Explanation-Based Approximate Weighted Model Counting
for Probabilistic Logics

Joris Renkens and Angelika Kimmig and Guy Van den Broeck and Luc De Raedt
KU Leuven
Celestijnenlaan 200A
3001 Heverlee - Belgium

Abstract

Probabilistic inference can be realized using weighted model
counting. Despite a lot of progress, computing weighted
model counts exactly is still infeasible for many problems
of interest, and one typically has to resort to approxima-
tion methods. We contribute a new bounded approximation
method for weighted model counting based on probabilistic
logic programming principles. Our bounded approximation
algorithm is an anytime algorithm that provides lower and
upper bounds on the weighted model count. An empirical
evaluation on probabilistic logic programs shows that our ap-
proach is effective in many cases that are currently beyond
the reach of exact methods.

1 Introduction

During the last few years there has been a significant inter-
est in statistical relational learning (Getoor and Taskar 2007;
De Raedt et al. 2008) and probabilistic databases (Dalvi
and Suciu 2004), leading to the definition of many expres-
sive probabilistic logical languages such as Markov Logic
(Richardson and Domingos 2006), PRISM (Sato 1995) and
ProbLog (De Raedt, Kimmig, and Toivonen 2007). It is by
now well-known that probabilistic inference for such lan-
guages corresponds to weighted model counting (WMC)
on weighted logical formulae (Darwiche 2009; Fierens et
al. 2011). Knowledge compilation (Darwiche and Marquis
2002) is an effective and popular technique for WMC. It es-
sentially compiles the weighted logical formulae into logical
circuits on which inference can be performed efficiently.

Despite a lot of progress in knowledge compilation and
other probabilistic inference techniques, inference remains
the bottleneck when facing real-life problems and doing ap-
plications. One often has to resort to approximate infer-
ence methods, typically employing some form of sampling.
While sampling is often effective, current sampling methods
do not give strong guarantees (in the form of bounds on the
computed probabilities).

The key contribution of this paper is the introduction of
a novel anytime approximate inference method for WMC
using knowledge compilation that provides bounds on the
computed probabilities. The technique is inspired by prob-
abilistic logic programming techniques due to (Poole 1993;

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

De Raedt, Kimmig, and Toivonen 2007; Renkens, Van den
Broeck, and Nijssen 2012), where bounds were derived
based on a subset of proofs (or explanations) instead of all
proofs, with the actual subset depending on the search strat-
egy employed. Rather than taking a logic programming per-
spective, however, this paper takes a weighted model count-
ing and knowledge compilation perspective. This potentially
opens the way to develop WMC approximation techniques
for other types of probabilistic formalisms such as Markov
Logic and Bayesian networks.

Our technique is empirically evaluated on a number of
benchmark problems. The experiments provide evidence
that it is effective for probabilistic languages working under
Sato’s distribution semantics (Sato 1995), whose probabil-
ity distribution over possible worlds is defined using a basic
distribution over extensional probabilistic facts (sometimes
called atomic choices) which then, together with a logic pro-
gram, induces a distribution over the intensionally defined
atoms. Thus, under Sato’s distribution semantics, the truth-
values of a limited number of extensional probabilistic facts
determine the probability of the possible worlds. This is un-
like Markov Logic, where most formulae are soft and the
truth-value of one atom therefore typically depends on that
of almost all other atoms.

The structure of the paper is as follows. We first formal-
ize the problem and discuss the basic solution idea in Sec-
tion 2. Section 3 defines the central concept of explanation,
and Section 4 introduces the algorithm as used in the exper-
iments in Section 7. Section 5 positions our approach with
respect to WMC in general, and Section 6 discusses related
work.

2 Background

Many probabilistic programming languages, including
PRISM (Sato 1995), ICL (Poole 1997), ProbLog (De Raedt,
Kimmig, and Toivonen 2007) and LPADs (Vennekens, Ver-
baeten, and Bruynooghe 2004), are based on Sato’s distribu-
tion semantics (Sato 1995). They start from a set of proba-
bilistic independent choices (ground atoms) and define fur-
ther derived predicates using logic programs. In such a pro-
gram, each ground atom corresponds to a random variable.
We will call the probabilistic choices extensional variables
E and the derived atoms intensional variables I.

Example 1. Let us define two extensional variables headl

and head?2, representing two biased coin flips. The game
is won when the two coin flips have the same outcome. We
use the ProbLog notation where the extensional variables are
ground facts annotated with their probability and the inten-
sional variables are defined using a logic program.

0.4::headl.

0.7::head2.

twoHeads :- headl, head2.
twoTails :— not headl, not head2.
win :- twoHeads; twoTails.

The probability of each truth assignment to the exten-
sional variables is obtained as the product of the probabil-
ity of the individual assignments. If the fact is true, it con-
tributes the corresponding probability; if it is false it con-
tributes 1 minus the probability of the fact. The truth values
for the intensional variables are derived by logical deduction
using the logic program. This process results in a model of
the theory. A typical query in probabilistic logic program-
ming languages asks for the marginal probability of a query
atom q given the theory A: P(q|A), which is defined as the
sum of the weights of the models of the theory in which the
query is true. It is well known that this probability can be
computed using weighted model counting.

Definition 1. (Weighted Model Count) Let ¢ be a propo-
sitional logic formula over variables V, w be a weight func-
tion that assigns a positive (real) weight value to each literal
v and —w (with v € V), and Z(V) the set of interpretations
of V, that is, the set of all possible truth value assignments
to variables in V. The weighted model count (WMC) of ® is

>, v

i€Z(V),il=® l€i

WMCy (®) =

The probability P(q|A) can be computed as WMC(®P),
where @ is a propositional representation of g A A, and the
weight function is w(v) = p, and w(—v) = 1 — p, for the
variables v € E, and w(v) = w(—w) = 1 for the variables
v € I, cf. (Fierens et al. 2011) for more details on this trans-
formation. In the remainder of this paper, when the set of
variables over which to do WMC is omitted, we assume it
consists of the variables present in the formula.

Example 2. In our example, we obtain the following propo-
sitional formula (where we abbreviate names of proposi-
tional variables based on the names of logical atoms) and
weight function for WMC.

th <> h1 N\ h2
tt <> —~h1 A —h2
win <> th V tt

true | false
hi 04 0.6
h2 0.7 0.3

th 1 1
tt 1 1
win 1 1

P+ false

while time < mazTime do
e < nextExpl(A A q)
P 1PVe

end

return WMCy (4 (1))

Algorithm 1: Computing a lower bound on
WMC(A A q) given a time budget maxzTime.

A popular and effective approach to WMC is by knowl-
edge compilation: ® is compiled into a graph structure
on which the WMC can be computed efficiently (Dar-
wiche and Marquis 2002). However, since WMC is a #P-
complete problem, compilation often is infeasible in prac-
tice, and approximation methods are needed. The approxi-
mation technique proposed here is sketched in Algorithm 1.
It is based on (De Raedt, Kimmig, and Toivonen 2007;
Renkens, Van den Broeck, and Nijssen 2012) where a for-
mula ¢ in disjunctive normal form (DNF) is used to approx-
imate WMC(A Aq). Each explanation e in this algorithm
is a conjunction of extensional variables that satisfies A A g.

Since the intensional variables do not influence the WMC,
they can be excluded from the calculations. And since every
model of an explanation e represents a model in which q
is true, its WMC has to be a lower bound: WMCg(e) <
WMC(A A q). Furthermore, taking the disjunction of two
explanations is equivalent to taking the union of the models
of the two explanations. This means that the WMC of ¢
will never decrease by adding an explanation and since the
number of explanations is finite, it will converge to the actual
WMC.

Example 3. In our running example, there are two possi-
ble explanations when calculating WMC(A Awin): e =
h1 Ah2 and e = —h1 A—h2. Both explanations entail win
relative to theory A, that is, A Ae; = A Awin. Therefore,
WMC(A Ae;) < WMC(A Awin). By taking the disjunc-
tion e V es of these two explanations, all models of A Awin
are accounted for and we have WMC(A A(e; Veg)) =
WMC(A Awin). A further important observation is that
the weight of all the intensional variables is identical (here
equal to 1) in all models, which allows us to simplify
WMC(A A(eg Ves)) =c- WMCg(eg Veg) (with e = 1).

The WMC of a disjunction of explanations is typically
much easier to compute than that of the original formula
since it has fewer variables. In the next section we present a
formal framework for explanations that guarantees that the
WMC can be simplified and bounded.

3 Explanations

Let us now formally introduce the notion of an explana-
tion used in the algorithm sketched above. Our definitions
are motivated by probabilistic logic programming languages
(PLP) and databases. In such languages, the truth values of
the extensional variables (or predicates) determine the truth
values of the intensional ones (through some fixpoint com-
putation), and the probability of a world is a function of only

its extensional variables. In this and the next section, we fo-
cus on WMC problems in this context; a discussion of the
general case can be found in Section 5.

For WMC problems generated by probabilistic logic pro-
grams, this separation of variables translates into the notion
of an intensional split. Although the formulae for WMC are
generally provided in CNF, we will use equivalences for the
sake of readability. It is trivial to transform them into CNF.

Definition 2 (Intensional Split). An intensional split of a
WMC problem with theory ® over variables V is a tuple
(E,I, A,T), consisting of an ordered set of intensional vari-
ables 1 = {dy,...,dr} C V, a set of extensional variables
E = V\ 1, a defining theory A and a constraining theory T',
such that

(i) ®=ANT,
(i) A= Aj_(dj < ay)
(iil) all o; range over the variables E U{d;1,...,dy}, and

(iv) all d; have uniform weights w(d;) = w(—d;) = 1.

The intuition is that for every value assignment to the ex-
tensional variables that satisfies I, there is exactly one possi-
ble truth-assignment to the intensional variables that satisfies
the formula ®. In addition, the weight of a world is only a
function of the extensional variables.

Our algorithm will assume that an intensional split of the
theory is given. Starting from a probabilistic logic program,
the intensional split of its WMC problem is immediately
clear: the extensional variables are the groundings of prob-
abilistic facts, and the intensional variables are the ground-
ings of the heads of clauses. The constraining theory con-
sists of queries and constraints, and the defining theory rep-
resents the grounding of Prolog clauses.

Example 4. In our running example, we have A exactly as
used so far, and I' = win.

Definition 3. (Explanation) An explanation e of a formula ®
with extensional split (E, I, A, T") is a conjunction of literals,
containing no variables from I, and at most one of v and —v
for every variable v € E, such that

ANel=T (1

Intuitively, an explanation fixes truth values of a subset
of the extensional variables that is sufficient to ensure that
the constraints I' are satisfied by all models of the explana-
tion together with the definitions, where the latter propagate
truth values from those extensional variables to the inten-
sional variables.

Example 5. In our example, an explanation has to satisfy
A Ae |= win, as already illustrated in Example 3.

Theorem 1. Given a theory & with intensional split
(E,L, A,T) and a disjunction of explanations e1 V ...V e,
for ®, we have

WMCy (P A(e; V... Vey)) = WMCg(e; V... Vey,) (2)
For a single explanation e,
WMCkg(e) = Hw(l) . H (w(v) +w(-w)) (3)
l€e veEE\ Ve

with V., denoting those variables occurring in e.

Proof outline. WMCvy (® Ae) sums the weights of all in-
terpretations ¢ for which ¢ |= ® Ae, or equivalently i =
A AT Ae. Such an interpretation has to agree with e on the
extensional variables fixed by the latter. By construction,
for every assignment to the extensional variables, there is a
single assignment to the intensional variables such that the
combination of the two is a model of A. All literals for
intensional variables have weight 1, and thus can be omit-
ted from the product (and the sum). By (1), every model of
A Ae is also a model of I". Equation (3) then follows by
distributivity. O

This shows that we can efficiently compute the WMC of
® A e for any given explanation e. We will discuss how to
find such explanations in the next section.

4 Algorithm

Given the notion of an explanation, we are now in a posi-
tion to define the algorithm that finds explanations, and that
iteratively computes bounds on our queries.

Explanation Finding

We now introduce the nextExpl method of Algorithm 1 to
find the next best explanation, that is, the explanation maxi-
mizing the WMC in Equation (3). It is based on a reduction
to a weighted partial max-SAT (WPMS) problem:

Given: a set of weighted clauses
WC = {w; : ¢; | with w; the weight of the clause ¢;}

Find: arg min,;c7(v) Zib&ci w;.

The goal of WPMS thus is to find an interpretation ¢ with
smallest (weighted) sum of violated clauses, where hard
constraints can be imposed by setting w = 0.

We transform a theory @ with intensional split (E, I, A, T")
into a WPMS W (®) as follows, where we introduce two
WPMS variables v and v~ for each variable v € V, in-
dicating that the value of v is fixed to true or false, respec-
tively:

1. assign weight oo to each formula in ®;
2. for all variables v € V:

e replace all positive literals v in ® by v™,
e replace all negative literals —v in ® by v,
e add oo : v~ vV —wt to ®;

3. for all variables v € I, replace oo :
0 : (vT & a)V (—vt A-vT)

(vt +) in ® by

4. for all variables v € E, add the following to :
(@) —log(w(v)): vt
(b) —log(w(—w)) : —~w~
(©) —log(w(v) +w(—w)) : vt Vo~

5. rewrite P to clausal form

Theorem 2. A solution of the WPMS W (®) encodes an ex-
planation of ® with maximal WMC.

Proof outline. Step 1 turns ® into hard constraints. Step 2
introduces the encoding which allows the WPMS solver to
leave the truth value of a variable open (by setting both v
and v~ to false), but at the same time excludes a contra-
dicting assignment (setting both v+ and v~ to true). Step 3
states that for each intensional variable, if it has a truth value
assigned, its definition needs to hold. All constraints up to
here are hard, and thus have to be satisfied by every assign-
ment. Step 4 adds the soft clauses influencing the minimiza-
tion. If a clause of type (a) is violated, v™ is true, and the
corresponding positive literal v is part of the explanation, in
which case the negative logarithm of its weight is added to
the sum to be minimized. Clauses of type (b) achieve the
same for negative literals. Clauses of type (c) cover vari-
ables that are not part of the explanation; these clauses are
violated if the variable is set neither true nor false. Exactly
one type of clause is violated for any legal assignment to
v* and v, and the sum becomes the negative logarithm
of Equation (3). Minimizing this logarithm is equivalent to
maximizing Equation (3). O

The solutions of the WPMS problem contain intensional
variables, which can simply be dropped since their truth val-
ues are implied by the extensional variables and the defini-
tions.

This reduction is the basis of procedure nextExpl, which
calls a weighted maxSAT solver on W (®) to produce the
next explanation. Once an explanation v; A. . . Av; A= 41 A

.. A\ =, has been found, we simply extend W (®) with the
hard constraint oo : —w; V...V -0 V-, V...V - in
order to avoid that the same explanation is found again, and
iterate. Note that this constraint does not guarantee that the
found explanations are mutually exclusive.

Computing Bounds

For arbitrary WMC tasks, we can use Algorithm 1 with an
implementation of nextExpl(.) based on the WPMS ap-
proach discussed above, that is, prior to each call, we add
a new hard clause corresponding to the last solution.

We can do better when WMC(A) represents a probabil-
ity distribution (WMC(A) = 1), as is the case in the PLP
setting. In this case we can calculate an upper bound by
calculating a lower bound on WMC(A A—q) and by us-
ing WMC(AAq) = WMC(A) — WMC(A A—q). Al-
gorithm 2 sketches an anytime algorithm based on these
observations, using the WPMS reduction to implement
nextExpl(.). It keeps updating the lower and upper bounds,
in each iteration adding a new explanation to the bound
whose last update resulted in the largest change in value.

5 Beyond Probabilistic Logic Programs

Of all existing WMC algorithms, exact and approximate,
our algorithm takes a rather unique position. Existing algo-
rithms, such as c2d (Darwiche 2004) and Cachet (Sang et
al. 2004), are intended to solve arbitrary WMC problems (in
CNF). This is partly their strength, as this permits their ap-
plication to Bayesian network, PLP, and Markov logic infer-
ence equally. Our algorithm applies to general WMC prob-
lems (as we discuss later). Yet, its main strength comes from

improveTop < 0.5

improveBot < 0.5

top < true

bot < false

up <1

low + 0

while time < maxTime do

if improveTop > improveBot then
e + nextExpl(A A—T)
next < WMC(top A —e)
improveTop < up — next
top < top \ —e

up < next

else

e < nextExpl(AAT)

next < WMC(bot V e)
improveBot < next — low
bot < bot Ve

low < next

end

end
return [low, up]

Algorithm 2: Computing lower as well as upper bounds
in the PLP setting given a time budget mazTime.

exploiting the presence of intensional variables and defini-
tions. This type of logical structure is found in WMC en-
codings of probabilistic logic programs. For example, in
the formulae for the GENES dataset used in the experiments
(Section 7), the number of intensional variables is on aver-
age three times that of extensional variables. This means that
using the intensional split can allow significantly smaller
explanations. However, intensional variables may not ap-
pear in arbitrary WMC problems, or encodings of other for-
malisms. The converse is also true: the generality of exist-
ing WMC solvers prohibits them from easily exploiting the
presence of definitions and intensional variables, and our al-
gorithm loses much of its appeal when applied to general
WMC problems.

This distinction between general-purpose solvers and
solvers that exploit structural properties of the WMC encod-
ing opens up new questions. Can we develop WMC solvers
that exploit structural properties of Bayesian network encod-
ings, or encodings of Markov logic networks? For Bayesian
networks alone, three different WMC encodings have been
proposed in the literature (Darwiche 2009), each with their
own intrinsic properties. In the future, we anticipate to see
more WMC solvers that exploit the properties of a specific
WMC encoding. To bridge the gap in the other direction,
we will now investigate the application of our algorithm to
general WMC problems.

Finding Intensional Splits

So far, we have assumed that an intensional split can be read
off directly from the probabilistic logic program that gener-
ated the WMC problem at hand. When presented with an
arbitrary WMC problem, not necessarily encoding a prob-

abilistic logic program, we can still use our algorithm. We
only need to provide an intensional split, which can be found
as follows. Starting with A = true and I = (), repeat-
edly delete a subformula (d <+ «) from theory ® for which
w(d) = w(—d) and neither d nor any of the variables in «
belong to I, conjoin this subformula to A and add the vari-
able d to I. Proceed until no further definitions can be found
in®. Thenl' =®and E = V\L

It is desirable to obtain the split that maximizes |I|, so
as to minimize the length of our explanations. In this re-
gard, the effectiveness of the split-finding procedure above
strongly depends on the order in which subformulae are se-
lected. In fact, we can show the following.

Theorem 3. Given a WMC problem, finding its intensional
split that maximizes | 1| is NP-hard.

Proof outline. The proof is by reduction from the maximum
independent set problem. Given a graph G = (V,&), an
independent set S C V' contains no two vertices that are
connected by an edge in £. The maximum independent set
problem is concerned with finding the independent set that
maximizes |.S|, and is NP-hard (Karp 1972).

We can encode a maximum independent set problem into
the problem of finding an optimal intensional split as fol-

lows. Let there be a set of variables V. = {vy,...,v,}
denoting the vertices V. Suppose that for every variable v
whose neighbors in G are denoted by variables ny, ..., ng,

theory ® contains the formula v <> n; V --- V ng. Sup-
pose further that w(¢) = 1 for all literals ¢. There is now
a one-to-one mapping between intensional splits of ® and
independent sets of G, where variables I of the split denote
an independent set of vertices. Indeed, no two can have an
edge between them, as this would violate property (iii) of
Definition 2. Conversely, every independent set has a cor-
responding intensional split whose I = S and E = V\S,
which can be verified by checking properties (i)-(iv) of Def-
inition 2. In this mapping, |S| = |I|, and we can solve the
NP-hard maximum independent set problem by finding the
intensional split that maximizes |I|.

Nonetheless, our algorithm works with any intensional
split, not only the one minimizing |I|, and approximately
optimal splits can be used in practice.

6 Related Work

Our approximate WMC algorithm is closely related, and
inspired by several approximation techniques developed in
the PLP community (Poole 1993; Kimmig et al. 2008;
Renkens, Van den Broeck, and Nijssen 2012). Their key
observation is that the probability of a probabilistic Prolog
query equals the probability of its proofs, and that this prob-
ability can be approximated, and bounded below by a subset
of the proofs. Whereas Kimmig et al. (2008) search for the
k proofs with the highest individual probability, Renkens,
Van den Broeck, and Nijssen (2012) search for the £ proofs
whose joint probability is maximized. They show that this
optimization problem is NP-hard. Luckily it is submodular,
and therefore easy to optimize greedily within bounds.

The key difference between the PLP techniques and our
approach is that we search for explanations of WMC prob-
lems, not for proofs. This has several advantages. Firstly,
while the PLP techniques work with probabilistic logic pro-
grams that have no negation or loops, our approach is obliv-
ious to which program generated the WMC problem it op-
erates on. The reductions from PLP to WMC of Fierens
et al. (2011) support negation and loops, and so does our
work. In fact, the need for approximate inference with such
programs is what motived us. Moreover, we can directly
benefit from any future extensions of these conversions, for
example supporting new PLP language concepts. Secondly,
support for negation directly allows us to approximate the
negation of a query. Our algorithm can therefore also com-
pute upper bounds on queries, which is not a feature of the
earlier algorithms. Thirdly, our approach obviates the need
to find individual Prolog proofs. Instead, it requires a PLP-
to-WMC conversion, which is very different in nature from
proof-finding, and an off-the-shelf WPMS solver.

This work follows a tradition of approximate knowledge
compilation and theory approximation (Selman and Kautz
1996). There, the goal is to approximate a theory ® below
and above such that ®;, = ® = D, and Py, Py allow
efficient logical query answering. We follow a similar ap-
proach to approximate WMC problems.

Finally, by reducing approximate inference to a WMC
task, our algorithm exploits local structure and determin-
ism. As such, it follows a long line of research on ap-
proximate model counting (Wei and Selman 2005; Gomes,
Sabharwal, and Selman 2006) and more general approx-
imate probabilistic inference algorithms that exploit lo-
cal structure and determinism (Poon and Domingos 2006;
Gogate and Dechter 2011).

7 Experiments

We experimentally evaluate our approximation algorithm as
given in Algorithm 2, focusing on two questions:

Q1: How does approximate inference compare to exact in-
ference in general?

Q2: How does approximate inference perform when exact
inference is not feasible?

Both approximate and exact inference use the PLP-to-WMC
conversion of Fierens et al. (2011) to obtain the theory @,
and compilation to SDDs (Darwiche 2011) to compute
WMCs. The WPMS solver used in approximate inference
is WPM1 (Ansétegui, Bonet, and Levy 2009). Experiments
are run on a 3.4 GHz machine with 16 GB of memory.

Our comparison uses two datasets. The first is WEBKB!,
where university webpages have to be tagged with classes.
The tag of a page depends on both its textual content as well
as the classes of the pages it links to. Following Fierens et
al. (2011), we select 150 pages, and we use the 100 most fre-
quent words only. Probabilities are chosen randomly from
[0.1,0.4]. This dataset contains 62 queries, and we give each
algorithm a time budget of five minutes per query. The sec-
ond dataset is the biological application of (Ourfali et al.

"http://www.cs.cmu.edu/~webkb/

yd /
40 . o 400) -
5 30 7 5 300 e
& e E e
g 20 e g 200 e
= 005 = ~
10 e 0.01 100 A 0.05
-~ 0.0001 2 o1
o ke . o L& 0.0001
0 10 20 30 40 0 100 200 300 400
nr exact nr exact
(a) WEBKB (b) GENES

Figure 1: Number of queries solved by exact inference (x-
axis) and by approximate inference with different thresholds
on approximation error (y-axis) over time.

2007), where the regulatory effect of a gene on another gene
has to be predicted based on combinations of different types
of molecular interactions. We refer to this dataset as GENES.
This dataset contains 500 queries, and we give each algo-
rithm a time budget of ten minutes per query.

For Q1, we focus on the queries for which exact inference
did return a result within the allocated time. On WEBKB,
exact inference solved 15 of the 62 queries, and approx-
imate inference converged to the exact value for four of
these. On GENES, exact inference solved 258 of the 500
queries, and approximate inference converged to the exact
value for 173 of these. We further consider three different
thresholds (0.05,0.01, 0.0001) on the quality of approxima-
tion as measured by the maximal error (i.e., half of the dif-
ference between the bounds). For each threshold, in Fig-
ures la (WEBKB) and 1b (GENES), we plot the number
of queries solved by exact inference at any point within the
time budget against the number of queries approximated to
at least the threshold quality at that time. For a maximal
error of 0.05, in both cases the approximate inference out-
performs the exact inference for any timeout. For smaller
error thresholds, the results for the two datasets differ. In the
case of WEBKB, approximate inference outperforms exact
inference initially, but exact inference solves more queries if
allowed more time. On GENES, exact inference solves more
queries initially, but is outperformed by approximate infer-
ence if more time is given. As an answer to Q1, we thus
conclude that although approximate inference is competitive
with exact inference, even when the allowed error is small, it
is hard to predict when approximate inference will do better.
A lot depends on the structure of the given program.

For Q2, we focus on the queries on which exact infer-
ence did not return a result within the allocated time (47 out
of 62 for WEBKB, 242 out of 500 for GENES). Figures 2a
(WEBKB) and 2b (GENES) show for each such query the re-
turned interval plotted around the average of the lower and
upper bound, ordered by increasing difference between the
bounds. Here, the trend is the same on both datasets. Our
algorithm achieves close approximations for most queries,
though there are also queries that are hard for this approach.
As an answer to Q2, we thus conclude that approximate in-
ference performs well on most of the queries, even when
exact inference is not feasible.

5 0.4 s 04
g 02 £ 02
e ,mmmHHHHH e

3 0 ““““JHH“““ 3 0
g 02 £ .02
S 04 S 04

0 10 20 30 40 50 0 50 100 150 200 250
query number query number
(a) WebKb (b) GENES

Figure 2: Interval sizes obtained by approximate inference
on queries not solved by exact inference within the time bud-
get.

8 Conclusions

We have proposed an anytime approximation algorithm for
WMC motivated by approximation techniques from prob-
abilistic logic programming. The explanation-based ap-
proach searches for conjunctions of literals whose WMC is
easy to calculate and can be used to approximate the WMC
of the original problem. Furthermore, explanations can be
combined to obtain a better approximation. The approach
has been used in an approximation algorithm that can calcu-
late hard bounds on the marginal probability for probabilis-
tic logic programs which has been tested empirically on two
datasets. The results show that the approximate inference
is competitive with exact inference and performs well, even
when exact inference is not feasible.

9 Acknowledgments

Joris Renkens is supported by the IWT (agentschap voor In-
novatie door Wetenschap en Technologie). Angelika Kim-
mig and Guy Van den Broeck are supported by the Research
Foundation-Flanders (FWO-Vlaanderen).

References

Ansotegui, C.; Bonet, M. L.; and Levy, J. 2009. Solving
(weighted) partial MaxSAT through satisfiability testing. In
Proceedings of the 12th International Conference on Theory
and Applications of Satisfiability Testing (SAT).

Dalvi, N. N., and Suciu, D. 2004. Efficient query evaluation
on probabilistic databases. In Proceedings of the 13th Inter-
national Conference on Very Large Data Bases (VLDB).

Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17(1):229-264.

Darwiche, A. 2004. New advances in compiling CNF
to decomposable negation normal form. In Proceedings

of the 16th Eureopean Conference on Artificial Intelligence
(ECAI).

Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press. Chapter 12.

Darwiche, A. 2011. SDD: A new canonical representa-
tion of propositional knowledge bases. In Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence (IJCAI).

De Raedt, L.; Frasconi, P.; Kersting, K.; and Muggleton, S.,
eds. 2008. Probabilistic Inductive Logic Programming —
Theory and Applications, volume 4911 of Lecture Notes in
Artificial Intelligence. Springer.

De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007.
ProbLog: a probabilistic Prolog and its application in link
discovery. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI).

Fierens, D.; Van den Broeck, G.; Thon, I.; Gutmann, B.;
and De Raedt, L. 2011. Inference in probabilistic logic
programs using weighted CNFs. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence (UAI).

Getoor, L., and Taskar, B., eds. 2007. An Introduction to
Statistical Relational Learning. MIT Press.

Gogate, V., and Dechter, R. 2011. SampleSearch: Impor-
tance sampling in presence of determinism. Artificial Intel-
ligence 175(2):694-729.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Model
counting: A new strategy for obtaining good bounds. In
Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI).

Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations. Springer.
85-103.

Kimmig, A.; Santos Costa, V.; Rocha, R.; Demoen, B.; and
De Raedt, L. 2008. On the efficient execution of ProbLog
programs. In Proceedings of the 24th International Confer-
ence on Logic Programming (ICLP).

Ourfali, O.; Shlomi, T.; Ideker, T.; Ruppin, E.; and Sha-
ran, R. 2007. SPINE: a framework for signaling-regulatory
pathway inference from cause-effect experiments. Bioinfor-
matics 23(13):1359-366.

Poole, D. 1993. Logic programming, abduction and proba-
bility. New Generation Computing 11:377-400.

Poole, D. 1997. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial Intelli-
gence 94(1-2):7-56.

Poon, H., and Domingos, P. 2006. Sound and efficient in-
ference with probabilistic and deterministic dependencies.
In Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI).

Renkens, J.; Van den Broeck, G.; and Nijssen, S. 2012.
k-Optimal: a novel approximate inference algorithm for
ProbLog. Machine Learning 89:215-231.

Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62:107-136.

Sang, T.; Bacchus, F.; Beame, P.; Kautz, H. A.; and Pitassi,
T. 2004. Combining component caching and clause learning
for effective model counting. In Proceedings of the 7th In-
ternational Conference on Theory and Applications of Sat-
isfiability Testing (SAT).

Sato, T. 1995. A statistical learning method for logic
programs with distribution semantics. In Proceedings of

the 12th International Conference on Logic Programming
(ICLP).

Selman, B., and Kautz, H. 1996. Knowledge compilation
and theory approximation. Journal of the ACM 43(2):193—
224,

Vennekens, J.; Verbaeten, S.; and Bruynooghe, M. 2004.
Logic programs with annotated disjunctions. In Proceedings
of the 20th International Conference on Logic Programming
(ICLP).

Wei, W., and Selman, B. 2005. A new approach to model
counting. In Proceedings of the 8th International Confer-

ence on Theory and Applications of Satisfiability Testing
(SAT).

