component1
2 component2

benchmark@ORA10G> select * from parts_rel;

COMPONENT_ID PART_ID PART_NAME PART_DESC
------------ ------- ---------- --------------------

1 1 part11 part 11 desc
1 2 part12 part 12 desc
2 3 part21 part 21 desc
2 4 part22 part 22 desc

Now, let’s look at each of the previous three steps involved in creating an object view on
top of the tables components_rel and parts_rel.

Defining an Object Type
The first step is to define an object type based on which we will create an object view. Since we
want our view to be equivalent in functionality to table components_nt created in the section
“Using Nested Tables to Store Data,” we create an object type as follows:

benchmark@ORA10G> create or replace type components_nt_tab as object
2 (
3 component_id number,
4 component_name varchar2(50),
5 parts part_type_tab
6);
7 /

Type created.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS302

Defining an Object View
The next step is to define an object view called components_or_view on top of our relational
tables components_rel and parts_rel, based on the object type components_nt_tab created in
the previous section, as illustrated in the following code. Notice how we give the object identi-
fier to be the primary key column, component_id, to indicate that the component_id column
uniquely identifies one row in the object view. (The syntax using cast and multiset was
explained in earlier sections. For a more detailed explanation of this syntax, please see the
Oracle Database Application Developer’s Guide – Object Relational Features [10g Release 1].)

benchmark@ORA10G> create or replace view components_or_view of
2 components_nt_tab with object identifier(component_id)
3 as
4 select component_id, component_name,
5 cast
6 (
7 multiset
8 (
9 select component_id, part_id, part_name, part_desc
10 from parts_rel p
11 where p.component_id = c.component_id
12)
13 as part_type_tab
14)
15 from components_rel c;

View created.

In the next section, we’ll examine examples of how to query data from the object view.

Performing Queries on the Object View
Using the object view, we can directly materialize the rows of the underlying relational tables
as an object. Let’s look at some examples of this. The first example performs a select that
returns all rows in our object view. Notice how the data inserted into the underlying relational
tables is materialized as objects:

benchmark@ORA10G> select * from components_or_view;

COMPONENT_ID COMPONENT_NAME PARTS(COMPONENT_ID, PART_ID, PART_NAME, PART_DESC)
--

1 component1 PART_TYPE_TAB(PART_TYPE(1, 1,'part11','part 11 desc'),
PART_TYPE(1, 2, 'part12', 'part 12 desc'))

2 component2 PART_TYPE_TAB(PART_TYPE(2, 3,'part21','part 21 desc'),
PART_TYPE(2, 4, 'part22', 'part 22 desc'))

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 303

Thus the queries on the object view components_or_view give results similar to our equiva-
lent object table, components_nt. The following is another select statement from the object
view as an illustration. Notice that we no longer need to use the nested_table_get_refs hint
here, as there is no nested table in our object view! If we do supply the hint, it will be ignored.

benchmark@ORA10G> select p.*
2 from components_or_view c, TABLE (c.parts) p;

COMPONENT_ID PART_ID PART_NAME PART_DESC
------------ ------- ---------- --------------------

1 1 part11 part 11 desc
1 2 part12 part 12 desc
2 3 part21 part 21 desc
2 4 part22 part 22 desc

If our inserts, updates, and deletes are done directly on the underlying tables
components_rel and parts_rel (not on the view components_or_view), then we are done as
far as the object view solution goes. But what if we wanted to carry out inserts, updates, and
deletes directly on the object view (instead of on the relational tables on which it is based)?
In such situations, we need to define instead of triggers on the object view.

■Note instead of triggers provide a transparent way of performing DMLs on views. These triggers are
called instead of triggers because, unlike other types of triggers, Oracle fires the trigger instead of exe-
cuting the triggering statement. For more information on this and other types of triggers, see the section
“Types of Triggers” in Chapter 22 of Oracle Database Concepts (10g Release 1).

Defining instead of Triggers
In this section, we’ll explore the various instead of triggers required to perform inserts, updates,
and deletes. Our approach is to perform a particular DML on the object view without the trigger
and note its failure. Then we’ll define a trigger that will make the DML succeed. The code pre-
sented in this section is adapted largely from the code in the section “The O-R View” of Chapter
20 of the book Expert One-on-One Oracle (Apress, ISBN: 1-59059-243-3) written by Tom Kyte.
We begin with defining instead of triggers that enable updates on the object view.

Updating on an Object View
As mentioned earlier, our approach is to demonstrate the need for a trigger by first running an
operation that fails, and then writing a trigger to make the operation succeed.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS304

■Caution Use of instead of triggers on object views can get fairly complex, especially when enabling
updates on the view. You may want to read this section with either a fresh mind or a fresh cup of coffee—
or both!

Let’s begin this section by trying to run a simple update on the view as it is. In this update,
we change the column component_name of the view. Notice, in particular, that none of the
columns that belong to the child table are involved in this update.

benchmark@ORA10G> update components_or_view
2 set component_name = component_name || 'modified';

2 rows updated.

So this update seems to work. Let’s now try to run another update wherein we update a
column of the child table parts in the following manner:

benchmark@ORA10G> update table
2 (
3 select parts
4 from components_or_view
5 where component_id = 1
6)
7 set part_desc = part_desc || ' or';

set part_desc = part_desc || ' or'
*

ERROR at line 7:
ORA-25015: cannot perform DML on this nested table view column

This operation fails with an exception. To make the preceding update work, we need to
use an instead of trigger on the object view that enables updates on the columns in the child
table parts as accessed from the object view. The following is the definition of the trigger that
achieves this. Note that the trigger is on the nested table parts of the object view as signified
by the phrase on nested table parts of components_or_view. This is because we want to
enable updates on the attributes of the nested table in the view. Explanatory comments are
interspersed within the code.

benchmark@ORA10G> create or replace trigger parts_io_update
2 instead of update on nested table parts of components_or_view
3 begin

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 305

If the primary key part_id has not been updated, then we update the underlying rela-
tional table part_rel instead as per our requirement. If the primary key part_id is modified,
then we raise an error since updating primary keys of a table is not a good practice.

4 if(:new.part_id = :old.part_id) then
5 update parts_rel
6 set part_name = :new.part_name, part_desc = :new.part_desc
7 where part_id = :new.part_id;
8 else
9 raise_application_error(-20001,
10 'Updating the primary key part_id is not allowed');
11 end if;
12 end;
13 /

Trigger created.

The update that failed earlier works now as follows:

benchmark@ORA10G> update table
2 (
3 select parts
4 from components_or_view
5 where component_id = 1
6)
7 set part_desc = part_desc || ' or';

2 rows updated.

However, there is more to come. What if we want to replace all parts of a component? The
following update replaces the entire parts column of the view components_or_view. This fails
because we still do not have a trigger on the object view per se (remember, the previous trig-
ger was on the nested table column parts of the object view—the difference will be clear in a
moment).

benchmark@ORA10G> declare
2 l_parts part_type_tab;
3 begin
4 select parts
5 into l_parts
6 from components_or_view
7 where component_id = 1;
8
9 for i in 1 .. l_parts.count
10 loop
11 l_parts(i).part_desc := l_parts(i).part_desc || 'changed';
12 end loop;
13
14 update components_or_view

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS306

15 set parts = l_parts
16 where component_id = 1;
17 end;
18 /
declare
*
ERROR at line 1:
ORA-01732: data manipulation operation not legal on this view
ORA-06512: at line 14

For this update to work, we need to create an instead of trigger on the object view that
enables update on the object view itself. The logic of the trigger is explained in the interspersed
comments.

benchmark@ORA10G> create or replace trigger components_or_view_io_update
2 instead of update on components_or_view
3 begin
4 --dbms_output.put_line('old component_id: ' ||:old.component_id);
5 --dbms_output.put_line('new component_id: ' ||:new.component_id);

If we are updating the column component_name, we simply update the corresponding rela-
tional table component_rel as follows:

6 case
7 when(updating('COMPONENT_NAME')) then
8 update components_rel
9 set component_name = (:new.component_name)
10 where component_id = :old.component_id;
11 when(updating('PARTS')) then

On the other hand, if we are updating the column parts, then the logic is slightly more
complex. Our first step is to remove all records from parts such that they were in the old set
but are not there in the new set of records:

16
17 delete from parts_rel
18 where part_id in
19 (
20 select part_id
21 from TABLE(cast(:old.parts as part_type_tab))
22 minus
23 select part_id
24 from TABLE(cast(:new.parts as part_type_tab))
25);

The next step is to update those records in parts_rel such that their part_id exists in
both the old and new set of records, and they have undergone a change in the remaining
columns. To do this, we need to use the table and cast syntax, both of which were briefly
explained in earlier sections.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 307

32 update parts_rel rp
33 set (component_id, part_name, part_desc) =
34 (
35 select :new.component_id, part_name, part_desc
36 from TABLE(cast(:new.parts as part_type_tab)) np
37 where np.part_id = rp.part_id
38)
39 where rp.part_id in
40 (
41 select part_id
42 from
43 (
44 select *
45 from TABLE(cast(:old.parts as part_type_tab))
46 minus
47 select *
48 from TABLE(cast(:new.parts as part_type_tab))
49)
50);

Finally, we insert any records in parts_rel that were newly added to the nested table
column parts:

54 insert into parts_rel
55 select component_id, part_id, part_name, part_desc
56 from
57 (
58 select *
59 from TABLE(cast(:new.parts as part_type_tab)) p
60 where part_id in
61 (
62 select part_id
63 from TABLE(cast(:new.parts as part_type_tab))
64 minus
65 select part_id
66 from TABLE(cast(:old.parts as part_type_tab))
67)
68);
69 --dbms_output.put_line('inserted ' || sql%rowcount);
70 end case;
71 end;
72 /

Trigger created.

With the preceding, fairly complex trigger in place, we can proceed to successfully carry
out updates on the object view. The following is the update that failed earlier, now shown to be
running successfully:

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS308

benchmark@ORA10G> declare
2 l_parts part_type_tab;
3 begin
4 select parts
5 into l_parts
6 from components_or_view
7 where component_id = 1;
8
9 for i in 1 .. l_parts.count
10 loop
11 l_parts(i).part_desc := l_parts(i).part_desc || 'changed';
12 end loop;
13
14 update components_or_view
15 set parts = l_parts
16 where component_id = 1;
17 end;
18 /

PL/SQL procedure successfully completed.

We are finished with enabling updates. As you can see, the code is fairly complex. Next,
we’ll look at how to enable inserts directly on the view.

Inserting on an Object View
In this section, we’ll enable inserts on the object view. If we try to insert data without having
created any instead of triggers, the insert operation fails as follows:

benchmark@ORA10G> insert into components_or_view values
2 (
3 3, 'component 3',
4 part_type_tab(part_type(3,6,'part 11', 'part 11 description'))
5);

insert into components_or_view values
*
ERROR at line 1:
ORA-01733: virtual column not allowed here

For the preceding insert to work, we need to write an instead of insert trigger on the
components_or_view itself as follows:

benchmark@ORA10G> create or replace trigger components_or_view_io_insert
2 instead of insert on components_or_view
3 begin

First, we insert into the parent relational table components_rel:

5 insert into components_rel(component_id, component_name)
6 values (:new.component_id, :new.component_name);
7

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 309

Then we insert into the child table parts_rel any new child records. Any duplicate
records are filtered out based on the primary key of the child table (in this case, the primary
key of the child table parts_rel is the column part_id):

9 insert into parts_rel
10 select *
11 from TABLE(cast(:new.parts as part_type_tab))
12 where part_id not in
13 (select part_id from parts_rel);
14 end;
15 /

Trigger created.

Now the insert should work:

benchmark@ORA10G> insert into components_or_view values
2 (
3 3, 'component 3',
4 part_type_tab(part_type(3,6,'part 11', 'part 11 description'))
5);

1 row created.

But how about if we just want to insert data into the parts table? One way to do so is to
use update, in which case our update trigger takes care of it. However, what if we want to use
the insert only on the nested table parts of the object view as follows?

benchmark@ORA10G> insert into
2 TABLE
3 (
4 select c.parts
5 from components_or_view c
6 where c.component_id=1
7)
8 values
9 (
10 1, 7, 'part 17','part 17 description'
11);

from components_or_view c
*

ERROR at line 5:
ORA-25015: cannot perform DML on this nested table view column

As you may have guessed by now, for this insert to work, we need another instead of
trigger on insert; this time it will be on the nested table column parts.

benchmark@ORA10G> create or replace trigger parts_io_insert
2 instead of insert on nested table parts of components_or_view
3 begin

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS310

4 -- Insert into the underlying relational child table
5 insert into parts_rel (component_id, part_id, part_name, part_desc)
6 values(:new.component_id, :new.part_id, :new.part_name, :new.part_desc);
7
8 end;
9 /

Trigger created.

Now the same insert should work as follows:

benchmark@ORA10G> insert into
2 TABLE
3 (
4 select c.parts
5 from components_or_view c
6 where c.component_id=1
7)
8 values
9 (
10 1, 7, 'part 17','part 17 description'
11);

1 row created.

We are finished with all triggers required to enable inserts. Next, we’ll move on to the
topic of enabling deletes.

Deleting on an Object View
As before, we begin by trying to delete a part from a given component without having created
any triggers:

benchmark@ORA10G> delete TABLE
2 (
3 select c.parts
4 from components_or_view c
5 where c.component_id=1
6) t
7 where t.part_id = 1;
from components_or_view c

*
ERROR at line 4:
ORA-25015: cannot perform DML on this nested table view column

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 311

Well, by now you may have guessed that we need an instead of trigger on the nested
table column parts to make the preceding delete work. The trigger code is as follows:

benchmark@ORA10G> create or replace trigger parts_io_delete
2 instead of delete on nested table parts of components_or_view
3 begin
4 -- delete from the underlying relational child table
5 delete parts_rel
6 where part_id = :old.part_id;
7 --dbms_output.put_line(sql%rowcount || ' rows deleted');
8 end;
9 /

Trigger created.

We are not finished yet. How about if we issue a delete based on the non-nested table
columns (i.e., the columns that come from the parent table on which the view is based)?

benchmark@ORA10G> delete components_or_view
2 where component_id = 1;

delete components_or_view
*

ERROR at line 1:
ORA-01732: data manipulation operation not legal on this view

For the preceding delete to work, we need a trigger on components_or_view itself. The trig-
ger first deletes the records from the child table parts_rel and then proceeds to delete the
parent record in components_rel:

benchmark@ORA10G> create or replace trigger components_or_view_io_delete
2 instead of delete on components_or_view
3 begin
4 -- First delete from the child table
5 delete parts_rel
6 where part_id in
7 (
8 select part_id
9 from TABLE(cast(:old.parts as part_type_tab))
10);
11
12 -- then delete from the parent table
13 delete components_rel
14 where component_id = :old.component_id;
15 end;
16 /

Trigger created.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS312

Now the same delete should work as follows:

benchmark@ORA10G> delete components_or_view
2 where component_id = 1;

1 row deleted.

Phew! That completes our section on instead of triggers to enable DMLs on object views.
They are complicated (especially the ones enabling updates); however, the fact that they need
to be written only once per object view is a bit encouraging from the maintainability point of
view. Once the triggers have been written, the calling code can work transparently on them. Of
course, you still need to maintain them as the schema changes, but schema changes are rela-
tively rare, in general.

In the next section, we will compare the performance of DML statements on solutions
that use object views, relational tables, and nested tables to store parent child data.

Object Views vs. Nested Tables vs. Relational Tables
You now know three approaches of storing parent/child type of data: good old relational
tables, nested tables, and object views on top of relational tables. Which ones should you use?
Since this book is focused on performance, we will compare these three methods to see which
ones fare better as far as performance goes. Intuitively, an approach based on relational tables
should outperform the other two approaches. However, we still need to ascertain by approxi-
mately how much. Also, it would be interesting to know the difference in performance
between the nested table–based approach and the object view–based approach, as they are
more or less equivalent in functionality and expressiveness (once all the instead of triggers
on the object view are in place).

So without further ado, let’s look at the package that compares insert, delete, and update
on the three approaches based on the schema that we created earlier. The package will perform
various DML operations on the relational schema, the schema that used nested tables to store
data, and the object view–based schema that we examined earlier. I explain the code in com-
ments interspersed within the package code.

benchmark@ORA10G> create or replace package or_nt_rel_pkg
2 as
3 g_num_of_select_runs constant number := 10000;
4 g_num_of_child_updates constant number := 10000;
5 part_rel_id number := 1;
6 part_or_id number := 1;
7 part_nt_id number := 1;
8
9 procedure do_or_select;
10 procedure do_nt_select;
11 procedure do_rel_select;
12 procedure do_or_insert(p_num_of_parents in int := 50,
13 p_num_of_children in int := 500);
14 procedure do_nt_insert(p_num_of_parents in int := 50,
15 p_num_of_children in int := 500);

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 313

16 procedure do_or_update;
17 procedure do_or_child_update;
18 procedure do_rel_update;
19 procedure do_rel_child_update;
20 procedure do_nt_update;
21 procedure do_nt_child_update;
22 procedure do_or_delete;
23 procedure do_rel_delete;
24 procedure do_nt_delete;
25 procedure do_rel_bulk_insert(p_num_of_parents in int := 50,
26 p_num_of_children in int := 500);
27 end;
28 /

Package created.

The actual implementation in the package body explains each procedure in detail:

benchmark@ORA10G> create or replace package body or_nt_rel_pkg
2 as

The procedure do_or_select repeats 10,000 times a query that selects one child record
based on the child table primary key (part_id) on the object view:

3 procedure do_or_select
4 as
5 l_x number := 0;
6 begin
7 for i in 1..g_num_of_select_runs
8 loop
9 for x in (select p.*
10 from components_or_view c, TABLE (c.parts) p
11 where p.part_id = i
12)
13 loop
14 l_x := l_x + 1;
15 end loop;
16 end loop;
17 dbms_output.put_line(l_x);
18 end do_or_select;

The procedure do_nt_select repeats 10,000 times a query that selects one child record
based on the child table primary key (part_id) on the table components_nt:

20 procedure do_nt_select
21 as
22 l_x number := 0;
23 begin
24 for i in 1..g_num_of_select_runs
25 loop

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS314

26 for x in (select p.*
27 from components_nt c, TABLE (c.parts) p
28 where p.part_id = i
29)
30 loop
31 l_x := l_x + 1;
32 end loop;
33 end loop;
34 dbms_output.put_line(l_x);
35 end do_nt_select;

The procedure do_rel_select repeats 10,000 times a query that selects one child record
based on the child table primary key (part_id) on the relational table part_rel:

37 procedure do_rel_select
38 as
39 l_x number := 0;
40 begin
41 for i in 1..g_num_of_select_runs
42 loop
43 for x in (select p.*
44 from parts_rel p
45 where p.part_id = i
46)
47 loop
48 l_x := l_x + 1;
49 end loop;
50 end loop;
51 dbms_output.put_line(l_x);
52 end do_rel_select;
53

The procedure do_or_insert inserts a given number of parent records and a given number
of children for each parent record into the object view components_or_view:

54 procedure do_or_insert (p_num_of_parents in int := 50,
55 p_num_of_children in int := 500)
56 as
57 l_part_type_tab part_type_tab;
58 l_part_type part_type;
59 l_part_or_id number := 1;
60 begin
61 l_part_type_tab := part_type_tab();
62 l_part_type_tab.extend(p_num_of_children);
63
64 for i in 1..p_num_of_parents
65 loop
66 for j in 1..p_num_of_children
67 loop

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 315

68 l_part_type_tab(j) :=
69 part_type(i, l_part_or_id, 'part'||i||j, 'part desc '||i||j);
70 l_part_or_id := l_part_or_id + 1;
71 end loop;
72 insert into components_or_view values
73 (i, 'component'||i, l_part_type_tab);
74 end loop;
75 commit;
76 end do_or_insert;
77

The procedure do_nt_insert inserts a given number of parent records and a given number
of children for each parent record into the table components_nt:

78 procedure do_nt_insert(p_num_of_parents in int := 50,
79 p_num_of_children in int := 500)
80 as
81 l_part_type_tab part_type_tab;
82 l_part_type part_type;
83 l_part_or_id number := 1;
84 begin
85 l_part_type_tab := part_type_tab();
86 l_part_type_tab.extend(p_num_of_children);
87
88 for i in 1..p_num_of_parents
89 loop
90 for j in 1..p_num_of_children
91 loop
92 l_part_type_tab(j) :=
93 part_type(i, l_part_or_id, 'part'||i||j, 'part desc '||i||j);
94 l_part_or_id := l_part_or_id + 1;
95 end loop;
96 insert into components_nt values
97 (i, 'component'||i, l_part_type_tab);
98 end loop;
99 commit;
100 end do_nt_insert;

The procedure do_or_update updates one column of all rows in the object view
components_or_view:

102 procedure do_or_update
103 as
104 begin
105 update components_or_view
106 set component_name = component_name || ' or update';
107 end;
109 procedure do_or_child_update
110 as

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS316

111 l_component_id components_or_view.component_id%type;
112 begin
113 for i in 1..g_num_of_child_updates
114 loop
115 l_component_id := mod(i,500);
116 update table
117 (select parts
118 from components_or_view
119 where component_id = l_component_id
120)
121 set part_desc = part_desc || ' updated'
122 where part_id = i;
123 end loop;
124 end do_or_update;

The procedure do_rel_update updates one column of all rows in the table
components_rel:

126 procedure do_rel_update
127 as
128 begin
129 update components_rel
130 set component_name = component_name || ' or update';
131 end do_rel_update;

The procedure do_rel_child_update updates one column of all rows in the child table
parts_rel:

133 procedure do_rel_child_update
134 as
135 begin
136 for i in 1..g_num_of_child_updates
137 loop
138 update parts_rel
139 set part_desc = part_desc || ' updated'
140 where part_id = i;
141 end loop;
142 end do_rel_child_update;

The procedure do_nt_update updates one column of all rows in the table components_nt:

144 procedure do_nt_update
145 as
146 begin
147 update components_nt
148 set component_name = component_name || ' or update';
149 end do_nt_update;

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 317

The procedure do_nt_child_update updates one column of all rows in the child table
parts_nt (the hidden table containing the nested table data). Note that owing to a bug in Ora-
cle 10g Release 1 and Oracle9i Release 2, because of which the nested_table_get_refs hint
does not work in static SQL, the update fails unless you use dynamic SQL, as follows:

151 procedure do_nt_child_update
152 as
153 begin
154 for i in 1..g_num_of_child_updates
155 loop
156 execute immediate 'update /*+ nested_table_get_refs */ parts_nt' ||
157 ' set part_desc = part_desc|| :1 ' ||
158 ' where part_id = :2 '
159 using 'updated', i;
160 end loop;
161 end do_nt_child_update;

The procedure do_or_delete deletes all rows in components_or_view:

163 procedure do_or_delete
164 as
165 begin
166 delete components_or_view;
167 end do_or_delete;

The procedure do_rel_delete deletes all rows in components_rel and implicitly in
parts_rel:

169 procedure do_rel_delete
170 as
171 begin
172 delete components_rel;
173 end do_rel_delete;

The procedure do_nt_delete deletes all rows in components_nt and implicitly in parts_nt:

175 procedure do_nt_delete
176 as
177 begin
178 delete components_nt;
179 end do_nt_delete;

The procedure do_rel_bulk_insert inserts a given number of parent records and a given
number of children for each parent record into the tables components_rel and parts_rel
using PL/SQL bulk binding technique. When using bulk binding, you first store all rows to be
inserted in a collection, and then insert it in one shot using the special forall syntax, thus
avoiding the overhead of switching contexts between the SQL engine and the PL/SQL engine.
Bulk binding is discussed in detail in the section “Using Bulk Binding” of Chapter 17.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS318

181 procedure do_rel_bulk_insert(p_num_of_parents in int := 50,
182 p_num_of_children in int := 500)
183 as
184 l_tmp_comp number;
185 type array is table of parts_rel%rowtype index by binary_integer;
186 l_childdata array;
187 l_part_rel_id number := 1;
188 begin
189 for i in 1..p_num_of_parents
190 loop
191 insert into components_rel values (i, 'component'||i);
192 for j in 1..p_num_of_children
193 loop
194 l_childdata(j).component_id := i;
195 l_childdata(j).part_id := l_part_rel_id;
196 l_childdata(j).part_name := 'part'||i||j;
197 l_childdata(j).part_desc := 'part desc' || i||j;
198 l_part_rel_id := l_part_rel_id + 1;
199 end loop;
200 forall X in 1 .. p_num_of_children
201 insert into parts_rel values l_childdata(X);
202 end loop;
203 commit;
204 end do_rel_bulk_insert;
205 end ;
206 /

Package body created.

I must point out that the preceding performance benchmark suffers from the drawback
that, of necessity, I had to choose specific scenarios for updates, deletes, and selects, among
other things. In particular, for comparing updates, I ran my tests on the case where I update all
records of rows in the child table, which may not represent reality in general. Also, the nested
tables–based approach can be improved by storing the nested tables as an index-organized
table as mentioned in an earlier note. Having said that, the conclusions drawn from the bench-
mark should more or less hold true.

I used the runstats utility to measure the differences between the elapsed time for inserting
50 parents, each having 500 child records, for each of the three cases compared. To conserve
space, I do not show the actual program runs, but that should not be an issue since I give the
details of the package I used to run the various comparisons.

Table 8-1 summarizes the elapsed times and latches for various scenarios that I observed
in my runs. For each case I show in bold and within parentheses, the values normalized to
the lowest value of the elapsed time or the latches for a given DML. For example, inserts in the
nested tables–based approach took 2.86 times the elapsed time and consumed 16.20 times the
latches as compared to the relational approach.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 319

Table 8-1. Comparing Elapsed Times (in Hundredths of Seconds) and Latches for Relational
Solution, Nested Table–Based Solution, And Object View–Based Solution for Insert, Update,
and Delete

DML Relational Nested Table Object View

Elapsed Latches Elapsed Latches Elapsed Latches
Time Time Time
(1/100 of (1/100 of (1/100 of
Second) Second) Second)

Insert 171 (1.00) 19,592 (1.00) 489 (2.86) 317,433 (16.20) 8942 (52.29) 6,267,036 (319.00)

Update 215 (1.05) 221,839 (1.00) 3633 (17.90) 224,739 (1.01) 270 (1.25) 620,001 (2.80)

Delete 380 (1.00) 460,808 (1.00) 396 (1.04) 475,312 (1.03) 546 (1.44) 1,700,907 (3.69)

Select 61 (1.00) 87,075 (1.00) 3890 (63.77) 6,469,635 (74.30) 190 (3.11) 95,190 (1.10)

From Table 8-1, we can draw the following performance-related conclusions:

• In general, the relational tables–based solution outperforms the other two solutions
(in many cases by orders of magnitudes, both in terms of elapsed times and latches).

• The object views–based solution performs rather poorly when compared to the nested
tables–based solution when it comes to inserts, deletes, and updates. This can be
attributed to the overhead of the instead of triggers that do all the work behind the
scenes.

• When it comes to selects, object views perform much better than the nested
tables–based solution.

From the discussion we have had so far in this chapter, we can conclude the following
about the code maintenance of all three approaches:

• In general, the code written on top of the relational schema is much more maintainable
and also more open to be accessed from various tools that work using SQL as compared
to schema that uses objects as storage mechanism.

• The code complexity increases tremendously for both object views and the nested
tables–based schema.

On the whole, it is a good idea to always give preference to a pure relational tables–based
approach given the performance benefits and the other benefits, as discussed in the earlier
sections. If you do have a good reason to choose otherwise, then the second choice, in gen-
eral, may be the object views–based solution, especially if the inserts, deletes, and updates are
done directly on the underlying tables and only selects, when required, are done on the object
view itself.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS320

Summary
In this chapter, you learned about different ways in which objects are useful in Oracle. In
particular, you learned about three different ways in which objects are useful:

• Purely as a programming construct

• As a mechanism to store data in object tables

• In the form of object views that work on top of relational tables

You discovered that it is best to use objects as a programming construct to enhance the
power of your PL/SQL code. Storing data in object tables that contain varrays or nested table
columns can lead to complex code that does not perform well, as you learned from the per-
formance study done at the end of the chapter. In particular, you discovered that DMLs on
relational tables perform much better in general when compared to DMLs carried out on
object views and tables containing nested tables. In the next chapter, we will look at how to
access objects from JDBC.

CHAPTER 8 ■ ORACLE OBJECTS: AN OBJECTIVE ANALYSIS 321

Using Weakly Typed
Struct Objects

In the previous chapter, you learned how to make the best use of objects in Oracle. In partic-
ular, you learned that you should avoid using objects to store data in a table. Object views, on
the other hand, allow you to create a layer of abstraction on top of relational tables, giving you
the option of accessing objects directly from your code, while also retaining the flexibility of
writing code that works on the underlying relational tables using traditional SQL. Even though
it is not, in general, advisable to store data in object tables, it still makes sense to discuss how
to work with objects using JDBC, for the following reasons:

• Even if you don’t store objects in tables, you may have to pass Oracle objects back and
forth between Java and your stored procedures that take objects as parameters. Since
this would be also true for stored procedures that use objects as programming con-
structs rather than as a storage mechanism, it is useful to learn these concepts.

• The idea of accessing and manipulating objects is an integral part of the JDBC API, and
this book would be incomplete without a discussion of this topic.

• You need to be familiar with accessing objects from object tables, in case you
encounter code that uses the concepts involved.

In this chapter and the next two chapters, you will learn different options available for
mapping Oracle database objects and collections to objects in Java.

In this chapter, we will discuss how to materialize database objects as weakly
typed objects in Java. A weakly typed object refers to a Java object that implements the
java.sql.Struct interface. A java.sql.Struct object represents in a uniform fashion, in
Java, database objects belonging to any given database object type. It represents the database
object as an array of attributes, which are stored in an array of Java objects (i.e., Object[]). For
example, using this technique, a database object of type person and a database object of type
address can both be mapped to a single java.sql.Struct object and initialized with an appro-
priate set of attributes.

In Chapter 10, we will discuss how to materialize objects as strongly typed objects in Java.
A strongly typed object refers to an object belonging to a custom Java class specifically created
to represent a given database object type in Java. For example, when we use strongly typed
Java objects, a database object of type person object would map to a Java object of a custom

323

C H A P T E R 9

■ ■ ■

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS324

class, say Person, whereas a database object of type address would map to, for instance, a Java
object of custom class Address.

In Chapter 11, we will discuss how to materialize a database collection of built-in types
(such as a varray of varchar2), a database collection of object types (such as a nested table
of person objects), and database object references (references are defined in Chapter 11) as
either weakly typed java.sql.Struct objects or as strongly typed custom class objects in Java.

In addition, in this chapter and in Chapters 10 and 11, we will cover how to manipulate
data stored in tables containing objects or collections using either weakly typed or strongly
typed Java objects. Although we will use tables with object columns in our examples for sim-
plicity, the same code should work with object views as well, with appropriate triggers, as
explained in Chapter 8 (regardless of whether we use weakly typed or strongly typed objects).

■Note There are many tools and frameworks available outside the realm of JDBC that address the issue of
mapping data in relational schema to Java objects (without using Oracle database object types or collec-
tions). Some of the popular ones are TopLink, Hibernate, and the Spring framework. Discussion of these tools
is beyond the scope of this book. However, I do strongly encourage you to consider and evaluate these tools
when working with relational data that needs to be materialized as objects in Java.

Weakly Typed Struct Objects
The term “weakly typed object” in Java refers to an object that implements the JDBC standard
interface java.sql.Struct (referred to as simply Struct going forward). A Struct object repre-
sents a database object of any given object type (such as person) in a generic fashion, namely
as a collection of attributes. The object attributes are stored in an Object array that contains
individual attributes as Java objects. By default, an attribute class is based on the mapping
between the SQL data type and Java class, as specified in Table A-1 in this book’s appendix.
For example, an object attribute of type number materializes in Java as a java.math.BigDecimal
object.

■Note In the next chapter, you’ll see how you can change this default mapping by supplying a type map
in the Connection object (a mapping that informs the JDBC driver which Java class you want to use to
manifest a given database type).

The order of these attribute objects in the Object array is the same order in which they
were specified at the time of the creation of the object type that they represent. For example,
a Struct Java object that corresponds to the database person object type (defined in section
“Object Type [Equivalent of a Java Class]” of Chapter 8 and containing the attributes name and
date_of_birth, in that order) would be stored in an internal array of Object elements (i.e., an
Object[] object) containing two elements:

• The first attribute would be a String object (since the database type varchar2 maps to
a String object in Java, by default) that contains the value in the name attribute of the
person object.

• The second attribute would be a java.sql.Timestamp object (since the database type
date, by default, maps to a java.sql.Timestamp object in Java) that contains the value
in the date_of_birth attribute of the person object.

Note that you may need to cast each of these attributes manually into an object of the
appropriate data type in Java. For example, while manipulating the second element of the
Object[] structure in the previous example (corresponding to the date_of_birth attribute),
you may need to cast the second array element to the interface java.sql.Timestamp type in
order to access any methods specific to the interface java.sql.Timestamp.

Weakly typed Struct objects are useful in the following scenarios:

• If your program needs to work with an arbitrary object type in a generic fashion with-
out really needing to materialize it as a custom class object. This may be true, for
example, if you are building a utility that needs to deal with an object of an arbitrary
object type in a generic fashion as a collection of attributes.

• If your end user application doesn’t need to do a lot of manipulation of objects in mem-
ory. If you need to do a lot of manipulation in memory, then it is much more intuitive to
use strongly typed objects, where a custom class that has appropriate getter and setter
methods for the object attributes represents the database object type.

Oracle implements the Struct interface as an object of type oracle.sql.STRUCT class
which, in a typical fashion, implements the standard methods in the Struct interface and also
adds Oracle extension methods. We briefly discuss the Struct interface and its Oracle imple-
mentation class, oracle.sql.STRUCT, in the next two sections.

The Struct Interface
The Struct interface is the standard JDBC interface that defines the mapping in Java for a SQL
structured type (Oracle object types in this chapter). A Struct object contains a value for each
attribute of the SQL structured type that it represents. You can use the Struct interface as the
container for your objects if you want to stick to standard JDBC. The Struct interface has the
three methods whose signatures follow:

public Object[] getAttributes(Map map) throws SQLException;

This method retrieves the values of the attributes, using entries in the specified type map
associated with the Connection object to determine the Java classes to use in materializing any
attribute that is a structured object type. The type map refers to a mapping between a data-
base type and the Java class to which it is mapped. If there is no entry in the connection’s type
map that matches the structured type that this Struct object represents, the driver uses the
standard mapping as defined in Table A-1 of the Appendix. The Java types for other attribute
values would be the same as for a getObject() call on data of the underlying SQL type (the
default JDBC types). You will learn more about using type maps in the next chapter.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 325

Note that the JDBC driver seamlessly handles embedded objects in the same way that it
normally handles objects. When the JDBC driver retrieves an attribute that is an object, it fol-
lows the same rules of conversion, using the type map if it is available, and using default
mapping if it is not.

public Object[] getAttributes() throws SQLException;

This method is the same as the preceding getAttributes(map) method, except it uses the
default type map provided by the driver.

public String getSQLTypeName() throws SQLException;

This method returns a Java String that represents the fully qualified name
(schema.sql_type_name) of the Oracle object type this Struct represents.

The Struct interface does not expose any methods to instantiate Struct objects in our
Java program to insert or update objects in the database. Hence, for inserting or updating
data, we have to use the extended Oracle functionality exposed by the class
oracle.sql.STRUCT (unless we use relational DML, which is always a possibility).

The oracle.sql.STRUCT Class
The oracle.sql.STRUCT class implements the Struct interface and provides extended function-
ality beyond the JDBC 3.0 standard. Unlike the Struct interface, which can be used only to
query data, the Oracle extension oracle.sql.STRUCT class can also be used to insert or update
data. The following are the signatures of some of the common methods defined in the
oracle.sql.STRUCT class:

public oracle.sql.Datum[] getOracleAttributes() throws SQLException;

This method retrieves the values of the values array as oracle.sql.* objects. The interface
oracle.sql.Datum is implemented by classes in the oracle.sql package. An oracle.sql.Datum
object represents a data type in Oracle’s native format (e.g., oracle.sql.NUMBER).

public oracle.sql.StructDescriptor getDescriptor() throws SQLException;

This method returns the oracle.sql.StructDescriptor object for the SQL type that corre-
sponds to this oracle.sql.STRUCT object. An oracle.sql.StructDescriptor object represents
the details of a database object type. It is used in instantiating an oracle.sql.STRUCT object, as
you will see shortly.

We will examine how to use some of the extension methods of this class in the upcoming
sections. In the next section, we will discuss how to use the Struct interface to select data, and
how to use the oracle.sql.STRUCT class to insert and update data in tables containing object
columns. Deleting data from such tables uses straightforward relational SQL.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS326

Performing DML Operations Using Struct Objects
In this section, we will examine how to use Struct objects to perform DML operations on data
held in object type columns stored in object tables. Specifically, we will demonstrate

• How to retrieve Oracle objects using Struct objects in conjunction with the
PreparedStatement and CallableStatement interfaces

• How to insert data into Oracle objects using Struct in conjunction with the
PreparedStatement and CallableStatement interfaces

• How to update data in Oracle objects in conjunction with the PreparedStatement
and CallableStatement interfaces

Before delving into our example, we need to create our object types and tables, and store
some data in them, along with a stored procedure that will return our object when called from
the CallableStatement interface in our JDBC example. We’ll do that in the next section.

Creating the Example Database Schema
First, we create an object type, item, as follows:

benchmark@ORA10G> create or replace type item as object
2 (
3 id number,
4 name varchar2(20),
5 description varchar2(50)
6)
7 /

Type created.

We then create a table, item_table, that contains item objects, and we insert one row into
it (later, we will select this row from our JDBC program):

benchmark@ORA10G> create table item_table of item;

Table created.

benchmark@ORA10G> insert into item_table values (1, 'item1', 'item1 desc');

1 row created.

benchmark@ORA10G> commit;

Commit complete.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 327

There are some differences when manipulating data in tables such as item_table that
contain only one object column and other tables where the object column is not the only
column. To show these distinctions when required, we create another table,
manufactured_item_table, that can store objects as well as relational data in a row. We then
insert and commit a row in it as follows:

benchmark@ORA10G> create table manufactured_item_table
2 (
3 manufactured_item item,
4 manufactured_date date
5);

Table created.

benchmark@ORA10G> insert into manufactured_item_table values (
2 item(1, 'manu_item1', 'manu_item1 desc'), sysdate -1);

1 row created.

benchmark@ORA10G> commit;

Commit complete.

To demonstrate the use of a weakly typed Struct object when using CallableStatement,
we create a PL/SQL package called item_pkg:

benchmark@ORA10G> create or replace package item_pkg
2 as
3 procedure get_item(p_item in out item) ;
4 procedure get_items(p_items out sys_refcursor) ;
5 procedure insert_item(p_item in item) ;
6 end item_pkg;
7 /

Package created.

Note that the data type sys_refcursor refers to a ref cursor data type that corresponds to
a ResultSet in our JDBC code; for more information on the ref cursor data type, please see the
section “Ref Cursors (or Cursor Variables)” of Chapter 13. The package body with explanatory
comments follows:

benchmark@ORA10G> create or replace package body item_pkg
2 as

The first procedure, get_item(), simply selects an item object in a row of the table and
returns it in the out parameter p_item.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS328

■Note Due to a bug, executing a stored procedure and retrieving an object returned via an out parameter
does not work as expected when you use CallableStatement with Struct. The workaround, as you will
see shortly, is to return the object as a ref cursor column, from which you can retrieve the Struct object.

3 procedure get_item(p_item in out item)
4 is
5 begin
6 select value(i)
7 into p_item
8 from item_table i
9 where rownum <= 1;
10 end get_item;

The procedure get_items() simply returns a ref cursor to all rows in the object table
item_table. This form of procedure that returns a ref cursor works with the CallableStatement
and Struct interfaces. Note that since the only column of the object table is an object, we
need to use the in-built function value() to extract the object from the row:

11 procedure get_items(p_items out sys_refcursor)
12 is
13 begin
14 open p_items for
15 select value(c)
16 from item_table c;
17 end get_items;

We will use the procedure insert_item to demonstrate inserting a row using
CallableStatement:

18 procedure insert_item(p_item in item)
19 is
20 begin
21 insert into item_table values(p_item);
22 end insert_item;
23
24 end item_pkg;
25 /

Package body created.

In the remainder of this chapter, we’ll explore the capabilities of the standard Struct
interface and the Oracle extension oracle.sql.STRUCT class.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 329

Using the Struct Interface to Select Oracle Objects
The following steps are involved in selecting objects from a database into a Struct object
using the PreparedStatement or CallableStatement interface:

1. Obtain a result set that points to one or more rows containing objects.

2. For the object column value in each row, do the following:

a. Retrieve the object using the getObject() method, and cast it to a Struct variable.

b. Retrieve the attributes from the Struct object into an object array using the
getAttributes() method. The order in which these attributes are retrieved will
be the order in which the attributes were created in the corresponding object type.

c. Retrieve each attribute and cast it to an appropriate Java class. If an attribute of
the object is another object itself, then we cast that attribute as a Struct and go
through the same steps to get the attributes of the embedded object. See Table A-1
of the Appendix for the actual classes to which the JDBC driver materializes.

3. Release JDBC resources by closing the result set, etc.

We will explore the preceding steps in the context of PreparedStatement and Callable➥

Statement in separate sections. Both concepts are explained as part of the class StructQuery➥

Example described over the next two sections, with explanatory comments interspersed.

Using Struct Objects with PreparedStatement
In this section, we examine how to select an object as Struct using the PreparedStatement
interface as part of the definition of the class StructQueryExample. We’ll first go through the
main() method that invokes the methods described in this and the next section:

/** This program demonstrates how to use the java.sql.Struct class
* to retrieve objects.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0, and 9.2.0.1.0
*/
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.CallableStatement;
import java.sql.PreparedStatement;
import java.sql.Connection;
import java.sql.Struct;
import java.sql.Types;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
class StructQueryExample
{
public static void main(String args[]) throws SQLException
{

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS330

We begin by checking the program usage:

if(args.length != 1)
{
System.err.println("Usage: java <program_name> <database_name>");
Runtime.getRuntime().exit(1);

}
Connection conn = null;
try
{

Inside the try catch block, the first thing we do is get a connection to the database (the
first command-line parameter is the database SID):

conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

The function _demoQueryWithPreparedStmt() takes a connection object and a query string
that selects an item from the object table item_table. Because in this table there is only one
column, and that column is an object type, we need to use the value() function to extract the
object value:

_demoQueryWithPreparedStmt(conn,
"select value(it) from item_table it");

Next, we invoke the same function, but this time with a query string that selects an item
from the table manufactured_item_table. Because in this table the object column is not the
only one, we do not need to use the value() function to extract the object value:

_demoQueryWithPreparedStmt(conn,
"select m.manufactured_item from manufactured_item_table m");

The next function simply invokes the procedure get_items, which returns a ref cursor,
from which we extract objects as Struct Java objects:

_demoQueryWithCallableStmt(conn,
"begin item_pkg.get_items(?); end;");

The final commented code invokes the procedure get_item(), which returns an item
object as an out parameter. As noted earlier, this won’t work as expected due to a bug in both
Oracle 10g Release 1 and 9i Release 2:

/* the following gives an error in both 10g Release 1 and 9i Release 2.
_demoStructWithCallableStmtGivesError(conn,
"begin item_pkg.get_item(?); end;");
*/

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(conn);

}
}

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 331

The definition of the first function, _demoQueryWithPreparedStmt(), is as follows:

private static void _demoQueryWithPreparedStmt(Connection conn,
String stmtStr)

throws SQLException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{
pstmt = conn.prepareStatement(stmtStr);
rset = pstmt.executeQuery();
// print the result
while (rset.next())
{

Inside the while loop, for each object column of a row, we first retrieve the object using
the getObject() method of ResultSet interface and cast it to the Struct object:

Struct itemStruct = (Struct) rset.getObject (1);

The next step retrieves all attributes from the Struct object into an object array. Notice
how all attributes of the object type person materialize as a collection of attributes in an
Object array:

Object[] attributes = itemStruct.getAttributes();

Finally, we print out the number of attributes and loop through them, printing their class
names and their values when converted to a String object:

System.out.println ("num of attributes: " + attributes.length);
for(int i=0; i < attributes.length; i++)
{
System.out.println ("class of attribute " + i + " = " +
(attributes[i]).getClass().getName() +
", value = " + attributes[i]);

}
}

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(rset, pstmt);

}
}

In the next section, we define and explain the methods that use Struct objects in con-
junction with CallableStatement.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS332

Using Struct Objects with CallableStatement
The next method, _demoQueryWithCallableStmt(), retrieves a ref cursor that contains the
object column values. All the steps for converting the object into a Struct and retrieving indi-
vidual values are exactly the same as in the case of the method _demoQueryWithPreparedStmt()
discussed earlier.

private static void _demoQueryWithCallableStmt(Connection conn,
String stmtStr) throws SQLException

{
CallableStatement cstmt = null;
ResultSet rset = null;
try
{
cstmt = conn.prepareCall(stmtStr);
cstmt.registerOutParameter(1, OracleTypes.CURSOR);
cstmt.execute();
rset = (ResultSet) cstmt.getObject(1);
while(rset.next())
{
Struct itemStruct = (Struct) rset.getObject (1);
Object[] attributes = itemStruct.getAttributes();
System.out.println ("num of attributes: " + attributes.length);
for(int i=0; i < attributes.length; i++)
{
System.out.println ("class of attribute " + i + " = " +
(attributes[i]).getClass().getName() +
", value = " + attributes[i]);

}
}

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 333

The method _demoStructWithCallableStmtGivesError() tries to invoke a procedure that
returns an item object directly as an out parameter (using the procedure item_pkg.get_item())
instead of returning it as a column of a ref cursor. It gives an error, as you will see shortly:

private static void _demoStructWithCallableStmtGivesError(
Connection conn, String stmtStr) throws SQLException

{
CallableStatement cstmt = null;
try
{
cstmt = conn.prepareCall(stmtStr);
cstmt.registerOutParameter(1, OracleTypes.STRUCT);
cstmt.execute();
// get the "item" object and its attributes
Struct itemStruct = (Struct) cstmt.getObject (1);
Object[] attributes = itemStruct.getAttributes();
System.out.println ("num of attributes: " + attributes.length);
for(int i=0; i < attributes.length; i++)
{
System.out.println ("class of attribute " + i + " = " +
(attributes[i]).getClass().getName() +
", value = " + attributes[i]);

}
}
finally
{
// release resources in the finally clause.
JDBCUtil.close(cstmt);

}
}

} // end of program

Running the Example
When we execute the preceding program, we get the following output, showing the data we
populated earlier:

B:\>java StructQueryExample ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
num of attributes: 3
class of attribute 0 = java.math.BigDecimal, value = 1
class of attribute 1 = java.lang.String, value = item1
class of attribute 2 = java.lang.String, value = item1 desc
num of attributes: 3
class of attribute 0 = java.math.BigDecimal, value = 1
class of attribute 1 = java.lang.String, value = manu_item1
class of attribute 2 = java.lang.String, value = manu_item1 desc
num of attributes: 3

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS334

class of attribute 0 = java.math.BigDecimal, value = 1
class of attribute 1 = java.lang.String, value = item1
class of attribute 2 = java.lang.String, value = item1 desc

As you can see, the number attributes are converted into java.math.BigDecimal by default
(this is specified in Table A-1 of the Appendix). If we change the program to comment out all
method invocations in the main() method except for the method _demoStructWithCallable➥

StmtGivesError(), we get the following error (as mentioned earlier, this is a bug in the Oracle
implementation):

URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
Exception in thread "main" java.sql.SQLException: ORA-03115: unsupported network
datatype or representation
...

To summarize, we get a SQLException when we return an object as an out parameter in a
PL/SQL procedure. The workaround is to retrieve object column data as a ResultSet and then
extract the column as a Struct object, as discussed alongside the description of the method
_demoQueryWithCallableStmt() in the previous section.

Using the oracle.sql.STRUCT Class to Insert Oracle Objects
The Struct interface does not expose any methods to create Struct objects in your Java program
so that you can insert or update objects in the database. Thus, for inserting and/or updating data,
you have to use the extended Oracle functionality exposed by the class oracle.sql.STRUCT.
Inserting an object using oracle.sql.STRUCT in conjunction with either the PreparedStatement
interface or the CallableStatement interface involves the following steps:

1. Create an oracle.sql.StructDescriptor object for the database object type. The
StructDescriptor object contains information about the object type required to
manually construct a STRUCT object later. You need only one StructDescriptor object
for any number of STRUCT objects that correspond to the same SQL type. For example,
to create a new StructDescriptor object for the object type item, assuming that conn is
an initialized Connection object, you can use the following code:

StructDescriptor itemDescriptor =
StructDescriptor.createDescriptor("BENCHMARK.ITEM", conn);;

2. Create an array of objects with the same number of elements as the number of attributes
of the object type. Each element must be of the appropriate data type representing the
object attribute (as per Table A-1 in the Appendix). If the object type consists of nested
objects, you need to create a corresponding oracle.sql.STRUCT object in its place.

3. Construct an oracle.sql.STRUCT object, passing in the StructDescriptor you created
in step 1, a Connection object, and the array of objects you created in step 2 as the
object attribute values.

4. Use the setObject() method in the PreparedStatement or CallableStatement interface
to set the value of the object and then insert it into the table containing the object.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 335

The following StructInsertExample class, along with the interspersed explanatory
comments, illustrates how to insert data using the Struct class into a table containing
object columns. We demonstrate the concept using both the PreparedStatement and
CallableStatement interfaces.

/** This program demonstrates how to use the java.sql.Struct class
* to insert data into a table containing object columns.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0, and 9.2.0.1.0
*/
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.Struct;
import java.sql.Types;
import java.math.BigDecimal;
import oracle.sql.STRUCT;
import oracle.sql.StructDescriptor;
import book.util.JDBCUtil;
class StructInsertExample
{
public static void main(String args[]) throws SQLException
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

After getting the connection, we invoke the first method that uses the PreparedStatement
interface to insert objects into the table item_table:

_demoInsertUsingPreparedStmt(conn);

Next, we invoke the method that uses the CallableStatement interface to insert objects
into the table item_table by invoking the method item_pkg.insert_item:

_demoInsertUsingCallableStmt(conn);

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(conn);

}
}

Using PreparedStatement to Insert an oracle.sql.STRUCT Object
In this section, we describe how to use PreparedStatement to insert an oracle.sql.STRUCT
object as part of the definition of the method _demoInsertUsingPreparedStmt(), which follows:

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS336

private static void _demoInsertUsingPreparedStmt(Connection conn)
throws SQLException

{
PreparedStatement pstmt = null;
try
{

The first step is to create a StructDescriptor for the object type item. Note that for a given
object type, we need to create the StructDescriptor only once. Also note that we should
always qualify the object type with the user that owns it (e.g., benchmark in the following exam-
ple).

StructDescriptor itemDescriptor =
StructDescriptor.createDescriptor("BENCHMARK.ITEM", conn);

The next step is to create and initialize the object array that contains values of attributes
of the item object that we want to insert. Note how we create the attributes in the order in
which we specified them during the object type creation (in this example, the first attribute is
id, the second attribute is name, and the third attribute is description). We also use the appro-
priate class to create an attribute (java.math.BigDecimal for number and String for varchar2):

Object[] itemAttributes = new Object[itemDescriptor.getLength()];
itemAttributes[0] = new BigDecimal(2);
itemAttributes[1] = "item2";
itemAttributes[2] = "item2 desc using prepared statement";

Next, we create an oracle.sql.STRUCT object using the descriptor and the object array
containing the attribute values:

// Next we create the STRUCT object
Struct itemObject = new STRUCT (itemDescriptor, conn,
itemAttributes);

The remaining steps are the usual ones required to insert a record using the
PreparedStatement interface:

pstmt = conn.prepareStatement("insert into item_table values(?)");
pstmt.setObject(1, itemObject, Types.STRUCT);
int numOfRowsInserted = pstmt.executeUpdate();
System.out.println("Inserted " + numOfRowsInserted + " rows");
conn.commit();

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(pstmt);

}
}

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 337

Using CallableStatement to Insert an oracle.sql.STRUCT Object
The definition of the method _demoInsertUsingCallableStmt() is very similar to that of
the method _demoInsertUsingPreparedStmt(), the only difference being that we use the
CallableStatement interface to invoke the stored procedure method item_pkg.insert_item
to insert our record in this case:

private static void _demoInsertUsingCallableStmt(Connection conn)
throws SQLException

{
CallableStatement cstmt = null;
try
{
StructDescriptor itemDescriptor =
StructDescriptor.createDescriptor("BENCHMARK.ITEM", conn);

Object[] itemAttributes = new Object[itemDescriptor.getLength()];
itemAttributes[0] = new BigDecimal(3);
itemAttributes[1] = "item2";
itemAttributes[2] = "item2 desc using callable stmt";
// Next we create the STRUCT object
Struct itemObject = new STRUCT (itemDescriptor, conn,
itemAttributes);

cstmt = conn.prepareCall("{call item_pkg.insert_item(?)}");
cstmt.setObject(1, itemObject, Types.STRUCT);
cstmt.execute();
conn.commit();

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(cstmt);

}
}

}

Using the oracle.sql.STRUCT Class to Update Oracle Objects
In the previous section, you learned how to insert objects using the oracle.sql.STRUCT class
methods. You can see that the process is inherently more complex than a simple relational
SQL insert. However, more than an insert or a delete, the process of updating an object attrib-
ute using STRUCT highlights the difference in usability when you use DML on objects (instead
of relational SQL). This is because when you insert or delete a row containing objects, you
insert or delete the entire object along with all its attributes. However, when updating an
object, more often than not you are interested in modifying only a subset of object attributes.
Now, if you use relational SQL, you can update just the required columns of a table (or, equiv-
alently, the attributes of the object) in a table that you need to change, and you are done. If,
however, you use the oracle.sql.STRUCT interface to do the same, there are two levels of com-
plexity you need to deal with:

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS338

• No matter how many attributes you want to modify, you have to select the entire object,
materialize it as an oracle.sql.STRUCT object, change the attributes that you need to
change, and update the object. If an object has ten attributes and you want to change
only one of them, you still need to materialize the entire object, change just that one
attribute, and perform the update.

• The second level of complexity arises because you need to break your update operation
into two steps: the first step selects the original object, and the second updates with the
new object values. Furthermore, since in Oracle a select does not block an update from
another session, you also need to lock the object during your select by using the for
update clause.

Thus, performing an update using an oracle.sql.STRUCT object is fairly complicated.
In this section, we’ll illustrate this fact in the example. We’ll demonstrate how to perform an
update using a PreparedStatement, first using the oracle.sql.STRUCT object and then using
straightforward relational SQL. Since the CallableStatement interface essentially uses the
same technique as PreparedStatement, we do not go through an example using the
CallableStatement interface in this section.

The following steps are required to update an Oracle object using the STRUCT interface:

1. Retrieve the object’s value into a Struct object and lock it using the for update clause.

2. Retrieve the Struct object attributes into an Object array.

3. Modify the object attributes as desired.

4. Get the StructDescriptor from the original Struct object.

5. Instantiate a new Struct object using the object using the StructDescriptor and the
modified Object array.

6. Finally, use a PreparedStatement object’s setObject() method to set the value of the
object, and then update the table containing the object with the modified value.

The following listing contains an example illustrating these steps. Before executing the
program, the database had the following three entries in the table item_table:

benchmark@ORA10G> select * from item_table it order by it.id;

ID NAME DESCRIPTION
--- ---------- -----------------------------------
1 item1 item1 desc
2 item2 item2 desc using prepared statement
3 item2 item2 desc using callable stmt

The program StructUpdateExample retrieves one item object and updates its description
attribute. We do this using the oracle.sql.STRUCT object first, and then we use relational SQL
to achieve the same objective. The program listing follows, with explanatory comments inter-
spersed.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 339

/** This program demonstrates how to use the java.sql.Struct class
* to update data in a table containing object columns.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0, and 9.2.0.1.0
*/
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.Connection;
import java.sql.Struct;
import java.sql.Types;
import java.math.BigDecimal;
import oracle.sql.STRUCT;
import oracle.sql.StructDescriptor;
import book.util.JDBCUtil;
class StructUpdateExample
{
public static void main(String args[]) throws SQLException
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

To carry out the update that uses the oracle.sql.STRUCT class, we first select an item with
the id value of 2 as a Struct by invoking the method _getItem() (explained shortly):

Struct itemStruct = _getItem(conn, 2);

Next, we pass it on to the method _demoUpdateUsingSTRUCT(), which will update its
description attribute using the oracle.sql.STRUCT class:

_demoUpdateUsingSTRUCT(conn, 2, itemStruct);

Finally, we demonstrate how, by using relational SQL, we can not only update just the
attribute we need to but also do it in one step without having to select the object into memory
first:

_demoUpdateUsingRelationalSQL(conn, 3);
}
finally
{
// release resources in the finally clause.
JDBCUtil.close(conn);

}
}

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS340

Performing Updates Using the oracle.sql.STRUCT Object
The first step is to select the object that needs to be updated. The method _getItem() selects
an object that matches the passed item id in the variable itemID:

private static Struct _getItem(Connection conn,
int itemID) throws SQLException

{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

The main thing to note in this method is that we use a for update nowait clause. This
means that the select will lock the table row if it succeeds, preventing any other user from
updating the same row before we update it. If someone else has locked the row already, we
will get an error message. The locking issues associated with this situation are discussed in
much more detail in Chapter 16. The remainder of the method should be self-explanatory.

pstmt = conn.prepareStatement(
"select value(it) from item_table it" +
" where it.id = ? and for update NOWAIT");

pstmt.setInt(1, itemID);
rset = pstmt.executeQuery();
Struct itemStruct = null;
if (rset.next())
{
// get the "item" object and its attributes
itemStruct = (Struct) rset.getObject (1);

}
return itemStruct;

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(rset, pstmt);

}
}

The method _demoUpdateUsingSTRUCT() that actually performs the update follows. It
updates a supplied item object (that was selected in the form of a Struct using the method
_getItem() presented earlier):

private static void _demoUpdateUsingSTRUCT(Connection conn,
int itemID, Struct itemStruct) throws SQLException

{
PreparedStatement pstmt = null;
STRUCT itemSTRUCT = (STRUCT) itemStruct;
try
{

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 341

As the first step, we retrieve the attributes of the object we selected earlier by invoking the
method _getItem():

Object[] itemAttributes = itemStruct.getAttributes();

We modify the third attribute (the description) to a new value. This change happens only
in memory.

itemAttributes[2] = "item2 desc updated using prepared statement";

Next, we need to create the modified Struct object for which the first step is to retrieve
the StructDescriptor from the object already selected:

StructDescriptor itemDescriptor = itemSTRUCT.getDescriptor();

Then we create the STRUCT object with the modified attributes:

Struct itemObject = new STRUCT (itemDescriptor, conn, itemAttributes);

and use the standard update statement (note the use of the value() function again) to carry
out the update:

pstmt = conn.prepareStatement(
"update item_table it set value(it) = ? " +
" where it.id = ?");

pstmt.setObject(1, itemObject);
pstmt.setInt(2, itemID);
int numOfRowsUpdated = pstmt.executeUpdate();
System.out.println("Updated " + numOfRowsUpdated + " rows");
conn.commit();

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(pstmt);

}
}

Performing Updates Using Relational SQL
The method _demoUpdateUsingRelationalSQL() uses a relational SQL to carry out the same
update in one step:

private static void _demoUpdateUsingRelationalSQL(Connection conn,
int itemID) throws SQLException

{
PreparedStatement pstmt = null;
try
{

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS342

The main difference in this case is the relational SQL, which directly changes the
description attribute in the table as presented here. The rest of the code is straightforward.

pstmt = conn.prepareStatement(
"update item_table it set it.description= ? " +
" where it.id = ?");

pstmt.setString(1, "item desc updated using relational SQL");
pstmt.setInt(2, itemID);
int numOfRowsUpdated = pstmt.executeUpdate();
System.out.println("Updated " + numOfRowsUpdated + " rows");
conn.commit();

}
finally
{
// release resources in the finally clause.
JDBCUtil.close(pstmt);

}
}

}

If we run the program, we get the following output:

B:\>java StructUpdateExample
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
printing query results ...

Updated 1 rows
Updated 1 rows

Using the following query, we verify that our updates have been successful:

benchmark@ORA10G> select * from item_table it order by it.id;

ID NAME DESCRIPTION
--- ---------- -----------------------------------
1 item1 item1 desc
2 item2 item2 desc updated using prepared s

tatement

3 item2 item desc updated using relational
SQL

As this section demonstrated, performing an update using an oracle.sql.STRUCT object
is complicated. The fact that the update is carried out in two operations (a select for update
followed by an update operation) means that it is also slower as compared to its relational SQL
counterpart.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS 343

Deleting Objects
The process of deleting objects typically is the same as in a normal relational delete case, for
example:

"delete from item_table it where it.id = ?"

I encourage you to write code for deleting a value from the table item_table yourself.

Summary
This chapter defined weakly typed and strongly typed objects. You learned how to use the
Struct interface to select objects as a collection of attributes. You also learned how to insert
and update objects stored in tables using oracle.sql.STRUCT class methods. The steps
involved in these operations tend to be more complicated than the straightforward relational
alternative. You saw that this is particularly true when performing updates. In the next chap-
ter, you will learn how to access and manipulate objects in tables using strongly typed objects.

CHAPTER 9 ■ USING WEAKLY TYPED STRUCT OBJECTS344

Using Strongly Typed
Interfaces with JPublisher

In the previous chapter, we examined the technique of using the Struct interface to material-
ize database objects as a generic collection of attributes. This technique works well for a small
set of applications that needs to treat different object types in a generic manner. However, this
technique does not satisfy the requirements of the majority of object-oriented applications
that require you to work in terms of actual objects instead of a loose collection of attributes.

In this chapter, we discuss the alternative of using strongly typed interfaces to create cus-
tom Java classes that correspond to Oracle objects in the database. Using this technique, you
can generate a custom class for each object type in the database, making it possible to manip-
ulate the contents in memory in a more natural fashion (i.e., using proper getter and setter
methods for the attributes instead of indexing into a generic Object[]).

You will first consider what strongly typed interfaces are. Then, you will learn how to use
JPublisher, a utility that allows you to generate custom classes corresponding to Oracle object
types. You will use JPublisher to generate custom classes that implement either the standard
interface SQLData or the Oracle extension interfaces ORAData and ORADataFactory. Let’s begin
with an introduction to strongly typed interfaces.

Strongly Typed Interfaces
Strongly typed interfaces represent the attributes of a database object using a custom class.
This means that a Java class Person, for example, would represent an Oracle object type person
and so on. In other words, each database object type is represented by its own custom Java
class.

To create a custom class for an object type, there must be a mechanism by which you
inform the JDBC driver of the following:

• Which Java class should you convert the object type to?

• Which Java classes would each of the attributes map to by default, and how do you
change the default mapping?

345

C H A P T E R 1 0

■ ■ ■

The driver must be able to read from and write to these custom Java classes. To create and
populate the custom classes and provide them with read/write capabilities, you have to
implement one of the following two interfaces:

• The JDBC standard java.sql.SQLData interface (referred to as SQLData from here onward)

• The oracle.sql.ORAData (referred to as ORAData from here onward) and
oracle.sql.ORADataFactory (referred to as ORADataFactory from here onward)
interfaces provided by Oracle

You can create the custom object classes that implement one of these interfaces yourself,
but the most convenient way is to use the Oracle JPublisher utility to create them for you.
JPublisher supports generating classes that implement the standard SQLData interface or the
Oracle-specific ORAData interface. I recommend using JPublisher to create the custom classes
since creating them manually is tedious and error-prone. We will use the JPublisher utility to
create the custom classes in this book.

In the next section, we’ll walk through an introduction to the JPublisher utility and its
most commonly used options. After that, we’ll study JPublisher examples of generating cus-
tom classes that implement the SQLData interface, followed by examples of generating classes
that implement the ORAData and ORADataFactory interfaces. We’ll then finish up by comparing
these two alternatives.

An Introduction to JPublisher
JPublisher is a utility that generates Java classes to represent database entities such as SQL
objects and PL/SQL packages in your Java client program. It also provides support for publish-
ing from SQL, PL/SQL, or server-side Java to web services, and for enabling invocation of
external web services from inside the database. JPublisher can create classes to represent the
following types of database entities:

• User-defined SQL object types

• Object reference types (REF types)

• User-defined SQL collection types (varray types or nested table types)

• PL/SQL packages

• Server-side Java classes

• SQL queries and DML statements

We’ll focus on the first three types in this book. In this chapter, we’ll cover SQL object
types. We’ll cover REF types and SQL collection types in the next chapter. For a complete
discussion of all the capabilities and options offered by JPublisher—and there are quite a
few—please see Oracle Database JPublisher User’s Guide (10g Release 1) supplied by Oracle.
Let’s now move on to an overview of setting up the environment to use the JPublisher utility.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER346

Setting Up the JPublisher Environment
As of Oracle 10.0.1.0, JPublisher requires you to have SQLJ set up. SQLJ is another standard
for accessing data in relational databases. For more information on SQLJ, please see the sec-
tion “Overview of SQLJ Concepts” in Chapter 1 of Oracle Database JPublisher User’s Guide
(10g Release 1). You can download and install the SQLJ (with the JPublisher utility) separately
from the OTN website (http://otn.oracle.com).

■Note Oracle had earlier decided to move away from the use of SQLJ and had even officially announced
the end of support for SQLJ on all platforms. However, as per the note under the heading “SQLJ is Back!” at
http://www.oracle.com/technology/tech/java/sqlj_jdbc/index.html, Oracle has since decided
to reverse its decision.

To use JPublisher, you need to add the following JAR files to your CLASSPATH environment
variable (in addition to the JDBC environment–related JAR files):

• $ORACLE_HOME/sqlj/lib/translator.jar contains the JPublisher and SQLJ translator
classes.

• $ORACLE_HOME/sqlj/lib/runtime12.jar contains the SQLJ runtime library.

Also, you can add the JPublisher invocation script jpub (for UNIX) or jpub.exe for Windows
in your PATH environment variable to avoid having to specify the full path name for these scripts
while running them.

JPublisher Commonly Used Options
A JPublisher script is invoked from the command line as follows:

jpub <options>

The following is an alphabetically sorted list of some commonly used options with valid
values (default values are underlined wherever possible) and brief explanations. For a com-
plete list of JPublisher options, please see the Oracle document Oracle Database JPublisher
User’s Guide (10g Release 1). In particular, you may want to focus on the following options,
which are the most commonly used and which we discuss in this book: builtintypes, input,
methods, numbertypes, package, props, sql, user, usertypes, usertypes, and input.

• -builtintypes (jdbc|oracle): Specifies the data type mappings (jdbc or oracle) for
built-in data types (e.g., a standard Java class such as String or an Oracle Java class
such as VARCHAR) that are non-numeric and non-LOB.

• -case (lower|mixed|same|upper): Specifies the case of Java identifiers that JPublisher gen-
erates.

• -classpath: Adds to the Java CLASSPATH for JPublisher to use in resolving Java source
and classes during translation.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 347

• -d: Specifies the root directory for placement of compiled class files.

• -dir: Specifies the root directory where generated Java files are placed.

• -driver (driver_name): Specifies the JDBC driver used for the JDBC connection in gen-
erated classes. The default is oracle.driver.OracleDriver.

• -encoding (encoding_of_character_set): Specifies the Java encoding of JPublisher input
files and output files. The default is the value of the system property file.encoding.

• -generatebean (true|false): Specifies whether or not generated code should comply
with the JavaBeans specification.

• -input or -i (input_file_name): Specifies a mapping file that allows you to specify the
data type mapping between SQL and Java in a file rather than on the command line
(equivalent of using the –sql command-line option).

• -lobtypes (jdbc|oracle): Specifies the data type mappings that JPublisher uses for BLOB
and CLOB types.

• -methods (all|none|named|always|overload|unique): This option determines whether
JPublisher generates wrapper methods for methods in SQL object types and PL/SQL
packages (through a setting of all, none, named, or always), or whether overloaded
method names are allowed (through a setting of overload or unique).

• -methods=all: This is the default among the first group of settings. In this case,
JPublisher generates wrapper methods for all the methods in the object types and
PL/SQL packages it processes. This results in generation of a SQLJ class if the
underlying SQL object or package actually defines methods, and a non-SQLJ class
if not.

• -methods=none: JPublisher does not generate any wrapper methods. If you want to
have wrapper methods in this case you have to handcraft them (typically in a sub-
class of the generated class).

• -methods=named: JPublisher generates wrapper methods only for the methods
explicitly named in the input file.

• -methods=always: This also results in wrapper methods being generated. However,
for backward compatibility with Oracle8i and Oracle9i JPublisher versions, this
setting always results in SQLJ classes being generated for all SQL object types,
regardless of whether the types define any methods.

■Note For backward compatibility, JPublisher also supports the setting true as equivalent to
all, the setting false as equivalent to none, and the setting some as equivalent to named.

• -numbertypes (jdbc|objectjdbc|bigdecimal|oracle): This option controls data type map-
pings for numeric SQL and PL/SQL types.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER348

• jdbc: In this case, most numeric data types are mapped to Java primitive types
such as int and float; DECIMAL and NUMBER are mapped to java.math.BigDecimal.

• objectjdbc: In this mapping (the default), most numeric data types are mapped to
Java wrapper classes such as java.lang.Integer and java.lang.Double; DECIMAL
and NUMBER are mapped to java.math.BigDecimal.

• bigdecimal: In this mapping, all numeric data types are mapped to
java.math.BigDecimal.

• oracle: In this mapping, all numeric data types are mapped to oracle.sql.NUMBER.

• omit_schema_names: This option controls if schema name is used in generated classes
(disabled by default.)

• outarguments (array|holder|return): This option specifies how to treat mapping of the
in, out, or in out designations in Java. You can specify one of three alternatives for
holders:

• Arrays (the default)

• JAX-RPC holder types

• Function returns

• package: Specifies the name of the package for generated Java classes.

• props or -p (properties_file_name): Specifies a file that contains JPublisher options in
addition to those listed on the command line.

• sql or -s
(toplevel|type_name:super_class_name:map_class_name|type_name:map_class_name):
Specifies the name of a Java object, an optional superclass name, and a Java class name
to which the sql object or package is mapped.

• toplevel: Translates all top-level PL/SQL subprograms in a schema

• type_name: Name of the sql object type, collection, or package

• super_class_name: Name of an intermediate class file that the developer extends

• map_class_name: Name of the class that is used in the type map

• -tostring (false|true): Specifies whether to generate a toString() method for gener-
ated Java classes.

• url (database_url): Specifies the database URL. The default is jdbc:oracle:oci:@.

• user (username/password): The username and password for connecting to the data-
base—this is mandatory for using JPublisher.

• usertypes (oracle|jdbc): This option controls whether JPublisher implements the Ora-
cle ORAData interface or the standard SQLData interface in the generated classes for the
user-defined types.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 349

• When -usertypes=oracle (the default), JPublisher generates ORAData classes for
objects, collections, and object reference types.

• When -usertypes=jdbc, JPublisher generates SQLData classes for object types.
JPublisher does not generate classes for collection or object reference types in this
case; you must use java.sql.Array for all collection types and java.sql.Ref for all
object reference types.

Next, we’ll look at how to use a JPublisher property file, which allows you to specify your
JPublisher options in a text file.

JPublisher Property File Syntax
Let’s assume we execute the following command (don’t worry about what this command does
for now—we’ll delve into that soon):

jpub -user=benchmark/benchmark -methods=none -builtintypes=jdbc
-numbertypes=objectjdbc -usertypes=jdbc -sql address:Address

Instead of using command-line options as just shown, we can put these options in a
properties file and specify the properties filename instead of the command line, by using the
–props command-line option. (You have to prefix an option with jpub. in the properties file.)
We’ll use this technique throughout the book, as it is convenient and less error-prone. For
example, the following prop_address.txt properties file contains all command-line options
specified in the preceding JPublisher command:

jpub.user=benchmark/benchmark
jpub.methods=none
jpub.builtintypes=jdbc
jpub.numbertypes=objectjdbc
jpub.usertypes=jdbc
jpub.sql=address:Address:MyAddress
jpub.package=book.ch10.jpub

We can now execute a JPublisher command equivalent to the previous one that uses the
command-line options specified in prop_address.txt:

jpub -props=prop_address.txt

JPublisher Input File Syntax
Instead of specifying the class generation option (see the –sql option in the section “JPublisher
Commonly Used Options”) on the command line, we can specify them in an input file, which
in turn can be specified on the command line using the –input command-line option. We
could also specify the input file option itself in the properties file with the property jpub.input.
An input file consists of one or more translation statements (statements that specify which
database object type would map to which Java class) that adhere to the following syntax (from
Oracle Database JPublisher User’s Guide [10g Release 1]) :

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER350

(SQL name
| SQL [schema_name.]toplevel [(name_list)]
| TYPE type_name)
[GENERATE java_name_1]
[AS java_name_2]
[TRANSLATE
database_member_name AS simple_java_name
{ , database_member_name AS simple_java_name}*
]

The commonly used translation line elements are provided in the sections that follow. For
more details on the syntax and a host of other useful options related to the input file, please
see Chapter 5 of Oracle Database JPublisher User’s Guide (10g Release 1).

Specifying the Object Type Name or Package Name to Be Materialized in Java
The SQL name | TYPE type_name clause identifies a SQL type or a PL/SQL package that you
want JPublisher to translate (i.e., publish a Java class)—for example, SQL BENCHMARK.PERSON.

Specifying the Target Java Class Name and/or Subclass Name to Be Generated
The GENERATE clause essentially determines the name of the generated class and any sub-
classes that you may want to generate and eventually override. When you use only the AS
clause (i.e., without a GENERATE clause), JPublisher generates the specified class and maps it
to the SQL type or the PL/SQL package. When you use both the GENERATE clause and the AS
clause for a SQL user-defined type, the GENERATE clause specifies the name of the base Java
class that JPublisher generates, and the AS clause specifies the name of the derived Java class
that extends the generated base class. For example, the following line instructs JPublisher to
generate a class named Address in a file called Address.java for the object type address:

SQL address as Address

Suppose you want to generate a class named MyAddress corresponding to the object type
address. You would also like to generate a base class Address that the class MyAddress class
extends. The following translation line does it for you:

SQL address GENERATE Address as MyAddress

Customizing the Generated Java Object Attribute Names
The TRANSLATE database_member_name AS simple_java_name clause optionally specifies a dif-
ferent name for an attribute or method. For example, if you want to change the name of the
attribute hire_date in database to HireDate in Java, you can specify the following TRANSLATION
clause: TRANSLATE HIRE_DATE AS HireDate. This is useful in ensuring that the generated Java
attribute names follow your desired naming convention.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 351

Using the SQLData Interface
It’s now time to take a look at the SQLData interface. We’ll use JPublisher to generate classes
implementing this interface.

The SQLData interface is used for the custom mapping of a SQL object type to a class in
the Java programming language. It consists of three methods:

public String getSQLTypeName() throws SQLException

This method returns the fully qualified name of the SQL object type that this object repre-
sents (e.g., BENCHMARK.PERSON). It is called by the JDBC driver to get the name of the object type
mapped to this instance of SQLData.

public void readSQL(SQLInput stream, String typeName)
throws SQLException

This method populates this object with data read from the database. Here, SQLInput is an
input stream that contains a stream of values representing an instance of a SQL object. This
interface is used only for custom mapping and is used by the driver behind the scenes.

public void writeSQL(SQLOutput stream) throws SQLException

This method writes the object to the given SQL data stream, converting it back to its SQL
value in the data source. Here, the SQLOutput object represents the output stream for writing
the attributes of a user-defined type back to the database.

Generating Custom Classes That Implement SQLData
We are finally ready to use JPublisher. In this section, we will use JPublisher to create a custom
class that represents an object type we will create. The classes generated in this section imple-
ment SQLData interface. The steps involved in creating and using a custom class, MyAddress,
that implements SQLData and represents the object type address are as follows:

1. Generate custom classes using JPublisher. In this step, we use JPublisher to generate a
custom class that implements the SQLData interface.

2. Extend generated classes to add functionality (if required). If you want to add to the
functionality of the generated classes, extend the class and make any changes. (Chang-
ing the generated class directly itself is not recommended since your changes will be
overwritten the next time you generate these classes again using JPublisher.)

3. Add the generated class to the type map of the connection. Add the custom class that
represents the object type to the type map. The type map is a mapping that informs the
JDBC driver of which Java class a specific object type should be mapped to.

4. Perform DML using custom classes. Use the generated classes in your calling program
to select, insert, update, or delete objects.

Before we can perform these steps, however, we need to create our schema and object
tables that we’ll use in this example. We’ll then walk through each of the four steps in turn.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER352

Creating the Schema Containing an Object Type and Object Table
The first step is to create the schema that we will use in our examples. The following code
begins this process by defining an object type address that can hold the address of a house or
apartment in the United States. The map function get_address() (signified by the keywords
map member function preceding the function name) may be a new concept to many of you.
Very briefly, a map method is an optional method that provides a basis for comparing objects
by mapping object instances to one of the scalar types DATE, NUMBER, or VARCHAR2, or to an ANSI
SQL type such as CHARACTER or REAL. Please see the section “Methods for Comparing Objects”
of Chapter 1 in the Oracle document Oracle Database Application Developer’s Guide – Object
Relational Features (10g Release 1) for more details.

benchmark@ORA10G> create or replace type address as object
2 (
3 line1 varchar2(50),
4 line2 varchar2(50),
5 street varchar2(50),
6 city varchar2(30),
7 state varchar2(2),
8 zip varchar2(10),
9 map member function get_address return varchar2
10)
11 not final;
12 /

Type created.

We create the type body that contains the implementation of the function get_address().
Note how we map the address to a varchar2 by concatenating different attributes of the
address separated by a space:

benchmark@ORA10G> create or replace type body address
2 as
3 map member function get_address
4 return varchar2
5 is
6 l_address varchar2(200);
7 begin
8 l_address := line1|| ' ' ||
9 line2 || ' ' ||
10 street || ' ' ||
11 city || ' ' ||
12 state || ' ' ||
13 zip;
14
15 return l_address;
16 end;
17 end;
18 /

Type body created.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 353

Now that we have an object type, we need to create a table that will store the data con-
tained in the object type. In the following code snippet, we create an object table,
address_table, that contains rows of type address:

benchmark@ORA10G> create table address_table of address;

Table created.

We end the section with a piece of code that inserts an address object into the table
address_table:

benchmark@ORA10G> declare
2 l_address address;
3 begin
4 l_address := address('145 Apt # 7','', 'Wander St',
5 'Mountain View', 'CA', '94055');
6 insert into address_table values (l_address);
7 commit;
8 dbms_output.put_line (l_address.get_address());
9 end;
10 /
145 Apt # 7 Wander St Mountain View CA 94055

PL/SQL procedure successfully completed.

Generating a Custom Class Using JPublisher
I assume that you’ve set up your environment as specified in the earlier section “Setting Up
the JPublisher Environment.” We’ll now create custom classes for the object type address
using JPublisher. First, we’ll pass command-line parameters to JPublisher. We’ll then repeat
the process by using the JPublisher properties file and input file.

Using JPublisher Command-Line Parameters

The following command generates a class called book.ch10.jpub.MyAddress that extends
another generated class, book.ch10.jpub.Address, to add a Java method corresponding to the
method get_address() in the object type address. The object type itself will be mapped to
the MyAddress class. (Note that the final line is the output of the program run and is not part
of the command itself. It lists the object types for which JPublisher is generating Java classes.)

B:\code\book\ch10\jpub>jpub -user=benchmark/benchmark -methods=none
-builtintypes=jdbc -numbertypes=objectjdbc -usertypes=jdbc
-sql address:Address:MyAddress -package=book.ch10.jpub

BENCHMARK.ADDRESS

The meaning of each command-line option is as follows:

• -user=benchmark/benchmark: The username and password for connecting to the database.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER354

• -methods=none: Do not generate any wrapper methods in the Java class that implement
the corresponding method in the object type. This means that we will not get a wrapper
method for the only method, get_address(), in the object type address for example.
Instead, we will implement this functionality in the class MyAddress that extends the
class Address, which will also serve to demonstrate the concept of extending a
JPublisher-generated class to enhance its functionality. In a real-world scenario,
you would probably use –methods=all if you wanted to generate a wrapper method
for the methods in the object type.

• -builtintypes=jdbc: Use the standard Java classes for mapping object attributes.

• -numbertypes=objectjdbc: Numeric data types should be mapped to Java wrapper classes
such as java.lang.Integer and java.lang.Double, and NUMBER should be mapped to
java.math.BigDecimal. Alternatively, we could set this option to the value jdbc, in which
case most numeric data types are mapped to Java primitive types such as int and float.
Note that the data type number is still mapped to java.math.BigDecimal.

• -usertypes=jdbc: Generate classes that implement the standard SQLData interface.

• -sql address:Address:MyAddress: Map the address object type to the Java class
MyAddress that extends the generated class Address. We could have hand-coded the
extended class completely, but JPublisher gives us a “stub” that makes life a little easier.

• -package book.ch10.jpub: Generate classes such that they belong to the package
book.ch10.jpub.

Using the JPublisher Input File and Properties File

Let’s now create the properties file and the input files that give instructions to JPublisher
equivalent to the command-line options we discussed in the previous section.

The following file, input_address.txt, contains one line that is equivalent to the –sql
options in the previous command. This one line tells JPublisher to generate a parent class
Address and also to generate a class MyAddress that extends the Address class and is mapped
to the address object type:

SQL ADDRESS GENERATE Address AS MyAddress

The following properties file, prop_address.txt, represents the command-line options,
including the reference to the input file input_address.txt:

jpub.user=benchmark/benchmark
jpub.methods=none
jpub.builtintypes=jdbc
jpub.numbertypes=objectjdbc
jpub.usertypes=jdbc
jpub.package=book.ch10.jpub
jpub.input=input_address.txt

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 355

Finally, we run the equivalent command using the previous properties files as follows:

jpub -props=prop_address.txt

When we run this command, we should have two files containing our generated Java
classes, Address.java and MyAddress.java, in the current directory. The generated
Address.java file contents are as follows (trimmed to conserve space and for clarity):

package book.ch10.jpub;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTypes;
import java.sql.SQLData;
import java.sql.SQLInput;
import java.sql.SQLOutput;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Address implements SQLData
{
public static final String _SQL_NAME = "BENCHMARK.ADDRESS";
public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

private String m_line1;
private String m_line2;
private String m_street;
private String m_city;
private String m_state;
private String m_zip;

/* constructor */
public Address()
{
}

public Address(String line1, String line2, String street,
String city, String state, String zip)
throws SQLException

{
setLine1(line1);
setLine2(line2);
setStreet(street);
setCity(city);
setState(state);
setZip(zip);

}

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER356

public void readSQL(SQLInput stream, String type)
throws SQLException
{

setLine1(stream.readString());
setLine2(stream.readString());
setStreet(stream.readString());
setCity(stream.readString());
setState(stream.readString());
setZip(stream.readString());

}

public void writeSQL(SQLOutput stream)
throws SQLException
{

stream.writeString(getLine1());
stream.writeString(getLine2());
stream.writeString(getStreet());
stream.writeString(getCity());
stream.writeString(getState());
stream.writeString(getZip());

}

public String getSQLTypeName() throws SQLException
{
return _SQL_NAME;

}

/* accessor methods */
public String getLine1()
{ return m_line1; }

public void setLine1(String line1)
{ m_line1 = line1; }

/* Other similar getter/setter methods for the remaining attributes
deleted to conserve space */

}

Note the following points about the generated Address class:

• The Address class implements java.sql.SQLData as required by the option
–usertypes=jdbc.

• The Address class does not implement the wrapper around the method get_address()
in the object type address, as we specified –method=none.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 357

Manually Adding a Method to a Generated Class
As discussed earlier, for the MyAddress class we didn’t generate a method corresponding to the
method get_address() in the object type address. Let’s now extend the functionality to add
this method. Later, we’ll also look at automatically generating a wrapper method.

The following sections discuss the two ways you can add this functionality in the
extended class MyAddress.

Reimplementing the Object Type Method
The first option is to write your own version of the get_address() method, called getAddress(),
which implements the functionality already implemented in the object type method again in
Java:

public String getAddress()
{
StringBuffer addressSB = new StringBuffer();
addressSB.append(getLine1()).append(" ").

append(getLine2()).append(" ").
append(getStreet()).append(" ").
append(getCity()).append(" ").
append(getState()).append(" ").
append(getZip());

return addressSB.toString();
}

This implementation has the advantage that it does not involve a network round-trip to
the database. However, it has the disadvantage that it will result in two implementations of the
method: one in the object type definition and the other in its Java version in the JDBC layer.
Any changes in the logic would have to be maintained in both places. I recommend you avoid
this approach unless the incurred round-trip results in measurable and significant perform-
ance degradation. You should, however, consider using this approach if the performance gain
of avoiding a network round-trip to the database more than compensates for the added code
complexity.

Writing a Wrapper Method Around the Object Type Method
The second option is to create a wrapper method getAddress() that calls the get_address()
method of the object type address. From the point of view of maintainability of the code, this
is the recommended way.

We will extend the functionality of Address class in its subclass MyAddress by adding the
wrapper method for the method get_address(). The generated class file MyAddress.java
(edited for clarity) is as follows:

package book.ch10.jpub;

import java.sql.SQLException;
import java.sql.Connection;

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER358

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTypes;
import java.sql.SQLData;
import java.sql.SQLInput;
import java.sql.SQLOutput;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class MyAddress extends Address implements SQLData
{

public MyAddress() { super(); }

/* superclass accessors */

/*
public void setLine1(String line1)
{ super.setLine1(line1); }

public String getLine1() { return super.getLine1(); }
*/
/* Other similar accessor methods commented as setLine1 above have

been deleted in this listing for clarity and to conserve space */
}

}

Note that all the setters and getters are inherited from the superclass Address. The ones
defined in MyAddress have been commented out by JPublisher. You can uncomment and
enhance these methods if required. As noted in the final comment, I deleted the commented-
out methods for brevity; if you are running the examples along with the chapter, you should
see them.

We will now add the method called getAddress() to the generated file MyAddress.java,
which in turn invokes the get_address() method of the address object type:

public String getAddress(Connection connection)
throws SQLException

{
String getAddressStmt =
"begin ? := " + getSQLTypeName()+".get_address(?); end;";

CallableStatement cstmt = null;
try
{
cstmt = connection.prepareCall (getAddressStmt);
cstmt.registerOutParameter (1, OracleTypes.VARCHAR);
// pass the second parameter corresponding to the
// implicit parameter "self".
cstmt.setObject(2, this);
cstmt.execute();

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 359

String address = (String) cstmt.getObject(1);
return address;

}
finally
{
JDBCUtil.close (cstmt);

}
}

Note the following:

• We need to import the classes book.util.JDBCUtil and java.sql.CallableStatement
for the MyAddress class after adding the previous method, in order to compile the file
MyAddress.java.

• We pass a Connection object in the wrapper method getAddress(). This is required to
execute the object’s get_address() method after connecting to the database.

• In the statement String of our CallableStatement, we have a parameter being passed to
the method get_address() method of the address object type, whereas we did not have
any parameters in the actual method get_address(), as shown in its signature repro-
duced below:

map member function get_address return varchar2;

• This extra parameter is used to tell the database the object instance whose get_address()
method needs to be invoked. It turns out that Oracle invokes the object methods with an
implicit parameter, self (which, if you remember, is the equivalent of the Java keyword
this). This implies that when we invoke the method get_address(), Oracle implicitly
passes the parameter self to the method, thus invoking the current object’s method. In
our Java method getAddress(), we bind this additional parameter explicitly with the this
value (shown in bold font in the preceding definition of the method). The conversion of
the this parameter of the MyAddress Java object to the self parameter of the database
object type address is done automatically by the JDBC driver based on the type map
information that we set up, as explained in the next section.

Using a Type Map to Map Object Types to Java Classes
Now that we have a JPublisher-generated class for the object type in the database, we need to
tell the JDBC driver which object type maps to which Java class. We provide this information
to the driver by adding a type map to the Connection object.

The type map for a connection is an object that implements the java.util.Map interface
(similar to how java.util.HashMap does). It contains a key/value pair, with the database object
name as the key and the class object of the corresponding custom class as the value. To add to
the type map the mapping between the object type and the custom class, we need to first
get the existing map, if any, from the Connection object using the following method of the
Connection object:

public Map getTypeMap() throws SQLException

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER360

This method retrieves the Map object associated with a Connection object. Unless the
application has added an entry, the type map returned will be empty. An example illustrating
invocation of this method is

Map map = connection.getTypeMap();

Next, we need to add the entries to the Connection object’s Map object. In this example,
we map the Java class instance of the class MyAddress to the database object type address as
follows:

myMap.put ("BENCHMARK.ADDRESS",
Class.forName(MyAddress.class.getName()));

We can set a Map object (containing the requisite mapping entries) on the Connection
object by using the following method:

public void setTypeMap(Map typeMap) throws SQLException

For example, we can execute the following code:

connection.setType (myMap);

Performing DML Using Custom SQLData Classes
In this section, we’ll go through the steps of selecting, inserting, updating, or deleting objects
using the custom classes generated in the previous section. The class DemoSQLData illustrates
these steps for us and is explained in comments interspersed within the code:

/** This program demonstrates how to use the Java class
* MyAddress that maps to the address object type and uses
* the JDBC standard interface SQLData.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0. and 9.2.0.1.0.
*/
import java.util.Map;
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import book.util.JDBCUtil;
import book.ch10.jpub.MyAddress;
public class DemoSQLData
{
public static void main(String[] args) throws Exception
{
Connection connection = null;
try
{
connection = JDBCUtil.getConnection(
"benchmark", "benchmark", "ora10g");

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 361

After getting the connection, the first step is to retrieve the type map object from the
Connection object:

Map myMap = connection.getTypeMap();

Then we map the address object type (notice the fully qualified object name including
the schema name) to the MyAddress class object:

myMap.put ("BENCHMARK.ADDRESS",
Class.forName(MyAddress.class.getName()));

The methods demoSelect(), _demoInsert(), _demoUpdate(), and _demoDelete() demonstrate
how to perform select, insert, update, and delete operations on the object table address_table
using the custom class MyAddress. I explain each of these methods in separate sections shortly.

// example demonstrating selecting object(s)
_demoSelect(connection);
// example demonstrating inserting object(s)
_demoInsert(connection);
// example demonstrating updating object(s)
_demoUpdate(connection);
// example demonstrating deleting object(s)
_demoDelete(connection);

}
finally
{
JDBCUtil.close (connection);

}
}

Selecting Objects
For selecting an object, we use the getObject() method of the ResultSet interface. When
we retrieve the object, the type map information set in the Connection object is used to
automatically convert the database object into the corresponding Java object. The method
_demoSelect() demonstrates this concept:

private static void _demoSelect(Connection connection)
throws SQLException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

The first step is to initialize a string with the select statement. Notice how we use the
function value() on the table alias to retrieve the address object value:

String selectStmt = "select value(a) from address_table a";
pstmt = connection.prepareStatement (selectStmt);
rset = pstmt.executeQuery();

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER362

while (rset.next())
{

Inside the result set loop, we cast the object retrieved to the MyAddress class. If, for some
reason, the type map setting we did earlier is incorrect (e.g., if we erroneously put a different
class in the mapping), then the following line of code would result in a ClassCastException
being thrown:

MyAddress address = (MyAddress) rset.getObject(1);

Finally, we invoke the method getAddress() that we defined manually to obtain the
address object in the form of the MyAddress Java object and print it out:

System.out.println(address.getAddress(connection));
}

}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

Inserting Objects
To insert an object using a custom SQLData object, we first instantiate and set the attributes
of the object using the Java object’s constructor and setter methods. Once the object is
ready in memory, we use the setObject() method to set the value in the placeholder of our
CallableStatement or PreparedStatement strings. Finally, we execute the statement and do a
commit. The method _demoInsert() illustrates these steps:

private static void _demoInsert(Connection connection)
throws SQLException
{

As a first step, we initialize the MyAddress object:

MyAddress myAddress = new MyAddress ();
myAddress.setLine1("133 Ferry Rd");
myAddress.setLine2("Apt # 24");
myAddress.setStreet("Crypton St.");
myAddress.setCity("Dallas");
myAddress.setState("TX");
myAddress.setZip("75201");
PreparedStatement pstmt = null;
try
{

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 363

We use the setObject() method of the PreparedStatement interface to insert the object
after creating the PreparedStatement object:

String insertStmt = "insert into address_table values(?)";
pstmt = connection.prepareStatement (insertStmt);
pstmt.setObject (1, myAddress);
int rows = pstmt.executeUpdate();
System.out.println ("Inserted " + rows + " row(s) ");
connection.commit();

}
finally
{
JDBCUtil.close(pstmt);

}
}

Updating Objects
We update an object by selecting it into memory, changing the in-memory Java object as
required, and using the Java object to update the object value in the database. An important
point to note is that when we select an object in memory, we don’t have exclusive access to it,
because in Oracle reads don’t block writes. So it is possible that the changes we make are over-
ridden by someone else who happens to be simultaneously updating the same set of rows
using the same technique. This phenomenon is called lost updates. We will revisit and resolve
this issue in detail in Chapter 16. To avoid lost updates, we need to lock any selected rows. We
do that by using the for update nowait clause in our select statement. This tells Oracle to
either lock the row for us or fail with an exception if the lock is already held by someone else
updating the same row. The method _demoUpdate() illustrates this concept:

private static void _demoUpdate(Connection connection)
throws SQLException
{

As a first step, we need to select the object using the concepts discussed in the section
“Selecting Objects” earlier. The only major difference is that the select statement has a
phrase for update nowait at the end to indicate that we want to try and lock any rows that
get selected:

PreparedStatement pstmt = null;
PreparedStatement pstmt1 = null;
ResultSet rset = null;
try
{
MyAddress myAddress = null;
String selectStmt = "select value(a) from address_table a"+

" where line1 = ? for update nowait";
pstmt = connection.prepareStatement (selectStmt);
pstmt.setString(1, "145 Apt # 7");
rset = pstmt.executeQuery();

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER364

while(rset.next())
{
myAddress = (MyAddress) rset.getObject(1);

After obtaining the object, we modify the street attribute (you can, of course, change any
other attribute as well):

myAddress.setStreet ("Wonderful St");

Then we update the corresponding row:

String updateStmt = "update address_table a" +
" set value(a) = ?" +
" where a.line1 = ?";

pstmt1 = connection.prepareStatement (updateStmt);
pstmt1.setObject (1, myAddress);
pstmt1.setString (2, "145 Apt # 7");
int rows = pstmt1.executeUpdate();
System.out.println ("Updated " + rows + " rows ");

}
connection.commit();

}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);
JDBCUtil.close(pstmt1);

}
}

Deleting Objects
There is nothing special about deleting an object. It is a simple relational statement, as illus-
trated in the following definition of the method _demoDelete():

private static void _demoDelete(Connection connection)
throws SQLException
{
PreparedStatement pstmt = null;
try
{
String deleteStmt = "delete address_table a" +

" where a.line1 = ?";
pstmt = connection.prepareStatement (deleteStmt);
pstmt.setString (1, "145 Apt # 7");
int rows = pstmt.executeUpdate();
System.out.println ("Deleted " + rows + " row(s) ");
connection.commit();

}

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 365

finally
{
JDBCUtil.close(pstmt);

}
}

}

Generating Wrapper Method(s) Automatically
Previously, we manually created the wrapper method corresponding to the method
get_address() of the object type address. In this section, we’ll look at how to do this
automatically using JPublisher.

To generate the wrapper method automatically, the only change we need to make is to
modify the option –methods=none to –methods=all in prop_address.txt. This results in a new
prop_address.txt file, the contents of which are as follows:.

jpub.user=benchmark/benchmark
jpub.methods=all
jpub.builtintypes=jdbc
jpub.numbertypes=objectjdbc
jpub.usertypes=jdbc
jpub.package=book.ch08.jpub
jpub.input=input_address.txt

For clarity, we specify the class names to be AddressAuto and MyAddressAuto in the file
input_address.txt, which now looks as follows. input_address.txt results in two classes: a
parent class called AddressAuto and a child class MyAddressAuto.

SQL ADDRESS GENERATE AddressAuto AS MyAddressAuto

The relevant portions of the generated parent class file AddressAuto.java (partially edited
for clarity) are as follows:

/*@lineinfo:filename=AddressAuto*//*@lineinfo:user-code*//*@lineinfo:1^1*/
package book.ch10.jpub;
/* Some other imports deleted for clarity */

import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;

public class AddressAuto implements SQLData
{
public static final String _SQL_NAME = "BENCHMARK.ADDRESS";
public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

/* connection management */
protected DefaultContext __tx = null;
protected Connection __onn = null;

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER366

public void setConnectionContext(DefaultContext ctx) throws SQLException
{ release(); __tx = ctx; }
public DefaultContext getConnectionContext() throws SQLException
{ if (__tx==null)
{ __tx = (__onn==null) ? DefaultContext.getDefaultContext() :

new DefaultContext(__onn); }
return __tx;

};
public Connection getConnection() throws SQLException
{ return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn; }
public void release() throws SQLException
{ if (__tx!=null && __onn!=null) __tx.close(ConnectionContext.KEEP_CONNECTION);
__onn = null; __tx = null;

}

private String m_line1;
private String m_line2;
private String m_street;
private String m_city;
private String m_state;
private String m_zip;
/* constructors */
public AddressAuto()
{ __tx = DefaultContext.getDefaultContext(); }
public AddressAuto(DefaultContext c) /*throws SQLException*/
{ __tx = c; }
public AddressAuto(Connection c) /*throws SQLException*/
{ __onn = c; }

public AddressAuto(String line1, String line2, String street,
String city, String state, String zip) throws SQLException
{
setLine1(line1);
setLine2(line2);
setStreet(street);
setCity(city);
setState(state);
setZip(zip);

}
public void readSQL(SQLInput stream, String type)
throws SQLException
{

setLine1(stream.readString());
setLine2(stream.readString());
setStreet(stream.readString());
setCity(stream.readString());
setState(stream.readString());

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 367

setZip(stream.readString());
}

public void writeSQL(SQLOutput stream)
throws SQLException
{

stream.writeString(getLine1());
stream.writeString(getLine2());
stream.writeString(getStreet());
stream.writeString(getCity());
stream.writeString(getState());
stream.writeString(getZip());

}

public String getSQLTypeName() throws SQLException
{
return _SQL_NAME;

}

/* Code for accessor methods (setter and getter of various attributes)
deleted for clarity */

public String getAddress ()
throws SQLException
{
AddressAuto __jPt_temp = this;
String __jPt_result;
/*@lineinfo:generated-code*//*@lineinfo:136^5*/

// **
// #sql [getConnectionContext()] { BEGIN
// :__jPt_result := :__jPt_temp.GET_ADDRESS();
// END;
// };
// **

{
// declare temps
oracle.jdbc.OracleCallableStatement __sJT_st = null;
sqlj.runtime.ref.DefaultContext __sJT_cc = getConnectionContext(); if

(__sJT_cc==null) sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();
sqlj.runtime.ExecutionContext.OracleContext __sJT_ec =

((__sJT_cc.getExecutionContext()==null) ?
sqlj.runtime.ExecutionContext.raiseNullExecCtx() :
__sJT_cc.getExecutionContext().getOracleContext());
try {
String theSqlTS = "BEGIN\n :1 := :2 .GET_ADDRESS();\n END;";

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER368

__sJT_st = __sJT_ec.prepareOracleCall(__sJT_cc,"0book.ch10.jpub.AddressAuto",
theSqlTS);

if (__sJT_ec.isNew())
{

__sJT_st.registerOutParameter(1,oracle.jdbc.OracleTypes.VARCHAR);
}
// set IN parameters
__sJT_st.setObject(2,__jPt_temp);

// execute statement
__sJT_ec.oracleExecuteUpdate();
// retrieve OUT parameters
__jPt_result = (String) __sJT_st.getString(1);
} finally { __sJT_ec.oracleClose(); }

}

// **

/*@lineinfo:user-code*//*@lineinfo:140^5*/
return __jPt_result;

}
}/*@lineinfo:generated-code*/

Notice that the generated AddressAuto class code has additional code that employs SQLJ to
get the connection information. It uses this connection to invoke the method get_address() of
the object type address in the generated wrapper method getAddress(). The second generated
Java file for the class MyAddressAuto (edited for clarity) is as follows:

/*@lineinfo:filename=MyAddressAuto*//*@lineinfo:user-code*//*@lineinfo:1^1*/
package book.ch10.jpub;

/* Some other imports deleted for clarity */
import oracle.jpub.runtime.MutableStruct;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;

public class MyAddressAuto extends AddressAuto implements SQLData
{

public MyAddressAuto() { super(); }

/* superclass accessors */
/* Code for accessor methods (setter and getter of various attributes)
are generated within comments by JPublisher – these have been deleted
for clarity */

/* superclass methods */
public String getAddress() throws SQLException
{
String __jRt_0 = null;

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 369

__jRt_0 = super.getAddress();
return __jRt_0;

}
}/*@lineinfo:generated-code*/}

Note that the class now contains the getAddress() method, which is the wrapper equiva-
lent of the get_address() method of the object type address.

The following listing presents the class DemoAddressAuto, which illustrates how to use the
generated wrapper method:

/** This program demonstrates how to use the Java class
* MyAddressAuto that maps to the address object type with
* its wrapper method generated automatically with
* JPublisher.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0. and 9.2.0.1.0.
*/
import java.util.Map;
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import book.util.JDBCUtil;
import book.ch10.jpub.MyAddressAuto;
public class DemoSQLDataAuto
{
public static void main(String[] args) throws Exception
{
Connection connection = null;
PreparedStatement pstmt = null; // select
ResultSet rset = null;
try
{
connection = JDBCUtil.getConnection (
"benchmark", "benchmark", "ora10g");

Map myMap = connection.getTypeMap();
myMap.put ("BENCHMARK.ADDRESS",
Class.forName("book.ch10.jpub.MyAddressAuto"));

// select the object and invoke the wrapper method
String selectStmt = "select value(a) from address_table a";
pstmt = connection.prepareStatement (selectStmt);
rset = pstmt.executeQuery();
while (rset.next())
{
MyAddressAuto address = (MyAddressAuto) rset.getObject(1);

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER370

The following statement sets up the SQLJ runtime context. As of 10g Release 1, if you try
to invoke the wrapper method without executing this statement, you will get the following
exception: found null connection context. Note that this problem does not exist if you use
JPublisher to generate wrapper methods that implement the ORAData and ORADataFactory
interfaces (as you will see shortly).

address.setConnectionContext(
new sqlj.runtime.ref.DefaultContext(connection));

Note how we can use getAddress() without passing the Connection object. As shown ear-
lier, JPublisher takes care of passing the connection object internally in its implementation
using the SQLJ runtime context.

System.out.println(address.getAddress());
}

}
finally
{
JDBCUtil.close (rset, pstmt, connection);

}
}

}

This concludes our discussion of using the SQLData interface. We will now discuss how to
use the Oracle extension ORAData and ORADataFactory interfaces in JDBC programs. We will
then compare the pros and cons of the SQLData and ORAData interfaces. The next section pres-
ents an overview of the interfaces ORAData and ORADataFactory.

Using the ORAData and ORADataFactory Interfaces
Instead of using custom classes that implement the standard SQLData interface, we can use
custom classes that implement the Oracle proprietary interfaces ORAData and ORADataFactory.
The ORAData interface provides more flexibility as compared to the SQLData interface. For
example, it lets you provide a mapping between Java object types and any SQL type supported
by the oracle.sql package. Later, we will examine a detailed comparison between using the
standard SQLData interface and using the ORAData and ORADataFactory interfaces.

Let’s start off with the definitions of ORAData and ORADataFactory:

public interface ORAData
{
Datum toDatum (OracleConnection connection) throws SQLException;

}
public interface ORADataFactory
{
ORAData create (Datum datum, int sqlTypeCode) throws SQLException;

}

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 371

Here, connection represents the Connection object, datum represents an object of type
oracle.sql.Datum (an Oracle abstract class extended by oracle.sql.* objects such as
oracle.sql.NUMBER), and sqlTypeCode represents the SQL typecode (from the standard
java.sql.Types or oracle.sql.OracleTypes class) of the Datum object.

The ORAData and ORADataFactory interfaces do the following:

• The toDatum() method of the ORAData class converts the data into an oracle.sql.*
representation.

• The create() method of ORADataFactory creates and returns an ORAData instance. The
JDBC driver uses this method to return an instance of the custom object class to your
Java application. It takes as input an oracle.sql.Datum object and an integer indicating
the corresponding SQL typecode as specified in the OracleTypes class.

In the next section, we’ll look at an example of using JPublisher to generate custom
classes that implements the ORAData and ORADataFactory interfaces.

Generating Custom Classes that Implement the ORAData and
ORADataFactory Interfaces
Using JPublisher, we will now generate custom classes for the address object type that imple-
ments the ORAData and ORADataFactory interfaces. The steps involved in creating and using a
custom class called MyAddressORAData that implements the ORAData and ORADataFactory inter-
faces and represents the object type address are as follows:

1. Generate custom classes using JPublisher. In this step, we use JPublisher to generate a
custom class that implements the ORAData and ORADataFactory interfaces.

2. Extend the generated classes to add functionality (if required). If you want to add to
the functionality of the generated classes, extend the class and make any changes,
since directly changing generated classes is error-prone.

3. Perform DMLs using the custom classes. Use the generated classes in your calling
program to select, insert, update, or delete objects.

Notice that unlike the SQLData case, we don’t need to add a type map to the Connection
object because of the way the generated classes work. The following sections explain these
steps further.

Generating Custom Classes Using JPublisher
We use the input file input_address_oradata.txt, which contains the following line:

SQL ADDRESS GENERATE AddressORAData AS MyAddressORAData

This line instructs JPublisher to generate a class, MyAddressORAData, that will extend the class
AddressORAData.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER372

We use the properties file prop_address_oradata.txt, the contents of which follow:

jpub.user=benchmark/benchmark
jpub.methods=all
jpub.builtintypes=jdbc
jpub.numbertypes=objectjdbc
jpub.usertypes=oracle
jpub.package=book.ch10.jpub
jpub.input=input_address_oradata.txt

Notice the use of jpub.usertypes=oracle here—this is the change in option that directs
JPublisher to generate custom classes that implement the proprietary interfaces ORAData and
ORADataFactory.

Next, we run the JPublisher command that uses the preceding properties file:

jpub -props=prop_address_oradata.txt

The following class files are generated in our directory:

• AddressORAData.java: The parent class extended by the MyAddressORAData class.

• MyAddressORAData.java: The child class mapped to the address object type. This is the
class we should modify if required.

• MyAddressORADataRef.java: This represents a reference object.

Notice that apart from the two classes AddressORAData and MyAddressORAData that we
specified, we also get a third class, MyAddressORADataRef. When using Oracle proprietary inter-
faces, JPublisher automatically generates a class that represents a reference to the database
object type, in case we need to use it. For the time being, we will ignore the third class; we’ll
look at references to object types in the next chapter.

The following listing shows the content of the generated AddressORAData.java file (edited
for clarity):

/*@lineinfo:filename=AddressORAData*//*@lineinfo:user-code*//*@lineinfo:1^1*/
package book.ch10.jpub;
/* All imports deleted for clarity */
public class AddressORAData implements ORAData, ORADataFactory
{
public static final String _SQL_NAME = "BENCHMARK.ADDRESS";
public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

/* connection management */
protected DefaultContext __tx = null;
protected Connection __onn = null;
public void setConnectionContext(DefaultContext ctx)
throws SQLException

{ release(); __tx = ctx; }
public DefaultContext getConnectionContext() throws SQLException

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 373

{ if (__tx==null)
{ __tx = (__onn==null) ? DefaultContext.getDefaultContext() :

new DefaultContext(__onn); }
return __tx;

};
public Connection getConnection() throws SQLException
{ return (__onn==null) ? ((__tx==null) ? null :

__tx.getConnection()) : __onn; }
public void release() throws SQLException
{ if (__tx!=null && __onn!=null) __tx.close(

ConnectionContext.KEEP_CONNECTION);
__onn = null; __tx = null;

}

protected MutableStruct _struct;

private static int[] _sqlType = { 12,12,12,12,12,12 };
private static ORADataFactory[] _factory = new ORADataFactory[6];
protected static final AddressORAData _AddressORADataFactory =
new AddressORAData();

public static ORADataFactory getORADataFactory()
{ return _AddressORADataFactory; }

protected static java.util.Hashtable _map = new java.util.Hashtable();
protected static boolean _initialized = false;
protected static synchronized void init()
{ if (!_initialized)
{ _initialized=true;
_map.put("BENCHMARK.ADDRESS",

book.ch10.jpub.MyAddressORAData.getORADataFactory());
} }

/* constructors */
protected void _init_struct(boolean init)
{ if (init) _struct = new MutableStruct(new Object[6],

_sqlType, _factory); }
public AddressORAData()
{ _init_struct(true); __tx = DefaultContext.getDefaultContext(); }
public AddressORAData(DefaultContext c) /*throws SQLException*/
{ _init_struct(true); __tx = c; }
public AddressORAData(Connection c) /*throws SQLException*/
{ _init_struct(true); __onn = c; }
public AddressORAData(String line1, String line2,
String street, String city, String state, String zip)
throws SQLException

{

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER374

_init_struct(true);
setLine1(line1);
setLine2(line2);
setStreet(street);
setCity(city);
setState(state);
setZip(zip);

}

/* ORAData interface */
public Datum toDatum(Connection c) throws SQLException
{
if (__tx!=null && __onn!=c) release();
__onn = c;
return _struct.toDatum(c, _SQL_NAME);

}

/* ORADataFactory interface */
public ORAData create(Datum d, int sqlType) throws SQLException
{ return create(null, d, sqlType); }
public void setFrom(AddressORAData o) throws SQLException
{ setContextFrom(o); setValueFrom(o); }
protected void setContextFrom(AddressORAData o)
throws SQLException

{ release(); __tx = o.__tx; __onn = o.__onn; }
protected void setValueFrom(AddressORAData o) { _struct = o._struct; }
protected ORAData create(AddressORAData o, Datum d, int sqlType)
throws SQLException

{
if (d == null) { if (o!=null) { o.release(); }; return null; }
if (o == null) return createFromFactory("AddressORAData", d, sqlType);
o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
o.__onn = ((STRUCT) d).getJavaSqlConnection();
return o;

}
protected ORAData createExact(Datum d, int sqlType)
throws SQLException

{
AddressORAData o = new AddressORAData();
o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
o.__onn = ((STRUCT) d).getJavaSqlConnection();
return o;

}
protected ORAData createFromFactory(String s, Datum d, int sqlType)
throws SQLException

{
String sql = ((STRUCT) d).getSQLTypeName();

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 375

init();
AddressORAData factory = (AddressORAData)_map.get(sql);
if (factory == null) {

int p;
if ((p=sql.indexOf(".")) >= 0) {

factory = (AddressORAData)_map.get(sql.substring(p+1));
if (factory!=null) _map.put(sql,factory); }

if (factory == null) throw new SQLException
("Unable to convert a "+sql+" to a "+s+" or a subclass of "+s);

}
return factory.createExact(d,sqlType);

}
/* accessor methods */
public String getLine1() throws SQLException
{ return (String) _struct.getAttribute(0); }

public void setLine1(String line1) throws SQLException
{ _struct.setAttribute(0, line1); }

/* Code for remaining accessor methods deleted for clarity */

public String getAddress ()
throws SQLException
{
AddressORAData __jPt_temp = this;
String __jPt_result;
/*@lineinfo:generated-code*//*@lineinfo:169^5*/

/* Some generated comments deleted for clarity */
{
// declare temps
oracle.jdbc.OracleCallableStatement __sJT_st = null;
sqlj.runtime.ref.DefaultContext __sJT_cc = getConnectionContext();
if (__sJT_cc==null) sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();
sqlj.runtime.ExecutionContext.OracleContext __sJT_ec =

((__sJT_cc.getExecutionContext()==null) ?
sqlj.runtime.ExecutionContext.raiseNullExecCtx() :
__sJT_cc.getExecutionContext().getOracleContext());
try {
String theSqlTS = "BEGIN\n :1 := :2 .GET_ADDRESS();\n END;";
__sJT_st = __sJT_ec.prepareOracleCall(__sJT_cc,"0book.ch10.jpub.AddressORAData",

theSqlTS);
if (__sJT_ec.isNew())
{

__sJT_st.registerOutParameter(1,oracle.jdbc.OracleTypes.VARCHAR);
}
// set IN parameters
if (__jPt_temp==null) __sJT_st.setNull(2,2002,"BENCHMARK.ADDRESS");

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER376

else __sJT_st.setORAData(2,__jPt_temp);
// execute statement
__sJT_ec.oracleExecuteUpdate();
// retrieve OUT parameters
__jPt_result = (String) __sJT_st.getString(1);
} finally { __sJT_ec.oracleClose(); }

}
// **

/*@lineinfo:user-code*//*@lineinfo:173^5*/
return __jPt_result;

}
}/*@lineinfo:generated-code*/

Notice that the class extends the ORAData and ORADataFactory interfaces as expected and
also generates a wrapper method getAddress() for the get_address method of the address
object type. The following listing shows the contents of the generated MyAddressORAData.java
file (edited for clarity).

/*@lineinfo:filename=MyAddressORAData*//*@lineinfo:user-code*//*@lineinfo:1^1*/
package book.ch10.jpub;
/* All imports deleted for clarity */
public class MyAddressORAData extends AddressORAData
implements ORAData, ORADataFactory

{
private static final MyAddressORAData _MyAddressORADataFactory =
new MyAddressORAData();

public static ORADataFactory getORADataFactory()
{ return _MyAddressORADataFactory; }

public MyAddressORAData() { super(); }
public MyAddressORAData(Connection conn) throws SQLException { super(conn); }
public MyAddressORAData(DefaultContext ctx) throws SQLException { super(ctx); }
public MyAddressORAData(String line1, String line2, String street,
String city, String state, String zip)
throws SQLException

{
setLine1(line1);
setLine2(line2);
setStreet(street);
setCity(city);
setState(state);
setZip(zip);

}
/* ORAData interface */
protected ORAData createExact(Datum d, int sqlType)
throws SQLException

{ return create(new MyAddressORAData(), d, sqlType); }

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 377

/* Code for accessor methods (setter and getter of various attributes)
are generated within comments by JPublisher – they have been deleted
for clarity */
/* superclass methods */
public String getAddress() throws SQLException
{
String __jRt_0 = null;
__jRt_0 = super.getAddress();
return __jRt_0;

}
}/*@lineinfo:generated-code*/

Please note that the step of extending generated custom classes to add functionality is
very similar to the same step in the case of the SQLData interface, so I don’t cover it again here.
Please see the corresponding step in the section “Generating Custom Classes That Implement
SQLData” for further details.

Performing DMLs Using Custom ORAData Classes
In this section, we go through the steps of selecting, inserting, updating, or deleting
objects using the custom classes generated as described in the previous section. The class
DemoORAData illustrates these steps for us and is explained in comments interspersed within
the code:

/** This program demonstrates how to use the Java class
* MyAddressORAData to perform DMLs.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0.
* and 9.2.0.1.0.
*/
import java.util.HashMap;
import java.sql.SQLException;
import java.sql.ResultSet;
import java.sql.Connection;
import java.sql.PreparedStatement;
import oracle.jdbc.OracleResultSet;
import oracle.jdbc.OraclePreparedStatement;
import book.util.JDBCUtil;
import book.ch10.jpub.MyAddressORAData;
public class DemoORAData
{
public static void main(String[] args) throws Exception
{
Connection connection = null;
try
{
connection = JDBCUtil.getConnection (
"benchmark", "benchmark", "ora10g");

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER378

We invoke various methods in the following code that demonstrate DML operations.
Each method is explained along with its definition in detail as part of the program comments:

// example demonstrating first way of selecting object - we use
// getORAData() method of OracleResultSet.
_demoSelectUsingGetORAData(connection);
// example demonstrating second way of selecting object - we use
// getObject() method of ResultSet specifying a type map.
_demoSelectUsingGetObject(connection);
// example demonstrating inserting object(s)
_demoInsertUsingSetORAData(connection);
// example demonstrating inserting object(s)- second alternative
_demoInsertUsingSetObject(connection);
// example demonstrating updating object(s)
_demoUpdate(connection);
// example demonstrating deleting object(s)

}
finally
{
JDBCUtil.close (connection);

}
}

Selecting Objects Using the getORAData() Method of OracleResultSet

The method _demoSelectUsingGetORAData() uses the method getORAData() of the
OracleResultSet interface. This method signature is

public ORAData getORAData (int col_index, ORADataFactory factory)

This method takes as input the column index of the data in our result set and an
ORADataFactory instance. The method _demoSelectUsingGetORAData() follows:

private static void _demoSelectUsingGetORAData(Connection connection)
throws SQLException
{
PreparedStatement pstmt = null;
OracleResultSet orset = null;
try
{
String selectStmt = "select value(a) from address_table a";
pstmt = connection.prepareStatement (selectStmt);
orset = (OracleResultSet) pstmt.executeQuery();
while (orset.next())
{

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 379

Next, we invoke the getORAData() method of the OracleResultSet interface. Notice how
we invoke the static method getORADataFactory() of the generated class MyAddressORAData:

MyAddressORAData address = (MyAddressORAData) orset.getORAData(1,
MyAddressORAData.getORADataFactory());

System.out.println(address.getAddress());
}

}
finally
{
JDBCUtil.close(orset);
JDBCUtil.close(pstmt);

}
}

Selecting Objects Using the getObject() Method of ResultSet

The second option for selecting objects is to use the standard getObject(index, map) method
specified by the ResultSet interface to retrieve data as instances of ORAData. In this case, we
must have an entry in the type map that identifies the factory class. This becomes clearer in
the definition of the method _demoSelectUsingGetObject() as follows:

private static void _demoSelectUsingGetObject(Connection connection)
throws SQLException, ClassNotFoundException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

In the following code, we populate a type map that maps the address object type to the
class MyAddressORAData:

HashMap myMap = new HashMap();
myMap.put("BENCHMARK.ADDRESS",
Class.forName(MyAddressORAData.class.getName()));

String selectStmt = "select value(a) from address_table a";
pstmt = connection.prepareStatement (selectStmt);
rset = pstmt.executeQuery();
while (rset.next())
{

When retrieving the object using the getObject() method, we also pass the type map,
which informs the JDBC driver which class the object type maps to:

MyAddressORAData address = (MyAddressORAData)
rset.getObject(1, myMap);

System.out.println(address.getAddress());
}

}

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER380

finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

Inserting Objects Using the setORAData() Method of OraclePreparedStatement

There are two methods to insert objects. The first uses the setORAData() method of the Oracle
extension interface OraclePreparedStatement (or OracleCallableStatement). The method sig-
nature is as follows. The method takes as input the column index of the data and an ORAData
instance.

public void setORAData (int colIndex, ORAData oradata)

The method _demoInsertUsingSetORAData() defined as follows uses the setORAData()
method as part of the process of inserting an object into address_table. The code is fairly
self-explanatory.

private static void _demoInsertUsingSetORAData(Connection connection)
throws SQLException
{
OraclePreparedStatement opstmt = null;
try
{
MyAddressORAData myAddress = new MyAddressORAData();
myAddress.setLine1("133 Ferry Rd");
myAddress.setLine2("Apt # 24");
myAddress.setStreet("Crypton St.");
myAddress.setCity("Dallas");
myAddress.setState("TX");
myAddress.setZip("75201");
String insertStmt = "insert into address_table values(?)";
opstmt = (OraclePreparedStatement)
connection.prepareStatement (insertStmt);

opstmt.setORAData (1, myAddress);
int rows = opstmt.executeUpdate();
System.out.println ("Inserted " + rows + " row(s) ");
connection.commit();

}
finally
{
JDBCUtil.close(opstmt);

}
}

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 381

Inserting Objects Using the setObject() Method of PreparedStatement

The second method involves using the standard setObject() method of the Prepared➥

Statement interface (or the CallableStatement interface), as demonstrated by the following
_demoInsertUsingSetObject() method:

private static void _demoInsertUsingSetObject(Connection connection)
throws SQLException, ClassNotFoundException
{
PreparedStatement pstmt = null;
try
{
MyAddressORAData myAddress = new MyAddressORAData();
myAddress.setLine1("134 Ferry Rd");
myAddress.setLine2("Apt # 24");
myAddress.setStreet("Crypton St.");
myAddress.setCity("Dallas");
myAddress.setState("TX");
myAddress.setZip("75201");
String insertStmt = "insert into address_table values(?)";
pstmt = connection.prepareStatement (insertStmt);
pstmt.setObject (1, myAddress);
int rows = pstmt.executeUpdate();
System.out.println ("Inserted " + rows + " row(s) ");
connection.commit();

}
finally
{
JDBCUtil.close(pstmt);

}
}

Updating Objects

As in the case of a SQLData-based implementation, you update an object by selecting it into
memory, changing the in-memory Java object as required, and using the Java object to update
the object value in the database, as shown in the following code. The phenomenon of lost
updates mentioned earlier is applicable here, too; hence we use the phrase for update nowait
during the select. The rest of the code uses concepts covered in earlier chapter sections.

private static void _demoUpdate(Connection connection)
throws SQLException, ClassNotFoundException
{
OraclePreparedStatement opstmt = null;
PreparedStatement pstmt = null;
OracleResultSet orset = null;
try
{
MyAddressORAData myAddress = null;

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER382

String selectStmt = "select value(a) from address_table a"+
" where line1 = ? for update nowait";

pstmt = connection.prepareStatement (selectStmt);
pstmt.setString(1, "145 Apt # 7");
orset = (OracleResultSet) pstmt.executeQuery();
if (orset.next())
{
myAddress = (MyAddressORAData) orset.getORAData(1,
MyAddressORAData.getORADataFactory());

myAddress.setStreet ("Wonderful St");
String updateStmt = "update address_table a" +

" set value(a) = ?" +
" where a.line1 = ?";

opstmt = (OraclePreparedStatement)
connection.prepareStatement (updateStmt);

opstmt.setORAData (1, myAddress);
opstmt.setString (2, "145 Apt # 7");
int rows = opstmt.executeUpdate();
System.out.println ("Updated " + rows + " rows ");

}
connection.commit();

}
finally
{
JDBCUtil.close(orset);
JDBCUtil.close(opstmt);

}
}

Deleting Objects

There is nothing special about deleting an object. It is a simple relational statement, as illus-
trated in the following _demoDelete() method:

private static void _demoDelete(Connection connection)
throws SQLException, ClassNotFoundException
{
PreparedStatement pstmt = null;
try
{
String deleteStmt = "delete address_table a" +

" where a.line1 like ?";
pstmt = connection.prepareStatement (deleteStmt);
pstmt.setString (1, "Mountain View");
int rows = pstmt.executeUpdate();
System.out.println ("Deleted " + rows + " row(s) ");
connection.commit();

}

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 383

finally
{
JDBCUtil.close(pstmt);

}
}

}

Now that you know how to use the SQLData interface and the Oracle extension interfaces
ORAData and ORADataFactory, let’s compare the two approaches.

SQLData vs. ORAData and ORADataFactory
In this section, we’ll highlight the differences between the SQLData and ORAData interfaces.
Note that there may be times when you have to use ORAData—for example, if you want to cre-
ate a custom class for a nonstandard Oracle-specific type. In practice, there are no major
advantages or disadvantages to using either approach.

The main advantage of using the SQLData interface, at least in theory, is that it is a JDBC
standard and makes your Java code more portable across databases. However, at the time of
this writing, the implementation and use of objects in different databases varies so much that
the majority of such code contains vendor-dependent code anyway.

Using the ORAData and ORADataFactory interfaces, on the other hand, has the following
advantages (none of which is really earth-shattering):

• The ORAData interface has more flexibility than the SQLData interface. It lets you provide
a mapping between Java object types and any SQL type supported by the oracle.sql
package. For example, you can use it if you want to create a custom class for a nonstan-
dard Oracle-specific type such as oracle.sql.BFILE.

• The ORAData interface does not require a type map to map the object type to Java
classes.

• According to the documentation, using the ORAData interface leads to better perform-
ance since ORAData works directly with the internal format the driver uses to hold
Oracle objects. This means there is no conversion required to hold the data. The tests
I conducted to verify this statement were not conclusive, as in some cases, I actually
found SQLData to be faster. So my advice is that you should use this criterion for choos-
ing between the two approaches in your application only after running appropriate
benchmarks in the context of your application.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER384

A Note on Separating Domain Objects
from the Persistence Mechanism
You may have noticed that regardless of whether you use SQLData or ORAData, the code gener-
ated by JPublisher suffers from what many would justifiably consider a serious drawback. The
problem is that the custom classes (which are domain objects—that is, objects that represent
end-user business entities such as an Address, a Person, and so on) are tightly coupled with
the persistence mechanism. For example, the getAddress() method in the generated domain
class MyAddressAuto executes the method get_address() to retrieve the data from the data-
base.

Even if database independence is not a goal of your design, it is a good coding practice
to separate out the persistence mechanism that you use to save and retrieve your domain
objects from the domain objects themselves. This is a fairly involved topic in its own right,
and it’s beyond the scope of this book. Many well-documented frameworks (such as the
Spring framework) are available, using which this objective can be achieved.

Summary
In this chapter, you learned what strongly typed interfaces are. You examined the JDBC stan-
dard interface, SQLData, and the Oracle extension interfaces, ORAData and ORADataFactory.
You learned about the various options provided by JPublisher, a utility that generates custom
classes mapping SQL objects to Java for you. You also learned, through examples, how to use
JPublisher to generate custom classes that implement either SQLData or ORAData interfaces
that allow you to retrieve and manipulate objects stored in the database. In the next chapter,
we will examine how to use collections and references in a JDBC program.

CHAPTER 10 ■ USING STRONGLY TYPED INTERFACES WITH JPUBLISHER 385

Using Oracle Collections
and References

In Chapters 9 and 10, we discussed how to query and modify Oracle objects in JDBC either
as weakly typed Struct (or its Oracle implementation STRUCT) objects or as strongly typed cus-
tom classes generated by JPublisher. In this chapter, we will continue the discussion for Oracle
collections and references. I provided a brief introduction to Oracle collections in the section
“Collections (Nested Tables and Varrays)” of Chapter 8 of this book. As far as references go,
I will give a brief introduction to them in this chapter, along with how to access them using
JDBC. Very briefly, references are pointers to already existing rows in an object table. For more
detailed background information, I encourage you to consult Oracle Database Application
Developer’s Guide – Object Relational Features (10g Release 1).

In this chapter, following the conventions of the Oracle documentation, the term “collec-
tion” is used when discussing nested tables and varrays in the database, and the term “array”
is used when discussing their manifestation in JDBC programs. An important point to note
is that inside the Oracle database, there may be many differences between nested tables and
varrays (as discussed in Chapter 8), but there is no difference in terms of the JDBC code that
we need to write in order to access or modify them. Both nested tables and varrays map to an
array in JDBC, so the same code should work for both.

This chapter examines the following topics:

• How to retrieve collections in the database as a weakly typed java.sql.Array (or its
Oracle extension, oracle.sql.ARRAY) object

• How to retrieve collections as a strongly typed array of custom class objects (generated
using the JPublisher utility)

• Some of the Oracle extensions designed to improve performance with suitable
benchmarks

• What references are and why they should, in general, be avoided

• How to access and manipulate references from JDBC

387

C H A P T E R 11

■ ■ ■

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES388

Weakly Typed Collection Classes
A weakly typed collection class is a manifestation of a collection in Java in the form of the
Oracle extension class oracle.sql.ARRAY (which also implements the standard interface
java.sql.Array). You can retrieve a database collection of built-in types (such as a nested
table of varchar2 elements) as an oracle.sql.ARRAY object in Java. You can also use the
oracle.sql.ARRAY interface to retrieve a collection of object types (e.g., a varray of person
objects, where person is an object type you created). In such cases, the collection is retrieved
as an oracle.sql.ARRAY of oracle.sql.STRUCT objects (we covered the oracle.sql.STRUCT class
in Chapter 9).

A weakly typed collection is mainly useful when, in Java, you don’t need to carry out a lot
of manipulation of the array object and its elements as objects in memory. In the next two sec-
tions, we’ll look at the standard Array interface and its Oracle implementation: the ARRAY class.

The java.sql.Array Interface
The java.sql.Array (referred to as Array from here onward) interface provides methods to
retrieve the database collection either as a generic Object or as a ResultSet from which you
can retrieve the individual elements. An important fact to remember about the Array interface
is that it has no setter methods, meaning it can’t be used to modify the collection. Some of the
more commonly used methods of this interface are presented in the sections that follow with
brief descriptions.

getArray()
First up is the getArray() method, which is used to retrieve the contents of the database
object in the form of an array in the Java programming language:

public Object getArray() throws SQLException;
public Object getArray(Map typeMap) throws SQLException;
public Object getArray(long index, int count) throws SQLException;
public Object getArray(long index, int count, Map typeMap) throws SQLException;

These methods use the type map associated with the connection for defining which Java
classes are used to represent a collection or its elements in Java. The two methods that take a
type map use the passed type map to map the elements into Java objects instead of the type
map associated with the Connection object. In the absence of a type map, the method con-
verts the individual elements into various standard Java classes based on Table A-1 of the
Appendix. For example, the individual elements of a nested table of varchar2 elements are
converted into String objects. Two overloaded versions (the last two methods in the preced-
ing list) retrieve a slice of the database collection of a given Array object, beginning with the
specified index and containing up to count successive elements of the SQL array. Note that the
elements in the slice are not in a predictable order for a nested table since a nested table, if
you recall, is an unordered collection of elements.

getResultSet()
The various overloaded versions of getResultSet() method retrieve a result set that contains
the elements of the database collection (either all elements or a slice of elements as specified
by index and count parameters) pointed to by a given Array object.

public ResultSet getResultSet() throws SQLException;
public ResultSet getResultSet(Map typeMap) throws SQLException;
public ResultSet getResultSet(long index, int count) throws SQLException;
public ResultSet getResultSet(long index, int count, int typeMap)
throws SQLException;

The ResultSet contains two columns. The first column is the index of the element, and
the second column is the element itself. The classes into which individual elements are mate-
rialized are based on a type map (either supplied in an overloaded version or the default
values from Table A-1 of the Appendix). Again, the overloaded methods that take a type map
as a parameter (the first and the third methods in the preceding list) use the supplied type
map instead of the one associated with the Connection object to deduce the Java classes into
which the elements are materialized.

getBaseTypeName()
This method returns the SQL type name of the elements of this array.

public synchronized String getBaseTypeName();

The oracle.sql.ARRAY Class
The oracle.sql.ARRAY class extends the Array interface to provide many additional useful
methods. Some of the commonly used methods are described here.

The createDescriptor() and getDescriptor() methods are used to create and retrieve
an oracle.sql.ArrayDescriptor object of the ARRAY object.

public static ArrayDescriptor createDescriptor(java.lang.String sqlType,
Connection connection) throws SQLException;
public ArrayDescriptor getDescriptor()
throws SQLException;

An ArrayDescriptor object describes the SQL type of an array. Only one array descriptor is
necessary for any one SQL type. The driver caches ArrayDescriptor objects to avoid re-creating
them if the SQL type has already been encountered. We will look at some examples of this class
shortly.

The getOracleArray() method is identical to getArray(), but it retrieves the elements in
oracle.sql.* format:

public synchronized oracle.sql.Datum[] getOracleArray():

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 389

The getBaseType() method returns the SQL type code for the array elements as defined in
the oracle.jdbc.OracleTypes class:

public synchronized int getBaseType();

The getSQLTypeName() method returns the fully qualified SQL type name of the array as a
whole:

public synchronized String getSQLTypeName();

Strongly Typed Collection Classes
Strongly typed collection classes are custom classes (typically generated using JPublisher) that
represent the elements of a collection using a specific class based on the type of elements in
the corresponding database collection. Since these objects store the attributes in a more con-
venient form (retrievable and modifiable through individual getter and setter methods), they
are more suitable in cases where you need to manipulate the array elements in memory.

Now that you understand what weakly and strongly typed collection classes are, let’s take
a look at how to use them in JDBC programs. In the next section, we will look at how to mate-
rialize collections consisting of built-in type elements (such as number) as weakly typed ARRAY
elements.

Materializing Collections of Built-in Types As
Weakly Typed Objects
In this section, we will demonstrate different ways in which you can materialize collections
made of built-in types as weakly typed objects. Specifically, in our examples, we will look at
two different collections:

• A varray of varchar2 elements

• A varray of number elements

Note that the same programs should also work on a nested table composed of built-in
types. We first need to create our schema elements, which our example programs will then
access and manipulate.

Creating the Schema for Collections of Built-in Types
In this section, we’ll create the schema elements on which our example JDBC programs,
demonstrating access of collections of built-in types as weakly typed objects, will work.

We begin by creating a simple varray of varchar2 elements called varray_of_varchars:

benchmark@ORA10G> create or replace type varray_of_varchars as
2 varray(20) of varchar2(50);
3 /

Type created.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES390

To demonstrate access and modification of a collection containing only numbers, we next
create a varray of number elements called varray_of_numbers:

benchmark@ORA10G> create or replace type varray_of_numbers as
2 varray(20) of number;
3 /

Type created.

We follow it up by creating a table, varchar_varray_table, that contains the varchar2
varray as a column. We also create a table, number_varray_table, that contains the number
varray as a column:

benchmark@ORA10G> create table varchar_varray_table
2 (
3 varray_column varray_of_varchars
4);

Table created.
benchmark@ORA10G> create table number_varray_table
2 (
3 varray_column varray_of_numbers
4);

Table created.

To illustrate how to access and manipulate collections from Java using the
CallableStatement interface, we create a package called demo_varray_pkg that contains
a single procedure, demo_passing_varray_param, which takes a parameter of type
varray_of_varchars:

benchmark@ORA10G> create or replace package demo_varray_pkg
2 as
3 procedure demo_passing_varray_param(p_varchar_varray

in varray_of_varchars);
4 end;
5 /

Package created.

benchmark@ORA10G> create or replace package body demo_varray_pkg
2 as

Inside the procedure demo_passing_varray_param(), we insert a row into the table that
contains the varray column. Later we can query this table from the SQL*Plus prompt to verify
that our JDBC program worked as expected.

11 procedure demo_passing_varray_param(p_varchar_varray in varray_of_varchars)
12 is
13 begin
14 insert into varchar_varray_table values (p_varchar_varray);

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 391

15 end;
16 end;
17 /

Package body created.

We next populate the table number_varray_table with some sample data and issue a commit:

benchmark@ORA10G> insert into number_varray_table values(
varray_of_numbers(1, 2, 3, 4, 5));

1 row created.

benchmark@ORA10G> commit;

Commit complete.

The next section describes the JDBC code to access these varray elements as weakly
typed ARRAY class objects.

Manifesting Collections of Built-in Types As ARRAY Objects
In this section, we’ll look at how we can retrieve a collection of built-in type as an ARRAY
object. We’ll first examine how to pass a varray to a PL/SQL procedure. Then we’ll look at
how a varray can be materialized in Java as an ARRAY of built-in types, such as String, using
a PreparedStatement. Let’s begin by creating and passing an ARRAY to a procedure.

Creating and Passing an ARRAY to a PL/SQL Procedure
As discussed earlier, the ARRAY class implements the standard Array interface, using which you
can retrieve the entire collection, a subset of the collection, the collection name, or the base
SQL type name of the collection (you’ll learn more about each of these soon). However, when
using the ARRAY class, you can’t modify the collection in the JDBC layer, as it does not provide
any “setter” methods.

Creating and passing an ARRAY to a PL/SQL procedure involves three steps:

1. Create an ArrayDescriptor. An ArrayDescriptor is an object of type
oracle.sql.ArrayDescriptor that describes the ARRAY object. As mentioned earlier,
only one array descriptor is necessary for a particular collection type. For example, you
can create an array descriptor object for the varray element varray_of_varchars and
reuse it as many times as you want to create different ARRAY objects of the same collec-
tion type (assuming that the definition of the underlying collection has not changed).

2. Create an ARRAY object. The next step is to create the ARRAY object that we want to pass
to our procedure using the constructor whose signature follows:

public oracle.sql.ARRAY(oracle.sql.ArrayDescriptor descriptor,
java.sql.Connection connection, java.lang.Object arrayElements);

3. Pass the ARRAY object to the procedure. The final step is to pass the ARRAY object to the
CallableStatement object using the setArray() method of the CallableStatement
interface.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES392

We illustrate each of these steps as part of the description of the class DemoPassing➥

CollectionToProcedure as follows:

/** This program demonstrates how to pass a collection into a
* PL/SQL procedure from JDBC.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.CallableStatement;
import oracle.jdbc.OracleConnection;
import oracle.sql.ArrayDescriptor;
import oracle.sql.ARRAY;
import book.util.JDBCUtil;
import book.util.Util;
class DemoPassingCollectionToProcedure
{

The main() method invokes the method _doPassArrayToAProcedure(), passing the
Connection object and issuing a commit. The method _doPassArrayToAProcedure() contains
the bulk of the logic:

public static void main(String args[]) throws Exception
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);
_doPassArrayToAProcedure(conn);
conn.commit();

}
finally
{
// release JDBC resources
JDBCUtil.close(conn);

}
}

The method _doPassArrayToAProcedure() is defined as follows:

private static void _doPassArrayToAProcedure(Connection conn)
throws SQLException
{
CallableStatement cstmt = null;
try
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 393

The first step is to create the array descriptor. Note that we first check if the Connection
object has a descriptor already populated with an array descriptor for our varray type. If it
does, we can simply reuse the returned array descriptor. If it doesn’t, we create one. Please
note that the method getDescriptor() is an Oracle extension method, and to access it you
need to cast the Connection object to the OracleConnection interface:

ArrayDescriptor arrayDescriptor = (ArrayDescriptor)
((OracleConnection) conn).getDescriptor(
"BENCHMARK.VARRAY_OF_VARCHARS");

if(arrayDescriptor == null)
{
System.out.println("creating array descriptor");
arrayDescriptor = ArrayDescriptor.createDescriptor(

"BENCHMARK.VARRAY_OF_VARCHARS", conn);
}

As part of the second step, we first create the array contents. In our case, our varray ele-
ment is made up of varchar2, so the corresponding Java elements would be String objects.
Thus we simply create an array of String with two elements:

String[] elements = new String[] { "elem 1", "elem 2" };

We then create the ARRAY object, initializing it with the String array we created above:

ARRAY array = new ARRAY (arrayDescriptor, conn, elements);

The third and final step is to invoke the procedure using the CallableStatement interface.
In particular, note that we use the method setArray() to pass the array value to the procedure.
We could also have used the method setObject() with the same result:

String stmtString =
"begin demo_varray_pkg.demo_passing_varray_param(?); end;";

cstmt = conn.prepareCall(stmtString);
cstmt.setArray(1, array);
cstmt.execute();

}
finally
{
JDBCUtil.close(cstmt);

}
}

}

Invoking the preceding class should result in the following output:

B:\>java DemoPassingCollectionToProcedure ora10g
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
creating array descriptor

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES394

A quick select verifies that the procedure invocation was successful (recall that we
inserted the passed array into the table varchar_varray_table in the procedure):

benchmark@ORA10G> select * from varchar_varray_table;

VARRAY_COLUMN

VARRAY_OF_VARCHARS('elem 1', 'elem 2')

In the next section, we examine how we can use PreparedStatement in conjunction with
the ARRAY class to materialize a collection of built-in types.

Using an ARRAY Class for Accessing Collections of Built-in Types
This section shows how to select a varray of built-in data types from the database using the
ARRAY class. This process involves the following steps:

1. Prepare and execute the statement. This is the familiar step of preparing and executing
a select statement that selects the Collection object.

2. Retrieve the ARRAY object from the ResultSet. In this step, we use the getArray()
method on the ResultSet object to retrieve the ARRAY object. Note that if no rows are
selected, we get a null ARRAY object returned.

3. Retrieve individual elements from the ARRAY object. Finally, we retrieve individual
array elements. We will demonstrate the case of retrieving the array of varchar2
(varray_of_varchars type) and array of number (varray_of_numbers) separately.
To retrieve the individual collection elements, we can use either the standard method
getArray() of the Array interface, or one of the two methods getResultSet() or
getOracleArray() of the ARRAY class. For numeric collections, we can, in addition to
the aforementioned methods, use one of the many numeric extension methods (such
as getIntArray()). Choosing between these methods is, to a large extent, a matter of
convenience, although there are some performance implications as well. We will
examine these methods along with examples shortly.

The following sections detail each of these steps as part of the explanation of the class
DemoQueryingCollectionOfBuiltInTypes presented here:

/** This program demonstrates how to select a collection of built-in types
* into JDBC (we use varray of varchar2 and varray of number
* to demonstrate the concepts).
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.math.BigDecimal;
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.Types;
import java.sql.ResultSet;

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 395

import oracle.sql.ArrayDescriptor;
import oracle.sql.ARRAY;
import oracle.sql.Datum;
import oracle.sql.NUMBER;
import oracle.sql.CHAR;
import book.util.JDBCUtil;
import book.util.Util;
class DemoQueryingCollectionOfBuiltInTypes
{

The main() method first invokes two functions passing the Connection object. The
method _doSelectVarchar2Array() returns an ARRAY of varchar2 elements, whereas the
method _doSelectNumberArray() returns an ARRAY of number elements. These two methods are
explained along with their definitions as part of this listing. The method _printArrayInfo(),
invoked once each for the two returned arrays, is used to print information about the passed
array object as you will see shortly.

public static void main(String args[]) throws Exception
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);
ARRAY varcharArray = _doSelectVarchar2Array(conn);
ARRAY numberArray = _doSelectNumberArray(conn);
_printArrayInfo(varcharArray);
_printArrayInfo(numberArray);

}
finally
{
// release JDBC resources
JDBCUtil.close(conn);

}
}

Retrieving a Collection of Varchar2 Elements

The method _doSelectVarchar2Array() demonstrates how to retrieve members of a collection
of varchar2 elements from a table.

private static ARRAY _doSelectVarchar2Array(Connection conn)
throws SQLException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
ARRAY array = null;
try
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES396

As the first step, we prepare the statement that selects the varray column of varchar2 ele-
ments from the table varchar_varray_table. We then execute the statement and obtain the
ResultSet:

String stmtString = "select varray_column from varchar_varray_table";
pstmt = conn.prepareStatement(stmtString);
// Step 2 - execute the statement and get the result set
rset = pstmt.executeQuery();
while(rset.next())
{

We then use the getArray() method of the ResultSet interface to retrieve the array.
Note that alternatively we could have used the Oracle extension method getARRAY(), also in
the interface OracleResultSet. That makes your code ever so slightly more dependent on the
Oracle proprietary interface; otherwise, there is no difference between the two methods.

array =(ARRAY) rset.getArray(1);

The methods _doUseGetArray(), _doUseResultSet(), and _doUseGetOracleArray() use
the methods getArray() of the Array interface, getResultSet() of the Array interface, and
getOracleArray() of the ARRAY class, respectively. I explain each of these methods in more
detail alongside their definition shortly.

_doUseGetArray(array);
_doUseResultSet(array);
_doUseGetOracleArray(array);

}
}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

Using the Standard getArray() Method of the Array Interface
In the definition of the method _doUseGetArray(), we use the method getArray() to retrieve
the collection elements. In this case, Oracle automatically converts the database collection
into an array in Java, the elements of which are Java objects of types based on the conversion
in Table A-1 in the Appendix. For example, in our case we have a varray of varchar2 elements,
so the array itself is returned as an array of String objects. In the case of the number array, the
array is returned as an array of java.math.BigDecimal objects, and so on.

private static void _doUseGetArray(ARRAY array)
throws SQLException
{
System.out.println("In _doUseGetArray");
// Since varchar2 maps by default to String,
// we can typecast the results to a String array.
String[] arrayInJava = (String[])array.getArray();

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 397

for(int i=0; i < arrayInJava.length; i++)
{
System.out.println(arrayInJava[i]);

}
System.out.println("Exiting _doUseGetArray");

}

Using the Oracle Extension Method getOracleArray()
When you use the Oracle extension method getOracleArray(), the elements are retrieved into
an oracle.sql.Datum[] array. A Datum is an interface in the oracle.sql package that represents
the SQL data type stored in Java in Oracle internal format. This interface is implemented by all
oracle.sql.* classes, such as oracle.sql.CHAR, etc. This is the format in which Oracle JDBC
natively retrieves the database objects. If you use these objects as is, you can avoid the overhead
of converting the objects into any other form. This can lead to performance improvement, as
you’ll see shortly. However, keep in mind that your application may become somewhat more
complex since many standard utility classes don’t recognize the Oracle proprietary classes such
as oracle.sql.NUMBER. For example, to work with a utility in the java.lang.Math class that takes
a double, you would have to use the method doubleValue() in oracle.sql.NUMBER.

private static void _doUseGetOracleArray(ARRAY array)
throws SQLException
{
System.out.println("In _doUseGetOracleArray");
Datum[] arrayElements = (Datum[])array.getOracleArray();
for(int i=0; i < arrayElements.length; i++)
{
System.out.println((CHAR)arrayElements[i]);

}
System.out.println("Exiting _doUseGetOracleArray");

}

Using the Standard Method getResultSet()
The getResultSet() method of the standard Array interface returns a result set, each row
of which contains two columns. The first column is the array object’s index, and the second
column is the value. In the case of varrays, the index represents the object’s position in
the varray; in the case of a nested table, it represents the order in which the elements were
returned for a given invocation (recall that the nested table is an unordered collection). The
method _doUseResultSet() illustrates this:

private static void _doUseResultSet(ARRAY array)
throws SQLException
{
System.out.println("In _doUseResultSet");
ResultSet rset = null;
try
{
rset = array.getResultSet();
while(rset.next())
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES398

Inside the ResultSet loop, the first column is the array index, and the second column is
the array element—in this case, a String object:

int index = rset.getInt(1);
String stringValue = rset.getString(2);
System.out.println("element number " + index + " = " + stringValue);

}
}
finally
{
JDBCUtil.close(rset);

}
System.out.println("Exiting _doUseResultSet");

}

Retrieving a Collection of NUMBER Elements

The method _doSelectNumberArray() demonstrates how to select a collection of number elements.

private static void _doSelectNumberArray(Connection conn)
throws SQLException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

As the first step, we prepare the statement that selects the varray column of number ele-
ments from the table number_varray_table. We then execute the statement and obtain the
ResultSet:

String stmtString = "select varray_column from number_varray_table";
pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();
while(rset.next())
{

In the next step, we retrieve the array by using the getArray() method:

ARRAY array = (ARRAY) rset.getArray(1);

To retrieve the array elements, we could have used any of the three methods discussed
earlier for the case of a collection of varchar2 collections. These methods are the standard
getArray() method of the Array interface, the Oracle extension method getOracleArray() of
the ARRAY class, and the getResultSet() method of the standard Array interface. If we do that,
we get each array element manifested as an object of type java.math.BigDecimal by default.
It turns out that in the case of numeric collections, the ARRAY class provides a fourth choice
that enables us to retrieve the collection as an array of primitive Java elements. This is demon-
strated when we look at the definition of the method _doUseNumericExtensionsForNumArray()
in a moment.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 399

_doUseNumericExtensionsForNumArray(array);
}

}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

Accessing a Numeric Collection As an Array of Primitive Java Elements

The ARRAY class contains methods to retrieve array elements as Java primitive elements
directly. You should use this method when you need to work with an array of primitive ele-
ments in your application (otherwise, you have to convert the obtained array into an array
of primitive elements yourself). For arrays containing numbers, Oracle recommends this
method since it yields better performance (though, in my tests at least, I was not able to see
any noticeable performance improvement when using the numeric extension methods). A
list of methods that provides you with an array of appropriate Java primitive elements in the
ARRAY interface follows:

public int[] getIntArray()throws SQLException
public int[] getIntArray(long index, int count) throws SQLException
public long[] getLongArray()throws SQLException
public long[] getLongArray(long index, int count) throws SQLException
public float[] getFloatArray()throws SQLException
public float[] getFloatArray(long index, int count) throws SQLException
public double[] getDoubleArray()throws SQLException
public double[] getDoubleArray(long index, int count) throws SQLException
public short[] getShortArray()throws SQLException
public short[] getShortArray(long index, int count) throws SQLException

In the preceding list of methods, an overloaded version of a method without any parame-
ters gives us an entire array, whereas an overloaded version of a method with the parameters
index and count gives us a slice of the array.

The definition of the method _doUseNumericExtensionsForNumArray() demonstrates how
we can retrieve the collection number_varray as an array of int elements:

private static void _doUseNumericExtensionsForNumArray(ARRAY array)
throws SQLException

{
System.out.println("In _doUseNumericExtensionsForNumArray");

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES400

For retrieving the collection elements as an int array, we simply invoke the Oracle exten-
sion method getIntArray() of the ARRAY class:

int[] arrayInJava = (int[])array.getIntArray();
for(int i=0; i < arrayInJava.length; i++)
{
System.out.println(arrayInJava[i]);

}
System.out.println("Exiting _doUseNumericExtensionsForNumArray");

}

In the next section, we define the method _printArrayInfo() of the class DemoQuerying➥

CollectionOfBuiltInTypes. This method simply prints out some metadata about the supplied
ARRAY object. For example, you could use the method getArrayType() of the ArrayDescriptor
class to figure out if a particular collection is a varray or a nested table in your Java code.

Retrieving Information About the ARRAY Object

The method _printArrayInfo() uses some of the Array and ARRAY methods discussed earlier
to print out some useful information about a given ARRAY object.

private static void _printArrayInfo(ARRAY array)
throws SQLException

{
//print some info from array for demo
System.out.println("\tbase type name: " + array.getBaseTypeName());
System.out.println("\tsql type name: " + array.getSQLTypeName());
System.out.println("\tlength: " + array.length());
ArrayDescriptor descriptor = array.getDescriptor();

The code presented here gives you one way of finding out if the underlying collection is a
nested table or a varray:

if(descriptor.getArrayType() == ArrayDescriptor.TYPE_NESTED_TABLE)
{
System.out.println("\tit is a nested table.");

}
else
{
System.out.println("\tit is a varray.");

}
}

}// end of program

In the next section, we examine how much you gain in terms of performance when you
retrieve a numeric collection, from an ARRAY object, using the Oracle’s numeric extension
methods (e.g., getIntArray()) instead of methods such as getArray() and so on.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 401

Benchmarking the Use of Numeric Extensions for Retrieving Numeric Collection Elements

In this section we take a look at how much the elapsed time improves if we use the Oracle
extension methods (such as getIntArray()) instead of the three alternative data retrieval
methods (getArray(), getOracleArray(), and getResultSet()). As a first step, we create the
schema on which the benchmark will be run. We begin by creating a nested table of number
called number_table_type:

benchmark@ORA10G> create or replace type number_table_type as table of number;
2 /

Type created.

Next, we create a table with a column of type number_table_type:

benchmark@ORA10G> create table number_table_nt
2 (
3 nt_col number_table_type
4)
5 nested table nt_col store as number_nt;

Table created.

We then populate the table with one row in which the nested table contains 10,000 ran-
dom numbers. (For details on the function cast and the keyword multiset, please see the
section “Creating a Table Containing a Column of the Varray Type” of Chapter 8.) We then
commit the data and query the nested table column data to verify the number of rows in
the nested table:

benchmark@ORA10G> insert into number_table_nt
2 select
3 cast
4 (
5 multiset
6 (
7 select round(dbms_random.value(), 2)*100
8 from all_objects
9 where rownum <= 10000
10) as number_table_type
11)
12 from dual;

1 row created.

benchmark@ORA10G> commit;

Commit complete.

benchmark@ORA10G> select count(*) from number_table_nt t, table(t.nt_col) v;

10000

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES402

The following BenchmarkNumericExtension class extends the JBenchmark class (covered in
the section “Timing Java Programs” of Chapter 1) to perform our comparison:

/** This program compares the effect of using ARRAY methods
* specific to numeric collections. We compare the following
* for a numeric collection.
* 1. Using getArray()
* 2. Using getOracleArray()
* 3. Using getResultSet()
* 3. Using getIntArray()
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.math.BigDecimal;
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import oracle.sql.ArrayDescriptor;
import oracle.sql.ARRAY;
import oracle.sql.Datum;
import book.util.JDBCUtil;
import book.util.JBenchmark;
import book.util.Util;
class BenchmarkNumericExtension extends JBenchmark
{
public static void main(String args[]) throws Exception
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

The method _fetchArray() retrieves the array from the database using the techniques
covered earlier:

ARRAY array = _fetchArray(conn);

We then execute the benchmark by invoking the method _runBenchmark() explained
shortly:

new BenchmarkNumericExtension()._runBenchmark(
conn, new Object[] { array });

}
finally
{
// release JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 403

The method _fetchArray() retrieves the array elements from the database using tech-
niques we covered in earlier sections:

private static ARRAY _fetchArray(Connection conn)
throws SQLException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
ARRAY array = null;
try
{
// Step 1 - prepare and execute the statement
String stmtString = "select nt_col from number_table_nt" +

" where rownum <= 1";
pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();
if(rset.next())
{
array = (ARRAY) rset.getArray(1);

}
}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
return array;

}

The method _runBenchmark() invokes the method timeMethod() (inherited from the
JBenchmark class) to run the benchmark for each of the four cases. The first, second, third,
and fourth methods are overridden to retrieve the array elements using the getArray(),
getOracleArray(), getResultSet(), and getIntArray() methods, respectively.

private void _runBenchmark(Connection conn, Object[] parameters)
throws Exception

{
timeMethod(JBenchmark.FIRST_METHOD, conn, parameters,
GET_ARRAY_DESC);

timeMethod(JBenchmark.SECOND_METHOD, conn, parameters,
GET_ORACLE_ARRAY_DESC);

timeMethod(JBenchmark.THIRD_METHOD, conn, parameters,
GET_RESULT_SET_DESC);

timeMethod(JBenchmark.FOURTH_METHOD, conn, parameters,
USE_NUMERIC_EXTENSION_DESC);

}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES404

We implement the first method to use getArray() method:

public void firstMethod(Connection conn, Object[] parameters)
throws Exception

{
ARRAY array = (ARRAY) parameters [0];
int numOfRecordsRetrieved = 0;
Object[] arrayInJava = (Object[])array.getArray();
for(int i=0; i < arrayInJava.length; i++)
{
numOfRecordsRetrieved++;

}
}

We implement the second method to use the getOracleArray() method:

public void secondMethod(Connection conn, Object[] parameters)
throws Exception
{
ARRAY array = (ARRAY) parameters [0];
int numOfRecordsRetrieved = 0;
Datum[] arrayElements = (Datum[])array.getOracleArray();
for(int i=0; i < arrayElements.length; i++)
{
numOfRecordsRetrieved++;

}
}

We implement the third method to use the getResultSet() method:

public void thirdMethod(Connection conn, Object[] parameters)
throws Exception

{
ARRAY array = (ARRAY) parameters [0];
int numOfRecordsRetrieved = 0;
ResultSet rset = null;
try
{
rset = array.getResultSet();
while(rset.next())
{
Object object = rset.getObject(1);
numOfRecordsRetrieved++;

}
}
finally
{
JDBCUtil.close(rset);

}
}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 405

We implement the fourth method to use the getIntArray() method of the ARRAY class:

public void fourthMethod(Connection conn, Object[] parameters)
throws Exception

{
ARRAY array = (ARRAY) parameters [0];
int numOfRecordsRetrieved = 0;
int[] arrayElements = (int[])array.getIntArray();
for(int i=0; i < arrayElements.length; i++)
{
numOfRecordsRetrieved++;

}
}
private static final String GET_ARRAY_DESC = "getArray()";
private static final String GET_ORACLE_ARRAY_DESC = "getOracleArray()";
private static final String GET_RESULT_SET_DESC = "getResultSet()";
private static final String USE_NUMERIC_EXTENSION_DESC = "Numeric Extensions";

}

The results of running the preceding class on my PC are shown in Table 11-1.

Table 11-1. Comparison of Different Methods for Retrieving
a Numeric Collection Containing 10,000 Records

Method Used Elapsed Time (Milliseconds)

getArray() 9

getOracleArray() 2

getResultSet() 14

getIntArray() 13

From Table 11-1, we can conclude the following:

• In my tests, there was no noticeable performance benefit in using the numeric exten-
sion getIntArray().

• The best performance was obtained when using getOracleArray().

• The method getResultSet() was the slowest; this could be attributed to the overhead of
creating and destroying the ResultSet object.

An important fact to keep in mind is that our code compared retrieving 10,000 elements
from a single collection in a tight loop. This is perhaps not a typical scenario in real-life appli-
cations. Given that the difference in performance in absolute terms between all four methods
is not very high, considering that we are retrieving 10,000 elements. Thus, my advice is to, in
general, choose a method based on nonperformance criteria such as usability, maintainabil-
ity, portability, etc., unless you can prove to yourself that performance improvement of one
method over the others is substantial in your particular scenario.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES406

That concludes our section on retrieving collection of built-in types as ARRAY objects. In
the next section, we look at how we can access and manipulate a collection of object types.

Materializing Collections of Object Types
In the previous section, our collection elements were built-in types such as varchar2 or
number. In this section we will deal with collections whose elements are structured types (in
our case, Oracle object types). Most of the topics covered in the previous section also apply to
a collection of Oracle object types; the only difference is in how the member objects material-
ize in Java as objects.

We’ll begin by creating schema elements on which our examples will work. We’ll then
demonstrate how to access a collection of Oracle objects as a weakly typed STRUCT object.
Finally, we’ll examine how, with the help of JPublisher, we can materialize these collections
as objects of strongly typed custom classes.

Creating a Schema for a Collection of Object Types
Our first step is to create a new schema consisting of a collection of object types. This time
we’ll use nested tables as part of our schema instead of varrays. The first step is to create an
object type, address, that stores a postal address in the United States.

benchmark@ORA10G> create or replace type address as object
2 (
3 line1 varchar2(50),
4 line2 varchar2(50),
5 street varchar2(50),
6 city varchar2(30),
7 state varchar2(2),
8 zip varchar2(10)
9)
10 /

Type created.

Next, we create a nested table, nested_table_of_addresses, of address objects:

benchmark@ORA10G> create or replace type nested_table_of_addresses as
table of address;
2 /

Type created.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 407

We follow it up by creating a table called emp_table with one of the columns, namely
emp_address_list, being of the nested table type nested_table_of_addresses. The table stores
employee details, including a list of addresses stored as a nested table column.

benchmark@ORA10G> create table emp_table
2 (
3 empno number,
4 ename varchar2(50),
5 hiredate date,
6 emp_address_list nested_table_of_addresses
7)
8 nested table emp_address_list store as emp_address_list_table;

Table created.

Next we insert a row into the table emp_table. We first initialize a nested table variable of
type nested_table_of_addresses using the built-in Oracle constructor, and then we proceed
to insert it as part of a row into the table emp_table:

benchmark@ORA10G> declare
2 l_address_list nested_table_of_addresses;
3 begin
4 l_address_list := nested_table_of_addresses
5 (
6 address('145 Apt # 7','', 'Wander St',
7 'Mountain View', 'CA', '94055'),
8 address('333 Apt # 11','', 'Wonder St',
9 'Cupertino', 'CA', '94666')
10);
11 insert into emp_table values (1, 'King', sysdate-47*365, l_address_list);
12 commit;
13 end;
14 /

PL/SQL procedure successfully completed.

We issue a simple select on table emp_table to have a look at the row we inserted:

benchmark@ORA10G> select e.empno, e.ename, e.hiredate,
2 e.emp_address_list as emp_address_list
3 from emp_table e;

EMPNO ENAME HIREDATE EMP_ADDRESS_LIST(LINE1, LINE2, STREET, C
------ ------ --------- --

1 King 06-APR-58 NESTED_TABLE_OF_ADDRESSES(ADDRESS('145 A
pt # 7', NULL, 'Wander St', 'Mountain Vi
ew', 'CA', '94055'), ADDRESS('333 Apt #
11', NULL, 'Wonder St', 'Cupertino', 'CA
', '94666'))

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES408

In the next section, we will demonstrate how to select the nested table column
emp_address_list in our Java program, with each object within the collection materializing
as a STRUCT object.

Accessing a Collection of Oracle Objects As STRUCT Objects
By default, if you materialize a collection of Oracle objects in JDBC, each of the individual col-
lection elements is retrieved as an instance of the oracle.sql.STRUCT class. The STRUCT class
implements the standard java.sql.Struct interface. We have already delved into the details
of this class in the Chapter 9; in this section, we will look at an example demonstrating the
concept.

The following Java class, DemoCollectionOfObjectTypes, demonstrates how to retrieve the
nested table column values of the single row inserted in the emp_table table that we created in
the previous section, with individual elements manifesting as oracle.sql.STRUCT objects.

/** This program demonstrates how to select a collection of objects into
* JDBC- and how by default they materialize in Java as
* oracle.sql.STRUCT objects.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.Struct;
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.Array;
import java.sql.PreparedStatement;
import java.sql.Types;
import java.sql.ResultSet;
import oracle.sql.ARRAY;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleResultSet;
import book.util.JDBCUtil;
import book.util.Util;

class DemoCollectionOfObjectTypes
{
public static void main(String args[]) throws Exception
{
Util.checkProgramUsage(args);
Connection conn = null;
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 409

After getting the connection, we prepare and execute a statement that selects just the
nested table column emp_address_list of the table emp_table:

String stmtString = "select emp_address_list from emp_table";
pstmt = conn.prepareStatement(stmtString);
// Step 2 - execute the statement and get the result set
rset = pstmt.executeQuery();
while(rset.next())
{

Inside the while loop of the ResultSet interface, we get the array using the getArray()
method. You can use any of the methods getArray(), getOracleArray(), or getResultSet() to
retrieve individual elements as discussed in the section “Retrieving a Collection of Varchar2
Elements” earlier. We will demonstrate the methods getArray() and getResultSet() in the
definition of the methods _doUseGetArray() and doUseResultSet() invoked here:

Array array = rset.getArray(1);
_doUseGetArray(array);
_doUseResultSet(array);

}
}
finally
{
// release JDBC resources
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);
JDBCUtil.close(conn);

}
}

The following code defines the method _doUseGetArray(). It uses the method getArray()
to retrieve an array of objects. Then it loops through each element of the array, casting it as a
Struct object and printing its attributes using the getAttributes() method of the Struct
interface that we covered in Chapter 9.

private static void _doUseGetArray(Array array)
throws SQLException
{
System.out.println("In _doUseGetArray");System.out.flush();
Object[] arrayInJava = (Object[])array.getArray();
for(int i=0; i < arrayInJava.length; i++)
{
Struct empStruct = (Struct) (arrayInJava[i]);
Object[] attributes = empStruct.getAttributes();
for(int j=0; j < attributes.length; j++)
{
System.out.println(attributes[j]);

}
System.out.println();

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES410

}
System.out.println("Exiting _doUseGetArray");System.out.flush();

}

The method _doUseResultSet(), defined as follows, uses the method getResultSet() to
retrieve a ResultSet that contains array elements. It then loops through each element of the
ResultSet interface, retrieving the Struct object and then printing out each attribute of these
objects.

private static void _doUseResultSet(Array array)
throws SQLException
{
System.out.println("In _doUseResultSet");
ResultSet rset = null;
try
{
rset = array.getResultSet();
while(rset.next())
{
int index = rset.getInt(1);
Struct empStruct = (Struct) rset.getObject(2);
Object[] attributes = empStruct.getAttributes();
for(int j=0; j < attributes.length; j++)
{
System.out.println(attributes[j]);

}
System.out.println();

}
}
finally
{
JDBCUtil.close(rset);

}
System.out.println("Exiting _doUseResultSet");

}
}

Accessing a Collection of Oracle Objects Using Custom Classes
In Chapter 10, you learned how to generate custom classes for object types using the JPublisher
utility. In this section, we’ll examine how to use the same technique to materialize the array
member objects as custom class objects. The custom classes offer you the following advantages
over the weakly typed alternative (Struct class) discussed in the previous section:

• They are strongly typed, meaning that many errors are checked at compilation time
instead of at runtime (e.g., if you try to pass an array of persons as an array of addresses).
This is possible because each collection is converted into its own custom Java class.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 411

• Custom collection classes (produced by JPublisher) allow you to get and set individual
elements using the getElement() and setElement() methods. Recall that the ARRAY class
does not provide you with any setter methods for setting an array element.

A custom class must satisfy the following requirements:

• It must implement the oracle.sql.ORAData and oracle.sql.ORADataFactory interfaces,
which we covered in Chapter 10.

• It must provide a means of storing the collection data (e.g., in a member ARRAY object).

We will use JPublisher to generate these classes for the object type emp_type and our
varray, emp_type_varray. Please refer to Chapter 10 for details on how to use the JPublisher
utility.

We use the following properties file (called prop.txt) for our JPublisher run:

jpub.user=benchmark/benchmark
jpub.methods=all
jpub.builtintypes=jdbc
jpub.numbertypes=objectjdbc
jpub.usertypes=oracle
jpub.package=book.ch11.jpub
jpub.input=input.txt

■Note You may need to modify the jpub.package property to give a package name according to your
directory structure; this is the package to which the generated classes belong.

The file input.txt referred to in the property jpub.input contains the following lines:

SQL ADDRESS AS Address
SQL NESTED_TABLE_OF_ADDRESSES AS AddressList

As you can see, we plan to generate a class Address for our object type address and a class
AddressList for our varray emp_table.

■Note When you use JPublisher to create a custom collection class, you must use the ORAData imple-
mentation. This is the case if JPublisher’s -usertypes mapping option is set to oracle, as is the case in
this section’s example (as shown by the line jpib.usertypes=oracle). You can’t use a SQLData imple-
mentation for a custom collection class (such an implementation is available for a custom object class only).

Once you have set up the prop.txt and input.txt files with the preceding contents in
your directory, you can generate the classes by running the JPublisher command as follows:

jpub -props=prop.txt

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES412

When I executed the preceding command, it generated the following files in my directory:
Address.java, AddressList.java, and AddressRef.java (and their class files).

We will ignore AddressRef.java for now since for our purpose, we need only the classes
Address and AddressList. The class Address corresponds to a single database address object.
The generated Java file for the Address class (edited for clarity) is as follows:

package book.ch11.jpub;

/* Some imports deleted for clarity */
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Address implements ORAData, ORADataFactory
{
public static final String _SQL_NAME = "BENCHMARK.ADDRESS";
public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

protected MutableStruct _struct;

private static int[] _sqlType = { 12,12,12,12,12,12 };
private static ORADataFactory[] _factory = new ORADataFactory[6];
protected static final Address _AddressFactory = new Address();

public static ORADataFactory getORADataFactory()
{ return _AddressFactory; }
/* constructors */
protected void _init_struct(boolean init)
{ if (init) _struct = new MutableStruct(new Object[6], _sqlType, _factory); }
public Address()
{ _init_struct(true); }
public Address(String line1, String line2, String street, String city,
String state, String zip) throws SQLException

{ _init_struct(true);
setLine1(line1);
setLine2(line2);
setStreet(street);
setCity(city);
setState(state);
setZip(zip);

}
/* ORAData interface */
public Datum toDatum(Connection c) throws SQLException
{
return _struct.toDatum(c, _SQL_NAME);

}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 413

/* ORADataFactory interface */
public ORAData create(Datum d, int sqlType) throws SQLException
{ return create(null, d, sqlType); }
protected ORAData create(Address o, Datum d, int sqlType) throws SQLException
{
if (d == null) return null;
if (o == null) o = new Address();
o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
return o;

}
/* accessor methods */
public String getLine1() throws SQLException
{ return (String) _struct.getAttribute(0); }

public void setLine1(String line1) throws SQLException
{ _struct.setAttribute(0, line1); }

/* accessor methods for other attributes deleted for clarity */
}

The generated class AddressList (edited for clarity), which represents the nested table
nested_table_of_addresses, is as follows:

package book.ch11.jpub;

/* imports deleted for clarity */

public class AddressList implements ORAData, ORADataFactory
{
public static final String _SQL_NAME = "BENCHMARK.NESTED_TABLE_OF_ADDRESSES";
public static final int _SQL_TYPECODE = OracleTypes.ARRAY;

MutableArray _array;

private static final AddressList _AddressListFactory = new AddressList();

public static ORADataFactory getORADataFactory()
{ return _AddressListFactory; }
/* constructors */
public AddressList()
{
this((Address[])null);

}
public AddressList(Address[] a)
{
_array = new MutableArray(2002, a, Address.getORADataFactory());

}
/* ORAData interface */

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES414

public Datum toDatum(Connection c) throws SQLException
{
return _array.toDatum(c, _SQL_NAME);

}
/* ORADataFactory interface */
public ORAData create(Datum d, int sqlType) throws SQLException
{
if (d == null) return null;
AddressList a = new AddressList();
a._array = new MutableArray(2002, (ARRAY) d,
Address.getORADataFactory());

return a;
}
public int length() throws SQLException
{
return _array.length();

}
public int getBaseType() throws SQLException
{
return _array.getBaseType();

}
public String getBaseTypeName() throws SQLException
{
return _array.getBaseTypeName();

}
public ArrayDescriptor getDescriptor() throws SQLException
{
return _array.getDescriptor();

}

/* array accessor methods */
public Address[] getArray() throws SQLException
{
return (Address[]) _array.getObjectArray(
new Address[_array.length()]);

}
public Address[] getArray(long index, int count) throws SQLException
{
return (Address[]) _array.getObjectArray(index,
new Address[_array.sliceLength(index, count)]);

}
public void setArray(Address[] a) throws SQLException
{
_array.setObjectArray(a);

}
public void setArray(Address[] a, long index) throws SQLException
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 415

_array.setObjectArray(a, index);
}
public Address getElement(long index) throws SQLException
{
return (Address) _array.getObjectElement(index);

}
public void setElement(Address a, long index) throws SQLException
{
_array.setObjectElement(a, index);

}
}

Materializing the Collection and Its Member Elements
There are two options to select a collection and its member elements when using JPublisher-
generated custom classes:

• Select the collection as an ARRAY object and members as custom class objects. In the con-
text of our example, this would imply that we would materialize the collection as an
ARRAY object whose members are of class Address.

• Select the collection and members as custom class objects. In the context of our example,
this would imply that we would materialize the collection as an AddressList object
whose members consist of Address objects.

The following DemoCollectionAsCustomObjects class demonstrates both options. In addi-
tion, it demonstrates how we can add an element to the collection. We begin with the import
statements and obtain the connection in the main() method:

/** This program demonstrates how to select a collection of objects
* using custom collection classes. It also demonstrates how to modify
* an existing collection object.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.util.Map;
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import oracle.jdbc.OracleResultSet;
import oracle.sql.ARRAY;
import book.util.JDBCUtil;
import book.util.Util;
import book.ch11.jpub.Address;
import book.ch11.jpub.AddressList;
class DemoCollectionAsCustomObjects
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES416

public static void main(String args[]) throws Exception
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

The method _demoSelectAsARRAYAndCustomClassObject() invoked selects the nested table
itself as an ARRAY object and its members as Address object.

_demoSelectAsARRAYAndCustomClassObject(conn);

The method _demoSelectAsCustomCollectionClass() invoked selects the nested table
itself as an AddressList object and its members as Address object.

_demoSelectAsCustomCollectionClass(conn);

The method _doInsertAnEmployeeInCollection() inserts a member in the collection
class. It involves first creating a modified collection object with a new member and then
updating the table with the modified collection, as you will see shortly.

_doInsertAnEmployeeInCollection(conn);
conn.commit();

}
finally
{
// release JDBC resources
JDBCUtil.close(conn);

}
}

Selecting the Collection As an ARRAY Object and Members As Custom Class Objects
To select a collection as an ARRAY object and its members as custom class objects, we need to
perform the following steps:

1. Populate the type map associated with the Connection object to map the object type of
the collection member to the appropriate Java class. A type map is a mapping between
a database entity and a Java class object to which it should be mapped by the JDBC
driver.

2. Prepare and execute the statement that selects the collection object.

3. Use the method getArray() on the ResultSet object to obtain the collection as an
ARRAY object.

4. Use the method getArray() on the ARRAY object to obtain the Object array, each ele-
ment of which is of the class you specified in the type map in the first step.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 417

We will now demonstrate each of these steps as part of the definition of the method
_demoSelectAsARRAYAndCustomClassObject() presented here. The method _demoSelect➥

AsARRAYAndCustomClassObject() materializes the collection as an ARRAY object and its
members as Address objects as follows:

private static void _demoSelectAsARRAYAndCustomClassObject(
Connection conn) throws SQLException, ClassNotFoundException

{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

The first step is to add an entry to the type map of the Connection object. In this case, we
specify that the database object instance of object type address should be mapped to an
object of the Address class:

Map map = conn.getTypeMap();
map.put("BENCHMARK.ADDRESS",

Class.forName(Address.class.getName()));

The next step is to prepare and execute a statement that selects the nested table column
emp_address_list from the table emp_table:

String stmtString = "select emp_address_list from emp_table";
pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();
while(rset.next())
{

We retrieve the collection as an ARRAY object by executing the getArray() method of the
ResultSet interface:

ARRAY array =(ARRAY) rset.getArray(1);

Finally, we retrieve the entire array as an array of Address objects by executing the method
getArray() of the ARRAY object. We can then loop through this array to access individual ele-
ments and their attributes (we print only two attributes of the Address attributes for
demonstration purpose):

Object[] arrayInJava = (Object[])array.getArray();
for(int i=0; i < arrayInJava.length; i++)
{
Address address = (Address) arrayInJava[i];
System.out.println(address.getLine1());
System.out.println(address.getState());

}
}

}
finally
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES418

JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

Selecting the Collection and Members As Custom Class Objects
In this section, we will demonstrate the steps needed to select the collection and its elements
as custom class objects. Oracle does not support the method that uses type map in this sce-
nario (it gives a ClassCastException). The only correct and supported method is to invoke the
Oracle extension method getORAData(). This does not require a type map, and it requires us to
perform the following steps:

1. Prepare and execute the statement that selects the collection object.

2. Use the method getORAData() of the OracleResultSet interface to obtain the collection
as an object belonging to the custom class.

3. Use the method getArray() on the custom collection object to obtain the Object array,
each element of which is of the custom class that represents collection member element.

We will now demonstrate each of these steps as part of the definition of the method
_demoSelectAsCustomCollectionClass() presented here. The method demoSelectAsCustom➥

CollectionClass() materializes the collection as an AddressList object and its members as
Address objects as follows:

private static void _demoSelectAsCustomCollectionClass(Connection conn)
throws SQLException, ClassNotFoundException

{
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

The first step is to prepare and execute a statement that selects the nested table column
emp_address_list from the table emp_table:

String stmtString = "select emp_address_list from emp_table";
pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();
while(rset.next())
{

We retrieve the collection as an AddressList object by executing the getORAData() method
of the OracleResultSet interface:

AddressList addressList = (AddressList)((oracle.jdbc.OracleResultSet)
rset).getORAData(1, AddressList.getORADataFactory());

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 419

Finally, we retrieve the entire array as an array of Address objects by executing the method
getArray() of the AddressList object. We can then loop through this array to access individual
elements and their attributes (we print only two attributes of the Address attributes for
demonstration purpose):

Address[] arrayInJava = addressList.getArray();
for(int i=0; i < arrayInJava.length; i++)
{
Address emp = arrayInJava[i];
System.out.println(emp.getLine1());
System.out.println(emp.getState());

}
}

}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

Modifying the Collection by Inserting a Member
In this section, we will demonstrate how to modify the collection itself. As part of this demon-
stration, we will insert a member into our collection. The process of deleting a member or
updating a member should involve essentially the same steps:

1. Retrieve the collection as a Java object as explained in the earlier sections.

2. Create a new member element by using an appropriate constructor of the member
class.

3. Add the new member to the array.

4. Update the table with the modified collection element.

Each of these steps is detailed as part of the method _demoAddingMemberToCollection()
presented here:

private static void _demoAddingMemberToCollection(Connection conn)
throws SQLException, ClassNotFoundException

{

The method _addMemberToArray() performs the first three steps, as you will see, as part of
its definition. We invoke this method to obtain the modified array that contains the additional
address object:

AddressList modifiedCollection = _addMemberToArray(conn);

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES420

We then prepare and execute an update statement that updates emp_table with the new
collection object:

String stmtString = "update emp_table e set e.emp_address_list = ?";
PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement(stmtString);
pstmt.setObject(1, modifiedCollection);
pstmt.execute();

}
finally
{
JDBCUtil.close(pstmt);

}
}

The definition of the method _addMemberToArray() follows:

private static AddressList _addMemberToArray(Connection conn)
throws SQLException, ClassNotFoundException

{

First, we instantiate an Address object in memory:

Address newAddress = new Address("1177 Monica Lane", null,
"Cryptic St", "Los Gatos", "CA", "94877");

Next, we retrieve the collection object from the table using the techniques presented earlier:

String stmtString = "select emp_address_list " +
" from emp_table where empno = ?";

PreparedStatement pstmt = null;
ResultSet rset = null;
AddressList addressList = null;
try
{
pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, 1);
rset = pstmt.executeQuery();
if(rset.next()) // assume only one row is updated
{
addressList = (AddressList)((oracle.jdbc.OracleResultSet)
rset).getORAData(1, AddressList.getORADataFactory());

Address[] arrayInJava = addressList.getArray();

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 421

At this point, we have an array of Address objects. We simply create a new array with space
for one more element, copy the older array to it, and add the new element at the end:

Address[] updatedEmpList = new Address[arrayInJava.length + 1];
System.arraycopy(arrayInJava, 0, updatedEmpList, 0,
arrayInJava.length);

updatedEmpList[arrayInJava.length] = newAddress;
for(int i=0; i < updatedEmpList.length; i++)
{
System.out.println(updatedEmpList[i].getLine1());

}

We set the internal array of the AddressList object by invoking the method setArray() in
it, passing our modified array as the parameter:

addressList.setArray(updatedEmpList);

}
}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
return addressList;

}
} // end of program

ARRAY Class Performance Extensions
You have already seen one of the performance extensions for numeric element arrays, where
you use methods such as getIntArray() to improve performance. There are two more per-
formance extensions in the ARRAY class that you should be aware of, and these are covered in
the sections that follow.

ARRAY Automatic Element Buffering
The Oracle JDBC driver provides the following methods to enable and disable buffering of
ARRAY contents:

public void setAutoBuffering(boolean enable);
public boolean getAutoBuffering();

The setAutoBuffering() method enables or disables auto-buffering, and the getAuto➥

Buffering() method returns a boolean value indicating whether auto-buffering is enabled or not.
By default, auto-buffering is disabled. When you enable auto-buffering, Oracle keeps a local copy
of all converted elements. This avoids the data-conversion process for the second and subsequent
access of the array elements. This can lead to substantial performance improvements, as you will
see shortly in the benchmark. However, be aware that this could increase consumption of memory
in your JDBC applications, which could have its own impact on performance and scalability.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES422

■Caution There is a bug in 10g Release 1 (and 9i Release 2), due to which if you use the numeric exten-
sion method (e.g., getIntArray()) when auto-buffering is enabled, the program can sometimes give a
NullPointerException. In particular, in my tests, I was able to reproduce this bug consistently when I first
used the getArray() method and then used the getIntArray() method immediately on the same array to
retrieve collection elements (with auto-buffering enabled).

ARRAY Automatic Indexing
When you enable the automatic indexing on an array, Oracle maintains an index structure to
improve the access time of an element.

The ARRAY class contains the following methods to support automatic array indexing:

public synchronized void setAutoIndexing (boolean enable, int direction)
throws SQLException;
public synchronized void setAutoIndexing(boolean enable)
throws SQLException;

The direction parameter gives the array object a hint. You should specify this parameter
to help the JDBC driver determine the best indexing scheme. It can take the following values:

ARRAY.ACCESS_FORWARD
ARRAY.ACCESS_REVERSE
ARRAY.ACCESS_UNKNOWN

The default value for the direction parameter is ARRAY.ACCESS_UNKNOWN.
Auto-indexing is disabled by default. It makes sense to enable auto-indexing for ARRAY

objects when random access of array elements may occur.
In the next section, we will benchmark the impact of auto-indexing and auto-buffering

on retrieval of array objects.

Benchmarking Auto-buffering and Auto-indexing
In this section, we compare the three methods of data retrieval (getArray(),
getOracleArray(), and getResultSet()) we covered earlier with and without auto-buffering
and auto-indexing. Note that, unfortunately, it not easy to compare memory consumption
due to the way JVM works, so we will only compare elapsed times. In real life, you should use
a tool such as JProbe (see http://www.quest.com/jprobe/index.asp) to compare the memory
consumption of various alternatives as well to get a more balanced perspective.

For sample data for our benchmark, we will populate the table number_varray_table we
created in the section “Creating the Schema for Collections of Built-in Types” with 10,000
numbers as follows:

benchmark@ORA10G> declare
2 l_varray_of_numbers varray_of_numbers;
3 begin
4 l_varray_of_numbers := varray_of_numbers();
5 l_varray_of_numbers.extend(10000);

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 423

6 for i in 1..10000
7 loop
8 l_varray_of_numbers(i) := i;
9 end loop;
10 insert into number_varray_table values(l_varray_of_numbers);
11 end;
12 /

PL/SQLprocedure successfully completed.

benchmark@ORA10G> commit;

Commit complete.

benchmark@ORA10G> select count(*) varray_num_of_rows
from number_varray_table t, table(t.varray_column) n;

VARRAY_NUM_OF_ROWS

10000

The class BenchmarkCollectionRetrievalMethods extends the class JBenchmark to compare
selecting the 10,000 elements of the varray using the various methods with and without auto-
buffering and auto-indexing. The class takes three arguments. The first is the database service
name to which you connect, the second is a flag value (true or false) that sets the automatic
buffering mode, and the third is a flag value (true or false) that sets the automatic indexing
mode.

/** This program compares the following three approaches
* of retrieving array elements (after you have retrieved
* the ARRAY object from the database) with and without
* auto-indexing and auto-buffering on.
* 1. Using getArray()
* 2. Using getOracleArray()
* 3. Using getResultSet()
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import oracle.sql.ARRAY;
import oracle.sql.Datum;
import book.util.JDBCUtil;
import book.util.JBenchmark;
class BenchmarkCollectionRetrievalMethods extends JBenchmark
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES424

public static void main(String args[]) throws Exception
{
_checkProgramUsage(args);
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

We first invoke the method _fetchArray(), which retrieves the array from the database
using techniques covered earlier:

ARRAY array = _fetchArray(conn);

We then set the auto-buffering and auto-indexing flag based on the values passed at the
command line:

array.setAutoBuffering(autoBufferingFlag);
array.setAutoIndexing(autoIndexingFlag);

To identify which option we are running, we create a description of the option we chose
(the setting of auto-buffering and auto-indexing). We will pass this to the individual methods
we invoke later.

String optionsDesc = " AutoBuffering: " + autoBufferingFlag +
" AutoIndexing: " + autoIndexingFlag;

Recall that auto-indexing makes sense only if the array members are being accessed
randomly. To do that, we create 10,000 random indexes that range from 0 to 9999. We use the
method random() in the java.lang.Math class to generate a number greater than or equal to
0.00 but less than 1.00. We multiply it by 9999 and then truncate it to an int to get random
numbers within our desired range. We store these numbers in an int array.

int[] indexes = new int[10000];
for(int i=0; i < 10000; i++)
{
int randomNumber = (int)(Math.random()* 9999);
indexes[i] = randomNumber;

}

We then invoke the method _runBenchmark(), passing the relevant information as param-
eters:

new BenchmarkCollectionRetrievalMethods()._runBenchmark(
conn, new Object[] { array, indexes }, optionsDesc);

}
finally
{
// release JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 425

The method fetchArray() simply retrieves our varray collection as an ARRAY object using
techniques we have already covered:

private static ARRAY _fetchArray(Connection conn)
throws SQLException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
ARRAY array = null;
try
{
// Step 1 - prepare and execute the statement
String stmtString = "select varray_column from number_varray_table" +

" where rownum <= 1";
pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();
if(rset.next())
{
array = (ARRAY) rset.getArray(1);

}
}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
return array;

}

The method _runBenchmark() simply invokes the method timeMethod() inherited from
the JBenchmark class, passing in the relevant information to the method:

private void _runBenchmark(Connection conn,
Object[] parameters, String optionsDesc)
throws Exception

{
timeMethod(JBenchmark.FIRST_METHOD, conn, parameters,
GET_ARRAY_DESC + optionsDesc);

timeMethod(JBenchmark.SECOND_METHOD, conn, parameters,
GET_ORACLE_ARRAY_DESC + optionsDesc);

timeMethod(JBenchmark.THIRD_METHOD, conn, parameters,
GET_RESULT_SET_DESC + optionsDesc);

}

We override the first method to use the method getArray() of the ARRAY class. Notice how
we retrieve each object based on the random indexes we generated in the int array:

public void firstMethod(Connection conn, Object[] parameters)
throws Exception

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES426

{
ARRAY array = (ARRAY) parameters [0];
int[] indexes = (int[]) parameters [1];
Object[] arrayInJava = (Object[])array.getArray();
Object arrayElement = null;
int i=0;
for(i=0; i < arrayInJava.length; i++)
{
arrayElement = arrayInJava[indexes[i]];

}
}

We override the second method to use the method getOracleArray() of the ARRAY class.
Again, we retrieve each object based on the random indexes we generated in the int array:

public void secondMethod(Connection conn, Object[] parameters)
throws Exception

{
ARRAY array = (ARRAY) parameters [0];
int[] indexes = (int[]) parameters [1];
Datum[] arrayElements = (Datum[])array.getOracleArray();
int i=0;
Object arrayElement = null;
for(i=0; i < arrayElements.length; i++)
{
arrayElement = arrayElements[indexes[i]];

}
}

We override the third method to use the method getResultSet() of the ARRAY class.
In this case, since the ResultSet does not allow us to index into an array element, we just
retrieve the objects in sequence. Perhaps an improvement on the benchmark would be to
use the positioning methods of the ResultSet interface to actually position the cursor on an
element and then retrieve it.

public void thirdMethod(Connection conn, Object[] parameters)
throws Exception

{
ARRAY array = (ARRAY) parameters [0];
int numOfRecordsRetrieved = 0;
ResultSet rset = null;
try
{
rset = array.getResultSet();
while(rset.next())
{
Object arrayElement = rset.getObject(2);
numOfRecordsRetrieved++;

}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 427

}
finally
{
JDBCUtil.close(rset);

}
}

The method _checkProgramUsage() simply sets global variables based on passed command-
line parameters. These global variables indicate if auto-indexing and auto-buffering are enabled
or disabled for a given run:

private static void _checkProgramUsage(String[] args)
{
if(args.length != 1 && args.length != 2 &&

args.length != 3)
{
System.out.println(
"Usage: java <program_name> <database_name> [true|false][true|false]."
+ " The second parameter (optional) sets the autobuffering

mode on or off"
+ " The third parameter (optional) sets the autoindexing mode

on or off");
System.exit(1);

}
if(args.length >= 2)
{
autoBufferingFlag = Boolean.valueOf(args[1]).booleanValue();

}
if(args.length == 3)
{
autoIndexingFlag = Boolean.valueOf(args[2]).booleanValue();

}
System.out.println("auto buffering flag: " + autoBufferingFlag);
System.out.println("auto indexing flag: " + autoIndexingFlag);

}
private static boolean autoBufferingFlag = false;
private static boolean autoIndexingFlag = false;
private static final String GET_ARRAY_DESC = "getArray()";
private static final String GET_ORACLE_ARRAY_DESC = "getOracleArray()";
private static final String GET_RESULT_SET_DESC = "getResultSet()";

}

Table 11-2 shows the elapsed times for these three methods with auto-indexing and auto-
buffering disabled.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES428

Table 11-2. Comparing getArray(), getOracleArray(), and getResultSet() Methods for
Different Combinations of Auto-indexing and Auto-buffering

Method to Retrieve Auto-buffering On? Auto-indexing On? Average Elapsed
10,000 Elements Time (Milliseconds)

getArray() No No 6

getOracleArray() No No 2

getResultSet() No No 19

getArray() No Yes 9

getOracleArray() No Yes 4

getResultSet() No Yes 21

getArray() Yes No 0

getOracleArray() Yes No 0

getResultSet() Yes No 7

getArray() Yes Yes 0

getOracleArray() Yes Yes 0

getResultSet() Yes Yes 7

From the information in Table 11-2, we can make the following observations:

• Auto-buffering seems to make a tremendous difference. Notice how the elapsed time is
0 milliseconds (approximately) for the case of getArray() and getOracleArray() when
auto-buffering is turned on. Remember, though, that this performance improvement
comes at the cost of increased memory consumption.

• Auto-indexing does not seem to make a lot of difference. In fact, when it is turned on,
performance goes down slightly (see rows 4 to 6 as compared to rows 1 to 3 in Table 11-2).
This is presumably because of the overhead of creating the index structure when auto-
indexing is turned on.

• getArray() and getOracleArray() fare better in general, as compared to getResultSet()
(presumably because of the overhead in creating and destroying the ResultSet data
structure).

With those observations, we conclude our discussions on collections. In the next section,
we’ll walk through an introduction to references and examine how to access and manipulate
references using the JDBC API.

References
A reference in Oracle is a pointer to an already existing object row in a table. This section pres-
ents a brief introduction to references. We will then discuss how we can access and
manipulate data using references in JDBC.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 429

■Note For more background on references, I refer you to Oracle Database Application Developer’s Guide –
Object Relational Features (10g Release 1).

A Brief Introduction to References
Let’s begin by creating an object type containing a reference:

benchmark@ORA10G> create type emp_ref_type as object
2 (
3 emp_no number,
4 name varchar2(20),
5 manager ref emp_ref_type
6);
7 /

Type created.

As shown, we have an object type emp_ref_type with the attribute manager (shown in bold)
as a reference of type emp_ref_type. This means that the manager attribute can hold a reference
to (or point to) a row of type emp_ref_type in a table.

Next, we create a table of this reference type and insert the first row corresponding to
the CEO of the company, Larry. Notice that the value corresponding to the reference column
manager is null, as this is the only row in the table at this point of time and a reference has to
point to an existing table row. In other words, no one else manages Larry!

benchmark@ORA10G> create table emp_table_with_ref of emp_ref_type;

Table created.

benchmark@ORA10G> insert into emp_table_with_ref values(1, 'Larry', null);

1 row created.

Now, we will add a second row for an employee named John, who works for Larry. The
manager reference corresponding to John’s row in the table points to Larry’s row in the table.
Notice how we create an object of type emp_ref_type and initialize the manager attribute by
using the function ref(). The ref() function takes as its argument a table alias associated
with a row of an object table or an object view, and returns a ref value for the object that is
bound to the table row.

benchmark@ORA10G> insert into emp_table_with_ref
2 select emp_ref_type(2, 'John', ref(e))
3 from emp_table_with_ref e
4 where emp_no = 1;

1 row created.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES430

Let’s add another employee by the name of Jack, who works for John, and commit the data:

benchmark@ORA10G> insert into emp_table_with_ref
2 select emp_ref_type(3, 'Jack', ref(e))
3 from emp_table_with_ref e
4 where emp_no = 2;

1 row created.

benchmark@ORA10G> commit;

Commit complete.

A simple select * on the table emp_table_with_ref shows the following rows:

benchmark@ORA10G> select * from emp_table_with_ref;
EMP_NO NAME MANAGER
------- ----- --

1 Larry
2 John 0000220208529852ACD8C148BE9BE6A27D01FDA6

5EF5DECA545DC24435820B9DB4F9A2BCD0
3 Jack 00002202089B3B1CBC855A4038B15A4BE9788105

E4F5DECA545DC24435820B9DB4F9A2BCD0

The value shown in the manager column of type emp_ref_type is the object ID of the refer-
ence value. The following select shows how to dereference the reference to get the underlying
values by using the function deref() on the result of the value() function. The value() func-
tion takes as its argument a table alias associated with a row of an object table and returns
object instances stored in the object table. The function deref() returns the object reference
of its argument, which must return a ref to an object. The following query selects the manager
of the employee Jack:

benchmark@ORA10G> select value(e).name Name, deref(value(e).manager) Manager
2 from emp_table_with_ref e
3 where e.name = 'Jack';

NAME MANAGER(EMP_NO, NAME, MANAGER)
----- --
Jack EMP_REF_TYPE(2, 'John', 0000220208B40B43

4961904E44AF83AC8FEE99EECEE983C5A859704C
F6889D35D3862EDB06)

In the next section, we discuss an important issue related to dangling references (refer-
ences that point to a row that has been deleted) and how to overcome it.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 431

Dangling References and Data Integrity
The schema created in the preceding section can result in what are known as dangling refer-
ences. A dangling reference is a pointer that points to a row that has been deleted. Having
dangling references can thus result in data integrity issues with some of the references in your
schema pointing to nonexistent rows.

For example, we can delete the record corresponding to John, even though the employee
under him (Jack) still exists in the table:

benchmark@ORA10G> delete from emp_table_with_ref e
2 where e.name = 'John';

1 row deleted.

The following query confirms that the reference in the row corresponding to Jack is now
gone:

benchmark@ORA10G> select value(e).name Name, deref(value(e).manager) Manager
2 from emp_table_with_ref e
3 where e.name = 'Jack';

NAME MANAGER(EMP_NO, NAME, MANAGER)
----- --
Jack

In fact, Oracle provides a way to select dangling references by using the is dangling (or
the opposite version, is not dangling) predicate in where clause as follows:

benchmark@ORA10G> select value(e).name Name, deref(value(e).manager) Manager
2 from emp_table_with_ref e
3 where e.name = 'Jack'
4 and value(e).manager is not dangling;

no rows selected

However, the best thing to do if you use references is to create a referential integrity con-
straint (a foreign key) and avoid dangling references in your application. To illustrate this, we
drop the table emp_table_with_ref and re-create it as follows (notice the references clause,
shown in bold, that creates the constraint):

benchmark@ORA10G> create table emp_table_with_ref of emp_ref_type
2 (manager references emp_table_with_ref);

Table created.

If we now repopulate the table with the same data and try to delete the row correspon-
ding to John, we get the following error:

benchmark@ORA10G> delete from emp_table_with_ref e
2 where e.name = 'John';

delete from emp_table_with_ref e
*

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES432

ERROR at line 1:
ORA-02292: integrity constraint (BENCHMARK.SYS_C006564) violated –
child record found

If you use references, you should always create a referential integrity constraint as just
shown to avoid the problem of dangling references in your application data.

■Tip Always create a referential integrity constraints for any reference columns you use in your schema to
avoid dangling references and the resulting data integrity issues.

Reasons for Not Using References
There are many reasons why you should avoid references, in general. Since references ulti-
mately point to object rows in tables, all the reasons to avoid objects as a storage mechanism
are applicable to references as well (as discussed in the section “Using Objects to Store Data
[Not Recommended]” of Chapter 8). The following are some additional reasons for you to
consider:

• References can complicate your code considerably. For example, if you want to write a
hierarchical query that retrieves all child and parent records in a table, you can do so
easily using the connect by clause for a traditional parent/child table. But if you use
references instead, you will have to dereference each record separately, resulting in
complicated and slow code.

• References result in extra information being stored in tables (see the section “Storage
Size of Refs” in Chapter 8 of Oracle Database Application Developer’s Guide – Object
Relational Features (10g Release 1). This takes up extra space, which you can avoid by
adopting a design that uses simple parent/child relational tables.

• Performing DML operations with references can be complex and result in slow-running
code, as you’ll see shortly.

• In return for all the complexity and performance degradation, you don’t get any partic-
ular benefit when using references.

That discussion concludes the brief introduction to references. Even though references
are not a very useful feature for the reasons mentioned in this section, we’ll cover JDBC access
techniques for completeness and so that you can deal with them if you encounter them in
code. In the next section, we’ll examine how you can use references in your JDBC code.

Using References in JDBC
As in the case of object types and collections, Oracle gives you the option of using weakly
typed reference classes (java.sql.Ref or oracle.sql.REF) in your JDBC application. You can
also use custom classes created by the now familiar utility JPublisher. In the next two sections
we’ll look at both options. We’ll begin with a discussion of how to use weakly typed Ref and
REF interfaces to query references in your JDBC programs.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 433

The Ref Interface and REF Class
The Ref interface is implemented (partially, as you will soon discover) and extended by

the Oracle class oracle.sql.REF. The Ref interface consists of the following methods.
The following method gets the fully qualified base SQL name of the object type to which

the reference points (e.g., BENCHMARK.EMP_REF_TYPE):

public String getBaseTypeName() throws SQLException;

The following method retrieves the SQL object type referenced by this Ref object:

public String getObject() throws SQLException;

If the connection’s type map has an entry for the structured type, the instance will be custom-
mapped to the Java class indicated in the type map. Otherwise, the structured type instance
will be mapped to a Struct object. As you will see, this method does not work for Oracle 10g
Release 1 or Oracle9i Release 2. Instead, you have to use the Oracle proprietary method get➥

Value(), which is available in the REF class that extends the Ref interface.
The following method retrieves the referenced object and maps it to a Java type based on

the supplied type map:

public String getObject(Map typeMap) throws SQLException;

The following method sets the value pointed to by this Ref object to the supplied object:

public String setObject(Object refObject) throws SQLException;

The REF class in the oracle.sql package implements the Ref interface partially and adds
many proprietary methods. Some of the more commonly used methods are

public String getValue() throws SQLException;
public String getValue(Map typeMap) throws SQLException;

As mentioned in the Ref section, the method getObject() in Oracle does not work as yet;
it gives the unsupported feature exception. Instead, you need to use the REF counterpart
getValue() or its overloaded version, which provides the same functionality.

In the next section, we provide an example of how to query and update Ref objects.

Using Weakly Typed Ref and REF Objects to Query References
The program DemoQueryAndUpdateUsingWeaklyTypedRefs demonstrates how to query or update
reference objects from JDBC. The program begins with the import statements and obtaining
the connection in the main() method as follows:

/** This program demonstrates how to
* 1. query a ref object
* 2. dereference it to get its value
* 3. update its value and store it back in the database
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.Connection;

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES434

import java.sql.PreparedStatement;
import java.sql.Ref;
import java.sql.ResultSet;
import oracle.sql.STRUCT;
import book.util.JDBCUtil;
import book.util.Util;
class DemoQueryAndUpdateUsingWeaklyTypedRefs
{
public static void main(String args[]) throws SQLException
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

The method _doSelectRef() demonstrates how to select a Ref object:

_doSelectRef(conn);

The method _doUpdateRef() demonstrates how to update a Ref object so that it points to
a different row after the update:

_doUpdateRef(conn);
}
finally
{
// release resources associated with JDBC
// in the finally clause.
JDBCUtil.close(conn);

}
}

Querying a Ref Object

The method _doSelectRef() is defined as follows:

private static void _doSelectRef(Connection conn)
throws SQLException

{

We define a query statement that selects all columns of the table emp_table_with_ref
including the reference column manager:

String stmtString = "select e.emp_no, e.name, e.manager" +
" from emp_table_with_ref e";

PreparedStatement pstmt = null;
ResultSet rset = null;
try
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 435

pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();
System.out.println("executed query");
while(rset.next())
{

We retrieve and print out the values in the columns emp_no and name first:

int empNo = rset.getInt(1);
String name = rset.getString(2);
System.out.println("emp no : " + empNo);
System.out.println("emp name : " + name);

We then use the method getRef() in the ResultSet interface to retrieve the reference
object:

Ref managerRef = rset.getRef(3);

Next, we retrieve the object pointed to by the reference object. Since there is no type map
specified, we will get the value as a STRUCT object. Note that the record corresponding to the
top-level employee (Larry) has a null reference, so we need to check for that condition.

if(managerRef != null)
{

We print out the SQL object base type of this reference object:

System.out.println("Reference SQL Type: " +
managerRef.getBaseTypeName());

As mentioned earlier, the getObject() method of java.sql.Ref interface gives an unsup-
ported feature exception when working with either 9i Release 2 or 10g Release 1 databases.
Hence, we have to use the getValue() method of the REF class:

// The following gives an Unsupported feature in 9i and 10g
//STRUCT manager = (STRUCT) ((oracle.sql.REF)managerRef).getObject();
STRUCT manager = (STRUCT) ((oracle.sql.REF)managerRef).getValue();

In the remainder of the method, we simply use the getAttributes() method of the Struct
interface to print out the attribute values of the object to which the reference points:

Object attributes[] = manager.getAttributes();
System.out.println("no of manager attributes : " +
attributes.length);

for(int i=0; i < attributes.length; i++)
{
if(attributes[i] != null)
{
System.out.println("\tattribute # " + i + " class name " +
attributes[i].getClass().getName() + " value " +
attributes[i]);

}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES436

}
}

}
}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

Updating a Ref Object

Updating a Ref object simply means making it point to a different row in the table. The follow-
ing _doUpdateRef() method does that by first invoking the method _getRefForUpdate() to
retrieve the Ref object and then invoking the method _updateEmployeeRef() to update the
reference object in the table:

private static void _doUpdateRef(Connection conn)
throws SQLException

{
Ref newManagerRef = _getRefForUpdate(conn, 1);
_updateEmployeeRef(conn, 3, newManagerRef);
conn.commit();

}

The definition of the method _getRefForUpdate() basically is the same as that of the method
_doSelectRef() covered in section “Querying a Ref Object” earlier. The only difference is that it
uses the for update nowait clause to lock the row so that another session does not update the
same row before we complete our update. This problem, known as the lost update problem,
along with its suggested solutions, is discussed in detail in Chapter 16.

private static Ref _getRefForUpdate(Connection conn, int empNo)
throws SQLException

{
String stmtString =
"select ref(e) " +
" from emp_table_with_ref e " +
" where e.emp_no = ? for update nowait";

PreparedStatement pstmt = null;
ResultSet rset = null;
try
{
pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, empNo);
rset = pstmt.executeQuery();
Ref managerRef = null;
if(rset.next()) // only one row expected
{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 437

managerRef = rset.getRef(1);
}
return managerRef;

}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

The method _updateEmployeeRef() takes the selected reference object and performs the
actual update:

private static void _updateEmployeeRef(Connection conn, int empNo,
Ref newManagerRef) throws SQLException

{

The statement string for the update simply sets the reference column manager to the
passed value. Later, we use the method setRef() of the PreparedStatement interface to carry
out the actual update. In this case, we effectively change the data so that Jack reports directly
to Larry instead of reporting to John (a huge promotion, considering Larry is the CEO!).

String updateStmtString =
"update emp_table_with_ref e" +
" set e.manager = ?" +
" where e.emp_no = ?";

PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement(updateStmtString);
pstmt.setRef(1, newManagerRef);
pstmt.setInt(2, empNo);
pstmt.execute();

}
finally
{
JDBCUtil.close(pstmt);

}
}

} // end of program

That wraps up our discussion of weakly typed Ref objects. In the next section, we look at
how to use custom reference classes to query and update references.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES438

Using Strongly Typed Custom Classes to Query References
As you may have guessed by now, we will use the JPublisher utility (see Chapter 7 for details
on how to use this utility) to generate the custom classes for our reference objects.

A custom reference class must satisfy the following requirements:

• It must implement the oracle.sql.ORAData and oracle.sql.ORADataFactory interfaces.

• It must provide a way to refer to the underlying object’s data (JPublisher does this by
using an underlying REF attribute).

As in the case of collection classes, the standard SQLData interface supports only SQL
object mappings; it does not support mappings for reference objects. Thus, if you instruct
JPublisher to implement the standard SQLData interface in creating a custom object class, it
will not generate a custom reference class. You must use the ORAData implementation for this
purpose.

Generating Custom REF Classes Using JPublisher
In this section, we will use the JPublisher utility to generate the reference classes for the object
type emp_ref_type. We will use the following properties file (called prop.txt) for this purpose:

jpub.user=benchmark/benchmark
jpub.methods=all
jpub.builtintypes=jdbc
jpub.numbertypes=objectjdbc
jpub.usertypes=oracle
jpub.package=book.ch08.ref.jpub
jpub.input=input.txt

Note that you may need to modify the jpub.package property to give a package name
according to your directory structure; this is the package to which the generated classes
belong.

The file input.txt referred to in the property jpub.input contains the following line:

SQLEMP_TYPE AS Employee

As you can see, we plan to generate a class Employee for our object type emp_ref_type.
JPublisher will also generate the employee reference class (called EmployeeRef) automatically.

We finally generate the custom reference classes by running the following command:

Jpub –props=prop.txt

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 439

The following listing shows the generated code (edited for clarity) for the EmployeeRef
class:

package book.ch11.ref.jpub;

/* imports deleted for clarity and conciseness */

public class EmployeeRef implements ORAData, ORADataFactory
{
public static final String _SQL_BASETYPE = "BENCHMARK.EMP_REF_TYPE";
public static final int _SQL_TYPECODE = OracleTypes.REF;

REF _ref;

private static final EmployeeRef _EmployeeRefFactory = new EmployeeRef();

public static ORADataFactory getORADataFactory()
{ return _EmployeeRefFactory; }
/* constructor */
public EmployeeRef()
{
}

/* ORAData interface */
public Datum toDatum(Connection c) throws SQLException
{
return _ref;

}

/* ORADataFactory interface */
public ORAData create(Datum d, int sqlType) throws SQLException
{
if (d == null) return null;
EmployeeRef r = new EmployeeRef();
r._ref = (REF) d;
return r;

}

public static EmployeeRef cast(ORAData o) throws SQLException
{

if (o == null) return null;
try { return (EmployeeRef) getORADataFactory().create(
o.toDatum(null), OracleTypes.REF); }

catch (Exception exn)
{ throw new SQLException("Unable to convert "+

o.getClass().getName()+" to EmployeeRef: "+exn.toString()); }
}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES440

public Employee getValue() throws SQLException
{

return (Employee) Employee.getORADataFactory().create(
_ref.getSTRUCT(), OracleTypes.REF);

}

public void setValue(Employee c) throws SQLException
{
_ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));

}
}

The following listing shows the generated Employee class (edited for clarity):

package book.ch11.ref.jpub;

/* imports deleted for clarity and conciseness */

public class Employee implements ORAData, ORADataFactory
{
public static final String _SQL_NAME = "BENCHMARK.EMP_REF_TYPE";
public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

protected MutableStruct _struct;

private static int[] _sqlType = { 2,12,2006 };
private static ORADataFactory[] _factory = new ORADataFactory[3];
static
{
_factory[2] = EmployeeRef.getORADataFactory();

}
protected static final Employee _EmployeeFactory = new Employee();

public static ORADataFactory getORADataFactory()
{ return _EmployeeFactory; }
/* constructors */
protected void _init_struct(boolean init)
{ if (init) _struct = new MutableStruct(new Object[3], _sqlType, _factory); }
public Employee()
{ _init_struct(true); }
public Employee(java.math.BigDecimal empNo, String name,
EmployeeRef manager) throws SQLException

{ _init_struct(true);
setEmpNo(empNo);
setName(name);
setManager(manager);

}

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 441

/* ORAData interface */
public Datum toDatum(Connection c) throws SQLException
{
return _struct.toDatum(c, _SQL_NAME);

}

/* ORADataFactory interface */
public ORAData create(Datum d, int sqlType) throws SQLException
{ return create(null, d, sqlType); }
protected ORAData create(Employee o, Datum d, int sqlType) throws SQLException
{
if (d == null) return null;
if (o == null) o = new Employee();
o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
return o;

}
/* accessor methods */
public java.math.BigDecimal getEmpNo() throws SQLException
{ return (java.math.BigDecimal) _struct.getAttribute(0); }

public void setEmpNo(java.math.BigDecimal empNo) throws SQLException
{ _struct.setAttribute(0, empNo); }

public String getName() throws SQLException
{ return (String) _struct.getAttribute(1); }

public void setName(String name) throws SQLException
{ _struct.setAttribute(1, name); }

public EmployeeRef getManager() throws SQLException
{ return (EmployeeRef) _struct.getAttribute(2); }

public void setManager(EmployeeRef manager) throws SQLException
{ _struct.setAttribute(2, manager); }

}

Using Custom Classes to Query and Update Reference Objects
The following code listing is for the class DemoCustomRefQueryAndUpdate. It shows how to use
the EmployeeRef and Employee classes to query and update the reference objects. I provided
explanatory comments within the code where required.

/** This program demonstrates how, using custom classes, you can
* 1. query a ref object
* 2. dereference it to get its value
* 3. update its value and store it back in the database
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES442

*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.Ref;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleResultSet;
import book.util.JDBCUtil;
import book.util.Util;
import book.ch11.ref.jpub.Employee;
import book.ch11.ref.jpub.EmployeeRef;
class DemoCustomRefQueryAndUpdate
{
public static void main(String args[]) throws SQLException
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

The method _doSelectRef() demonstrates how to select a Ref object:

_doSelectRef(conn);

The method _doUpdateRef() demonstrates how to update a Ref object so that it points to
a different row after the update:

_doUpdateRef(conn);
}
finally
{
// release JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
}

Querying a Ref Object

The method _doSelectRef() is defined as follows:

private static void _doSelectRef(Connection conn)
throws SQLException

{

We define a query statement that selects all columns of the table emp_table_with_ref
including the reference column manager:

String stmtString =
"select e.emp_no, e.name, e.manager" +
" from emp_table_with_ref e";

PreparedStatement pstmt = null;

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 443

OracleResultSet orset = null;
try
{
pstmt = conn.prepareStatement(stmtString);
orset = (OracleResultSet) pstmt.executeQuery();
while(orset.next())
{
int empNo = orset.getInt(1);
String name = orset.getString(2);
System.out.println("emp no : " + empNo);
System.out.println("emp name : " + name);

We use the method getORAData() of the OracleResultSet interface to retrieve the refer-
ence object as an object of class EmployeeRef:

EmployeeRef managerRef = (EmployeeRef)
orset.getORAData(3, EmployeeRef.getORADataFactory());

// retrieve the underlying object
if(managerRef != null)
{

We then use the method getValue() to retrieve the employee object to which this refer-
ence object points, and then print out all its attributes using the custom class generated
methods:

Employee manager = managerRef.getValue();
System.out.println("\t manager emp no" + manager.getEmpNo());
System.out.println("\t manager emp name" + manager.getName());
System.out.println("\t manager's manager ref " +
manager.getManager());

}
}

}
finally
{
JDBCUtil.close(orset);
JDBCUtil.close(pstmt);

}
}

Updating a Ref Object

Updating a Ref object simply means making it point to a different row in the table. The follow-
ing _doUpdateRef() method does that by first invoking the method _getRefForUpdate() to
retrieve the Ref object, and then invoking the method _updateEmployeeRef() to update the ref-
erence object in the table:

private static void _doUpdateRef(Connection conn)
throws SQLException

{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES444

EmployeeRef newManagerRef = _getRefForUpdate(conn, 1);
_updateEmployeeRef(conn, 3, newManagerRef);
conn.commit();

}

The definition of the method _getRefForUpdate() basically is the same as that of the
method _doSelectRef() covered in the earlier section titled “Querying a Ref Object.” The only
difference is that it uses the for update nowait clause to lock the row so that another session
does not update the same row before we complete our update. Again, this problem, known as
the lost update problem, along with its suggested solutions, is discussed in detail in Chapter 16.

private static EmployeeRef _getRefForUpdate(Connection conn, int empNo)
throws SQLException

{
String stmtString =
"select ref(e) " +
" from emp_table_with_ref e " +
" where e.emp_no = ? for update nowait";

PreparedStatement pstmt = null;
OracleResultSet orset = null;

try
{
pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, empNo);
orset = (OracleResultSet) pstmt.executeQuery();
orset.next();
EmployeeRef managerRef = (EmployeeRef)

orset.getORAData(1, EmployeeRef.getORADataFactory());

return managerRef;
}
finally
{
JDBCUtil.close(orset);
JDBCUtil.close(pstmt);

}
}

The method _updateEmployeeRef() takes the selected reference object and performs the
actual update:

private static void _updateEmployeeRef(Connection conn, int empNo,
EmployeeRef newManagerRef) throws SQLException

{

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES 445

The statement string for the update simply sets the reference column manager to the
passed value. Later, we use the method setRef() of the PreparedStatement interface to carry
out the actual update. In this case, we effectively change the data so that Jack reports directly
to Larry instead of reporting to John.

String updateStmtString =
"update emp_table_with_ref e" +
" set e.manager = ?" +
" where e.emp_no = ?";

PreparedStatement pstmt = null;
try
{
pstmt = conn.prepareStatement(updateStmtString);
pstmt.setRef(1, newManagerRef);
pstmt.setInt(2, empNo);
pstmt.execute();

}
finally
{
JDBCUtil.close(pstmt);

}
}

} //end of program

Summary
In this chapter, we learned how to materialize collections (nested tables and varrays) in a
JDBC application as Java objects. We looked at various JDBC standard classes and Oracle
extensions. We learned how to use collections in JDBC program using weakly typed classes
and strongly typed custom classes generated by JPublisher utility. We also learned about vari-
ous performance extensions that Oracle provides you with and measured their effectiveness
on data retrieval speeds. Finally we learned what references are, and why you should avoid
them in general. We also learned how to query and update them using weakly typed Ref
and REF classes or using strongly typed custom classes created either manually or using
JPublisher utility.

CHAPTER 11 ■ USING ORACLE COLLECTIONS AND REFERENCES446

Using LOBs and BFILEs

In this chapter, you’ll learn what large objects (LOBs) are and how they’re stored in Oracle.
You’ll also see how to retrieve and manipulate LOBs, and you’ll explore some benchmarks
comparing various alternatives when manipulating them through the JDBC API.

What Are LOBs?
Large objects (LOBs) are data types designed to hold large amounts of data. In 9i, a LOB can
store up to 4GB of data. In 10g, a LOB can store up to a maximum range of 8TB to 128TB
depending on how your database is configured. LOBs are typically used to store unstructured
text data, such as text files, and binary data, such as GIFs, multimedia files, Microsoft Word
documents, and so on.

LOBs vs. LONGs
Although Oracle supports the LONG data type as well for storing large objects, starting with
Oracle 8.0, using LOB data types is strongly recommended for storing large amounts of
unstructured data. LOB data types have several advantages over the LONG and LONG RAW types:

• Larger capacity: LOBs can store up to 4GB of data in 9i and up to a range of 8TB to 128TB
of data in 10g depending on your system configuration. LONG and LONG RAW types can
store only up to 2GB of data.

• Restrictions on number of columns: A table can have multiple LOB columns, but it can
have only one LONG or LONG RAW column.

• Random, piecemeal access: LOBs support random access to data, but LONG data types
support only sequential access.

• Object attributes: LOBs can also be object attributes, whereas LONG and LONG RAW cannot.

447

C H A P T E R 1 2

■ ■ ■

Types of LOBs
There are two types of LOBs: internal and external.

Internal LOBs are stored inside the database tablespaces. They consist of the following
SQL data types: CLOB, NCLOB, and BLOB.

• CLOB: Typically used to store unstructured character text data in the database

• NCLOB: Typically used to store unstructured character text data in the database in the
National Character Set format

• BLOB: Typically used to store unstructured binary data in the database

Internal LOBs can be further subcategorized into persistent and temporary LOBs. A per-
sistent LOB is stored in a table column as part of a table row. A temporary LOB instance is
created when you instantiate a LOB within the scope of your local application, and it is stored
in the temporary tablespace associated with the user.

External LOBs are stored outside the database as operating system files. Oracle accesses
them via the SQL data type BFILE. A BFILE is a read-only data type—you cannot write to the
file pointed to by a BFILE from your application. The database stores a reference to an external
file in form of a BFILE; the file itself is stored outside the database. Typically you use BFILEs to
access large, unstructured, read-only data such as GIFs, multimedia files, and so on.

All LOBs are accessed by a locator (you will see how soon). The main difference between
an internal LOB (CLOB, BLOB, and NCLOB) and an external LOB (BFILE) is that the BFILE is stored
outside the database and the database does not give any transaction semantics over changes
to the BFILE. The internal LOBs are stored within Oracle, and Oracle gives you the transaction
semantics for them.

■Note I would like to emphasize that external LOBs (BFILEs) do not participate in transactions. Any sup-
port for integrity, data recovery, and so on must be provided by the underlying file system as governed by the
operating system in which the actual data exists.

Table 12-1 summarizes the typical use of each of the LOB types.

Table 12-1. Large Object Types and Their Descriptions

SQL Data Type Description

CLOB Character Large Object. Typically used to store unstructured strings in the
database character set format. Characters in the database character set are in a
nonvarying width format.

NCLOB National Character Set Large Object. Stores character strings in the National
Character Set data format (supports characters of varying widths).

BLOB Binary Large Object. Typically used to store binary data (graphic images,
multimedia files, Microsoft Word documents, etc.).

BFILE External Binary File. Useful for accessing read-only data stored outside the data
base from the database.

CHAPTER 12 ■ USING LOBs AND BFILEs448

LOB Locator
A LOB consists of a locator and its value. A LOB locator is a reference to the LOB value. When
you use a LOB in an operation such as passing a LOB as a parameter, you are actually passing
a LOB locator. For the most part, you can work with a LOB instance in your application with-
out being concerned with the semantics of LOB locators.

■Note For the LOB types BLOB, CLOB, and NCLOB, each LOB instance stored in a column has its own
distinct LOB locator and also a distinct copy of the LOB value. This is in contrast with the case of initialized
BFILE columns, where the row stores a locator to the external operating system file that holds the value of
the BFILE. Each BFILE instance in a given row has its own distinct locator; however, two different rows can
contain a BFILE locator that points to the same operating system file.

Internal LOBs (CLOBs, NCLOBs, and BLOBs)
Internal LOBs can be accessed and manipulated from SQL, PL/SQL, and JDBC. Since SQL and
PL/SQL are tools used extensively in JDBC, we will briefly look at how to manipulate LOBs in
each of these environments in the next few sections. For a detailed discussion on these and
other LOB-related topics, consult Oracle Database Application Developer’s Guide – Large
Objects (10g Release 1). If you want to jump directly to the explanation of LOB usage in JDBC,
please go to the section of this chapter titled “Using LOBs in JDBC.”

Let’s first create the schema to contain our CLOB data. The following table, clob_table,
contains one CLOB column called clob_col:

benchmark@ORA10G> create table clob_table
2 (
3 x varchar2(30),
4 id number,
5 clob_col clob
6);

Table created.

Next, we insert one row using a simple insert statement and commit:

benchmark@ORA10G> insert into clob_table (clob_col)
2 values ('A clob example');

1 row created.
benchmark@ORA10G> commit;

Commit complete.

CHAPTER 12 ■ USING LOBs AND BFILEs 449

Using Internal LOBs in SQL
In Oracle8i and earlier, you had to use the PL/SQL package DBMS_LOB to access and manipulate
LOBs. Starting with Oracle9i, you can access CLOBs (or NCLOBs) using the SQL varchar2 seman-
tics. This is typically useful when performing operations with relatively smaller LOBs (e.g., up
to 100,000 bytes). Many SQL functions that take varchar2 as a parameter will accept a CLOB
instead. Let’s go through some examples, starting with a simple select of the CLOB data we
inserted:

benchmark@ORA10G> select clob_col from clob_table;

A clob example

Next, we apply some SQL functions that are known to work with varchar2 data. We use
the functions substr, instr, and length, and the concatenation operator in these examples.
The first example applies the substr function to the CLOB column of table clob_table:

benchmark@ORA10G> select substr(clob_col, 1, 3) from clob_table;

A c

Then we find the starting position of the string 'clob' in our CLOB column by using the
intsr function:

benchmark@ORA10G> select instr(clob_col, 'clob') from clob_table;

3

In the next example, we select a string value concatenated with our CLOB column:

benchmark@ORA10G> select clob_col || '(concatenated to clob)'
2 from clob_table;

A clob example(concatenated to clob)

We use the like operator to select rows matching a CLOB column’s value:

benchmark@ORA10G> select clob_col
2 from clob_table
3 where clob_col like '%clob%';

A clob example

Finally, we use the LENGTH function to get the CLOB column’s length:

benchmark@ORA10G> select length(clob_col) clob_length
2 from clob_table;

14

CHAPTER 12 ■ USING LOBs AND BFILEs450

To insert a CLOB of zero length, we can use the function empty_clob() (or empty_blob() for
BLOB; see the section “Empty LOBs” later in this chapter for more details). The following code
updates our clob_col column to an empty_clob() and then verifies that the length of the CLOB
value is now 0:

benchmark@ORA10G> update clob_table set clob_col = empty_clob();

1 row updated.

benchmark@ORA10G> commit;

Commit complete.

benchmark@ORA10G> select length(clob_col) length_clob from clob_table;

0

Now for BLOBs. The following creates a blob_table table and inserts a row in it:

benchmark@ORA10G> create table blob_table
2 (
3 x varchar2(30),
4 id number,
5 blob_col blob
6);

Table created.

benchmark@ORA10G> insert into blob_table(blob_col) values ('10101');

1 row created.

However, you cannot do a select from the blob_table in SQL*Plus, as SQL*Plus is not
equipped to display BLOB columns.

benchmark@ORA10G> select blob_col from blob_table;
SP2-0678: Column or attribute type can not be displayed by SQL*Plus

We will cover how to overcome this in PL/SQL and JDBC in the upcoming sections.

Using Internal LOBs in PL/SQL
In PL/SQL, the main mechanism of accessing and manipulating LOBs is through the DBMS_LOB
package. We will briefly go through some examples in this section. You can explore this pack-
age functionality more fully by reading PL/SQL Packages and Types Reference (10g Release 1).

Let’s first look at the concepts of empty LOBs and temporary LOBs.

CHAPTER 12 ■ USING LOBs AND BFILEs 451

Empty LOBs
A LOB instance that is null does not have a locator. Before you can pass a LOB instance to any
LOB API routine (PL/SQL or Java), the instance must contain a locator. You insert an empty
locator by using the SQL function empty_clob() for CLOB columns and the SQL function
empty_blob() for BLOB columns:

benchmark@ORA10G> insert into clob_table(clob_col) values (empty_clob());

1 row created.

You can also specify the CLOB column to have an empty value as a default value to ensure
that you will always have API-friendly empty CLOB values in your tables.

Temporary LOBs
A temporary LOB is a BLOB, CLOB, or NCLOB that is accessible and persists only within the appli-
cation scope in which it is declared. A temporary LOB does not exist in database tables and
can be created explicitly as follows (setting CACHE to true means temporary LOBs are eligible to
be read into the Oracle data buffer cache):

benchmark@ORA10G> declare
2 l_clob clob;
3 begin
4 dbms_lob.createtemporary(lob_loc => l_clob,
5 cache => true);
6 end;
7 /

PL/SQL procedure successfully completed.

Many SQL functions return temporary LOBs silently. You can also create temporary LOBs
from JDBC, as you’ll see later.

Let’s now examine a quirk that may confuse you when inserting large data into a CLOB col-
umn from PL/SQL versus using pure SQL. We use our familiar clob_table in the examples that
follow. Note that when we insert data directly using SQL, we are unable to insert data more
than 4,000 bytes (the limit of varchar2 in SQL), regardless of the actual data size; Oracle
silently truncates the column to 4,000 bytes.

benchmark@ORA10G> insert into clob_table(x, id, clob_col)
2 values ('Insert from SQL', 1, rpad('*',32000, '*'));

1 row created.

We insert a value of length 32,000 bytes, but verify the actual length of CLOB column
inserted to be of 4,000 bytes by selecting the length of the CLOB value as follows:

benchmark@ORA10G> select x "Description", id,
2 dbms_lob.getlength(clob_col) "Length of clob"
3 from clob_table;

CHAPTER 12 ■ USING LOBs AND BFILEs452

Description ID Length of clob
------------------------------ ---------- --------------
Insert from SQL 1 4000

In PL/SQL, the maximum size for the VARCHAR2 variable is 32,760 bytes, so you can insert a
string of length up to 32,760 bytes if you use PL/SQL as follows:

benchmark@ORA10G> declare
2 l_big_string varchar2(32760) := rpad('*',32760, '*');
3 begin
4 insert into clob_table(x, id, clob_col)
5 values ('Insert from PL/SQL', 2, l_big_string);
6 end;
7 /

PL/SQL procedure successfully completed.

benchmark@ORA10G> commit;

Commit complete.

benchmark@ORA10G> select x "Description", id,
2 dbms_lob.getlength(clob_col) "Length of clob"
3 from clob_table;

Description ID Length of clob
------------------------------ ---------- --------------
Insert from SQL 1 4000
Insert from PL/SQL 2 32760

We will soon cover how to insert values bigger than 32,760 bytes in PL/SQL. Let’s now
clean up and repopulate our clob_table data with a simple row.

benchmark@ORA10G> delete from clob_table;

0 rows deleted.

benchmark@ORA10G> insert into clob_table (clob_col)
2 values ('A clob example');

1 row created.

In PL/SQL, assigning a VARCHAR2 variable to a CLOB variable creates a temporary CLOB
silently. The temporary variable is automatically freed at the end of the block. To find out the
information about how many temporary LOBs exist, we can query the view V$TEMPORARY_LOBS.
We do that in the procedure print_temporary_lob_info, which is defined as follows:

benchmark@ORA10G> create or replace procedure print_temporary_lob_info(
p_msg in varchar2 default ' ')
2 is

CHAPTER 12 ■ USING LOBs AND BFILEs 453

3 begin
4 dbms_output.put_line (p_msg);
5 for i in (select cache_lobs, nocache_lobs from v$temporary_lobs)
6 loop
7 dbms_output.put_line('cache lobs: ' || i.cache_lobs);
8 dbms_output.put_line('nocache lobs: ' || i.nocache_lobs);
9 end loop;
10 end;
11 /

Procedure created.

The procedure takes a message string, prints it out, and then loops through the records in
the view V$TEMPORARY_LOBS, printing out the columns cache_lobs (number of cached temporary
lobs) and nocache_lobs (the number of temporary lobs that are not cached). The following
PL/SQL block creates a VARCHAR2 and assigns it to a CLOB variable. Right after that, it invokes
the print_temporary_lob_info() method. It then invokes the same method once again after the
PL/SQL block ends:

benchmark@ORA10G> declare
2 varchar2_data varchar2(100) := 'value in varchar2';
3 l_clob clob;
4 begin
5 l_clob := varchar2_data;
6 print_temporary_lob_info ('after assignment');
7 end;
8 /

after assignment
cache lobs: 1
nocache lobs: 0

PL/SQL procedure successfully completed.

benchmark@ORA10G> exec print_temporary_lob_info ('after PL/SQL block');
after PL/SQL block
cache lobs: 0
nocache lobs: 0

PL/SQL procedure successfully completed.

As highlighted in the preceding code, a temporary LOB was created right after the assign-
ment (note that the LOBs created thus are cached by default). There were no temporary LOBs
after the PL/SQL block, as shown by the second execution of print_temporary_lob_info.

Let’s now look at how to update LOBs in PL/SQL. Regardless of whether you use PL/SQL
or Java, for updating a LOB an important thing to remember is that you need to lock the row
containing the LOB data before updating it. Note that if you have just inserted the row that
you need to update in the same session, then you don’t need to explicitly lock it—Oracle
already has a lock on the inserted row. The reason a lock is required in the first place is

CHAPTER 12 ■ USING LOBs AND BFILEs454

because of the way Oracle stores LOB data. Recall that LOB storage involves a LOB locator and
a LOB value. When you select a LOB column, what you get is the LOB locator (not the LOB
value). So an update typically involves two steps:

1. Get the LOB locator.

2. Update the LOB.

Now consider the following scenario:

1. User 1 selects a LOB column.

2. User 2 selects the same LOB column.

3. User 1 starts updating the selected LOB column.

4. User 2 updates the selected LOB column at the same time as user 1.

If the row is not locked, the users’ actions would overwrite each other. Note that this is
different from the lost update issue (discussed in Chapter 16), in that the contents are not just
overwritten, but also can contain a “mixture” of the two writes at the end. In other words, if
locking is not made mandatory, it is quite possible that two writes could interfere with each
other, creating content that neither of them intended in the first place. Hence, the row needs
to be locked.

The following code snippet first selects the clob_col value into a local variable and then
uses the dbms_lob.writeappend procedure to append some text to it. It then updates the table
with the new value.

benchmark@ORA10G> declare
2 l_clob clob_table.clob_col%type;
3 l_str_to_append varchar2(32760) := rpad('*',32760,'*');
4 begin

We first select the LOB, taking care to lock the row by using the for update clause in the
select statement:

5 select clob_col into l_clob
6 from clob_table
7 where rownum <= 1
8 for update; -- without this, you can't update the clob column

Next, we see how using dbms_lob.writeappend can create LOBs of a length more than
32,760 bytes in PL/SQL:

12 for i in 1..3
13 loop
14 dbms_lob.writeappend(l_clob,
15 length(l_str_to_append), l_str_to_append);
16 end loop;

Finally, we update the LOB column and commit the data:

CHAPTER 12 ■ USING LOBs AND BFILEs 455

18 update clob_table set clob_col = l_clob
19 where rownum <= 1;
20 commit;
21 end;
22 /

PL/SQL procedure successfully completed.

Just as we wrote a LOB value of more than 32,000 in chunks, we can also read a CLOB of
more than 32,000 bytes in PL/SQL. In the following snippet, we read the CLOB of 98,294 bytes
we just created in chunks of 255 characters:

benchmark@ORA10G> declare
2 l_read_buf varchar2(255);
3 l_amount_to_read binary_integer := 255;
4 l_clob clob;
5 l_offset number := 1;
6 begin
7 select clob_col
8 into l_clob
9 from clob_table;

After selecting the CLOB in a variable, we read it in chunks of 255 bytes in a loop, as follows.
We exit from the loop when the exception NO_DATA_FOUND indicates that there are no more
bytes to read:

11 begin
12 loop
13 dbms_lob.read(l_clob, l_amount_to_read,
14 l_offset, l_read_buf);
15 l_offset := l_offset + l_amount_to_read;
16
17 dbms_output.put_line(l_read_buf);
18 end loop;
19 exception
20 when no_data_found then
21 null;
22 end;
23 end;
24 /
A clob example*************************...(truncated to conserve space)

That concludes our brief tour through internal LOBs in PL/SQL. I urge you to read PL/SQL
Packages and Types Reference (10g Release 1) for more details on this very useful package. Next,
we’ll look at external LOBs in SQL and PL/SQL.

CHAPTER 12 ■ USING LOBs AND BFILEs456

External LOBs (BFILEs) in SQL and PL/SQL
External LOBs, or BFILEs, contain a locator to a binary file that typically resides in the operat-
ing system. Let’s quickly go through how to use BFILEs in SQL and/or PL/SQL first.

In the following example, the BFILE entry points to a text file called bfile_test.txt in the
directory C:\TEMP, which contains the following four lines:

This is a test.
This is line number 2.
This is line number 3.
This is the final line.

To use a BFILE in SQL, we first need to create a directory object in SQL as follows:

benchmark@ORA10G> create or replace directory my_dir as 'C:\TEMP';

Directory created.

■Note A directory is a database object that serves as an alias for a full path name on the server’s file
system where the files are actually located. Note that you need to ensure that the directory you give as the
argument is valid on your database server. In other words, the directory should be visible to your database
server.

Now we’ll look at an example in which we load a text file into a BLOB variable and print the
contents of the file in SQL*Plus. This also demonstrates how you can print a BLOB column that
actually contains text data. First, we declare some variables and initialize the BLOB variable by
using the dbms_lob.createtemporary() method:

benchmark@ORA10G> declare
2 l_blob blob;
3 l_bfile bfile;
4
5 l_read_buf varchar2(200);
6 l_amount_to_read binary_integer := 100;
7 l_offset number := 1;
8 begin
9 dbms_lob.createtemporary(l_blob, true);

Next, we create the BFILE locator using the BFILENAME function as follows:

10 l_bfile := bfilename(directory => 'MY_DIR', filename => 'test_bfile.txt');

Note that as mentioned in the preceding comments, the directory argument should con-
tain the directory object we created (my_dir) in capital letters and inside single quotes for the
preceding code to work. Also, the bfilename argument should point to a real file, as it does in
this case.

CHAPTER 12 ■ USING LOBs AND BFILEs 457

■Note If you want to create a directory object with a name in mixed-case or lowercase letters, you
should enclose the directory name in double quotes when creating it: or replace the directory MY_DIR with
C:\TEMP.

The first step is to open the file using the dbms_lob.fileopen() function:

12 dbms_lob.fileopen(l_bfile);

Next, we use the dbms_lob.loadfromfile() function to load the file into our BLOB variable
as follows:

14 dbms_lob.loadfromfile(l_blob, l_bfile,
15 dbms_lob.getlength(l_bfile));

We now close the file:

17 dbms_lob.fileclose(l_bfile);

Finally, we read and print the BLOB that contains our file contents, as shown in the following
code. We use the dbms_lob.read() function to read the BLOB in chunks of 100 bytes (the length of
the variable l_amount_to_read). Notice how we need to use utl_raw.cast_to_varchar2() to cast
the contents of the buffer in order to see the text output in SQL*Plus. This is how you can see text
data stored in BLOB in SQL*Plus. When there is no more data left, we get a NO_DATA_FOUND excep-
tion that we catch and ignore to end the program:

20 dbms_output.put_line('blob contents -------');
21 begin
22 loop
23 dbms_lob.read(l_blob, l_amount_to_read,
24 l_offset, l_read_buf);
25 l_offset := l_offset + l_amount_to_read;
26
27 -- output the line - note that we need to cast the
28 -- binary data into varchar2 using the
29 -- utl_raw.cast_to_varchar2 function.
30 dbms_output.put_line(utl_raw.cast_to_varchar2(l_read_buf));
31 end loop;
32 exception
33 when no_data_found then
34 null;
35 end;

We then delete all rows from blob_table and insert the preceding BLOB value in it:

37 delete blob_table;
38 insert into blob_table(x, id, blob_col) values('blob loaded from text',
39 1, l_blob);
40 commit;

CHAPTER 12 ■ USING LOBs AND BFILEs458

41 end;
42 /
blob contents -------
This is a test.
This is line number 2.
This is line number 3.
This is the final line.

PL/SQL procedure successfully completed.

The following code shows how to display the text data in a BLOB column in SQL*Plus using
utl_raw.cast_to_varchar2 in a select statement:

benchmark@ORA10G> select utl_raw.cast_to_varchar2(blob_col) blob_col
2 from blob_table;

BLOB_COL

This is a test.
This is line number 2.
This is line number 3.
This is the final line.

Using LOBs in JDBC
For the remainder of this chapter, we will discuss how to access and manipulate internal LOBs
using the JDBC API. Figure 12-1 is a class diagram that shows the classes and interfaces
involved.

Figure 12-1. JDBC standard interfaces and Oracle implementation classes providing LOB
functionality

Blob

Standard JDBC Interfaces
from the java.sql Package

BLOB

Clob CLOB

BFILE

Oracle JDBC Classes from
the oracle.sql Package

LOB Interfaces and Implementing Classes

CHAPTER 12 ■ USING LOBs AND BFILEs 459

JDBC has two standard interfaces, java.sql.Clob and java.sql.Blob, for supporting
internal LOBs. The Oracle classes oracle.sql.CLOB and oracle.sql.BLOB implement these
interfaces, respectively, in addition to adding some functionalities of their own. For the exter-
nal LOB, there is no standard JDBC class; you have to use the Oracle class oracle.sql.BFILE.

Note that instances of the classes CLOB, BLOB, and BFILE contain only the locators of the
LOB, but that is all you need to access and manipulate LOB data.

In the next few sections, we cover reading from and writing to CLOBs. Assume that we have
the following data in our clob_table table:

benchmark@ORA10G> select x "Description", id,
2 dbms_lob.getlength(clob_col) "Length of clob"
3 from clob_table;

Description ID Length of clob
------------------------------ ---------- --------------
Insert from SQL 1 4000
Insert from PL/SQL 2 32000
From PL/SQL Using chunks 3 64000

Reading from and Writing to a CLOB
The class DemoClobOperations has different methods to read and write to a CLOB that are
explained separately in the following sections. The class begins with import statements,
and we first get the connection (recall that autocommit is turned off in the method
JDBCUtil.getConnection()):

/* * This program demonstrates how to read from and write to a CLOB.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.util.Arrays;
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.Clob;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.OutputStreamWriter;
import java.io.Writer;
import java.io.OutputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.CallableStatement;
import java.sql.ResultSet;
import oracle.sql.CLOB;
import book.util.JDBCUtil;

CHAPTER 12 ■ USING LOBs AND BFILEs460

import book.util.Util;
class DemoClobOperations
{
public static void main(String args[])
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
// following gets connection; sets autocommit to true
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

We invoke the following five methods in the main() method:

• readClob(): Reads a CLOB value

• readClobInChunks(): Reads a CLOB value piecemeal

• writeClob(): Writes to a CLOB value, replacing the characters from the beginning

• writeClobInChunks(): Writes to a CLOB value piecemeal, replacing the characters from
the beginning

• appendToClob(): Appends a string value to a CLOB

At the end of the main() method, we commit the changes:

_readClob(conn);
_readClobInChunks(conn);
_writeClob(conn);
_writeClobInChunks(conn);
_appendToClob(conn);
conn.commit();

}
catch (Exception e)
{
JDBCUtil.printExceptionAndRollback(conn, e);

}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(conn);

}
}

The following section explains the method _readClob() in the class DemoClobOperations.

CHAPTER 12 ■ USING LOBs AND BFILEs 461

Reading CLOB Data
The method _readClob() is explained here, with comments interspersed:

/* demos how to read from a CLOB in the database.*/
private static void _readClob(Connection conn)
throws SQLException, IOException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
BufferedReader reader = null;
try
{

In the try catch block, we first declare our query string to select the CLOB column, follow-
ing which we prepare the query statement:

String stmtString = "select clob_col from clob_table "+
" where id = ?";

pstmt = conn.prepareStatement(stmtString);

Next, we bind the value of the column id to 1 (the length of the CLOB column in this row is
4,000 bytes). We execute the query and begin the standard ResultSet while loop:

pstmt.setInt(1, 1);
rset = pstmt.executeQuery();
while(rset.next())
{

We use the method getClob() to get the CLOB object:

Clob clob = rset.getClob(1);

Next, we get the data from the CLOB object using the getAsciiStream() method. We then
read the stream data using the standard Java I/O method and print the number of characters
read:

reader = new BufferedReader (
new InputStreamReader (clob.getAsciiStream()));

int numOfCharactersRead = 0;
String line = null;
while((line = reader.readLine()) != null)
{
//System.out.println(line);
numOfCharactersRead += line.length();

}
System.out.println("num of characters read: " +
numOfCharactersRead);

}
}
finally
{

CHAPTER 12 ■ USING LOBs AND BFILEs462

Note that in the finally clause, we also close any stream-related objects we opened earlier:

if(reader != null)
reader.close();

JDBCUtil.close(pstmt);
JDBCUtil.close(rset);

}
}

In the next section, we’ll cover how to read the CLOB data in small pieces.

Reading CLOB Data Piecemeal
Another mechanism of reading CLOBs is useful when you have to read big CLOBs and you want
to control the chunk size in which you read the data into your client buffer. The following
method, _readClobInChunks(), demonstrates how to do this:

/* demos how to read a CLOB in the database piecemeal. useful for large CLOBS. */
private static void _readClobInChunks(Connection conn)
throws SQLException, IOException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
BufferedReader reader = null;
try
{
String stmtString =
"select clob_col from clob_table " +
" where id = ?";

pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, 2);
rset = pstmt.executeQuery();
while(rset.next())
{
System.out.println(": in _readClobInChunks");
Clob clob = rset.getClob(1);

Until this point, the code is very similar to the method _readClob() we discussed earlier,
except that this time we are selecting the CLOB column that has 32,000 bytes of data in it. After
getting the CLOB data, we can read data in chunks equal to the chunk size obtained by the
method getChunkSize() or the ideal buffer size obtained by the method getBufferSize(). We
can use either the chunk size or the ideal buffer size calculated by JDBC. The ideal buffer size
is a multiple of the chunk size and is usually close to 32KB. The important thing is to have a
buffer size as a multiple of the chunk size for optimal performance:

int chunkSize = ((CLOB) clob).getChunkSize();
System.out.println("Chunk Size:" + chunkSize);
int idealBufferSize = ((CLOB) clob).getBufferSize();
System.out.println("Ideal buffer Size:" + idealBufferSize);

CHAPTER 12 ■ USING LOBs AND BFILEs 463

In this example, we use a chunk size for the size of our buffer, which we declare as a char
array:

char[] buffer = new char[chunkSize];

Finally, we create a stream using the getAsciiStream() method on the Clob interface and
read data in pieces of the size of our buffer just created:

reader = new BufferedReader
(new InputStreamReader(clob.getAsciiStream()));

int length = -1;
int numOfCharactersRead = 0;
while ((length = reader.read(buffer, 0, chunkSize)) != -1)
{
//System.out.println(buffer);
numOfCharactersRead += length;

}
System.out.println("num of characters read: " +
numOfCharactersRead);

}
}
finally
{
if(reader != null)
{
reader.close();

}
JDBCUtil.close(pstmt);
JDBCUtil.close(rset);

}
}

In the next section, we’ll look at how to write to a CLOB.

Writing to a CLOB (Overwriting at the Beginning)
While writing to a CLOB (or BLOB), you should ensure the following:

• You have to first select the CLOB (or BLOB) with a for update clause to lock the row, as
discussed earlier in the section “Using Internal LOBs in PL/SQL.”

• You must ensure that you have set autocommit to false in the connection you use. You
should do this anyway to preserve transaction semantics (see the section “Sizing Your
Transaction Resources According to Your Business Needs” in Chapter 4 for a detailed
discussion on this topic). If you don’t set autocommit to false, the database issues a
commit right after the first select for update that you do to acquire the lock on LOB.
The commit, of course, releases the lock, and you get a “fetch out of sequence” error
when you try to write anything to the LOB later.

CHAPTER 12 ■ USING LOBs AND BFILEs464

• As of Oracle 10g Release 1, you need to use the Oracle extension oracle.sql.CLOB to
write the data, as the following standard methods in the Clob interface are not sup-
ported and give rise to an “Unsupported feature” exception. Note that at the time of this
writing, Oracle 10g Release 1 documentation is incorrect in this regard.

public OutputStream setAsciiStream(long pos) throws SQLException
Retrieves a stream to be used to write Ascii characters to the CLOB
value that this Clob object represents, starting at position pos.

public Writer setCharacterStream(long pos) throws SQLException
Retrieves a stream to be used to write a stream of Unicode characters
to the CLOB value that this Clob object represents, at position pos.

Since the preceding two methods in the Clob interface are not supported, the alternative is
to use either of the following two Oracle extension methods in the CLOB class:

public OutputStream getAsciiOutputStream() throws SQLException
public Writer getCharacterOutputStream() throws SQLException

We will use the second method in our example. Continuing with the code in our Demo-
ClobOperations class, let’s now look at the method _writeClob(), which demonstrates this
concept:

private static void _writeClob(Connection conn) throws SQLException, IOException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
Writer writer= null;
//OutputStream writer = null;
try
{
String stmtString =
"select clob_col from clob_table " +
" where id = ? for update";

pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, 2);
rset = pstmt.executeQuery();
while(rset.next())
{

In this case, we cast the returned object into the oracle.sql.CLOB interface type:

CLOB clob = (CLOB)rset.getClob(1);

We replace the first characters of the CLOB column with the following String:

String newClobData = new String("NEW CLOB DATA");

CHAPTER 12 ■ USING LOBs AND BFILEs 465

We get the Writer object and write our String to the stream:

writer= clob.getCharacterOutputStream();
// You can also use the following to get an ASCII stream
// OutStream writer= clob.getAsciiOutputStream();
writer.write(newClobData);

}
}
finally
{
if(writer != null)
writer.close();

JDBCUtil.close(pstmt);
JDBCUtil.close(rset);

}
}

Note that you don’t need to execute an update to write the CLOB back to the database
when using the stream operations—all stream “writes” write directly to the database. Of
course, you still need to commit the transaction to make the changes permanent.

Writing to a CLOB Piecemeal (Overwriting at the Beginning)
Almost everything mentioned in the previous section for writing to a CLOB is applicable to
this section. The only difference is in the step where we retrieve the stream data. We get the
chunk size and set up a buffer of char of a size equal to the chunk size. In this example, we
use the getAsciiStream() method of the CLOB class. The code is shown in the method
_writeClobInChunks() of the class DemoClobOperations:

private static void _writeClobInChunks(Connection conn)
throws SQLException, IOException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
OutputStream out = null;
try
{
String stmtString =
"select clob_col from clob_table " +
" where id = ? for update";

pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, 3);
rset = pstmt.executeQuery();
while(rset.next())
{
CLOB clob = (CLOB)rset.getClob(1);
int chunkSize = clob.getChunkSize();
byte[] buffer = new byte[chunkSize];

CHAPTER 12 ■ USING LOBs AND BFILEs466

In the next snippet, we use the fill() method of the class java.util.Arrays to fill all
characters in our buffer with the same character (“a” in this example):

Arrays.fill(buffer, 0, chunkSize, (byte)'a');
out = clob.getAsciiOutputStream();

In the for loop, we write the same buffer ten times serially into the stream:

for(int i=0; i < 10; i++)
{
out.write(buffer, 0, buffer.length);

}
}

}
finally
{
if(out != null)
out.close();

JDBCUtil.close(pstmt);
JDBCUtil.close(rset);

}
}

Appending to a CLOB
What if we need to append data to the end of a CLOB? Well, we can invoke dbms_lob.writeappend
from JDBC to achieve this. The last method, _appendToClob(), of the class DemoClobOperations
demonstrates this:

private static void _appendToClob(Connection conn)
throws SQLException, IOException

{
CallableStatement cstmt = null;
try
{

In the following code, we declare an anonymous PL/SQL block that takes three parame-
ters. The first parameter is the ID of the row in the table clob_table. The second parameter is
the number of bytes to append (the length of the string), and the third parameter is the string
to append. Notice how we use the dbms_lob.writeappend method to accomplish our task
(please see the Oracle document PL/SQL Packages and Types Reference [10g Release 1] for
more details on this method):

String stmtString =
"declare " +
" l_clob clob;" +
"begin " +
" select clob_col into l_clob from clob_table " +
" where id = ? and rownum <= 1 for update;" +
" dbms_lob.writeappend(l_clob, ?, ?); " +
"end;";

CHAPTER 12 ■ USING LOBs AND BFILEs 467

We next create the string that we want to append to our CLOB column:

String newClobData = new String("data appended from JDBC");

The remaining code simply invokes the preceding anonymous PL/SQL block. This also
ends our class, DemoClobOperations:

cstmt = conn.prepareCall(stmtString);
cstmt.setInt(1, 1);
cstmt.setInt(2, newClobData.length());
cstmt.setString(3, newClobData);
cstmt.execute();

}
finally
{
JDBCUtil.close(cstmt);

}
}

}

Reading from and Writing to a BLOB
We assume that our blob_table contains the following text data that we inserted earlier in
section “External LOBs (BFILEs) in SQL and PL/SQL.” (The logic remains the same for binary
data as well; we use text data in our examples because it makes it easier to verify the results of
queries and updates.)

benchmark@ORA10G> select utl_raw.cast_to_varchar2(blob_col) blob_col
2 from blob_table;

BLOB_COL

This is a test.
This is line number 2.
This is line number 3.
This is the final line.

The BLOB operations are demonstrated in the code in the class DemoBlobOperations. The
class begins with import statements and getting the connection to the database:

/** This program demonstrates how to read from and write to a BLOB.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
// importing standard JDBC classes under java.sql class hierarchy
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.Blob;

CHAPTER 12 ■ USING LOBs AND BFILEs468

import java.io.OutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.CallableStatement;
import java.sql.ResultSet;
import oracle.sql.BLOB;
import book.util.JDBCUtil;
import book.util.Util;
class DemoBlobOperations
{
public static void main(String args[])
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
// following gets connection; sets autocommit to true
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

We invoke the following three methods in the main() method:

• _readBlob(): Reads a BLOB value

• _writeBlob(): Writes to a BLOB value, replacing the characters from the beginning

• _appendToBlob(): Appends a string value to a BLOB

At the end of main() method, we commit the changes:

_readBlob(conn);
_writeBlob(conn);
_appendToBlob(conn);
conn.commit();

}
catch (Exception e)
{
JDBCUtil.printExceptionAndRollback(conn, e);

}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(conn);

}
}

CHAPTER 12 ■ USING LOBs AND BFILEs 469

Reading BLOB Data
The method _readBlob() begins by declaring variables outside the try catch block:

/* demos how to read from a BLOB in the database. */
private static void _readBlob(Connection conn) throws SQLException, IOException
{
PreparedStatement pstmt = null;
ResultSet rset = null;
InputStream byteStream = null;
try
{

We declare our query string that selects the BLOB column whose length is 4,000 bytes from
the table blob_table:

String stmtString = "select blob_col from blob_table "+
" where id = ?";

pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, 1);
rset = pstmt.executeQuery();
while(rset.next())
{

To read a BLOB, we first use the method getBlob() in the ResultSet interface. We then use
the standard method getBinaryStream() in the Blob interface to get an InputStream. Finally,
we use standard Java streams functionality to get the data as follows (note how we convert the
resulting byte array to a String by using the appropriate String constructor to display the
ASCII characters):

BLOB blob = (BLOB) rset.getBlob(1);
byteStream = blob.getBinaryStream();
byte [] byteArray= new byte [10];
int numOfBytesRead = 0;
int bytesRead = -1;
while((bytesRead = byteStream.read(byteArray)) != -1)
{
System.out.print(new String(byteArray, 0, bytesRead));
numOfBytesRead += bytesRead;

}
System.out.println("total bytes read: " + numOfBytesRead);

}
}
finally
{
if(byteStream != null)
byteStream.close();

JDBCUtil.close(pstmt);
JDBCUtil.close(rset);

}
}

CHAPTER 12 ■ USING LOBs AND BFILEs470

Writing to a BLOB (Overwriting at the Beginning)
Let’s now look at how to write to a BLOB, starting from the beginning and overwriting existing
data. The first thing to remember is that as with CLOBs, we need to use a for update clause in
our select to lock the row, and we also need to set autocommit to false. In addition, the follow-
ing standard JDBC methods in the Blob interface for writing to a BLOB give an “Unsupported
feature” exception in 10g Release 1 (and 9i Release 2):

OutputStream setBinaryStream(long pos)
Retrieves a stream that can be used to write to the BLOB value.

(Note that the 10g Release 1 documentation is once again erroneous in its explanation of this.)
Thus we need to use the method getBinaryOutputStream() in the CLOB class. The follow-

ing method, _writeBlob(), demonstrates this:

/* demos how to write to a BLOB in the database (overwriting from the
beginning). */

private static void _writeBlob(Connection conn)
throws SQLException, IOException

{
PreparedStatement pstmt = null;
ResultSet rset = null;
OutputStream out = null;
try
{
String stmtString =
"select blob_col from blob_table " +
" where id = ? for update";

pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, 1);
rset = pstmt.executeQuery();
while(rset.next())
{

We need to use the Oracle extension class BLOB as explained previously:

BLOB blob = (BLOB)rset.getBlob(1);
/* Following gives an "Unsupported feature"

exception
OutputStream ostream = blob.setBinaryStream(1L);
*/

We create a String object and convert it into a byte array. Next, we use the getBinary➥

OutputStream() method to retrieve the output stream and write to it using standard Java I/O
functionality:

String newBlobData = new String(
"data to overwrite existing data in the beginning");

byte[] byteArray = newBlobData.getBytes();
out = blob.getBinaryOutputStream();
out.write(byteArray);

CHAPTER 12 ■ USING LOBs AND BFILEs 471

}
}
finally
{
if(out != null)
out.close();

JDBCUtil.close(pstmt);
JDBCUtil.close(rset);

}
}

After the preceding code is executed, the BLOB data changes as follows:

benchmark@ORA10G> select utl_raw.cast_to_varchar2(blob_col) blob_col
2 from blob_table;

BLOB_COL
--
data to overwrite existing data in the beginningine number 3.
This is the final line.

Notice how we overwrote the beginning of the BLOB data with our string data to
overwrite existing data in the beginning.

Appending to a BLOB
What if we need to append data to the end of a BLOB? We’ve already seen how to do that for a
CLOB by invoking the method dbms_lob.writeappend from JDBC. We do the same for a BLOB,
with minor variations: this time, we need to pass an array of bytes using the setBytes()
method of the CallableStatement object. The final method, _appendToBlob, of the class
DemoBlobOperations does this:

/* demos how to append to a BLOB in the database. */
private static void _appendToBlob(Connection conn)
throws SQLException, IOException
{
CallableStatement cstmt = null;
try
{

Once again, we declare an anonymous PL/SQL block that takes three parameters. The
first parameter is the ID of the row in the table blob_table. The second parameter is the num-
ber of bytes to append (the length of the string). And the third parameter is the string to
append. Notice how we use the dbms_lob.writeappend method to accomplish our task (please
see PL/SQL Packages and Types Reference [10g Release 1] for more details on this method). We
set all three parameters and invoke the procedure:

String stmtString =
"declare " +
" l_blob blob;" +

CHAPTER 12 ■ USING LOBs AND BFILEs472

"begin " +
" select blob_col into l_blob from blob_table " +
" where id = ? and rownum <= 1 for update;" +
" dbms_lob.writeappend(l_blob, ?, ?); " +
"end;";

String newBlobData = new String("data to be appended");
byte[] byteArray = newBlobData.getBytes();
cstmt = conn.prepareCall(stmtString);
cstmt.setInt(1, 1);
cstmt.setInt(2, byteArray.length);
cstmt.setBytes(3, byteArray);
cstmt.execute();

}
finally
{
JDBCUtil.close(cstmt);

}
}

}

After the _appendToBlob method is executed, the string data to be appended gets
appended to the end of the BLOB column:

benchmark@ORA10G> select utl_raw.cast_to_varchar2(blob_col) blob_col
2 from blob_table;

BLOB_COL

data to overwrite existing data in the beginning line number 3.
This is the final line.
data to be appended

In the next section, we’ll look at how to read data stored in a BFILE column.

Reading BFILE Data
To demonstrate how to read BFILE data, we first create a table, bfile_table, with a column of
type BFILE:

benchmark@ORA10G> create table bfile_table
2 (
3 x varchar2(30),
4 id number,
5 bfile_col bfile
6);

Table created.

CHAPTER 12 ■ USING LOBs AND BFILEs 473

We create the directory object as shown in earlier sections of this chapter:

benchmark@ORA10G> create or replace directory my_dir as 'C:\TEMP';

Directory created.

We insert the first row with bfile_col pointing to the same file, test_bfile.txt, that we
used in the earlier examples. The second row inserted points to an image file called image.gif
in the same directory:

benchmark@ORA10G> insert into bfile_table(x, id, bfile_col)
2 values ('Ascii text file', 1, bfilename('MY_DIR', 'test_bfile.txt'));

1 row created.

benchmark@ORA10G> insert into bfile_table(x, id, bfile_col)
2 values ('Binary Gif File', 2, bfilename('MY_DIR', 'image.gif'));

1 row created.

benchmark@ORA10G> commit;

Commit complete.

The class DemoBfileOperations demonstrates how to read both the binary and text data in
the table bfile_table just created. The class begins by importing requisite classes and getting
a database connection:

/** This program demonstrates how to read from a BFILE.
* Note that BFILEs are read-only - you cannot write to
* them.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.Connection;
import java.io.InputStream;
import java.io.IOException;
import java.sql.PreparedStatement;
import oracle.jdbc.OracleResultSet;
import oracle.sql.BFILE;
import book.util.JDBCUtil;
import book.util.Util;
class DemoBfileOperations
{
public static void main(String args[]) throws Exception
{
Util.checkProgramUsage(args);
Connection conn = null;

CHAPTER 12 ■ USING LOBs AND BFILEs474

try
{
// get connection (autocommit is set to false)
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);

We invoke two methods:

• _readBfileAsBinaryData(): Demonstrates how to read the binary image from our table

• _readBfileAsTextData(): Demonstrates how to read the text file contents pointed to by
our BFILE column

Reading BFILE Data As Binary Data

In the method _readBfileAsBinaryData(), we first use the getBFILE() method of the Ora-
cleResultSet object (remember that the BFILE is an Oracle-only feature; the standard JDBC
API does not support this concept). We then use the getBinaryStream() method of the BFILE
class to first get the InputStream. Finally, we use the Java stream functionality to extract data:

/* demos how to read from a BFILE from the database as a binary file. */
private static void _readBfileAsBinaryData(Connection conn)
throws SQLException, IOException

{
PreparedStatement pstmt = null;
OracleResultSet orset = null;
InputStream in = null;
BFILE bfile = null;
try
{
String stmtString = "select bfile_col from bfile_table "+
" where id = ?";

pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, 2);
orset = (OracleResultSet) pstmt.executeQuery();
while(orset.next())
{
bfile = orset.getBfile(1);
bfile.openFile();
in = bfile.getBinaryStream();
byte[] byteArray = new byte[100];
int length = -1;

Next, we loop through to read chunks of 100 bytes of binary data into our byte array:

int numOfBytesRead = 0;
while ((length = in.read(byteArray)) != -1)
{
//System.out.println(byteArray);
numOfBytesRead += length;

}

CHAPTER 12 ■ USING LOBs AND BFILEs 475

System.out.println("binary file: num of bytes read: " + numOfBytesRead);
System.out.println("");

}
}
finally
{
if(in != null)
in.close();

if(bfile != null)
bfile.closeFile();

JDBCUtil.close(pstmt);
JDBCUtil.close(orset);

}
}

Reading BFILE Data As ASCII Text

Reading BFILE data as ASCII text follows the exact same procedure as presented in the previ-
ous section for reading binary data, except that we need to convert the bytes into a String
before we use it in our Java code, as shown in the method _readBfileAsTextData:

/* demos how to read from a BFILE from the database as an ASCII file. */
private static void _readBfileAsAsciiData(Connection conn)
throws SQLException, IOException

{
PreparedStatement pstmt = null;
OracleResultSet orset = null;
BFILE bfile = null;
InputStream in = null;
try
{
String stmtString = "select bfile_col from bfile_table "+
" where id = ?";

pstmt = conn.prepareStatement(stmtString);
pstmt.setInt(1, 1);
orset = (OracleResultSet) pstmt.executeQuery();
byte[] buffer = new byte[30];
int numOfCharacersRead = 0;
int length = -1;
while(orset.next())
{
bfile = orset.getBfile(1);
bfile.openFile();
in = bfile.getBinaryStream();
while ((length = in.read(buffer)) != -1)
{
System.out.print(new String(buffer, 0, length));
numOfCharacersRead += length;

CHAPTER 12 ■ USING LOBs AND BFILEs476

}
System.out.println("\ntext file: num of chars read: " + numOfCharacersRead);

}
}
finally
{
if(in != null)
in.close();

if(bfile != null)
bfile.closeFile();

JDBCUtil.close(pstmt);
JDBCUtil.close(orset);

}
}

}// end of class

In the next section, we’ll cover how to use temporary LOBs in JDBC. 29.380

Temporary LOBs in JDBC
Now you know what temporary LOBs are and how to use them to store transient data in
PL/SQL. In this section, we will create a temporary CLOB in JDBC and insert the value in a
table. To create a temporary CLOB, we use the static method createTemporary() defined in the
BLOB and CLOB classes. The signature of this method in the CLOB and BLOB classes is as follows:

public static oracle.sql.CLOB createTemporary(Connection conn,
boolean isCached, int duration)

public static oracle.sql.BLOB createTemporary(Connection conn,
boolean isCached, int duration)

The duration must be either DURATION_SESSION or DURATION_CALL as defined in the BLOB or
CLOB class. In client applications, DURATION_SESSION is appropriate. DURATION_CALL is relevant
mainly in Java stored procedures.

After we have finished using the temporary LOB, we should free it with the freeTemporary()
method defined in BLOB and CLOB classes:

public void freeTemporary()

We will now create a temporary CLOB and insert it into clob_table. The following
DemoTemporaryLobs class illustrates this:

/** This program demonstrates how to use temporary LOBs.
* We work with temporary CLOBs, though the same concepts also
* apply to temporary BLOBs.
* COMPATIBLITY NOTE: In 9i you have to use the method
* getAsciiOutputStream() in the CLOB interface instead of the
* standard setAsciiStream() method as explained in the code:
*/
import java.util.Arrays;
import java.sql.SQLException;

CHAPTER 12 ■ USING LOBs AND BFILEs 477

import java.sql.Connection;
import java.io.OutputStream;
import java.io.IOException;
import java.sql.PreparedStatement;
import oracle.sql.CLOB;
import book.util.JDBCUtil;
import book.util.Util;
class DemoTemporaryLobs
{

The main() method simply invokes the method _insertClobUsingTemporaryClob() and
commits. The method _insertClobUsingTemporaryClob() creates a temporary CLOB and inserts
it into the table clob_table:

public static void main(String args[]) throws Exception
{
Util.checkProgramUsage(args);
Connection conn = null;
try
{
// get connection (autocommit is set to false)
conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);
_insertClobUsingTemporaryClob(conn);
conn.commit();

}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(conn);

}
}

In the method _insertClobUsingTemporaryClob(), we first declare variables before the try
catch block begins:

/* demos how to insert a CLOB using temporary CLOBs. */
private static void _insertClobUsingTemporaryClob(Connection conn)
throws SQLException, IOException

{
String insertStmt = "insert into clob_table(x, id, clob_col) " +
" values(?, ?, ?) ";

PreparedStatement pstmt = null;
OutputStream out = null;
CLOB tempClob = null;
try
{

We invoke the method createTemporary() to create a temporary CLOB:

tempClob = CLOB.createTemporary(conn, true, CLOB.DURATION_SESSION);

CHAPTER 12 ■ USING LOBs AND BFILEs478

We next open the CLOB. Opening and closing of LOBs in general improves performance
when you do multiple writes to the LOB:

tempClob.open(CLOB.MODE_READWRITE);

We next get the chunk size and initialize a byte array of a size equal to the chunk size with
the character “b”:

int chunkSize = tempClob.getChunkSize();
System.out.println("chunk size for temporary lob: "
+ chunkSize);

byte[] buffer = new byte[chunkSize];
Arrays.fill(buffer, 0, chunkSize, (byte)'b');

Then we initialize the OutputStream. In 10g, the standard method in the Clob interface
works. In 9i, you have to use the Oracle extension method getAsciiOutputStream() in the CLOB
interface:

out = tempClob.setAsciiStream(0L);
// In 9i, you would have to use the following method instead
// of setAsciiStream()
// out = tempClob.getAsciiOutputStream();

We go in a loop and write data equal to ten chunks. Subsequently, we use the method
setClob() to set the temporary CLOB value and insert it into the table:

for(int i=0; i < 10; i++)
{
out.write(buffer, 0, chunkSize);

}
pstmt = conn.prepareStatement(insertStmt);
pstmt.setString(1, "Using temporary clob");
pstmt.setInt(2, 4);
pstmt.setClob(3, tempClob);
pstmt.executeUpdate();

}
finally
{
try
{
if(out != null) out.close();
if((tempClob != null))
CLOB.freeTemporary(tempClob);

}
catch (Exception e) { e.printStackTrace(); }
JDBCUtil.close(pstmt);

}
}

}// end of program

Notice how we use the freeTemporary() method in the finally clause to free the tempo-
rary CLOB.

CHAPTER 12 ■ USING LOBs AND BFILEs 479

Alternatives to BFILEs for File Operations
You’ve seen how you can read from a file (text or binary) using a BFILE in PL/SQL or JDBC. You
can also use a BFILE along with the DBMS_LOB package to load a text or binary file directly into
a CLOB or BLOB and access them from PL/SQL or JDBC. There are two alternatives to using a
BFILE for file manipulations:

• Use the UTL_FILE package. The first alternative is to use the supplied PL/SQL package
UTL_FILE to read from and write to a text or binary file accessible on a database server
(remember, BFILEs do not allow you to write to a file; you can use the UTL_FILE package
to work around that).

• Use external tables. The second alternative that allows you to read from an operating
system text file directly using select statements is to use external tables. Note that you
can only do a read using this alternative, and that too only on text files.

Both alternatives are Oracle-specific solutions and fall outside the scope of the JDBC API.
However, since they form an alternative to the actual problem of file operations being
achieved by the BFILE, I mention them briefly here.

Using the UTL_FILE PL/SQL Package to Read from and Write to
a Text File
With the UTL_FILE package, PL/SQL programs (and JDBC programs that invoke these PL/SQL
programs) can read from and write to text or binary files accessible to the database server.
We will go through only a few subprograms of this package that allow us to read and write to
a file. Please consult PL/SQL Packages and Types Reference (10g Release 1) (available from
http://otn.oracle.com) for a detailed description of the package capabilities.

■Note In the past, accessible directories for the UTL_FILE functions were specified in the initialization file
using the UTL_FILE_DIR parameter. However, for Oracle9i and 10g, I recommend that you use the CREATE
DIRECTORY feature, which replaces UTL_FILE_DIR. Directory objects offer more flexibility and granular con-
trol to the UTL_FILE application administrator and, more important, they can be maintained dynamically
(i.e., without shutting down the database).

Following are brief descriptions of the package subprograms we will use in the examples:

• UTL_FILE.FOPEN: This function opens the file and returns a file handle that is used in
subsequent operations on the file. The syntax is

UTL_FILE.FOPEN (location IN VARCHAR2, filename IN VARCHAR2,
open_mode IN VARCHAR2,max_linesize IN BINARY_INTEGER)
RETURN file_type;

CHAPTER 12 ■ USING LOBs AND BFILEs480

The various parameters are as follows:

• location: The directory location of a file. This string is a directory object name
and is case-sensitive. The default is uppercase. Read privileges must be granted on
this directory object for the UTL_FILE user to run FOPEN.

• filename: The file name, including the extension (file type), without the directory
path.

• open_mode: Specifies how the file is opened. Modes include

r - read text
w - write text
a - append text
rb - read byte mode
wb - write byte mode
ab - append byte mode

• max_linesize: The maximum number of characters for each line, including the
newline character, for this file (the minimum value is 1; the maximum value is
32,767). If this parameter is unspecified, Oracle supplies a default value of 1,024.

• UTL_FILE.GET_LINE: This procedure reads text from the open file identified by the file
handle and places the text in the output buffer parameter. Text is read up to, but not
including, the line terminator, or up to the end of the file, or up to the end of the len
parameter. It cannot exceed the max_linesize specified in FOPEN. The syntax is

UTL_FILE.GET_LINE (file IN FILE_TYPE, buffer OUT VARCHAR2,
len IN PLS_INTEGER DEFAULT NULL);

The parameters are as follows:

• file: The file handle returned by FOPEN.

• buffer: The buffer in which the read data is populated.

• len: The maximum number of bytes to read from the file. The default is null. If this
parameter is null, Oracle supplies the value of max_linesize.

• UTL_FILE.PUT_LINE: This procedure writes the text string stored in the buffer parameter
to the open file identified by the file handle. The file must be open in write mode.
PUT_LINE terminates the line with the platform-specific line terminator character or
characters. The syntax is

UTL_FILE.PUT_LINE (file IN FILE_TYPE,buffer IN VARCHAR2,
autoflush IN BOOLEAN DEFAULT FALSE);

The parameters are as follows:

• file: The active file handle returned by an FOPEN call

• buffer: The text buffer containing lines to be written to the file

• autoflush: Flushes the buffer to disk after the write

CHAPTER 12 ■ USING LOBs AND BFILEs 481

• UTL_FILE.FCLOSE: This procedure closes an open file. The syntax is

UTL_FILE.FCLOSE (file IN OUT FILE_TYPE);

The parameter is as follows:

• file: An active file handle returned by an FOPEN call

Now we are ready to look at some working examples. First, we create a directory object
under which the files will be manipulated by UTL_FILE:

benchmark@ORA10G> create or replace directory my_dir as 'C:\TEMP';

We then declare the buffer and file handle variables:

benchmark@ORA10G> declare
2 l_buffer varchar2(32767);
3 l_file_handle utl_file.file_type;

We open the file test_bfile.txt in read mode with a maximum line size of 256:

4 begin
5 l_file_handle := utl_file.fopen('MY_DIR', 'test_bfile.txt', 'R', 256);

Then in a loop we invoke UTL_FILE.GET_LINE() to get each line and print it out. At the end
of the file, the exception NO_DATA_FOUND is raised, at which point we invoke the
UTL_FILE.FCLOSE() method to close the file.

7 loop
8 utl_file.get_line(l_file_handle, l_buffer);
9 dbms_output.put_line(l_buffer);
10 end loop;
11 exception
12 when no_data_found then
13 utl_file.fclose(l_file_handle);
14 end;
15 /
This is a test.
This is line number 2.
This is line number 3.
This is the final line.

PL/SQL procedure successfully completed.

Next we write to a file. We create a new file called my_file.txt automatically by opening
the file in write mode and use UTL_FILE.PUT_LINE to put some lines in the file. Finally, we close
the file by invoking the UTL_FILE.FCLOSE() function. The code is as follows:

benchmark@ORA10G> declare
2 l_buffer varchar2(32767);
3 l_file_handle utl_file.file_type;
4 begin

CHAPTER 12 ■ USING LOBs AND BFILEs482

5 -- open the file in write mode -- create one if
6 -- file does not exist.
7
8 l_file_handle := utl_file.fopen('MY_DIR', 'my_file.txt', 'W',
9 256);
10 for i in 1 .. 10
11 loop
12 utl_file.put_line(l_file_handle, 'my line number ' || i);
13 dbms_output.put_line(l_buffer);
14 end loop;
15 utl_file.fclose(l_file_handle);
16 exception
17 when others then
18 raise;
19 end;
20 /

Our newly created file, my_file.txt, in the directory C:\TEMP looks as follows:

my line number 1
my line number 2
my line number 3
my line number 4
my line number 5
my line number 6
my line number 7
my line number 8
my line number 9
my line number 10

Using the UTL_FILE PL/SQL Package to Read from and Write to
a Binary File
We will use the functions get_raw() and put_raw() described in this section for reading from
and writing to a binary file.

■Note The RAW data type stores data that is not to be interpreted (i.e., not explicitly converted when
moving data between different systems) by the Oracle database. These data types are intended for binary
data or byte strings.

• GET_RAW: This function reads a RAW value from a file and adjusts the file pointer ahead by
the number of bytes read. It ignores line terminators and returns the actual number of
bytes requested by the len parameter. The syntax is

UTL_FILE.GET_RAW (fid IN utl_file.file_type,
r OUT NOCOPY RAW,len IN PLS_INTEGER DEFAULT NULL);

CHAPTER 12 ■ USING LOBs AND BFILEs 483

The parameters are as follows:

• fid: The file ID.

• r: The raw binary data.

• len: The number of bytes read from the file. The default is null, in which case it is
assumed to be the maximum length of RAW.

• PUT_RAW: This function accepts as input a RAW data value and writes the value to the out-
put buffer. The syntax is

UTL_FILE.PUT_RAW (fid IN utl_file.file_type, r IN RAW,
autoflush IN BOOLEAN DEFAULT FALSE);

The parameters are as follows:

• fid: The file ID.

• r: The raw binary data.

• autoflush: If true, this parameter performs a flush after writing the value to the
output buffer. The default is false.

In the following example, we open the GIF image in the file image.gif in the directory
C:\TEMP, read it into the raw buffer, and write it back to another file called image1.gif that we
open in write mode. Notice that we use 'RB' to open the first file in “read byte” mode and 'WB'
to open the second file in “write byte” mode.

benchmark@ORA10G> declare
2 l_buffer raw(32767);
3 l_input_file utl_file.file_type;
4 l_output_file utl_file.file_type;
5 begin
6 l_input_file := utl_file.fopen('MY_DIR', 'image.gif', 'RB',
7 256);
8 l_output_file := utl_file.fopen('MY_DIR', 'image1.gif', 'WB',
9 256);
10 loop
11 utl_file.get_raw(l_input_file, l_buffer);
12 utl_file.put_raw(l_output_file, l_buffer);
13 --dbms_output.put_line(utl_raw.cast_to_varchar2(l_buffer));
14 end loop;
15 exception
16 when no_data_found then
17 utl_file.fclose(l_input_file);
18 utl_file.fclose(l_output_file);
19 end;
20 /

PL/SQL procedure successfully completed.

CHAPTER 12 ■ USING LOBs AND BFILEs484

Using External Tables to Read Text Files
The external table feature (introduced in 9i) gives you the ability to query a flat file using a
select statement. It is typically used to load huge amounts of data from files to tables in a data
warehouse system. It can, however, be very useful in reading text data from PL/SQL or, for that
matter, using JDBC. We’ll go through a small example to read a text file, but you’ll need to read
through the Oracle documentation (see Oracle Database SQL Reference [10g Release 1]) for the
detailed capabilities and options available with the external table feature. Just to emphasize
again, you can use this feature only with text files, and you can only read from the operating
system files—you cannot write to them using external tables.

First, we need to create a directory object in which our file exists as follows:

benchmark@ORA10G> create or replace directory my_dir as 'C:\TEMP';

Directory created.

Our example file, et_data.txt, exists in this directory and contains employee ID and
employee number fields for some employees:

1, 'Varun Menon'
2, 'Chaandni Sneha'
3, 'John Edgar'
4, 'Jones Poe'

We now create an external table that points to the preceding file as follows:

benchmark@ORA10G> create table my_emp_et
2 (
3 empno number,
4 ename varchar2(20)
5)
6 organization external
7 (
8 type oracle_loader
9 default directory my_dir
10 access parameters
11 (
12 fields terminated by ','
13 optionally enclosed by "'"
14 missing field values are null
15)
16 location('et_data.txt')
17);

Table created.

CHAPTER 12 ■ USING LOBs AND BFILEs 485

The organization external keyword tells Oracle that this table actually is an external
table. The default directory option specifies my_dir to be the directory under which the file
for this table exists. The next three lines specify that the fields are terminated by a comma (,)
are optionally enclosed by a single quote ('), and any fields that are missing should be treated
as null. Finally, the location option specifies the file name to be et_data.txt. We are now
ready to run a normal select on this table as follows:

benchmark@ORA10G> select * from my_emp_et;

EMPNO ENAME
---------- --------------------

1 Varun Menon
2 Chaandni Sneha
3 John Edgar
4 Jones Poe

benchmark@ORA10G> select empno, ename
2 from my_emp_et
3 where empno <= 3;

EMPNO ENAME
---------- --------------------

1 Varun Menon
2 Chaandni Sneha
3 John Edgar

You can thus use this facility to do the following, among other things:

• Do a one-time load from files into databases using the insert into select * from
<external table> syntax. This is the most common usage of external tables.

• Get the contents of a text file on the database server in your JDBC layer by using a sim-
ple select statement. Of course, all the amazing flexibility that comes along with the
select statement is available for you to use.

• Treat a structured file as a table with individual columns (as we did previously) and run
selects on them to get data, which can be filtered or transformed on its way to JDBC. If
the file is not structured (it uses a free format) then, in most cases, you could use the
new line as a separator to read the data in JDBC using simple selects.

BFILE vs. UTL_FILE vs. External Table
Table 12-2 shows a comparison of the features of three alternatives useful in server-side text
and/or binary file reading and manipulation.

CHAPTER 12 ■ USING LOBs AND BFILEs486

Table 12-2. Comparison of Various Server-Side File Manipulation Alternatives

BFILE UTL_FILE External Table

Can be used to read text Can be used to read and write Can be used to read text files.
and binary files. text and binary files. It is the

only alternative that supports
both text and binary files.

Useful in reading text Useful in reading and writing Useful in using selects to read text
and binary files as streams text and binary files in user- data. It is simple to use and allows you
that can be read in user- defined chunk sizes. You can to transform/manipulate resulting
defined chunks. also do random access using data using the power that comes with

functions such as fseek (see the select statement. Also, the JDBC
the Oracle documentation for code is relatively simple and does not
further details). have to deal with streams (we use the

ResultSet interface to get the data as
strings). The maximum size of one
“row” (or chunk) is limited to 4,000
bytes (the size of VARCHAR2 in SQL).

Works well in JDBC and Of limited use in JDBC if you Works well in JDBC for most text
PL/SQL for reading data. want to read a file. Since there cases. In free-format texts, one text

is no JDBC type corresponding chunk bounded by the delimiter
to the file handle record type should not exceed 4,000 bytes (e.g., if
used by UTL_FILE, you will have the delimiter is a new line, then each
to create a wrapper. Also, you line should be less than 4,000 bytes
will need to do multiple server in size).
calls per read while invoking
the UTL_FILE.GET_LINE
function, which can be a
performance bottleneck. It
works well in PL/SQL, as there
are no round-trips involved.

We’ll now run a performance comparison between using BFILE and external tables to
read a text file. (Using UTL_FILE is too cumbersome and is usually not a good option anyway,
due to reasons mentioned in Table 12-2, so we won’t bother to use UTL_FILE in this compari-
son.) First, we create the schema and the data on which the benchmark will run. We create the
directory that will contain the benchmark file.

benchmark@ORA10G> create or replace directory my_dir as 'C:\TEMP';

Directory created.

Since you are now an expert in UTL_FILE, for fun let’s create the benchmark file using the
following UTL_FILE program:

benchmark@ORA10G> declare
2 l_buffer varchar2(32767);
3 l_file_handle utl_file.file_type;
4 begin
5 -- open the file in write mode -- create one if
6 -- file does not exist.
7
8 l_file_handle := utl_file.fopen('MY_DIR', 'benchmark_input.txt', 'W',

CHAPTER 12 ■ USING LOBs AND BFILEs 487

9 256);
10 for i in 1 .. 10000
11 loop
12 utl_file.put_line(l_file_handle, 'my line number ' || i);
13 end loop;
14 utl_file.fclose(l_file_handle);
15 exception
16 when others then
17 raise;
18 end;
19 /

PL/SQL procedure successfully completed.

As you can see, the program simply writes 10,000 lines to a file called benchmark_input.txt.
The benchmark_input.txt file has a total of 188,894 characters; thus it has approximately 19
characters per line on average.

Next, we create a table containing a BFILE column and insert a row into the table:

benchmark@ORA10G> create table bfile_table
2 (
3 x varchar2(30),
4 id number,
5 bfile_col bfile
6);

Table created.

benchmark@ORA10G> insert into bfile_table(x, id, bfile_col)
2 values ('benchmark text file', 1,
3 bfilename('MY_DIR', 'benchmark_input.txt'));

1 row created.

benchmark@ORA10G> commit;

Finally, we create an external table to point to our benchmark file (note that we use the
phrase records limited by newline to indicate that each “row” selected will be defined by the
newline delimiter):

benchmark@ORA10G> create table et_table
2 (
3 data varchar2(4000)
4)
5 organization external
6 (
7 type oracle_loader
8 default directory my_dir
9 access parameters

CHAPTER 12 ■ USING LOBs AND BFILEs488

10 (
11 records delimited by newline
12)
13 location('benchmark_input.txt')
14);

Table created.

benchmark@ORA10G> select count(*) from et_table;

COUNT(*)

10000

In our benchmark program, we do the following:

1. Take care to prepare the statements only once to avoid multiple soft parses of the
statements.

2. Run the external table select with multiple fetch sizes.

3. To ensure that the JVM is in a steady state when the benchmark is run, we make sure
we run each benchmark for five minutes (by finding out how many runs are required
for running the benchmark for five minutes and then taking an average at the end).

Following is the class BenchmarkReadUsingBfileAndExternalTables that I used to run the
benchmark. It extends the class JBenchmark covered in Chapter 1. It begins with the import
statements:

/** This program compares read using a BFILE and external tables.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.Connection;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import oracle.jdbc.OracleResultSet;
import oracle.sql.BFILE;
import book.util.JDBCUtil;
import book.util.JBenchmark;
class BenchmarkReadUsingBfileAndExternalTables extends JBenchmark
{
public static void main(String args[]) throws Exception
{

CHAPTER 12 ■ USING LOBs AND BFILEs 489

We check the command-line parameters. The first argument is the database name, and
the second optional argument is the fetch size used in selects for the external tables:

if(args.length != 1 && args.length != 2)
{
System.err.println(" Usage: java <program_name> <database_name>

[prefetch_size]");
Runtime.getRuntime().exit(1);

}
int prefetchSize = 20;
if(args.length == 2)
{
prefetchSize = Integer.parseInt(args[1]);

}
System.out.println("Prefetch size for external table: " + prefetchSize);
Connection conn = null;
try
{
// get connection (autocommit is off)

In the try catch block, we obtain the connection, prepare our benchmark statements,
and invoke the method _runBenchmark(), which contains the bulk of the logic:

conn = JDBCUtil.getConnection("benchmark", "benchmark", args[0]);
_prepareBenchmarkStatements(conn);
new BenchmarkReadUsingBfileAndExternalTables()._runBenchmark(
conn, prefetchSize);

}
finally
{
// release resources associated with JDBC in the finally clause.
_closeBenchmarkStatements(conn);
JDBCUtil.close(conn);

}
}

The method _runBenchmark() times the first and the second method of the JBenchmark
passing the connection and the fetch size passed in (or a default fetch size of 20):

private void _runBenchmark(Connection conn, int prefetchSize) throws Exception
{
Object[] params = new Object[1];
params[0] = new Integer(prefetchSize);
timeMethod(JBenchmark.FIRST_METHOD, conn, params, BFILE_DESC);
timeMethod(JBenchmark.SECOND_METHOD, conn, params, EXTERNAL_TABLE_DESC);

}

CHAPTER 12 ■ USING LOBs AND BFILEs490

The method firstMethod() is overridden to implement the logic of reading the bench-
mark file line by line from the BFILE column in the table bfile_table:

/* reads an ASCII file using BFILE. */
public void firstMethod(Connection conn, Object[] params) throws Exception
{
OracleResultSet orset = null;
BFILE bfile = null;
BufferedReader reader = null;
InputStream in = null;
long numOfCharacersRead = 0;
try
{
_bfilePstmt.setInt(1, 1);
orset = (OracleResultSet) _bfilePstmt.executeQuery();
String line = null;
while(orset.next())
{
bfile = orset.getBfile(1);
bfile.openFile();
in = bfile.getBinaryStream();
reader = new BufferedReader(new InputStreamReader(in));
numOfCharacersRead = 0;
while ((line = reader.readLine()) != null)
{
//System.out.println(line);
numOfCharacersRead += line.length();

}
}

}
finally
{
if(in != null)
in.close();

if(bfile != null)
bfile.closeFile();

JDBCUtil.close(orset);
}
//System.out.println("No of characters read: " + numOfCharacersRead);

}

The method secondMethod() is overridden to implement the logic of reading the bench-
mark file by selecting from the external table et_table:

/* reads from a text file using external tables. */
public void secondMethod(Connection conn, Object[] parameters) throws Exception
{
ResultSet rset = null;

CHAPTER 12 ■ USING LOBs AND BFILEs 491

long numOfCharacersRead = 0;
int prefetchSize = ((Integer) parameters[0]).intValue();
try
{
_externalTablePstmt.setFetchSize(prefetchSize);
rset = _externalTablePstmt.executeQuery();
numOfCharacersRead = 0;
while(rset.next())
{
String line1 = rset.getString(1);
numOfCharacersRead += line1.length();

}
}
finally
{
JDBCUtil.close(rset);

}
//System.out.println("No of characters read: " + numOfCharacersRead);

}

The methods _prepareBenchmarkStatements() and _closeBenchmarkStatements() simply
prepare and close the SQL statements used to run the appropriate query for the BFILE and
external table cases:

private static void _prepareBenchmarkStatements(Connection conn)
throws SQLException

{
String stmtString = "select data from et_table";
_externalTablePstmt = conn.prepareStatement(stmtString);
stmtString = "select bfile_col from bfile_table "+

" where id = ?";
_bfilePstmt = conn.prepareStatement(stmtString);

}
private static void _closeBenchmarkStatements(Connection conn)
throws SQLException

{
JDBCUtil.close(_bfilePstmt);
JDBCUtil.close(_externalTablePstmt);

}
private static final String BFILE_DESC = "Using Bfile";
private static final String EXTERNAL_TABLE_DESC = "Using external table";
private static PreparedStatement _bfilePstmt;
private static PreparedStatement _externalTablePstmt;

}

CHAPTER 12 ■ USING LOBs AND BFILEs492

When I run the program for a fetch size of 100, for example, the results are as follows:

URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
Using Bfile

On an average it took 30 ms (number of runs = 3225.)
Using external table

On an average it took 158 ms (number of runs = 1063.)

As you can see, external tables run slower (they take around five times longer) in my test
benchmarks compared to BFILEs. Runs for other fetch sizes yielded similar results. This does
not mean that you should discard the idea of external tables. Remember that reading from a
file such as this in a real production system is not a typical requirement. If you are indeed
reading files regularly as this, you should consider loading them into the database anyway
(external tables are an excellent tool for achieving a one-time load from files into tables).
Loading files into the database also gives your application all the benefits that come from
storing data in the database as opposed to retaining them in the operating system (e.g., the
ability to recover data in the event of a crash). Also, external tables give you access to using
SQL on the data to transform them on their way to the client. You should use all of these crite-
ria in choosing the appropriate tool for your particular use case.

Summary
In this chapter, you learned what LOBs are and how they are useful in storing large text and
binary data. You learned how to read from and write to CLOBs and BLOBs, and how to read from
BFILEs. You then looked at some Oracle-specific alternatives to using BFILE: the UTL_FILE
PL/SQL package and external tables. Also, you discovered that UTL_FILE can be used to read
and write to text and binary files, whereas external tables can be used only to read from text
files. Finally, you compared these alternatives in terms of features and performance.

CHAPTER 12 ■ USING LOBs AND BFILEs 493

Statement Caching

Statement caching is a JDBC 3.0 feature designed to improve performance by caching state-
ments that are used repeatedly (e.g., in a loop) in the same session. By caching the statements,
you prevent the overhead of repeated parsing of the cursor.

In this chapter, you’ll learn about statement caching, its different flavors in JDBC, and how
it improves the performance of JDBC programs. As a background to the statement caching con-
cept, you’ll first go through a detailed discussion of cursors and ref cursors. You’ll also learn
about two other related caches, namely the PL/SQL cursor cache (which is the equivalent of
JDBC statement caching in PL/SQL code) and session cached cursors.

■Note We’ll use the tkprof utility in this chapter, so if you aren’t familiar with it I urge you to refer to the
section on tkprof in Chapter 1 and the relevant section of Oracle Database Performance Tuning Guide
and Reference (10g Release 1). In this chapter, you’ll also use the runstats utility and its JDBC wrapper,
JRunstats, which is discussed in Chapter 1.

Cursors
A cursor is a handle to a private SQL area that points to an entry in the shared pool consisting
of the parsed statement. It consists of session-specific information, such as bind variables, the
cursor state, the current position in the row in the case of a select statement, and so on.

Cursors in PL/SQL (Explicit and Implicit)
Let’s look at an example of a cursor in PL/SQL. Assume that we’ve already created a table, t1,
and inserted numbers from 1 to 5 into it:

benchmark@ORA10G> create table t1 (x number);

Table created.

benchmark@ORA10G> insert into t1
2 select rownum
3 from all_objects
4 where rownum <= 5; 495

C H A P T E R 1 3

■ ■ ■

CHAPTER 13 ■ STATEMENT CACHING496

5 rows created.

benchmark@ORA10G> commit;

Commit complete.

Now we can declare a cursor explicitly in PL/SQL and retrieve its contents:

benchmark@ORA10G> -- open a cursor and select from it
benchmark@ORA10G> declare
2 cursor l_cursor is select x from t1;
3 l_dummy number;
4 begin
5 open l_cursor;
6 loop
7 fetch l_cursor into l_dummy;
8 exit when l_cursor%notfound;
9 dbms_output.put_line(l_dummy);
10 end loop;
11 close l_cursor;
12 end;
13 /
1
2
3
4
5

PL/SQL procedure successfully completed.

When PL/SQL encounters line 2 in the preceding code snippet, it creates a cursor handle
and points it to the parsed select statement in the shared pool (if the statement doesn’t exist
yet in the shared pool, it needs to be hard-parsed before it’s put into the shared pool; see the
section “Overview of How Oracle Processes SQL Statements (DML)” of Chapter 5 for a brief
discussion on hard parses and soft parses). Notice that there are two distinct data structures
involved here:

• The cursor itself, which is specific to the session and consists of session-specific infor-
mation, such as bind variables, the cursor state (whether it is open or closed), and so
on, required in executing the statement

• The parsed SQL statement, which is in the shared pool and by definition can be shared
among multiple sessions that execute the same statement

Line 5 in the code snippet opens the cursor, and then we loop through the cursor
between lines 6 and 10. Notice how we use the PL/SQL construct cursor_variable%notfound
to exit the loop when there are no more records to fetch. We then close the cursor outside the
loop in line 11.

The preceding code is an example in which a cursor is explicitly declared in PL/SQL. The
following code shows how to achieve the same results using an implicit cursor:

benchmark@ORA10G> begin
2 for l_cursor in(select x from t1)
3 loop
4 dbms_output.put_line(l_cursor.x);
5 end loop;
6 end;
7 /

1
2
3
4
5

PL/SQL procedure successfully completed.

Notice how the code does not involve explicitly opening, closing, and fetching records from
the cursor; PL/SQL does that for you. You will find that the code using implicit cursors is usually
more concise, more readable, and slightly more performant compared to code using explicit
cursors. Explicit cursors, on the other hand, give you more flexibility and control over when the
open, fetch, and close of a cursor is done. This control can be used in techniques such as bulk
collect to achieve better performance in certain cases, as you will see in Chapter 17.

Ref Cursors (or Cursor Variables)
A ref cursor or cursor variable is a pointer to a cursor. Unlike the implicit and explicit cursors
that are hard-wired to specific queries at compile time, a ref cursor can be tied to different
queries during the same execution of the program. For example, consider the following
procedure created after we log in as the user SCOTT:

scott@ORA10G> create or replace procedure demo_refcursor(
p_query_selector in varchar2,

2 p_criterion in varchar2, p_ref_cursor in out sys_refcursor)
3 is
4 l_empno emp.empno%type;
5 l_ename emp.ename%type;
6 l_job emp.job%type;
7 begin
8 if('ename' = p_query_selector) then
9 open p_ref_cursor for
10 select empno, ename, job
11 from emp
12 where ename like '%'||p_criterion||'%';
13 elsif('job' = p_query_selector) then
14 open p_ref_cursor for
15 select empno, ename, job
16 from emp

CHAPTER 13 ■ STATEMENT CACHING 497

17 where job like '%'||p_criterion||'%';
18 end if;
19 end;
20 /

Procedure created.

The procedure, demo_refcursor, demonstrates how the same ref cursor variable can be
dynamically associated with a different cursor based on the user input. The procedure takes a
query selector and a criterion, and returns a ref cursor in its third parameter, which is declared
using the built-in PL/SQL data type sys_refcursor. In lines 4 through 6, we use the %type con-
struct to declare variables whose types are anchored to the emp table column types. Based on
the value of the query selector, the procedure opens and returns a different cursor, and uses
the passed criterion in the query’s where clause. We can now fetch these cursors as ResultSet
objects using the CallableStatement interface in JDBC and print them out. The following
DemoRefCursor class does this:

/** This program simply prints out a ref cursor, which points to a
different query based on passed criteria

* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.ResultSet;
import java.sql.Connection;
import java.sql.CallableStatement;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
class DemoRefCursor
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
CallableStatement cstmt = null;
ResultSet rset = null;

The first command-line parameter to the class is the database name, the second parame-
ter is the criterion (which becomes the first parameter of the procedure demo_refcursor), and
the third parameter is the bind value to the dynamically generated ref cursor’s query (which
becomes the second parameter to the procedure demo_refcursor). We simply execute the
procedure demo_refcursor in the following code, passing the appropriate parameters:

try
{
// get connection - auto commit is off
conn = (Connection) JDBCUtil. getConnection("scott", "tiger", args[0]);
String stmtString = "{call demo_refcursor(?, ?, ?) }";
cstmt = conn.prepareCall(stmtString);
cstmt.setString(1, args[1]); // criterion

CHAPTER 13 ■ STATEMENT CACHING498

cstmt.setString(2, args[2]); // bind value
cstmt.registerOutParameter(3, OracleTypes.CURSOR); // returned cursor
cstmt.execute();
rset = (ResultSet) cstmt.getObject(3);
while(rset.next())
{
System.out.println(rset.getInt(1) + ", " + rset.getString(2) +
", " + rset.getString(3));

}
}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);
JDBCUtil.close(conn);

}
}

}

We first invoke the program with the criterion ename and the bind value SCOTT to get the
following output:

B:\>java DemoRefCursor ora10g ename SCOTT
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
7788, SCOTT, ANALYST

Next, we invoke the program with the criterion job and the bind value CLERK to get the fol-
lowing output:

B:\>java DemoRefCursor ora10g job CLERK
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
7369, SMITH, CLERK
7876, ADAMS, CLERK
7900, JAMES, CLERK
7934, MILLER, CLERK

The preceding program demonstrates that a ref cursor can be dynamically made to point
to a different query at runtime. A ref cursor is typically used to return a query’s result to client
programs such as those written using JDBC/ODBC, Pro*C/Oracle Forms, and so on (as just
demonstrated). This is a very powerful feature, because it allows the client and the server to
transparently share the same result set. The ref cursor can be declared on the client (e.g., the
ResultSet variable in our program, DemoRefCursor), it can be opened on the server, and the
results can be fetched from the client.

The next few sections assume that you know the difference between a hard parse and a
soft parse of a DML statement. If you’re not familiar with these concepts, please review the
section “Overview of How Oracle Processes SQL Statements (DML)” of Chapter 5.

CHAPTER 13 ■ STATEMENT CACHING 499

Prepare Once, Bind and Execute Many Times
As you know by now, each time an application opens a cursor, Oracle hard-parses the state-
ment on the first encounter (or if the statement is no longer in the shared pool), and then
soft-parses it on subsequent encounters. In this section, we will look at how a statement is
parsed within a loop.

To see the inner workings of our programs in this chapter, we will set SQL trace from Java
by executing the method JDBCUtil.startTrace(). The method startTrace() of the JDBCUtil
class is as follows:

/**
* starts SQL trace for a JDBC program. The SQL trace is
* automatically disabled when the program ends
*/
public static void startTrace (Connection connection) throws SQLException
{
String setTimedStatisticsStmt = "alter session set timed_statistics=true";
String setTraceStmt =
"alter session set events '10046 trace name context forever, level 12'";

Statement stmt = null;
try
{
stmt = connection.createStatement();
stmt.execute(setTimedStatisticsStmt);
stmt.execute(setTraceStmt);

}
finally
{
stmt.close();

}
}

As you can see, the method simply sets the timed statistics on and alters the session to
enable SQL tracing. Subsequently, we will use tkprof to look at the trace file data.

The concept of soft and hard parses in a loop is illustrated by the following program,
DemoParse, with interspersed explanatory comments:

import java.sql.SQLException;
import java.sql.ResultSet;
import java.sql.Connection;
import java.sql.PreparedStatement;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
class DemoParse
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
PreparedStatement pstmt = null;

CHAPTER 13 ■ STATEMENT CACHING500

PreparedStatement pstmt1 = null;
ResultSet rset = null;
ResultSet rset1 = null;
try
{
// get connection - auto commit is off
conn = (Connection) JDBCUtil. getConnection("scott", "tiger", args[0]);

We start the trace, as we will use tkprof to demonstrate the concepts:

JDBCUtil.startTrace(conn);

The first statement string has a “tag” enclosed within /*+ and */:

String stmtString = "select /*+ prepareStatement() within loop */" +
" empno, job from emp where ename = ?";

Why do we need the tag? We need it because we will be comparing execution of the same
statement (select empno, job from emp where ename=?) for two cases:

• Case 1: We execute prepareStatement() within a for loop that loops five times.

• Case 2: We execute prepareStatement() outside a for loop that loops five times.

When we look at the tkprof output, we need to distinguish between the two cases; other-
wise, tkprof will combine the statistics for both at one place, since the statements will be
identical. When we use a tag of the form /*+ <some identifying string that is not a valid
hint>*/, Oracle treats the tag as a no-op SQL hint (i.e., a null operation) and ignores it since it
is not a valid hint, but still treats any two statements that have a different tag as “different.”
Using a tag like this is a very useful trick to compare identical statements in a SQL trace, but
distinguish their alternative execution profiles in the trace file. This technique will become
clearer once we look at the tkprof output.

■Note Instead of enclosing the tag between /*+ and */, you could enclose it within /* and */, which
constitutes a comment. However, this works only in 9i; in 10g, as an optimization, Oracle strips out the
comments before processing the statement, thus defeating the purpose of the tag.

From the tag value of prepareStatement() within loop, we can make out that we are
going to execute case 1 first. We do that in the following code by executing our statement five
times within the loop (note that the invocation of prepareStatement() is within the for loop):

for(int i=0; i < 5; i++)
{
pstmt = conn.prepareStatement(stmtString);
pstmt.setString(1, "SCOTT");
rset = pstmt.executeQuery();
while(rset.next())

CHAPTER 13 ■ STATEMENT CACHING 501

{
}

}

Next, we prepare an identical statement except for the tag, which indicates that this time
we prepare the statement outside the loop:

stmtString = "select /*+ prepareStatement() outside loop */ " +
"empno, job from emp where ename = ?";

pstmt1 = conn.prepareStatement(stmtString);
for(int i=0; i < 5; i++)
{
pstmt1.setString(1, "SCOTT");
rset1 = pstmt1.executeQuery();
while(rset1.next())
{
}

}
}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);
JDBCUtil.close(rset1);
JDBCUtil.close(pstmt1);
JDBCUtil.close(conn);

}
}

}

Following is the relevant portion of the tkprof output for case 1:

select /*+ prepareStatement() within loop */ empno, job
from
emp where ename = :1

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 5 0.00 0.00 0 0 0 0
Execute 5 0.18 0.19 0 0 0 0
Fetch 5 0.00 0.00 0 35 0 5
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 15 0.18 0.19 0 35 0 5

Misses in library cache during parse: 1

CHAPTER 13 ■ STATEMENT CACHING502

The first thing to note is how the tag was retained by the SQL statement, thus enabling us
to clearly see the profile of the statement separately. The tkprof output itself reveals the fol-
lowing:

• There were a total of five parses, which implies that the statement was parsed in every
iteration of the loop.

• The 1 after the label Misses in library cache during parse indicates that the very first
parse did not find the statement in the shared pool; hence, it was a hard parse. The
remaining four parses were soft parses.

Looking at the tkprof output for our second loop, we see the following:

select /*+ prepareStatement() outside loop */ empno, job
from
emp where ename = :1

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 5 0.01 0.00 0 0 0 0
Fetch 5 0.00 0.00 0 35 0 5
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 11 0.01 0.00 0 35 0 5

Misses in library cache during parse: 1

We can see that in case 2, Oracle needed to parse only once (a hard parse, as indicated by
the misses in library cache being 1) for all five iterations.

We can conclude that whenever possible, we should prepare a statement only once, and
bind or execute it many times to reduce the number of soft parses and the associated overhead.
However, there are situations where this may not be straightforward. For example, I work in an
environment where there are around 500 other developers all over the world working on the
same product with different components. With each request, statements and result sets are
created and closed using a centralized piece of code that implements connection pooling (con-
nection pooling is covered in the next chapter). If I wanted to implement statement caching in
such a scenario, I would have to implement and maintain my own centralized cache associated
with a connection object, through which all code would need to be channeled. The closing of
statements and cursors would also need to go through this piece of code, requiring a disciplined
approach from all the developers. We would also have to manage the cache (aging out state-
ments and so on). Fortunately, with JDBC 3.0, this functionality (called statement caching) is
now available as part of JDBC, wherein this cache is created and managed transparently by the
driver.

Before we look at statement caching, we will look at the related concept of session cursor
caching, which is a mechanism Oracle provides to cache the cursors automatically in the ses-
sion on the server side, to reduce the impact of soft parsing. We will then examine PL/SQL
cursor caching, after which we will discuss JDBC statement caching.

CHAPTER 13 ■ STATEMENT CACHING 503

Session Cursor Cache and “Softer” Soft Parses
In Oracle, when the opening and closing of cursors occurs repeatedly, the associated cursors
can be cached in the session cursor cache. If you enable session cached cursors, the overhead
of the soft parse decreases if you get a cache hit. Note that even if you get a hit in the session
cache, Oracle still needs to validate that the opened cursor points to valid SQL in the shared
pool (it could have been invalidated for some reason, such as schema changes since the last
parse). Thus, it still needs to soft-parse the statement, although the soft parse in this case is
less CPU-intensive and hence called a “softer” soft parse.

■Note If the session cache is enabled and you get a hit in the cache, the soft parse done is called a softer
soft parse since it is less expensive compared to the case when session cache is disabled or when it is
enabled but you don’t get a hit in the cache.

Now that the JDBC driver provides you a mechanism to eliminate the soft parses auto-
matically through statement caching (discussed later), the session cursor cache is less relevant
for JDBC applications. It can still be useful in the following situations:

• As a temporary fix for an application until you enable statement caching on it.

• As a workaround to reduce the impact of soft parses for a JDBC application, when you
don’t have access to the application’s code (hence, it isn’t feasible to enable statement
caching in it). This is feasible since session cached cursors can be controlled at the
session level or instance level.

Let’s next look at the session cursor cache in action.

Session Cursor Cache in Action
You enable session cached cursors by setting the parameter session_cached_cursors to the
size of cache that you need (the default value is 0). Here “size” denotes the number of cursors
you want to cache. You can do this either at the system level using the init.ora parameter
session_cached_cursors, or at the session level using the alter session command. The public
method setSessionCachedCursors() in the utility class JDBCUtil shown in the following code
sets the session cursor cache size equal to the int parameter passed to it:

public static void setSessionCachedCursors (Connection connection,
int sessionCachedCursors) throws SQLException

{
String stmtStr = "alter session set session_cached_cursors=" +
sessionCachedCursors ;

Statement stmt = null;
try
{
stmt = connection.createStatement();

CHAPTER 13 ■ STATEMENT CACHING504

stmt.execute(stmtStr);
}
finally
{
stmt.close();

}
}

We are now ready to demonstrate the impact of session cursor cache. First, we create a
simple table, t1, with just one numeric column in which we insert the numbers 1 to 10,000:

benchmark@ORA10G> create table t1 as
2 select rownum as x
3 from all_objects
4 where rownum <= 10000;

Table created.

benchmark@ORA10G> select count(*) from t1;

COUNT(*)

10000

The following DemoSessionCachedCursors class compares two cases:

• Case 1: We run the select from table t1 10,000 times with session cached cursors set to 0.

• Case 2: We run the select from table t1 10,000 times with session cached cursors set to 500.

/** This program demonstrates the impact of session cursor cache.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0 */
import java.sql.SQLException;
import java.sql.ResultSet;
import java.sql.Connection;
import java.sql.PreparedStatement;
import book.util.JDBCUtil;
import book.util.JRunstats;
class DemoSessionCachedCursors
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
// first parameter: database name
try
{
// get connection - auto commit is off
conn = (Connection) JDBCUtil. getConnection("benchmark",
"benchmark", args[0]);

CHAPTER 13 ■ STATEMENT CACHING 505

We will use the JRunstats utility class (discussed in the section “JDBC Wrapper for run-
stats” of Chapter 1) for comparing the two cases. We begin by preparing the benchmark
statements in the class JRunstats:

JRunstats.prepareBenchmarkStatements (conn);

We mark the beginning of the benchmark run next:

JRunstats.markStart (conn);

We set the session cached cursors to 0 in the first scenario, effectively disabling it:

JDBCUtil.setSessionCachedCursors(conn, 0);

We execute the following query from t1 10,000 times (we don’t need to retrieve the results
for our test case):

String stmtString = "select x from t1";
PreparedStatement pstmt = null;
ResultSet rset = null;
for(int i=0; i < 10000; i++)
{
try
{
pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();

}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

■Note As you’ll learn later, you can’t use a static cursor for this benchmark, as static cursors are cached
by PL/SQL themselves, thus undermining the test results. You have to use a ref cursor.

We then mark the beginning of the second scenario by invoking the method markMiddle():

JRunstats.markMiddle (conn);

We now set the session cached cursors to 500 and execute the second scenario. We finally
print out the results by invoking JRunstats.markEnd() to end our program:

JDBCUtil.setSessionCachedCursors(conn, 500);
stmtString = "select x from t1";
PreparedStatement pstmt1 = null;

CHAPTER 13 ■ STATEMENT CACHING506

ResultSet rset1 = null;
for(int i=0; i < 10000; i++)
{
try
{
pstmt1 = conn.prepareStatement(stmtString);
rset1 = pstmt1.executeQuery();

}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(rset1);
JDBCUtil.close(pstmt1);

}
}
JRunstats.markEnd (conn);

}
finally
{
// release resources associated with JDBC in the finally clause.
JRunstats.closeBenchmarkStatements (conn);
JDBCUtil.close(conn);

}
}

}// end of program

When we execute the program, we get the following results:

B:\>java DemoSessionCachedCursors
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))

------- Benchmark Results --------

Results from RUNSTATS utility

Run1 ran in 1311 hsecs
Run2 ran in 1230 hsecs
run 1 ran in 106.59% of the time

Name Run1 Run2 Diff
STAT...opened cursors current 0 1 1
<-- trimmed to save space -->

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct

356,675 224,755 -131,920 158.70%

CHAPTER 13 ■ STATEMENT CACHING 507

Runtime Execution Time Differences as seen by the client

Run1 ran in 1317 hsecs

Run2 ran in 1231 hsecs

Run1 ran in 107% of the time

You can see that when the session cache cursor was disabled, the program took 158%
times the amount of latches consumed when it was enabled to cache 500 cursors. Assuming
the query was already in the shared pool, in both cases we soft-parsed 10,000 times (this can
be verified using the tkprof utility); however, when the session cursor cache was on, due to
softer soft parses, the parses that got a “hit” in the session cursor cache were less costly, result-
ing in significantly less latch consumption.

■Note From the results of this section’s test, you should not conclude that you can set the
session_cached_cursors parameter to a high value blindly. There is a point of diminishing returns, as you
may expect. You should run benchmarks based on your application and set session_cached_cursors to
an appropriate value accordingly.

PL/SQL Cursor Cache
In the previous section, you saw how you can make a soft parse softer by using session cursor
cache. Before 10g, the PL/SQL language cached only static cursors (excluding ref cursors),
thus allowing you to avoid subsequent soft parses completely in such cases. Starting with 10g,
PL/SQL also caches native dynamic SQL (which uses execute immediate syntax) in a loop,
assuming that the exact same statement is being executed for each iteration in the loop (i.e.,
the statement is not changing for different iterations) and the compiler can determine this at
compile time.

PL/SQL avoids soft parses by performing a soft close on the cursor. In other words, when
you close a cursor explicitly (e.g., by using the close command) or implicitly (e.g., when the
cursor goes out of scope in the for loop in which it was defined), PL/SQL does not actually
close the cursor—it caches it in its own separate cursor cache, hoping that your application
will reuse the cursor in its next attempt. Of course, if the maximum limit for opened cursors is
about to be reached, then it closes the cursor for real. The beauty of this feature is that for the
class of cursors for which it is applicable, you can avoid soft parses completely!

CHAPTER 13 ■ STATEMENT CACHING508

■Note As of Oracle 10g Release 1, the PL/SQL cursor cache does not cache ref cursors. Ref cursors can
be tricky to cache, since they can point to a different cursor during the same execution, as presented earlier.
They can also “escape” to a client such as a JDBC program, in which case you no longer control the cursor
(the JDBC client controls it). Recall, however, that ref cursors are cached by session cursor cache. Session
cursor caches go through a softer soft parse during which they validate their cursor anyway; hence, it
makes sense for ref cursors to be cached in session cache.

Let’s now look at the PL/SQL cursor in action. We will, in fact, compare it to a loop similar
to the one we executed earlier while benchmarking session cached cursors. We will use the
same schema that we created: the one consisting of table t1 with one number column con-
taining 10,000 rows, each a number from 1 to 10,000. This time, we will use the runstats
package and PL/SQL code to demonstrate the concept.

First, we set session_cached_cursors to a value of 500 and execute the runstats_pkg.rs_➥

start() method, followed by the same loop that we executed in our tests for demonstrating
session cached cursors. In this case, the PL/SQL cache does not come into the picture because
we use a ref cursor.

benchmark@ORA10G> alter session set session_cached_cursors=500;

Session altered.

benchmark@ORA10G> exec runstats_pkg.rs_start

PL/SQL procedure successfully completed.

benchmark@ORA10G>
benchmark@ORA10G> declare
2 l_cursor sys_refcursor;
3 begin
4 for i in 1..10000
5 loop
6 open l_cursor for
7 select x
8 from t1
9 where x = i;
10 close l_cursor;
11 end loop;
12 end;
13 /

PL/SQL procedure successfully completed.

CHAPTER 13 ■ STATEMENT CACHING 509

Next, we execute the runstats_pkg.rs_middle() method, followed by opening and closing
the same select statement—but this time in a parameterized static cursor, which is a candi-
date for being cached by the PL/SQL cursor cache:

benchmark@ORA10G> exec runstats_pkg.rs_middle

PL/SQL procedure successfully completed.

benchmark@ORA10G> declare
2 cursor l_cursor(p_x in number) is
3 select x from t1 where x = p_x;
4 begin
5 for i in 1..10000
6 loop
7 open l_cursor(i);
8 close l_cursor;
9 end loop;
10 end;
11 /

PL/SQL procedure successfully completed.

Notice how in code lines 2 and 3, we declare a static parameterized cursor that allows us
to pass bind values as parameters. We open the cursor and pass the bind value in line 7.

Finally, we execute the runstats_pkg.rs_stop() method to display the comparison
results:

benchmark@ORA10G> exec runstats_pkg.rs_stop(80)
Run1 ran in 1461 hsecs
Run2 ran in 644 hsecs
run 1 ran in 226.86% of the time

Name Run1 Run2 Diff
STAT...parse time elapsed 82 0 -82
<-- trimmed to save space -->
LATCH.row cache objects 30,024 18 -30,006

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct

81,789 50,808 -30,981 160.98%

As you can see, the case where the PL/SQL cache was not in effect took more than twice
the time and consumed 1.6 times the latches compared to the case where the PL/SQL cache
was applicable. I ran the same test with SQL trace on. The following tkprof output shows the
parse counts:

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 10001 0.74 0.83 0 0 0 0

CHAPTER 13 ■ STATEMENT CACHING510

Execute 20000 6.97 6.87 0 0 0 0
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 30001 7.71 7.70 0 0 0 0

As shown, the total soft parse count is 10,001: 10,000 in the ref cursor case and 1 in the
static cursor case (that occurs the first time in the static cursor case loop).

Thus, we can conclude that the PL/SQL cursor cache significantly increases our perform-
ance transparently for static cursors (and native dynamic SQL cursors in 10g). This is another
point in favor of using the combination of PL/SQL packaged procedures/functions and
CallableStatement in JDBC programs (apart from the reasons discussed in Chapter 6).

■Note Prior to Oracle 9.2.0.5, the maximum number of the cursors in the PL/SQL cache was bounded by
the value of the init.ora parameter open_cursors. The PL/SQL engine would start hard-closing the cur-
sors once this limit was reached, so that you couldn’t run out of cursors on account of the PL/SQL caching
mechanism. However, starting with 9.2.0.5, this upper bound is defined by the session_cached_cursors
parameter. When session_cached_cursors is either not set or set to 0, Oracle uses a PL/SQL cache of
size 50. When session_cached_cursors is set to any nonzero value, the PL/SQL cursor cache size is
bound by the session_cached_cursors size. This is critical to understand, since a low PL/SQL cache size
can have a negative impact on your application’s performance.

Statement Caching in JDBC
As mentioned in the beginning of this chapter, statement caching was introduced in JDBC 3.0.
Put simply, statement caching improves performance by caching cursors associated with
statements executed repeatedly in a loop. As you’ll see soon, the performance improvement
comes because statement caching prevents the overhead of repeated creation of cursors and
repeated soft parses that a statement goes through when it is “prepared” using
PreparedStatement or CallableStatement in a loop.

Statement Caching Fundamentals
A statement cache is associated with a particular connection (i.e., each distinct physical con-
nection to the database) has its own statement cache. For a simple connection, statement
caching is associated with the OracleConnection object. For a pooled connection, it is associ-
ated with the OraclePooledConnection object (you’ll learn about pooled connections in
Chapter 14).

Recall that the PL/SQL cursor cache does the actual caching of the cursor when you do an
implicit or explicit “close” on a statement. In the same way, when statement caching is
enabled, the JDBC driver caches a statement when the statement is closed. The next iteration
picks the statement from the cache, thus avoiding the soft parse that would have otherwise
been incurred in preparing the same statement again.

CHAPTER 13 ■ STATEMENT CACHING 511

Implicit and Explicit Statement Caching
Oracle JDBC drivers provide you with two different flavors of statement caching: implicit
and explicit. Each type of statement cache can be enabled or disabled independently, which
means that you can have either, neither, or both in effect simultaneously. It is important to
remember that both statement-caching types share the same cache. This information is
relevant when you set the size of the statement cache.

Implicit Statement Caching
When you enable implicit statement caching, JDBC transparently caches the prepared or
callable statement when you call the close() method of a statement object. Behind the
scenes, the prepared and callable statements are cached and retrieved using the standard
connection object and statement object methods.

The beauty of implicit caching is that only the isolated piece of code that retrieves the
connection for an application needs to change to enable it. The bulk of the code that actually
prepares and executes the statements remains the same. Note that plain Statement objects are
not cached in an implicit cache because implicit statement caching uses the SQL statement
string as a key, and plain statements are by definition created without a SQL string, as follows:

Statement stmt = conn.createStatement();

Therefore, implicit statement caching applies only to the PreparedStatement and
CallableStatement objects (which are created with a SQL string). But hopefully this is a
nonissue, because you should not use plain Statement objects for executing DML statements
in production code anyway, for the numerous reasons covered in Chapter 5.

Assuming that implicit caching is enabled, when you prepare a PreparedStatement or
CallableStatement object, the JDBC driver automatically searches the cache for the statement
and gets a hit in the cache if the following are true:

• The statement type is the same (prepared or callable).

• The SQL string in the statement is identical (case sensitive) to the one in the cache.

• The scrollable type of result set produced by the statement is the same (forward-only or
scrollable). You can determine the scrollability of the prepared or callable statement as
explained in the Chapter 7.

If a match is found, the cached statement is returned and the rest of the code proceeds as
usual. If no match is found, a new statement is created and returned. When you call the
close() method of the statement, the new statement created along with its cursor and state is
cached in the implicit statement cache.

Enabling and Disabling Implicit Statement Caching

You can enable or disable implicit statement caching by invoking appropriate methods on
either the OracleConnection object or the OracleDataSource object from which the Connection
object is obtained.

To enable implicit statement caching on the OracleConnection object, you need to perform
the following steps:

CHAPTER 13 ■ STATEMENT CACHING512

1. Use the Oracle extension method setImplicitCachingEnabled(boolean flag) as follows:

conn.setImplicitCachingEnabled(true);

2. Set the cache size (remember, the same cache is shared by implicit and explicit caching)
by using the Oracle extension method setStatementCacheSize(int size) on the con-
nection object as follows:

conn.setStatementCacheSize(10);

To enable implicit statement caching on the OracleDataSource object, you need to perform
the following steps:

1. Invoke OracleDataSource.getConnection() with the ImplicitCachingEnabled property
set to true, or set ImplicitCachingEnabled on the OracleDataSource by calling Oracle➥

DataSource.setImplicitCachingEnabled(true) as follows (assume ods is an initialized
variable of type OracleDataSource):

ods.setImplicitCachingEnabled(true);

2. Set the cache size by invoking OracleDataSource.setMaxStatements(int maxNumber➥

OfStatements) as follows (assume ods is an initialized variable of type OracleDataSource):

ods.setMaxStatements(10);

■Note It is not very clear from the Oracle 10g Release 1 JDBC documentation that setting the statement
cache size to a nonzero value is required to enable the implicit statement cache (apart from the step of
invoking setImplicitCachingEnabled(true)). From the documentation, you might get the impression
that setting the cache size is a step required only to enable the explicit statement cache. However, my
experiments show that you need to perform both steps to enable the implicit statement cache as well.

To find out the number of statements that you can cache, you can use the method
getStatementCacheSize(), as follows:

System.out.println("cache size: " + conn.getStatementCacheSize());

To disable implicit statement caching on a connection object, you need to use the Oracle
extension method setImplicitCachingEnabled(boolean flag) as follows:

conn.setImplicitCachingEnabled(false);

To disable implicit statement caching on an OracleDataSource object, you need to
invoke OracleDataSource.getConnection() with the ImplicitCachingEnabled property set to
false, or set ImplicitCachingEnabled on the OracleDataSource by calling OracleDataSource.
setImplicitCachingEnabled(false) as follows (assume ods is an initialized variable of type
OracleDataSource):

ods.setImplicitCachingEnabled(false);

CHAPTER 13 ■ STATEMENT CACHING 513

Disabling Implicit Caching for a Particular PreparedStatement or CallableStatement

When implicit statement caching is enabled for a connection, by default all callable and
prepared statements of that connection are automatically cached. If you want to prevent
a particular callable or prepared statement from being implicitly cached, use the Oracle
extension method setDisableStatementCaching(), which is available in the interface
OraclePreparedStatement (and also by extension in the interface OracleCallableStatement).
This helps you disable caching on infrequently executed statements and manage the cache
space better.

The following code disables implicit statement caching for an already initialized
PreparedStatement object, pstmt:

((OraclePreparedStatement)pstmt).setDisableStmtCaching(true);

Physically Closing an Implicitly Cached PreparedStatement or CallableStatement

Recall that when you execute the close() method on an implicitly cached prepared or callable
statement, the statement does not really get closed. The physical closing of the statement is
not in your hands when implicit caching is enabled. The Oracle JDBC driver physically closes
the statement automatically under one of the following three conditions:

• When the associated connection is closed

• When the cache reaches its size limit and the least recently used statement object is
pre-empted from the cache by the Least Recently Used (LRU) scheme

• If you call the close() method on a statement for which statement caching is disabled
at the Statement level

Implicit Statement Caching in Action

It is time to demonstrate implicit caching in action. We will do this by comparing the execu-
tion of a simple select statement in a for loop with implicit caching enabled and disabled. We
will also demonstrate the implicit caching at work for a CallableStatement object, which will
invoke the simple function f() defined in the following code (notice that we tag the select
again since we will use tkprof subsequently and we need to identify where the SQL came
from):

benchmark@ORA10G> create or replace function f return sys_refcursor
2 as
3 l_cursor sys_refcursor;
4 begin
5 open l_cursor for
6 select /*+ to be called using callable statement */ dummy from dual;
7 return l_cursor;
8 end;
9 /

Function created.

CHAPTER 13 ■ STATEMENT CACHING514

The following DemoImplicitCaching program, along with the explanatory comments, illus-
trates the concept of implicit caching:

/* * This program demonstrates implicit statement caching.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.CallableStatement;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
import book.util.Util;
class DemoImplicitCaching
{
public static void main(String args[]) throws SQLException
{
Util.checkProgramUsage(args);
OracleConnection conn = null;
try
{
// get connection
conn = (OracleConnection) JDBCUtil.getConnection("benchmark",
"benchmark", args[0]);

We print out the flag that indicates whether or not caching is enabled and the cache size
(by default caching is disabled):

System.out.println("implicit caching enabled: " +
conn.getImplicitCachingEnabled());

System.out.println("cache size: " + conn.getStatementCacheSize());

Next we start the SQL trace:

JDBCUtil.startTrace(conn);

We invoke the method _doSelect() in a for loop 1,000 times. The method itself will be
explained shortly.

for(int i=0; i < 1000; i++)
{
_doSelect (conn, "/*+ implicit disabled */");

}

CHAPTER 13 ■ STATEMENT CACHING 515

We invoke the same loop again after enabling implicit caching and setting the statement
cache size to a positive number (10 in this case):

conn.setImplicitCachingEnabled(true);
conn.setStatementCacheSize(10);
System.out.println("implicit caching enabled: " +
conn.getImplicitCachingEnabled());

System.out.println("cache size: " +
conn.getStatementCacheSize());

for(int i=0; i < 1000; i++)
{
_doSelect (conn, "/*+ implicit enabled */");

}

We demonstrate the concept of implicit caching for a CallableStatement by invoking the
method _doExecuteCallableStatement():

// demonstrating use of implicit caching with callable statement
for(int i=0; i < 1000; i++)
{
_doExecuteCallableStatement(conn,

"/*+ enabled implicit caching for callable statement */");
}

}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(conn);

}
}

The method _doSelect() mentioned previously is as follows:

private static void _doSelect(Connection conn, String tag) throws SQLException
{
PreparedStatement pstmt = null;
ResultSet rset = null;

The main point to note is that we tag the SQL string so that we can easily recognize it in
the tkprof output. The rest of the code is a simple execution of the query using the
PreparedStatement interface:

String stmtString = "select " + tag + " count(*) from dual";
try
{
pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();

}
finally
{

CHAPTER 13 ■ STATEMENT CACHING516

JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

We execute the function f() in the method _doExecuteCallableStatement(). Note how we
tag the anonymous block.

private static void _doExecuteCallableStatement(Connection conn, String tag)
throws SQLException

{
CallableStatement cstmt = null;
ResultSet rset = null;
String stmtString = "begin" + tag + " ? := f; end;";
try
{
cstmt = conn.prepareCall(stmtString);
cstmt.registerOutParameter(1, OracleTypes.CURSOR);
cstmt.execute();
rset = (ResultSet) cstmt.getObject(1);

}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(cstmt);

}
}

}

The following snippet shows the relevant portion of the tkprof output of our statement
execution profile for the case when implicit caching was disabled:

select /*+ implicit disabled */ count(*)
from
dual

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1000 0.25 0.30 0 0 0 0
Execute 1000 0.23 0.23 0 0 0 0
Fetch 1000 0.20 0.27 0 0 0 1000
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3000 0.68 0.82 0 0 0 1000

Misses in library cache during parse: 0

CHAPTER 13 ■ STATEMENT CACHING 517

Notice how the statement was soft-parsed 1,000 times. This is because we prepared and
closed the statement (and its cursor) in a loop 1,000 times, and since statement caching was
disabled, each “close” of the statement physically closed the statement. Now take a look at the
profile for the case when implicit caching was enabled:

select /*+ implicit enabled */ count(*)
from
dual

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1000 0.29 0.26 0 0 0 0
Fetch 1000 0.14 0.15 0 0 0 1000
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2001 0.43 0.42 0 0 0 1000

Misses in library cache during parse: 0

Notice how the statement was parsed only once. The rest of the time the prepared state-
ment was obtained from the implicit cache, avoiding the soft parse. Also, implicit caching
reduced the elapsed time by almost half (0.42 seconds versus 0.82 seconds).

The tkprof output for the CallableStatement case follows. It proves that the anonymous
block gets soft-parsed only once due to implicit statement caching.

begin/*+ enabled implicit caching for callable statement */ :1 := f; end;

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.00 0 0 0 0
Execute 1000 2.13 2.06 0 0 0 1000
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 1001 2.14 2.06 0 0 0 1000

Misses in library cache during parse: 1

Explicit Statement Caching
Explicit statement caching enables you to cache selected prepared, callable, and plain state-
ments. Explicit statement caching caches a statement with a key, an arbitrary Java string that
you provide. The biggest difference between explicit and implicit caching is that with explicit
caching, you have to use specialized Oracle methods that end with WithKey to cache and retrieve
statements. This also implies that you have to use the interfaces OraclePreparedStatement and
OracleCallableStatement, respectively, to use explicit statement caching. In the case of implicit
caching, the JDBC driver automatically creates a statement if it is not there in the cache. In the
case of explicit caching, the JDBC driver returns null for the statement; you have to check for
null and explicitly create a statement using the createStatement() method, as we’ll cover

CHAPTER 13 ■ STATEMENT CACHING518

shortly. Toward the end of this section, we’ll compare explicit and implicit caching in terms of
features and when to use which technique.

Enabling and Disabling Explicit Statement Caching

You can enable or disable explicit statement caching by invoking appropriate methods on
either the OracleConnection object or the OracleDataSource object from which the Connection
object is obtained.

To enable explicit statement caching on the OracleConnection object, perform the follow-
ing steps:

1. Use the Oracle extension method setExplicitCachingEnabled(boolean flag) on the
Connection object as follows:

conn.setExplicitCachingEnabled(true);

2. Set the cache size by using the Oracle extension method setStatementCacheSize➥

(int size) on the Connection object as follows:

conn.setStatementCacheSize(10);

To enable explicit statement caching on the OracleDataSource object, perform the follow-
ing steps:

1. Invoke OracleDataSource.getConnection() with the ExplicitCachingEnabled property
set to true, or set ExplicitCachingEnabled on the OracleDataSource by calling Oracle➥

DataSource.setExplicitCachingEnabled(true) as follows (assume ods is an initialized
variable of type OracleDataSource):

ods.setExplicitCachingEnabled(true);

2. Set the cache size by invoking OracleDataSource.setMaxStatements(int maxNumber➥

OfStatements) as follows (assume ods is an initialized variable of type OracleDataSource):

ods.setMaxStatements(10);

To determine whether explicit caching is enabled, invoke getExplicitCachingEnabled(),
which returns true if explicit caching is enabled and false otherwise.

System.out.println("explicit caching enabled: " +
conn.getExplicitCachingEnabled());

■Note Remember that you can enable explicit and implicit caching separately—you can have either,
neither, or both. Also remember that they both share the same cache for a given connection.

To disable explicit statement caching on a Connection object, use the Oracle extension
method setExplicitCachingEnabled(boolean flag) as follows:

conn.setExplicitCachingEnabled(false);

CHAPTER 13 ■ STATEMENT CACHING 519

To disable implicit statement caching on an OracleDataSource object, invoke Oracle➥

DataSource.getConnection() with the ImplicitCachingEnabled property set to false, or set
ExplicitCachingEnabled on the OracleDataSource by calling OracleDataSource.setImplicit➥

CachingEnabled(false) as follows (assume ods is an initialized variable of type OracleData➥

Source):

ods.setExplicitCachingEnabled(false);

Explicit Statement Caching in Action

We will use the following program, DemoExplicitCaching, to see explicit statement caching in
action. The program is very similar in structure to the program DemoImplicitCaching that we
examined in the section “Implicit Caching in Action.” Explanation of the program is inter-
spersed with the code.

/** This program demonstrates explicit statement caching.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.ResultSet;
import oracle.jdbc.OraclePreparedStatement;
import oracle.jdbc.OracleCallableStatement;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
import book.util.Util;
class DemoExplicitCaching
{
public static void main(String args[]) throws SQLException
{
Util.checkProgramUsage(args);
OracleConnection conn = null;
try
{
// get connection
conn = (OracleConnection) JDBCUtil.getConnection("benchmark",

"benchmark", args[0]);

We start the trace and then invoke the method _doSelect() with an appropriate SQL tag,
one time without any caching enabled and the other time with explicit caching enabled. Then
we invoke the PL/SQL function f() in the method _doExecuteCallableStatement():

System.out.println("explicit caching enabled: " +
conn.getExplicitCachingEnabled());

System.out.println("cache size: " + conn.getStatementCacheSize());
// enable trace
JDBCUtil.startTrace(conn);
for(int i=0; i < 1000; i++)
{
_doSelect (conn, "/*+ explicit disabled */");

CHAPTER 13 ■ STATEMENT CACHING520

}
conn.setExplicitCachingEnabled(true);
conn.setStatementCacheSize(10);
System.out.println("explicit caching enabled: " +
conn.getExplicitCachingEnabled());

System.out.println("cache size: " +
conn.getStatementCacheSize());

for(int i=0; i < 1000; i++)
{
_doSelect (conn, "/*+ explicit enabled */");

}
// demonstrating use of explicit caching with callable statement
for(int i=0; i < 1000; i++)
{
_doExecuteCallableStatement(conn,

"/*+ enabled explicit caching for callable statement */");
}

}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(conn);

}
}

The method _doSelect() invokes the select statement using explicit caching:

private static void _doSelect(OracleConnection conn, String tag)
throws SQLException

{
OraclePreparedStatement opstmt = null;
ResultSet rset = null;
String stmtString = "select " + tag + " count(*) from dual";

To cache the statement explicitly, we first create a string key as shown in the code that fol-
lows. In the try catch block, we use the Oracle extension method getStatementWithKey() to
get the statement. If it is null, we create it using the standard prepareStatement() method in
the connection object. Thus, the first time around, the OraclePreparedStatement object is
explicitly created, and then for subsequent loop iterations, if explicit statement caching is
enabled, we reuse the same OraclePreparedStatement object. Note how we close the state-
ment with the method closeWithKey() in the finally clause, which actually puts the
OraclePreparedStatement object in the cache.

String stmtKey = EXPLICIT_CACHING_KEY_PREFIX + stmtString;
try
{
opstmt = (OraclePreparedStatement) conn.
getStatementWithKey(stmtKey);

if(opstmt == null)
{

CHAPTER 13 ■ STATEMENT CACHING 521

opstmt = (OraclePreparedStatement) conn.
prepareStatement(stmtString);

}
rset = opstmt.executeQuery();

}
finally
{
JDBCUtil.close(rset);
try
{
opstmt.closeWithKey(stmtKey);

}
catch (Exception e) { e.printStackTrace();}

}
}

The _doExecuteCallableStatement() method does the same thing using an Oracle➥

CallableStatement object:

private static void _doExecuteCallableStatement(OracleConnection conn,
String tag) throws SQLException

{
OracleCallableStatement ocstmt = null;
ResultSet rset = null;
String stmtString = "begin" + tag + " ? := f; end;";
String stmtKey = EXPLICIT_CACHING_KEY_PREFIX + stmtString;
try
{
ocstmt = (OracleCallableStatement) conn.
getCallWithKey(stmtKey);

if(ocstmt == null)
{
ocstmt = (OracleCallableStatement) conn. prepareCall(stmtString);

}
ocstmt.registerOutParameter(1, OracleTypes.CURSOR);
ocstmt.execute();
rset = (ResultSet) ocstmt.getObject(1);

}
finally
{
JDBCUtil.close(rset);
try
{
ocstmt.closeWithKey(stmtKey);

}
catch (Exception e) { e.printStackTrace(); }

}
}
private static final String EXPLICIT_CACHING_KEY_PREFIX =
"EXPLICIT_CACHING_KEY_PREFIX";

}

CHAPTER 13 ■ STATEMENT CACHING522

The tkprof results for the case when explicit caching was disabled are as follows:

select /*+ explicit disabled */ count(*)
from
dual

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1000 0.30 0.33 0 0 0 0
Execute 1000 0.25 0.23 0 0 0 0
Fetch 1000 0.27 0.21 0 0 0 1000
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3000 0.82 0.78 0 0 0 1000

Misses in library cache during parse: 0

As expected, we soft-parse the statement 1,000 times. With explicit caching enabled, we
parse the statement only once:

select /*+ explicit enabled */ count(*)
from
dual

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1000 0.16 0.25 0 0 0 0
Fetch 1000 0.13 0.15 0 0 0 1000
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2001 0.29 0.41 0 0 0 1000

Misses in library cache during parse: 0

Once again, we reduce the elapsed time to almost half using explicit caching (from 0.79 to
0.42).

The following tkprof output for the procedure invocation proves that the anonymous
block gets soft-parsed only once due to explicit statement caching in the case of Oracle➥

CallableStatement as well:

begin/*+ enabled explicit caching for callable statement */ :1 := f; end;

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1000 2.03 2.06 0 0 0 1000
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 1001 2.03 2.06 0 0 0 1000

Misses in library cache during parse: 0

CHAPTER 13 ■ STATEMENT CACHING 523

■Caution When you retrieve an explicitly cached statement, make sure you use the method that matches
your statement type when specifying the key—that is, use getStatementWithKey() for PreparedState➥

ment and getCallWithKey() for CallableStatement. Otherwise, you may get unexpected results, such
as a NullPointerException.

Implicit Caching vs. Explicit Caching
Table 13-1 summarizes the differences between implicit and explicit caching. Note that the
assertion related to performance difference will be proved later in this section.

Table 13-1. Differences Between Implicit and Explicit Statement Caching

Implicit Statement Caching Explicit Statement Caching

Designed to transparently enable caching Designed to explicitly enable caching for
in an entire application and then selectively specific statements.
disable it for infrequently used statements.

Supports PreparedStatement and Supports Statement, PreparedStatement, and
CallableStatement. CallableStatement, although this is not a real

advantage since you should mostly avoid using
Your code for executing statements does not the Statement interface in production code
change—only the portion of the code that anyway.
retrieves the connection for your application
changes when you enable implicit statement Enabling explicit statement caching also
caching. introduces changes in the code that executes

statements. This is because you need to supply
the cache key, and you need to use Oracle
extension methods that end with WithKey.

Methods used are prepareStatement() or Methods used are getStatementWithKey() for
prepareCall(), depending on whether you Statement or PreparedStatement objects, and
want to cache PreparedStatement or getCallWithKey() for CallableStatement
CallableStatement. To cache the statement, objects.
use the standard method close() on the
statement. During explicit statement caching, if the JDBC

driver cannot find a statement in cache, it will
During implicit statement caching, if the return null; you have to check for null and
JDBC driver cannot find a statement in create a statement yourself.
the cache, it will automatically create one.

Retains only the statement metadata, hence it Retains statement data and state as well as
runs slightly slower than explicit statement metadata, hence it has a slight performance
caching. edge over implicit statement caching, which

retains only metadata. In my tests, though, I
could not find any material performance
differences between the two caching
mechanisms.

As promised, we will compare the performance of explicit caching with implicit caching.
We will only do the comparison for PreparedStatement. The following class compares the per-
formance of implicit statement caching with that of explicit statement caching for a simple

CHAPTER 13 ■ STATEMENT CACHING524

count(*) from table t1, which has 10,000 rows. Since this code incorporates the same tech-
niques previously discussed in this chapter, I did not provide any explanatory text within the
code listing.

/** This program compares implicit statement caching with
* explicit statement caching in terms of elapsed time.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import oracle.jdbc.OraclePreparedStatement;
import oracle.jdbc.OracleConnection;
import book.util.JDBCUtil;
import book.util.Util;
class ImplicitVsExplicitCaching
{
public static void main(String args[]) throws SQLException
{
Util.checkProgramUsage(args);
OracleConnection conn = null;
try
{
// get connection
conn = (OracleConnection) JDBCUtil.getConnection("benchmark",

"benchmark", args[0]);
conn.setExplicitCachingEnabled(true);
conn.setImplicitCachingEnabled(true);
conn.setStatementCacheSize(10);
System.out.println("explicit caching enabled: " +
conn.getExplicitCachingEnabled());

System.out.println("implicit caching enabled: " +
conn.getImplicitCachingEnabled());

System.out.println("cache size: " +
conn.getStatementCacheSize());

int numOfRuns = 5000;
long startTime = System.currentTimeMillis();
for(int i=0; i < numOfRuns; i++)
{
_doSelectWithExplicitCachingEnabled(conn);

}
long endTime = System.currentTimeMillis();
System.out.println("Implicit took: " + (endTime-startTime)+ " ms ");
startTime = System.currentTimeMillis();
for(int i=0; i < numOfRuns; i++)
{

CHAPTER 13 ■ STATEMENT CACHING 525

_doSelectWithImplicitCachingEnabled(conn);
}
endTime = System.currentTimeMillis();
System.out.println("Explicit took: " + (endTime-startTime)+ " ms ");

}
finally
{
// release resources associated with JDBC in the finally clause.
JDBCUtil.close(conn);

}
}
/////////////////// PRIVATE SECTION /////////////////
private static void _doSelectWithExplicitCachingEnabled(OracleConnection conn)

throws SQLException
{
OraclePreparedStatement opstmt = null;
ResultSet rset = null;
String stmtString = "select count(*) from t1";
String stmtKey = EXPLICIT_CACHING_KEY_PREFIX + stmtString;
try
{
opstmt = (OraclePreparedStatement) conn.
getStatementWithKey(stmtKey);

if(opstmt == null)
{
opstmt = (OraclePreparedStatement) conn.
prepareStatement(stmtString);

}
rset = opstmt.executeQuery();

}
finally
{
JDBCUtil.close(rset);
try
{
opstmt.closeWithKey(stmtKey);

}
catch (Exception e) { e.printStackTrace();}

}
}
private static void _doSelectWithImplicitCachingEnabled(OracleConnection conn)
throws SQLException

{
PreparedStatement pstmt = null;
ResultSet rset = null;
String stmtString = "select count(*) from t1";
try

CHAPTER 13 ■ STATEMENT CACHING526

{
pstmt = conn.prepareStatement(stmtString);
rset = pstmt.executeQuery();

}
finally
{
JDBCUtil.close(pstmt);
JDBCUtil.close(rset);

}
}
private static final String EXPLICIT_CACHING_KEY_PREFIX =
"EXPLICIT_CACHING_KEY_PREFIX";

}

The program simply runs the same select statement 5,000 times in a loop, first with
implicit caching enabled and then with explicit caching enabled. In my runs, I found very little
difference between the two cases. Since most of the time the performance bottleneck is in the
SQL statement itself, my suggestion is to ignore performance as a criterion when selecting
the approach of implicit versus explicit caching. In general, I recommend going with implicit
caching unless you have a strong reason to use explicit caching.

Session Cursor Cache vs. PL/SQL Cursor
Cache vs. JDBC Statement Caching
Table 13-2 summarizes the main differences between these three caches.

Table 13-2. Differences Between Session Cursor Cache, PL/SQL Cursor Cache, and
JDBC Statement Caching

Session Cursor Cache PL/SQL Cursor Cache JDBC Statement Caching

Server-side cache enabled and Server-side cache enabled Client-side cache enabled
controlled by init.ora setting implicitly by the PL/SQL using the JDBC API
or session-level setting engine based on init.ora

or session-level settings

Does not eliminate soft parses, Eliminates soft parses Eliminates soft parses
but makes them less resource- altogether when applicable altogether when applicable
intensive

Caches SQL statements submitted Caches only the statements Caches only the statements
by users as well as recursive SQL. in PL/SQL code, as explained in JDBC code, as explained
Recursive SQL statements are ones earlier in this chapter earlier in this chapter
generated by Oracle internally
(e.g., to do a lookup in the data
dictionary during a hard parse)

CHAPTER 13 ■ STATEMENT CACHING 527

Summary
In this chapter, you revisited the concepts of cursors and ref cursors. You learned about
session cursor cache and PL/SQL cursor cache, and you saw how they can improve the
performance of your application. You then explored in detail the concept of JDBC statement
caching. You learned about implicit and explicit statement caching, and how to use them in
your JDBC programs to avoid unnecessary soft parses. You also compared implicit and explicit
statement caches in terms of features and performance, and you discovered that in almost all
cases implicit caching is the way to go. The chapter concluded with a summary of the differ-
ences between session cursor cache, PL/SQL cursor cache, and JDBC statement caching.

CHAPTER 13 ■ STATEMENT CACHING528

Connection Pooling
and Caching

In this chapter, you will learn about connection pooling and caching, and how they can
improve performance of your application. We’ll first look at Oracle9i connection pooling and
the sample connection caching implementation provided by Oracle. We’ll then cover the
new and improved implicit connection caching in Oracle 10g. Finally, we’ll examine the 10g
implementation of OCI driver connection pooling, a feature also available with Oracle9i.

But first, let’s start with a little background on connections and sessions that will help
you better understand the remainder of this chapter.

Connections and Sessions in Oracle
Before we delve into connection pooling, you need to understand the difference between a
connection and a session in the context of Oracle. This difference is particularly useful in
understanding OCI connection pooling, which the upcoming section “OCI Connection
Pooling” covers.

Most of us think of connections and sessions as being the same, but in reality they are not.
A connection is a network connection or a physical pathway to the Oracle database. A session
encapsulates a user’s interaction with the Oracle database from the time the user has been
authenticated to the time the user disconnects. A session connects to Oracle via a physical
connection. Note that you could be connected to a database and yet have zero, one, or more
sessions that use a given connection. In the most common case, one session corresponds to
one connection—this explains why we tend to consider them the same.

Figure 14-1 illustrates a connection being shared by three sessions, two of which belong
to the user SCOTT, and one of which belongs to the user BENCHMARK. The thick arrow represents
the connection itself. Although the figure shows a two-tier system, the same concept applies
to a three-tier system. You will learn in the section “OCI Connection Pooling” how you can
open multiple sessions per physical connection.

529

C H A P T E R 1 4

■ ■ ■

CHAPTER 14 ■ CONNECTION POOLING AND CACHING530

Figure 14-1. Three sessions sharing a single connection from a client to the database

Let’s look at a query that lists currently opened physical connections and sessions for us.
The query assumes that we’re connected to Oracle in a dedicated server mode as opposed to a
shared server (previously known as MTS, or multithreaded server) mode.

■Note In dedicated server mode, each physical connection has a separate (or dedicated) process (or
thread) associated with it, whereas in shared server mode, a pool of processes (or threads) is shared by all
physical connections. Dedicated server is the more commonly used option. Please see the Oracle Database
Concepts Guide (10g Release 1) document for more details.

sys@ORA10G> select s.program, s.server, p.spid server_pid, s.username
2 from v$session s, v$process p
3 where s.type = 'USER'
4 and s.username != 'SYS'
5 and p.addr(+) = s.paddr;

PROGRAM SERVER SERVER_PID USERNAME
------------------------------ --------------- ------------ ----------
sqlplus.exe DEDICATED 3648 SCOTT
sqlplus.exe DEDICATED 3028 BENCHMARK

Before running the preceding query, I logged off all users from my database and then
logged in using SQL*Plus as the SCOTT and BENCHMARK users in two separate windows. Then
I ran the query from a third session as the user SYS. You can run it as any other user as long
as the user has been granted the select privilege on the underlying views v_$session and
v_$process (v$session and v$process used in the preceding query are database synonyms to
the views v_$session and v_$process, respectively). Note that I include a condition that pre-
cludes any rows for the user SYS in order to exclude the current SYS session from which I run
the query. As you can see, at the time I ran this query, I had two sessions, one each for user,
SCOTT, and BENCHMARK.

Oracle
Database

Client

SCOTT/TIGER Session
SCOTT/TIGER Session

BENCHMARK/BENCHMARK Session

Three Sessions Sharing a Single Connection

Also notice the process IDs under the column server_pid for the dedicated Oracle server
processes that correspond to each of the connections. In this particular case, the query shows
us that there are two sessions using two separate connections. We know that there are two
separate connections because the process IDs for each row are different.

Now that you understand the difference between a connection and a session in Oracle,
let’s cover some background information that will help you understand the motivation for
connection pooling. We’ll then define the terms “connection pooling” and “connection
caching.”

Client/Server Applications and Connections
In a client/server application (such as a stand-alone Java application communicating directly
to the database), a user has a dedicated, direct connection to the database for the entire dura-
tion of his interaction, as illustrated in Figure 14-2. Think of this as a phone connection that is
dedicated to the two people talking to each other.

Figure 14-2. In a client/server architecture, each end user has a dedicated database connection
corresponding to a database user account.

As shown in Figure 14-2, the end user Tony Davis authenticates himself using the data-
base account tdavis. Once authenticated, Tony remains connected to the database for the
entire duration of his interaction with the application. This has the following implications on
the security and performance of the application Tony is using:

• Security: In terms of security, the database simply identifies Tony once in the beginning.
As long as the dedicated network connection from Tony’s client machine to the data-
base server is secure, this is a safe approach.

Database

R Menon

tdavis
Tony Davis

Thomas Kyte

tkyte

rmenon

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 531

• Performance/scalability: Since this connection is dedicated to Tony, the resources asso-
ciated with the connection can’t be used by anyone else until Tony logs off or his
connection times out. Moreover, the connection has to be established and torn down
each time Tony logs into or out of the application. If you increase the connection time-
out period, there will be more idle time for the connection, resulting in more wasted
resources. On the other hand, if you reduce the connection timeout, Tony would see
performance problems associated with connection creation and destruction overhead
that occurs after each timeout. Thus, the idea of dedicating one connection for one
user for the lifetime of an application session can be a significant scalability inhibitor
when we deal with a large number of users.

Web Applications and
Connection-Related Challenges
With the advent of web applications, application servers mediate the interaction between the
application and the database. Typically, a web application client uses the HTTP protocol to
connect to an application server containing the middle-tier business logic. The application
server in turn connects to the database to perform various functions. If we create a separate
database account for each end user and maintain a dedicated connection, we run into two
problems:

• Performance: The number of users in a large web application can easily run into the
thousands (or more). Maintaining a dedicated connection for each user for the dura-
tion of one application session can rapidly exhaust the computing resources (memory
and CPU) at the database and application server levels. It can also result in very poor
usage of connection resources.

• Security: Maintaining separate database accounts for each user means that the applica-
tion may have to know and maintain the database password of each user. This can
result in password-management issues.

In this chapter, we will focus on tackling the performance issues just outlined using con-
nection pooling. In the next chapter, we will examine how we can use proxy authentication to
solve the security problem while maintaining good performance.

Cost of Opening and Closing a Connection
To quantify the cost of establishing and tearing down a database connection, I wrote a simple
program. The following program, CostOfConnection, extends the JBenchmark class (explained
in the section “Timing Java Programs” of Chapter 1) to time the process of creating and closing
a connection.

First, we import the necessary classes and declare the requisite variables:

/** This program times the process of establishing and closing a connection.
* COMPATIBLITY NOTE: runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.Connection;

CHAPTER 14 ■ CONNECTION POOLING AND CACHING532

import oracle.jdbc.pool.OracleDataSource;
import book.util.JBenchmark;
class CostOfConnection extends JBenchmark
{
private static int _numOfConnections = 1;
private OracleDataSource _ods;

Next, we override the method firstMethod() of the JBenchmark class to establish and close
a given number of connections. The variable ods points to an initialized OracleDataSource
instance, and the variable _numOfConnections points to the number of connections to be
established and torn down for each iteration of the loop. _numOfConnections is passed as a
command-line parameter:

public void firstMethod() throws Exception
{
Connection connections[] = new Connection[_numOfConnections];
for(int i=0; i < _numOfConnections; i++)
{
try
{
connections[i] = _ods.getConnection();

}
catch(Exception e)
{
System.err.println("failed in connection number: " + i);
throw e;

}
}
for(int i=0; i < _numOfConnections; i++)
{
if(connections[i] != null)
{
connections[i].close();

}
}

}

The following _runBenchmark() method initializes the OracleDataSource instance variable
and calls the method timeMethod() inherited from the JBenchmark class to run the benchmark.
In this case, we time only one method.

private void _runBenchmark() throws Exception
{
_ods = new OracleDataSource();
_ods.setURL ("jdbc:oracle:thin:@rmenon-lap:1521:ora10g");
_ods.setUser("scott"); // username
_ods.setPassword("tiger"); // password
// time the process of establishing a connection - method 1
String msg = "Establishing " + _numOfConnections +
" connection(s) and closing them";

timeMethod(JBenchmark.FIRST_METHOD, null, null, msg);
}

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 533

Finally, in the main() method, we initialize the number of connections to establish, create
an instance of our class, and invoke the _runBenchmark() method:

public static void main(String args[]) throws Exception
{
if(args.length == 1)
{
_numOfConnections = Integer.parseInt(args[0]);

}
new CostOfConnection()._runBenchmark();

}
}// end of program

Results of a run on my machine for ten connections are as follows:

B:\code\book\ch15>java CostOfConnection 10
Establishing 10 connection(s) and closing them

On an average it took 1641 ms (number of runs = 130.)

As you can see, it took almost 164 milliseconds (approximately 1/6 of a second) to estab-
lish and close a connection. Closing a connection usually takes a negligible amount of time, so
the entire time of 164 milliseconds can be approximately attributed to the act of establishing a
connection. This can be very costly if you consider the case of thousands of users performing
many small requests, with each request resulting in the creation and destruction of a connec-
tion. Also, since establishing a connection involves forking a process on UNIX and creating a
new thread on Windows, it can quickly exhaust system resources. For example, on my PC, I
could not establish more than 132 simultaneous connections at a time. The next section
shows how the technique of connection pooling addresses this problem.

What Is Connection Pooling?
A connection pool is a pool of physical connections that can be reused across multiple client
sessions. Instead of creating and destroying a connection each time the client needs one, we
maintain a pool of connections. These connections are created typically once in the beginning
(or on demand) and destroyed only when an application shutdown or an error occurs. Con-
nection pooling enables multiple clients to share a small pool of pre-established connections,
thus improving performance and scalability tremendously. In this way, for example, a pool of
50 to 100 physical database connections can be shared by 100, 500, 1,000, or more users.

In a three-tier architecture, the connection pool is maintained by the application server.
When an application requests a connection, the application server takes a connection from
the pre-established pool, marks it as “in use,” and hands it over to the application. During the
request, the application has effectively reserved (or checked out) this connection object.
When the application “closes” a connection, the application server returns the connection
back to the pool after clearing the connection state (it does not actually close the physical
connection).

CHAPTER 14 ■ CONNECTION POOLING AND CACHING534

There are two performance advantages to this approach:

• Since we maintain a pool of connections (instead of creating and destroying connec-
tions with each request), the overhead of establishing database connections goes down
dramatically for the case of a large number of users.

• Since the application “reserves” the connection only for the duration of the request, we
don’t waste connection resources when the application is idle (i.e., between requests).
This again translates directly to improved performance and scalability.

Note that this solution scales only if you can map the large number of end users to a much
smaller number of actual database users. On a popular website such as http://www.amazon.com,
the number of users can run into the millions; creating a connection pool for these many dif-
ferent users is not feasible.

For example, imagine our website has 1,000,000 users, and for each user we have to con-
nect as a separate database account. Say we have a connection pool of 100 connections. The
connections in this pool are good for use only for the 100 users whose connections exist in the
pool currently. The moment a new user tries to connect, the connection pool cannot serve that
user, since each user requires connection to a different account. Thus, one of the connections
will have to be aged out and a new connection established for this user. Clearly, the purpose of
connection pool is defeated if you need to tear down and create a connection every time a new
user whose connection is not currently in the pool tries to connect. Contrast this with a sce-
nario where the 1,000,000 users can be “mapped” into 10 database users based on different
privileges each user requires. Now the likelihood of a new user getting a “hit” in the connection
pool is very high, thus allowing us to share the 100 connections among a much larger end-user
population. So how do we map these many users to a manageable number of database users?
We will look at this aspect in detail in the next chapter.

Let’s now take a brief look at what the term “connection caching” means before we dis-
cuss Oracle9i connection pooling and caching, followed by Oracle 10g implicit connection
caching.

What Is Connection Caching?
At the core, connection caching and connection pooling refer to the same concept: pooling
physical database connections to be shared across multiple client sessions. Connection
caching, usually implemented in the middle tier, refers to the concept of creating a cache of
physical connections using the connection pooling framework provided by the JDBC driver.
In Oracle9i, we need to create our own cache on top of the connection pooling framework
provided by Oracle JDBC drivers. We can use a sample connection cache provided by Oracle
as well. In Oracle 10g, the connection cache can be enabled implicitly at the data source level
itself, thus obviating the need to maintain or manage our own cache.

The next section discusses in detail the Oracle9i implementation of connection pooling
and caching.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 535

Oracle9i Connection Pooling Framework
The Oracle9i connection pooling framework depends on the following key concepts:

• Connection pool data source: A connection pool data source is similar in concept and
functionality to the data sources described in Chapter 3, but with methods to return
pooled connection objects, instead of normal connection objects.

• Pooled connection (or physical connection): A pooled connection instance represents
a single connection to a database that remains open during use by a series of logical
connection instances.

• Logical connection: A logical connection is a connection instance (such as a standard
Connection instance or an OracleConnection instance) returned by a pooled connection
instance. It is the pooled connection checked out by an application at a given point in
time.

When we use connection pooling, we essentially introduce an intermediate step to enable
reuse of a physical connection. The connection pool data source returns a pooled connection,
which encapsulates the physical database connection. We then use the pooled connection to
return JDBC connection instances (one at a time) that each act as a temporary handle (the logi-
cal connection).

When an application closes the logical connection, it does not result in the closing of
the physical database connection. It does, however, clear the connection state, restore the
defaults (e.g., it resets autocommit to true if you had set it to false), and mark the underlying
physical connection (or pooled connection) as “available” for creating the next logical
instance from the connection pool.

To actually close the physical connection, you must invoke the close() method of the
pooled connection. This action is typically performed in the middle tier that manages the
connection pool, and not by the application.

Related JDBC Standard and Oracle Interfaces
Figure 14-3 shows the JDBC interfaces related to connection pooling and their Oracle counter-
parts. Note that as an application developer, you will typically not deal with the PooledConnection
and ConnectionPoolDataSource interfaces described in this section. These interfaces are imple-
mented for you by the connection cache (either the sample Oracle9i connection cache or the
implicit connection cache in 10g). So feel free to skip the section “Oracle9i Connection Caching”
if you are not interested in this topic.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING536

Figure 14-3. JDBC interfaces that define connection pooling and the Oracle classes that imple-
ment them

The javax.sql.ConnectionPoolDataSource interface defines the standard functionality of
connection pool data sources. The getPooledConnection() method of this interface returns a
pooled connection instance and optionally takes a username and password as input in its
overloaded version:

public javax.sql.PooledConnection getPooledConnection() throws SQLException;
public javax.sql.PooledConnection getPooledConnection(
String userName, String password) throws SQLException;

As Figure 14-3 indicates, the Oracle class oracle.jdbc.pool.OracleConnectionPoolDataSource
implements the ConnectionPoolDataSource interface. This class also extends the OracleDataSource
class, so it includes all the connection properties and getter and setter methods described in the
section “Connecting to a Database” of Chapter 3. The getPooledConnection() method of this
class returns an OraclePooledConnection class instance, which implements the PooledConnection
interface.

A pooled connection instance encapsulates a physical connection to the database speci-
fied in the connection properties of the connection pool data source instance with which it
was created. It implements the following standard javax.sql.PooledConnection interface:

public interface javax.sql.PooledConnection
{
public void close() throws SQLException
public java.sql.Connection getConnection() throws SQLException
public abstract void addConnectionEventListener(

javax.sql.ConnectionEventListener);
public abstract void removeConnectionEventListener(

javax.sql.ConnectionEventListener);
}

OraclePooledConnection

Oracle JDBC Classes from
the oracle.jdbc.pool Package

OracleConnectionPoolDataSource

OracleDataSource

PooledConnection

ConnectionPoolDataSource

Standard JDBC Interfaces
from the javax.sql Package

Connection Pooling Interfaces and Oracle Implementation

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 537

The getConnection() method of this interface returns a logical connection instance to
the application. Calling the close() method on a pooled connection object closes the physical
connection—remember, this is performed by the middle-tier code that manages the connec-
tion pool. The connection event listeners are used to handle events that arise when an
associated logical connection is closed, for example.

The OraclePooledConnection class has methods that enable statement caching (both
implicit and explicit) for a pooled connection (see Chapter 13 for details on this feature).
All logical connections obtained from a pooled connection share the same cache, since the
underlying physical connection is where the caching happens. This implies that when state-
ment caching is enabled, a statement you create on one logical connection can be reused by
another logical connection. It follows that you cannot enable or disable statement caching on
individual logical connections.

The following are OraclePooledConnection method definitions for statement caching:

public boolean getExplicitCachingEnabled();
public boolean getImplicitCachingEnabled();
public int getStatementCacheSize();
public void setExplicitCachingEnabled(boolean);
public void setImplicitCachingEnabled(boolean);
public void setStatementCacheSize(int);

Let’s move on to look at an example of creating a connection pool data source and getting
a pooled connection object.

Example of Creating a Pooled Connection and Obtaining
a Logical Connection
In this example, we demonstrate the following concepts:

• Creating a pooled connection

• Getting a logical connection from a pooled connection

• Closing the logical connection

• Closing the pooled connection

To peek behind the scenes, we will run the query that we discussed in the section “Con-
nections and Sessions in Oracle” earlier to list the current physical connections actually made
to the database. Note that in this example, there is a one-to-one correspondence between a
physical connection and a session.

We need a way to “pause” after each of the four steps in the program, in order to run the
query in the database and watch how many connections are created. For this, I wrote a class
called InputUtil whose waitTillUserHitsEnter() method pauses until you press the Enter
key. Please see the section “A Utility to Pause in a Java Program” of Chapter 1 for more details
on this method.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING538

The following program, DemoConnectionPooling, illustrates how to create a pooled con-
nection and retrieve a logical connection from it. First, the necessary import statements and
the declaration of the main() method are shown:

/* This program demonstrates how to create a pooled connection
* and obtain a logical connection from it.
* COMPATIBLITY NOTE: runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.Connection;
import javax.sql.PooledConnection;
import oracle.jdbc.pool.OracleConnectionPoolDataSource;
import book.util.InputUtil;
class DemoConnectionPooling
{
public static void main(String args[]) throws Exception
{

To create a pooled connection, we first create an instance of OracleConnectionPoolDataSource
and set its connection properties:

OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource();
ocpds.setURL ("jdbc:oracle:thin:@usunrat24.us.oracle.com:1521:ora92i");
ocpds.setUser("scott"); // username
ocpds.setPassword("tiger"); // password

■Note Instead of using the setURL() method and so on, you can use the individual setter methods such
as setServerName() to set the same properties.

The next step is to obtain the pooled connection from the OracleConnectionPoolDataSource
instance as follows (note the pause we give right after, using the InputUtil.waitTillUser➥

HitsEnter() method):

PooledConnection pooledConnection = ocpds.getPooledConnection();
InputUtil.waitTillUserHitsEnter(
"Done creating pooled connection.");

We then obtain the logical connection from the pooled connection, followed by another
pause:

Connection connection = pooledConnection.getConnection();
InputUtil.waitTillUserHitsEnter(
"Done getting connection from pooled connection object.");

After using the logical connection to execute statements, the application can close it:

connection.close();
InputUtil.waitTillUserHitsEnter(
"Done closing logical connection");

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 539

And finally, to close the pooled connection (thus releasing the actual physical connection),
we can use the close() method on the pooled connection:

pooledConnection.close();
InputUtil.waitTillUserHitsEnter("Done closing pooled connection");

}// end of main
}// end of program

Before running the program, I made sure that there was no one connected to my test
database. In one session, I connected to my database as SYS user. Then I ran the preceding
program and ran the query discussed earlier to list connections as SYS after each of the pauses
we introduced. Table 14-1 lists the steps and the query results.

Table 14-1. Results of Running a Query That Detects Connections After Each “Pause” in the
Program DemoConnectionPooling

Step Query Results Notes

After creating a PROGRAM SERVER SERVER_PID USERNAME A physical
pooled connection ---------------- ------ ---------- -------- connection

JDBC Thin Client DEDICATED 22326 SCOTT is created.

After obtaining a PROGRAM SERVER SERVER_PID USERNAME The physical
logical connection ---------------- ------ ---------- -------- connection is

JDBC Thin Client DEDICATED 22326 SCOTT checked out
as a logical
connection.

After closing the PROGRAM SERVER SERVER_PID USERNAME The physical
logical connection ---------------- ------ ---------- -------- connection

JDBC Thin Client DEDICATED 22326 SCOTT remains.

After closing the No rows selected The physical
pooled connection connection is

closed.

As you can see, the creation of a pooled connection results in an actual physical connection
being created. But the retrieval of a logical connection does not result in any new physical con-
nection. Similarly, even after closing the logical connection, the physical connection created is
retained for use across other sessions. Finally, when we close the pooled connection, the physi-
cal connection is also closed.

In the next section, we’ll look at a simple Oracle implementation of a connection cache
using the connection pooling framework.

Oracle9i Connection Caching
As discussed earlier, a connection cache is a cache of physical connections maintained by the
middle tier using the connection pooling framework just discussed. JDBC 2.0 does not specify
any API specific to connection cache; it only specifies an API for the underlying connection pool-
ing framework. Thus, the middle tier is free to implement the connection cache in any way. JDBC
3.0 does specify an API along with some connection cache–related properties for implementation
of a connection cache at the data source level. As discussed later in the section “Oracle 10g Con-
nection Caching,” the new Oracle 10g caching is compliant with JDBC 3.0 requirements.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING540

■Note The concept of connection caching is not relevant to the server-side internal driver, where you use
the default connection.

A connection cache is typically represented by an instance of a connection cache class
that caches a group of pooled connection instances (remember, a pooled connection cache is
associated with an actual physical database connection). The connection cache class extends
the data source API. In Oracle9i, for a single connection cache instance, all the associated
pooled connections must be physical connections to the same database and schema. In
Oracle 10g, this restriction has been lifted in the new cache architecture.

■Tip In 10g, the restriction that all pooled connections associated with a cache must belong to same
schema and database has been removed.

Oracle’s Implementation of Connection Cache
Figure 14-4 shows the JDBC standard and Oracle classes related to connection caching.

Figure 14-4. JDBC standard and Oracle-specific connection caching related classes and interfaces

Oracle provides you with the following classes and interfaces in the oracle.jdbc.pool
package that implement connection cache functionality for you. In Oracle9i, you can use this
implementation, or you can code your own using some or all of these classes and interfaces.
In Oracle 10g, these classes have been deprecated and you should use the implicit connection
caching.

• OracleConnectionCache: An interface you need to implement if you want to implement
your own version of connection caching

• OracleConnectionCacheImpl: A class that implements the OracleConnectionCache interface

• OracleConnectionEventListener: A connection event listener class

Oracle JDBC Classes from
the oracle.jdbc.pool Package

OracleDataSource

ConnectionEventListener

Standard JDBC Interfaces
from the javax.sql Package

JDBC and Oracle Connection Caching Classes and Interfaces

OracleConnectionCache

OracleConnectionCachelmpl

OracleConnectionEventListener

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 541

As shown in Figure 14-4, the OracleConnectionCacheImpl class implements the Oracle➥

ConnectionCache interface and extends OracleDataSource. It employs OracleConnection➥

EventListener class instances for connection events pertaining to cache management
scenarios, such as when the application closes the logical connection.

Interaction of the Application and Middle Tier When Using Connection Cache
The following steps occur during a typical interaction of a JDBC application and a middle-tier
connection cache. The Oracle implementation is used in our examples.

1. The middle tier creates an instance of a connection cache class with its own data
source properties that define the physical connections it will cache.

2. The middle tier may optionally bind this instance to a JNDI source.

3. The JDBC application retrieves a connection cache instance (instead of a generic
data source) from the middle tier either by using a JNDI lookup or through a vendor-
specific API.

4. The JDBC application retrieves the connection from the connection cache through its
getConnection() method. This results in a logical connection being returned to the
JDBC application.

5. JDBC uses JavaBeans-style events to keep track of when a physical connection (pooled
connection instance) can be returned to the cache or when it should be closed due to
a fatal error. When the JDBC application is done using the connection, it invokes the
close() method on the connection. This triggers a connection-closed event and
informs the pooled connection instance that its physical connection can be reused.

Steps in Using OracleConnectionCacheImpl
The following sections describe the steps required to instantiate and use the OracleConnection➥

CacheImpl class.

Instantiating OracleConnectionCacheImpl
You instantiate an OracleConnectionCacheImpl instance and set its connection properties in
one of three ways:

• Use the OracleConnectionCacheImpl constructor, which takes an existing connection
pool data source as input:

OracleConnectionCacheImpl occi = new OracleConnectionCacheImpl(cpds);

• Use the setConnectionPoolDataSource() method on an existing OracleConnection➥

CacheImpl instance, which takes a connection pool data source instance as input:

OracleConnectionCacheImpl occi = new OracleConnectionCacheImpl();
occi.setConnectionPoolDataSource(cpds);

CHAPTER 14 ■ CONNECTION POOLING AND CACHING542

• Use the default OracleConnectionCacheImpl constructor and set the properties using
the setter methods inherited from the OracleDataSource class:

OracleConnectionCacheImpl occi = new
OracleConnectionCacheImpl();

occi.setServerName("myserver");
occi.setNetworkProtocol("tcp");

Setting Pooled Connection Limit Parameters
The examples in this section assume that occi is an initialized OracleConnectionCacheImpl
variable.

You can set the minimum number of pooled connections by invoking the setMinLimit()
method as follows:

occi.setMinLimit(3);

The cache will keep three pooled connections open and ready for use at all times.
You can set the maximum number of pooled connections by invoking the setMaxLimit()

method as follows:

occi.setMaxLimit(10);

The cache will have a maximum of ten pooled connections. What happens when you
reach the limit and need another connection? That depends on the cache scheme you set, as
discussed next.

Setting Cache Schemes for Creating New Pooled Connections
The OracleConnectionCacheImpl class supports three connection cache schemes that come
into effect when all three of the following conditions are true:

• The application has requested a connection.

• All existing pooled connections are in use.

• The maximum limit of pooled connections in the cache has been reached.

The three cache schemes are

• Dynamic: This is the default scheme. In this scheme, the cache would automatically
create new pooled connections, though each of these new connections is automatically
closed and freed as soon as the logical connection instance that it provided is closed.
You can set this scheme using one of the two overloaded versions of the method
setCacheScheme():

occi.setCacheScheme("dynamic");
occi.setCacheScheme(OracleConnectionCacheImpl.DYNAMIC_SCHEME);

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 543

• Fixed return null: In this scheme, the requests after the maximum limit is exceeded get
a null value returned. You can set this scheme using one of the two overloaded versions
of the method setCacheScheme():

occi.setCacheScheme("fixed_return_null_scheme");
occi.setCacheScheme(OracleConnectionCacheImpl.FIXED_RETURN_NULL_SCHEME);

• Fixed wait: In this case, when the maximum limit of pooled connections is reached,
the next request would wait forever. You can set this scheme using one of the two over-
loaded versions of the method setCacheScheme():

occi.setCacheScheme("fixed_wait_scheme");
occi.setCacheScheme(OracleConnectionCacheImpl.FIXED_WAIT_SCHEME);

Setting Oracle Connection Cache Timeouts
Applications can also time out the physical and logical connections. Oracle JDBC drivers
provide following three types of timeout periods for this purpose:

• Wait timeout: The maximum period after which a physical connection is returned to
the cache. This wait triggers only when all connections are in use and a new connection
is requested. A timeout exception, EOJ_FIXED_WAIT_TIMEOUT, is thrown when the time-
out expires. You use the getter and setter methods on the property CacheFixedWait➥

Timeout to get and set this timeout.

• Inactivity timeout: The maximum period a physical connection can remain unused.
When the period expires, the connection is closed and its resources are freed. You use
the getter and setter methods on the property CacheInactivityTimeout to get and set
this timeout.

• Time to live timeout: The maximum period a logical connection can be active. After
this time expires, whether or not the connection is still in use, the connection is closed
and its resources are freed. You use the getter and setter methods on the property
CacheTimeToLiveTimeout to get and set this timeout.

Example of Using OracleConnectionCacheImpl
The following DemoOracleConnectionCache class illustrates how to use Oracle connection
caching by using the dynamic and “fixed return null” cache schemes. We begin with the
imports and the class declaration, followed by the main() method:

/* This program demonstrates how to use Oracle connection cache.
* COMPATIBLITY NOTE: runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.Connection;
import java.sql.SQLException;
import oracle.jdbc.pool.OracleConnectionCacheImpl;
import book.ch03.JDBCUtil;

CHAPTER 14 ■ CONNECTION POOLING AND CACHING544

class DemoOracleConnectionCache
{
public static void main(String args[]) throws Exception
{

We instantiate the cache object and set the properties that define the limits and attributes
of the cached connections. We also print the default cache scheme.

OracleConnectionCacheImpl occi = new OracleConnectionCacheImpl();
occi.setURL ("jdbc:oracle:thin:@rmenon-lap:1522:ora92");
occi.setUser("scott"); // username
occi.setPassword("tiger"); // password
occi.setMaxLimit(3); // max # of connections in pool
occi.setMinLimit(1); // min # of connections in pool
System.out.println("By default, the cache scheme is: " +
occi.getCacheScheme());

We then set the cache scheme to “dynamic” and invoke the method getOneMoreThanMax➥

Connections(). We will see the definition of this method soon, but as the method name sug-
gests, it attempts to get one connection more than the maximum limit of three set previously.
This is to see how different cache schemes behave when the limit is exceeded.

occi.setCacheScheme(OracleConnectionCacheImpl.DYNAMIC_SCHEME);
int maxLimit = occi.getMaxLimit();
System.out.println("Max Limit: " + maxLimit);
System.out.println("Demo of dynamic cache scheme - the default");
_getOneMoreThanMaxConnections(occi, maxLimit);

We do the same for the cache scheme “fixed return null”:

System.out.println("\nDemo of fixed return null cache scheme");
occi.setCacheScheme(OracleConnectionCacheImpl.FIXED_RETURN_NULL_SCHEME);
_getOneMoreThanMaxConnections(occi , maxLimit);

}// end of main

The method getOneMoreThanMaxConnections() is defined at the end of the program. It
simply loops through and tries to create one more than the maximum limit passed to it as a
parameter.

private static void _getOneMoreThanMaxConnections(
OracleConnectionCacheImpl occi , int maxLimit) throws SQLException

{
//Create an array of connections 1 more than max limit
Connection[] connections = new Connection[maxLimit + 1];

for(int i=0; i < connections.length; i++)
{
System.out.print("Getting connection no " + (i+1) + " ...");

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 545

connections[i] = occi.getConnection();
if(connections[i] != null)
System.out.println(" Successful.");

else
System.out.println(" Failed.");

}
// close all connections
for(int i=0; i < connections.length; i++)
{
JDBCUtil.close(connections[i]);

}
}// end of getOneMoreThanMaxConnections

}// end of program

The following is the output of the program when I ran it on my machine:

B:\>java DemoOracleConnectionCache
By default, the cache scheme is: 1
Max Limit: 3
Demo of dynamic cache scheme - the default
Getting connection no 1 ... Successful.
Getting connection no 2 ... Successful.
Getting connection no 3 ... Successful.
Getting connection no 4 ... Successful.

Demo of fixed return null cache scheme
Getting connection no 1 ... Successful.
Getting connection no 2 ... Successful.
Getting connection no 3 ... Successful.
Getting connection no 4 ... Failed.

As shown, even though we hit the maximum limit, we still got a connection successfully
when the cache scheme was dynamic (which is the default). When the cache scheme was
“fixed return null,” we got a null object when we tried to get a fourth connection. The “fixed
wait” cache scheme isn’t shown, but if you modify the program to use it, the program will wait
forever when you try to get the fourth connection.

This concludes our discussion of Oracle9i connection pooling and caching. It’s time now
to look at the implicit connection caching of Oracle 10g.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING546

Oracle 10g Implicit Connection Caching
As mentioned earlier, starting with Oracle 10g, the cache architecture just discussed was dep-
recated. It has been replaced by a more powerful, JDBC 3.0–compliant implicit connection
caching. The highlights of implicit connection caching are

• Transparent access to a connection cache at the data source level.

• Support for connections with different usernames and passwords in the same cache.

• Ability to control cache behavior by defining a set of cache properties. The supported
properties include ones that set timeouts, the maximum number of physical connec-
tions, and so on.

• Ability to retrieve a connection based on user-defined connection attributes (a feature
known as connection striping).

• Ability to use callbacks to control cache behavior

• When a connection is returned to the cache.

• When a connection has been abandoned.

• When an application requests a connection that does not exist in the cache.

• The new class OracleConnectionCacheManager is provided for administering the con-
nection cache.

With the new cache architecture, you can turn on connection caching simply by invoking
setConnectionCachingEnabled(true) on an OracleDataSource object. After caching is turned
on, the first connection request to OracleDataSource implicitly creates a connection cache.
There is a one-to-one mapping between the OracleDataSource object and its implicit connec-
tion cache.

Using the Oracle 10g Implicit Connection Cache
The following sections discuss the various steps involved in using the implicit connection cache.

Instantiating OracleDataSource
This step should be familiar to you by now:

OracleDataSource ods = new OracleDataSource();
ods.setURL ("jdbc:oracle:thin:@rmenon-pc:1521:ora10g");
ods.setUser("scott"); // username
ods.setPassword("tiger"); // password

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 547

Turning the Connection Cache On
You turn on the connection cache by simply invoking setConnectionCachingEnabled() on the
OracleDataSource object:

ods.setConnectionCachingEnabled(true);

Setting Connection Cache Properties
You can optionally set connection properties listed later in this section by either using
the method setConnectionCacheProperties() of the OracleDataSource object, or using the
OracleConnectionCacheManager API to create or reinitialize the connection cache as discussed
later. For example, the following code sets three properties of the connection cache using the
setConnectionCacheProperties() method of the OracleDataSource object:

Properties cacheProperties = new Properties();
cacheProperties.setProperty("InitialLimit", "2");
cacheProperties.setProperty("MinLimit", "3");
cacheProperties.setProperty("MaxLimit", "15");
ods.setConnectionCacheProperties(cacheProperties);

By setting connection cache properties, you can control the characteristics of the connec-
tion cache.

■Caution In my tests with 10.1.0.2.0, I found that the JDBC driver silently ignores an invalid (or mis-
spelled) property. Thus, you need to be extra careful in spelling these properties while setting them up.
Another problem is that, unfortunately, the property names that Oracle chose in many cases are not the
same as the ones mentioned in JDBC 3.0 standard, though their meanings may be the same. For example,
the JDBC property InitialPoolSize means the same thing as the Oracle property InitialLimit. This
can be confusing.

Let’s look at these cache properties in more detail.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING548

Limit Properties

Limit properties control the size of the cache and the number of statements that are cached
(see Chapter 13 for details on statement caching), among other things. Table 14-2 lists these
properties along with their equivalent JDBC 3.0 standard property (if available), default value,
and a brief description.

Table 14-2. Cache Properties Related to Various Cache Limits Supported by Oracle 10g Implicit
Connection Cache

Property Equivalent Default Value Description
JDBC 3.0 Property

InitialLimit initialPoolSize 0 Determines how many
connections are created in
the cache when it is created
or reinitialized.

MaxLimit maxPoolSize No limit Sets the maximum number
of connections the cache
can hold.

MaxStatementsLimit maxStatements 0 Sets the maximum number
of statements cached by a
connection.

MinLimit minPoolSize 0 Sets the minimum number
of connections the cache is
guaranteed to have at all
times.

LowerThresholdLimit 20% of maxLimit Sets the lower threshold
limit on the cache. It is used
when a releaseConnection()
callback is registered with a
cached connection. When
the number of connections
in the cache reaches this
limit (LowerThresholdLimit),
and a request is pending, the
cache manager calls this
method on the cache
connections (instead of
waiting for the connection
to be freed).

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 549

Timeout and Time Interval Properties

These properties determine when the connections in the cache time out or at what interval
Oracle checks and enforces the specified cache properties. Table 14-3 lists each of these prop-
erties with its default value and the type of connection it impacts (physical or logical). Only
the property PropertyCheckInterval has a JDBC 3.0–equivalent property (propertyCycle).

Table 14-3. Timeout and Interval Properties of Implicit Connection Cache

Property Default Value Type of Description
Connection
Impacted

InactivityTimeout 0 (no timeout) Physical Sets the maximum time
in seconds a physical
connection can remain idle
in a connection cache. An
idle connection is one that is
not active and does not have
a logical handle associated
with it.

TimeToLiveTimeout 0 (no timeout) Logical Sets the maximum time
in seconds that a logical
connection can remain
open (or checked out), after
which it is returned to the
cache.

AbandonedConnectionTimeout 0 (no timeout) Logical Sets the maximum time
in seconds that a logical
connection can remain
open (or checked out)
without any SQL activity on
that connection, after which
the logical connection is
returned to the cache.

ConnectionWaitTimeout 0 (no timeout) Logical Comes into play when there
is a request for a logical
connection, the cache has
reached the MaxLimit, and
all physical connections are
in use. This is the number of
seconds the cache will wait
for one of the physical
connections currently in
use to become free so that
the request can be satisfied.
After this timeout expires,
the cache returns null.

PropertyCheckInterval 900 seconds Sets the time interval in
seconds at which the cache
manager inspects and
enforces all specified cache
properties.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING550

Attribute Weight Properties

Attribute weight properties allow you to set weights on certain attributes of a connection
in the connection cache. If the property ClosestConnectionMatch is set to true, then these
weights are used to get a “closest” match to the connection you request. We will look at these
properties along with this feature in more detail in the section “Using Connection Attributes
and Attribute Weights (10g Only).”

The ValidateConnection Property

If you set this property to true, the cache manager tests for validity each connection to be
retrieved from the database. The default value is false.

Closing a Connection
Once an application is done using a connection, the application closes it using the close()
method on the connection. There is another variant of this method that we will discuss in the
section on “Using Connection Attributes and Attribute Weights (10g Only).”

An Example of Using Implicit Connection Caching
The following DemoImplicitConnectionCaching class illustrates how implicit connection
caching works. First, we declare the class and the main() method after importing the required
classes:

/* This program demonstrates implicit connection caching.
* COMPATIBLITY NOTE: runs successfully 10.1.0.2.0
*/
import java.sql.Connection;
import java.util.Properties;
import oracle.jdbc.pool.OracleDataSource;
import book.util.InputUtil;
class DemoImplicitConnectionCaching
{
public static void main(String args[]) throws Exception
{

Next, in the main() method, we instantiate the OracleDataSource object, which will hold
our implicit cache:

OracleDataSource ods = new OracleDataSource();
ods.setURL ("jdbc:oracle:thin:@rmenon-lap:1521:ora10g");
ods.setUser("scott"); // username
ods.setPassword("tiger"); // password

We then enable the implicit caching:

// enable implicit caching
ods.setConnectionCachingEnabled(true);

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 551

We set the cache properties with an initial and minimum limit of three connections and
a maximum limit of fifteen connections. The cache, when first set up, should pre-establish
three connections, and it should never shrink below three connections later. Note that in
production code, you should use a properties file to set these properties instead of using the
setProperty() method in your Java code. This makes it easier to change them during runtime.

// set cache properties
Properties cacheProperties = new Properties();
cacheProperties.setProperty("InitialLimit", "3");
cacheProperties.setProperty("MinLimit", "3");
cacheProperties.setProperty("MaxLimit", "15");
ods.setConnectionCacheProperties(cacheProperties);

We first establish two connections to the SCOTT user, followed by one connection to the
BENCHMARK user. We calculate and print the time it took to establish each of these connections.
We also interject pauses using the InputUtil.waitTillUserHitsEnter() method (explained
earlier in this chapter) after each connection establishment step. During these pauses, we will
examine the database to see the number of physical connections using the query we covered
in the section “Connections and Sessions in Oracle.”

// time the process of establishing first connection
long startTime = System.currentTimeMillis();
Connection conn1 = ods.getConnection("scott", "tiger");
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime-startTime) +
" ms to establish the 1st connection (scott).");

InputUtil.waitTillUserHitsEnter();
// time the process of establishing second connection
startTime = System.currentTimeMillis();
Connection conn2 = ods.getConnection("scott", "tiger");
endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime-startTime) +
" ms to establish the 2nd connection (scott).");

InputUtil.waitTillUserHitsEnter();
// time the process of establishing third connection
startTime = System.currentTimeMillis();
Connection conn3 = ods.getConnection("benchmark", "benchmark");
endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime-startTime) +
" ms to establish the 3rd connection (benchmark).");

InputUtil.waitTillUserHitsEnter();

At the end of the program, we close all connections, putting a pause after the first close()
statement:

// close all connections
conn1.close();
InputUtil.waitTillUserHitsEnter("After closing the first connection.");
conn2.close();

CHAPTER 14 ■ CONNECTION POOLING AND CACHING552

conn3.close();
}// end of main

}// end of program

I ran this program on my machine, and after every pause, I ran the query to detect con-
nections. Let’s look at the output and the query results side by side:

B:\> java DemoImplicitConnectionCaching
It took 1015 ms to establish the 1st connection (scott).
Press Enter to continue...

The query results executed as the SYS user right after the pause are as follows:

sys@ORA10G> select s.server, p.spid server_pid, s.username
2 from v$session s, v$process p
3 where s.type = 'USER'
4 and s.username != 'SYS'
5 and p.addr(+) = s.paddr;

SERVER SERVER_PID USERNAME
--------------- ------------ ----------
DEDICATED 2460 SCOTT
DEDICATED 3528 SCOTT
DEDICATED 3288 SCOTT

This tells us that the very first time we establish a connection, the implicit connection
caching results in the creation of three connections (equal to the parameter InitialLimit that
we set earlier). That also explains why it took 1,015 milliseconds to establish the “first” con-
nection. The program output after I pressed Enter follows:

It took 0 ms to establish the 2nd connection (scott).
Press Enter to continue...

This shows the main benefit of connection caching. Since we already have three connec-
tions established, this call gets one of these from the cache and completes really fast. At this
time, if we run the query again, we will see the same output as before, since no new connec-
tions have been established. Pressing Enter again results in the following output:

It took 266 ms to establish the 3rd connection (benchmark).
Press Enter to continue...

Even though we have one more physical connection left in the cache, we cannot use it,
since this time the request is to establish a connection to the user BENCHMARK. Hence the con-
nection cache has to create a new connection, which took 266 milliseconds. At this time, the
cache has four physical connections (three to SCOTT and one to BENCHMARK) established, as
shown by our query results:

sys@ORA10G> select s.server, p.spid server_pid, s.username
2 from v$session s, v$process p
3 where s.type = 'USER'
4 and s.username != 'SYS'
5 and p.addr(+) = s.paddr;

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 553

SERVER SERVER_PID USERNAME
--------------- ------------ ----------
DEDICATED 2460 SCOTT
DEDICATED 3528 SCOTT
DEDICATED 3288 SCOTT
DEDICATED 2132 BENCHMARK

Finally, we press Enter again and see

After closing the first connection.
Press Enter to continue...

After the first connection is closed, when we execute the preceding query, we get the same
results as before (four connections). This is, of course, because closing the logical connection
does not result in a closing of the physical connection.

To manage your implicit caches, Oracle provides you with an API in the form of the class
OracleConnectionCacheManager we’ll look at it in the next section.

The OracleConnectionCacheManager Class
OracleConnectionCacheManager provides methods for the middle tier to centrally manage one
or more connection caches that share a JVM. Each cache is given a unique name (implicitly
or explicitly). The OracleConnectionCacheManager class also provides information about the
cache, such as number of physical connections that are in use and the number of available
connections.

The following sections describe some of the more commonly used methods that this class
provides, with short descriptions. For a complete list of supported methods, please refer to
Oracle Database JDBC Developer’s Guide and Reference (for 10g).

createCache()
Using createCache(), you can create a connection cache with a given DataSource object and a
Properties object. It also allows you to give a meaningful name to the cache, which is useful
when you are managing multiple caches in the middle tier. The second variant listed gener-
ates a name for the cache internally.

public void createCache(String cacheName, javax.sql.DataSource datasource,
java.util.Properties cacheProperties);

public void createCache(javax.sql.DataSource datasource,
java.util.Properties cacheProperties);

removeCache()
This method waits timeout number of seconds for the in-use logical connections to be closed
before removing the cache.

public void removeCache(String cacheName, int timeout);

CHAPTER 14 ■ CONNECTION POOLING AND CACHING554

reinitializeCache()
This method allows you to reinitialize the cache with the new set of properties. This is useful
in dynamically configuring the cache based on runtime load changes and so forth.

public void reinitializeCache(String cacheName, java.util.properties
cacheProperties)

■Caution Invoking reinitializeCache() will close all in-use connections.

enableCache() and disableCache()
These two methods enable or disable a given cache. When the cache is disabled, in-use con-
nections will work as usual, but no new connections will be served out from the cache.

public void enableCache(String cacheName);
public void disableCache(String cacheName);

getCacheProperties()
This method gets the cache properties for the specified cache.

public java.util.Properties getCacheProperties(String cacheName)

getNumberOfAvailableConnections()
This method gets the number of connections in the connection cache that are available for use.

public int getNumberOfAvailableConnections(String cacheName)

getNumberOfActiveConnections()
This method gets the number of in-use connections at a given point of time for a given cache.

public int getNumberOfActiveConnections(String cacheName)

setConnectionPoolDataSource()
This method sets the connection pool data source for the cache. All properties are derived
from this data source.

public void setConnectionPoolDataSource(String cacheName,
ConnectionPoolDataSource cpds)

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 555

An Example of Using the OracleConnectionCacheManager API
Let’s look at the program DemoOracleConnectionCacheManager, which illustrates using some of
the methods of the OracleConnectionCacheManager class. First, we import the classes and set
up OracleDataSource as usual:

/* This program demonstrates using the Oracle connection cache manager API.
* COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0
*/
import java.sql.Connection;
import java.util.Properties;
import oracle.jdbc.pool.OracleDataSource;
import oracle.jdbc.pool.OracleConnectionCacheManager;
class DemoOracleConnectionCacheManager
{
public static void main(String args[]) throws Exception
{
OracleDataSource ods = new OracleDataSource();
ods.setURL ("jdbc:oracle:thin:@rmenon-lap:1521:ora10g");
ods.setUser("scott"); // username
ods.setPassword("tiger"); // password

We then enable implicit connection caching:

// enable implicit caching
ods.setConnectionCachingEnabled(true);

Next, we set the connection cache properties and print them out:

// set cache properties (use a properties file in production code.)
Properties cacheProperties = new Properties();
cacheProperties.setProperty("InitialLimit", "2");
cacheProperties.setProperty("MinLimit", "3");
cacheProperties.setProperty("MaxLimit", "15");
ods.setConnectionCacheProperties(cacheProperties);
System.out.println("Connection Cache Properties: ");
System.out.println("\tInitialLimit: 2");
System.out.println("\tMinLimit: 3");
System.out.println("\tMaxLimit: 15");

We create the connection cache and explicitly give it a name (CONNECTION_CACHE_NAME is a
constant defined later in the file):

// create the connection cache
OracleConnectionCacheManager occm =
OracleConnectionCacheManager.getConnectionCacheManagerInstance();

occm.createCache(CONNECTION_CACHE_NAME, ods, cacheProperties);
System.out.println("Just after creating the cache, " +
"active connections: " +
occm.getNumberOfActiveConnections(CONNECTION_CACHE_NAME) +
", available connections: " +

occm.getNumberOfAvailableConnections(CONNECTION_CACHE_NAME));

CHAPTER 14 ■ CONNECTION POOLING AND CACHING556

We print out the number of in-use (or active) connections and available connections:

System.out.println("Just after creating the cache, " +
"active connections: " +
occm.getNumberOfActiveConnections(CONNECTION_CACHE_NAME) +

", available connections: " + occm.getNumberOfAvailableConnections(
CONNECTION_CACHE_NAME));

Next, we get a connection and close it, printing the active and available connections after
each step:

// get first connection
Connection conn1 = ods.getConnection("scott", "tiger");
System.out.println("After getting first connection from cache, " +
"active connections: " +
occm.getNumberOfActiveConnections(CONNECTION_CACHE_NAME) +
", available connections: " + occm.getNumberOfAvailableConnections(
CONNECTION_CACHE_NAME));

conn1.close();
System.out.println("After closing first connection, " +
"active connections: " +
occm.getNumberOfActiveConnections(CONNECTION_CACHE_NAME) +
", available connections: " + occm.getNumberOfAvailableConnections(
CONNECTION_CACHE_NAME));

We then get three connections (so that we go beyond the initial minimum of two connec-
tions), and close one connection, printing the number of active and available connections
after each step:

// get 3 connections to go beyond the InitialMinimum limit
Connection conn2 = ods.getConnection("scott", "tiger");
Connection conn3 = ods.getConnection("scott", "tiger");
Connection conn4 = ods.getConnection("scott", "tiger");
System.out.println("After getting 3 connections, " +
"active connections: " +
occm.getNumberOfActiveConnections(CONNECTION_CACHE_NAME) +
", available connections: " + occm.getNumberOfAvailableConnections(
CONNECTION_CACHE_NAME));

// close one connection - the number of connections should not
// go below 3 since we set a MinLimit value of 3.
conn2.close();
System.out.println("After closing 1 connection, " +
"active connections: " + occm.getNumberOfActiveConnections(
CONNECTION_CACHE_NAME) + ", available connections: " +
occm.getNumberOfAvailableConnections(CONNECTION_CACHE_NAME));

We close the remaining two connections:

conn3.close();
conn4.close();

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 557

Just as an experiment, before ending the program, we disable the cache and try to retrieve
a connection from it:

// what happens if we disable cache and try to get a connection?
occm.disableCache(CONNECTION_CACHE_NAME);
Connection conn5 = ods.getConnection("scott", "tiger");
conn5.close();

}// end of main
private static final String CONNECTION_CACHE_NAME = "myConnectionCache";

}// end of program

The output of this program is as follows:

B:\> java DemoOracleConnectionCacheManager
Connection Cache Properties:

InitialLimit: 2
MinLimit: 3
MaxLimit: 15

Just after creating the cache, active connections: 0, available connections: 2
After getting first connection from cache, active connections: 1,
available connections: 1
After closing first connection, active connections: 0, available connections: 2
After getting 3 connections, active connections: 3, available connections: 0
After closing 1 connection, active connections: 2, available connections: 1
Exception in thread "main" java.sql.SQLException: Connection Cache with this
Cache Name is Disabled

... <-- trimmed to save space -->

In particular, note that the number of connections (available plus active) does not go
below the minimum limit of three that we set, even though we close all but two connections,
as shown by the last line of the output. Also, if we try to get a connection from a disabled
cache, we get an exception as expected.

Let’s now look at how we can use connection attributes and attribute weights in Oracle 10g.

Using Connection Attributes and Attribute Weights (10g Only)
A new feature of Oracle 10g JDBC drivers is that you can tag a connection with a label of your
choice and use the tag to retrieve the same connection on which the tag was previously set
from the connection cache. This feature is also known as connection striping.

Typically, you will use connection striping to change the state of the connection (say, set-
ting its transaction isolation level) and then tag it. The next time you retrieve the connection
using the tag, its state need not be reinitialized. Thus, you can create “stripes” of connections
in your cache, each of which have its state set once to cater to the requirements of different
applications sharing the cache.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING558

Applying Connection Attributes on a Connection
We can apply a connection attribute to a connection in the cache in two ways. The first method
is to invoke applyConnectionAttributes(java.util.Properties connectionAttribute) on
the connection object to set the attributes. Later, when we want to retrieve it, we invoke
getConnection(java.util.Properties connectionAttributes) on the connection object.
Let’s look at an example.

First, we get the connection from the cache (assume ods is initialized properly):

OracleConnection conn1 = (OracleConnection)
ods.getConnection("scott", "tiger");

Then, we set the transaction isolation level of the connection to serializable (see the sec-
tion “Transaction Isolation Levels” of Chapter 4 for details on transaction isolations):

conn1.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

Now, we would like to remember this “attribute” of connection throughout its life in the
cache, meaning we would like to retrieve a connection with transaction isolation level set to
serializable later on. So we would mark this connection object with our own attribute value
pair constants (TXN_ISOLATION and SERIALIZABLE are constants defined by us):

Properties connectionAttributes = new Properties();
connectionAttributes.setProperty(TXN_ISOLATION, SERIALIZABLE);
conn1.applyConnectionAttributes(connectionAttributes);

After using the connection, we close it:

conn1.close();

Later, we retrieve the same connection back from the cache using the attribute that we set:

conn1 = (OracleConnection) ods.getConnection(connectionAttributes);

Notice that we use the overloaded version of getConnection() that takes in a set of attrib-
utes to get a matching connection. Also note that once we tag a connection, we need to
retrieve the connection always using the same tag. If we don’t specify a tag (e.g., if we use the
getConnection() method without any parameters), we’ll get access to only the “untagged” set
of connections. This is the intended behavior, since we don’t want applications to run into
each other’s connection states. For example, an application shouldn’t inadvertently get a con-
nection with the transaction isolation set to serializable by some other application or module
sharing the same cache.

The second method to set these attributes involves using the close(java.util.Properties)
method on the connection. This method will override any attributes that we may have set on
the same connection using the previous applyConnectionAttributes() method.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 559

■Note For some reason, Oracle treats the “autocommit” attribute of Connection as special, in that you
can’t retain the state of autocommit by setting it to false and tagging the connection. Although this looks
bad, it turns out that autocommit doesn’t involve a round-trip to the database because of the way Oracle
JDBC drivers implement it, so tagging it wouldn’t have resulted in a performance gain anyway. However,
I found this special treatment of autocommit somewhat confusing.

Attribute Weights and the ClosestConnectionMatch Property
Attributes-based connection retrieval can be further refined by specifying attribute weights
for each attribute. An attribute weight is a positive integer: the higher the weight, the higher
the priority when a match is made for retrieving a connection. When performing a match, the
connection cache tries to return a connection that matches all the attributes specified in the
getConnection(Properties connectionAttributes) invocation. If an exact match is not
found, and if ClosestConnectionMatch is set to true, then the cache tries to return the connec-
tion with the maximum number of matching attributes. If there is a tie here as well, then the
connection cache returns the connection whose attributes have the highest combined weight.

The attribute weights should usually be specified based on how expensive it is to recon-
struct a connection back to its intended state.

The last topic of this chapter is OCI driver connection pooling in 10g, which is an OCI
driver–specific connection pooling implementation that offers some advantages over the
standard connection pooling. This feature is also available in 9i.

OCI Connection Pooling
OCI connection pooling allows you to exploit session multiplexing, a mechanism in which mul-
tiple sessions are created using a low number of physical connections. Recall that in Oracle you
can have more than one session on the same physical connection. OCI connection pooling
provides better scalability over implicit connection caching, since fewer physical connections
are required to support the same number of sessions. As its name suggests, OCI connection
pooling requires you to have the JDBC OCI client installed and your environment set up
accordingly as explained in Chapter 3.

■Note Although in this section we cover only the Oracle 10g implementation of OCI connection pooling,
this feature is also available in Oracle9i.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING560

To use an OCI connection pool in your JDBC application, you need to take the following
steps:

1. Create an OCI connection pool.

2. Configure the OCI connection pool properties.

3. Retrieve a connection from the OCI connection pool.

The following DemoOCIConnectionPooling class looks at these steps in detail. We begin by
importing the classes and declaring the main() method:

/*
* This program demonstrates explicit statement caching.
* COMPATIBLITY NOTE:
* runs successfully against 9.2.0.1.0 and 10.1.0.2.0
*/
import java.sql.Connection;
import java.util.Properties;
import oracle.jdbc.pool.OracleOCIConnectionPool;
import book.util.InputUtil;
class DemoOCIConnectionPooling
{
public static void main(String args[]) throws Exception
{

Creating an OCI Connection Pool
You create an OCI connection pool by initializing an OracleOCIConnectionPool object
(OracleOCIConnectionPool extends from the now familiar OracleDataSource class) as follows:

String tnsAlias = "(DESCRIPTION = (ADDRESS_LIST = (ADDRESS =
(PROTOCOL = TCP)(HOST = rmenon-lap)(PORT = 1521))) (CONNECT_DATA =
(SERVER = DEDICATED) (SERVICE_NAME = ora10g.us.oracle.com)))";

OracleOCIConnectionPool ods = new OracleOCIConnectionPool();
ods.setURL ("jdbc:oracle:oci:@"+ tnsAlias);
ods.setUser("scott"); // username
ods.setPassword("tiger"); // password

Notice how we use the OCI driver–style connection parameters.

Configuring the OCI Connection Pool Properties
The next step is to configure the pool properties that dictate how the pool behaves. Table 14-4
lists the various pool properties we can set and their meanings. Note that all these attributes
can be configured dynamically.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 561

Ta
bl

e
14

-4
.O

ra
cl

e
O

C
I C

on
n

ec
ti

on
 P

oo
l C

on
fi

gu
ra

ti
on

 P
ro

p
er

ti
es

Pr
op

er
ty

De
fa

ul
t

Co
ns

tr
ai

nt
s

Ge
tte

r M
et

ho
d

De
sc

rip
tio

n

Or
ac
le
OC
IC
on
ne
ct
io
nP
oo
l.
CO
NN
PO
OL
_M
IN
_L
IM
IT

1
Is

 m
an

d
at

o
ry

;
m

u
st

ge
tM
in
Li
mi
t(
)

Sp
ec

if
ie

s
th

e
m

in
im

u
m

b
e

a
p

o
si

ti
ve

 in
te

ge
r

n
u

m
b

er
 o

f p
h

ys
ic

al

co
n

n
ec

ti
o

n
s

 in
 th

e
p

o
o

l.

Or
ac
le
OC
IC
on
ne
ct
io
nP
oo
l.
CO
NN
PO
OL
_I
NC
RE
ME
NT

0
Is

 m
an

d
at

o
ry

; m
u

st

ge
tC
on
ne
ct
io
nI
nc
re
me
nt
()

Sp
ec

if
ie

s
th

e
n

u
m

b
er

b
e

a
p

o
si

ti
ve

 in
te

ge
r

o
f a

d
d

it
io

n
al

 p
h

ys
ic

al

co
n

n
ec

ti
o

n
s

to
 b

e
o

p
en

ed

w
h

en
 a

 r
eq

u
es

t f
o

r
a

co
n

n
ec

ti
o

n
 is

 p
en

d
in

g
an

d

al
l a

va
il

ab
le

 p
h

ys
ic

al

co
n

n
ec

ti
o

n
s

ar
e

in
 u

se
.

Or
ac
le
OC
IC
on
ne
ct
io
nP
oo
l.
CO
NN
PO
OL
_M
AX
_L
IM
IT

1
Is

 m
an

d
at

o
ry

; m
u

st
 b

e

ge
tM
ax
Li
mi
t(
)

Sp
ec

if
ie

s
th

e
m

ax
im

u
m

>(
CO
NN
PO
OL
_M
IN
_L
IM
IT

n
u

m
b

er
 o

f p
h

ys
ic

al
+C

ON
NP
OO
L_
IN
CR
EM
EN
T)

co
n

n
ec

ti
o

n
s

in
 th

e
p

o
o

l.

Or
ac
le
OC
IC
on
ne
ct
io
nP
oo
l.
CO
NN
PO
OL
_T
IM
EO
UT

0
M

u
st

 b
e

a
p

o
si

ti
ve

ge
tT
im
eo
ut
()

Sp
ec

if
ie

s
th

e
n

u
m

b
er

 o
f

in
te

ge
r

se
co

n
d

s
af

te
r

w
h

ic
h

 a
n

 id
le

p

h
ys

ic
al

 c
o

n
n

ec
ti

o
n

 is

d
is

co
n

n
ec

te
d

.

Or
ac
le
OC
IC
on
ne
ct
io
nP
oo
l.
CO
NN
PO
OL
_N
OW
AI
T

fa
ls

e
M

u
st

 b
e
tr
ue

o
r
fa
ls
e

ge
tN
oW
ai
t(
)

W
h

en
 s

p
ec

if
ie

d
, t

h
is

p

ro
p

er
ty

 im
p

li
es

 th
at

 th
e

co
n

n
ec

ti
o

n
 p

o
o

l s
h

o
u

ld

re
tu

rn
 a

n
 e

rr
o

r
if

 a
ll

co
n

n
ec

ti
o

n
s

in
 th

e
p

o
o

l
ar

e
b

u
sy

 a
n

d
 a

n
o

th
er

re

q
u

es
t f

o
r

a
co

n
n

ec
ti

o
n

co

m
es

 in
.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING562

Continuing the definition of our class, we set the OCI connection pool properties using
the setPoolConfig() method of the OracleOCIConnectionPool class:

Properties cacheProperties = new Properties();
cacheProperties.setProperty(OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, "2");
cacheProperties.setProperty(OracleOCIConnectionPool.CONNPOOL_INCREMENT, "1");
cacheProperties.setProperty(OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, "10");
ods.setPoolConfig(cacheProperties);
System.out.println("Min Limit: 2");
System.out.println("Max Limit: 10");
System.out.println("Increment : 1");
System.out.println("pool size:" + ods.getPoolSize())

The cache gets created when the we invoke the preceding setPoolConfig() method.

Retrieving a Connection from the OCI Connection Pool
Once the pool is configured, we can retrieve a connection using the standard getConnection()
method on the OracleOCIConnectionPool object (recall that it extends the OracleDataSource
class):

Connection conn = oocp.getConnection("scott", "tiger");

Analyzing Connections and Sessions When OCI Connection
Pooling Is in Use
The behavior of OCI connection pooling depends on whether your program is multithreaded or
not. For a single-threaded program, the OCI connection pool sets up a connection cache equal
to the configured property OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT. After that, every
connection request results in a session being created using one of these cached connections.
No new connections are created in the cache above OracleOCIConnectionPool.CONNPOOL_➥

MIN_LIMIT. But new sessions are created as requested on top of the connections created initially.
As you will learn, this is a case where you can see more than one session being created on top of
a connection.

For a multithreaded program, the OCI connection pool sets up a connection cache equal
to the configured property OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT. After that, every
connection request from a new thread results in a new physical connection being created.

Let’s look at each of these cases now, beginning with the case of a single-threaded program.

Analyzing OCI Connection Pooling in a Single-Threaded Program
The program AnalyzeOCIConnPoolSingleThread described in this section takes as input the
number of sessions to open using the OCI connection pool. It has the now familiar pauses
introduced for us to run our query listing physical connections and sessions. Let’s look at
the program piecemeal, starting with the imports and the declaration of the main() method:

/*
* This program demonstrates use of OCI connection pooling in a single-threaded
program.
* COMPATIBLITY NOTE: tested against 10.1.0.2.0.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 563

*/
import java.sql.Connection;
import java.util.Properties;
import oracle.jdbc.pool.OracleDataSource;
import oracle.jdbc.pool.OracleOCIConnectionPool;
import book.util.InputUtil;
class AnalyzeOCIConnPoolSingleThread
{
public static void main(String args[]) throws Exception
{

The function _getNumOfSessionsToOpen(), defined at the end of the program, returns the
number of sessions requested as the first command-line parameter value when running the
program.

int numOfSessionsToOpen = _getNumOfSessionsToOpen(args);

We set up the TNS alias and configure the pool with connection properties to connect to
the user SCOTT:

String tnsAlias = "(DESCRIPTION = (ADDRESS_LIST = (ADDRESS =
(PROTOCOL = TCP)(HOST = rmenon-lap)(PORT = 1521))) (CONNECT_DATA =
(SERVER = DEDICATED)(SERVICE_NAME = ora10g.us.oracle.com)))";

OracleOCIConnectionPool oocp = new OracleOCIConnectionPool();
oocp.setURL ("jdbc:oracle:oci:@"+ tnsAlias);
oocp.setUser("scott"); // username
oocp.setPassword("tiger"); // password

Next we set the pool configuration properties and print them out. We also print out the
time it takes to set up the initial pool (which happens when we invoke setPoolConfig()).

// set pool config properties
Properties poolConfigProperties = new Properties();
poolConfigProperties.setProperty(
OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, "3");

poolConfigProperties.setProperty(
OracleOCIConnectionPool.CONNPOOL_INCREMENT, "1");

poolConfigProperties.setProperty(
OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, "20");

long startTime = System.currentTimeMillis();
oocp.setPoolConfig(poolConfigProperties);
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime-startTime) +
" ms to establish initial pool size of "+ oocp.getPoolSize() +
" connections.");

//print config properties
System.out.println("min Limit: " + oocp.getMinLimit());
System.out.println("max Limit: " + oocp.getMaxLimit());
System.out.println("connection increment : " + oocp.getConnectionIncrement());
System.out.println("timeout: " + oocp.getTimeout());
System.out.println("nowait: " + oocp.getNoWait());

CHAPTER 14 ■ CONNECTION POOLING AND CACHING564

We can find out the number of physical connections opened by invoking the getPoolSize()
method as follows:

System.out.println("num of physical connections: " + oocp.getPoolSize());

Next, we create the number of sessions specified at the command line to the user SCOTT,
with a pause before and after. We also measure the time it takes to establish the sessions.

InputUtil.waitTillUserHitsEnter("before establishing scott connections");
for(int i=0; i < numOfSessionsToOpen; i++)
{
// time the process of establishing a connection
startTime = System.currentTimeMillis();
scottConnections[i] = oocp.getConnection("scott", "tiger");
endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime-startTime) +
" ms to establish session # " + (i+1) + " (scott).");

System.out.println("num of physical connections: " + oocp.getPoolSize());
}
InputUtil.waitTillUserHitsEnter();

We create and time the same number of sessions for the user BENCHMARK, with a pause at
the end:

Connection[] benchmarkConnections = new Connection[numOfSessionsToOpen];
for(int i=0; i < numOfSessionsToOpen; i++)
{
// time the process of establishing a connection
startTime = System.currentTimeMillis();
benchmarkConnections[i] = oocp.getConnection("benchmark", "benchmark");
endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime-startTime) +
" ms to establish the session # " + (i+1) + " (benchmark).");

System.out.println("num of physical connections: " + oocp.getPoolSize());
}
InputUtil.waitTillUserHitsEnter();

Finally, we close all sessions and define the method _getNumOfSessionsToOpen() we
invoked earlier to end the program:

// close all connections (or sessions)
for(int i=0; i < numOfSessionsToOpen; i++)
{
if(benchmarkConnections[i] != null)
benchmarkConnections[i].close();

if(scottConnections[i] != null)
scottConnections[i].close();

}
}// end of main
private static int _getNumOfSessionsToOpen(String[] args)
{

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 565

int numOfSessionsToOpen = 3; //by default open 3 sessions
if(args.length == 1)
{
numOfSessionsToOpen = Integer.parseInt(args[0]);

}
System.out.println("Num of sessions to open for scott and benchmark each = "
+ numOfSessionsToOpen);

return numOfSessionsToOpen;
}

}// end of program

Let’s now look at the program output, and also discuss the output of the query that lists
opened physical connections and sessions during the programmed pauses. Consider the case
where we request that six sessions be opened each for the SCOTT and BENCHMARK users. The first
few lines of program output follow:

B:\>java AnalyzeOCIConnPoolSingleThread 6
Num of sessions to open for scott and benchmark each = 6
It took 781 ms to establish initial pool size of 3 connections.
min Limit: 3
max Limit: 20
connection increment : 1
timeout: 0
nowait: false
num of physical connections: 3
before establishing scott connections
Press Enter to continue...

Note from the output that it takes 781 milliseconds to establish three physical connec-
tions when we use OCI connection pooling. This is slightly better than the 1,015 milliseconds
we saw when we used the implicit connection cache. The difference remains even if we use
the OCI driver with the implicit connection cache. We also get the number of physical connec-
tions by invoking getPoolSize() on the OCI connection pool variable. Our query for listing
connections and sessions confirms this:

sys@ORA10G> select s.program, s.server, p.spid server_pid, s.username
2 from v$session s, v$process p
3 where s.type = 'USER'
4 and s.username != 'SYS'
5 and p.addr(+) = s.paddr;

PROGRAM SERVER SERVER_PID USERNAME
------------------------------ --------------- ------------ ----------
java.exe DEDICATED 3260 SCOTT
java.exe DEDICATED 2472 SCOTT
java.exe DEDICATED 1896 SCOTT

After we press Enter, the program shows the following output after creating six sessions
for the user SCOTT:

CHAPTER 14 ■ CONNECTION POOLING AND CACHING566

It took 78 ms to establish session # 1 (scott).
num of physical connections: 3
It took 16 ms to establish session # 2 (scott).
num of physical connections: 3
It took 0 ms to establish session # 3 (scott).
num of physical connections: 3
It took 15 ms to establish session # 4 (scott).
num of physical connections: 3
It took 16 ms to establish session # 5 (scott).
num of physical connections: 3
It took 0 ms to establish session # 6 (scott).
num of physical connections: 3
Press Enter to continue...

At this point, we have established six sessions to SCOTT user. The second-to-last line of our
output confirms that we have only three physical connections at this point. Our query results
are as follows:

sys@ORA10G> /

PROGRAM SERVER SERVER_PID USERNAME
------------------------------ --------------- ------------ ----------
java.exe DEDICATED 3260 SCOTT
java.exe DEDICATED 2472 SCOTT
java.exe DEDICATED 1896 SCOTT
java.exe PSEUDO SCOTT
java.exe PSEUDO SCOTT
java.exe PSEUDO SCOTT
java.exe PSEUDO SCOTT
java.exe PSEUDO SCOTT
java.exe PSEUDO SCOTT

We were expecting six rows, but there are nine rows shown by the query! Careful examina-
tion shows that only three of them have a server_pid column—those three rows correspond
to actual physical connections created by Oracle so far. The remaining six rows that corre-
spond to a null value for the server_pid column (and also have a value of PSEUDO under the
server column) are sessions created by Oracle on top of the three physical connections.

When we press Enter once more, we get the following output:

It took 78 ms to establish the session # 1 (benchmark).
num of physical connections: 3
It took 16 ms to establish the session # 2 (benchmark).
num of physical connections: 3
It took 0 ms to establish the session # 3 (benchmark).
num of physical connections: 3
It took 15 ms to establish the session # 4 (benchmark).
num of physical connections: 3
It took 16 ms to establish the session # 5 (benchmark).
num of physical connections: 3

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 567

It took 0 ms to establish the session # 6 (benchmark).
num of physical connections: 3
Press Enter to continue...

Notice that it took 78 milliseconds to establish a new benchmark session, though the con-
nection pool had all physical connections authenticated as the user SCOTT. This is pretty good
compared to the 266 milliseconds we saw when using implicit cache to establish a new con-
nection and session. This is because in this case we are creating a session on an already
existing physical connection. Our query confirms that there are three connections, six
SCOTT sessions, and six BENCHMARK sessions in the database at this point:

sys@ORA10G> /

PROGRAM SERVER SERVER_PID USERNAME
------------------------------ --------------- ------------ ----------
java.exe DEDICATED 3260 SCOTT
java.exe DEDICATED 2472 SCOTT
java.exe DEDICATED 1896 SCOTT
java.exe PSEUDO SCOTT
java.exe PSEUDO BENCHMARK
java.exe PSEUDO BENCHMARK
java.exe PSEUDO BENCHMARK
java.exe PSEUDO BENCHMARK
java.exe PSEUDO SCOTT
java.exe PSEUDO SCOTT
java.exe PSEUDO BENCHMARK
java.exe PSEUDO SCOTT
java.exe PSEUDO SCOTT
java.exe PSEUDO BENCHMARK
java.exe PSEUDO SCOTT

12 rows selected.

We can end the program by pressing Enter once more.
If you try to run the program with an increasing number of sessions using the command-

line parameter, you will find that the number of physical connections remains the same, no
matter how many sessions you create. As mentioned, this is because in a single-threaded pro-
gram, the OCI connection pool creates physical connections only at the beginning based on
the OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT parameter. Of course, at some point you
would run out of resources—there can be only so many sessions created on three physical
connections. For example, on my PC, I was able to create 65 sessions each for SCOTT and
BENCHMARK on three physical connections. When I tried to bump the number to 66, I got the
following exception:

Exception in thread "main" java.sql.SQLException: ORA-00604: error occurred at
ecursive SQL level 1
ORA-04031: unable to allocate 4012 bytes of shared memory (
"large pool","unknown object","session heap","bind var buf")
… <-- trimmed to save space -->

CHAPTER 14 ■ CONNECTION POOLING AND CACHING568

The interesting thing is that you can dynamically set this minimum limit by simply
passing in the appropriately modified Properties object to the setPoolConfig() method at
runtime, thus controlling the actual number of physical connections used in setting up the
sessions in your pool.

What happens if the program is multithreaded? We cover that in the next section.

Analyzing OCI Connection Pooling in a Multithreaded Program
To analyze the case of a multithreaded program, we will first look at the WorkerThread class,
which executes a query after getting the connection. Since it is a multithreaded program, we
can’t introduce pauses easily, so we make each worker thread execute a query that we know
will take some time to get the output of. In our case, the query is select object_name from
all_objects. After the necessary imports, the class WorkerThread begins with a constructor
that takes a connection pool (assumed to be initialized by the calling program) and a thread
number.

import book.util.JDBCUtil;
class WorkerThread extends Thread
{
WorkerThread(OracleOCIConnectionPool ociConnPool, int _threadNumber)
throws Exception
{
super();
this._ociConnPool = ociConnPool;
this._threadNumber = _threadNumber;

}

The run() method of the WorkerThread class gets a connection to SCOTT if the thread num-
ber is even; otherwise, it gets a connection to BENCHMARK.

public void run()
{
Connection conn = null;
Statement stmt = null;
ResultSet rset = null;
try
{
if(_threadNumber % 2 == 0)
{
System.out.println("connecting as scott");
conn = _ociConnPool.getConnection("scott", "tiger");

}
else
{
System.out.println("connecting as benchmark");
conn = _ociConnPool.getConnection("benchmark", "benchmark");

}

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 569

We then execute our query and end the WorkerThread class:

pstmt = conn.prepareStatement("select owner from all_objects");
rset = pstmt.executeQuery();
while(rset.next())
{
rset.getString(1);

}
}
catch (Exception e)
{
e.printStackTrace();

}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);
JDBCUtil.close(conn);

}
} // end of run
private OracleOCIConnectionPool _ociConnPool;
private int _threadNumber = -1;

} // end of class

We set up the OCI connection pool and invoke the WorkerThread program from the class
AnalyzeOCIConnPoolMultiThread as follows:

/** This program demonstrates the use of OCI connection pooling in a
multithreaded program.

* COMPATIBLITY NOTE: tested against 10.1.0.2.0.
*/
import java.util.Properties;
import oracle.jdbc.pool.OracleOCIConnectionPool;
public class AnalyzeOCIConnPoolMultiThread
{
public static void main(String [] args) throws Exception
{
_numOfSessionsToOpen = _getNumOfSessionsToOpen(args);
String tnsAlias = "(DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL =

TCP)(HOST = rmenon-lap)(PORT = 1521))) (CONNECT_DATA = (SERVER = DEDICATED)
(SERVICE_NAME = ora10g.us.oracle.com)))";

OracleOCIConnectionPool cpool = new OracleOCIConnectionPool();
cpool.setURL ("jdbc:oracle:oci:@"+ tnsAlias);
cpool.setUser("scott"); // username
cpool.setPassword("tiger"); // password
Properties poolConfigProps = new Properties() ;

CHAPTER 14 ■ CONNECTION POOLING AND CACHING570

poolConfigProps.put(OracleOCIConnectionPool.CONNPOOL_MIN_LIMIT, "2") ;
poolConfigProps.put(OracleOCIConnectionPool.CONNPOOL_INCREMENT, "1") ;
poolConfigProps.put(OracleOCIConnectionPool.CONNPOOL_MAX_LIMIT, "20") ;
cpool.setPoolConfig(poolConfigProps);
System.out.println ("Min poolsize Limit = " + cpool.getMinLimit());
System.out.println ("Max poolsize Limit = " + cpool.getMaxLimit());
System.out.println ("Connection Increment = " + cpool.getConnectionIncrement());

Up until this point, this program is the same as the single-threaded program, AnalyzeOCI➥

ConnPoolSingleThread, which we saw in the previous section. After this, we create the number
of threads as specified by the command-line parameter and start them.

Thread [] threads = new Thread[_numOfSessionsToOpen];
for(int i = 0; i<threads.length; i++)
{
(threads[i] = new WorkerThread(cpool, i)).start();

}

Finally, we wait for all threads to finish in a loop. This ends the main() program, which is
followed by the definition of the _getNumOfSessionsToOpen() method at the end:

// wait until all threads are done.
for(int i = 0; i<threads.length; i++)
{
threads[i].join();

}

cpool.close();
}// end of main

private static int _getNumOfSessionsToOpen(String[] args)
{
int numOfSessionsToOpen = 6; //by default open 6 sessions
if(args.length == 1)
{
numOfSessionsToOpen = Integer.parseInt(args[0]);

}
System.out.println("Total number of sessions to open for " +
"scott and benchmark = " + numOfSessionsToOpen);

return numOfSessionsToOpen;
}

private static int _numOfSessionsToOpen;
}

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 571

We will run the program and then examine the database while the program is running. For
some reason, the only reliable results our original query shows are the number of connections
and the number of sessions. I modified the query to print out this information (note that the
following query works only for the case in which we know that sessions are being independ-
ently created on top of connections, as is the case here). The program output is as follows:

B:\> java AnalyzeOCIConnPoolMultiThread 12
Total number of sessions to open for scott and benchmark = 12
Min poolsize Limit = 2
Max poolsize Limit = 20
Connection Increment = 1
connecting as scott
connecting as benchmark
connecting as scott
connecting as benchmark
connecting as scott
connecting as benchmark
connecting as scott
connecting as benchmark
connecting as scott
connecting as benchmark
connecting as scott
connecting as benchmark

The program opens six sessions for SCOTT and six more for BENCHMARK.
When I ran the modified query and executed it immediately again and again, it gave the

following results:

sys@ORA10G> select num_of_conns, (conns_plus_sess -num_of_conns) as num_of_seons
2 from
3 (
4 select count(*) conns_plus_sess,
5 count(distinct p.spid) num_of_conns
6 from v$session s, v$process p
7 where s.type != 'BACKGROUND'
8 and s.username != 'SYS'
9 and p.addr(+) = s.paddr
10);

NUM_OF_CONNS NUM_OF_SESSIONS
------------ ---------------

8 12
sys@ORA10G> /
NUM_OF_CONNS NUM_OF_SESSIONS
------------ ---------------

8 12
sys@ORA10G> /

CHAPTER 14 ■ CONNECTION POOLING AND CACHING572

NUM_OF_CONNS NUM_OF_SESSIONS
------------ ---------------

12 12
<-- after some time -->
sys@ORA10G> /
NUM_OF_CONNS NUM_OF_SESSIONS
------------ ---------------

12 10
<-- after some time -->
sys@ORA10G> /
NUM_OF_CONNS NUM_OF_SESSIONS
------------ ---------------

0 0

This shows that the program had eight connections at the point I executed the query for
the first time and 12 sessions. Ultimately, we had 12 sessions created on top of 12 connections.
We can also see a stage where the number of sessions goes down to 10, while the number of
connections open remains at 12. This experiment proves that each thread had a separate
physical connection, in the case of multithreaded programs using OCI connection pooling.

Summary
In this chapter, you learned the difference between connections and sessions in Oracle. You
learned why connection pooling is necessary, and you distinguished between connection
pooling and caching. You examined how Oracle9i implements the connection pooling frame-
work and provides a sample connection caching implementation. As you saw, in Oracle 10g,
the Oracle9i connection caching has been deprecated and replaced by the more powerful
implicit connection caching. Finally, you took a look at how Oracle’s OCI connection pooling
improves scalability and performance by creating lightweight sessions on top of a low number
of physical connections.

CHAPTER 14 ■ CONNECTION POOLING AND CACHING 573

Security-Related Issues

In the previous chapter, we discussed the performance and scalability benefits of using
connection pooling. In this chapter, we’ll direct our attention to the security issues involved
in a three-tier architecture that uses connection pooling. In particular, we’ll focus on different
alternatives of mapping an application end user to a database end user and different ways in
which an application can authenticate to the database on behalf of an end user. We’ll cover
the following authentication alternatives:

• The application server authenticates to the database by presenting the password of the
database user to which the end user corresponds.

• The application server authenticates to the database by using proxy authentication, a
feature available only in the JDBC OCI driver as of Oracle 10g Release 1. It is slated to be
supported by the JDBC thin driver in 10g Release 2.

Let’s begin by discussing two important security principles that all applications should
strive to uphold.

The Principle of Least Privilege and Defense in Depth
Two fundamental principles of good security design are the principle of least privilege and
defense in depth. We’ll briefly discuss these two principles in this section.

• Principle of least privilege: The principle of least privilege states simply that a user
should be given the minimum number of privileges possible to enable the user to get
his job done. We see this principle being applied routinely in our day-to-day life. For
example, only those employees who need access to the rooms in an office building are
given access codes (or keys) to those rooms. Similarly, chances are that you and your
manager can access part of your company’s HR database to see your salary and benefits
details, but your peers cannot access your particular information.

• Defense in depth: This security principle states that security should be built in using
multiple layers such that if an outer layer fails, the inner layers prevent a compromise
of security. For example, in a bank the outermost defense layer may begin with the
guard on duty. Cameras form the next layer of security. The solid structure of the build-
ing’s vaults forms a third layer of security, and so on.

575

C H A P T E R 1 5

■ ■ ■

You should always strive to design the security in your application keeping the preceding
two principles in mind. With these principles in mind, let’s now turn our attention to the
important design question related to security in an application: “How do we map an applica-
tion end user to a database user?” In the next section, we’ll discuss how this issue can be
addressed, especially in the context of a web application.

Mapping an End User to a Database User
An end user ultimately has to connect to the database as some database user to perform oper-
ations. This section explores the various alternatives of providing this mapping between the
application end user and database end user, and examines the design implications of each
alternative. For the discussion in this section, assume that we’re designing an HR application
that has the following two categories (or roles) of end users:

• clerk_role: This user can generate reports and query data.

• manager_role: This user has the privileges of clerk_role and can also add, update, and
delete data.

Also assume that there are 100 clerk end users (clerk1, clerk2, etc., up to clerk100) and
10 manager end users (manager1, manager2, etc., up to manager10).

We have three choices while mapping each of these end users to database users:

One-to-one mapping: The one-to-one mapping implies that you create a database user
account for each application user. In our example, this means that we would create 100 clerk
user accounts (db_clerk1, db_clerk2, etc.) and 10 manager user accounts (db_manager1, db_➥

manager2, etc.). We could, of course, have the same username for the application user and the
corresponding database user—we’ll choose to prefix the database user with db_ to distin-
guish between the users in this discussion.

The one-to-one mapping design has the following implications:

• Since each end user is connecting as a separate database user, the user’s identity is pre-
served in the database. This simply means we can trace a given action conducted by a
database user back to a single end user (assuming we have proper auditing in place).
This is a good thing from a security point of view.

• In the case of a client/server application, the end user can simply present to the appli-
cation the database user’s password to log onto the application. In a web application
with a three-tier architecture, this can result in some password management issues. We
will examine these issues in more detail in the section “Authenticating an Application
End User to the Database.”

• If we’re using one-to-one mapping in conjunction with connection pooling, then this
design can result in performance problems. Here we assume that our connection pool
consists of dedicated connection for each database user. Since each connection can be
used by only one user, every time a new user logs in, we need to create a new connection
for the user (since none of the existing connections in the pool can be reused by this
user). Later in the section “Proxy Authentication (N-Tier Authentication)” we’ll cover
how this problem can be overcome even within the realm of one-to-one mapping.

CHAPTER 15 ■ SECURITY-RELATED ISSUES576

N-to-M (N > M, M > 1) mapping: In this case, N application users are mapped to M data-
base users. The mapping is typically done based on the common roles into which the end
users can be divided. Thus, in our example HR application, we would create three data-
base users, db_clerk, db_manager, and db_admin. All clerks (clerk1 to clerk100) would
connect to the database as the database user db_clerk. Similarly, all managers would use
the database user db_manager to connect to the database. This design has the following
implications:

• Since multiple end users are mapped to the same database user, the user’s identity is
no longer preserved natively in the database. For example, if a record is deleted while
an end user is connected as db_manager, the database can no longer tell which of the
ten managers (manager1, manager2, etc.) actually performed the action, because the
action occurred when one of these managers was connected as db_manager. The appli-
cation has to take specific measures to enable this level of auditing.

• This mapping is amenable to connection pooling in terms of performance and scalabil-
ity. This is mainly because you need to have only three different types of database
connections (corresponding to the three different database users). Since the same con-
nection can be shared across multiple end users (e.g., one connection of db_clerk can
be shared at different times among the 100 clerk users), the connection pool can scale
for a relatively large end user population.

N-to-1 mapping: This is a special case of the N-to-M mapping just discussed. In this case,
all the end users ultimately connect to the database as the same user (say, db_user in our
example). This user has the privileges that form the union of privileges associated with
different categories of users. The only reason we discuss this case is to point out that it
violates both the principle of least privilege and defense in depth. The reason is that all
end users have the same privileges when connected to the database. Thus, if the applica-
tion level security is subverted, then an end user can do things beyond the capabilities of
her designed set of privileges. For example, if the end user clerk1 manages to connect to
the database by circumventing the application, she can delete records even though she is
not supposed to have this privilege at the application level. As is true in the case of N-to-M
mapping, the end user’s identity is not preserved natively in this case as well.

From the preceding points, we can conclude the following:

• We should avoid using the N-to-1 mapping because it violates both the principle of
least privilege and defense in depth.

• Ideally, we should have a separate database account for each end user. This is usually
the case when using a client/server application in which each end user has a dedicated
connection to the database during an application session. In a three-tier web applica-
tion, this can present challenges in terms of password management and connection
pool scalability. Proxy authentication, a feature available via the JDBC OCI driver that
we discuss later, addresses these issues elegantly.

Next, we’ll look at another important principle that we should adhere to in order to make
our applications more secure.

CHAPTER 15 ■ SECURITY-RELATED ISSUES 577

Separating the End User Database Schema,
Data Schema, and Data Access Layer Schema
In this section, we’ll examine the need for separating the end user database schema, the data
schema, and the data access layer schema. Let’s begin by defining these terms.

• The end user database schema refers to the database schema to which the end user is
mapped.

• The data schema is the schema that contains and owns the application data. This is the
user that owns the tables in which application data resides. This user would also have
the privileges of manipulating table data (i.e., insert, delete, and update privileges on
the tables), and creating and dropping objects such as tables.

• The data access layer schema is the database account that owns the API through which
you access the data. Hopefully, after reading the arguments presented in Chapter 6, you
are convinced of the importance of using a PL/SQL API for the database access layer in
your JDBC applications. (For a non-Oracle database, you would use the corresponding
procedural language layer here—for example, for SQL Server, you would use a Transact-
SQL layer API.)

It is vital for your application to not lump all of these schemas into one, otherwise you vio-
late both the principle of least privilege and defense in depth. For example, consider the case
where you have just one user for the data (the tables), the data access layer (the procedures and
packages that manipulate the data in the tables), and the end user database account. If your
application security is compromised and a malicious end user is able to connect to the data-
base using this all-in-one database account, he can potentially delete data from the tables,
drop schema objects, and take all kinds of similar destructive actions. Contrast this with the
case where you have a design in which the end user account does not own the data or the data
access layer, but just has execute privileges on the procedural API that the user indirectly exe-
cutes when logged in as the application user (through the application). In this case, the user
can perform none of the aforementioned destructive actions, simply because he has not been
granted the privileges to do so.

Thus, ideally we should have a separate database schema for the end user, data access
layer, and data database accounts, as shown in Figure 15-1.

Figure 15-1. A schema design that separates the end user, data access layer, and data schemas

End user

can execute can manipulate

DataData access layer
(PL/SQL)

CHAPTER 15 ■ SECURITY-RELATED ISSUES578

As illustrated in Figure 15-1, the data schema owns the tables and the data within these
tables. The data access layer contains PL/SQL code to manipulate data. The PL/SQL packages
in this schema have privileges to insert, delete, update, and select data as required on appro-
priate tables they need to work on. The end user accounts are given privileges only to execute
the PL/SQL packages they need to execute to get their job done.

In the next section, we’ll look at an application example that illustrates the concepts we’ve
covered so far.

An Example Application
Figure 15-2 shows our example application architecture. Application users clerk1 and
manager1 map to the database schemas db_clerk1 and db_manager1, respectively. The schema
db_data_access_layer consists of PL/SQL code with privileges to manipulate data stored in
a third schema called db_app_data. The schema db_clerk1 has the role clerk_role, which can
execute the package clerk_pkg. The user db_manager1 has the role manager_role, which
can execute the packages clerk_pkg and manager_pkg.

Figure 15-2. Our example application architecture

Our rather simplistic HR application consists of two PL/SQL packages that allow a user
to perform various actions on the emp and dept tables. The package manager_pkg allows a user to
add a department, hire an employee, raise a salary, and so on. The package clerk_pkg allows a
user to list the employee and department details.

db_clerk1

can manipulate

db_app_data
db_data_access_layer

Executes via clerk_role

Database

Executes via manager_role

clerk_pkg

manager_pkg

db_manager1

clerk1

Application

manager1

manager_role can execute clerk_pkg and manager _pkg
clerk_role can only execute clerk_pkg

CHAPTER 15 ■ SECURITY-RELATED ISSUES 579

The architecture shown in Figure 15-2 illustrates the following:

• Use of database roles to control end user access to the application functionality: For
example, the user db_manager1 has the privileges to execute both packages, manager_pkg
and clerk_pkg, via the roles manager_role and clerk_role. However, the user db_clerk1
only needs to report on the data, not modify it, so that user is given the minimum nec-
essary privileges to perform these tasks. This user can execute only clerk_pkg via the
role clerk_role.

• Separation of the data and the application logic that accesses that data into two distinct
schemas: The schema db_app_data contains the application objects (the emp and dept
tables) and the application data. The schema db_data_access_layer contains the appli-
cation API to access data in the schema db_app_data. In our example, this API consists
of the two PL/SQL packages clerk_pkg and manager_pkg. As discussed earlier, the main
advantage of creating two separate schemas for data and the data access layer code is
that we can grant only the minimum required privileges on db_app_data objects to the
db_data_access_layer schema. For example, as shown in the design in Figure 15-2, the
db_data_access_layer schema cannot drop the tables emp and dept. Thus, we uphold
the principle of maintaining the least privileges needed to get the job done.

Let’s go ahead and create all the schema objects from scratch, and then we’ll demonstrate
how the application actually authenticates to the database in order to perform the requested
actions, focusing on the proxy authentication technique.

Creating the Database Schemas
Let’s begin by logging in as sys and creating an admin account with the dba role. This account’s
only use is to create other accounts in the database used by our application.

■Caution In this example, all passwords are the same as the username. This is obviously a bad idea in a
real-life application.

sys@ORA10G> create user admin identified by admin default tablespace users;
User created.
sys@ORA10G> grant dba to admin;
Grant succeeded.

As discussed, we will have two schemas: db_app_data and db_data_access_layer. The
schema db_app_data contains all the application objects (in our case, just tables) used in our
application. The schema db_data_access_layer contains all the code (PL/SQL API) that works
on the tables in the schema db_app_data. After connecting as admin, we create the db_app_data
schema.

admin@ORA10G> create user db_app_data identified by db_app_data default
tablespace users quota unlimited on users;

User created.

CHAPTER 15 ■ SECURITY-RELATED ISSUES580

Note that we need to give some quota on a tablespace for the schema db_app_data to be
able to create tables and store some data in them. Next, we grant the privileges to connect
to the database (the create session privilege): create table, and create and drop public
synonym to db_app_data.

■Note See Chapters 5 and 6 of Oracle Database Security Guide (10g Release 1) if you are not familiar with
the concepts of privileges and synonyms.

admin@ORA10G> grant create session,
2 create table,
3 create public synonym,
4 drop public synonym
5 to db_app_data;

Grant succeeded.

We now create the db_data_access_layer schema. This user does not need to create any
tables, but it needs to connect to the database, create procedures, and create and drop syn-
onyms, so we grant it the corresponding privileges:

admin@ORA10G> create user db_data_access_layer identified by db_data_access_layer;
User created.
admin@ORA10G> grant create session,
2 create public synonym,
3 drop public synonym,
4 create procedure
5 to db_data_access_layer;

Grant succeeded.

Creating the Application Data Tables
Next, we connect as db_app_data and create our schema objects. We begin with a table, dept,
that contains the department number and name:

admin@ORA10G> conn db_app_data/db_app_data
Connected.
db_app_data@ORA10G> -- create schema for the application
db_app_data@ORA10G> create table dept
2 (
3 dept_no number primary key,
4 dept_name varchar2(20)
5);

Table created.

CHAPTER 15 ■ SECURITY-RELATED ISSUES 581

We create an emp table with various employee-related information:

db_app_data@ORA10G> create table emp
2 (
3 empno number primary key,
4 ename varchar2(20),
5 dept_no references dept,
6 salary number,
7 job varchar2(30)
8);

Table created.

Since we don’t want to give the schema name of these two tables each time we refer to
them from another schema, we create public synonyms for them. If we now access the table
from a different schema (e.g., from the db_data_access_layer schema), we can refer to the
synonym emp instead of referring to it as db_app_data.emp:

db_app_data@ORA10G> create public synonym emp for emp;
Synonym created.
db_app_data@ORA10G> create public synonym dept for dept;
Synonym created.

Granting DML Privileges to db_data_access_layer
We then connect to our admin user and grant select, insert, update, and delete privileges
on the tables in the db_app_data schema to the db_data_access_layer user. This is so that the
PL/SQL packages that we will create soon in db_data_access_layer can manipulate data in
the db_app_data tables emp and dept:

db_app_data@ORA10G> conn admin/admin
Connected.
admin@ORA10G> -- need direct privileges on the objects for the procedures to
admin@ORA10G> -- work
admin@ORA10G> grant select, insert, delete, update on emp to db_data_access_layer;
Grant succeeded.
admin@ORA10G> grant select, insert, delete, update on dept to db_data_access_layer;
Grant succeeded.

Creating the PL/SQL Packages
We now connect to the db_data_access_layer user and create the PL/SQL API for our applica-
tion. Our simplistic API consists of just two packages. The first package is called manager_pkg
and contains code to add a department, hire an employee, raise an employee’s salary, and fire
an employee.

admin@ORA10G> conn db_data_access_layer/db_data_access_layer
Connected.
db_data_access_layer@ORA10G> create or replace package manager_pkg
2 as

CHAPTER 15 ■ SECURITY-RELATED ISSUES582

3 procedure add_dept(
4 p_dept_no in number,
5 p_dept_name in varchar2);
6
7 procedure hire_emp(
8 p_empno in number,
9 p_ename in varchar2,
10 p_dept_no in number,
11 p_salary in number,
12 p_job in varchar2);
13
14 procedure raise_salary(
15 p_empno in number,
16 p_salary_hike_pcnt in number);
17
18 procedure fire_emp(
19 p_empno in number);
20 end manager_pkg;
21 /
Package created.

We explain each of these procedures in our implementation of the package body. The first
procedure, add_dept, simply inserts a department’s information into the dept table:

db_data_access_layer@ORA10G> create or replace package body manager_pkg
2 as
3 procedure add_dept(
4 p_dept_no in number,
5 p_dept_name in varchar2)
6 is
7 begin
8 insert into dept(dept_no, dept_name)
9 values(p_dept_no, p_dept_name);
10 end add_dept;

The procedure hire_emp simply inserts an employee record into the emp table:

12 procedure hire_emp(
13 p_empno in number,
14 p_ename in varchar2,
15 p_dept_no in number,
16 p_salary in number,
17 p_job in varchar2)
18 is
19 begin
20 insert into emp(empno, ename, dept_no, salary, job)
21 values(p_empno, p_ename, p_dept_no, p_salary, p_job);
22 end hire_emp;

CHAPTER 15 ■ SECURITY-RELATED ISSUES 583

The procedure raise_salary raises the salary of an employee by a given percentage by
performing a simple update:

24 procedure raise_salary(
25 p_empno in number,
26 p_salary_hike_pcnt in number)
27 is
28 begin
29 update emp
30 set salary = salary * (p_salary_hike_pcnt/100.00)
31 where empno = p_empno;
32 end raise_salary;

Finally, the fire_emp procedure deletes a given employee’s record from the emp table:

33
34 procedure fire_emp(
35 p_empno in number)
36 is
37 begin
38 delete emp
39 where empno = p_empno;
40 end fire_emp;
41 end manager_pkg;
42 /
Package body created.

Our second (and final) package, clerk_pkg, simply lists the employee and department
details with two functions, list_dept_details and list_emp_details, each of which returns a
ref cursor containing relevant details:

db_data_access_layer@ORA10G> -- create package that reports schema data
db_data_access_layer@ORA10G> create or replace package clerk_pkg
2 as
3 function list_dept_details(p_dept_no in number)
4 return sys_refcursor;
5 function list_emp_details(p_empno in number)
6 return sys_refcursor;
7 end clerk_pkg;
8 /

Package created.
db_data_access_layer@ORA10G> create or replace package body clerk_pkg
2 as
3 function list_dept_details(p_dept_no in number)
4 return sys_refcursor
5 is
6 l_dept_details sys_refcursor;
7 begin
8 open l_dept_details for

CHAPTER 15 ■ SECURITY-RELATED ISSUES584

9 select dept_no, dept_name
10 from dept
11 where dept_no = p_dept_no;
12 return l_dept_details;
13 end list_dept_details;
14
15 function list_emp_details(p_empno in number)
16 return sys_refcursor
17 is
18 l_emp_details sys_refcursor;
19 begin
20 open l_emp_details for
21 select empno, ename, dept_no, salary, job
22 from emp
23 where empno = p_empno;
24 return l_emp_details;
25 end list_emp_details;
26 end clerk_pkg;
27 /
Package body created.

We next create public synonyms for these packages so that we can refer to them without
having to use the db_data_access_layer schema name:

db_data_access_layer@ORA10G> create public synonym manager_pkg for manager_pkg;
Synonym created.
db_data_access_layer@ORA10G> create public synonym clerk_pkg for clerk_pkg;
Synonym created.

Creating Database Roles and Schema for End Users
In our sample application, the end users fall into two categories based on their roles.

• The managers use the package manager_pkg to manipulate information stored in the
emp and dept tables.

• The clerks use the package clerk_pkg to query information stored in the emp and dept
tables.

We will create two database roles, manager_role and clerk_role, which correspond to the
two preceding user categories, respectively. A database role is a set of privileges that provides
a DBA with an alternative to assigning privileges directly to the user. You combine privileges
into roles and assign the roles to users. Thus, if you want to add or remove a privilege from a
group of users, you can simply grant or revoke it from the corresponding role instead of doing
the same for each individual user account. See the section titled “Introduction to Roles” in
Chapter 5 of Oracle Database Security Guide (10g Release 1) for more details on roles.

CHAPTER 15 ■ SECURITY-RELATED ISSUES 585

First, we create manager_role and grant it privileges to execute both the manager_pkg and
clerk_pkg packages after connecting as admin.

db_data_access_layer@ORA10G> connect admin/admin
Connected.
admin@ORA10G> -- create manager_role
admin@ORA10G> create role manager_role;
Role created.
admin@ORA10G> grant execute on manager_pkg to manager_role;
Grant succeeded.
admin@ORA10G> grant execute on clerk_pkg to manager_role;
Grant succeeded.

Next, we create clerk_role with the privilege of executing only the package clerk_pkg:

admin@ORA10G> create role clerk_role;
Role created.
admin@ORA10G> grant execute on clerk_pkg to clerk_role;
Grant succeeded.

Finally, it is time to create the database users that correspond to end users of the applica-
tion in our database. We will create two representative end users. The end user manager1 maps
to the database schema db_manager1, which has the roles manager_role and clerk_role. The
end user clerk1 maps to the database schema db_clerk1, which is granted only the role
clerk_role. Each of these two database users also gets the create session privilege required
to log into the database. In a real-life application, we would, of course, have many end users
getting mapped to various database roles based on the business functions they perform.

admin@ORA10G> create user db_manager1 identified by db_manager1;
User created.
admin@ORA10G> grant create session to db_manager1;
Grant succeeded.
admin@ORA10G> grant manager_role, clerk_role to db_manager1;
Grant succeeded.
admin@ORA10G> create user db_clerk1 identified by db_clerk1;
User created.
admin@ORA10G> grant create session to db_clerk1;
Grant succeeded.
admin@ORA10G> grant clerk_role to db_clerk1;
Grant succeeded.

Now, for example, if we try to access the package manager_pkg while connected as
db_clerk1, we will get an error because the corresponding access does not exist:

db_clerk1@ORA10G> desc manager_pkg
ERROR:
ORA-04043: object "DB_DATA_ACCESS_LAYER"."MANAGER_PKG" does not exist

CHAPTER 15 ■ SECURITY-RELATED ISSUES586

However, the same user can access the package clerk_pkg:

db_clerk1@ORA10G> desc clerk_pkg
FUNCTION LIST_DEPT_DETAILS RETURNS REF CURSOR
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
P_DEPT_NO NUMBER IN
FUNCTION LIST_EMP_DETAILS RETURNS REF CURSOR
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
P_EMPNO NUMBER IN

Now that we have gone through the process of creating all the schema objects required,
we will use this sample application for demonstration purposes in the remainder of this
chapter. In the next section, we will cover some of the challenges while authenticating an
application end user to the database.

Authenticating an Application End User to the
Database
In a three-tier architecture typically used by web applications, an end user has to necessarily
authenticate herself to the application before carrying out any action. The application in turn
has to log into the database on behalf of the end user. For an application to authenticate to the
database on behalf of the end user, we will cover the following alternatives:

• The application supplies the end user’s password to the database. In this case, the end
user supplies the database password of her corresponding database user to the applica-
tion, and the application uses this password to authenticate to the database on behalf
of the end user. In our example application, the end user clerk1 would log in as db_clerk1,
supplying the database password for the schema db_clerk1.

• The application uses proxy authentication. In this case, the application can log into the
database using its own account on behalf of the end user without supplying the end
user’s database password. This feature of the Oracle database is called proxy authenti-
cation. Though this feature may seem not very secure at first glance, you’ll soon see
that this is a perfectly secure way of connecting to the database.

We’ll look at these two alternatives in the sections that follow.

■Note Two other alternatives for an application to authenticate to the database are authenticating against
a centralized LDAP directory and authenticating using certificates. Coverage of these techniques is beyond
the scope of this book.

CHAPTER 15 ■ SECURITY-RELATED ISSUES 587

Authentication Using the End User’s Database Password
I discuss this alternative mainly to explain why the proxy authentication feature was invented
in the first place. In this approach, the application presents to the database the actual end
user’s password. This works fine for client/server applications that need to support a small
number of dedicated connections for a relatively small user-community. In the context of a
three-tier web application, however, this approach has the following drawbacks:

• Most application servers today have built-in authentication mechanisms, such as the
use of a central directory service for storing user credentials, which obviate the need for
applications to know or use the database password of the end user account.

• It is not uncommon for the same user to access different applications running on the
application server. If each application has a different database account for the user, the
user would have to sign on separately whenever he wants to switch to a new applica-
tion. The single sign-on feature available in most application servers today is designed
to solve this problem. Using single sign-on, the user authenticates once to the applica-
tion server and is able to access multiple applications hosted on the application server
without logging into each one of them separately. Figure 15-3 illustrates this concept.

Figure 15-3. A user accesses multiple applications but authenticates (or signs on) only
once to the application server using the single sign-on feature.

• Security is undermined if the application stores the end user’s password. For example,
if the application code has the password, then it is trivial to extract the passwords in
many cases (e.g., using the strings utility found in most UNIX operating system vari-
ants).

• Every time there is a change in a user’s password in the database, all applications that
access the username and password have to be modified as well, leading to mainte-
nance problems.

Client

Application Server

IT Support

Finance

HR

CHAPTER 15 ■ SECURITY-RELATED ISSUES588

• Performance and scalability are affected adversely if an application has to authenticate
using the end user’s database password. Consider an application that uses a connec-
tion pool of a maximum 100 connections for a system serving 5,000 end users. Every
time a new user logs in, the likelihood of the user’s connection not existing in the pool
is high, simply because each user connects to a different account. This means that,
more likely than not, an existing connection in the pool has to be closed and replaced
with a newly created connection. This defeats the purpose of connection pooling to a
large extent, especially when you use an implicit connection cache, where each session
requires the creation of a physical connection.

Some of the problems just mentioned would be mitigated if all application end users
shared a smaller set of database user accounts based on their roles (i.e., an N-to-M mapping).
However, this gives rise to new set of problems. One problem is that different application users
have to share the same password for the shared database account, leading to poor security.
Another problem, as mentioned earlier, is that the user actions cannot be audited effectively.

What we really need is for the application to log into the database using a common data-
base account on behalf of an end user without requiring it to present the end user’s database
password. In other words, the account midtier proxies for the end user. This is where proxy
authentication (also known as n-tier authentication) comes in.

Proxy Authentication (N-Tier Authentication)
Proxy authentication is a feature available only in the JDBC OCI driver as of Oracle 10g Release 1.

■Note In 10g Release 2, this feature is planned to be supported in the JDBC thin driver, too. The examples
in this book use an OCI driver on a 10g Release 1 database, but the basic concepts should remain the same
with a thin driver.

Proxy authentication allows you to connect on behalf of another user without supplying
the user’s password (provided appropriate privileges have been granted to enable this). The
way proxy authentication works is simple. You create an OCI connection pool consisting of
connections of the proxy user account. Then you can create sessions on top of these physical
connections for the individual database users (as demonstrated in the previous chapter). This
solves the problem of password management simply by not requiring the proxied user’s pass-
word.

For example, assume that the proxy account is called midtier, and you want to create two
sessions of db_clerk1 and one session of db_manager1 on top of a single physical connection
from the pool of midtier connections. Figure 15-4 shows one such proxy connection carrying
three of these sessions.

CHAPTER 15 ■ SECURITY-RELATED ISSUES 589

Figure 15-4. A proxy connection carrying three sessions

We will use our sample application to demonstrate the proxy authentication concept. We
first create a database account to connect to the database on behalf of end users. This account
is separate from the end user database accounts (db_manager1 and db_clerk1 in our applica-
tion) and is called midtier in our example:

admin@ORA10G> create user midtier identified by midtier;
User created.

The account midtier is the proxy account that connects on behalf of all end users to the
database from the middle-tier application hosted on an application server. As per the principle
of least privilege, we should give it the minimum privilege to get the job done. That privilege is
the create session privilege, which allows it to connect to the database:

admin@ORA10G> grant create session to midtier;
Grant succeeded.

To enable the end user account, db_manager1, to be able to be proxied by the account
midtier, we need to alter the db_manager1 account as follows:

admin@ORA10G> -- allow connecting through proxy account
admin@ORA10G> alter user db_manager1 grant connect through midtier with
role manager_role, clerk_role;

User altered.

The preceding alter statement in effect says that the user midtier can connect with the
privileges of db_manager1 without supplying the db_manager1 password, and during this con-
nection it can enable only the roles manager_role and clerk_role. This means that when the
application is proxying for db_manager1 via the account midtier, only two specific roles can
be enabled: manager_role and clerk_role. Restricting the roles in this manner ensures that
the application can enable only the roles with the minimum privileges to do its job.

We issue the same alter statement to the user db_clerk1; however, this time we allow
only clerk_role to be enabled during the proxy connection.

admin@ORA10G> alter user db_clerk1 grant connect through midtier with
role clerk_role;

User altered.

Oracle
Database

db_clerk1 Session
db_clerk1 Session

db_manager1 Session

Single Proxy Connection Carrying Three Sessions

Application Server

midtier Connection

CHAPTER 15 ■ SECURITY-RELATED ISSUES590

When a user logs into Oracle, all default roles are enabled. A default role means that the
role is always enabled for the current session at login without issuing the set role statement.
To indicate that a role should be set by default on login, you need to issue the alter user
statement with the following basic syntax:

alter user_name default role <role_name>
| all [except role1, role2, ...] | none ;

In the preceding command, user_name denotes the name of the user whose role we are
setting as the default. role_name represents the role that we wish to set as the default. The all
phrase indicates that all roles should be enabled as the default, except those listed in the
except phrase. The none phrase means that all roles are disabled by default.

For additional security, we want our application roles to be nondefault roles for the end
user accounts. We do this by altering the users as follows:

admin@ORA10G> -- make all roles default except the ones required
admin@ORA10G> alter user db_manager1 default role all except
manager_role, clerk_role;

User altered.

The preceding statement restricts all roles available to the user db_manager1 by default,
except for the roles manager_role and clerk_role. In other words, these two roles are not
enabled by default for the user db_manager1. We do the same to the user db_clerk1, only this
time we make clerk_role the nondefault role:

admin@ORA10G> alter user db_clerk1 default role all except clerk_role;

User altered.

We will set these roles explicitly when we log in from our Java program in the upcoming
section. We can query from the proxy_users view to display information about proxy users
and their capabilities in our database:

admin@ORA10G> select proxy, client, flags from proxy_users;

PROXY CLIENT FLAGS
---------- --------------- -----------------------------------
MIDTIER DB_MANAGER1 NO PROXY MAY ACTIVATE ROLE
MIDTIER DB_CLERK1 NO PROXY MAY ACTIVATE ROLE

A Proxy Authentication Example
Let’s look at an example Java class, DemoProxyConnection, in which the account midtier proxies
for the end user accounts db_clerk1 and db_manager1. After the necessary imports, in the
main() method, we verify the existence of a single command-line parameter—the end user
account to proxy for:

/* This program demonstrates proxy authentication.
* COMPATIBLITY NOTE: tested against 10.1.0.2.0, 9.2.0.1.0.
*/

CHAPTER 15 ■ SECURITY-RELATED ISSUES 591

import java.sql.SQLException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.CallableStatement;
import java.sql.ResultSet;
import java.util.Properties;
import oracle.jdbc.pool.OracleOCIConnectionPool;
import book.util.JDBCUtil;
class DemoProxyConnection
{
public static void main(String args[]) throws Exception
{
if(args.length != 1)
{
System.out.println("Usage: java DemoProxyConnection <end_user>");
System.exit(1);

}
String endUser = args[0];

Next, we create the OCI connection pool and set the connection URL for connecting
using the OCI JDBC driver. We set the credentials to connect as the midtier account:

OracleOCIConnectionPool oocp = new OracleOCIConnectionPool();
oocp.setURL ("jdbc:oracle:oci:@");
oocp.setUser("midtier"); // username
oocp.setPassword("midtier"); // password

To proxy for the end user account, we first set a Properties object in which we set the
property OracleOCIConnectionPool.PROXY_USER_NAME to the end user we want to proxy for. The
parameter OracleOCIConnectionPool.PROXY_USER_NAME represents one of the four proxy modes
that we will discuss in the section “Proxy Authentication Modes” later. The value OracleOCI➥

ConnectionPool.PROXY_USER_NAME for this parameter, in particular, indicates that we wish to
authenticate by supplying the username:

Properties endUserProps = new Properties();
endUserProps.setProperty(OracleOCIConnectionPool.PROXY_USER_NAME, endUser);
Connection conn = null;
try
{

The proxy connection is obtained by invoking the method getProxyConnection():

conn = oocp.getProxyConnection(
OracleOCIConnectionPool.PROXYTYPE_USER_NAME, endUserProps);

The second parameter is the Properties object that we populated earlier with the end
user account passed as the command-line parameter. Next, we print a “success” message and
invoke the following two functions defined later in the class:

• _displayEnabledRoles(): Displays all roles enabled for a connection

• _enableRole(): Enables a given role or set of roles for a connection

CHAPTER 15 ■ SECURITY-RELATED ISSUES592

We first display roles that are enabled by default:

System.out.println("successfully connected...");
_displayEnabledRoles(conn);

Next, we invoke _enableRole() with the role all to enable all roles granted to the end
user. We invoke _displayEnabledRoles() to verify the enabled roles.

_enableRole(conn, "all");
_displayEnabledRoles(conn);

We invoke _enableRole() with the roles clerk_role and manager_role, displaying enabled
roles each time. The main() method ends with a finally clause that closes our connection
object:

_enableRole(conn, "clerk_role");
_displayEnabledRoles(conn);
_enableRole(conn, "manager_role");
_displayEnabledRoles(conn);

}
finally
{
JDBCUtil.close (conn);

}
}// end of main

The method _displayEnabledRoles() simply selects all enabled roles for a session from
the view session_roles and prints them out:

// display enabled roles
private static void _displayEnabledRoles(Connection conn)
throws SQLException
{
System.out.println("Displaying enabled roles...");
PreparedStatement pstmt = null;
ResultSet rset = null;
try
{
pstmt = conn.prepareStatement("select role from session_roles");
rset = pstmt.executeQuery();
while(rset.next())
{
System.out.println("\t" + rset.getString(1));

}
}
finally
{
JDBCUtil.close(rset);
JDBCUtil.close(pstmt);

}
}

CHAPTER 15 ■ SECURITY-RELATED ISSUES 593

The method _enableRole() enables a given set of roles by invoking the method
set_role() of the supplied package dbms_session:

// enable a given role or a set of comma-separated roles.
private static void _enableRole(Connection conn, String role)
throws SQLException
{
System.out.println("Enabling role(s) " + role);
CallableStatement cstmt = null;
try
{
cstmt = conn.prepareCall(
"{call dbms_session.set_role(?) }");

cstmt.setString(1, role);
cstmt.execute();

}
finally
{
JDBCUtil.close(cstmt);

}
}

}// end of program

Note again that in our program we didn’t supply the password for the end user that we
will log in as. Let’s first see what the output of the program is when we run it with the parame-
ter db_manager1:

B:\>java DemoProxyConnection db_manager1
successfully connected...
Displaying enabled roles...
Enabling role(s) all
Displaying enabled roles...

MANAGER_ROLE
CLERK_ROLE

Enabling role(s) clerk_role
Displaying enabled roles...

CLERK_ROLE
Enabling role(s) manager_role
Displaying enabled roles...

MANAGER_ROLE

Note that the first time we didn’t have any roles enabled by default. When we enabled all
roles, the enabled roles were clerk_role and manager_role. This showed us the set of roles that
this user can enable. Then we enabled the roles clerk_role and manager_role individually (by
replacing the keyword all in the set role command), as shown by the output. Let’s now see
what the program output is if we invoke the program to proxy for the user db_clerk1:

B:\>java DemoProxyConnection db_clerk1
successfully connected...
Displaying enabled roles...

CHAPTER 15 ■ SECURITY-RELATED ISSUES594

Enabling role(s) all
Displaying enabled roles...

CLERK_ROLE
Enabling role(s) clerk_role
Displaying enabled roles...

CLERK_ROLE
Enabling role(s) manager_role
Exception in thread "main" java.sql.SQLException: ORA-01924: role 'MANAGER_ROLE'
not granted or does not exist
ORA-06512: at "SYS.DBMS_SESSION", line 124
ORA-06512: at line 1
:125)

at
… trimmed to save space

The main point to note is that this user can only enable clerk_role, as shown by the list of
enabled roles immediately after we enabled all roles. This is also proven by the fact that we got
an exception when we tried to set the role to manager_role. This is because this role was not
granted to the end user db_clerk1. Let’s see if we can enable manager_role if we do grant this
role to db_clerk1, though:

admin@ORA10G> grant manager_role, clerk_role to db_clerk1;

Grant succeeded.

Executing the program again gives us

B:\code\book\ch16>java DemoProxyConnection db_clerk1
successfully connected...
Displaying enabled roles...
Enabling role(s) all
Displaying enabled roles...

CLERK_ROLE
Enabling role(s) clerk_role
Displaying enabled roles...

CLERK_ROLE
Enabling role(s) manager_role
Exception in thread "main" java.sql.SQLException: ORA-01924: role 'MANAGER_ROLE'
not granted or does not exist
ORA-06512: at "SYS.DBMS_SESSION", line 124
ORA-06512: at line 1

at … trimmed to save space

We got a different exception this time. This exception tells us that the proxy user midtier
cannot enable the role manager_role for the user db_clerk1. This is because, earlier on, we had
restricted the universe of roles that can be enabled for db_clerk1 while using the proxy con-
nection via midtier to the role clerk_role as follows:

admin@ORA10G> alter user db_clerk1 grant connect through midtier with role
clerk_role;

CHAPTER 15 ■ SECURITY-RELATED ISSUES 595

This demonstrates a technique by which we can restrict the set of roles that can be enabled
while using proxy authentication, no matter what roles have been granted to the user for whom
we are proxying. This again enables us to apply the principle of least privilege.

One of the questions you may have is, what happens to auditing since all users are now
logging in as the proxy user midtier? Won’t they lose their identity in the database? We discuss
this issue in the next section.

Proxy Authentication and Auditing
A critical difference between the case where we use proxy authentication and the case where
we share database accounts between multiple end users without using proxy authentication
is that proxy authentication preserves the identity of the end user. We can see this by auditing
user connections. To enable auditing, we execute the following alter system command as the
system user:

alter system set audit_trail=db scope=spfile;

We shut down and restart the database for auditing to take effect. Next, we audit proxy
connections by issuing the following command as the sys user:

sys@ORA10G> audit connect by midtier on behalf of clerk1, manager1;
Audit succeeded.

We then execute our program DemoProxyConnection again:

B:\>java DemoProxyConnection db_clerk1
successfully connected...
… trimmed to save space

We log in as sys and run a select from dba_audit_trail to verify that the connection was
audited:

sys@ORA10G> select a.username proxied_user, b.username proxy_user,
2 a.action_name, a.comment_text
3 from dba_audit_trail a, dba_audit_trail b
4 where a.proxy_sessionid = b.sessionid;

PROXIED_USER PROXY_USER ACTION_NAM COMMENT_TEXT
--------------- ---------- ---------- --------------------
DB_CLERK1 MIDTIER LOGOFF Authenticated by: PR

OXY;EXTERNAL NAME: R
MENON-LAP\menon

To see more details on the database auditing feature, see Chapter 8 of Oracle Database
Security Guide (10g Release 1). Next, we briefly examine the various proxy authentication
modes available to us.

CHAPTER 15 ■ SECURITY-RELATED ISSUES596

Proxy Authentication Modes
Four modes are supported in the invocation of the method getProxyConnection():

• We need to provide only the username of the proxied account (db_manager1, clerk1).

• We need to provide the username and password of the proxied account (db_manager1,
clerk1).

• We need to provide the end user’s distinguished name.

• We need to provide the end user’s X.509 certificate.

Let’s look at each of these options briefly.

Proxy by Username Only

You’ve already seen how this works in the class DemoProxyConnection. The main benefit is the
fact that you don’t need to know the end user’s password. Note that the proxy user should
itself be set up with minimal privileges (only create session as granted in our setup) for the
application to work securely.

Proxy by Username and Password

In this case, you require the username and password of the end user while proxying for it. This
is identical to normal authentication and has all the drawbacks of supplying passwords, as dis-
cussed earlier. One advantage this mode has over normal authentication is that by using the
proxy authentication, it is possible to restrict the set of roles that can be enabled, as demon-
strated earlier. This mode should be considered only if there is a way to obtain the end user’s
password securely.

To require a password while proxying, we have to issue a slightly different alter statement
when enabling proxying for an account:

admin@ORA10G> alter user db_manager1 grant connect through midtier with role
manager_role, clerk_role authenticated using password;

User altered.

If we now try to run our program DemoProxyConnection to connect as db_manager1, we get
an exception:

B:\>java DemoProxyConnection manager1
Exception in thread "main" java.sql.SQLException: ORA-28183: proper authentication
not provided by proxy

at … trimmed to save space

CHAPTER 15 ■ SECURITY-RELATED ISSUES 597

To supply the end user’s password, we need to populate another property, OracleOCI➥

ConnectionPool.PROXY_PASSWORD, with the end user account’s password:

endUserProps.setProperty(OracleOCIConnectionPool.PROXY_PASSWORD,
endUserPassword);

Proxy by Distinguished Name

A distinguished name is an equivalent of the primary key in the LDAP world. LDAP stands for
Lightweight Directory Access Protocol. This proxy authentication mode is used by applications
using a central LDAP directory as their authentication mechanism. I don’t cover this option in
this book; please see the section “Oracle Internet Directory” in Chapter 9 of Oracle Security
Overview (10g Release 1) for more details.

Proxy by Certificate

In this mode, you proxy using the X.509 certificate. This option is also not covered in this book.
For more details on this topic, refer to Chapter 4 of Oracle Database Security Guide (10g Release 1).

Summary
In this chapter, you learned about the security principles of least privilege and defense in
depth. You looked at various ways of mapping an application end user to a database user for
authentication purposes and each method’s pros and cons. You examined proxy authentica-
tion (a JDBC OCI driver feature as of Oracle 10g Release 1 also known as n-tier authentication)
in detail, and you learned how this technique can elegantly solve the problems of authentica-
tion and password management for a web application. The proxy authentication feature
allows the middle tier to authenticate itself to the database on behalf of an end user database
account without supplying the end user database account’s password. You also learned how
auditing captures the end user identity as well as the proxy user identity.

CHAPTER 15 ■ SECURITY-RELATED ISSUES598

Locking-Related Issues

In this chapter, we’ll look at some issues related to locking in Oracle. In particular, we’ll dis-
cuss the infamous “lost update” problem and various ways to address it. Along the way, we’ll
examine different strategies to implement two solutions to the lost update problem—namely,
optimistic locking and pessimistic locking. We’ll also compare these two solutions and deter-
mine when to use each strategy.

Locking in Oracle
A lock is a mechanism Oracle uses to prevent destructive interaction between transactions
accessing the same resource. Here, the resource could be user objects, such as tables; or user
data, such as table rows; or internal objects, such as shared data structures in memory. A detailed
discussion of locking and concurrency concepts in Oracle is beyond the scope of this book. For
that, I refer you to Chapter 13 of Oracle Database Concepts Guide (10g Release 1) and Chapter 3 of
Tom Kyte’s Expert One-on-One Oracle (Apress, ISBN: 1-59059-243-3).

In this chapter, I will define what lost updates are and how to deal with them when
programming in Oracle. Throughout the chapter, unless otherwise stated explicitly, assume
a default transaction isolation level of READ COMMITTED (see Chapter 4 for a discussion of trans-
action isolation levels).

Lost Updates
In Chapter 2, you learned that the following are true for the Oracle database:

• Reads (selects) don’t block writes (inserts, updates, deletes, etc.). For example, a user
can be updating a row at the same time as another user is querying the same exact row.
The session performing the query would see only the rows that existed at the start of
the query.

• Writes don’t block reads.

• Writes don’t block writes unless the contending writes are “writing” a common set of
rows. For example, if two sessions are updating the same table, but update a mutually
exclusive set of rows, they don’t block each other. Only when they try to update the same
row(s) does one of the sessions get blocked until the other session issues a commit or a
rollback to end its transaction.

599

C H A P T E R 1 6

■ ■ ■

CHAPTER 16 ■ LOCKING-RELATED ISSUES600

Now consider the following situation, which can occur in any relational database:

1. User1 queries a row.

2. User2 queries the same row in a different session.

3. User1 updates the row and commits.

4. User2 updates the row to a different value and commits.

Unknown to user1, user2 in step 4 overwrote user1’s data. This phenomenon is called a
lost update, since all changes made by user1 in step 3 were lost because user2 overwrote those
changes in step 4.

Let’s look at an example. Imagine it has been a good sales year for our company, and all
salespeople are getting a salary hike. Adam, who is a clerk, is updating the database to reflect
this change. One salesperson in particular, Martin, has done well in clinching a mega deal for
the company. Martin’s boss, Blake, is very happy and decides to give him an additional bonus
of $100. The following is how these two transactions occur, presented in the order of time
(many of the following examples use hard-coded values; remember to use bind variables
in a real-world application).

Blake queries the database to look at Martin’s current salary information:

blake@ORA10G> select ename, sal from emp where ename='MARTIN';

ENAME SAL
---------- ----------
MARTIN 1250

Blake gets an urgent phone call and leaves his desk to answer it. Meanwhile, Adam has
queried records for all employees who are salespeople and is currently looking at Martin’s
salary details. He updates Martin’s record to give Martin a 10% salary hike:

adam@ORA10G> select ename, sal from emp where ename='MARTIN';

ENAME SAL
---------- ----------
MARTIN 1250

adam@ORA10G> update emp set sal = sal * 1.10 where ename='MARTIN';

1 row updated.

Being a careful employee, Adam even queries the record back to verify his changes:

adam@ORA10G> select ename, sal from emp where ename='MARTIN';

ENAME SAL
---------- ----------
MARTIN 1375

Satisfied that all is well, Adam commits his changes:

adam@ORA10G> commit;

Blake’s phone call is over and he returns to his desk. His screen still shows Martin’s old
salary information. Unaware of Adam’s changes, Blake proceeds to give Martin a bonus of
$100 based on his (now old) salary of $1,250, wiping out the changes made by Adam earlier:

blake@ORA10G> update emp set sal = 1350 where ename='MARTIN';

1 row updated.

blake@ORA10G> commit;

Commit complete.

The final row for Martin’s record looks as follows:

martin@ORA10G> select * from emp where ename='MARTIN';

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --------- ---------- --------- ---------- ------- ---------

7654 MARTIN SALESMAN 7698 28-SEP-81 1350 1400 30

As you can see, the update done by Adam has been overwritten by Blake’s changes and is
the lost update. Martin expected to see a total salary of $1,475 (1,250 × 1.10 + 100), whereas his
salary is only $1,350.

In the preceding example, both updates were changing the same column. The problem
can occur even if different columns of the same row are being updated by two different trans-
actions. This happens when the application performing updates is written such that instead
of updating only the changed columns of a record (it takes more work to detect which column
changed), all (nonprimary key) columns are updated.

For example, let’s consider an application screen that allows the end user to update the
salary and commission of an employee in our emp table. Adam, in session 1, is updating the
comm column of the emp table for Martin’s record. In a different session, Blake is changing the
sal column of the same record. The application performing the update doesn’t detect which
column changed, so it happily updates all (nonprimary key) columns that are updateable
from the screen (in this case, the sal and comm columns), resulting in a lost update.

First, Blake queries Martin’s record:

blake@ORA10G> select ename, sal, comm from emp where ename='MARTIN';

ENAME SAL COMM
---------- ---------- ----------
MARTIN 1350 1400

CHAPTER 16 ■ LOCKING-RELATED ISSUES 601

Next, Adam queries Martin’s record:

adam@ORA10G> select ename, sal, comm from emp where ename='MARTIN';

ENAME SAL COMM
---------- ---------- ----------
MARTIN 1350 1400

Blake issues an update of the sal column, but the application doesn’t detect whether the
sal or comm column changed. It updates the sal column to the new value and “refreshes”
the comm column to the old value:

blake@ORA10G> update emp set sal = sal*1.10, comm=1400 where ename='MARTIN';

1 row updated.

blake@ORA10G> select ename, sal, comm from emp where ename='MARTIN';

ENAME SAL COMM
---------- ---------- ----------
MARTIN 1485 1400

blake@ORA10G> commit;
Commit complete.

Meanwhile, another session is issuing an update of the comm column, and this time the sal
column is being “refreshed” to its old value, thus wiping out the update to sal done by Blake
in the previous session:

adam@ORA10G> update emp set comm = comm * 1.10, sal=1350 where ename='MARTIN';

1 row updated.

adam@ORA10G> select ename, sal, comm from emp where ename='MARTIN';

ENAME SAL COMM
---------- ---------- ----------
MARTIN 1350 1540

adam@ORA10G> commit;

Commit complete.

CHAPTER 16 ■ LOCKING-RELATED ISSUES602

We’ll look at the following three techniques for dealing with lost updates in detail in the
following sections:

• Setting the transaction isolation level to SERIALIZABLE: When we set the transaction to
SERIALIZABLE, we get an error if we issue an update on data that has changed since our
transaction began. This can prevent lost updates in some scenarios, as we will discuss
shortly.

• Using pessimistic locking: This technique involves explicitly locking the row that needs
to be updated in advance to prevent lost updates.

• Using optimistic locking: This technique involves a mechanism to detect that the row the
user is updating has changed, in which case the user typically has to retry her operation.

Setting the Transaction Isolation Level to SERIALIZABLE
As already discussed in Chapter 4, different transaction isolation levels affect a transaction’s
behavior. In particular, recall that when we set the transaction isolation level to SERIALIZABLE,
all queries are read such that retrieved data is consistent with respect to the beginning of the
transaction. In other words, the answers to all queries are fixed as of the beginning of the
transaction. A side effect of this behavior is that in a serializable transaction, if you attempt
to update the same row as some other user, you wait until the user commits and then get an
error. Let’s look at an example. We’ll execute the following two statements from two different
sessions:

alter session set isolation_level=serializable;
update emp set sal=1450 where ename='MARTIN';

The first statement alters the current session to set the transaction isolation level to
SERIALIZABLE. If we open two windows and execute the preceding two statements, first in
window 1 and then in window 2, we will see that the window 2 session hangs, waiting for
the window 1 session to commit or roll back.

Actions in Window 1:

scott@ORA10G> alter session set isolation_level=serializable;
Session altered.
scott@ORA10G> update emp set sal=1450 where ename='MARTIN';
1 row updated.

Actions in Window 2 (hangs after the second command waiting for the window 1 session
to commit or roll back):

scott@ORA10G> alter session set isolation_level=serializable;
Session altered.
scott@ORA10G> update emp set sal=1450 where ename='MARTIN';

CHAPTER 16 ■ LOCKING-RELATED ISSUES 603

Now if we commit in window 1, window 2 will give an error:

scott@ORA10G> update emp set sal=1450 where ename='MARTIN';
*
ERROR at line 1:
ORA-08177: can't serialize access for this transaction

If window 1 issues a rollback, though, the window 2 session’s update will succeed.
Setting the transaction isolation level just to solve the lost update problem is usually

not feasible for the following reasons:

• In most web applications, you grab a connection from a connection pool for each
HTTP request. Since the transaction isolation level is associated with a connection,
you can use the previous technique only if the select that displayed the record and
the update that followed are using the same exact connection. Since the connection
may change with each request, and since the query and the update would be per-
formed in two separate requests, setting the transaction isolation level to solve the
lost update problem simply will not work. Such an environment, in which you are not
maintaining the same database connection across multiple user requests, is termed a
stateless environment. This is not true in client/server applications where a user has
a dedicated database session for the entire user interaction. Such an environment is
called a stateful environment. Thus, setting the transaction isolation level to SERIALIZABLE
is an option only in stateful environments.

• Another important point to note is that changing the transaction isolation level has a
huge impact on the way DML statements behave. Most transactions require the use of
the default isolation level of READ COMMITTED.

• The third problem with this technique is that the second user has to wait until the
transaction of the first user has been committed, only to get an error message asking
him to retry. This can be very annoying.

Thus, setting the transaction isolation level can be considered a solution to the lost
update problem if

• You are working in a stateful environment (e.g., in a client/server application) where a
connection is maintained across multiple user requests.

• There is already a need to use the “serializable” transaction due to other business
requirements.

• The number of expected simultaneous updates involving the same row(s) is fairly low.
This would ensure that we don't waste the end user's time by giving error messages
after making him wait for a long time.

If the preceding criteria are not met, you need to consider the other approaches
described in the next sections.

CHAPTER 16 ■ LOCKING-RELATED ISSUES604

Pessimistic Locking
This locking technique makes the pessimistic assumption that more often than not, the end
user will run into a scenario that will result in a lost update. To prevent this from happening,
the record being updated is locked, right after the user signals her intent to update it, by issu-
ing a select...for update nowait form of query. The for update nowait clause signals the
intent to lock the record being updated. The optional nowait keyword indicates that if the
record is already locked by someone else, control should return immediately to the user with
an error instead of waiting until the other transaction commits. Typically, the application
requirement is to not wait, but to give the control back to the user immediately so that she can
perform some other function before returning to try and lock the record again to complete her
original transaction. If this is not the case, you can skip the nowait keyword. Note that you can
also wait for n seconds before failing by giving the for update wait <n> clause.

Let’s revisit the example where we were updating the salary of the salesperson Martin in
two conflicting sessions. The application first queries all salespeople and displays them on a
screen without locking them:

blake@ORA10G> select empno, ename, sal from emp where job='SALESMAN';

EMPNO ENAME SAL
---------- ---------- ----------

7499 ALLEN 1600
7521 WARD 1250
7654 MARTIN 1350
7844 TURNER 1500

The user navigates to the record containing Martin’s data and indicates his intention to
update it (say, by clicking an icon in the GUI). At this time, we try to lock the record by issuing
a select statement that has

• A for update nowait clause to lock the row so that no one else is able to update the row
before we have committed our changes. If the lock cannot be acquired, we want the
program to return immediately—hence the nowait clause.

• A where clause criteria to match a row based on the primary key column(s) (in this case,
the empno column). This is to ensure we lock only the one record that we want to
update.

• A where clause criteria to match a row based on current values of all the columns that
can be modified on the screen. In our hypothetical screen, we can potentially modify
the ename and sal columns (remember, empno is being displayed but cannot be modi-
fied since it is a primary key and hence immutable).

CHAPTER 16 ■ LOCKING-RELATED ISSUES 605

In our example, this would result in the following select being issued to lock Martin’s
record:

blake@ORA10G> select empno, ename, sal from emp where empno=7654
and ename='MARTIN' and sal=1350 for update nowait;

EMPNO ENAME SAL
---------- ---------- ----------

7654 MARTIN 1350

The following three scenarios are possible at the point Blake tries to lock the row as
shown earlier:

• If Blake’s session was able to lock the record, then Blake can proceed to update it safely
without worrying about it being overwritten by some other transaction.

• If some other session was able to lock the record before Blake, Blake would get a “resource
busy” exception as a result of the previous select indicating that the record is locked, and
he needs to try his luck later. In the previous example, Blake has already locked the
record, and it is Adam who gets an exception when he tries to lock the same row:

adam@ORA10G> select empno, ename, sal from emp
where empno=7654
and ename='MARTIN'
and sal=1350 for update nowait;
select empno, ename, sal from emp
where empno=7654
and ename='MARTIN'
and sal=1350 for update nowait

*
ERROR at line 1:
ORA-00054: resource busy and acquire with NOWAIT specified

• If between the time Blake looked at the record and signaled his intention to update a
record, someone else already changed the underlying data on the screen and committed
the changes (thus releasing the lock), then Blake would get zero rows returned by the
previous select. This is because Blake included all the columns that could be changed in
the where clause of the select that locks the row. At least one of these criteria would not
be met due to the changes in the column values performed by the other transaction.

Thus, locking the record before updating it serializes the update and prevents the trans-
actions from stepping over each other. In the previous example, Blake can safely update the
salary of Martin:

blake@ORA10G> update emp set sal=sal*1.10 where empno=7654;

1 row updated.
blake@ORA10G> commit;

Adam, unfortunately, will have to try again.

CHAPTER 16 ■ LOCKING-RELATED ISSUES606

An advantage of pessimistic locking is that it prevents the situation in which the user
has typed in lots of changes on a screen, but when he submits the changes, he is told, “Sorry,
someone else has changed the record you have been modifying. Please try again.” This can be
very annoying. Remember that if someone has locked a row, the user doesn’t have to wait until
the lock is released: Using the nowait option, we can immediately detect this situation and
give control back to the user.

Unfortunately, pessimistic locking does have some significant disadvantages:

• Pessimistic locking can’t be used in applications that use a stateless environment, such
as a three-tier web application. Again, this is because typically in such an environment,
you don’t maintain the same database session across multiple requests. The session
that the user used to lock the row while selecting it to display and the session that the
user uses to “submit” the changes to update the row may well be different, in which
case the lock held by the user is of no use. This is one of the major disadvantages of
pessimistic locking, since most applications today are web applications that use
connection pooling and don’t maintain session state across pages. Thus, pessimistic
locking is useful mainly in client/server applications that maintain the same connec-
tion across GUI pages. In this respect, this solution is similar to the solution of setting
the transaction isolation to SERIALIZABLE, as discussed in the previous section.

• Pessimistic locking can result in a row being locked for relatively long periods of time. In
an application where the chance of users updating the same row is great, the number
of users that can get the “Sorry, someone else is changing the record that you want to
modify. Please try again.” message can multiply rapidly. Also consider what happens if
someone locks a row and forgets about it or goes out for lunch. Session timeouts can
handle such situations, but this can still be a bottleneck.

The optimistic locking technique discussed next tries to address the problems just outlined.

Optimistic Locking
The philosophy of optimistic locking is to be optimistic in assuming that the underlying data
won’t get changed by another conflicting transaction. Optimistic locking doesn’t lock any
records across client requests. Instead, it introduces a mechanism by which the application
can detect, during the update, whether or not the record has been modified by another trans-
action since the user last selected it. If indeed some other transaction has updated the same
column(s) that the user was trying to update, the update affects zero rows, and the user is
asked to try again. The pseudo code for performing the update looks something like this:

If(underlying record has not changed since the user started editing it in UI) then
Update the record

Else
Update should affect zero records and the user is asked to retry the operation.

End if

There are many ways of implementing optimistic locking, and they differ mainly in the
manner in which they detect a lost update scenario. The following sections cover some of
these methods. In each of the cases discussed, assume that two users are trying to update

CHAPTER 16 ■ LOCKING-RELATED ISSUES 607

Martin’s record. Assume that the UI allows the user to update the name and the salary infor-
mation. In our example programs, the user actually modifies only the salary, though all the
examples should work even if the user modifies the name also.

Optimistic Locking by Saving Old Column Values
Perhaps the simplest way to implement optimistic locking is to save old values of the data to
be modified (say, in hidden form fields) when we select the record that needs to be updated.
When issuing the actual update, we include the old column values in the where clause, as
shown in the following pseudo code:

update table_name
set col1 = :new_col1_value,

col2 = :new_col2_value
…

where col1 = :old_col1_value
and col2 = :old_col1_value
and primary_key_col1 = :primary_key_col1
and primary_key_col2 = :primary_key_col2
…

If the columns being modified have not been changed by any other transaction, the
update would successfully change the record. On the other hand, if another transaction
updated any of the values that your transaction is modifying, the update would affect zero
rows. You can detect this in your application code and ask the user to retry her transaction.
For example, if some other transaction changed the value of the column col1 in the preceding
pseudo code, then the update would not affect any rows since the where clause criterion col1
= :old_col1_value would not be met.

Let’s look at an example. Consider the following package, opt_lock_save_old_val_demo,
which demonstrates this technique of implementing optimistic locking:

scott@ORA10G> create or replace package opt_lock_save_old_val_demo
2 as
3 procedure get_emp_details(p_empno in number, p_ename in out varchar2,
4 p_sal in out number);
5 procedure update_emp_info(p_empno in number, p_old_ename in varchar2,
p_old_sal in number, p_new_ename in varchar2, p_new_sal in number,
p_num_of_rows_updated in out number);
6 end;
7 /

Package created.

The definition of the package follows, along with an explanation of the two package pro-
cedures. The first procedure, get_emp_details, gets the employee name and salary—the two
columns that can be modified by the end user. This query is executed to display the record
that the user chose to modify (notice that we don’t lock the record):

CHAPTER 16 ■ LOCKING-RELATED ISSUES608

scott@ORA10G> create or replace package body opt_lock_save_old_val_demo
2 as
3 procedure get_emp_details(p_empno in number, p_ename in out varchar2,
4 p_sal in out number)
5 is
6 begin
7 select ename, sal
8 into p_ename, p_sal
9 from emp
10 where empno = p_empno;
11 end;
12

The procedure update_emp_info updates the salary and the name with the new values.
It also has the where clause criteria to compare the existing ename and sal columns with their
older values that we obtain using the preceding get_emp_details procedure:

13 procedure update_emp_info(p_empno in number,
p_old_ename in varchar2, p_old_sal in number,
p_new_ename in varchar2, p_new_sal in number,
p_num_of_rows_updated in out number)

14 is
15 begin
16 p_num_of_rows_updated := 0;
17 update emp
18 set sal = p_new_sal,
19 ename = p_new_ename
20 where empno = p_empno
21 and ename = p_old_ename
22 and sal = p_old_sal;
23 p_num_of_rows_updated := sql%rowcount;
24 end;
25 end;
26 /

Package body created.

Notice that the procedure update_emp_info also returns the number of rows successfully
updated so that the calling code can detect if the update was successful. We will now demon-
strate optimistic locking at work by calling these two procedures from the following Java class,
DemoOptLockingBySavingOldValues. We begin the class definition with the required import state-
ments, followed by the main() method that begins with obtaining the database connection:

/* This program demonstrates optimistic locking by saving old column values.
* COMPATIBLITY NOTE: tested against 10.1.0.2.0.*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.CallableStatement;
import oracle.jdbc.OracleTypes;

CHAPTER 16 ■ LOCKING-RELATED ISSUES 609

import book.util.JDBCUtil;
import book.util.InputUtil;
class DemoOptLockingBySavingOldValues
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
Object[] empDetails = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");

We initialize the variable empno with Martin’s employee number, and then we invoke the
method _displayEmpDetails. The method _displayEmpDetails prints out Martin’s salary and
name information, and also returns the current employee name and salary in an object array:

int empNo = 7654;
empDetails = _displayEmpDetails(conn, empNo);

We then introduce an artificial pause in our program by invoking InputUtil.waitTill➥

UserHitsEnter() (discussed in section “A Utility to Pause in a Java Program” of Chapter 1) to
simulate the time the end user takes to change the employee details before issuing the final
update. This enables us to sneak in a conflicting update in our experimental runs:

InputUtil.waitTillUserHitsEnter("Row has been selected but is not locked.");

We invoke the _updateEmpInfo() method to update the employee information (we retain
the old name but bump up the salary by $100, from $1,350 to $1,450):

String oldEmpName = (String) empDetails[0];
int oldSalary = ((Integer) empDetails[1]).intValue();
_updateEmpInfo(conn, empNo, oldEmpName, oldSalary, "MARTIN", 1450);

}
finally
{
JDBCUtil.close (conn);

}
}// end of main

The _displayEmpDetails method simply invokes the opt_lock_save_old_val_demo.get_➥

emp_details method to retrieve the employee details to be modified:

private static Object[] _displayEmpDetails(Connection conn, int empNo)
throws SQLException

{
Object[] result = new Object[2];
CallableStatement cstmt = null;
int salary = 0;
String empName = null;
try

CHAPTER 16 ■ LOCKING-RELATED ISSUES610

{
cstmt = conn.prepareCall(
"{call opt_lock_save_old_val_demo.get_emp_details(?, ?, ?)}");

cstmt.setInt(1, empNo);
cstmt.registerOutParameter(2, OracleTypes.VARCHAR);
cstmt.registerOutParameter(3, OracleTypes.NUMBER);
cstmt.execute();
empName = cstmt.getString(2);
salary = cstmt.getInt(3);
System.out.println("empno: " + empNo + ", name: " + empName +
", salary: " + salary);

result[0] = empName;
result[1] = new Integer(salary);

}
finally
{
JDBCUtil.close(cstmt);

}
return result;

}

Toward the end of the class, we define the method _updateEmpInfo() that invokes the
method opt_lock_save_old_val_demo.update_emp_info to update the employee details. Notice
that we print an appropriate message depending on the number of rows successfully updated:

private static void _updateEmpInfo(Connection conn, int empNo,
String oldEmpName, int oldSalary, String newEmpName,
int newSalary)

throws SQLException
{
CallableStatement cstmt = null;
try
{
cstmt = conn.prepareCall(
"{call opt_lock_save_old_val_demo.update_emp_info(?, ?, ?, ?, ?, ?)}");

cstmt.setInt(1, empNo);
cstmt.setString(2, oldEmpName);
cstmt.setInt(3, oldSalary);
cstmt.setString(4, newEmpName);
cstmt.setInt(5, newSalary);
cstmt.registerOutParameter(6, OracleTypes.NUMBER);
cstmt.execute();
int numOfRowsUpdated = cstmt.getInt(6);
if(numOfRowsUpdated <= 0)
{
System.out.println("Sorry. Someone else changed the data that" +
" you were trying to update. Please retry.");

}

CHAPTER 16 ■ LOCKING-RELATED ISSUES 611

else
{
System.out.println("You have successfully updated the " +
"employee information.");

}
}
finally
{
JDBCUtil.close(cstmt);

}
}

}// end of program

To run the program, I opened two windows (you need to use command-line windows in
Windows and an xterm or its equivalent in UNIX). I then executed the following command
in window 1:

B:\>java DemoOptLockingBySavingOldValues
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
empno: 7654, name: MARTIN, salary: 1350, checksum: 12858
Row has been selected but is not locked.
Press Enter to continue...

With the pause still on in window 1, I executed the same command in window 2:

B:\>java DemoOptLockingBySavingOldValues
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(PORT=1521)(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
empno: 7654, name: MARTIN, salary: 1350, checksum: 12858
Row has been selected but is not locked.
Press Enter to continue...

I then pressed Enter in window 1. The update went through successfully, and I got the fol-
lowing message:

You have successfully updated the employee information.

When I pressed Enter in window 2, though, the update would not work since the same
row was changed by the process in window 1 during its pause time. Hence I got the following
message:

Sorry. Someone else changed the data that you were trying to update. Please retry.

This shows that the optimistic locking technique has successfully prevented a lost update.

Optimistic Locking by Maintaining a Shadow Column in the Table
An alternative way for you to detect conflicting changes made by another transaction is to
maintain a shadow column, such as a modification timestamp, or a column populated by a
sequence in the table, or a GUID column. A GUID is a 16-byte RAW globally unique identifier.

CHAPTER 16 ■ LOCKING-RELATED ISSUES612

After every successful update, you update the shadow column to a new unique value (e.g.,
a timestamp to the latest timestamp, a sequence to the next sequence value, a GUID column
populated by the SYS_GUID() method to a new GUID, etc.). The update statement itself will have
a where clause where you compare the shadow column value to the old value that existed
when you selected the record to display it to the user. The pseudo code (assuming that the
shadow column, shadow_col, is populated by a sequence) would look something like the
following:

update table_name
set col1 = :new_col1_value,

col2 = :new_col2_value
shadow_col = sequence.nextval

where shadow_col = :old_shadow_col_value
and primary_key_col1 = :primary_key_col1
and primary_key_col2 = :primary_key_col2;

if(update above updated 0 rows) then
update failed because someone else changed the underlying
values - ask the user to retry.

else
update succeeded

end if;

Let’s look at an example. We create a copy of the emp table, called emp1, to hold the sample
data for our example. We also have a column that we initialize with the value of a sequence.
We first create the table emp1 with no data—its structure is that of the emp table except that it
has an additional numeric shadow column called row_change_indicator (notice that the
table will be created empty since the where clause, where 1 != 1, will always fail):

scott@ORA10G> create table emp1 as
2 select e.*, 1 as row_change_indicator
3 from emp e where 1 != 1;

Table created.

Next, we create a sequence, seq1:

scott@ORA10G> create sequence seq1 cache 100;

Sequence created.

We now populate the emp1 table with the data from the emp table, along with a different
value for row_change_indicator for each row:

scott@ORA10G> insert into emp1(empno, ename, job, mgr, hiredate, sal, comm, deptno,
row_change_indicator)
2 select e.*, seq1.nextval from emp e;

14 rows created.

CHAPTER 16 ■ LOCKING-RELATED ISSUES 613

We next create a package, opt_lock_shadowcol_demo, with two methods, get_emp_details
and update_emp_info:

scott@ORA10G> create or replace package opt_lock_shadowcol_demo
2 as
3 procedure get_emp_details(p_empno in number, p_ename in out varchar2,
4 p_sal in out number, p_row_change_indicator in out number);
5 procedure update_emp_info(p_empno in number, p_new_sal in number,
p_new_ename in varchar2,
6 p_row_change_indicator in number, p_num_of_rows_updated in out number);
7 end;
8 /

Package created.

The procedure get_emp_details gets the employee name and salary data, along with the
row_change_indicator column value:

scott@ORA10G> create or replace package body opt_lock_shadowcol_demo
2 as
3 procedure get_emp_details(p_empno in number, p_ename in out varchar2,
4 p_sal in out number, p_row_change_indicator in out number)
5 is
6 begin
7 select ename, sal, row_change_indicator
8 into p_ename, p_sal, p_row_change_indicator
9 from emp1
10 where empno = p_empno;
11 end;
12

The following procedure, update_emp_info, updates the employee’s salary and name infor-
mation along with row_column_indicator. The where clause ensures that if row_change_indicator
is not the same as the one we got when we selected the row using the get_emp_details method,
the update will not affect any rows.

13 procedure update_emp_info(p_empno in number, p_new_sal in number,
p_new_ename in varchar2, p_row_change_indicator in number,
p_num_of_rows_updated in out number)

14 is
15 begin
16 p_num_of_rows_updated := 0;
17 update emp1
18 set sal = p_new_sal,
19 ename = p_new_ename,
20 row_change_indicator = seq1.nextval
21 where empno = p_empno
22 and p_row_change_indicator = row_change_indicator;
23 p_num_of_rows_updated := sql%rowcount;

CHAPTER 16 ■ LOCKING-RELATED ISSUES614

24 end;
25 end;
26 /

Package body created.

Let’s now look at the Java class, DemoOptLockingUsingShadowColumn, which invokes the
opt_lock_shadowcol_demo package methods in order to demonstrate optimistic locking. The
class begins with import statements and gets the connection as scott in the main() method:

/* This program demonstrates optimistic locking using ora_rowscn (10g only)
* COMPATIBLITY NOTE: tested against 10.1.0.2.0.*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.CallableStatement;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
import book.util.InputUtil;
class DemoOptLockingUsingShadowColumn
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");

At this point, the user is supposed to have indicated that he wants to update Martin’s
salary. To simulate that we set the variable empNo to Martin’s employee number.

int empNo = 7654;

Next, we invoke the _displayEmpDetails() method to display Martin’s details on the
screen that allows the user to modify the details (the ename and sal column values in our
example). The method will also return the existing row_change_indicator column value.

long rowChangeIndicator = _displayEmpDetails(conn, empNo);

We then pause using our InputUtil.waitTillUserHitsEnter() method (explained in
Chapter 1) as before:

InputUtil.waitTillUserHitsEnter("Row has been selected but is not locked.");

At the end of the main() method, we invoke the _updateEmpInfo method with the
employee number, the new salary, the new name, and the value of the row_change_indicator
column we calculated earlier. This method simply invokes opt_lock_shadowcol_demo.
update_emp_info to perform the update. We close the statement in the finally clause as usual:

_updateEmpInfo(conn, empNo, 1450, "MARTIN", rowChangeIndicator);
}

CHAPTER 16 ■ LOCKING-RELATED ISSUES 615

finally
{
JDBCUtil.close (conn);

}
}// end of main

The following definition of the methods _displayEmpDetails() and _updateEmpInfo()
should be fairly self-explanatory. The method _displayEmpDetails() invokes the PL/SQL
package method opt_shadowcol_demo.get_emp_details() to display the employee details
of a given employee:

private static long _displayEmpDetails(Connection conn, int empNo)
throws SQLException

{
CallableStatement cstmt = null;
long rowChangeIndicator = 0;
int salary = 0;
String empName = null;
try
{
cstmt = conn.prepareCall(
"{call opt_lock_shadowcol_demo.get_emp_details(?, ?, ?, ?)}");

cstmt.setInt(1, empNo);
cstmt.registerOutParameter(2, OracleTypes.VARCHAR);
cstmt.registerOutParameter(3, OracleTypes.NUMBER);
cstmt.registerOutParameter(4, OracleTypes.NUMBER);
cstmt.execute();
empName = cstmt.getString(2);
salary = cstmt.getInt(3);
rowChangeIndicator = cstmt.getLong(4);
System.out.println("empno: " + empNo + ", name: " + empName +

", salary: " + salary + ", checksum: " + rowChangeIndicator);
}
finally
{
JDBCUtil.close(cstmt);

}
return rowChangeIndicator;

}

The method _updateEmpInfo() invokes the PL/SQL package method opt_shadowcol_➥

demo.update_emp_info(), passing in the new values along with the row change indicator that
we returned by _displayEmpDetails():

private static void _updateEmpInfo(Connection conn, int empNo,
int newSalary, String newEmpName, long rowChangeIndicator)
throws SQLException

{

CHAPTER 16 ■ LOCKING-RELATED ISSUES616

CallableStatement cstmt = null;
try
{
cstmt = conn.prepareCall(
"{call opt_lock_shadowcol_demo.update_emp_info(?, ?, ?, ?, ?)}");

cstmt.setInt(1, empNo);
cstmt.setInt(2, newSalary);
cstmt.setString(3, newEmpName);
cstmt.setLong(4, rowChangeIndicator);
cstmt.registerOutParameter(5, OracleTypes.NUMBER);
cstmt.execute();
int numOfRowsUpdated = cstmt.getInt(5);
if(numOfRowsUpdated <= 0)
{
System.out.println("Sorry. Someone else changed the data that " +
"you were trying to update. Please retry.");

}
else
{
System.out.println("You have successfully updated the employee " +
"information.");

}
}
finally
{
JDBCUtil.close(cstmt);

}
}

}// end of program

To test the program, we can run it exactly like we ran the program DemoOptLockingBy➥

SavingOldValues in two windows in the section “Optimistic Locking by Saving Old Column
Values” earlier.

Optimistic Locking by Using a Checksum of Modified Column Values
Yet another implementation of optimistic locking involves calculating a checksum of the col-
umn values being modified. A checksum is a mathematical function that computes a single,
unique value for any input. No two different inputs should map to the same output value.
You can use the owa_opt_lock package’s checksum function for this purpose. The owa_opt_lock
package comes installed as part of the Oracle’s HTTP server’s mod_plsql module. The checksum
function is defined as

function owa_opt_lock.checksum(p_buff in varchar2) return number;

CHAPTER 16 ■ LOCKING-RELATED ISSUES 617

■Note There is another overloaded version of checksum defined as

function checksum(p_owner in varchar2, p_tname in varchar2,
p_rowid in rowid) return number;

It cannot be used for optimistic locking when being invoked by our JDBC program, since it needs to lock the
row in order to calculate the checksum.

Let’s look at an example. Consider the following package, opt_lock_chksum_demo:

scott@ORA10G> create or replace package opt_lock_chksum_demo
2 as
3 procedure get_emp_details(p_empno in number,
4 p_ename in out varchar2, p_sal in out number,
5 p_row_checksum in out number);
6 procedure update_emp_info(p_empno in number,
7 p_new_sal in number, p_new_ename in varchar2,
8 p_checksum in number, p_num_of_rows_updated in out number);
9 function calc_checksum(p_empno in number,
10 p_ename in varchar2, p_sal in number) return number;
11 end;
12 /

The two methods in the package, get_emp_details and update_emp_info, perform the
same functionality as the methods with same names in the previous sections. The third
method, calc_checksum, calculates the checksum based on the column names that are
being modified and the primary key column. Let’s look at their definitions:

scott@ORA10G> create or replace package body opt_lock_chksum_demo
2 as

The following get_emp_details procedure performs a select to get the employee informa-
tion that can be changed by the user (the ename and sal columns of the emp table). In the same
select, it invokes the calc_checksum method to calculate a unique value based on the values of
the two columns that can be changed and the primary key column empno.

3 procedure get_emp_details(p_empno in number,
4 p_ename in out varchar2, p_sal in out number,
5 p_row_checksum in out number)
6 is
7 begin
8 select ename, sal, calc_checksum(empno, ename, sal)
9 into p_ename, p_sal, p_row_checksum
10 from emp
11 where empno = p_empno;
12 end;

CHAPTER 16 ■ LOCKING-RELATED ISSUES618

The procedure update_emp_info gets as parameters the checksum calculated previously
along with other parameters. We then use an additional check in the where clause of the update
statement to compare the checksum for current values in the row with the one we calculated
previously. We return the number of rows updated as an out parameter so that the application
can detect whether or not its update went through.

14 procedure update_emp_info(p_empno in number, p_new_sal in number,
15 p_new_ename in varchar2, p_checksum in number,
16 p_num_of_rows_updated in out number)
17 is
18 begin
19 p_num_of_rows_updated := 0;
20 update emp
21 set sal = p_new_sal,
22 ename = p_new_ename
23 where empno = p_empno
24 and p_checksum = calc_checksum(empno, ename, sal);
25 p_num_of_rows_updated := sql%rowcount;
26 end;

Finally, the function calc_checksum calculates the checksum by simply invoking the
owa_opt_pkg.checksum method, passing in the ename, empno, and sal columns of the current
row (I will explain the reason for formatting the empno and sal columns in a moment):

27 function calc_checksum(p_empno in number, p_ename in varchar2,
28 p_sal in number)
29 return number
30 is
31 begin
32 return owa_opt_lock.checksum(to_char(p_empno,'0009')
33 ||'/' || p_ename || '/' || to_char(p_sal, '00009.99'));
34 end;
35 end;
36 /
Package body created.

The / separators used are required to take care of null values. The formatting we used
in the empno and sal columns is required to ensure that the concatenation result is a unique
value for any two different rows. Otherwise, we can have a combination where the individual
values being concatenated are different, but the concatenated result is the same, eventually
resulting in the same checksum. For example, the checksum for two columns whose values
are 12 and 34 in one instance but 123 and 4 in another would be the same if we use simple
concatenation, as follows:

scott@ORA10G> select owa_opt_lock.checksum(12 || 34) from dual;
25702

scott@ORA10G> select owa_opt_lock.checksum(123 || 4) from dual;
25702

CHAPTER 16 ■ LOCKING-RELATED ISSUES 619

However, if we apply appropriate formatting based on the data, we will get different
values, as follows:

scott@ORA10G> select owa_opt_lock.checksum(to_char(12, '0009') ||
to_char(34, '0009')) from dual;

58853
scott@ORA10G> select owa_opt_lock.checksum(to_char(123, '0009') ||
to_char(4, '0009')) from dual;

58598

Thus, if we have a date column, date_col, we may have to format it with the format string
to_char(date_col, 'yyyymmddhh24miss'), for example. The guiding philosophy in formatting
the individual columns is that their concatenated value should be unique for any two different
combinations of their individual values.

Let’s look at the class DemoOptLockingUsingChecksum, which invokes the preceding pack-
age opt_lock_chksum_demo and demonstrates optimistic locking. I will explain the class with
interspersed comments as usual. The class begins with import statements and gets the con-
nection as scott in the main() method:

/* This program demonstrates optimistic locking using checksum
* COMPATIBLITY NOTE: tested against 10.1.0.2.0.*/
import java.sql.SQLException;
import java.sql.Connection;
import java.sql.CallableStatement;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
import book.util.InputUtil;
class DemoOptLockingUsingChecksum
{
public static void main(String args[]) throws Exception
{
Connection conn = null;
try
{
conn = JDBCUtil.getConnection("scott", "tiger", "ora10g");

At this point, we again set the variable empNo to Martin’s employee number. We invoke
the _displayEmpDetails() method to display Martin’s details on the imagined UI screen that
allows the user to modify the details (the ename and sal column values in our example). The
method will return the checksum of the row as well:

int empNo = 7654;
long rowChecksum = _displayEmpDetails(conn, empNo);

We then pause in using our InputUtil.waitTillUserHitsEnter() method, as we did in our
earlier examples to simulate a user’s think time:

InputUtil.waitTillUserHitsEnter("Row has been selected but is not locked.");

CHAPTER 16 ■ LOCKING-RELATED ISSUES620

At the end of the main() method, we invoke the _updateEmpInfo() method with the
employee number, the new salary value, the new name, and the checksum we calculated
earlier. This method simply invokes opt_lock_chksum_demo.update_emp_info. We close the
connection in the finally clause as usual:

_updateEmpInfo(conn, empNo, 1450, "MARTIN", rowChecksum);
}
finally
{
JDBCUtil.close (conn);

}
}// end of main

The following definitions of the methods _displayEmpDetails() and _updateEmpInfo()
should be self-explanatory. These methods simply invoke the opt_lock_chksum_demo.get_➥

emp_details and opt_lock_chksum_demo.update_emp_info methods, respectively:

private static long _displayEmpDetails(Connection conn, int empNo)
throws SQLException

{
CallableStatement cstmt = null;
long rowChecksum = 0;
int salary = 0;
String empName = null;
try
{
cstmt = conn.prepareCall(

"{call opt_lock_chksum_demo.get_emp_details(?, ?, ?, ?)}");
cstmt.setInt(1, empNo);
cstmt.registerOutParameter(2, OracleTypes.VARCHAR);
cstmt.registerOutParameter(3, OracleTypes.NUMBER);
cstmt.registerOutParameter(4, OracleTypes.NUMBER);
cstmt.execute();
empName = cstmt.getString(2);
salary = cstmt.getInt(3);
rowChecksum = cstmt.getLong(4);
System.out.println("empno: " + empNo + ", name: " + empName + ", salary: "

+ salary + ", checksum: " + rowChecksum);
}
finally
{
JDBCUtil.close(cstmt);

}
return rowChecksum;

}
private static void _updateEmpInfo(Connection conn, int empNo,

int newSalary, String newEmpName, long rowChecksum)
throws SQLException

CHAPTER 16 ■ LOCKING-RELATED ISSUES 621

{
CallableStatement cstmt = null;
try
{
cstmt = conn.prepareCall(

"{call opt_lock_chksum_demo.update_emp_info(?, ?, ?, ?, ?)}");
cstmt.setInt(1, empNo);
cstmt.setInt(2, newSalary);
cstmt.setString(3, newEmpName);
cstmt.setLong(4, rowChecksum);
cstmt.registerOutParameter(5, OracleTypes.NUMBER);
cstmt.execute();
int numOfRowsUpdated = cstmt.getInt(5);
if(numOfRowsUpdated <= 0)
{
System.out.println("Sorry. Someone else changed the data that you were

trying to update. Please retry.");
}
else
{
System.out.println("You have successfully updated the employee

information.");
}

}
finally
{
JDBCUtil.close(cstmt);

}
}

}// end of program

Notice how we again use the number of rows updated to detect whether or not our
update was successful. To test the program, we can run it exactly like we ran the program
DemoOptLockingBySavingOldValues in two windows in the earlier section titled “Optimistic
Locking by Saving Old Column Values.”

Optimistic Locking by Using the ora_rowscn Pseudo Column (10g Only)
In 10g, Oracle provides you with a pseudo column that allows you to implement optimistic
locking without adding a shadow column in your tables or without computing a checksum.
The pseudo column ora_rowscn returns the conservative upper-bound system change number
(SCN) of the most recent change to the row. The SCN is a number assigned to a transaction
after it is committed. Oracle records this number with the transaction’s redo entries in the
redo log.

CHAPTER 16 ■ LOCKING-RELATED ISSUES622

Let’s look at a simple example. We create a table, t1, and insert three numbers in it:

scott@ORA10G> create table t1 (x number);
Table created.
scott@ORA10G> insert into t1 values (1);
1 row created.
scott@ORA10G> insert into t1 values (1);
1 row created.
scott@ORA10G> insert into t1 values (22);
1 row created.

We then select the column x and the pseudo column ora_rowscn from table t1. Since the
transaction is not committed yet, the SCN has not been assigned; hence ora_rowscn returns
null for all rows.

scott@ORA10G> select x, ora_rowscn from t1;

X ORA_ROWSCN
---------- ----------

1
1
22

Let’s commit and rerun our query:

scott@ORA10G> commit;
Commit complete.
scott@ORA10G> select x, ora_rowscn from t1;

X ORA_ROWSCN
---------- ----------

1 4919036
1 4919036
22 4919036

As you can see, all rows that were committed in this transaction got the same ora_rowscn
value. Let’s insert another row, issue a commit, and rerun our query:

scott@ORA10G> insert into t1 values (3);
1 row created.
scott@ORA10G> commit;
Commit complete.
scott@ORA10G> select x, ora_rowscn from t1;

X ORA_ROWSCN
---------- ----------

1 4919036
1 4919036
22 4919036
3 4919038

CHAPTER 16 ■ LOCKING-RELATED ISSUES 623

As shown, a different ora_rowscn value is set for the last row since it was committed in a
different transaction. There is one issue, though. By default, ora_rowscn is maintained at a
database block level. The problem is that one database block can contain multiple rows. This
will not work for us from the optimistic locking point of view, because our pseudo column has
to be changed only for the row we update regardless of whether it has other rows in the block
it resides in. To demonstrate this issue, we will update one row of table t1 and see how it
affects the ora_rowscn values selected from the table:

scott@ORA10G> update t1 set x = 3 where x =22;
1 row updated.
scott@ORA10G> commit;
Commit complete.

We select the ora_rowscn values again along with the block number of each row:

scott@ORA10G> select x, ora_rowscn, dbms_rowid.rowid_block_number(rowid)
block_number from t1;

X ORA_ROWSCN BLOCK_NUMBER
---------- ---------- ------------

1 4919041 508
1 4919041 508
3 4919041 508
3 4919041 508

Notice how the ora_rowscn value changed for all the rows of the table (since they are all
in the same database block), even though we updated only one of them. Fortunately, Oracle
does provide a way to maintain ora_rowscn values at a row level. For this, we need to create the
underlying table with the rowdependencies option. Let’s drop and re-create table t1 and insert
some data into it, followed by a select of the ora_rowscn values:

scott@ORA10G> drop table t1;
Table dropped.
scott@ORA10G> create table t1 (x number) rowdependencies;
Table created.
scott@ORA10G> insert into t1 values (1);
1 row created.
scott@ORA10G> insert into t1 values (2);
1 row created.
scott@ORA10G> insert into t1 values (22);
1 row created.
scott@ORA10G> commit;
Commit complete.
scott@ORA10G> select x, ora_rowscn from t1;

X ORA_ROWSCN
---------- ----------

1 4920043
2 4920043
22 4920043

CHAPTER 16 ■ LOCKING-RELATED ISSUES624

All rows have the same ora_rowscn values, since they were inserted in the same transac-
tion. Let’s now update one row as before and rerun the select to query ora_rowscn and the
block numbers:

scott@ORA10G> update t1 set x = 3 where x =22;
1 row updated.
scott@ORA10G> commit;
Commit complete.
scott@ORA10G> select x, ora_rowscn, dbms_rowid.rowid_block_number(rowid)
block_number from t1;

X ORA_ROWSCN BLOCK_NUMBER
---------- ---------- ------------

1 4920043 532
2 4920043 532
3 4920046 532

Notice how the ora_rowscn value of the third row is different from the rest (since it was
changed), even though it is in the same block as the other rows. Thus, we can safely use the
ora_rowscn column to proxy for the values in our row as long as the underlying tables are cre-
ated with the rowdependencies option. Note that using the rowdependencies option does cause
the row size to increase by 6 bytes due to additional information maintained at the row level.

As of 10g Release 1, the use of ora_rowscn has a few restrictions you should be aware of.

• You cannot use ora_rowscn in a query to a view. However, you can use it to refer to the
underlying table when creating a view. To understand this, create a view, v1, on table t1:

scott@ORA10G> create or replace view v1 as
2 select x
3 from t1;

View created.

If you try to select ora_rowscn from it, you will get an error:

scott@ORA10G> select ora_rowscn from v1;
select ora_rowscn from v1

*
ERROR at line 1:
ORA-00904: "ORA_ROWSCN": invalid identifier

However, you can refer to ora_rowscn in the view definition itself to overcome this
restriction. The view v2 is created with the ora_rowscn pseudo column values as one of
its columns:

scott@ORA10G> create or replace view v2 as
2 select x, ora_rowscn
3 from t1;

View created.

CHAPTER 16 ■ LOCKING-RELATED ISSUES 625

The same select should work now:

scott@ORA10G> select ora_rowscn from v2;
ORA_ROWSCN

4920043
4920043
4920046

• The ora_rowscn pseudo column is not supported for external tables (we covered external
tables briefly in Chapter 12).

• You cannot enable rowdependencies for an existing table; you have to drop and re-create
the table, which may not be always feasible.

Let’s look at an example demonstrating the use of ora_rowscn to implement optimistic
locking. The example is similar to the one in the section “Optimistic Locking by Using a
Checksum of Modified Column Values,” but there are two differences. First, we create
another table, my_emp, with the rowdependencies option, and copy into it the data in emp:

scott@ORA10G> create table my_emp rowdependencies as select * from emp;

Table created.

Next, we create the PL/SQL package opt_lock_scn_demo, which contains the procedure’s
get_emp_details and update_emp_info methods, this time working on the my_emp table and
using an ora_rowscn-based implementation:

scott@ORA10G> create or replace package opt_lock_scn_demo
2 as
3 procedure get_emp_details(p_empno in number, p_ename in out varchar2,
4 p_sal in out number, p_ora_rowscn in out number);
5 procedure update_emp_info(p_empno in number, p_new_sal in number,
6 p_new_ename in varchar2, p_ora_rowscn in number,

p_num_of_rows_updated in out number);
7 end;
8 /

Package created.
scott@ORA10G> create or replace package body opt_lock_scn_demo
2 as
3 procedure get_emp_details(p_empno in number, p_ename in out varchar2,
4 p_sal in out number, p_ora_rowscn in out number)
5 is
6 begin
7 select ename, sal, ora_rowscn
8 into p_ename, p_sal, p_ora_rowscn
9 from my_emp
10 where empno = p_empno;

CHAPTER 16 ■ LOCKING-RELATED ISSUES626

11 end;
12
13 procedure update_emp_info(p_empno in number, p_new_sal in number,
p_new_ename in varchar2, p_ora_rowscn in number,
p_num_of_rows_updated in out number)
14 is
15 begin
16 p_num_of_rows_updated := 0;
17 update my_emp
18 set sal = p_new_sal,
19 ename = p_new_ename
20 where empno = p_empno
21 and p_ora_rowscn = ora_rowscn;
22 p_num_of_rows_updated := sql%rowcount;
23 end;
24 end;
25 /

Package body created.

The only difference between this package and the package opt_lock_chksum_demo dis-
cussed earlier is that here we use the pseudo column ora_rowscn instead of the checksum of
modified column values. The Java class that invokes the preceding package to demonstrate
optimistic locking would be exactly the same as the class DemoOptLockingUsingChecksum,
except that it would use the package opt_lock_scn_demo instead of opt_lock_chksum_demo.
Hence, I do not list it here, in order to conserve space.

Comparing Different Optimistic Locking Alternatives
We have covered many alternatives to implement optimistic locking. Which one should you
use? Usually the technique that saves the old values and does a simple comparison with the
new values is the simplest and generally the best technique. It does make the APIs more com-
plicated, though, since you need to pass the old and new values back and forth. It also adds to
the network traffic depending on the number of columns being modified and their size. The
technique that calculates the checksum proxies the old column values with a checksum.
Checksum calculation can, however, take extra CPU time, and there does exist a tiny chance
that the checksum for two different input values is the same. For an existing application, the
technique of using a shadow column will work only if it is feasible to change the current tables
to add the new columns for an existing application. And using ora_rowscn is feasible only if
you are using 10g and you can create (or re-create) your tables with the rowdependencies
option.

Pessimistic Locking vs. Optimistic Locking
In most cases, optimistic locking is the best alternative to avoid lost updates for the majority of
web applications that use connection pooling. However, it does suffer from the disadvantage
that a user may have spent a lot of time making changes, only to be told to try her changes
again. Pessimistic locking, on the other hand, is suitable for client/server applications that
maintain state across pages.

CHAPTER 16 ■ LOCKING-RELATED ISSUES 627

Summary
In this chapter, you learned about the problem known as “lost updates.” You looked at
various techniques you can use to solve this problem. Changing the transaction isolation
level to SERIALIZABLE can solve the problem in some special cases. The technique of locking
the row beforehand (pessimistic locking) solves the problem for cases where you maintain
state across pages. Optimistic locking solves the problem by detecting the changes made by
another transaction and asking the user to retry his transaction if unsuccessful. In most of the
web applications that use connection pooling, optimistic locking is the only real alternative
since it does not require the application to maintain connections across pages. You examined
several implementations of optimistic locking, and finally briefly compared optimistic and
pessimistic locking.

CHAPTER 16 ■ LOCKING-RELATED ISSUES628

Selected PL/SQL Techniques

In this chapter, we will look at why it is critical for a JDBC programmer working with Oracle
databases to learn and master PL/SQL. We will also examine a few PL/SQL techniques that
will help you in writing high-performance and more maintainable PL/SQL code.

This chapter is by no means comprehensive in terms of explaining how to exploit PL/SQL
fully. For a thorough introduction to PL/SQL, I recommend that you read the excellent Oracle
documentation in Oracle PL/SQL User’s Guide and Reference. For the built-in PL/SQL packages,
you can refer to the Oracle documentation in PL/SQL Packages and Types Reference. I also highly
recommend reading the book Mastering Oracle PL/SQL by Connor McDonald (Apress, ISBN:
1-59059-217-4). Chapter 9 of Effective Oracle by Design by Tom Kyte (Osborne McGraw-Hill,
ISBN: 0-07-223065-7) also gives some very useful PL/SQL techniques.

Further Motivation for Using PL/SQL
In Chapter 2, we looked at an example of why you need to know PL/SQL. We revisited the topic
in the section “Where Should Your SQL Statements Reside, in Java or PL/SQL?” of Chapter 6,
where you saw ample justification for why you should, in general, encapsulate your database-
related logic in PL/SQL and use CallableStatement to call the database-related logic from Java
(instead of putting your SQL statement strings in your Java code and invoking them using
PreparedStatement). This strategy implies that you need to be a good PL/SQL programmer if
you want to write effective JDBC programs. Note that the underlying philosophy is true even
if you don’t use Oracle, in which case you need to be proficient in the equivalent procedural
language of your database (most prominent database vendors provide such a procedural lan-
guage). In this section, we will summarize and expand on our list of reasons to use PL/SQL
extensively in code.

PL/SQL Is Close to Your Data
PL/SQL is a part of the database. When you access data from PL/SQL you’re already connected
to the database—you don’t need to make separate round-trips for executing multiple SQL
statements. PL/SQL and its data structures are also designed up front to be very closely tied
with SQL. For example, when you want to declare a variable that stores a value in the column
empno of the table emp in the scott schema, you can (and should) declare it as follows:

l_empno emp.empno%type;

629

C H A P T E R 1 7

■ ■ ■

This ensures that if in the future you change the data type of the empno column to, say,
varchar2(30), your PL/SQL code is insulated from such changes. In the same vein, you can
intermingle SQL and PL/SQL freely.

PL/SQL Is Portable
Yes, you heard me right. The reason I make this claim is that if you write your code in PL/SQL,
you have ensured that

• Your code can be invoked by any other language that has the ability to connect and talk
to Oracle. This includes C, C++, and Java, among other languages.

• Your code is automatically ported to all operating systems to which Oracle is ported
(which include most popular flavors of UNIX and Windows).

Those who claim that writing in PL/SQL will tie your code to a database overlook the fact
that if you don’t exploit a database fully, you’re simply not getting your money’s worth. If you
pursue this strategy, not only does performance suffer but also you’ll get code that will give
incorrect results when used directly against another database. In most cases, database inde-
pendence isn’t a “real” requirement. Developing code in a database-independent way by
restricting developers to use a subset of common features is analogous to a right-handed
swordsman fighting a duel with his left hand—odds are that it is a losing fight.

In the relatively rare case you do need to write code that works against different databases,
your data access layer should be written using the procedural language of the database (e.g.,
PL/SQL in Oracle, Transact-SQL in SQL Server, and so on). This way you ensure (among other
things) that

• Your code exploits all features of the database and the ones offered by a stored proce-
dure language such as PL/SQL.

• Your Java code is largely independent of the database (assuming you use the SQL92
syntax of invoking procedures from JDBC).

• Your code can be accessed by applications written in any other language and from all
the tools that know how to invoke a stored procedure.

PL/SQL Code Is Compact (Fewer Lines of Code)
Compared to code written in Java (or, for that matter, any other language), if a piece of code
involves SQL statements, the PL/SQL version is likely to be much more compact. For example,
if you want to write a procedure that fetches all employees who have a given job title from the
emp table and do some processing on them, in PL/SQL you can write

create or replace procedure process_employees(p_job in varchar2)
is
begin
for i in (select * from emp where job = p_job)
loop
dbms_output.put_line('processing the record of ' || i.ename);
-- processing code

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES630

end loop;
end;
/
show errors;
exec process_employees ('CLERK')

Notice how the preceding loop implicitly does cursor management for you, such as open-
ing, fetching, and closing the cursor. Try writing the same code in Java—it will require many
more lines of code.

Tuning SQL in PL/SQL Is Easier
Tuning SQL written in PL/SQL is quite easy. For example, starting a SQL trace for the PL/SQL
code is trivial. For JDBC, you have to have a mechanism to indicate whether or not the code
should be traced. Besides, for fixing the code, you need to recompile the Java classes and rede-
ploy them on all your middle-tier machines. In the case of PL/SQL, once you recompile it, the
changes are immediately available for every user.

Adding Code to PL/SQL Is Easier
If you want to add another line of code after an insert statement in PL/SQL (say, to log or
audit the insert), it is easy. If you were using PreparedStatement, though, you would have to
prepare, bind, and execute another statement.

PL/SQL Code May Result in Fewer Round-trips
All related PL/SQL code in a PL/SQL unit involves only one server round-trip. For example,
invoking a PL/SQL procedure using a CallableStatement would involve one round-trip no
matter how many SQL statements are executed in the PL/SQL procedure. Note that to process
any result sets returned, you will still make multiple round-trips based on your fetch size—
this is true regardless of the statement class you use in JDBC. If you use PreparedStatement,
however, the number of round-trips would be as many as the number of statements you need
to invoke (plus any others you need to make to process your result sets).

So far, we’ve looked at various reasons to use PL/SQL. Let’s now look at things that you
should watch out for while writing PL/SQL code.

Common Mistakes When Using PL/SQL
Although PL/SQL is a great language, like any language it can be misused. In this section, we’ll
look at two particularly common scenarios where PL/SQL can be used in a counterproductive
manner.

Using PL/SQL When a SQL Solution Exists
SQL must be one of the most underrated and underused tools available to Java programmers
in the Oracle database. Most JDBC programmers know how to write simple select, update,
delete, and insert statements in Oracle. SQL is much more than that. Over the years and over

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 631

different versions, Oracle has expanded the capabilities of its SQL engine tremendously. For
example, analytic functions are a tremendously powerful feature.

Since the power of SQL is not understood by many JDBC programmers, it is unfortunately
a standard practice to code in PL/SQL what can be done in SQL. Almost always, the equivalent
code in SQL will outperform that written in PL/SQL. A common example is avoidable row-by-
row processing. This happens when, instead of writing a single SQL statement, people write a
loop, fetch each record one by one, and process the record. In many cases, the entire loop
can—and should—be replaced by a single SQL statement.

Say we want to copy data from one table to another. Let’s first create the schema for this
example. We create three identical tables—t1, t2, and t3—each with one number column x,
which is also the primary key:

benchmark@ORA10G> create table t1 (x number primary key);

Table created.

benchmark@ORA10G> create table t2 (x number primary key);

Table created.

benchmark@ORA10G> create table t3 (x number primary key);

Table created.

Now we insert 500,000 records into t1 and analyze it to compute statistics for the Oracle
optimizer to use:

benchmark@ORA10G> insert into t1 select rownum from all_objects,
all_users where rownum <= 500000;

500000 rows created.

We gather statistics for table t1 for the Cost Based Optimizer (CBO) to use next:

benchmark@ORA10G> begin
2 dbms_stats.gather_table_stats(
3 ownname => 'BENCHMARK',
4 tabname => 'T1',
5 cascade => true);
6 end;
7 /

PL/SQL procedure successfully completed.
benchmark@ORA10G> commit;

Commit complete.

Now we need to copy the data in this table to another table. We will look at a PL/SQL solu-
tion and a SQL solution. The PL/SQL solution copies table t1’s data into table t2 by inserting
each row separately:

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES632

benchmark@ORA10G> -- pl/sql solution
benchmark@ORA10G> declare
2 begin
3 for i in (select x from t1)
4 loop
5 insert into t2 values (i.x);
6 end loop;
7 end;
8 /

PL/SQL procedure successfully completed.

benchmark@ORA10G> commit;

The SQL solution simply uses an insert into select clause to directly perform the insert
into t3 with one statement:

benchmark@ORA10G> -- sql solution
benchmark@ORA10G> insert into t3
2 select x
3 from t1;

38988 rows created.

We use the runstats utility to do the comparison as follows. The code begins with mark-
ing the start point of a benchmark run by invoking runstats_pkg.rs_start:

benchmark@ORA10G> exec runstats_pkg.rs_start;

We first invoke our SQL-based solution:

benchmark@ORA10G> -- sql solution
benchmark@ORA10G> insert into t3
2 select x
3 from t1;

38988 rows created.

benchmark@ORA10G> commit;

We mark the middle of the benchmark run and follow it up with the PL/SQL solution.
Finally, we invoke runstats_pkg.rs_stop to display the results:

benchmark@ORA10G> exec runstats_pkg.rs_middle;

PL/SQL procedure successfully completed.

benchmark@ORA10G> -- pl/sql solution
benchmark@ORA10G> declare
2 begin

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 633

3 for i in (select x from t1)
4 loop
5 insert into t2 values (i.x);
6 end loop;
7 end;
8 /

PL/SQL procedure successfully completed.

benchmark@ORA10G> commit;

Commit complete.

benchmark@ORA10G> exec runstats_pkg.rs_stop(50);
Run1 ran in 5180 hsecs
Run2 ran in 5572 hsecs
run 1 ran in 92.96% of the time

Name Run1 Run2 Diff
STAT...IMU undo allocation siz 52 0 -52
<-- trimmed to save space -->
STAT...table scan rows gotten 500,940 3,699,690 3,198,750

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
8,093,305 10,973,079 2,879,774 73.76%

PL/SQL procedure successfully completed.

As you can see, the SQL-based solution took only 93% of the time and consumed only
74% of the latches as compared to the PL/SQL solution. The bottom line is that set operations
(i.e., the ones using SQL) are almost always faster than their procedural equivalent in PL/SQL.

■Note The preceding benchmark was run against Oracle 10g. In Oracle 10g, an implicit for loop, such as
the one used in the PL/SQL version of the preceding code, uses a technique called bulk collect (see the sec-
tion “Using Bulk Collect”) behind the scenes to improve PL/SQL performance tremendously. When I ran the
performance benchmark in an Oracle9i database, I found that the SQL version ran in 30% of the time and
consumed just 3% of the latches in the preceding test case. Of course, you can improve PL/SQL code in 9i
by explicitly using bulk collect yourself.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES634

Reinventing the Wheel
Another common mistake is to write your own code for what one of the supplied packages or
an existing SQL function already does for you. It is well worth the effort to become familiar
with the PL/SQL-supplied packages that Oracle provides. Otherwise, you’ll end up writing,
debugging, and testing code that is already provided by Oracle for you.

Selected PL/SQL Tips
For the remainder of this chapter, we’ll look at some useful techniques to improve the per-
formance and maintainability of your PL/SQL code.

Packaging Matters!
You can write your PL/SQL methods as stand-alone functions and procedures, or you can
make them part of modular PL/SQL packages. There are several advantages to using PL/SQL
packages:

• Packages break the dependency chain. This is perhaps the biggest advantage of using
packages. In fact, we will go through this benefit in detail in the next subsection.

• Packages expand the namespace for your procedures and functions. If you use packages,
a method signature has to be unique only within the package. Thus, you have to worry
much less about signature clashes with other methods in your application.

• Packages allow you to hide information and implementation details. You can declare pri-
vate methods and variables in a package body. This hides the implementation details from
the users of the package and also improves the maintainability of the code tremendously.
This is similar to how you declare private variables and define private methods in your Java
classes, and declare public interfaces in your Java interfaces.

• Packages improve the readability and manageability of your code. Imagine what would
happen if all the methods in Oracle’s supplied PL/SQL packages were stand-alone.
There won’t be any decent way to go about looking for a method you need. Fortunately,
Oracle supplies its common utility methods in various packages, each catering to a dis-
tinct functionality requirement. In this respect, organizing methods in packages is very
similar to organizing your files in different directories.

Packages Break the Dependency Chain
Consider three stand-alone procedures, p1, p2 , and p3, such that p2 invokes p1 and p3 invokes p2:

benchmark@ORA10G> create or replace procedure p1
2 as
3 begin
4 dbms_output.put_line('p1');
5 end;
6 /

Procedure created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 635

benchmark@ORA10G> create or replace procedure p2
2 as
3 begin
4 p1;
5 dbms_output.put_line('p2');
6 end;
7 /

Procedure created.
benchmark@ORA10G> create or replace procedure p3
2 as
3 begin
4 p2;
5 dbms_output.put_line('p3');
6 end;
7 /

Procedure created.

The dependency chain refers to the fact that p2 depends on p1 and p3 depends on p2. Note
that p3 also depends on p1 indirectly. Oracle maintains information in its data dictionary about
this dependency chain. Note that this dependency chain may also include schema objects such
as tables, views, etc. used by a procedure. Now each time procedure code is changed and recom-
piled, or a table accessed by the procedure is altered, Oracle makes all the dependent objects
invalid in the database. An example will make this clear. Let’s first examine the status (valid or
invalid) of each of the procedures in the database:

benchmark@ORA10G> select object_name, object_type, status
2 from all_objects
3 where object_name in('P1', 'P2', 'P3')
4 and owner = 'BENCHMARK';

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------------- -------
P1 PROCEDURE VALID
P2 PROCEDURE VALID
P3 PROCEDURE VALID

As expected, all three procedures are valid. Let’s now make a simple change to the proce-
dure p1 and recompile it:

benchmark@ORA10G> -- modify p1 and recompile it
benchmark@ORA10G> create or replace procedure p1
2 as
3 begin
4 dbms_output.put_line('p1 modified');
5 end;
6 /

Procedure created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES636

Since p2 and p3 are dependent on procedure p1, Oracle will mark them as invalid in the
database, as shown by the following query results:

benchmark@ORA10G> select object_name, object_type, status
2 from all_objects
3 where object_name in('P1', 'P2', 'P3')
4 and owner = 'BENCHMARK';

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------------- -------
P1 PROCEDURE VALID
P2 PROCEDURE INVALID
P3 PROCEDURE INVALID

Note that Oracle automatically tries to recompile an invalid procedure (and all other pro-
cedures it is directly or indirectly dependent on) the very first time it is invoked. We can see
this in action by first executing p2 and rerunning the query to see the status of each procedure:

benchmark@ORA10G> exec p2
p1 modified
p2

PL/SQL procedure successfully completed.

benchmark@ORA10G> select object_name, object_type, status
2 from all_objects
3 where object_name in('P1', 'P2', 'P3')
4 and owner = 'BENCHMARK';

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------------- -------
P1 PROCEDURE VALID
P2 PROCEDURE VALID
P3 PROCEDURE INVALID

When we executed p2, Oracle automatically compiled it and ran it. Note, however, that
p3 is still invalid. Now, the problem is that if we have a large dependency chain of stand-alone
procedures and functions (as may well be the case in a real-life project), then every time a
deeply nested procedure is recompiled due to changes, all the procedures depending on it
directly or indirectly will become invalid. Oracle will have to recompile each of them as and
when they are executed for the first time. Since recompilation is resource-intensive, this can
result in performance degradation.

Let’s see how packages help mitigate this problem. We re-create the same procedures
again, only this time, each of them is in its own package (pkg1, pkg2, and pkg3 contain proce-
dures p1, p2, and p3, respectively):

benchmark@ORA10G> -- putting the procedures in a package
benchmark@ORA10G> create or replace package pkg1 as
2 procedure p1;

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 637

3 end;
4 /

Package created.

benchmark@ORA10G> create or replace package body pkg1 as
2 procedure p1
3 as
4 begin
5 dbms_output.put_line('p1');
6 end;
7 end;
8 /

Package body created.

benchmark@ORA10G> create or replace package pkg2 as
2 procedure p2;
3 end;
4 /

Package created.

benchmark@ORA10G> create or replace package body pkg2 as
2 procedure p2
3 as
4 begin
5 dbms_output.put_line('p2');
6 pkg1.p1;
7 end;
8 end;
9 /

Package body created.

benchmark@ORA10G> create or replace package pkg3 as
2 procedure p3;
3 end;
4 /

Package created.

benchmark@ORA10G> create or replace package body pkg3 as
2 procedure p3
3 as
4 begin

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES638

5 dbms_output.put_line('p3');
6 pkg2.p2;
7 end;
8 end;
9 /

Package body created.

The following query shows that all the packages are valid as expected:

benchmark@ORA10G> select object_name, object_type, status
2 from all_objects
3 where object_name in('PKG1', 'PKG2', 'PKG3')
4 and owner = 'BENCHMARK';

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------------- -------
PKG1 PACKAGE VALID
PKG1 PACKAGE BODY VALID
PKG2 PACKAGE VALID
PKG2 PACKAGE BODY VALID
PKG3 PACKAGE VALID
PKG3 PACKAGE BODY VALID

6 rows selected.

Note that in the preceding query results, for each package there are two entries: one for
the package specification (the value PACKAGE in the object_type column) and one for the pack-
age body (the value PACKAGE BODY in the object_type column). Let’s now modify procedure p1
as before and recompile the package body of package pkg1:

benchmark@ORA10G> create or replace package body pkg1 as
2 procedure p1
3 as
4 begin
5 dbms_output.put_line('p1 modified');
6 pkg1.p1;
7 end;
8 end;
9 /

Package body created.

Rerunning our query shows that none of the other packages are invalidated:

benchmark@ORA10G> select object_name, object_type, status
2 from all_objects
3 where object_name in('PKG1', 'PKG2', 'PKG3')
4 and owner = 'BENCHMARK';

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 639

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------------- -------
PKG1 PACKAGE VALID
PKG1 PACKAGE BODY VALID
PKG2 PACKAGE VALID
PKG2 PACKAGE BODY VALID
PKG3 PACKAGE VALID
PKG3 PACKAGE BODY VALID

6 rows selected.

This is because we only needed to compile the package body of procedure p1. As long as the
package specification does not change (and hence is not recompiled), only the objects depend-
ing on the package body get invalidated. In this case, package pkg2 is dependent on the package
specification of pkg1. Similarly, pkg3 is dependent on the package specification of pkg2. Hence,
they are both still valid. This exercise demonstrates how packages help break the dependency
chain and avoid spending precious Oracle resources on unnecessary compilations.

Next, we will look at some PL/SQL techniques that can help you write high-performance
PL/SQL code.

Using Bulk Operations to Boost Performance
In a previous chapter, you learned about collections. You saw in that chapter why using nested
table and varrays as columns in a table is not a good idea in general. However, collections can
be very useful when implementing array operations in PL/SQL. This section covers some of
these techniques.

Using Bulk Collect
The bulk collect clause allows you to fetch more than one row of a table into a collection
variable in a single statement. Using bulk collect, you reduce the number of server round-
trips because you are fetching more data per round-trip. You will run these examples in
Oracle9i, since Oracle 10g automatically bulk fetches 100 rows at a time when you use an
implicit for loop cursor (code that looks like for x in (select * from emp)).

Let’s look at an example. In the following code snippet, we first create a nested table of
varchar2(30):

benchmark@ORA92I> create or replace type object_name_list as table of varchar2(30);
2 /

Type created.

Next, we select ten object names from all_objects into the collection using the bulk
collect clause (highlighted in bold) and print them out:

benchmark@ORA92I> declare
2 l_object_name_list object_name_list;
3 begin
4 select object_name

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES640

5 bulk collect into l_object_name_list
6 from all_objects
7 where rownum <= 10;
8
9 for i in 1..l_object_name_list.count
10 loop
11 dbms_output.put_line(l_object_name_list(i));
12 end loop;
13 end;
14 /
DUAL
<-- 9 more rows - results trimmed to save space -->

PL/SQL procedure successfully completed.

Be aware that selecting a large number of records into your collection in one shot using
the preceding syntax can exhaust server-side memory. In such cases, you can use an explicit
cursor syntax with a limit clause as illustrated in the following code snippet. First, we declare
a cursor that selects 3,000 object IDs from the all_objects table:

benchmark@ORA92I> declare
2 cursor c_object_ids is
3 select object_id
4 from all_objects
5 where rownum <= 3000;

Instead of using a SQL type as we did in the previous example, we use a PL/SQL type (we
could have used a SQL type also). We declare the PL/SQL type and a variable of its type followed
by a loop counter variable:

6 type number_table is table of number index by binary_integer;
7 l_object_id_list number_table;
8 l_counter number := 0;

We begin our logic by opening the cursor and bulk collecting the object IDs into the array
l_object_id_list. Note that we use the limit clause (shown in bold in the following code) so
that at a time, we will only fetch 200 records to avoid straining database memory:

9 begin
10 open c_object_ids;
11 loop
12 fetch c_object_ids bulk collect into l_object_id_list limit 200;

The remaining code is straightforward. We loop through the array contents, printing them
out. We also increment our loop counter to store the total number of records processed. Finally,
we have the exit clause that exits out of the loop when we run out of records:

13 for i in 1..l_object_id_list.count
14 loop
15 l_counter := l_counter + 1;

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 641

16 dbms_output.put_line(l_object_id_list(i));
17 end loop;
18 exit when c_object_ids%notfound;
19 end loop;
20 dbms_output.put_line('total fetched: ' || l_counter);
21 end;
22 /
222
<-- results trimmed to conserve space -->
6409
total fetched: 3000

PL/SQL procedure successfully completed.

The important point to note is that in cases where you expect a large number of records,
you should use an explicit cursor and fetch with a limit clause to conserve server-side memory.

■Note As mentioned earlier, starting with Oracle 10g, as an optimization for an implicit cursor loop (e.g.,
for a x in (select ...) loop), Oracle silently bulk fetches records 100 at a time by default. The bulk
collect technique is still very useful for 9i systems and even in 10g, if the default limit of 100 rows is not
optimal for your particular scenario.

Performance Impact of Bulk Collect

Let’s see how bulk collect can improve your code’s performance. Recall how in the section
“Using PL/SQL When a SQL Solution Exists,” the PL/SQL solution involved selecting each row
one by one and inserting the rows one by one into the table. The correct solution in that case,
as you learned, was to use a single SQL statement. But what if the results have to be output to
a file instead of a table? In such a scenario, a SQL statement–based solution isn’t feasible; you
can use bulk collect to improve performance. Let’s compare two cases:

• We select 500,000 numbers from table t1 (created and populated as discussed in the
section “Using PL/SQL When a SQL Solution Exists”) and output them to a file.

• We bulk collect 500,000 numbers, 500 at a time (the number 500 is passed as a param-
eter), and output them to a file.

We will use the PL/SQL-supplied package UTL_FILE to write the contents into a file (see
the section “Alternatives to BFILEs for File Operations” in Chapter 12 for more details on the
UTL_FILE package). To use UTL_FILE, we first need to create a directory object that points to a
real operating system directory:

benchmark@ORA92I> create or replace directory temp_dir as 'C:\TEMP';
Directory created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES642

Next, we create a procedure called no_bulk_collect that will insert 500,000 numbers
selected from t1 without using bulk collect into a file called no_bulk_collect.txt in the
directory C:\TEMP. Inside the procedure, we first declare a file handle:

benchmark@ ORA92I> create or replace procedure no_bulk_collect
2 as
3 l_file_handle utl_file.file_type;
4 begin

Then we open the file, retrieving the file handle into our variable l_file_handle:

5 l_file_handle := utl_file.fopen('TEMP_DIR', 'no_bulk_collect.txt', 'W');

We loop through the records, outputting the value of the x column into the file. At the
end, we close the file handle:

6 for i in(select x from t1)
7 loop
8 utl_file.put_line(l_file_handle, i.x);
9 end loop;
10 utl_file.fclose(l_file_handle);
11 end;
12 /

Procedure created.

Now let’s create a procedure that uses bulk collect into an array a given number of
records (passed as a parameter) at a time, and then loops through the array to output the
records. The procedure bulk_collect does just that, outputting the data into a file called
bulk_collect.txt:

benchmark@ ORA92I> create or replace procedure bulk_collect (
p_limit_per_fetch in number default 100)
2 as
3 cursor c_x is
4 select x
5 from t1;
6 l_file_handle utl_file.file_type;
7 type number_table is table of number index by binary_integer;
8 l_x_list number_table;
9 begin
10 l_file_handle := utl_file.fopen('TEMP_DIR', 'bulk_collect.txt', 'W');
11 open c_x;
12 loop
13 fetch c_x bulk collect into l_x_list limit p_limit_per_fetch;
14 for i in 1..l_x_list.count
15 loop
16 utl_file.put_line(l_file_handle, l_x_list(i));
17 end loop;
18 exit when c_x%notfound;

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 643

19 end loop;
20 close c_x;
21 end;
22 /

Procedure created.

Next, we run the benchmark using the runstats utility:

benchmark@ORA92> exec runstats_pkg.rs_start;

PL/SQL procedure successfully completed.

benchmark@ORA92> exec no_bulk_collect;

PL/SQL procedure successfully completed.

benchmark@ORA92> exec runstats_pkg.rs_middle;

PL/SQL procedure successfully completed.

benchmark@ORA92> exec bulk_collect(500);

PL/SQL procedure successfully completed.

benchmark@ORA92> exec runstats_pkg.rs_stop(50);
Run1 ran in 1844 hsecs
Run2 ran in 1058 hsecs
run 1 ran in 174.29% of the time

Name Run1 Run2 Diff
LATCH.row cache enqueue latch 60 4 -56
<-- results trimmed to conserve space -->
LATCH.cache buffers chains 1,006,701 6,071 -1,000,630

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
1,045,013 7,586 -1,037,427 13,775.55%

PL/SQL procedure successfully completed..

As shown in bold in the preceding listing, the code without using bulk collect took almost
twice the amount of time to complete. More important, perhaps, it consumed more than 130
times the latches consumed by the code that used bulk collect. In this case, I chose to use a
limit of 500 records at a time; you can find a more optimal fetch limit size by trial and error.

In conclusion, you can see that using bulk collect can significantly increase the per-
formance of your PL/SQL code. You should take care, however, to use an appropriate limit on
the number of records fetched in one iteration based on the total number of records and size
per record.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES644

Using Bulk Binding
Bulk binding allows you to improve performance of inserts, updates, and deletes in a loop.
With bulk binding, you insert, delete, or update tables using values from an initialized collec-
tion (such as a varray, a nested table, or associative arrays).

Assuming that l_x_coll is a collection variable, without bulk binding a typical for loop
processing that involves an insert may look like

for i in 1..x.count
loop
insert into t1(x) values(l_x_coll(i));

end loop;

Of course, if you can replace the preceding code with a single SQL statement, you should.
In many cases, though, you may have some complicated processing on the data before insert-
ing it. Bulk binding can be applied in such cases to improve performance significantly.

When using bulk binding, the preceding syntax changes slightly to

forall i in 1..x.count
insert into t1(x) values(l_x_coll(i));

Thus, instead of the keyword for, we use the keyword forall, and we lose the keywords
loop and end loop. The reason forall works faster in most cases is that it avoids switching the
context back and forth between PL/SQL and SQL.

To elaborate on this concept further, during execution of PL/SQL code, the PL/SQL engine
hands over execution of an embedded SQL statement to the SQL engine. When the SQL state-
ment execution is over, the control passes back to PL/SQL engine, and so on. The overhead of
this context switch adds up in a loop such as the one without bulk binding shown previously.
In the first for loop, with each iteration the loop counter i needs to be incremented (using the
PL/SQL context), and then the insert statement needs to be executed (using the SQL context).
Bulk binding avoids this by batching the SQL executions with fewer context switches, thus
improving performance.

Performance Impact of Bulk Binding

Let’s look at an example that demonstrates bulk binding syntax and also showcases its per-
formance impact. We begin by creating two collection types as follows:

benchmark@ORA10G> create or replace type object_name_list as table of varchar2(30);
2 /

Type created.

benchmark@ORA10G> create or replace type object_id_list as table of number;
2 /

Type created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 645

Next, we create two identical tables, t4 and t5, with each having an object_name and
object_id column from the all_objects table (note that the tables are created empty):

benchmark@ORA10G> create table t4 as
2 select object_name, object_id
3 from all_objects
4 where 1 != 1;

Table created.
benchmark@ORA10G> create table t5 as
2 select object_name, object_id
3 from all_objects
4 where 1 != 1;

Table created.

Now we create two procedures. The first one is called no_bulk_bind. As its name suggests,
this procedure inserts a number of records (35,000) into table t4 without using bulk binding in
a simple for loop (pretend that the code cannot be written using a single SQL statement):

benchmark@ORA10G> create or replace procedure no_bulk_bind(
p_object_name_list in object_name_list,
p_object_id_list in object_id_list)
2 as
3 begin
4 for i in 1..p_object_name_list.count loop
5 insert into t4(object_name, object_id) values(p_object_name_list(i),

p_object_id_list(i));
6 end loop;
7 end;
8 /

Procedure created.

The second procedure, bulk_bind, uses the forall syntax to insert the same number of
records using bulk bind, this time into table t5:

benchmark@ORA10G> create or replace procedure bulk_bind(
p_object_name_list in object_name_list,
p_object_id_list in object_id_list)
2 as
3 begin
4 forall i in 1..p_object_name_list.count
5 insert into t5(object_name, object_id) values(p_object_name_list(i),

p_object_id_list(i));
6 end;
7 /

Procedure created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES646

To compare the two utilities, we use the runstats utility as usual. We first populate a col-
lection variable with values to be populated into tables t4 and t5, respectively:

benchmark@ORA10G> declare
2 l_object_name_list object_name_list;
3 l_object_id_list object_id_list;
4 begin
5 select object_name, object_id
6 bulk collect into l_object_name_list, l_object_id_list
7 from all_objects
8 where rownum <= 35000;
9

We then execute the runstats utility and invoke the two procedures to compare them:

10 begin
11 runstats_pkg.rs_start;
12 end;
13 begin
14 no_bulk_bind(l_object_name_list, l_object_id_list);
15 end;
16 begin
17 runstats_pkg.rs_middle;
18 end;
19 begin
20 bulk_bind(l_object_name_list, l_object_id_list);
21 end;
22 begin
23 runstats_pkg.rs_stop(10);
24 end;
25 end;
26 /
Run1 ran in 190 hsecs
Run2 ran in 11 hsecs
run 1 ran in 1727.27% of the time

Name Run1 Run2 Diff
LATCH.loader state object free 12 0 -12
<-- results trimmed to conserve space -->
STAT...redo size 9,559,460 1,670,356 -7,889,104

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
375,873 16,893 -358,980 2,225.02%

PL/SQL procedure successfully completed.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 647

As you can see, the performance of our inserts has increased tremendously. The proce-
dure without the bulk bind took 17 times longer and also consumed 22 times more resources
than the procedure with the bulk bind!

A limitation of bulk bind as of Oracle 10g Release 1 is that it does not work with an array of
objects. For example, in the preceding scenario, if we wanted to use an array of a single object
with object_name and object_id as its attributes, the bulk bind will not work:

benchmark@ORA10G> create or replace type object_data as object
2 (
3 object_name varchar2(30),
4 object_id number
5)
6 /

Type created.

benchmark@ORA10G> create or replace type object_data_list as table of object_data;
2 /

Type created.

benchmark@ORA10G> declare
2 l_object_data_list object_data_list;
3 begin
4 select object_data(object_name, object_id)
5 bulk collect into l_object_data_list
6 from all_objects
7 where rownum <= 5;
8 forall i in 1..l_object_data_list.count
9 insert into t5(object_name, object_id) values(

l_object_data_list(i).object_name, l_object_data_list(i).object_id);
10 end;
11 /

insert into t5(object_name, object_id) values(
l_object_data_list(i).object_name, l_object_data_list(i).object_id);

*
ERROR at line 9:
ORA-06550: line 9, column 53:
PLS-00436: implementation restriction: cannot reference fields of BULK In-BIND
table of records

Handling Errors in Bulk Binding

Since during bulk bind operations we process many rows at a time, if one or more rows result
in an error, the entire operation is rolled back, but the exception information raised does not
tell us which rows were at fault. Consider the following table, t6, in which we cannot insert
null values in column x. We also have a check constraint such that only values between 1 and
10 (including 10) can be inserted:

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES648

benchmark@ORA10G> create table t6(x number primary key constraint
check_nonnegative_lt_10 check(x > 0 and x <= 10)) ;

Table created.

We then declare a PL/SQL array of numbers and store ten values in it, three of which
(null, -5, and 11) are invalid if inserted into t6. When we insert the array values into table t6,
we get a single array message for the first erroneous value (null) in the array:

benchmark@ORA10G> declare
2 type number_table is table of number;
3 l_number_table number_table;
4 begin
5 l_number_table := number_table(1, 2, 3, null, -5, 6, 7, 8, 9, 11);
6 forall i in 1..l_number_table.count
7 insert into t6(x) values (l_number_table(i));
8 end;
9 /

declare
*
ERROR at line 1:
ORA-01400: cannot insert NULL into ("BENCHMARK"."T6"."X")
ORA-06512: at line 6

Also, none of the records gets inserted, since the entire operation is rolled back, as shown
by the following query:

benchmark@ORA10G> select * from t6;
no rows selected

When you are inserting data in bulk, your requirement may be to successfully insert good
records while getting a list of bad records that you can reinsert after incorporating the neces-
sary corrections. Starting with 9i, there is a way to save the exceptions raised during a bulk
bind operation and print them out later. This is shown in the following code snippet (the code
should work the same in both 10g and 9i):

benchmark@ORA10G> declare
2 type number_table is table of number;
3 l_number_table number_table;
4 begin
5 l_number_table := number_table(1, 2, 3, null, -5, 6, 7, 8, 9, 11);
6 begin
7 forall i in 1..l_number_table.count save exceptions
8 insert into t6(x) values (l_number_table(i));
9 exception
10 when others then
11 dbms_output.put_line('number of exceptions raised: ' ||
sql%bulk_exceptions.count);
12 for i in 1..sql%bulk_exceptions.count loop
13 dbms_output.put_line('row number : ' ||

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 649

sql%bulk_exceptions(i).error_index);
14 dbms_output.put_line('error code: ' ||
sql%bulk_exceptions(i).error_code);
15 dbms_output.put_line('message: ' || sqlerrm(
-sql%bulk_exceptions(i).error_code));
16
17 end loop;
18 end;
19 end;
20 /
number of exceptions raised: 3
row number : 4
error code: 1400
message: ORA-01400: cannot insert NULL into ()
row number : 5
error code: 2290
message: ORA-02290: check constraint (.) violated
row number : 10
error code: 2290
message: ORA-02290: check constraint (.) violated

PL/SQL procedure successfully completed.

We use the save exceptions option in the forall operation in the preceding code to save
the exceptions and continue with inserting other records. This results in PL/SQL storing any
exceptions raised in an internal collection called sql%bulk_exceptions. From this collection,
we can get the culprit row indices as well as the error codes for any exceptions raised during
the forall operation. Using sqlerrm, we can then also print the error message. Since we han-
dled the exception, all the valid records are retained as verified by the following query:

benchmark@ORA10G> select * from t6;

X

1
2
3
6
7
8
9

7 rows selected.

We can conclude that bulk binding can improve the performance of our code tremen-
dously, at the cost of some code complexity. We can also save any exceptions raised using save
exceptions to achieve a more granular level of error handling.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES650

Preferring Static SQL over Dynamic SQL
Static SQL in PL/SQL is SQL that is embedded in your code and hence is known to the PL/SQL
engine at compile time. Dynamic SQL in PL/SQL is SQL in which the SQL statement and its
bind value placeholders are contained in a string and are not known to the PL/SQL engine at
compile time. For example, the procedure static_proc uses static SQL to count the number of
records in table t1:

benchmark@ORA10G> create or replace procedure static_proc(p_count in out number)
2 is
3 begin
4 select count(*)
5 into p_count
6 from t1 static;
7 end;
8 /

Procedure created.

And the procedure dynamic_proc does the same thing using dynamic SQL:

benchmark@ORA10G> create or replace procedure dynamic_proc(p_count in out number)
2 is
3 begin
4 execute immediate 'select count(*) from t1 dynamic ' into p_count;
5 end;
6 /

Procedure created.

When you have a choice between using static SQL and dynamic SQL, you should use
static SQL. Static SQL tends to be faster, as shown by the following benchmark run:

benchmark@ORA10G> declare
2 l_count number;
3 begin
4 begin
5 runstats_pkg.rs_start;
6 end;
7 for i in 1..1000
8 loop
9 static_proc(l_count);
10 end loop;
11 begin
12 runstats_pkg.rs_middle;
13 end;
14 for i in 1..1000
15 loop
16 dynamic_proc(l_count);
17 end loop;

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 651

18 begin
19 runstats_pkg.rs_stop(50);
20 end;
21 end;
22 /
Run1 ran in 4137 hsecs
Run2 ran in 4590 hsecs
run 1 ran in 90.13% of the time

Name Run1 Run2 Diff
STAT...buffer is pinned count 62 0 -62
<-- results trimmed to conserve space -->
STAT...session pga memory 65,536 0 -65,536
STAT...session pga memory max 131,072 65,536 -65,536

Run1 latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
1,852,564 1,865,552 12,988 99.30%

PL/SQL procedure successfully completed.

The static SQL version ran in 90% of the time as compared to the dynamic SQL version.

■Note Once again, in 10g, there is an optimization due to which code written using dynamic SQL (as in
the preceding example) in a loop is soft parsed, in general, only once instead of every time in the loop. Since
this optimization was not present in 9i, the difference between static and dynamic SQL performance is even
more pronounced in favor of static SQL. For example, against my Oracle9i Release 2, the static SQL version
in the example ran in 77% of time and consumed 67% of latches as compared to the dynamic SQL version.

The following are some reasons besides performance to prefer static SQL:

• Static SQL is checked during compile time, so more errors are caught during compila-
tion time, making the code more robust.

• With static SQL, the code dependency information (e.g., which procedure is dependent
on which other procedure or table, etc.) is stored in the data dictionary. With dynamic
SQL, this is not the case.

• Code written using static SQL is more readable and maintainable in general than code
written in dynamic SQL. It is easier to add to static SQL code as compared to dynamic
SQL code.

Thus, in general, you should use dynamic SQL only when you cannot use static SQL to get
your job done.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES652

■Note All SQL submitted from JDBC is “dynamic.” This is clear from the fact that to find a syntax error in
the SQL string, you need to run the program. The only way to take advantage of static SQL from JDBC is to
use PL/SQL and invoke it from the CallableStatement interface.

Returning Data via a Ref Cursor
When you select multiple records in PL/SQL and return them back to the client (in our case, a
JDBC program), generally you have two options:

• Build an array of records, store all the rows in the array, and return the array of records
to the JDBC client program.

• Return a ref cursor, which can be retrieved as a ResultSet in JDBC.

Out of the two options, using a ref cursor is preferable because

• You need to do less work. Instead of storing all records in an array on the server (requir-
ing memory on the server side), and retrieving it again in another set of records in your
JDBC program (requiring memory on the client side), you simply return a pointer to the
cursor, which can be retrieved as a result set.

• If you retrieve the data as a result set, it is easy to control the number of round-trips by
setting the fetch size, as you learned in the section “Prefetching” of Chapter 7.

• Your JDBC code is simpler when you use a result set.

Understanding the Invoker Rights and Definer Rights Modes
Your PL/SQL code can be written using one of the two modes: definer rights or invoker rights.
From a security and performance point of view, it is critical to understand these two modes
while designing your PL/SQL code. This section gives an overview of what these modes are
and when to use each. The concepts and examples in this section refer only to stand-alone
procedures, but they are also applicable to stand-alone functions, as well as to procedures
and functions in packages. Let’s start by defining some related terms:

• Object name resolution is the process by which Oracle determines which schema object
(table, view, etc.) you are referring to in your SQL statements. For example, when you
refer to the emp object in the scott schema, object name resolution is the process by
which Oracle identifies that emp refers to a table owned by scott. Database objects are
typically resolved to a schema object owned by the user or to a public synonym.

• The definer of a procedure is the database user who defines and owns the procedure.

• The invoker of a procedure is the database user who is not an owner of a procedure but
invokes (executes) the procedure.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 653

• Definer rights mode is the default mode of creating a procedure. In this mode, Oracle
uses the security privileges and object name resolution of the definer (or the owner)
of a PL/SQL procedure during compilation and execution of your PL/SQL procedure.
Under definer rights mode, PL/SQL procedures compile and run with directly granted
privileges only. This means that any privileges granted to the procedure owner via a role
are not available. In other words, all roles are disabled when you compile and execute a
procedure that is created with definer rights mode.

• Invoker rights mode is the nondefault mode of creating a procedure. In this mode, at
compilation time things work as in the case of procedures created in definer rights
mode. However, during execution time, the database uses the privileges and object
resolution of the invoker of the procedure.

You may be a little confused at this point, especially if this is the first time you have encoun-
tered these definitions. The code example in this section should clarify these concepts for you.

In our code example, we will create three users:

• db_app_data: This user will contain a table, t1, along with a public synonym.

• definer: This user will demonstrate definer rights concepts.

• invoker: This user will demonstrate invoker rights concepts.

We begin by connecting as sys, creating the db_app_data user, and granting the appropri-
ate privileges:

sys@ORA10G> create user db_app_data identified by db_app_data default tablespace
users quota
2 unlimited on users;

User created.

sys@ORA10G> grant create session,
2 create table,
3 create public synonym,
4 drop public synonym
5 to db_app_data;

Grant succeeded.

We then connect as db_app_data and create table t1, inserting the numbers 1 to 5 in it:

sys@ORA10G> conn db_app_data/db_app_data
Connected.

db_app_data@ORA10G> create table t1 (x number);

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES654

Table created.

db_app_data@ORA10G> insert into t1 select rownum from all_objects where rownum <= 5;

5 rows created.

Next, we create a public synonym for this table:

db_app_data@ORA10G> create public synonym t1 for t1;

Synonym created.

Connecting back as sys, we create a role called demo_role with the select privilege on table
t1. We will use this role to demonstrate how roles are disabled for a definer rights procedure.

sys@ORA10G> create role demo_role;

Role created.

sys@ORA10G> grant select on t1 to demo_role;

Grant succeeded.

We now create a user called definer and grant this user the appropriate privileges:

sys@ORA10G> create user definer identified by definer default tablespace users quota
2 unlimited on users;

User created.

sys@ORA10G> grant create session,
2 create table,
3 create procedure
4 to definer;

Grant succeeded.

We also grant demo_role (which has the select privilege on t1) to the user definer:

sys@ORA10G> grant demo_role to definer;

Grant succeeded.

Let’s summarize what we’ve done so far. We created a user, db_app_data, that owns a table,
t1. Table t1 has a public synonym called t1. We have a role called demo_role, which has the
select privilege on t1. We also created a user, definer, who has been granted the role demo_role.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 655

Now we connect as definer and run an anonymous PL/SQL block that selects and prints
the number of rows in t1:

sys@ORA10G> conn definer/definer
Connected.

definer@ORA10G> -- select from t1 in anonymous block.
definer@ORA10G> declare
2 l_count number;
3 begin
4 select count(*)
5 into l_count
6 from t1;
7 dbms_output.put_line('Count is : ' || l_count);
8 end;
9 /

Count is : 5

PL/SQL procedure successfully completed.

As you can see, the anonymous block ran successfully because the user definer has
select privileges on t1 via the role demo_role. Let’s now try and put the same logic in a proce-
dure, definer_mode_proc, and compile it (remember, by default the procedure is created in
definer rights mode):

definer@ORA10G> create or replace procedure definer_mode_proc
2 is
3 l_count number;
4 begin
5 select count(*)
6 into l_count
7 from t1;
8 dbms_output.put_line('Count is : ' || l_count);
9 end;
10 /

Warning: Procedure created with compilation errors.

definer@ORA10G> show errors;
Errors for PROCEDURE DEFINER_MODE_PROC:

5/3 PL/SQL: SQL Statement ignored
7/8 PL/SQL: ORA-00942: table or view does not exist

What happened? Apparently, procedure definer_mode_proc cannot select from table t1
even though it has a select privilege on the table. The problem is that in definer rights mode,
all roles are disabled for a procedure (which is not the case for anonymous blocks). Remember
that the select privilege on t1 was granted to the user definer via the role demo_role. Thus, for
a procedure created with definer rights to work, requisite privileges on all objects it accesses
have to be granted directly to the user that defined the procedure.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES656

Let’s now grant the select privilege directly to the user definer after connecting as sys:

sys@ORA10G> grant select on t1 to definer;

Grant succeeded.

If we now compile the same procedure, it should compile just fine:

sys@ORA10G> conn definer/definer;
Connected.

definer@ORA10G> -- now the following will compile
definer@ORA10G> create or replace procedure definer_mode_proc
2 is
3 l_count number;
4 begin
5 select count(*)
6 into l_count
7 from t1;
8 dbms_output.put_line('Count is : ' || l_count);
9 end;
10 /

Procedure created.

To summarize, by default when you create a procedure, it is created in definer rights mode.
In this mode, all roles are disabled, hence the privileges on the accessed objects have to be
granted directly to the user who owns the procedure.

Let’s now look at how to create procedures in invoker rights mode. We first create another
user called invoker with the appropriate privileges:

sys@ORA10G> create user invoker identified by invoker default tablespace users quota
2 unlimited on users;

User created.

sys@ORA10G> grant create session,
2 create table,
3 create procedure
4 to invoker;

Grant succeeded.

We also grant the role demo_role to the user invoker. Thus, the user invoker has select
privileges on table t1 via demo_role:

sys@ORA10G> grant demo_role to invoker;

Grant succeeded.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 657

We now connect as the user invoker and try to create a procedure, invoker_mode_proc,
that prints the number of rows in table t1. The procedure is created in invoker rights mode
by specifying the keyword authid current_user as shown highlighted in the following code
(authid definer, which is the default, specifies that the procedure be created in definer rights
mode):

sys@ORA10G> conn invoker/invoker
Connected.

invoker@ORA10G> create or replace procedure invoker_mode_proc
2 authid current_user
3 is
4 l_count number;
5 begin
6 select count(*)
7 into l_count
8 from t1;
9 dbms_output.put_line('Count is : ' || l_count);
10 end;
11 /

Warning: Procedure created with compilation errors.

invoker@ORA10G> show errors;
Errors for PROCEDURE INVOKER_MODE_PROC:

6/3 PL/SQL: SQL Statement ignored
8/8 PL/SQL: ORA-00942: table or view does not exist

The procedure fails to compile again. This is because during compilation time, even for a
procedure created with invoker rights, roles are disabled. To compile the preceding procedure,
we need to use dynamic SQL as follows:

invoker@ORA10G> create or replace procedure invoker_mode_proc
2 authid current_user
3 is
4 l_count number;
5 begin
6 execute immediate 'select count(*) from t1' into l_count;
7 dbms_output.put_line('Count is : ' || l_count);
8 end;
9 /

Procedure created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES658

When this code is executed, we get the correct answer. This is because, during execution,
the roles were enabled, as we had created the procedure with invoker rights. Hence, the proce-
dure runs successfully:

invoker@ORA10G> exec invoker_mode_proc
Count is : 5

Note that if you use dynamic SQL with the definer rights procedure, you’ll be able to com-
pile the code, but you’ll get a runtime error if you don’t have direct privileges on the accessed
object. To demonstrate this, let’s connect as sys and revoke the direct select privilege on t1
from the user definer:

sys@ORA10G> revoke select on t1 from definer;

Revoke succeeded.

If we now connect back as the user definer and try to compile the procedure
definer_mode_proc, which now uses dynamic SQL, the compilation will work:

sys@ORA10G> conn definer/definer
Connected.

definer@ORA10G

definer@ORA10G> create or replace procedure definer_mode_proc
2 is
3 l_count number;
4 begin
5 execute immediate 'select count(*) from t1' into l_count;
6 dbms_output.put_line('Count is : ' || l_count);
7 end;
8 /

Procedure created.

However, when we execute the procedure, since roles are disabled, we will get an error:

definer@ORA10G> execute definer_mode_proc
BEGIN definer_mode_proc; END;

*
ERROR at line 1:
ORA-00942: table or view does not exist
ORA-06512: at "DEFINER.DEFINER_MODE_PROC", line 5
ORA-06512: at line 1

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 659

This example demonstrates how invoker rights procedures differ from definer rights pro-
cedures in terms of roles being enabled or disabled during program execution. Let’s look at
another example to see how these two modes differ in terms of object resolution.

Say we want to write a generic routine that will return the number of rows of a given table
or view. We do not want to create this procedure in multiple schemas—we want to create it
once and let others share the same code. For such generic code, it is a good idea to create a
separate schema. We create one called utils as follows:

sys@ORA10G> create user utils identified by utils;

User created.

sys@ORA10G> grant create session,
2 create procedure,
3 create public synonym,
4 drop public synonym
5 to utils;

Grant succeeded.

We now connect as utils and create a function, count_rows(), that takes a table name as
a parameter and uses dynamic SQL to return the number of rows:

utils@ORA10G> create or replace function count_rows(p_table_name in varchar2)
2 return number
3 is
4 l_count number;
5 begin
6 execute immediate 'select count(*) from ' || p_table_name into l_count;
7 return l_count;
8 end;
9 /

Function created.

Since we want this function to be used by other schemas, we create a public synonym and
also grant the execute privilege on this function to public:

utils@ORA10G> grant execute on count_rows to public;

Grant succeeded.

utils@ORA10G> create public synonym count_rows for count_rows;

Synonym created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES660

We test the function by running it on the dual table and the all_users view:

utils@ORA10G> exec dbms_output.put_line(count_rows('dual'))
1

PL/SQL procedure successfully completed.

utils@ORA10G> exec dbms_output.put_line(count_rows('all_users'))
51

PL/SQL procedure successfully completed.

Now we connect back as the db_app_data user and try to run the same program for table t1:

utils@ORA10G> conn db_app_data/db_app_data
Connected.

db_app_data@ORA10G> exec dbms_output.put_line(count_rows('t1'))
BEGIN dbms_output.put_line(count_rows('t1')); END;

*
ERROR at line 1:
ORA-00942: table or view does not exist
ORA-06512: at "UTILS.COUNT_ROWS", line 6
ORA-06512: at line 1

Although db_app_data is able to select from table t1 (recall that t1 is owned by
db_app_data), the function count_rows fails to find the table. A careful look at the error mes-
sage (see the highlighted portion of the code) shows that the function is trying to access table
t1 in the schema utils where it was originally defined. This is because when we create a pro-
cedure in definer rights mode (which is how we created this function), all objects are resolved
within the scope of the definer schema at compile time. The solution is to re-create the func-
tion with invoker rights:

db_app_data@ORA10G> -- re-create the procedure in invoker rights mode
db_app_data@ORA10G> conn utils/utils
Connected.
utils@ORA10G> create or replace function count_rows(p_table_name in varchar2)
2 return number
3 authid current_user
4 is
5 l_count number;
6 begin
7 execute immediate 'select count(*) from ' || p_table_name into l_count;
8 return l_count;
9 end;
10 /

Function created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 661

If we now execute the function as db_app_data, it works like a charm:

utils@ORA10G> conn db_app_data/db_app_data
Connected.

db_app_data@ORA10G> exec dbms_output.put_line(count_rows('t1'))
5

PL/SQL procedure successfully completed.

Invoker rights mode is very useful in creating generic routines that need to resolve the
objects with the privileges of the invoker of the routine at runtime.

When to Use Definer Rights Mode
Definer rights mode is the default mode in which procedures are created. The majority of your
code should use definer rights mode, which has the following advantages:

• Definer rights mode encourages the use of shared SQL in the shared pool, which leads
to better scalability. Recall that all the information that Oracle needs to parse the SQL in
a definer rights procedure is available at compile time. For example, if you are logged
in as scott and refer to the table emp (e.g., in select * from emp), Oracle knows that
you are always going to refer to table emp owned by scott; thus, Oracle can share the
same SQL for all users in its shared pool, which results in less parsing and improved
scalability.

This is not the case if the procedure is written using invoker rights mode. In this case, if
you are executing the procedure as scott, you are referring to scott.emp, and if you are
executing as blake, you are referring to blake.emp. Moreover, if you change your envi-
ronment (e.g., set a different role in the same session), Oracle will have to reparse the
SQL statement. This can lead to reduced scalability.

• Definer rights mode enables you to write PL/SQL code that allows end users to manipu-
late data in tables without having direct access to them. All the users’ data manipulations
go through your PL/SQL code, and as long as your code ensures data integrity, your data
is safe.

When to Use Invoker Rights Mode
You’ll commonly use invoker rights mode when you’re writing generic routines, as you saw
earlier with the example function count_rows.

PL/SQL Debugging
Debugging in PL/SQL gets a lot easier when you follow some of the well-known tenets of
defensive programming in any programming language. Two of the important tenets are

• Use good exception handling practices.

• Instrument your code extensively.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES662

This section doesn’t go into detail about these practices, which are covered well in many
PL/SQL books, including Chapter 10 of Connor McDonald’s Mastering Oracle PL/SQL (Apress,
ISBN: 1-59059-217-4). Instead, we will focus on two related topics:

• How to print an execution stack trace in PL/SQL

• How to instrument your PL/SQL and JDBC code using a custom PL/SQL package such
that you can see your Java and PL/SQL instrumentation messages in the same database
session, in the order in which they were executed

Printing a Stack Trace in PL/SQL
In Java, it’s easy to print a full stack trace of an exception when you catch one. Consider the
following program, DemoJavaStackTrace. The main() method simply calls function p1, which in
turn calls function p2. Function p2 calls function p3, where we divide 1 by 0 to raise an excep-
tion. We handle the exception in the main() method and print the stack trace:

/* This program simply generates a divide-by-zero error and prints the stack
trace.*/
class DemoJavaStackTrace
{
public static void main(String args[])
{
try
{
p1();

}
catch(Exception e)
{
e.printStackTrace();

}
} // end of main()
static void p1()
{
System.out.println("in p1");
p2();

}
static void p2()
{
System.out.println("in p2");
p3();

}
static void p3()
{
System.out.println("in p3");
int x = 1/0; // will cause an exception

}
} // end of program

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 663

The output of the program is as follows:

B:>java DemoJavaStackTrace
in p1
in p2
in p3
java.lang.ArithmeticException: / by zero

at DemoJavaStackTrace.p3(DemoJavaStackTrace.java:29)
at DemoJavaStackTrace.p2(DemoJavaStackTrace.java:24)
at DemoJavaStackTrace.p1(DemoJavaStackTrace.java:19)
at DemoJavaStackTrace.main(DemoJavaStackTrace.java:9)

As you can see, we have the entire stack trace, and it is easy to see the exact line number
where the original error occurred.

In PL/SQL this was not as intuitive, at least until 10g. Consider the following set of proce-
dures, p1, p2, and p3, which are roughly the equivalent of the functions p1, p2, and p3 in the
preceding Java program. We first create p3, which generates the exception, and p2, which
invokes p3:

benchmark@ORA10G> create or replace procedure p3
2 is
3 l_x number := 0;
4 begin
5 dbms_output.put_line('p3');
6 l_x := 1/ l_x; -- divide by zero
7 end;
8 /

Procedure created.

benchmark@ORA10G> create or replace procedure p2
2 is
3 begin
4 dbms_output.put_line('p2');
5 p3;
6 end;
7 /

Procedure created.

Our first version of p1 does not handle any exceptions raised, so the exception is propa-
gated all the way to the client:

benchmark@ORA10G> create or replace procedure p1
2 is
3 begin
4 dbms_output.put_line('p1');
5 p2;
6 end;
7 /

Procedure created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES664

When we execute procedure p1, we get the entire stack trace printed out:

benchmark@ORA10G> exec p1
p1
p2
p3
BEGIN p1; END;

*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at "BENCHMARK.P3", line 6
ORA-06512: at "BENCHMARK.P2", line 5
ORA-06512: at "BENCHMARK.P1", line 5
ORA-06512: at line 1

So far, so good. The problem is that many times, we need to handle an exception (e.g., if
we want to execute some “cleanup” code) and print the stack trace (as we did in our Java pro-
gram). Let’s do the same in p1. We’ll have an exception handler in p1 that simply catches the
exception and throws it again by invoking the built-in procedure raise:

benchmark@ORA10G> create or replace procedure p1
2 is
3 begin
4 dbms_output.put_line('p1 (with "raise"');
5 p2;
6 exception when others then
7 raise;
8 end;
9 /

Procedure created.

This time when we execute the procedure, we don’t see the entire stack trace; we see only
the line number of the code in the procedure where the exception was handled (in this case, p1):

benchmark@ORA10G> exec p1;
p1 (with "raise"
p2
p3
BEGIN p1; END;

*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at "BENCHMARK.P1", line 7
ORA-06512: at line 1

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 665

This could be a major headache if you’re trying to debug a deeply nested routine invoked
by many other routines, and you’re trying to figure out where the original error occurred.
Thankfully, this problem has been resolved in 10g with the introduction of the function
format_error_backtrace in the supplied package dbms_utility. This function returns the
entire stack trace string, which you can conveniently print at the point where you catch an
exception. The following is procedure p1 modified to use this function:

benchmark@ORA10G> create or replace procedure p1
2 is
3 l_error_backtrace long;
4 begin
5 dbms_output.put_line('p1');
6 p2;
7 exception when others then
8 l_error_backtrace := dbms_utility.format_error_backtrace;
9 dbms_output.put_line(l_error_backtrace);
10 raise;
11 end;
12 /

Procedure created.

When we execute p1 now, we get the entire stack trace as shown in bold. Thus, the function
dbms_utility.format_error_backtrace is the PL/SQL equivalent of Java’s printStackTrace()
in 10g:

benchmark@ORA10G> exec p1;
p1
p2
p3
ORA-06512: at "BENCHMARK.P3", line 6
ORA-06512: at "BENCHMARK.P2", line 5
ORA-06512: at "BENCHMARK.P1", line 6

BEGIN p1; END;

*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at "BENCHMARK.P1", line 10
ORA-06512: at line 1

In 9i, getting the entire PL/SQL stack trace is not feasible. Instead, you can use the
dbms_trace utility to get the line number where the exception was raised originally. If you
do not have the schema required for this utility installed, you need to install it by executing
the file $ORACLE_HOME/rdbms/admin/tracetab.sql as the sys user. Once you have installed the
utility, you can create a generic procedure that will print the original line where the error
occurred (not the entire stack trace).

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES666

The procedure print_dbms_trace (adapted from a related thread on http://asktom
.oracle.com) follows. To compile this procedure, we need to have select privileges on the
sequence sys.plsql_trace_runnumber and the table sys.plsql_trace_events directly granted
to the owner of this procedure (note that we’re running on a 9i database now with the same
procedures, p2 and p3, created in the schema already):

benchmark@ORA92I> create or replace procedure print_dbms_trace
2 is
3 l_runid binary_integer;
4 begin
5 select sys.plsql_trace_runnumber.currval
6 into l_runid
7 from dual;
8 for x in (select *
9 from sys.plsql_trace_events
10 where runid = l_runid
11 and event_kind = 52
12 order by event_seq DESC)
13 loop
14 dbms_output.put_line('Exception occurred in source ' ||
15 x.event_unit ||
16 ' on line ' || x.event_line);
17 exit;
18 end loop;
19 end;
20 /

Procedure created.

We now modify procedure p1 such that it invokes the preceding procedure,
print_dbms_trace, from our exception handler:

benchmark@ORA92I> create or replace procedure p1
2 is
3 begin
4 dbms_output.put_line('p1 (using dbms_trace - trace_all_exceptions)');
5 p2;
6 exception when others then
7 print_dbms_trace;
8 raise;
9 end;
10 /

Procedure created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 667

To enable the trace, we need to invoke dbms_trace.set_plsql_trace. Note that in 9i, for trac-
ing to work as shown in the following code, we cannot invoke dbms_trace.set_plsql_trace from
within the PL/SQL procedure itself—we have to invoke it from outside in a separate anonymous
block. In 10g, this is not an issue.

benchmark@ORA92I> exec dbms_trace.set_plsql_trace(
dbms_trace.trace_all_exceptions);

PL/SQL procedure successfully completed..

Now when we execute the PL/SQL procedure p1, we get the following output:

benchmark@ORA92I> exec p1
p1 (using dbms_trace - trace_all_exceptions)
p2
p3
Exception occurred in source P3 on line 6
BEGIN p1; END;

*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at "BENCHMARK.P1", line 8
ORA-06512: at line 1

The highlighted line is where the exception originated. To disable the trace, we can invoke
the procedure dbms_trace.clear_plsql_trace:

benchmark@ORA92I> exec dbms_trace.clear_plsql_trace;

PL/SQL procedure successfully completed.

For more details on the dbms_trace package, see the Oracle document PL/SQL Packages
and Types Reference (10g Release 1).

Seamless Instrumentation of PL/SQL and JDBC Code
Code instrumentation refers to the idea of sprinkling your code with log messages that will
help you in debugging afterward. Note that the instrumentation code should be retained in
the production code also; it should not be stripped out. This is because contrary to what many
people believe, instrumentation of code is not an overhead. Code instrumentation plays a
critical part in resolving issues during development, and even more so after the software has
been released to the customer. Thus, you should instrument your code as much as possible
and leave all instrumentation code in the production version of your software.

Of course, from an implementation point of view, you should make sure that you can
turn debugging on and off conditionally to improve performance of the code while running in
production. Perhaps there is no better example of this fact than the Oracle kernel code itself,
which is instrumented very heavily. It is this instrumentation that enables Oracle support and
developers to resolve countless issues during the development, testing, and maintenance of
software built on Oracle. You encountered the power of this instrumentation in this book

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES668

when using tkprof in several of the examples. Recall that tkprof works on trace files gener-
ated by the Oracle kernel’s instrumented code.

In this section, we’ll first look at the limitations of dbms_output as a way to instrument
PL/SQL code. We’ll then look at a custom debug utility and see how by using this utility we can
instrument PL/SQL code and the calling Java code in a seamless manner such that we’re able
to see debug messages in Java and PL/SQL together in the order they were executed.

Limitations of dbms_output As a Way to Instrument PL/SQL Code
A common way of debugging PL/SQL code is to use dbms_output.put_line to print out messages
on your SQL*Plus prompt. Although dbms_output is very useful in doing ad-hoc debugging, it is
not a good way of instrumenting your code. This is mainly because, as of Oracle 10g Release 1,
dbms_output suffers from the following limitations:

• The total amount of text that can be output in one session using dbms_output cannot
exceed 1,000,000 bytes due to an internal buffer size limit.

• Each line can contain a maximum of 255 characters. This limitation can be overcome
easily by writing a wrapper routine that breaks each line into chunks of 255 characters.

• The output shown by dbms_output comes to your screen only after the procedure com-
pletes. This can be frustrating if you have a long-running procedure, since you would
rather get real-time feedback as it is happening in the procedure than get a whole bunch
of log messages after the procedure has completed. Once again, you can overcome this
limitation by writing a wrapper routine that logs your messages into a file on the database
server using the util_file utility. You can then do a tail command (on UNIX systems) to
see the action inside the procedure in real time.

■Note Oracle 10g Release 2 is slated to address some of the issues listed in this section.

A Custom Debug Utility
Let’s now look at a custom debug utility that can be used to instrument PL/SQL code. This util-
ity was originally written by Christopher Beck of Oracle Corporation, and its original version is
available from the Downloads section of the Apress website (http://www.apress.com) for the
book Mastering Oracle PL/SQL. In its original form, this utility has the following features:

• It is used to instrument your PL/SQL code.

• It does not have a limit on either the amount of debug information you can output or
an individual line (recall that these are the limitations of dbms_output).

• It can be output to a file writeable by the database server process. This allows you to see
your debug messages in real time using utilities such as tail in UNIX.

• It prints useful context information such as a timestamp and the code line number
where the debug message was printed, along with the message.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 669

• It can easily be turned on and off based on a flag (just like Oracle tracing can be turned
on and off at your discretion).

• It allows you to enable debugging to be turned on at a module level.

For a more detailed description of how this utility works, please see Chapter 10 of the
book Mastering Oracle PL/SQL (Apress, ISBN: 1-59059-217-4) by Connor McDonald.

My enhancements to this utility include addition of the following features:

• In the PL/SQL code, I added another flag that allows you to

• Turn the debugging off for a particular session.

• Direct the debugging messages to go only to a trace file on the database.

• Direct the debug messages so that they are retrievable in the middle tier only (if
you chose this option, the debug messages are not logged in the trace file on the
database server).

• Direct the debug messages so that they are retrievable in the middle tier as well as
logged in a trace file on the database server.

• Through the Java program JDebug I wrote, you can now invoke this utility from your
Java code. The PL/SQL code has been modified to store all debug messages in a global
temporary table (see the following note). This allows you to get these messages in your
Java program and also have an API to instrument your Java code using the debug utility.
You will see through some examples the advantages of doing this shortly.

■Note In Oracle a temporary table is created using the syntax create global temporary table
<table_name> <other options>. Temporary tables hold information for the duration of a session or a
transaction depending on how they are created. The important thing to note is that data in a temporary table
is visible only to the current session, even if the current session commits the data. A session can see only its
own inserted data in a global temporary table. Please see Chapter 6 of Tom Kyte’s Expert One-on-One Oracle
(Apress, ISBN: 1-59059-243-3) for further details on temporary tables. You can also read about them in
Oracle Database Concepts (10g Release 1).

You can download the enhanced version of this utility from the Downloads section of the
Apress website (http://www.apress.com). To install this utility, you should follow the instruc-
tions given in the readme.txt file. The utility installs one package called debug and the schema
objects used by this package. In the following section, we’ll examine the features of this
enhanced utility.

Understanding the debug Interface

Let’s take a quick look at the debug package’s public interface. We’ll then go through some
examples of using this package in the next section.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES670

The debug package defines the following four constants (added in the enhanced version):

• DEBUG_OFF: Indicates to turn debugging off for this session

• LOG_FOR_MIDDLE_TIER_ONLY: Indicates that all debug messages should be retrievable
from the middle tier but should not be logged in a trace file

• LOG_IN_TRACE_FILES_ONLY: Indicates that the debug messages should be logged only in
the trace files (they won’t be retrievable in the middle tier)

• LOG_FOR_TRACE_FILES_AND_MTIER: Indicates that the debug messages should be both
retrievable in the middle tier and logged in a log file

Initializing the debug Package
The package debug defines a method, init, which is invoked to initialize the debugging con-
figuration. This method’s signature is as follows:

procedure init(
p_debug_flag in varchar2 default LOG_IN_TRACE_FILES_ONLY,
p_modules in varchar2 default 'ALL',
p_dir in varchar2 default 'TEMP',
p_file in varchar2 default user || '.dbg',
p_user in varchar2 default user,
p_show_date in varchar2 default 'YES',
p_date_format in varchar2 default 'MMDDYYYY HH24MISS',
p_name_len in number default 30,
p_show_sesid in varchar2 default 'NO');

As you can see, it takes the following parameters:

• p_debug_flag: A flag indicating whether the debugging is turned off. If debugging is on,
then this flag indicates where the debug messages go (trace file only, middle tier only, or
both middle tier and trace file). The parameter can take a value of one of the four con-
stants defined earlier; by default, its value is equal to LOG_IN_TRACE_FILES_ONLY, which
means that the debug messages will go into a trace file.

• p_modules: Defines for which modules the debugging should be turned on. The default
value ALL specifies that all debug messages should be logged. Instead, you can specify a
list of comma-separated procedure names to turn on logging selectively for these pro-
cedures. For example, if you supply a value of PROC1, PROC2, the debug package will log
only messages in these two procedures. This is indeed a very powerful feature of the
debug utility.

• p_dir: Name of the directory object (not the actual directory) where your debug message
file will be created.

• p_file: Name of your debug file.

• p_user: Name of the user for which you want to turn on debugging (the default is the
current user).

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 671

• p_show_date: Shows the date prefixed with your message in the final output, if it’s set
to YES.

• p_date_format: Format of the date shown (this is ignored if p_show_date is set to NO).

• p_name_len: Length of the name of the procedure that gets printed as a prefix.

• p_show_sesid: Indicates if the database session ID should be appended to the prefix
that gets printed with the message.

For example, the following invocation instructs that we should log messages for all mod-
ules, in the directory pointed to by the directory object TEMP in a file called debug.txt:

benchmark@ORA10G> exec debug.init(p_debug_flag => debug.LOG_IN_TRACE_FILES_ONLY,
p_modules => 'ALL', p_dir => 'TEMP', p_file => 'debug.txt')

PL/SQL procedure successfully completed.

Printing the debug Configuration
The following procedure, status, prints out the configuration options we set using the previ-
ous init method:

procedure status(
p_user in varchar2 default user,
p_dir in varchar2 default null,
p_file in varchar2 default null);

The following is example output from invoking this procedure:

benchmark@ORA10G> exec debug.status

Debug info for BENCHMARK

DEBUG FLAG: Debugging output in trace files only
USER: BENCHMARK
MODULES: ALL
DIRECTORY: TEMP
FILENAME: debug.txt
SHOW DATE: YES
DATE FORMAT: MMDDYYYY HH24MISS
NAME LENGTH: 30
SHOW SESSION ID: NO

PL/SQL procedure successfully completed.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES672

Using f() to Log Messages
The following procedure, f(), is one of the two procedures that you can use to log messages in
your PL/SQL code. The first parameter is the message itself, and the remaining ten optional
parameters enable you to log messages using C-style %s notation.

procedure f(
p_message in varchar2,
p_arg1 in varchar2 default null,
p_arg2 in varchar2 default null,
p_arg3 in varchar2 default null,
p_arg4 in varchar2 default null,
p_arg5 in varchar2 default null,
p_arg6 in varchar2 default null,
p_arg7 in varchar2 default null,
p_arg8 in varchar2 default null,
p_arg9 in varchar2 default null,
p_arg10 in varchar2 default null);

For example, if you execute

benchmark@ORA10G> exec debug.f('current user is %s, this is a number: %s',
user, 10)

you will generate the following debug message in C:\TEMP\debug.txt given the current config-
uration:

12082004 104635(BENCHMARK.ANONYMOUS BLOCK 1) current user is BENCHMARK,
this is a number: 10

■Note The debug utility supports only the format string %s. But as you can see from this section’s example,
you can use the format string %s to print strings as well as numbers in your debug messages.

The prefix 12082004 104635 is the date and time we logged this message (using the format
that we set, namely MMDDYYYY HH24MISS). The expression BENCHMARK.ANONYMOUS BLOCK 1 tells
us that this message was logged in line number 1 of an anonymous block. Note that the term
ANONYMOUS BLOCK would be replaced by the procedure name in the case of a stand-alone pro-
cedure and a package name in the case of a packaged procedure.

The remaining part of the message is our logged message, with substituted parameters
for the username and the number. In this case, we passed two parameters, but we can use
debug.f to pass up to ten parameters. If you have to pass more than ten parameters, you can
use the procedure fa() described next.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 673

Using fa() to Log Messages
Using the procedure fa(), you can log messages with as many parameters as you like:

procedure fa(
p_message in varchar2,
p_args in Argv default emptyDebugArgv);

For example, the following message logs 11 numbers in the message file:

benchmark@ORA10G> exec debug.fa('This message has 11 parameters: %s, %s, %s, %s,
%s, %s, %s, %s, %s, %s, %s', debug.Argv(1,2,3,4,5,6,7,8,9,10, 11))

This results in the following output in the debug.txt file:

2082004 110510(BENCHMARK.ANONYMOUS BLOCK 1) This message has 11 parameters:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Using clear() to Clear Debug Configuration
Finally, the procedure clear clears the debug configuration corresponding to the passed
parameters. Once you invoke this procedure, you will not get any debug messages for the cor-
responding profile:

procedure clear(
p_user in varchar2 default user,
p_dir in varchar2 default null,
p_file in varchar2 default null);

Using get_debug_message() to Get Currently Logged Messages
The function get_debug_message() returns a ref cursor to get all messages logged in the cur-
rent debugging session. You can use this function to get messages logged from your Java code,
for example (as you will see shortly):

function get_debug_message return sys_refcursor;

Using get_debug_message_flush() to Get Currently Logged Messages and Flush
The function get_debug_message_flush() returns a ref cursor to get all messages logged in the
current debugging session, and it deletes these messages from the temporary table where they
get stored originally. You can use this function if you want to get messages logged but don’t
want to see them again the next time you invoke this function in the same session:

function get_debug_message return sys_refcursor;
function get_debug_message_flush return sys_refcursor ;

Using debug to Instrument PL/SQL Code

Let’s look at a quick example of invoking this utility once it’s installed. First, we need to create
a directory object pointing to a directory where our debug file would be generated:

benchmark@ORA10G> create or replace directory TEMP as 'C:\TEMP';

Directory created.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES674

In our examples, the debug file will be generated in the directory C:\TEMP. We then initial-
ize the debug utility as follows:

benchmark@ORA10G> exec debug.init(p_debug_flag => debug.LOG_IN_TRACE_FILES_ONLY,
p_modules => 'ALL', p_dir => 'TEMP', p_file => 'debug.txt')

PL/SQL procedure successfully completed.

This code instructs the debug utility that we want debug messages to be generated for all
modules, for the currently logged user (benchmark in this case). We should put the messages
in a file called debug.txt in the directory pointed by the directory object TEMP (the operating
system directory is C:\TEMP in this example). Every time we call init, it prints the configura-
tion information in the debug.txt file as follows:

Debug parameters initialized on 08-DEC-2004 11:05:10
DEBUG FLAG: Debugging output in trace files only

USER: BENCHMARK
MODULES: ALL

DIRECTORY: TEMP
FILENAME: debug.txt
SHOW DATE: YES

DATE FORMAT: MMDDYYYY HH24MISS
NAME LENGTH: 30

SHOW SESSION ID: NO

Once we’ve initialized our debug package with a profile, we can instrument our code.
The following snippet creates a procedure, demo_debug, with some instrumentation messages
using the debug.f procedure:

benchmark@ORA10G> create or replace procedure demo_debug
2 is
3 begin
4 debug.f('Inside procedure demo_debug ');
5 for i in 1..5
6 loop
7 debug.f('%s, my loop counter = %s: ', 'hello', i);
8 end loop;
9 debug.f('Exiting procedure demo_debug ');
10
11 end;
12 /

Procedure created.

We then initialize the debugging profile:

benchmark@ORA10G> exec debug.init(p_debug_flag => debug.LOG_IN_TRACE_FILES_ONLY,
p_modules => 'ALL', p_dir => 'TEMP', p_file => 'debug.txt')

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 675

and invoke our procedure demo_debug:

benchmark@ORA10G> exec demo_debug

PL/SQL procedure successfully completed.

This results in the following debug.txt file being generated in the directory C:\TEMP:

Debug parameters initialized on 08-DEC-2004 11:21:56
DEBUG FLAG: Debugging output in trace files only

USER: BENCHMARK
MODULES: ALL

DIRECTORY: TEMP
FILENAME: debug.txt
SHOW DATE: YES

DATE FORMAT: MMDDYYYY HH24MISS
NAME LENGTH: 30

SHOW SESSION ID: NO

12082004 112156(BENCHMARK.DEMO_DEBUG 4) Inside procedure demo_debug
12082004 112156(BENCHMARK.DEMO_DEBUG 7) hello, my loop counter = 1:
12082004 112156(BENCHMARK.DEMO_DEBUG 7) hello, my loop counter = 2:
12082004 112156(BENCHMARK.DEMO_DEBUG 7) hello, my loop counter = 3:
12082004 112156(BENCHMARK.DEMO_DEBUG 7) hello, my loop counter = 4:
12082004 112156(BENCHMARK.DEMO_DEBUG 7) hello, my loop counter = 5

Using JDebug to Instrument Java Code

The program JDebug discussed in this section invokes selected methods in the debug package.
It allows you to log messages from your Java code such that your Java message logging has
most of the capabilities of the debug package. This includes your Java code’s ability to

• Turn off debugging based on a flag.

• Direct your debugging messages (Java and PL/SQL code) so that they can be retrieved
in your Java code only, but not output to any trace files.

• Direct your debugging messages (Java and PL/SQL code) to be output on a trace file in
the database server.

• Write C-style messages (using the %s format string), and pass up to ten parameters in
your Java code.

JDebug is listed here and interspersed with brief explanations. We begin by importing
some classes:

/* This class is an interface to invoke the debug package from Java.
This debug package can be downloaded from the Downloads area
of the Apress website at http://www.apress.com

*/
package book.util;

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES676

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.ResultSet;
import oracle.jdbc.OracleTypes;
import book.util.JDBCUtil;
public class JDebug
{

The init() method invokes the debug.init() method (explained earlier) to initialize the
debugging session:

public static void init (Connection connection,
String debugFlag, String modules, String directory,
String debugFileName, String dbUserName,
String showDateFlag, String dateFormat,
int nameLength, String showSessionIDFlag)
throws SQLException

{
CallableStatement cstmt = null;
try
{
cstmt = connection.prepareCall (
INIT_DEBUGGING_STMT);

cstmt.setInt (1, Integer.parseInt (debugFlag));
cstmt.setString (2, modules);
cstmt.setString (3, directory);
cstmt.setString (4, debugFileName);
cstmt.setString (5, dbUserName);
cstmt.setString (6, showDateFlag);
cstmt.setString (7, dateFormat);
cstmt.setInt (8, nameLength);
cstmt.setString (9, showSessionIDFlag);
cstmt.executeUpdate();

}
finally
{
JDBCUtil.close (cstmt);

}
}

The clear() method invokes the debug.clear method (explained earlier) to clear the
debugging profile information:

public static void clear (Connection connection,
String debugFlag, String dbUserName,
String directory, String debugFileName)
throws SQLException

{

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 677

if(debugFlag == null ||
debugFlag.equals(DEBUG_OFF) ||
!_isValidDebugOutputOption (debugFlag))

return ;
CallableStatement cstmt = null;
try
{
cstmt = connection.prepareCall (CLEAR_DEBUGGING_STMT);
cstmt.setString(1, dbUserName);
cstmt.setString(2, directory);
cstmt.setString(3, debugFileName);
cstmt.executeUpdate();

}
finally
{
JDBCUtil.close (cstmt);

}
}

The getDebugMessageAndFlush() method invokes the debug.get_debug_message_flush
method (explained earlier) to get debugging messages logged so far in this session and to
delete them so that they are not retrieved again in the next invocation of this method:

public static String getDebugMessageAndFlush (Connection connection,
String debugFlag)
throws SQLException

{
if(debugFlag == null ||

debugFlag.equals(DEBUG_OFF) ||
!_isValidDebugOutputOption (debugFlag))

return "";

return _getDebugMessageAndFlush (connection);
}

The printDebugMessage() method invokes the debug.f method (explained earlier) to log
a debugging message from the Java code. It appends the debugging messages from the Java
code with the constant MIDDLE_TIER_DEBUG_MESSAGE_PREFIX defined later in the program. This
allows us to easily distinguish between messages logged in the middle tier and messages com-
ing from our PL/SQL code. Note that we can pass up to ten parameters in messageArguments; if
we pass more, the additional parameters are ignored.

public static void printDebugMessage (Connection connection,
String debugFlag, String message, String[] messageArguments)
throws SQLException

{
if(debugFlag == null || debugFlag.equals(DEBUG_OFF))
return ;

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES678

int numOfArgs = 0;

if(messageArguments != null)
{
numOfArgs = messageArguments.length;
if(numOfArgs >= 10)
numOfArgs = 10; // only 10 args supported

}

CallableStatement cstmt = null;
try
{
cstmt = connection.prepareCall (
PRINT_DEBUG_MESSAGE_STMT);
cstmt.setString (1, MIDDLE_TIER_DEBUG_MESSAGE_PREFIX + message);
for(int i=0; i < numOfArgs; i++)
{
cstmt.setString (i+2, messageArguments[i]);

}
for(int i=numOfArgs; i < 10 ; i++)
{
cstmt.setString (i+2, "");

}
cstmt.executeUpdate();

}
finally
{
JDBCUtil.close (cstmt);

}
return;

}

The method printDebugMessage() is a convenience function to log messages without any
parameter. It invokes the first version of the printDebugMessage() function described earlier.

public static void printDebugMessage (Connection connection,
String debugFlag, String message)
throws SQLException

{
if(debugFlag == null ||

debugFlag.equals(DEBUG_OFF) ||
!_isValidDebugOutputOption (debugFlag))

return ;

printDebugMessage (connection, debugFlag, message,
(String[]) null);

}

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 679

We then define public and private constants that are used by this program. Please see
the comments for further explanation of how the constant is used.

//////////////// PUBLIC CONSTANTS //////////////////////////
/* the debug flag in the URL should be set to the following value
* to turn the debug OFF
* from the URL as a string - wanted to avoid converting to int.
*/
public static final String DEBUG_OFF = "0";
/*
* enable debugging so that you see the output only in the URL
* displayed - don't do any trace file generation in the trace
* file directory.
*/
public static final String LOG_FOR_MIDTIER_ONLY = "1";
/*
* enable debugging so that you see the output only in the trace
* file directory - don't display the output in the URL.
*/
public static final String LOG_IN_TRACE_FILES_ONLY = "2";
/*
* enable debugging so that you see the output the trace
* file as well as on the URL.
*/
public static final String LOG_FOR_TRACE_FILES_AND_MIDTIER = "3";
/*
* constant that indicates that debugging is on for all modules.
*/
public static final String ALL_MODULES = "ALL";
/*
* default directory
*/
public static final String DEFAULT_DEBUG_DIRECTORY = "TEMP";
/*
* default directory
*/
public static final String DEFAULT_DEBUG_FILE_NAME = "debug.txt";
/*
* YES
*/
public static final String YES = "YES";
/*
* NO
*/
public static final String NO = "NO";
/*
* default date format
*/

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES680

public static final String DEFAULT_DATE_FORMAT = "MMDDYYYY HH24MISS";
/*
* default name length
*/
public static final int DEFAULT_NAME_LENGTH = 30;

The private method _getDebugMessageAndFlush() simply invokes the PL/SQL method
debug.get_debug_message_flush():

private static String _getDebugMessageAndFlush (Connection connection)
throws SQLException

{
StringBuffer result = new StringBuffer ("");
CallableStatement cstmt = null;
ResultSet res = null;

try
{
cstmt = connection.prepareCall (
GET_DEBUG_MESSAGE_AND_FLUSH_STMT);

cstmt.registerOutParameter(1, OracleTypes.CURSOR);
cstmt.execute();
res = (ResultSet) cstmt.getObject(1);
while (res != null && res.next ())
{
result.append (res.getString (1));
result.append (HTML_BREAK_TAG);

}
}
finally
{
JDBCUtil.close (res);
JDBCUtil.close (cstmt);

}

return result.toString();
}

The following method validates that the debug flag being used has a valid value:

private static boolean _isValidDebugOutputOption (String debugFlag)
{
return debugFlag != null &&
(
debugFlag.equals(LOG_FOR_MIDTIER_ONLY) ||
debugFlag.equals(LOG_IN_TRACE_FILES_ONLY) ||
debugFlag.equals(LOG_FOR_TRACE_FILES_AND_MIDTIER) ||
debugFlag.equals(DEBUG_OFF)

);
}

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 681

The following code defines some private constants with interspersed explanatory com-
ments. The constant HTML_BREAK_FLAG is used to put a line break in the HTML output we
generate for our UI pages (as you’ll see soon). We use this to separate out different debug
statement lines when displaying them in an HTML page being generated by JSP, for example.

private static final String HTML_BREAK_TAG = "
";

The following constant is the SQL statement to invoke the method that gets the debug
information emitted by procedures in the debug package (debug.f and debug.fa) and deletes
them from the temporary table (where they get stored for a particular database session) after
retrieving them:

private static final String GET_DEBUG_MESSAGE_AND_FLUSH_STMT =
"begin ? := debug.get_debug_message_flush; end;";

The following constant is the SQL statement to invoke the method that enables debugging:

private static final String INIT_DEBUGGING_STMT =
"begin debug.init (?, ?, ?, ?, ?, ?, ?, ?, ?); end;";

The following constant is the SQL statement to invoke the method that disables debugging:

private static final String CLEAR_DEBUGGING_STMT =
"begin debug.clear(?, ?, ?); end;";

The following constant is the SQL statement to invoke debug.f with the passed message
from the middle-tier code. This is useful if you want to get middle-tier layer messages also in
the UI screen, for example. Please note that you should invoke this procedure only in debug
mode, otherwise the database round-trips can cause performance problems. This version can
take a maximum of ten arguments. It supports simple C-style messages.

private static final String PRINT_DEBUG_MESSAGE_STMT =
"begin debug.f(?, ? ,?, ? ,?, ? ,?, ? ,?, ?, ?); end;";

The following constant defines a prefix to distinguish between messages coming from
PL/SQL and messages coming from the middle tier. The messages in the URL that have the
following prefix should be coming from the middle tier.

private static final String MIDDLE_TIER_DEBUG_MESSAGE_PREFIX =
"MIDDLE TIER: ";

private static final String MESSAGE_PARAM_ARRAY_NAME = "DEBUG.ARGV";
}// end of program

To demonstrate how to use the program JDebug, I wrote another sample program called
DemoJDebug, which is as follows with some interspersed comments:

/*
* This class demonstrates how to use the JDebug class
*/
package book.util;
import java.sql.Connection;

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES682

import java.sql.CallableStatement;
import oracle.jdbc.OracleTypes;
import oracle.jdbc.OracleCallableStatement;
import oracle.jdbc.OracleConnection;
import book.util.JDBCUtil;

import java.sql.SQLException;
import java.sql.ResultSet;

public class DemoJDebug
{
public static void main(String[] args) throws SQLException
{
Connection conn = null;

In this program, we direct our output to the trace file and the middle tier, as indicated by
the following variable, debugFlag. This means that we will be able to retrieve these messages in
the Java code as well as in the trace file on the database server:

String debugFlag = JDebug. LOG_FOR_TRACE_FILES_AND_MIDTIER;

The default parameters for the init() method are declared and initialized:

String dbUserName = "BENCHMARK";
String directory = JDebug.DEFAULT_DEBUG_DIRECTORY;
String debugFileName = JDebug.DEFAULT_DEBUG_FILE_NAME;
try
{
conn = JDBCUtil.getConnection("benchmark", "benchmark", "ora10g");

After getting the connection, we initialize the debugging profile by invoking
JDebug.init():

JDebug.init(conn, debugFlag, JDebug.ALL_MODULES,
directory,
debugFileName,
"benchmark", JDebug.YES, JDebug.DEFAULT_DATE_FORMAT,
JDebug.DEFAULT_NAME_LENGTH, JDebug.YES);

We then log our first message in the middle tier:

JDebug.printDebugMessage(conn, debugFlag,
"Before invoking PL/SQL Code");

We call the method _callDemoDebug(), which in turn will invoke the PL/SQL procedure
demo_debug that we discussed earlier. Remember that the procedure demo_debug has been
instrumented with debug messages as well using the package debug:

_callDemoDebug(conn);

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 683

Next we log our second (and final) debug message from the middle tier:

JDebug.printDebugMessage(conn, debugFlag,
"Before invoking PL/SQL Code");

We then print out the logged debug messages using JDebug.getDebugMessageAndFlush().
Note that this function would have been a no-op (a null operation) if we had not configured it
to retrieve the messages in the middle tier (e.g., if we had configured our debugging package
with a debug flag value of JDebug.LOG_IN_TRACE_FILES_ONLY).

System.out.println(JDebug.getDebugMessageAndFlush(conn, debugFlag));

Finally, we clear the debugging configuration—no more debug messages will be generated
or output after this line in our program:

JDebug.clear(conn, debugFlag, dbUserName, directory, debugFileName);
}
catch (SQLException e)
{
// handle the exception properly - we just print the stack trace.
JDBCUtil.printException (e);

}
finally
{
// release the JDBC resources in the finally clause.
JDBCUtil.close(conn);

}
}

At the end of the program, the private method _callDemoDebug() is used to invoke the
procedure demo_debug:

private static void _callDemoDebug(Connection conn) throws SQLException
{
CallableStatement cstmt = null;
try
{
cstmt = conn.prepareCall("{call demo_debug()}");
cstmt.execute();

}
finally
{
JDBCUtil.close(cstmt);

}
}

} / / end of program

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES684

When we invoke the program DemoJDebug, we get the following output:

B:\>java book.util.DemoJDebug
URL:jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(PORT=1521)
(HOST=rmenon-lap))(CONNECT_DATA=(SID=ora10g)))
MIDDLE TIER: Before invoking PL/SQL Code
</br>Inside procedure
demo_debug
</br>hello, my loop counter = 1:
</br>hello, my
loop counter = 2:
</br>hello, my loop counter = 3:

</br>hello, my loop counter = 4:
</br>hello, my loop counter
= 5:
</br>Exiting procedure demo_debug
</br>MIDDLE TIER:
Before invoking PL/SQL Code
</br>

The messages from both the Java code and the PL/SQL code can be seen in a formatted
HTML output. The message logged from Java is prefixed with the string MIDDLE_TIER:.

I have found this technique extremely useful in debugging any UI code written in Java,
say, using JSP technology. For example, if your Java code is getting or manipulating data from
the database using PL/SQL, you can use JDebug to log messages in your middle tier code while
using the debug package to log messages in your back-end PL/SQL code. Then with a URL-
based parameter, you can dump your log messages into your page. For example, say your web
page looks as shown in Figure 17-1.

Figure 17-1. A web page that has debugging turned off

The URL of the page shown in Figure 17-1 is http://host:5000/my_app/testDebug&➥

event=show_page.
We can now add another parameter in the URL that takes a value of our debug flag

(debug=2 implies that all debug messages should be shown in the middle tier only). Our URL
now becomes http://host:5000/my_app/testDebug&event=show_page&debug=2. The page looks
as shown in Figure 17-2.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 685

Figure 17-2. A web page that has debugging turned on

Notice how all the messages in the middle tier and PL/SQL are shown in the web page
itself. The messages with the prefix MIDDLE TIER are coming from the middle-tier code. Using
this method, you can instrument your PL/SQL and Java code and debug it easily with a switch
in the URL itself. This can speed up your development process tremendously. Of course, it is
also very useful when debugging any logical problem, or even performance bottlenecks in the
back-end logic that renders a page. Note that this assumes the following:

• You are using the same connection when rendering a page. This is normally true.

• You invoke init() in your code with the right parameters to begin the logging at the
beginning of your UI logic.

• When you are done with the UI rendering logic, you retrieve all your log messages using
JDebug.getDebugMessageAndFlush() and print the messages on the URL.

• As a final step, you invoke JDebug.clear().

Note that if debugging is off, then all methods in the JDebug class simply return without
doing anything, so you don’t incur any noticeable performance penalty. Similarly, if your
debugging is off (you pass JDebug.DEBUG_OFF), then the corresponding PL/SQL program’s
debug.f() method also becomes a no-op, thus incurring a negligible performance penalty.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES686

■Caution Although the idea of showing debug messages as part of the web page is extremely useful during
development, it can unfortunately create security problems if this feature is exposed in production. This is
because any end user can turn the debug message on and read the logged messages, which could potentially
contain proprietary information or information that can be used to compromise the security of the system.
Note that this is not an issue if you use the option where your messages are logged in a file since files can
and should be protected by using appropriate OS permissions. Hence I strongly recommend that the method
of turning debug messages to be dumped into the web page itself should be disabled permanently before
shipping the product. In other words, it should be usable only during the development stage. This can, of
course, be achieved by using a separate configuration flag in your code.

One disadvantage of debugging is that when it is turned on, each Java-side debug message
incurs a server round-trip. However, this issue is mitigated by the fact that during debugging and
diagnosing problems (which is when debugging would be turned on), performance is not a
major concern.

Summary
In this chapter, you learned why PL/SQL is such an important tool for a JDBC developer. You
examined some PL/SQL techniques to increase the performance and maintainability of your
code. These techniques included putting your code in packages, using bulk operations to
improve performance, and preferring static SQL to dynamic SQL when you have a choice. You
also learned about invoker rights and definer rights modes in PL/SQL, and when to use each
mode. You then looked at PL/SQL debugging techniques and enhanced a custom PL/SQL
package called debug, using which you can instrument your Java and PL/SQL code.

CHAPTER 17 ■ SELECTED PL/SQL TECHNIQUES 687

Table A-1 shows the default mappings between SQL types and Java types.

Appendix

689Ta
bl

e
A-

1.
D

ef
au

lt
 M

ap
p

in
gs

 B
et

w
ee

n
 S

Q
L

Ty
p

es
 a

n
d

 Ja
va

 T
yp

es
*

SQ
L

Da
ta

 T
yp

es
JD

BC
 T

yp
ec

od
es

St
an

da
rd

 J
av

a
Ty

pe
s

Or
ac

le
 E

xt
en

si
on

 J
av

a
Ty

pe
s

CH
AR

ja
va
.s
ql
.T
yp
es
.C
HA
R

ja
va
.l
an
g.
St
ri
ng

or
ac
le
.s
ql
.C
HA
R

VA
RC
HA
R2

ja
va
.s
ql
.T
yp
es
.V
AR
CH
AR

ja
va
.l
an
g.
St
ri
ng

or
ac
le
.s
ql
.C
HA
R

LO
NG

ja
va
.s
ql
.T
yp
es
.L
ON
GV
AR
CH
AR

ja
va
.l
an
g.
St
ri
ng

or
ac
le
.s
ql
.C
HA
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.N
UM
ER
IC

ja
va
.m
at
h.
Bi
gD
ec
im
al

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.D
EC
IM
AL

ja
va
.m
at
h.
Bi
gD
ec
im
al

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.B
IT

bo
ol
ea
n

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.T
IN
YI
NT

by
te

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.S
MA
LL
IN
T

sh
or
t

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.I
NT
EG
ER

in
t

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.B
IG
IN
T

lo
ng

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.R
EA
L

fl
oa
t

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.F
LO
AT

do
ub
le

or
ac
le
.s
ql
.N
UM
BE
R

NU
MB
ER

ja
va
.s
ql
.T
yp
es
.D
OU
BL
E

do
ub
le

or
ac
le
.s
ql
.N
UM
BE
R

RA
W

ja
va
.s
ql
.T
yp
es
.B
IN
AR
Y

by
te
[]

or
ac
le
.s
ql
.R
AW

RA
W

ja
va
.s
ql
.T
yp
es
.V
AR
BI
NA
RY

by
te
[]

or
ac
le
.s
ql
.R
AW

LO
NG
RA
W

ja
va
.s
ql
.T
yp
es
.L
ON
GV
AR
BI
NA
RY

by
te
[]

or
ac
le
.s
ql
.R
AW

DA
TE

ja
va
.s
ql
.T
yp
es
.D
AT
E

ja
va
.s
ql
.D
at
e

or
ac
le
.s
ql
.D
AT
E

DA
TE

ja
va
.s
ql
.T
yp
es
.T
IM
E

ja
va
.s
ql
.T
im
e

or
ac
le
.s
ql
.D
AT
E

TI
ME
ST
AM
P

ja
va
.s
ql
.T
yp
es
.T
IM
ES
TA
MP

ja
va
l.
sq
l.
Ti
me
st
am
p

or
ac
le
.s
ql
.T
IM
ES
TA
MP

(s
ee

 N
ot

e)

■
No

te
Fo

r d
at

ab
as

e
ve

rs
io

ns
,s

uc
h

as
 8

.1
.7

,t
ha

t d
o

no
t s

up
po

rt
th

e
TI
ME
ST
AM
P

da
ta

ty
pe

,t
hi

s
is

 m
ap

pe
d

to
 D
AT
E. (C

on
ti

n
u

ed
)

APPENDIX690

Ta
bl

e
A-

1.
D

ef
au

lt
 M

ap
p

in
gs

 B
et

w
ee

n
 S

Q
L

Ty
p

es
 a

n
d

 Ja
va

 T
yp

es
*

(C
on

ti
n

u
ed

)

SQ
L

Da
ta

 T
yp

es
JD

BC
 T

yp
ec

od
es

St
an

da
rd

 J
av

a
Ty

pe
s

Or
ac

le
 E

xt
en

si
on

 J
av

a
Ty

pe
s

ST
A

N
D

A
R

D
 J

D
B

C
 2

.0
 T

Y
P

E
S

BL
OB

ja
va
.s
ql
.T
yp

es
.B

LO
B

ja
va
.s
ql
.B
lo
b

or
ac
le
.s
ql
.B
LO
B

CL
OB

ja
va
.s
ql
.T
yp
es
.C

LO
B

ja
va
.s
ql
.C
lo
b

or
ac
le
.s
ql
.C
LO
B

U
se

r-
d

ef
in

ed
 o

b
je

ct
ja
va
.s
ql
.T
yp
es
.S
TR
UC
T

ja
va
.s
ql
.S
tr
uc
t

or
ac
le
.s

ql
.S
TR
UC
T

U
se

r-
d

ef
in

ed
 r

ef
er

en
ce

ja
va
.s
ql
.T
yp
es
.R

EF
ja
va
.s
ql
.R
ef

or
ac
le
.s
ql
.R
EF

U
se

r-
d

ef
in

ed
 c

o
lle

ct
io

n
ja
va
.s
ql
.T
yp
es
.A
RR
AY

ja
va
.s
ql
.A
rr
ay

or
ac
le
.s
ql
.A
RR
AY

O
R

A
C

L
E

 E
X

T
E

N
SI

O
N

S

BF
IL
E

or
ac
le
.j
db
c.

Or
ac

le
Ty
pe
s.
BF
IL
E

N
/A

or
ac
le
.s

ql
.B
FI
LE

RO
WI
D

or
ac
le
.j
db
c.
Or
ac
le
Ty
pe
s.
RO
WI
D

N
/A

or
ac
le
.s

ql
.R
OW
ID

RE
F
CU
RS
OR

ty
p

e
or
ac
le
.j
db
c.
Or
ac
le
Ty
pe
s.
CU
RS
OR

ja
va
.s
ql
.R
es
ul
tS
et

or
ac
le
.j
db
c.
Or
ac
le
Re
su
lt
Se
t

TI
ME
ST
AM
P

or
ac
le
.j
db
c.
Or
ac
le
Ty
pe
s.
TI
ME
ST
AM
P

ja
va
.s
ql
.T
im
es
ta
mp

or
ac
le
.s
ql
.T
IM
ES
TA
MP

TI
ME
ST
AM
P
WI
TH
 T
IM
E
ZO
NE

or
ac
le
.j
db
c.
Or
ac
le
Ty
pe
s.
TI
ME
ST
AM
PT
Z

ja
va
.s
ql
.T
im
es
ta
mp

or
ac
le
.s
ql
.T
IM
ES
TA
MP
TZ

TI
ME
ST
AM
P
WI
TH
 L
OC
AL
 T
IM
E
ZO
NE

or
ac
le
.j
db
c.

Or
ac

le
Ty
pe
s.
TI
ME
ST
AM
PL
TZ

ja
va
.s
ql
.T
im
es
ta
mp

or
ac
le
.s

ql
.T
IM
ES
TA
MP
LT
Z

*
Ta

bl
e

in
fo

rm
at

io
n

 c
ou

rt
es

y
of

 O
ra

cl
e

D
at

ab
as

e
JD

B
C

 D
ev

el
o

p
er

’s
 G

u
id

e
an

d
 R

ef
er

en
ce

 (
10

g
R

el
ea

se
 1

),
 T

ab
le

 4
-3

.

Table A-2 shows the mapping between Oracle database types and the standard JDBC data
types. You should use standard JDBC data types if you want to make your code portable across
databases.

Table A-2. Valid SQL Data Type–Java Class Mappings*

These SQL Data Types: Can Be Materialized As These Java Types:

CHAR, VARCHAR, LONG oracle.sql.CHAR
java.lang.String
java.sql.Date
java.sql.Time
java.sql.Timestamp
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal
byte, short, int, long, float, double

DATE oracle.sql.DATE
java.sql.Date
java.sql.Time
java.sql.Timestamp
java.lang.String

NUMBER oracle.sql.NUMBER
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal
byte, short, int, long, float, double

OPAQUE oracle.sql.OPAQUE

RAW, LONG RAW oracle.sql.RAW
byte[]

ROWID oracle.sql.CHAR
oracle.sql.ROWID
java.lang.String

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB
java.sql.Blob

CLOB oracle.sql.CLOB
java.sql.Clob

TIMESTAMP java.sql.Date, oracle.sql.DATE, java.sql.Time,
java.sql.Timestamp, oracle.sql.TIMESTAMP,
java.lang.String, byte[]

TIMESTAMP WITH TIME ZONE java.sql.Date, oracle.sql.DATE, java.sql.Time,
java.sql.Timestamp, oracle.sql.TIMESTAMPTZ,
java.lang.String, byte[]

(Continued)

APPENDIX 691

Table A-2. Valid SQL Data Type–Java Class Mappings* (Continued)

These SQL Data Types: Can Be Materialized As These Java Types:

TIMESTAMP WITH LOCAL TIME ZONE java.sql.Date, oracle.sql.DATE, java.sql.Time,
java.sql.Timestamp, oracle.sql.TIMESTAMPLTZ,
java.lang.String, byte[]

Object types oracle.sql.STRUCT
java.sql.Struct
java.sql.SqlData
oracle.sql.ORAData

Reference types oracle.sql.REF
java.sql.Ref
oracle.sql.ORAData

Nested table types and VARRAY types oracle.sql.ARRAY
java.sql.Array
oracle.sql.ORAData

* Table information courtesy of Oracle Database JDBC Developer’s Guide and Reference (10g Release 1),
Table 25-1.

APPENDIX692

■Special Characters
$ORACLE_HOME/lib directory, 86
$ORACLE_HOME/network/admin directory,

92
% sign, 262, 265
%ORACLE_HOME% directory, 86, 92
%s format string, 673, 676
= symbol, 191
:= symbol, 191
? symbol, 139, 151, 154, 166, 260

■A
AbandonedConnectionTimeout property,

550
absolute method, 236
absolute positioning, 231
ACCESS_UNKNOWN constant, 423
addBatch() method, 168
admin user, 580, 582, 586
all keyword, 591, 594
alter command, 596–97
alter session command, 10
alter user statement, 591
anonymous blocks, 191, 673
ANSI SQL, 353
append method, 31
appendToClob() method, 461
application data tables, 581–82
Application Programming Interface (API), 33,

86–89
applyConnectionAttributes() method, 559
ARRAY automatic element buffering, 422
ARRAY automatic indexing, 423
ARRAY class, 350, 389–90, 392, 397, 412,

416–17
ARRAY automatic element buffering, 422
ARRAY automatic indexing, 423
benchmarking auto-buffering and auto-

indexing, 423–29
overview, 422
retrieving collection of NUMBER

elements, 399–400
retrieving collection of varchar2 elements,

396–99
retrieving information about the ARRAY

object, 401
using for accessing collections of built-in

types, 395–96

ARRAY interface, 88, 387–89, 392, 395, 397–99
getArray() method, 388
getBaseTypeName() method, 389
getResultSet() method, 389

Array objects, manifesting collections of
built-in types as

creating and passing ARRAY to PL/SQL
procedure, 392–95

overview, 392
using ARRAY class for accessing

collections of built-in types, 395–401
ArrayDescriptor class, 389, 392, 401
AS clause, 351
ASCII, 470, 476
attribute value constructor, 280
attributes, 278
authid current_user keyword, 658
autocommit feature, 129–30
autocommit mode, 129
autocommit property, 460, 464, 471, 536, 560
autocommit setting, 170
autoexec.bat file, 5
automatic indexing

ARRAY automatic indexing, 423
benchmarking auto-buffering and auto-

indexing, 423–29
autotrace option, 5–6, 10, 12, 46, 49, 55–56, 66

■B
background_dump_dest parameter, 9
batching. See update batching
BatchUpdateException class, java.sql

package, 169
BatchUpdateException exception, 170
BatchUpdateException object, 169
Beck, Christopher, 669
begin/end block, 149
BENCHMARK schema, 1, 7–8, 157
benchmark user, 69, 337, 530, 552–54,

565–69, 572
BENCHMARK.ANONYMOUS BLOCK, 673
benchmarking

auto-buffering and auto-indexing, 423–29
use of numeric extensions for retrieving

numeric collection elements, 402–7
BenchmarkReadUsingBfileAndExternalTables

class, 489
BFILE class, 88, 384, 460, 475, 480

Index

693

BFILE data type, 448, 457, 473, 476, 487–88,
491–92

BFILENAME function, 457
BFILEs

alternatives to for file operations
overview, 480
using external tables to read text files,

485–86
using UTL_FILE PL/SQL package to

read from and write to binary file,
483–84

using UTL_FILE PL/SQL package to
read from and write to text file,
480–83

reading, 473–77
in SQL and PL/SQL, 457–59
vs. UTL_FILE vs. external table, 486–93

BigDecimal class, 324, 335, 337, 349, 355, 397,
399

bind option, 161, 165
bind variables, 39–44, 139

binding parameters by index, 151
binding parameters by name, 151–52
CallableStatement-based solution, 264–69
dynamically building query with unknown

number of, 258–59
executing PreparedStatement, 152
nuances of usage, 166
PreparedStatement-based solution,

260–63
using to make program more secure,

160–66
using with PreparedStatements, 151

BLOB class, 348, 460, 471–73, 477, 480
BLOB data type, 448, 451–52, 457–59
BLOB interface, 88, 470–71
BLOBs

appending to, 472–73
overview, 449
reading from, 470
using in PL/SQL, 451–56
using in SQL, 450–51
writing to, 468–69, 471–72

buffering, ARRAY automatic element
buffering, 422

builtintypes command-line option, 355
builtintypes option, 347
bulk binding, 58, 59–62, 287, 645–50
bulk collect, 58, 61, 287, 640–44
byte data type, 471, 475

■C
CacheFixedWaitTimeout property, 544
CacheInactivityTimeout property, 544
CacheTimeToLiveTimeout property, 544
CallableStatement interface, 168, 185,

511–12, 514

dynamically building query with unknown
number of bind variables, 264–69

implicitly cached, physically closing, 514
invoking stored procedures from JDBC,

189–202
binding input (in or in out) parameters,

191–93
common errors and resolutions, 202–3
creating CallableStatement object, 191
example, 195–202
executing CallableStatement and

retrieving results, 195
formulating CallableStatement string,

190–91
overview, 189
registering output (out or in out)

parameters, 193–94
overview, 187
using struct objects with, 333–34
using to insert oracle.sql.STRUCT object,

338
case option, 347
cast function, 291, 402
cast keyword, 297, 301, 303, 307
catch clause, 162
central processing unit (CPU), 40, 51, 532,

627
CHAR class, 398
CHARACTER type, 353
check constraint, 648
ClassCastException class, 363, 419
classes, loose coupling, 35, 39, 48
CLASSPATH environmental variable, 84–85,

103, 347
classpath option, 347
clear() method, 674, 677, 686
clear_plsql_trace method, 668
clearBatch() method, 169, 173
client/server applications, and connections,

531–32
CLOB class, 348, 463–64, 466, 471–72, 477–80
Clob class, java.sql package, 460
CLOB class, oracle.sql package, 460, 465
CLOB data type, 448–54

appending to, 467–68
overview, 449
reading from, 460–64
using in PL/SQL, 451–56
using in SQL, 450–51
writing to, 464–67

CLOB interface, 88, 464–65, 479
close() method

Connection class, 108, 111, 542, 551–52,
559

PooledConnection class, 536, 538, 540
ResultSet class, 108, 111
Statement class, 108, 111

■INDEX694

ClosestConnectionMatch property, 551, 560
closeWithKey() method, 521
code. See also PL/SQL

database schema design, 70–73
incorporating performance from

beginning, 75
instrumenting code extensively, 75
knowledge of Oracle features, 73–74
logical and physical I/O, 45–50
optimizing most important business

functions first, 74
overview, 39
using bind variables, 39–44

Collection class, 395
collections

ARRAY class performance extensions,
422–29

ARRAY automatic element buffering,
422

ARRAY automatic indexing, 423
benchmarking auto-buffering and

auto-indexing, 423–29
overview, 422

java.sql.Array interface, 388–89
oracle.sql, 389–90
overview, 388
strongly typed collection classes, 390

collections of built-in types, materializing as
weakly typed objects

accessing collection of Oracle objects as
STRUCT objects, 409–11

accessing collection of Oracle objects
using custom classes, 411–22

materializing collection and its member
elements, 416–17

modifying collection by inserting a
member, 420–22

overview, 411–16
selecting collection and members as

custom class objects, 419–20
selecting collection as ARRAY object

and members as custom class
objects, 417–19

creating schema for collection of object
types, 407–9

creating schema for collections of built-in
types, 390–92

command-line parameter, 150, 591
commit() method, 115, 130
commit command, 328
Component entity, 294
components_nt table, 304
compress option, 73
connect by clause, 58, 433
Connect descriptor, 91–92
connect privilege, 264

connection caching, 535
attribute weights and

ClosestConnectionMatch property,
560

example using, 544–46, 551–54
instantiating OracleDataSource, 547
interaction of application and middle tier,

542
Oracle, 10g implicit connection caching,

546–47
Oracle9i connection caching, 540–46

connection caching, 541–42
OracleConnectionCacheImpl, 542–46
overview, 540–41

OracleConnectionCacheManager class,
554–58

overview, 535
setting connection cache properties,

548–51
steps in using

OracleConnectionCacheImpl,
542–44

turning connection cache on, 548
using connection attributes and attribute

weights, 558–59
Connection class, 107–9, 111, 324–25, 335,

360–62, 371–72, 388–89, 393–94, 396,
417–18, 536

Connection interface, 117–19, 121, 122, 124,
129, 131–32, 142–43, 150, 152, 179,
191, 213–14, 216–17, 220–25, 232,
252, 273, 512, 519

Connection pool data source, 536
connection pooling. See also OCI connection

pooling
example of creating pooled connection

and logical connection, 538–40
Oracle9i connection pooling framework,

536–40
overview, 534–35, 536
related JDBC standard and Oracle

interfaces, 536–37
connection striping, 547, 558
connection timeout, 532
connectionCacheName property, 99
connectionCacheProperties property, 98–99
connectionCachingEnabled property, 99
ConnectionPoolDataSource interface,

536–37
connectionProperties property, 99
connections. See also connection caching;

connection pooling; connection
striping

and client/server applications, 531–32
cost of opening and closing, 532–34
vs. sessions, 529–31
and Web applications, 532

■INDEX 695

ConnectionWaitTimeout property, 550
CONNPOOL_INCREMENT property

constraint, 562
CONNPOOL_MAX_LIMIT property

constraint, 562
CONNPOOL_MIN_LIMIT property

constraint, 562–64, 568, 571
CONNPOOL_NOWAIT property constraint,

562
CONNPOOL_TIMEOUT property constraint,

562
consistent-read mode, 46
Context.INITIAL_CONTEXT_FACTORY

property, 103
Context.PROVIDER_URL property, 104–5
Cost-Based Optimizer (CBO), 15
count parameter, 400
create() method, ORADataFactory interface,

372
create any context privilege, 264
create session privilege, 581, 586, 590, 597
create statement, 581
create table statement, 581
createCache() method,

OracleConnectionCacheManager
class, 554

createDescriptor() method, ArrayDescriptor
class, 389

createTemporary() method, 477
CURSOR_SHARING setting, 45
cursors

overview, 495
in PL/SQL (explicit and implicit), 495–97
ref cursors (cursor variables), 497–99

■D
d option, 348
dangling references and data integrity,

432–33
data access layer schema, 578
data blocks, 35
Data Definition Language (DDL), 140
data integrity, 117
Data Manipulation Language (DML), 5, 140,

245, 290, 295, 297, 301–2, 304, 313,
319, 321, 326–27, 346, 352, 372, 379

data schema, 578
database administrator (DBA), 55, 585
database buffer cache, 45
database option, 91
DatabaseMetaData interface, 273–75
databaseName property, 98, 100
databases

connecting to, 89
DataSource interface and properties,

96, 98–100

formulating database URL and
establishing connection, 91–96

importing classes, 90
with JNDI, 102–5
potential errors when compiling or

executing JDBCOldStyleConnection,
96

registering driver (thin or OCI), 90–91
using data source, 96–105
using DriverManager, 90–96
without JNDI, 100–102

vs. instances, 34
roles, 585–87
schemas, 585–87

creating, 580–81
design of, 70–73

DataSource class, 88–89, 96, 98, 100–104, 110,
113

DataSource interface and properties, 96,
98–100

DataSource object, 554
dataSourceName property, 98
DATE class, 353
Date class, java.sql package, 154, 272
Date Manipulation Language (DML), 433,

604
creating example database schema,

327–29
deleting objects, 344
overview, 327
privileges, granting to

db_data_access_layer, 582
using oracle.sql.STRUCT class to insert

Oracle objects, 335–38
using oracle.sql.STRUCT to update Oracle

objects, 338–43
using struct interface to select Oracle

objects, 330–35
Datum class, 372
Datum interface, 326, 398
db_app_data schema, 579–82
db_block_size initialization parameter, 35
db_data_access_layer schema, 579–86
dba role, 580
dba_audit_trail package, 596
DBMS_LOB package, 450–51, 480
dbms_lob.writeappend method, 467
dbms_output package, 282, 288, 669
dbms_session package, 594
dbms_trace utility, 666, 668
dbms_transaction package, 123, 131
dbms_utility package, 666
DbmsOutput class, 20–21
debug utility, 670–71, 673, 675, 676, 682–83,

685, 687
DEBUG_OFF constant, 671, 686

■INDEX696

debugging PL/SQL, 662–87. See also PL/SQL,
and seamless instrumentation of
PL/SQL and JDBC code

overview, 662–63
printing stack trace, 663–68

DECIMAL class, 349
Dedicated Oracle server, 531
Dedicated server mode, 530
definer rights mode, PL/SQL, 653–62
delete statement, 40, 140, 148, 167, 176–77,

302, 312–13, 582, 645
deleteRow() method, 242
demo_refcursor procedure, 498
DemoRefCursor class, 498
DemoSessionCachedCursors class, 505
dependency chain, 636
deref() function, 431
description attribute, 339–40, 343
description property, 98
dir option, 348
direction parameter, 423
directory object, 458, 474, 481–82, 642
Dirty read scenario, 116
disableCache() method,

OracleConnectionCacheManager
class, 555

doExecuteCallableStatement() method, 520
Double class, 349, 355
double data type, 210
doubleValue() method, 398
Driver interface, 89
driver option, 348
driver_type option, 91
DriverManager, 90

formulating database URL and
establishing connection, 91–96

importing classes, 90
potential errors when compiling or

executing JDBCOldStyleConnection,
96

registering driver (thin or OCI), 90–91
drivers, JDBC

choosing, 82–83
JDBC OCI driver on UNIX, 85–86
JDBC OCI driver on UNIX and Windows,

86
JDBC thin driver on UNIX, 84–85
JDBC thin driver on Windows, 85
Oracle JDBC drivers, 80–81
registering, 90–91
server-side, 81
types of, 80

DriverType property, 99–100
driverType setting, 100
drop public synonym, 581
dynamic SQL, vs. static SQL, 651–52

■E
empty_clob() function, 452
enableCache() method,

OracleConnectionCacheManager
class, 555

encoding option, 348
end loop keyword, 645
end user database schema, 578
EOJ_FIXED_WAIT_TIMEOUT exception, 544
errors, when executing first program, 109–10
except phrase, 591
exception handling, 110
execute() method, 144, 148–49, 195
execute immediate statement, 264
execute statement, 58, 660
executeBatch() method, 168–69
executeDynamicQuery() method, 261
executeQuery() method, 107, 144, 146, 154,

213–14, 223
executeUpdate() method, 144, 147, 158, 168
exit clause, 641
explicit statement caching

enabling and disabling, 519–20
example, 520–23
vs. implicit statement caching, 524–27
overview, 518–19

ExplicitCachingEnabled property, 519
external LOBs. See BFILEs
external tables, using to read text files,

485–86

■F
FCLOSE() function, 482
FCLOSE procedure, 482
file.encoding property, 348
fill() method, 467
finally clause, 94, 108–9, 122, 147, 162, 171,

182, 198, 218, 247, 463, 479, 593, 615,
621

firstMethod() method, JBenchmark class,
533

FOPEN function, 480–82
for keyword, 645
for loop, 284, 467, 640, 645–46
for update clause, 37, 118, 339, 455, 464, 471
for update nowait clause, 341, 364, 382, 437,

445, 605
forall clause, 61
forall keyword, 318, 645–46, 650
format_error_backtrace function, 666
forName() method, Class class, 91
Forward-only result set, 230, 253
freeTemporary() method, 477, 479
from clause, 284
function keyword, 353

■INDEX 697

■G
GENERATE clause, 351
generatebean option, 348
generating custom REF classes using

JPublisher, 439–42
get_address() method, 358, 360
get_debug_message() method, 674
get_debug_message_flush() method, 674,

678, 681
GET_LINE() method, 482
GET_LINE procedure, 481
get_raw() function, 483
get_undo function, 53
getArray() method, Array interface, 389, 395,

399, 401–6, 410, 419–20, 423, 429
ARRAY class, 417–18, 426
java.sql package, 388
ResultSet interface, 395, 397, 417–18

getARRAY() method, OracleResultSet
interface, 397

getArrayType() method, ArrayDescriptor
class, 401

getAsciiOutputStream() method, 479
getAsciiStream() method, 462, 464, 466
getAttributes() method, Struct interface, 330,

410, 436
getAutoBuffering() method, 422
getBaseType() method, 390
getBaseTypeName(), java.sql.Array interface,

389
getBFILE() method, 475
getBinaryOutputStream() method, 471
getBinaryStream() method, 470, 475
getBlob() method, 470
getBufferSize() method, 463
getCacheProperties() method, 555
getCallWithKey() method, 524
getChunkSize() method, 463
getClassName() method, 272
getClob() method, 462
getColumnClassName() method, 269
getColumnCount() method, 269
getColumnDisplaySize() method, 269
getColumnName() method, 269
getColumnType() method, 269
getColumnTypeName() method, 269
getConcurrencyType() method, 239
getConnection() method

Connection class, 542, 559–60
DataSource class, 102, 105
JDBCUtil class, 111
OracleDataSource class, 100–101, 107, 513,

519, 520
OracleOCIConnectionPool class, 563
PooledConnection interface, 538

getConnectionIncrement() method,
OracleOCIConnectionPool class, 562

getDate() method, 146
getDebugMessageAndFlush() method, 684,

686
getDefaultExecuteBatch() method, 172
getDefaultRowPrefetch() method, 214
getDescriptor() method, 389, 394
getElement() method, 412
getErrorCode() method, 110
getExecuteBatch() method, 172
getExplicitCachingEnabled() method, 519
getFetchSize() method, 214
getInt() method, 146, 212
getIntArray() method, 401–2, 404, 406, 422
getIntArray() method, ARRAY class, 395, 401,

406
getMaxColumnsInSelect() method, 275
getMaxLimit() method, 562
getMessage() method, 110
getMetaData() method, 269, 271, 273
getMinLimit() method, 562
getNoWait() method, 562
getNumberOfActiveConnections() method,

555
getNumberOfAvailableConnections()

method, 555
getObject() method, 269, 325, 330, 332, 362,

434, 436
getOracleArray() method, 389, 395, 397, 398,

399, 402, 404–6, 410, 423, 427, 429
getORAData() method, 379–80, 419, 444
getPooledConnection() method, 537
getPoolSize() method, 565–66
getProxyConnection() method, 592, 597
getRef() method, ResultSet interface, 436
getResultSet() method, 389, 395, 397, 398–99,

402, 404–6, 410, 411, 423, 429
getResultSetConcurrencyType() method, 239
getResultSetType() method, 239
getRow() method, 237
getRowPrefetch() method, 213–14
getSavepointId() method, 131
getSavepointName() method, 131
getSchemaName() method, 269
getSQLState() method, 110
getSQLTypeName() method, 390
getStatementCacheSize() method, 513
getStatementWithKey() method, 521, 524
getString() method, 107, 146
getTableName() method, 269
getTimeout() method, 562
getTransactionIsolation() method, 119, 124
getTransactionIsolationDesc() method, 122
getType() method, 239
getUpdateCount() method, 148
getUpdateCounts() method, 169
getValue() method, 434, 436, 444
Graphical User Interface (GUI), 605, 607

■INDEX698

■H
HashMap class, 360
HeteroRM XA feature, 82
host option, 91
HR_APP_CTX_PKG package, 264
HR_APP_CTX_PKG.EXECUTE_DYNAMIC_

QUERY method, 267
HTML_BREAK_FLAG constant, 682
Hyper Text Markup Language (HTML), 682,

685
Hyper Text Transfer Protocol (HTTP), 532,

604, 617

■I
implicit statement caching

enabling and disabling, 512–14
example, 514–18
vs. explicit statement caching, 524–27
overview, 512
physically closing an implicitly cached

PreparedStatement or
CallableStatement, 514

ImplicitCachingEnabled property, 99, 513,
520

in out parameter, 195
in parameter, 193, 195
InactivityTimeout property, 550
Index Organized Table (IOT), 70
index parameter, 400
indexing. See automatic indexing
inheritance, 287
init() method, 671–72, 677, 686
InitialLimit property, 548–49, 553
InitialPoolSize property, 548–49
init.ora file, 8, 504
–input command-line option, 350
input option, 348
input_address_oradata.txt file, 372
input_address.txt file, 355, 366
InputStream class, 470, 475
input.txt file, 412
InputUtil class, 538–40, 551–52, 561, 564–65,

610, 615, 620
InputUtil.waitTillUserHitsEnter() method,

247
insert command, 328
insert into select clause, 53, 633
insert privilege, 582
insert statement, 40–41, 43, 56, 58, 134, 140,

148, 167, 173, 176, 178, 205, 302,
309–11, 313, 631, 645

insertRow() method, 242
instanceof operator, 272
instances, vs. databases, 34
Instant Client installation option, 85
instantclient directory, 93

instead of insert trigger, 309
instead of trigger, 302, 304–10, 312–13, 320
instr function, 450
instrumentation, 75
int data type, 210, 242
Integer class, 349, 355
invoker right mode, PL/SQL, 653–62
I/O. See logical and physical I/O
isAfterLast() method, 237
isBeforeFirst() method, 237
isFirst() method, 237
isLast() method, 237
isolation level keyword, 120
isolation levels, 116–24

■J
Java Archive (JAR), 84–85, 103, 347
Java Database Connectivity Application

Programming Interface (JDBC API),
79–80, 86, 88–89, 113

Java Development Kit (JDK), 84, 96
Java Naming and Directory Interface (JNDI),

79
Java Server Pages (JSP), 682, 685
Java Virtual Machine (JVM), 28, 83, 253, 423,

489, 554
JAVA_HOME environment variable, 84
JavaBeans, 542
javadoc API, 139
java.lang package, 349, 355, 398, 425
java.math package, 324, 335, 337, 349, 355,

397, 399
javap command, 143
java.sql package, 79–81, 86–87, 90, 100, 103,

106–7, 110, 141–42, 323–25, 346, 350,
357, 360, 372, 387–89, 409, 433, 436

java.sql.Array interface, 388–89
java.util package, 360, 559
java.util.Arrays, 467
java.util.Date, 154
javax.naming package, 104
javax.sql package, 79–80, 88, 141
javax.sql.ConnectionPoolDataSource

package, 537
javax.sql.PooledConnection package, 537
JAX-RPC holder types, 349
JBenchmark class, 1, 28, 30, 226, 403–4, 424,

426, 489–90, 532–33
JDBC, 209, 212–13, 231, 252

API, 86–89, 141, 143
example program, 105–9
overview, 83–84
software requirements and setup

instructions, 83–86
what it is, 79–80
wrapper, 19–28

■INDEX 699

JDBC drivers, 80
JDBC-ODBC Bridge driver, 80
OCI, 80–83, 85–86, 575, 577, 589, 598
Oracle JDBC drivers, 80–81
thin drivers, 84–85

JDBCOldStyleConnection, 96
JDBCUtil class, 25, 111–13, 130, 146, 239–40,

360
getConnection() method, 121, 170
setSessionCachedCursors() method, 504
startTrace() method, 500

JDebug program, using to instrument Java
code, 676–86

JNDI, 79, 89, 100–104, 542
connecting to database with, 102–5
connecting to database without, 100–102

JProbe tool, 423
jpub script, 347
jpub.exe, 347
jpub.input property, 350, 412, 439
JPublisher, 346, 387, 390, 407, 411–12, 416,

433, 439. See also ORAData interface;
ORADataFactory interface

commonly used options, 347–50
input file syntax, 350–51
overview, 345
property file syntax, 350
separating domain objects from

persistence mechanism, 385
setting up environment, 347

jpub.package property, 412, 439
JRunstats, 1, 22, 41, 43, 47, 62–63, 73, 76,

126–27, 181, 506

■K
Kerberos server, 82
kprb option, 91
Kyte, Tom, 12, 175, 304, 599, 629

■L
LD_LIBRARY_PATH environment variable,

86
LDAP, 102, 587
least privilege principle, 575
len parameter, 483
LENGTH function, 450
Lightweight Directory Access Protocol

(LDAP), 598
like operator, 450
limit clause, 641–42
LOBs (large objects), 293

appending to BLOBs, 472–73
appending to CLOBs, 467–68
empty LOBs, 452
external LOBs (BFILEs) in SQL and

PL/SQL, 457–59

internal LOBs (CLOBs, NCLOBs, BLOBs),
449–56

LOB locator, 449
locator, 449
vs. LONGs (LONG data types), 447
overview, 447, 459–60
reading BFILEs, 473–77
reading from BLOBs, 468–70
reading from CLOBs, 460–64
temporary LOBs, 452–56, 477–79
types of, 448
using in PL/SQL, 451–56
using in SQL, 450–51
writing to BLOBs, 468–69, 471–72
writing to CLOBs, 464–67

lobtypes option, 348
locking, 36–37. See also lost updates

multiversion read consistency locking
mechanism, 37–39

optimistic locking
comparing alternatives for, 627
by maintaining shadow column in

table, 612–17
overview, 607–8
vs. pessimistic locking, 627
by saving old column values, 608–12
using checksum of modified column

values, 617–22
using the ora_rowscn pseudo column

(10g only), 622–27
overview, 607–8
pessimistic locking, 605–7, 627
setting transaction isolation level to

SERIALIZABLE, 603–4
LOG_FOR_MIDDLE_TIER_ONLY constant,

671
LOG_FOR_TRACE_FILES_AND_MTIER

constant, 671
LOG_IN_TRACE_FILES_ONLY constant, 671,

684
logical and physical I/O, 45–50
login.sql file, 2
loginTimeout property, 99
LogWriter property, 99
LONG data type, 447
LONGs (LONG data types)

vs. LOBs (large objects), 447
RAW data type, 447

loop keyword, 645
lost updates, 599–603. See also locking
LowerThresholdLimit property, 549

■M
main() method, 90
Map interface, 360–61
map keyword, 353

■INDEX700

mapping, end user to database user, 576–77
markEnd() method, 127
materializing collection and its member

elements, 416–17
Math class, 398, 425
max_dump_file_size parameter, 10
MaxLimit property, 549–50
maxPoolSize property, 549
maxStatements property, 99, 549
MaxStatementsLimit property, 549
McDonald, Connor, 187, 629, 663, 670
member keyword, 353
merge statement, 40, 140
methods command-line option, 348, 355
MIDDLE TIER prefix, 686
MIDDLE_TIER prefix, 685
MIDDLE_TIER_DEBUG_MESSAGE_PREFIX

constant, 678
midtier proxy, 589–92, 595–97
Millsap, Cary, 9, 46–47
MinLimit property, 549
minPoolSize property, 549
mod function, 16
mod_plsql module, 617
moveToInsertRow() method, 242
Multi Threaded Server (MTS), 9, 530
multiset keyword, 291, 297, 303, 402
multiversion read consistency, 37–39

■N
NameAlreadyBoundException exception,

104
Named parameters, 192
National Language Support (NLS), 86
NCLOBs, 448, 452

overview, 449
using in PL/SQL, 451–56
using in SQL, 450–51

nested tables, 387
vs. object views vs. relational tables,

313–20
using to store data, 293, 295–300

Net service name, 91–92
Net8 address specification, 91
networkProtocol property, 100
networkProtocolString property, 98
next() method, ResultSet interface, 107, 146,

213, 237, 239, 247
nls_charset12.jar file, 84
NLS_LANG environment variable, 86
NO_DATA_FOUND exception, 456, 458, 482
nobind option, 161–62, 165
none phrase, 591
Nonrepeatable read scenario, 116
nowait keyword, 605, 607
N-Tier Authentication, 576

N-to-1 mapping, 577
N-to-M mapping, 577, 589
null reference, 436
null values, handling, 210–12
NullPointerException class, 423
NUMBER class, 326, 349, 353, 372, 398
numbertypes command-line option, 348, 355

■O
Object class, 332, 339, 388, 417, 419
Object name resolution, 653
Object table, 289
object-oriented features, 287–89
objects

collections, 283–86
declaring and using object variables in

PL/SQL, 282
object type, 278–82
object views vs. nested tables vs. relational

tables, 313–20
overview, 277–78
using as programming constructs, 287–89
using object views on top of relational

tables, 301–13
using objects to store data, 289–301

OCI C libraries, 81
OCI connection pooling, 82, 529, 589, 592

analyzing connections and sessions,
563–73

in multithreaded program, 569–73
overview, 563
in single-threaded program, 563–69

configuring properties, 561–63
creating connection pool, 561
overview, 560–61
retrieving connection, 563

OCI driver, 81, 85–86, 100, 560
OCI Instant Client installation option, 82
OCI JDBC driver, 592
OCI option, 91
ociclient directory, 86
ojdbc14.jar file, 84
omit_schema_names option, 349
One-to-one mapping, 576
Open Database Connectivity (ODBC), 80
optimistic locking

comparing alternatives for, 627
by maintaining shadow column in table,

612–17
overview, 607–8
vs. pessimistic locking, 627
by saving old column values, 608–12
using checksum of modified column

values, 617–22
using the ora_rowscn pseudo column

(10g only), 622–27

■INDEX 701

ora_rowscn pseudo column, 622–27
Oracle

attribute weights and
ClosestConnectionMatch property,
560

example using, 551–54
instantiating OracleDataSource, 547
OracleConnectionCacheManager class,

554–58
setting connection cache properties,

548–51
turning connection cache on, 548
using connection attributes and attribute

weights, 558–59
Oracle Advanced Security, 82
Oracle Call Interface (OCI), 81
Oracle Database Concepts Guide, 115
Oracle internal driver, 91
Oracle JDBC drivers, 80–81, 535
Oracle kernel, 45
Oracle Net libraries, 81
Oracle Server JVM, 83
Oracle system identifier, 91
Oracle thin driver, 91
Oracle update batching, 167, 173, 175, 177,

179–81, 184–85. See also update
batching

example, 173–75
overview, 172–73
vs. standard batching, 179–82, 184–85

ORACLE_HOME environment variable, 84,
92

ORACLE_SID environment variable, 84, 92
Oracle9i connection caching, 540–42

example using, 544–46
interaction of application and middle tier,

542
steps in using

OracleConnectionCacheImpl,
542–44

Oracle9i connection pooling, 535
example of creating pooled connection

and logical connection, 538–40
overview, 536
related JDBC standard and Oracle

interfaces, 536–37
OracleCallableStatement interface, 80, 87,

142–43, 204, 207, 213, 381, 518
OracleConnection class, 213, 536
OracleConnection interface, 87, 131–32, 143,

172, 214–15, 218, 226, 394, 511–12,
519

OracleConnectionCache interface, 541–42
OracleConnectionCacheImpl class, 541–45
OracleConnectionCacheManager class,

547–48, 554–58

OracleConnectionEventListener class,
541–42

OracleConnectionPoolDataSource interface,
539

OracleDatabaseMetaData interface, 88
OracleDataSource class, 98, 100–102, 104,

533, 537, 542–43, 547–48, 551, 556,
561, 563–64

getConnection() method, 513, 519, 520
instantiating, 547
setExplicitCachingEnabled(true) method,

519
setImplicitCachingEnabled(false), 513,

520
setImplicitCachingEnabled(true) method,

513
setMaxStatements(int

maxNumberOfStatements), 513
setMaxStatements(int

maxNumberOfStatements) method,
519

OracleDataSource interface, 88, 512–13, 519
OracleDriver class, 348
oracle.driver package, 348
oracle.jdbc package, 80–81, 86–91, 96–97,

101, 103, 106, 131, 142, 390
OracleJdbc2SQLInput interface, 88
oracle.jdbc.pool package, 541
OracleOCIConnectionPool class, 561, 563,

592, 598
OraclePooledConnection class, 537–38
OraclePreparedStatement class, 185, 381
OraclePreparedStatement interface, 80, 87,

142–43, 151, 155–56, 159, 167–68,
172–73, 192, 206–7, 213, 514, 518

OracleResultSet class, 379–80, 475
OracleResultSet interface, 88, 143, 214, 397,

419, 444
OracleResultSetMetaData interface, 88
oracleRollback() method, 132
OracleRowSet interface, 89
OracleSavepoint interface, 87, 131
oracleSetSavepoint() method, 131
oracle.sql package, 80, 86–88, 142, 325–26,

329, 344, 346, 349, 371–72, 384,
387–88, 392, 398, 409, 412, 433–34,
439

OracleSQLOutput interface, 88
oracle.sql.STRUCT class, 326

using to insert Oracle objects, 335–38
using to update Oracle objects, 338–43

oracle.sql.STRUCT object, using
PreparedStatement to insert, 336–38

OracleStatement interface, 87, 142–43,
213–14

OracleTypes class, 80, 372, 390

■INDEX702

ORAData interface, 88, 345–46, 349–50, 371,
373, 377, 380–81, 384–85, 412, 439

generating custom classes that
implement, 372–84

overview, 371–72
performing DMLs using custom

ORAData classes, 378–84
vs. SQLData, 384
using JPublisher, 372–78

ORADataFactory interface, 345–46, 371, 373,
377, 379, 384–85, 412, 439

order by clause, 234, 253–54, 256, 258
organization clause, 71
out parameter, 38, 189, 192–93, 195, 254–55,

265, 328, 331, 334, 619
outarguments option, 349
OutputStream class, 479
overriding keyword, 287
owa_opt_lock package, 617

■P
p_date_format flag, 672
p_debug_flag flag, 671
p_dir flag, 671
p_file flag, 671
p_modules flag, 671
p_name_len flag, 672
p_show_date flag, 672
p_show_sesid flag, 672
p_user flag, 671
package option, 349
packages, PL/SQL, 635–40
paginating, through result sets, 252–58
password property, 98
PATH environment variable, 86, 93, 96, 347
pausing in Java programs, 31–32
performance toolkit

autotrace facility, 5–6
JDBC wrapper for, 19–28
overview, 1
pausing in Java programs, 31–32
runstats utility, 12–15
set echo on command, 6–7
setting up BENCHMARK/BENCHMARK

schema, 7–8
setting up SCOTT/TIGER schema, 7
setting up SQL*Plus environment, 1–5
sql_trace facility, 8–10
timed_statistics parameter, 8
timing Java programs, 28–31
tkprof utility, 10–12
using, 15–19

pessimistic locking, 605–7
physical I/O. See logical and physical I/O
PL/SQL

common mistakes when using, 631–35
compact code produced from, 630–31

cursor cache, 508–11, 527
cursors in, 495–97
debugging, 662–87. See also PL/SQL, and

seamless instrumentation of PL/SQL
and JDBC code

overview, 662–63
printing stack trace, 663–68

declaring and using object variables in,
282

external LOBs (BFILEs) in, 457–59
invoker rights and definer rights modes,

653–62
overview, 662–63
packages, 635–40
packages, creating, 582–85
portability of, 630
preferring static SQL over dynamic SQL,

651–52
returning data via ref cursor, 653
row-by-row processing vs. bulk binding

example, 59–62
and seamless instrumentation of PL/SQL

and JDBC code, 668–87
custom debug utility, 669–86
limitations of dbms_output, 669
overview, 668–69

stored procedures, 187
using bulk operations to boost

performance, 640–51
bulk binding, 645–50
bulk collect, 640–44

using internal LOBs (CLOBs, NCLOBs,
BLOBs) in, 451–56

polymorphism, 287
PooledConnection interface, 536–37
port option, 91
portNumber property, 98, 100
prefetch_pkg package, 215
prefetching, 209, 212–13

example, 214–26
performance impact of fetch size, 226–30
setting and getting fetch size, 213–14

prepareCall() method, 191, 524
PreparedStatement interface, 25–27, 41–42,

139, 167–68, 185, 511–12, 514
binding parameters by index (or by

ordinal position), 151
binding parameters by name, 151–52
creating PreparedStatement object,

150–51
dynamically building query with unknown

number of bind variables, 260–63
example of using PreparedStatement to

modify data, 157–60
example of using PreparedStatement to

query data, 152–56
executing PreparedStatement, 152

■INDEX 703

PreparedStatement interface (continued)
nuances of bind variable usage, 166
overview, 150
physically closing an implicitly cached,

514
setObject() method of, 382
using bind variables makes your program

more secure, 160–66
using bind variables with

PreparedStatements, 151–52
using struct objects with, 330–32
using to insert oracle.sql.STRUCT object,

336–38
prepareStatement() method, 150, 152, 501,

521, 524
previous() method, 237, 239
Primary key, 133
principle of least privilege, 575
printException() method, JDBCUtil class,

113
printRsetTypeAndConcurrencyType()

method, 239–40
printStackTrace() method, 110, 666
private keyword, 278, 680
prop_address_oradata.txt file, 373
prop_address.txt file, 350, 355
Properties class, 103, 554, 559, 569, 592
PropertyCheckInterval property, 550
–props command-line option, 350
props option, 349
prop.txt file, 412, 439
protected keyword, 278
proxy authentication (N-tier authentication),

532, 575–77, 580, 587–91, 596–98
and auditing, 596
example, 591–96
proxy authentication modes, 597–98

PROXY_PASSWORD property, 598
PROXY_USER_NAME property, 592
proxy_users view, 591
PSEUDO value, 567
public keyword, 680
put_line method, 669
PUT_LINE procedure, 481
put_raw() function, 483

■Q
queries

CallableStatement-based solution, 264–69
dynamically building with unknown

number of bind variables, 258–59
example of using PreparedStatement for,

152–56
PreparedStatement-based solution, 260–63

question mark (?) symbol, 139, 151, 154, 166,
260

■R
random() method, Math class, 425
raw buffer, 293, 484
RAW data type, 483, 612
RDBMS, 36
READ COMMITTED transaction level, 38,

117, 119–21, 124, 599, 604
read consistency, multiversion, 37–39
READ ONLY transaction level, 38, 118–20,

122, 124
READ UNCOMMITTED transaction level,

117, 119
readClob() method, 461
readClobInChunks() method, 461
Real Application Cluster (RAC), 82
REAL class, 353
ref() function, 430
REF class, 346, 350, 433, 443, 446
REF interface, 88, 433, 434
references, 387

dangling references and data integrity,
432–33

overview, 429–31
reasons for not using, 433
Ref interface and REF class, 434
using in JDBC, 433–38

overview, 433
using weakly typed Ref and REF objects

to query references, 434–38
using strongly typed custom classes to

query references, 439–46
generating custom REF classes using

JPublisher, 439–42
overview, 439
and update reference objects, 442–46

refreshRow() method, 245, 247–49
registerDriver() method, 90
registerOutParameter() method, 193–94, 198
reinitializeCache() method, 555
relational SQL, performing updates using,

342–43
relational tables

vs. object views vs. nested tables, 313–20
using object views on top of, 301–10,

312–13
releaseConnection() method, 549
releaseSavepoint() method, 132
removeCache() method, 554
REPEATABLE READ transaction isolation

level, 117, 119
result sets

ability to detect database changes, 252
CallableStatement-based solution, 264–69
creating different categories of, 232–33
database changes visible to, 251–52
DatabaseMetaData interface, 273–75
downgrade rules, 234–35

■INDEX704

dynamically building query with unknown
number of bind variables, 258–59

example, 214–26
handling null values, 210–12
limitations, 234
overview, 209–10
paginating through, 252–58
performance impact of fetch size, 226–30
positioning in scrollable result set, 236–41

example, 238–41
finding current position, 237
moving to new position, 236–37
overview, 236

prefetching, 212–13
PreparedStatement-based solution,

260–63
ResultSetMetaData object, 269–73
rows, 241–51

deleting, 242
inserting, 242
refetching, 245–51
updating, 242–45

scrollability, 230–31
setting and getting fetch size, 213–14
updatability, 231–32

ResultSet interface, 79, 88, 107, 109, 111,
142–43, 146, 148, 188, 194–95, 209,
213–17, 219, 221–26, 233–35, 237,
239–40, 242, 251–52, 269–71, 275,
328, 332, 335, 362, 380–81, 388–89,
395, 397, 399, 406, 410–11, 417–18,
427, 429, 436, 470, 498, 653

ResultSetMetaData interface, 269–73, 275
rollback() method, 116, 130
rolling back

savepoints, 132
transactions, 116

row-by-row processing, 59–62
rowdependencies option, 624–27
rowid pseudo column, 235, 248
rownum pseudo column, 215
rows

deleting, 242
inserting, 242
refetching, 245–51
updating, 242–45

rs_middle method, 22
rs_start() method, 509–10
rs_start method, 22, 633
rs_start procedure, 18
rs_stop() method, 510
rs_stop method, 18, 22–23, 633
RULE option, 50
Rule-Based Optimizer (RBO), 16, 50
run() method, WorkerThread class, 569
runstats utility, 1, 12–15, 22–23, 28, 47, 76,

319, 633, 644, 647

JDBC wrapper for, 19–28
using, 15–19

runstats_pkg.rs_start() method, 509–10
runstats_pkg.rs_stop() method, 510

■S
save exceptions option, 650
save_exceptions clause, 61
savepoint() method, 131
Savepoint class, java.sql package, 131
savepoints, 130–31

creating, 131
releasing resources associated with, 132
rolling back, 132
using, 131
using, example, 132–37

schemas, 34–35
scrollability, 209, 230–31
scrollable result set, positioning in

example, 238–41
finding current position, 237
moving to new position, 236–37
overview, 236

scroll-insensitive result set, 231
security-related issues

authenticating application end user to
database, 587–98. See also proxy
authentication (N-tier
authentication)

using end user's database password,
588–89

creating application data tables, 581–82
creating database roles and schema for

end users, 585–87
creating database schemas, 580–81
creating PL/SQL packages, 582–85
defense in depth, 575
example application, 579–80
granting DML privileges to

db_data_access_layer, 582
mapping an end user to database user,

576–77
overview, 575, 587
principle of least privilege, 575
separating end user database schema,

data schema, and data access layer
schema, 578–79

select clause, 147
select for update clause, 343
select statement, 34, 37, 40, 52, 56, 58, 140,

144, 146, 163, 165, 205, 284, 286,
296–99, 303–4, 362, 364, 395, 431,
459, 480, 485–86, 530, 582, 604–6,
655–57, 659

self keyword, 280
self parameter, 360
sendBatch() method, 170, 173–75

■INDEX 705

SERIALIZABLE transaction level, 38, 118–22,
559, 603–4, 607, 628

serverName property, 98, 100
serveroutput parameter, 2
server-side internal driver, 81
server-side thin driver, 81
serviceName property, 99
session cursor cache, 504–8, 527
session multiplexing, 560
session_cached_cursors parameter, 504,

508–9, 511
session_roles view, 593
sessions, vs. connections, 529–31
set command, 5
set echo on command, 6–7
set role command, 591, 594
set transaction command, 119–20
set transaction read only command, 122–23
set_context() method, 265
set_plsql_trace method, 668
set_role() method, 594
setArray() method, 392, 394, 422
setAutoBuffering() method, 422
setAutoCommit() method, 111, 129
setBytes() method, 472
setCacheScheme() method, 543–44
setClob() method, 479
setConnectionCacheProperties() method,

548
setConnectionCachingEnabled() method,

547–48
setConnectionPoolDataSource() method,

542, 555
setDataAtName() method, 152
setDate() method, 151
setDefaultExecuteBatch() method, 172
setDefaultRowPrefetch() method, 214
setDisableStatementCaching() method, 514
setElement() method, 412
setExecuteBatch() method, 172
setExplicitCachingEnabled() method, 519
setFetchSize() method, 214
setImplicitCachingEnabled() method, 513,

520
setInt() method, 151
setIntAtName() method, 152
setMaxLimit() method, 543
setMaxStatements() method, 513
setMinLimit() method, 543
setNull() method, 210, 267
setObject() method, 335, 339, 363–64, 382, 394
setORAData() method, 381
setPoolConfig() method, 563–64, 569
setProperty() method, 552
setReadOnly() method, 124
setRef() method, 438, 446
setRowPrefetch() method, 213–14

setSavepoint() method, 131
setSessionCachedCursors() method, 504
setStatementCacheSize() method, 513, 519
setString() method, 154
setStringAtName() method, 155
setTransactionIsolation() method, 119–22, 124
setURL() method, 539
Shared Global Area (SGA), 39
Shared pool, 140
Shared server mode, 530
ShiftJIS, 84
sid option, 91
single_stmt_insert procedure, 54, 56
software requirements and setup

instructions
JDBC OCI driver on UNIX, 85–86
JDBC OCi driver on UNIX and Windows,

86
JDBC thin driver on UNIX, 84–85
JDBC thin driver on Windows, 85
overview, 83–84

SQL. See also PL/SQL; stored SQL procedures
external LOBs (BFILEs) in, 457–59
performing updates using, 342–43
PL/SQL bulk bind vs. SQL multitable

insert example, 63
power of analytic functions example, 64–69
relational, 342–43
statements

how Oracle processes, 140–41
whether should reside in Java or

PL/SQL, 204–7
tracing, 9, 247
using internal LOBs (CLOBs, NCLOBs,

BLOBs) in, 450–51
–sql command-line option, 348, 350, 355
sql option, 349
sql type, 349
SQL*Plus, 55, 139, 166, 391, 451, 457–59, 530,

669
autotrace facility, 5–6
set echo on command, 6–7
setting up, 1–5

sql_trace utility, 1, 8–10, 12
SQL92, 117, 149, 190–91, 195–97, 206, 630
SQLData interface, 345–46, 349–50, 355, 378,

382, 384–85, 412, 439
deleting objects, 365–66
generating custom classes that implement

SQLData, 352–57
creating schema containing object type

and object table, 353–54
overview, 352
using JPublisher, 354–57

generating wrapper method(s)
automatically, 366–71

inserting objects, 363–64

■INDEX706

manually adding method to generated
class, 358–60

overview, 358
reimplementing the object type

method, 358
performing DML using custom SQLData

classes, 361–66
overview, 361–62
selecting objects, 362–63
updating objects, 364–65

using type map to map object types to
Java classes, 360–61

writing wrapper method around the
object type method, 358–60

sqlerrm utility, 650
SQLException class, 110, 113, 130, 169, 236,

335
SQLInput class, 352
SQLJ, 347–48, 371
SQLOutput class, 352
SQLPATH environment variable, 4
standard update batching, 179–85. See also

update batching
example, 169–72
overview, 168–69

startTrace() method, 500
stateful environment, 604
stateless environment, 604
Statement batch, 168
Statement class, 41–42, 107–9, 111, 162, 185
Statement interface, 79, 87, 139, 141–50, 152,

168–69, 173, 213–14, 216, 221–22,
226, 240, 512

statement-level read consistency, 38
Statement.SUCCESS_NO_INFO constant, 168
static SQL, 651–52
statspack utility, 76
stored procedures, 187
stored SQL procedures, 187–89. See also

CallableStatement interface
storing data, using objects for, 289–301
String class, 325–26, 332, 337, 347, 360, 388,

392, 394, 397, 399, 471, 476
StringBuffer class, 31
strings utility, 588
strongly typed collection classes, 390
strongly typed interfaces, 345–46, 385
STRUCT class, 325–26, 329, 344, 387–88, 407,

409, 411, 434, 436
STRUCT interface, 88, 323–26, 328–33,

335–36, 341–42, 344–45, 409–11, 436
STRUCT objects, 409–11. See also weakly

typed struct objects
StructDescriptor class, 326, 335, 337, 339, 342
Structured Query Language (SQL), 33, 36–37,

40, 45–47, 52, 54, 57–58, 61, 64,
66–70, 73, 77, 81, 87, 277–78, 284,

292, 297, 301, 318, 323–26, 328, 335,
338–40, 343, 346, 348, 351–52,
355–57, 366, 368, 371–72, 384–85,
388–90, 392, 398, 408, 412, 414–15,
434, 436, 439, 449, 468, 492

substr function, 450
SYS user, 34–35, 298, 530, 540, 553, 580, 596,

654–55, 657, 659, 666
sys_context() function, 264–65
SYS_GUID() method, 613
sys_refcursor data type, 188, 328, 498
System Change Number (SCN), 37, 622, 623
System Identifier (SID), 92
system tablespace, 35
SYSTEM user, 34–35, 596
System.currentTimeMillis() method, 22
System.out method, 20

■T
table clause, 65
table keyword, 284, 286, 291, 297, 301, 307
tables. See application data tables; nested

tables; relational tables
tablespaces, 35, 448
tail command, 669
TCP/IP protocol, 81–82
tcsh shell, 4
temporary LOBs, 448, 452–56, 477–79
test for performance, 76
text files

using external tables to read, 485–86
using UTL_FILE PL/SQL package to read

from and write to, 480–83
thick drivers, 80
thin drivers, 80, 81

registering, 90–91
server-side, 81
on UNIX, 84–85
on Windows, 85

thin option, 91
Third-Generation Language (3GL), 81
this keyword, 280, 360
Three-tier architecture, 534
timed_statistics parameter, 1, 8
timeMethod() method, 227, 404, 426, 533
timeout property, 554
Timestamp class, java.sql package, 272
Timestamp interface, 325
TimeToLiveTimeout property, 550
timing option, 49
tkprof tool, 1, 8, 10–12, 47, 71, 75, 205, 669
TNS_ADMIN environment variable, 92
tnsEntry property, 100
tnsnames.ora file, 91–92, 94
to_number() function, 266
toDatum() method, 372
toString() method, 349

■INDEX 707

tostring option, 349
tracefile_identifier parameter, 9
Transaction isolation levels, 116, 559, 603–4
transaction_log table, 134, 136–37
TRANSACTION_NONE transaction isolation

level, 119
TRANSACTION_READ_COMMITTED

constant, 117, 119
TRANSACTION_READ_UNCOMMITTED

constant, 117, 119
TRANSACTION_REPEATABLE_READ

constant, 118, 119
TRANSACTION_SERIALIZABLE constant,

118, 119
transaction-level read consistency, 38
transactions

autocommit feature, 129–30
committing, 115
creating, 131
isolation levels, 116–24
overview, 115
releasing resources associated with, 132
rolling back, 116, 132
savepoints, 130–31
using, 131, 132–37

Transact-SQL, 578, 630
TRANSLATE clause, 351
Transparent Application Failover (TAF), 82
try catch block, 107–8, 121–22, 126, 134,

146–47, 153–54, 162, 170, 180, 196,
262, 331, 462, 470, 478, 490

TXN_ISOLATION constant, 559
Types class, 372

■U
Uniform Resource Locator (URL), 349, 592,

685–86
UNIX, 84–86, 92, 97, 347, 534, 588, 612, 630,

669
OCI driver on, 85–86
thin driver on, 84–85

update batching
example, 169–72, 173–75
vs. Oracle update batching, 179–82,

184–85
overview, 167, 168–69
vs. standard batching, 179–82, 184–85

update clause, 343
update statement, 37, 40, 58, 140, 148, 167,

209, 302, 305–8, 310, 313, 421, 582,
604, 613, 619, 645

url property, 99–100, 349
US7ASCII, 84
user command-line option, 354
user property, 98, 349
user_dump_dest parameter, 9
usertypes command-line option, 355

usertypes mapping option, 412
usertypes option, 349
util_file utility, 669
utils schema, 661
UTL_FILE package, 486–93, 642
UTL_FILE PL/SQL package

using to read from and write to binary file,
483–84

using to read from and write to text file,
480–83

■V
v_$process view, 530
v_$session view, 530
ValidateConnection Property, 551
value() function, 329, 331, 342, 362, 431
VARCHAR class, 347
VARCHAR2 class, 353
variables

bind variables, 39–44
object variables, 282

varray class, 283–86, 289–93, 301, 346, 392,
394, 397–99, 401, 424, 426

■W
W8DEC, 84
waitTillUserHitsEnter() method, 538, 552,

610, 615, 620
waitTillUserPressesEnter() method, 31
wasNull() method, 210, 212
weakly typed collection classes

java.sql.Array interface, 388–89
oracle.sql.ARRAY Class, 389–90
overview, 388

weakly typed struct objects
creating example database schema, 327–29
deleting objects, 344
overview, 323–24
performing DML operations using, 327–44

overview, 327
using oracle.sql.STRUCT to update

Oracle objects, 338–43
using struct interface to select Oracle

objects, 330–35
struct interface, 325–26

where clause, 40, 165, 255, 259, 261, 265, 271,
284, 297, 432, 605–6, 608–9, 613–14,
619

while loop, 213, 222, 225, 271, 332, 410, 462
WorkerThread class, 569–70
writeappend() method, 472
writeClob() method, 461
writeClobInChunks() method, 461
Writer object, 466

■X
X.509 certificate, 598

■INDEX708

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

