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a b s t r a c t 

Web traffic refers to the amount of data that is sent and received by people visiting online websites. 

Web traffic anomalies represent abnormal changes in time series traffic, and it is important to perform 

detection quickly and accurately for the efficient operation of complex computer networks systems. In 

this paper, we propose a C-LSTM neural network for effectively modeling the spatial and temporal in- 

formation contained in traffic data, which is a one-dimensional time series signal. We also provide a 

method for automatically extracting robust features of spatial-temporal information from raw data. Ex- 

periments demonstrate that our C-LSTM method can extract more complex features by combining a con- 

volutional neural network (CNN), long short-term memory (LSTM), and deep neural network (DNN). The 

CNN layer is used to reduce the frequency variation in spatial information; the LSTM layer is suitable 

for modeling time information; and the DNN layer is used to map data into a more separable space. 

Our C-LSTM method also achieves nearly perfect anomaly detection performance for web traffic data, 

even for very similar signals that were previously considered to be very difficult to classify. Finally, the 

C-LSTM method outperforms other state-of-the-art machine learning techniques on Yahoo’s well-known 

Webscope S5 dataset, achieving an overall accuracy of 98.6% and recall of 89.7% on the test dataset. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

As Internet technology develops and computers become more

popular, the importance of computer networks is increasing. Mas-

sive infrastructure based on complex networks and internet of

things (IoT) technology has a significant impact on society and the

economy ( Kim & Cho, 2017; Ronao & Cho, 2017 ). A large amount

of information is exchanged through web servers and a variety of

services are provided ( Huang & Huang, 2013 ). However, with the

increase in internet services, malicious attacks through networks

are gradually becoming more advanced and diversified. Various

network attacks can cause serious damage to web service oper-

ation, leading to social and economic losses ( Ahmed, Mahmood,

& Hu, 2016; Ronao & Cho, 2016a ). Table 1 lists several types of

common network attacks. Proactive management and prevention

of various attacks that threaten network infrastructure are essen-

tial ( Jiang, Xu, Zhang, & Zhu, 2014 ). 

Detection of traffic anomalies in web servers is a univariate

time-series classification problem. Using a specific window of the

primary sensor signal, one can extract differentiating f eatures to

recognize activity by using classifiers ( Zheng, Liu, Chen, Ge, & Zhao,

2014 ). However, it is very difficult to detect abnormal patterns us-
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ng statistical approaches because web traffic has different charac-

eristics depending on the type of service provided and user con-

ection patterns, and the distribution of patterns is very irregular

 Yu, Liu, Zhou, & Yu, 2014 ). Anomalies in these irregular patterns

an be categorized in three ways. Fig. 1 presents anomaly forms

rom the three different categories ( Ahmed & Mahmood, 2014 ). 

Fig. 1 (a) contains a point anomaly and refers to an instance in

hich an individual data sample is considered abnormal in relation

o the surrounding data. Fig. 1 (b) contains a contextual anomaly

nd refers to cases where a data instance is abnormal in a specific

ontext, but not otherwise. Fig. 1 (c) contains a collective anomaly,

here the collection of related data instances is exceptional as

 whole, even though individual values may be normal. Fig. 2

resents a diagram of attack-type and anomaly-type mapping. 

In addition, these abnormal patterns may contain both local and

lobal abnormalities. Although global anomalies can be easily iden-

ified by visual inspection, local anomalies have patterns similar to

hat of a normal signal, meaning detection based on outliers is dif-

cult ( Goldstein & Uchida, 2016 ). Fig. 3 presents two plots of web

raffic anomaly patterns. Fig. 3 (a) shows a local anomaly where

he anomaly exists inside the traffic and Fig. 3 (b) shows a global

nomaly in which the anomaly exists outside the traffic. 

Yahoo in the United States provides a dataset consisting of 367

ime series, each of which consists of 1500 data points, for a total

f 5,050,0 0 0 data points ( https://research.yahoo.com/ ). The dataset

ontains four classes: A1, A2, A3, and A4. The classes contain 67,

https://doi.org/10.1016/j.eswa.2018.04.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.04.004&domain=pdf
mailto:taeyoungkim@yonsei.ac.kr
mailto:sbcho@yonsei.ac.kr
https://research.yahoo.com/
https://doi.org/10.1016/j.eswa.2018.04.004
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Fig. 1. Three types of anomaly categorization. 

Table 1 

Types of network attacks. 

Network attack method Description 

Denial of Service (DoS) A malicious attack on a system that causes the 

system to consume extra resources, which 

negatively impacts its intended use. 

Probe Collects information about a target network or 

host and checks which devices are connected 

to the network. 

User to Root (U2R) An attempt to illegally access a managed 

account to modify, manipulate, or exploit a 

client’s critical resources. 

Remote to User (R2U) An attempt to obtain local user access on a 

target computer and gain permission to send 

packets over the network. 

Fig. 2. Anomaly and attack type mapping. 

Table 2 

Characteristics of the Yahoo Webscope S5 data. 

Class Real traffic Synthetic traffic Total length Total anomalies 

A1 O X 94,866 1669 

A2 X O 142,100 466 

A3 X O 168,0 0 0 943 

A4 X O 168,0 0 0 837 
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Fig. 3. Example plots of two patte
00, 100, and 100 files, respectively ( Laptev & Amizadeh, 2015 ).

lass A1 contains traffic data from actual web services, but classes

2, A3 and A4 contain synthetic anomaly data with increasing lev-

ls of complexity ( Thill, Konen, & Bäck, 2017 ). Table 2 contains the

haracteristics of the Yahoo Webscope S5 data. 

Fig. 4 presents a statistical analysis of the A1 class of the Yahoo

ebscope S5 dataset. The A1 class consists of 67 real web traffic

les and each file has a different distribution of traffic. Fig. 4 (a) is

 standard deviation graph based on the average of the normal-

zed amount of data in each file. From this graph, it can be seen

hat traffic for various services has different distributions. Fig. 4 (b)

hows the number of outliers and anomalies calculated in each

le. From this figure, we can see that it is hard to predict actual

nomalies by simply detecting statistical outliers. Therefore, it is

ery difficult to perform anomaly detection using statistical analy-

is techniques on files with different distributions. 

Recently, deep learning has been actively studied for image and

ignal processing applications. It is a technique that finds key func-
rns of web traffic anomalies. 
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Fig. 4. Statistical graphs for Yahoo Webscope S5 dataset A1 class. 
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tions in a large amount of data or very complex data through a

combination of several nonlinear transformation methods ( Chen &

Lin, 2014 ). Deep learning is best represented by two algorithms:

convolutional neural networks (CNNs) for image recognition and

recurrent neural networks (RNNs), which are mainly used for nat-

ural language processing and speech recognition ( Donahue et al.,

2015 ). CNNs have a local receptive field and shared weight ker-

nel, which can reflect spatial characteristics by extracting basic

visual features, such as oriented edges, end-points, and corners

( LeCun, Bottou, Bengio, & Haffner, 1998 ). An RNN has a very deep

structure that connects basic neural units in chronological order

and is typically effective for modeling sequential data by learn-

ing using gate units such as long short-term memory (LSTM) units

( Sak, Senior, & Beaufays, 2014 ). 

Also, the combination of CNN and LSTM layers is being stud-

ied to extract temporal and spatial features ( Zhou, Hu, Chen, &

Wang, 2018 ). Since speech recognition and natural language pro-

cessing have temporal and spatial information, the combination of

CNN and LSTM can effectively extract features ( Xu, Kong, Huang,

Wang, & Plumbley, 2017 ). Currently, these advantages are being

applied to classifying and predicting sensor data occurring in the

industrial domain ( Oehmcke, Zielinski, & Kramer, 2018 ). 

In this paper, we propose a C-LSTM neural network that com-

bines a CNN and RNN for automatic feature extraction and detec-

tion from web traffic signals. Web traffic data is recorded over time

and contains specific patterns of spatial and temporal information.

By recognizing such spatial-temporal information patterns, an ad-

ministrator can classify normal and abnormal patterns occurring in

traffic ( Paschalidis & Smaragdakis, 2009 ). 

Our proposed C-LSTM reduces the data spectrum by trans-

forming the temporal context using a relatively simple CNN layer.

The output of this CNN layer is used as the input for several

LSTM layers to reduce temporal variations. The output of the fi-

nal LSTM layer is then fed into several fully connected DNN layers,

making it easier to classify the output by adding functionality to

the data space ( Greff, Srivastava, Koutník, Steunebrink, & Schmid-

huber, 2017 ). Finally, we combine multiple scales of information

to explore whether or not further improvements can be made

( Sermanet & LeCun, 2011 ). In particular, we explore how to ex-

tract spatial features from time-series data by using a CNN. Passing

these features through the LSTM helps us to identify how temporal

modeling of spatial characteristics in data affects performance. We

i  

i  
lso explore the complementarity among the CNN, LSTM, and DNN

ayers. 

The proposed method is evaluated by using a 1D sequence traf-

c input signal, as shown in Fig. 5 , and the spatial and tempo-

al features in the sequence are extracted to achieve high per-

ormance. This is the first time a C-LSTM has been designed and

rained for anomaly detection in web traffic. We also provide a ba-

is for the empirical rules and principles of C-LSTM architecture

esign for detecting anomalies in web traffic. 

The remainder of this paper is organized as follows. In

ection 2 , we discuss the related work on web traffic anomaly

etection. Section 3 details the proposed C-LSTM neural net-

ork architecture. Section 4 presents experimental results and

ection 5 concludes the paper. 

. Related works 

As presented in Table 3 , many researchers have studied the

lassification of normal and abnormal patterns by extracting data

haracteristics in the field of abnormal sequence detection, such

s web traffic. Sequence anomaly detection approaches can be di-

ided into three categories: statistical modeling, temporal feature

odeling, and spatial feature modeling. 

Münz et al. used a K-means clustering algorithm to perform

nomaly detection in network traffic data ( Münz, Li, & Carle, 2007 ).

hey calculated the centroid of a cluster by analyzing the statisti-

al characteristics of real data and performed anomaly detection

y calculating the distance between a centroid and traffic value. As

 result, they obtained high classification performance for outliers

ith large Euclidean distances between normal and abnormal se-

uences. Zhang and Zulkernine used a random forest method to

xtract outlier patterns based on unsupervised learning ( Zhang &

ulkernine, 2006 ). They proposed a mathematical criterion to dis-

inguish between normal data and outliers using statistical algo-

ithms. Through this process, outliers were discovered using deci-

ion trees and anomaly detection was performed through an en-

emble technique. These methods achieve good performance at

lassifying statistical anomalies in web traffic data. However, there

s a disadvantage in that they cannot properly classify abnormal

raffic data with the same distribution as normal traffic data. 

Cheng et al. used preprocessed network traffic data with a slid-

ng window algorithm. They extracted temporal information by us-

ng an LSTM model on the preprocessed data ( Cheng et al., 2016 ).
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Fig. 5. 1D sequence traffic signal input. 

Table 3 

Related works on sequence anomaly detection. 

Category Author Year Data Method Description 

Statistical modeling Alizadeh, Khoshrou, and Zuquete (2015) 2015 Network traffic Gaussian mixture model Probabilistic model 

Münz, Li, and Carle (2007) 2007 Network traffic K-means clustering Classification using cluster 

centroids 

Zhang and Zulkernine (2006) 2006 Network traffic Random forest Unsupervised outlier 

pattern extraction 

Moore and Zuev (2005) 2005 Network traffic Naïve Bayes Bayes theorem assuming 

independence 

Temporal feature modeling Cheng et al. (2016) 2016 Network traffic Multi-scale LSTM Sliding window-based 

sequence classification 

Ding, Li, Batta, and Trajkovi ́c (2016) 2016 Network traffic SVM, LSTM Performance comparison 

using SVM and LSTM 

Malhotra et al. (2015) 2015 Multi-sensor data Stacked LSTM Using prediction error 

distribution 

Chauhan and Vig (2015) 2015 ECG signal LSTM Normal signal learning and 

prediction 

Spatial feature modeling Wang et al. (2017) 2017 Network traffic 1D CNN Image mapping and 

classification 

Zeng et al. (2014) 2014 Multi-sensor data 1D CNN CNN-based feature 

extraction 

Zheng et al. (2014) 2014 Medical sensor data Multi-channel DCNN Signal concatenation using 

multiple channels 

Ren and Wu (2014) 2014 EEG signal Convolutional DBN Scaling of high-dimensional 

data 
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alhotra et al. studied the LSTM model using sensor data with

 normal signal ( Malhotra, Vig, Shroff, & Agarwal, 2015 ). They

sed an LSTM model to predict future signals and then calculated

rror distributions using real signals to perform anomaly detec-

ion. These methods model the temporal features of sequence data

nd classify them using prediction-based algorithms. After learn-

ng only normal sequences using an RNN, the predicted traffic data

nd actual traffic data were compared and anomaly detection was

erformed based on a threshold value. This method has the ad-

antages of predicting web traffic data with periodicity and achiev-

ng high classification performance. However, if the pattern of the

eb traffic data does not have a certain period, the predicted traf-

c data does not properly classify the actual traffic data. 

Finally, Wang et al. created a specific pattern by mapping net-

ork traffic into a two-dimensional image ( Wang, Zhu, Wang,

eng, & Yang, 2017 ). A convolution operation was then applied and

he features of the image were extracted. Ren and Wu extracted
eatures using a convolutional algorithm on an EEG signal, which

s high-dimensional data, and classified ideal values using a gen-

rative graphical model called a deep brief network (DBN) ( Ren &

u, 2014 ). These methods model spatial features by mapping com-

lex sequences into images. CNN algorithms were mainly used to

xtract spatial features. These methods efficiently reflect the spa-

ial information in sequence data with complex patterns and have

btained the highest classification performance compared to pre-

ious studies. However, when extracting features from time series

ata, time information loss occurs in the convolution and pooling

perations. 

As described above, there have been many attempts to perform

nomaly detection in sequences using various methods, such as

tatistical, temporal, and spatial modeling. However, few attempts

ave been made to classify such sequences using spatial-temporal

nformation. Most studies have proposed anomaly detection mod-

ls that model only one important feature in the data. Therefore, a
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Fig. 6. The proposed detection structure. 
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proper learning method is required to perform anomaly detection

using both time information and spatial information from complex

web traffic sequences. 

3. The proposed method 

3.1. C-LSTM neural network 

The proposed C-LSTM consists of CNN and LSTM layers, and is

connected in a linear structure ( Zhou, Sun, Liu, & Lau, 2015 ). Fig. 6

presents the structure for anomaly detection of web traffic using

the proposed C-LSTM. The C-LSTM uses preprocessed data as in-

puts. The spatial features in the traffic window are extracted by

the convolution and pooling layers. The temporal features are then

extracted by the LSTM layers. The trained model then performs

anomaly detection on the test data using a softmax classifier. 

First, the CNN consists of several convolution and pooling lay-

ers, which are used to automatically extract higher-level sequences

of web traffic spatial features ( Masci, Meier, Cire ̧s an, & Schmidhu-

ber, 2011 ). These two-dimensional convolution operations utilize

several filter vectors that slide over the sequence and detect fea-

tures in order ( Ronao & Cho, 2016b ). A convolution layer is fol-

lowed by an activation function. This allows the CNN to capture

complex features in the input signal. 

Assume that x = ( x 1 , x 2 , ���, x n ) is a web traffic data input vec-

tor, n is the number of values per window, and x i is normalized

traffic values. i is the index of the feature value, and j is the index

of feature map for each traffic window. Eq. (1) derives the output

value y 1 
i j 

from the first convolution layer. y 1 
i j 

is calculated using the

value x 0 
i j 

from input data. b 0 
j 

represents the bias for the j th fea-

ture map, W is the weight of the kernel, M represents the size of

the filter, and σ is an activation function, such as tanh or ReLU.
q. (2) derives the output value y l 
i j 

from the l th convolution layer.

 

1 
i j = σ

( 

b 0 j + 

M ∑ 

m =1 

W 

0 
m, j x 

0 
i + m −1 , j 

) 

(1)

 

l 
i j = σ

( 

b l−1 
j 

+ 

M ∑ 

m =1 

W 

l−1 
m, j 

x l−1 
i + m −1 , j 

) 

(2)

The pooling layers decrease the spatial size of the representa-

ion to reduce the number of parameters and computational com-

lexity of the network. This also has the effect of preventing over-

tting. These layers effectively reduce spatial size by applying a

ax operation independently for each depth slice. Eq. (3) shows

he operation of a pooling layer. R is a pooling size of less than the

ize of the input y and T is the stride that determines how far to

ove the pooled area. Max pooling is a type of pooling that se-

ects the largest number in the subarea. It is effective to select the

argest value in the subarea, since it indicates a large activation

hen the feature exists. This pooling also achieves better perfor-

ance than average pooling or L2-norm pooling. 

p l i j = max 
r ∈ R 

y l−1 
i ×T + r, j 

(3)

In the LSTM layers, we use memory cells rather than simple

ecurrent units to store and output temporal features of web traf-

c data. This capability makes it simpler to understand temporal

elationships on large time scale. The output value of the previ-

us pooling layer is used as the input and the concept of gating is

pplied ( Hochreiter & Schmidhuber, 1997 ). Gating is a mechanism

ased on multiplication, where a component of the input defines

he behavior of each individual memory cell. Each LSTM unit up-

ates its cell state according to the activation of each gate and is
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Table 4 

The proposed C-LSTM architecture. 

Type #Filter Kernel size Stride # Param 

Convolution 64 5 1 384 

Activation (tanh) – – – 0 

Pooling – 2 2 0 

Convolution 64 5 1 20,544 

Activation (tanh) – – – 0 

Pooling – 2 2 0 

LSTM (64) – – – 262,400 

Dense (32) – – – 2080 

Activation (tanh) – – – 0 

Dense (2) – – – 66 

Softmax – – – 0 

Total number of parameters 285,474 

n  

o  

d  

i  

a  

a  

t  

o  

t  

t  

v  

f  

c  

c  

a  

i

3

 

t  

a  

m  

w  

(  

G  

m  

1  

G  

S  

w  

D  

3  

c  

g  

g  

A  

i  

0  

1  

i  

c  

t  

d  

5  

w

ontrolled by continuous values between 0 and 1. The inputs pro-

ided to the LSTM are fed into operations that control the input,

utput, and forgetting gates, which are managed in cell memory.

 t , which is the hidden value of the LSTM cell, is updated at every

ime step t . 

 t = σ
(
W pi p t + W hi h t−1 + W ci ◦ c t−1 + b i 

)
(4) 

f t = σ
(
W p f p t + W h f h t−1 + W c f ◦ c t−1 + b f 

)
(5) 

 t = σ ( W po p t + W ho h t−1 + W co ◦ c t + b o ) (6) 

Eqs. (4) –(6) use the notations i, f and o , which are the input,

orget, and output gates, respectively. Eqs. (7) and (8) use the no-

ations c and h , which are the cell state and hidden value, respec-

ively. These two values are determined by the outputs of the three

ypes of gates. σ is an activation function such as tanh. The term

 t is used as the input of a memory cell layer and is the output of

 pooling layer at time t. W is a weight matrix, b is a bias vector,

nd ◦ denotes the Hadamard product. Networks using LSTM cells

rovide superior performance through time information modeling

f signals, which has provided state-of-the-art results in anomaly

etection ( Ordóñez & Roggen, 2016 ). 

 t = f t ◦ c t−1 + i t ◦ σ ( W pc p t + W hc h t−1 + b c ) (7) 

 t = o t ◦ σ ( c t ) (8) 

The combination of a fully connected layer and softmax clas-

ifier can be utilized to detect anomalies in traffic. These are the

op-most layers of the C-LSTM system. The output of the LSTM unit

s flattened into a feature vector h 

l = ( h 1 , h 2 , … h n ), where n is the

umber of units in the last layer of LSTM. This vector is used as

he input to a fully connected layer. Eq. (9) is used in this layer. σ
s the activation function, W is the weight of the i th node in layer

 − 1 and the j th node in layer l , and b l−1 
i 

is a bias. d represents the

utput of a fully connected layer. 

 

l 
i = 

∑ 

j 

σ
(
W 

l−1 
ji 

(
h 

l−1 
i 

)
+ b l−1 

i 

)
(9) 

The output of the fully connected layer is classified as either

 or 1 by softmax. Eq. (10) calculates the classification probability

sed by the softmax layer. C is the activity class, L is the last layer

ndex, and N c is the total number of activity classes. The softmax

ayer classifies traffic test data into two classes: normal and abnor-

al. 

 ( c| d ) = argma x c∈ C 
exp 

(
d L −1 w 

L 
)

∑ N c 
k =1 

exp 

(
d L −1 w k 

) (10) 

.2. Architecture 

The design of the C-LSTM can include various structures de-

ending on various parameters, such as the number of CNN lay-

rs, the number of kernels, the number of layers of LSTM, and

he number of units of LSTM. These parameters can affect learning

erformance by extracting more characteristics of the training data

nd affect learning speed by increasing or decreasing the number

f parameters ( He & Sun, 2015 ). To determine the optimal architec-

ure for the C-LSTM, including parameters, one must understand

he characteristics of the input data. In our case, we wish to per-

orm anomaly detection on web traffic data. Because this data is

nput into the C-LSTM in the form of sequences of length 60 by us-

ng a sliding window algorithm with spatial-temporal information,

 kernel of size 5 should be used to minimize the loss of infor-

ation. Zero padding was used for the convolution operation and
ot used for the pooling operation. We designed the parameters

f the C-LSTM as listed in Table 4 . The input of the C-LSTM is a

ata vector of length 60 that passes through the LSTM after pass-

ng through the convolution and pooling layers. We used tanh as

n activation function of C-LSTM. Tanh is a function that rescales

nd shifts the sigmoid function, so that tanh is faster in learning

han sigmoid when it is used as an activation function. There is an-

ther activation function like ReLU other than tanh. ReLU computes

he function f ( x ) = max (0, x ). In other words, it thresholds the ac-

ivation at zero. Its advantage is that it greatly accelerates the con-

ergence of the stochastic gradient descent compared to the tanh

unction, which is claimed to be due to its linear form. Also, when

ompared to a tanh neuron containing expensive operations, ReLU

an be computed with a simple operation. Although the proposed

rchitecture uses tanh, there could be improvements with ReLU or

ts relatives. 

.3. Hardware and software setup 

We used the following hardware and software to detect web

raffic anomaly using C-LSTM. We used four GeForce GTX1080 GPU

nd one Intel Xeon E5 CPU for C-LSTM learning. High perfor-

ance hardware is required because the maximum size of the net-

ork that can be trained depends on the performance of the GPU

 Krizhevsky, Sutskever, & Hinton, 2012 ). Four GeForce GTX1080

PUs have 8 gigabytes of RAM, 2560 CUDA cores, and a maxi-

um bandwidth of 320 GB/sec. The Intel Xeon E5-2680V4 CPU has

4 cores and 28 threads and is powerful enough to run GeForce

TX1080 GPUs. We also used 64GB of DDR4 RAM and used the

amsung 960 PRO M.2 2280 2 TB SSD as a storage device. The soft-

are used to implement C-LSTM was installed with the Ubuntu

esktop 16.04.2 LTS operating system. We installed the NVIDIA

84.59 graphic driver to run the GPU. NVIDIA cuda 8.0.44 GPL Li-

ense 3.0 was installed as the GPU platform. The programming lan-

uage is Python 3.6.1, which is widely applied to artificial intelli-

ence for machine learning and deep learning. We also installed

naconda 4.4.0 for large-scale data processing, predictive analyt-

cs, and scientific computing. We used numpy 1.13.1 and pandas

.20.1 libraries to simplify matrix operations. The tensorflow-gpu

.2.1 and keras 2.0.6 libraries were used to run deep learning us-

ng the GPU. In particular, using the keras library, the researcher

an easily configure the network model because it includes func-

ions such as data preprocessing, and parameter tuning as well as

eep learning layers in block form. We have trained C-LSTM with

12 batch sizes for 500 epochs using the above hardware and soft-

are, and it took 769 seconds. 
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Table 5 

Performance comparison of different model combinations. 

Method Accuracy Precision Recall F1 score 

LSTM 92.9 82.4 39.8 53.7 

CNN 96.5 94.5 86.2 90.1 

LSTM + DNN 93.1 88.2 34.5 49.6 

CNN + DNN 96.7 95.1 86.5 90.6 

CNN + LSTM 97.1 95.4 87.6 91.3 

CNN + LSTM + DNN 98.6 96.2 89.7 92.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparison of accuracy from 10-fold cross validation. 

Table 6 

Confusion matrix. 

Predict true Normal Abnormal 

Normal 24,663 69 

Abnormal 264 (a) 2277 (b) 
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4. Experiments 

4.1. Yahoo S5 Webscope dataset 

In this paper, we used data from Yahoo, which is a company

that operates a US portal site. We utilized the A1 class of the Ya-

hoo Webscope S5 anomaly benchmark dataset, which consists of

67 files, to validate the proposed anomaly detection architecture.

The collected data is represented by time series of traffic measure-

ment values from actual web services in one hour units. Abnormal

values were labeled manually and the data has a relatively large

variation in traffic compared to other available datasets. There are

a total of 94,866 traffic values in 67 different files, but only 1669

of these values are abnormal. Therefore, traffic anomaly detection

is a problem with data imbalance. The data used has an unusu-

ally small ratio of 0.02% abnormal values, meaning the data im-

balance is severe ( Sainath, Vinyals, Senior, & Sak, 2015 ). Therefore,

we applied a sliding window algorithm to solve the data imbal-

ance problem ( Catania, Bromberg, & Garino, 2012 ). To test the pro-

posed method, 90,910 windows were created by applying the slid-

ing window algorithm and 8470 abnormal windows were labeled.

The inputs for the C-LSTM are values between 0 and 1, so we had

to preprocess the traffic values for anomaly detection. The values

were normalized using Eq. (11) . x represents the value of the actual

traffic data and x ′ represents the normalized value. 

x ′ = 

x − x min 

x max − x min 

(11)

4.2. Results and analysis 

4.2.1. Comparison to other machine learning algorithms 

In order to verify the usefulness of the proposed method, 10-

fold cross validation was performed to compare its performance

to those of other machine learning algorithms. We adjusted the

parameters to compare the highest performance of the machine

learning method with those of the proposed C-LSTM. Support vec-

tor machine (SVM) kernel was set to linear and L2-norm was used

as penalty. Loss was squared hinge and tolerance for stopping cri-

teria was set to 1e −4. The maximum number of iterations to be

run is set to 10 0 0. K-nearest neighbor (KNN) sets the number

of neighbors to 7. All points in each neighborhood are weighted

equally. Random forest set the number of trees in the forest to 20

and we used gini to measure the quality of the split. Gini is used as

entropy for information gain. The proposed C-LSTM has the high-

est performance compared to other machine learning methods, fol-

lowed by the random forest, multilayer perceptron (MLP), and KNN

algorithms. Fig. 7 shows the accuracy from 10-fold cross validation.

4.2.2. Performance comparison of model combinations 

Table 5 contains a performance comparison of different deep

learning model combinations. CNN, LSTM, and DNN were used as

baselines and experiments were conducted in all combinations of

the three models. Because the proposed C-LSTM model has a struc-

ture combining them, it achieved better performance than other

combinations. We also confirmed that modeling spatial and tem-

poral features using the CNN, LSTM, and DNN models yields better
erformance than other models ( Bell, Upchurch, Snavely, & Bala,

015 ). 

An error occurs if an abnormal instance is marked as a normal

nstance, or vice versa. The former type of error is a false negative

FN) and the latter is a false positive (FP). Similarly, a true posi-

ive (TP) occurs if a normal instance is correctly identified and a

rue negative (TN) occurs if an abnormal instance is correctly clas-

ified. In our experiments, the evaluation of individual algorithms

as performed using TP, TN, FP and FN rates. 

precision = 

T P 

T P + F P 
(12)

ecall = 

T P 

T P + F N 

(13)

The precision in Eq. (12) is the percentage of relevant instances

mong all retrieved instances and the recall in Eq. (13) is the

ercentage of relevant instances retrieved among all relevant in-

tances. Recall is a particularly important metric for anomaly de-

ection because it represents the ratio of the number of abnormal-

ties found over the total number of abnormal instances. 

 1 Score = 2 × precision × recall 

precision + recall 
(14)

Using precision and recall, we can derive an F1 score, as shown

n Eq. (14) . We quantitatively compared the test results using these

valuation criteria. Table 5 contains the results of comparative ex-

eriments using the above metrics. Fig. 8 presents the cross en-

ropy and accuracy per experimental epoch of the C-LSTM, CNN,

nd L STM models. C-L STM has the highest accuracy and lowest

ross entropy. 

.2.3. Misclassification data analysis 

Table 6 represents the confusion matrix for the C-LSTM model.

ecause data imbalance in the anomalous traffic detection problem

s significant, it is important to classify a small number of abnor-

al data instances very accurately. Table 6 contains the results of

lassifying 30% of the data as test data after training the C-LSTM

sing 70% of the data as training data. 
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Fig. 8. Cross entropy and accuracy per epoch. 

Fig. 9. Number of misclassifications for each anomaly value position. 
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Fig. 10. Number of misclassifications of each kinds of anomalies. 
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s  
(a) is the number of classification failures of actual anomalies,

nd (b) is the number of traffic windows containing successful

nomaly detection. It is important to analyze (a) in order to under-

tand the characteristics of misclassification. For this analysis, traf-

c windows of length 60 were divided into 6 segments and cate-

orized based on the anomaly locations within each window. Fig. 9

llustrates the number of misclassifications for each abnormal posi-

ion with respect to (a). When the abnormal position is located at

ither end of the traffic window, there is a tendency to misclassify.

n contrast, when the abnormal value was located at the center,

e confirmed that the number of misclassifications decreased. We

lso analyzed the types of anomalies in (a). Fig. 10 shows the num-

er of point anomaly, contextual anomaly, and collective anomaly

hat were not detected by C-LSTM. Analysis showed that it was the

ost difficult to detect the context anomalies, followed by point

nomalies and collective anomalies. 

.2.4. Internal analysis of C-LSTM model 

Deep learning has the disadvantage that we cannot interpret

he learning process. We cannot fully understand the network, but

e used a visualization approach to see how some of the behav-

ors of the architecture work. Through the visualization, we can see

ow the input data changes in each layer. Fig. 11 shows the inter-

ediate outputs of the CNN in the C-LSTM system. Each CNN layer

onsists of 64 kernels, each of which has a different weight. Each

ernel is a weighting matrix for filtering the spatial characteristics

f web traffic by applying convolution operations to the web traf-

c signals. An input window produces a different output for each

ernel. A window of length 60 is reduced in size to a length of 15
y the convolution and pooling operations. However, we confirmed

hat the spatial-temporal characteristics of the input window were

aintained. C-LSTM has a structure in which CNN and LSTM are

inearly connected. Therefore, it is important to minimize the loss

f the temporal and spatial information of the web traffic signal in-

ut to the CNN layer and transmit it to the LSTM layer. We show in

ig. 11 that each kernel filter on the CNN layer reduces the noise

f the web traffic data. The intermediate output filtered by ker-

el A and B preserves both local and global features, even though

he noise is reduced. Web traffic anomalies occur locally and glob-

lly, it is important to preserve features by the kernel. We assumed

hat the features extracted through convolution operations can be

assed to the LSTM layer to help classify various anomalies. The

isualization is useful for analyzing the intermediate output of the

-LSTM. 

.2.5. Cluster analysis through t-SNE 

Fig. 12 is a visualization of the last fully connected layer based

n t-distributed stochastic neighbor embedding (t-SNE). t-SNE is a

echnique for visualizing high-dimensional data through dimension

eduction ( Maaten & Hinton, 2008 ). We confirmed that anomaly

etection was successfully accomplished based on the cluster as

hown in Fig. 12 . Green indicates normal window and red indi-

ates abnormal window. Through t-SNE visualization, we can see

hat data with similar characteristics form clusters. Since normal

indows are composed of various characteristics, they form sev-

ral clusters. We can see that abnormal windows form a cluster as

hown in the left of Fig. 12 . Analysis of the cluster characteristics



74 T.-Y. Kim, S.-B. Cho / Expert Systems With Applications 106 (2018) 66–76 

Fig. 11. C-LSTM intermediate outputs for various kernels. 

Fig. 12. Visualization of the final fully connected layer based on t-SNE. 
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revealed that the cluster with anomalies on the left is mostly lo-

cated at the center of a window or is clearly distinguished from

normal values. In contrast, in the case of the cluster on the right,

we can see that it consists of normal and abnormal windows. In or-

der to detect anomalies in web traffic, a sliding window is applied.

Even if there is an abnormal value at the end of the window, the
bnormal label is included. If an abnormal value exists at the end

f a window, it is labeled as an abnormal window. In the case of

he abnormal window with a similar distribution to normal values,

he anomaly frequently occurred at either end of the window. It

s difficult to distinguish point, contextual, and collective anomaly

hen abnormal value is located at the end of window. 
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Table 7 

Additional experiments: compare with other deep learning methods. 

Method Accuracy Precision Recall F1 score 

LSTM 95..9 63.8 14.1 23.1 

GRU 95.9 63.1 11.6 19.6 

CNN 97.2 98.5 96.9 97.7 

C-LSTM 98.7 95.9 98.5 97.2 
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.2.6. Additional experiment 

We have experimented with the twitter data provided by Nu-

enta ( Lavin & Ahmad, 2015 ). Twitter data is web traffic that rep-

esents a collection of Twitter mentions of large publicly-traded

ompanies like Google and IBM. Anomaly in Twitter data is man-

ally labeled. Anomaly detection is a data imbalance problem.

herefore, to solve the data imbalance problem, the sliding win-

ow algorithm was applied to label the abnormal window. Twit-

er data has a total of 158,036 traffic windows, of which 2100 are

nomaly windows. The experiment classifies normal and abnormal

indows. Table 7 shows that C-LSTM performance achieves higher

ccuracy and recall compared to other competing approaches such

s CNN and LSTM. 

Even though the precision and F1 scores are lower com-

ared to CNN, the recall performance, which is a metric of ob-

erved anomaly, represents the possibility for detecting web traf-

c anomalies. Although C-LSTM is not always the best for all web

raffic data, there is the possibility of improvement for anomaly

etection. 

. Conclusion 

We proposed a C-LSTM architecture for anomaly detection

n web traffic. We found an optimal model through parametric

xperiments, model comparison experiments, and data analysis.

e demonstrated the usefulness and superiority of the proposed

odel by comparing it to other machine learning methods. It can

etect various anomalies in complex network streams. We used

he C-LSTM to automatically extract patterns in web traffic data

ontaining spatial-temporal information. A confusion matrix and

-SNE analysis revealed the characteristics of normal and abnor-

al data classified by the C-LSTM. The C-LSTM model proposed

n this paper classifies and extracts features that could not be ex-

racted in previous anomaly detection studies using the conven-

ional machine learning methods. However, its accuracy tends to

ecrease when detecting abnormal values generated at the bound-

ries of preprocessed data windows. Additionally, because the pro-

osed method preprocesses data using a sliding window, there is

 delay for detecting anomalies in real data. This issue remains a

hallenge to be addressed in the future. Further research is also

equired to automatically find the optimal parameters for the C-

STM system. 
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