
Explanation of ara::com API
AUTOSAR AP Release 17-03

Document Title Explanation of ara::com API
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 846

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 17-03

Document Change History
Date Release Changed by Description

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

2 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Table of Contents

1 Preface 7

2 Introduction 8

3 Acronyms and Abbreviations 10

4 API Design Visions and Guidelines 11

5 High Level API Structure 12

5.1 Proxy/Skeleton Architecture . 12
5.2 Runtime Interface . 13
5.3 Datatype Abstractions . 13

6 API Elements 14

6.1 Proxy Class . 15
6.1.1 Constructor and Handle Concept 17
6.1.2 Finding Services . 20

6.1.2.1 Auto Update Proxy instance 21
6.1.3 Events . 25

6.1.3.1 Event Subscription and Cache Semantics 28
6.1.3.2 Monitoring Event Subscription 29
6.1.3.3 Event-Driven vs Polling-Based access 32
6.1.3.4 Buffering Strategies 35

6.1.4 Methods . 37
6.1.4.1 Event-Driven vs Polling access to method results . . 38
6.1.4.2 Canceling Method Result 43

6.1.5 Fields . 44
6.2 Skeleton Class . 47

6.2.1 Instantiation . 49
6.2.2 Offering Service instance . 49
6.2.3 Polling and event-driven processing modes 50

6.2.3.1 Polling Mode . 51
6.2.3.2 Event-Driven Mode 52

6.2.4 Methods . 53
6.2.5 Events . 56
6.2.6 Fields . 58

6.2.6.1 Registering Getters 60
6.2.6.2 Registering Setters 61
6.2.6.3 Ensuring existence of “SetHandler” 61
6.2.6.4 Ensuring existence of valid Field values 61

6.3 Runtime . 63

7 Appendix 64

7.1 Serialization . 64
7.1.1 Zero-Copy implications . 65

4 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

7.2 Service Discovery Implementation Strategies 66
7.2.1 Central vs Distributed approach 66

7.3 Multi-Binding implications . 69
7.3.1 Simple Multi-Binding use case 69
7.3.2 Local/Network Multi-Binding use case 72
7.3.3 Typical SOME/IP Multi-Binding use case 73

5 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Bibliography

[1] Specification of RTE Software
AUTOSAR_SWS_RTE

[2] Glossary
AUTOSAR_TR_Glossary

[3] Middleware for Real-time and Embedded Systems
http://doi.acm.org/10.1145/508448.508472

[4] Patterns, Frameworks, and Middleware: Their Synergistic Relationships
http://dl.acm.org/citation.cfm?id=776816.776917

[5] N3857: Improvements to std:: future< T> and Related APIs
https://isocpp.org/files/papers/N3857.pdf

[6] Serialization and Unserialization
https://isocpp.org/wiki/faq/serialization

[7] Copying and Comparing: Problems and Solutions
http://dx.doi.org/10.1007/3-540-45102-1_11

[8] SOME/IP Service Discovery Protocol Specification
AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol

6 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

http://doi.acm.org/10.1145/508448.508472
http://dl.acm.org/citation.cfm?id=776816.776917
https://isocpp.org/files/papers/N3857.pdf
https://isocpp.org/wiki/faq/serialization
http://dx.doi.org/10.1007/3-540-45102-1_11

Explanation of ara::com API
AUTOSAR AP Release 17-03

1 Preface

Typically, reading formal specifications isn’t the easiest way to learn and understand
a certain technology. This especially holds true for the Communication Management
API (ara::com) in the AUTOSAR Adaptive Platform. Therefore this document shall
serve as an entry point not only for the developer of software components for the
Adaptive Platform, who will use the ara::com API to interact with other application or
service components, but also for Adaptive Platform product vendors, who are going to
implement an optimized IPC binding for the ara::com API on their platform.

We strongly encourage both groups of readers to read this document at hand before
going into the formal details of the related SWS.

Since we do address two different groups, it is obvious that parts of the content is
more intended for the user of the API (application software developer), while parts are
rather intended for the IPC binding implementer (Adaptive Platform product vendor).
We address this by explicitly marking explanations, which are intended for the IPC
binding implementer. So our basic assumption is, that everything which is of interest to
the user of the API is also informative/relevant for the IPC binding implementer, while
parts explicitly marked as "detailed information for the IPC binding implementer" like
this:

Binding implementer hint

Some very detailed technical information ...

are no mandatory knowledge for the user for ara::com API. Nevertheless, the inter-
ested API user might also benefit from these more detailed explanations, as it will help
him to get a good understanding of architectural implications.

7 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

2 Introduction

Why did AUTOSAR invent yet another communication middleware API/technology,
while there are dozens on the market — the more so as one of the guidelines of Adap-
tive Platform was to reuse existing and field proven technology?

To fight the impression that it was just one instance of the not-invented-here-syndrome,
we have to point out, that existing technologies have been evaluated. Among those
were:

• ROS API

• DDS API

• CommonAPI (GENIVI)

• DADDY API (Bosch)

The final decision to come up with a new and AUTOSAR-specific Communication Man-
agement API was made due to the fact, that not all of our key requirements were met
by existing solutions:

• We need a Communication Management, which is NOT bound to a concrete
network communication protocol. It has to support the SOME/IP protocol but
there has to be flexibility to exchange that.

• The AUTOSAR service model, which defines services as a collection of provided
methods, events and fields shall be supported naturally/straight forward.

• The API shall support an event-driven and a polling model to get access to com-
municated data equally well. The latter one is typically needed by real-time ap-
plications to avoid unnecessary context switches, while the former one is much
more convenient for applications without real-time requirements.

• Possibility for seamless integration of end-to-end protection to fulfill ASIL require-
ments.

• Support for static (preconfigured) and dynamic (runtime) selection of service in-
stances to communicate with.

So in the final ara::com API specification, the reader will find concepts (which we
will describe in-depth in the upcoming chapters), which might be familiar for him from
technologies, we have evaluated or even from the existing Classic Platform:

• Proxy (or Stub)/Skeleton approach (CORBA, Ice, CommonAPI, Java RMI, ...)

• Protocol independent API (CommonAPI, Java RMI)

• Queued communication with configurable receiver-side caches (DDS, DADDY,
Classic Platform)

• Zero-copy capable API with possibility to shift memory management to the mid-
dleware (DADDY)

8 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

• Data reception filtering (DDS, DADDY)

Now, that we have justified the introduction of a new API to the readers (and ourselves),
we go into the details of the API in the upcoming chapters.

Just to point it out (again):

ara::com only defines the API signatures and its behaviour visible to the appli-
cation developer. Providing an implementation of those APIs and the underlying
middleware transport layer is the responsibility of the AUTOSAR AP vendor.

For a rough parallel with the AUTOSAR Classic Platform, ara::com can be seen as
fulfilling functional requirements in the Adaptive Platform similar to those covered in the
Classic Platform by the RTE APIs [1] such as Rte_Write, Rte_Receive, Rte_Send,
Rte_Receive, Rte_Call, Rte_Result.

9 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

3 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the explanation
of ara::com API that are not included in the [2, AUTOSAR glossary].

Abbreviation / Acronym: Description:
ctor C++ constructor
dtor C++ destructor
RT Realtime
IPC Inter Process Communication

Terms: Description:
Binding This typically describes the realization of some abstract concept

with a specific implementation or technology. In AUTOSAR for
instance we have an abstract datatype and interface model de-
scribed in the methodology. Mapping it to a concrete program-
ming language is called language binding. In the AUTOSAR
Adaptive Platform for instance we do have a C++ language bind-
ing. In this explanatory document we typically use the tech term
binding to refer to the implementation of the abstract (technology
independent) ara::com API to a concrete communication trans-
port technology like for instance sockets, pipes, shared memory,
...

10 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

4 API Design Visions and Guidelines

One goal of the API design was to have it as lean as possible. Meaning, that it should
only provide the minimal set of functionality needed to support the service based com-
munication paradigm consisting of the basic mechanisms: methods, events and fields.
The reader might (correctly) object that the notion "as lean as possible" is slightly fuzzy,
so this needs some explanation, what our — admittedly rather subjective — under-
standing of this term means: Essentially the API shall only deal with the functionality
to handle method, field and event communication on service consumer and service
provider implementation side. If we decided to provide a bit more than just that, then
the reason generally was "If solving a certain communication-related problem ABOVE
our API could not be done efficiently, we provide the solution as part of ara::com API
layer."

Consequently, ara::com does not provide any kind of component model or frame-
work, which would take care of things like component life cycle, management of pro-
gram flow or simply setting up ara::com API objects according to the formal compo-
nent description of the respective application. All this could be easily built on top of the
basic ara::com API and needs not be standardized to support typical collaboration
models.

During the design phase of the API we constantly challenged each part of our drafts,
whether it would allow for efficient IPC implementations from AP vendors, since we
were aware, that you could easily break it already on the API abstraction level, making
it hard or almost impossible to implement a well performing binding. One of the cen-
tral design points was — as already stated in the introduction — to support polling and
event-driven programming paradigms equally well. So you will see in the later chapters,
that the application developer, when using ara::com is free to chose the approach,
which fits best to his application design, independent whether he implements the ser-
vice consumer or service provider side of a communication relation. This allows for
support of strictly real-time scheduled applications, where the application wants to be
in total control of what (amount) is done when and where unnecessary context switches
are most critical. On the other hand the more relaxed event based applications, which
simply want to get notified whenever the communication layer has data available for
them is also fully supported.

The decision within AUTOSAR to genuinely support C++11/C++14 for AP was a very
good fit for the ara::com API design. For enhanced usability, comfort and a breeze of
elegance ara::com API exploits C++ features like smart pointers, template functions
and classes, proven concepts for asynchronous operations and reasonable operator
overloading.

11 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

5 High Level API Structure

5.1 Proxy/Skeleton Architecture

If you’ve ever had contact with middleware technology from a programmer’s perspec-
tive, then the approach of a Proxy/Skeleton architecture might be well known to you.
Looking at the number of middleware technologies using the Proxy/Skeleton (some-
times even called Stub/Skeleton) paradigm, it is reasonable to call it the "classic ap-
proach". So with ara::com we also decided to use this classical Proxy/Skeleton ar-
chitectural pattern and also name it accordingly.

Middleware Transport Layer

Service Interface
Definition

Client
Implementation

Service Proxy

Service
Implementation

Service Skeleton

generated from generated from

Client Application Service Application

Figure 5.1: Proxy Skeleton Pattern

The basic idea of this pattern is, that from a formal service definition two code artifacts
are generated:

• Service Proxy: This code is - from the perspective of the service consumer, which
wants to use a possibly remote service - the facade that represents this service
on code level. In an object-oriented language binding, this typically is an instance
of a generated class, which provides methods for all functionalities the service
provides. So the service consumer side application code interacts with this local
facade, which then knows how to propagate these calls to the remote service
implementation and back.

• Service Skeleton: This code is - from the perspective of the service implementa-
tion, which provides functionalities according to the service definition - the code,
which allows to connect the service implementation to the Communication Man-
agement transport layer, so that the service implementation can be contacted by
distributed service consumers. In an object-oriented language binding, this typi-
cally is an instance of a generated class. Usually the service implementation from

12 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

the application developer is connected with this generated class via a subclass
relationship. So the service side application code interacts with this middleware
adapter either by implementing abstract methods of the generated class or by
calling methods of that generated class.

More interesting details regarding the structure of ara::com Proxies and Skeletons
are shown in section section 6.1 and section 6.2. Regarding this design pattern in
general and its role in middleware implementations, see [3, 4].

5.2 Runtime Interface

Beside the APIs provided by proxies and skeletons, the ara::com API contains func-
tionality, which is about crosscutting concerns and therefore can not really be assigned
to proxy/skeleton domain. The approach in ara::com is to assign this kind of func-
tionality to a Runtime singleton class (see 6.3).

5.3 Datatype Abstractions

ara::com API introduces specific datatypes, which are used throughout its various
interfaces. They can roughly be divided into the following classes:

• Pointer types: for pointers to data transmitted via middleware

• Collection types: for collections of data transmitted via middleware

• Types for async operation result management: ara::com specific versions of
C++ std::future/std::promise

• Function wrappers: for various application side callback or handler functions to
be called by the middleware

ara::com defines signature and expected behaviour of those types, but does not pro-
vide an implementation. The idea of this approach is, that platform vendors could easily
come up with their own optimized implementation of those types. This is obvious for
collection and pointer types as one of the major jobs of an IPC implementation has
to deal with memory allocation for the data which is exchanged between middleware
users. Being able to provide their own implementations allows to optimize for their
chosen memory model. For most of the types ara::com provides a default mapping
to existing C++ types in ara/com/types.hpp. This default mapping decision could be
reused by an AP product vendor. The default mapping provided by ara::com even
has a real benefit for an product vendor, who wants to implement its own variant: He
can validate the functional behaviour of his own implementation against the implemen-
tation of the default mapping.

13 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

6 API Elements

The following subchapters will guide through the different API elements, which
ara::com defines. Since we will give code examples for various artifacts and pro-
vide sample code how to use those APIs from a developer perspective, it is a good
idea to have some uniformity in our examples. So we will use a virtual service (inter-
face) called "RadarService". The following is a kind of a semi-formal description, which
should give you an impression of what this "RadarService" provides/does and might be
easier to read than a formal AUTOSAR ARXML service description:

RadarService {

/ / types used w i t h i n se rv i ce
type RadarObjects {

a c t i v e : bool
ob jec ts : a r ray {

elementtype : u i n t8
s ize : v a r i a b l e

}
}
type Pos i t i on {

x : u in t32
y : u in t32
z : u in t32

}

/ / events prov ided by serv i ce
event BrakeEvent {

type : RadarObjects
}

/ / f i e l d s prov ided by serv i ce
f i e l d UpdateRate {

type : u in t32
get : t r ue
set : t r ue

}

/ / methods prov ided by serv i ce
method C a l i b r a t e {

param c o n f i g u r a t i o n {
type : s t r i n g
d i r e c t i o n : i n

}
param r e s u l t {

type : bool
d i r e c t i o n : out

}
}

method Adjus t {
param t a r g e t _ p o s i t i o n {

type : Pos i t i on
d i r e c t i o n : i n

14 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

}
param success {

type : bool
d i r e c t i o n : out

}
param e f f e c t i v e _ p o s i t i o n {

type : Pos i t i on
d i r e c t i o n : out

}
}

}

Figure 6.1: RadarService Definition

So the example service RadarService provides an event “BrakeEvent”, which con-
sists of a structure containing a flag and an variable length array of uint8 (as extra
payload). Then it provides a field “UpdateRate”, which is of uint32 type and supports
get and set calls and finally it provides two methods. Method “Adjust”, to position the
radar, which contains a target position as in-parameter and two out-parameters. One
to signal the success of the positioning and one to report the final (maybe deviating) ef-
fective position. The method “Calibrate” to calibrate the radar, getting an configuration
string as in-parameter and returning a success indicator as out-parameter.

6.1 Proxy Class

The Proxy class is generated from the service interface description of the AUTOSAR
meta model.

ara::com does standardize the interface of the generated Proxy class.The toolchain
of an AP product vendor will generate a Proxy implementation class exactly imple-
menting this interface. Note: Since the interfaces the Proxy class has to provide are
defined by ara::com, a generic (product independent) generator could generate an
abstract class or a mock class against which the application developer could implement
his service consumer application. This perfectly suits the platform vendor independent
development of Adaptive AUTOSAR SWCs.

ara::com expects proxy related artifacts inside a namespace "proxy". This name-
space is typically included in a namespace hierarchy deduced from the service defini-
tion and its context.

1 class RadarServiceProxy {
2 public:
3 /**
4 * \brief Implementation is platform vendor specific
5 *
6 * A HandleType must contain the information that is needed to create a

proxy.
7 * This information shall be hidden.
8 * Since the platform vendor is responsible for creation of handles, the

15 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

9 * ctor signature is not given as it is not of interest to the user.
10 */
11 class HandleType {
12 /**
13 * \brief Two ServiceHandles are considered equal if they represent the

same service instance.
14 *
15 * \param other
16 *
17 * \return
18 */
19 inline bool operator==(const HandleType &other) const;
20 const ara::com::InstanceIdentifier &GetInstanceId() const;
21 };
22

23 /**
24 * StartFindService does not need an explicit version parameter as this

is internally available in ProxyClass
25 * That means only compatible services are returned.
26 *
27 * \param handler this handler gets called any time the service

availability of the services matching the given
28 * instance criteria changes. If you use this variant of FindService,

the Communication Management has to
29 * continuously monitor the availability of the services and call the

handler on any change.
30 *
31 * \param instance which instance of the service type defined by T shall

be searched/found. Wildcards may be given.
32 * Default value is wildcard.
33 *
34 * \return a handle for this search/find request, which shall be used to

stop the availability monitoring and related
35 * firing of the given handler. (\see StopFindService())
36 **/
37 static ara::com::FindServiceHandle StartFindService(
38 ara::com::FindServiceHandler<RadarServiceProxy::HandleType> handler,
39 ara::com::InstanceIdentifier instance =
40 ara::com::InstanceIdentifier::Any);
41

42 /**
43 * Method to stop finding service request (see above)
44 */
45 static void StopFindService(ara::com::FindServiceHandle handle);
46

47 /**
48 * Opposed to StartFindService(handler, instance) this version is a "one-

shot" find request, which is
49 * - synchronous, i.e. it returns after the find has been done and a

result list of matching service instances is
50 * available. (list may be empty, if no matching service instances

currently exist)
51 * - does reflect the availability at the time of the method call. No

further (background) checks of availability
52 * are done.
53 *

16 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

54 * \param instance which instance of the service type defined by T shall
be searched/found. Wildcards may be given.

55 * Default value is wildcard.
56 */
57 static ara::com::ServiceHandleContainer<RadarServiceProxy::HandleType>

FindService(
58 ara::com::InstanceIdentifier instance =
59 ara::com::InstanceIdentifier::Any);
60

61 /**
62 * \brief The proxy can only be created using a specific handle which

identifies a service.
63 *
64 * This handle can be a known value which is defined at deployment or it

can be obtained using the ProxyClass::FindService method.
65 *
66 * \param handle The identification of the service the proxy should

represent.
67 */
68 explicit RadarServiceProxy(HandleType &handle);
69

70 /**
71 * \brief Public member for the BrakeEvent
72 */
73 events::BrakeEvent BrakeEvent;
74

75 /**
76 * \brief Public Field for UpdateRate
77 */
78 fields::UpdateRate UpdateRate;
79

80 /**
81 * \brief Public member for the Calibrate method
82 */
83 methods::Calibrate Calibrate;
84

85 /**
86 * \brief Public member for the Adjust method
87 */
88 methods::Adjust Adjust;
89 };

Figure 6.2: RadarService Proxy

6.1.1 Constructor and Handle Concept

As you can see in the figure Figure 6.2 ara::com prescribes the Proxy class to pro-
vide a constructor. This means, that the developer is responsible for creating a proxy
instance to communicate with a possibly remote service. The ctor takes a parame-
ter of type RadarServiceProxy::HandleType — an inner class of the generated
proxy class. Probably the immediate question then is: "What is this handle and how

17 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

to create it/where to get it from?" What it is, should be straightforward: After the call
to the ctor you have a proxy instance, which allows you to communicate with the ser-
vice, therefore the handle has to contain the needed addressing information, so that
the Communication Management binding implementation is able to contact the service.
What exactly this address information contains is totally dependent on the binding im-
plementation/technical transport layer! That already partly answers the question "how
to create/where to get it": Really creating is not possible for an application developer
as he is — according to AUTOSAR core concepts — implementing his application AP
product and therefore Communication Management independent. The solution is, that
ara::com provides the application developer with an API to find service instances,
which returns such handles. This part of the API is described in detail here: sub-
section 6.1.2. The co-benefit from this approach — that proxy instances can only be
created from handles, which are the result of a "FindService" API — is, that you are
only able to create proxies, which are really backed by an existing service instance.

18 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Binding implementer hint

When implementing an ara::com compliant binding, you have to decide what
information you embed into the implementation of your handle class and how you
react in your implementation of the proxy class ctor on the information embedded
into your handle implementation. To get the bigger picture you have to look at the
handle-type in the context of the Service Discovery mechanism (see section 7.2)
and to understand what Multi-Binding means (see section 7.3). When you have
implemented the Service Discovery functionality within your AP product and
therefore the functionality of subsection 6.1.2 you may most likely encounter those typ-
ical scenarios, when an ara::com application calls ProxyClass::FindService:

• the found service is located on a different node on the network
• the found service is located within a different application on the same node (within

the same AP infrastructure)
• the found service is located within the same process

To make matters worse: For an existing service type any of those cases may apply
at the same time — one instance of the service which the applications talks to is lo-
cally in the same process (this is not that strange if you think of large application with
much code re-use), one on the same ECU in a different process and one on a remote
ECU. We (ara::com design team) require that such a setup works seamlessly for the
ara::com user. By the way: this functionality is calledMulti-Binding as you have
a service abstraction in the form of a proxy class, which is bound to multiple different
transport bindings.
In all cases the application developer using ara::com interacts with instances of the
same Proxy class, where you provided the implementation. The somewhat obvious
expectation from an AP product is now, that it provides ways to communicate in those
different cases efficiently. Meaning that if the developer uses an proxy instance con-
structed from an instance of HandleType, which denotes the instance of the service
local to the proxy user, then the Proxy implementation should use a different technical
solution (in this case for instance a simple local function call / local in address space
copies) than in the case of an proxy constructed from an instance of HandleType
denoting a remote service instance.
In a nutshell : What the AP product vendor has to provide, is a Proxy class implemen-
tation, which is able to delegate to completely different transport layer implementations
depending on the information contained in the instance of HandleType given in the
ctor.

So the question which probably might come up here: Why this indirection, that me as
an application developer first have to call some ara::com provided functionality, to
get a handle, which I then have to use in a ctor call? ara::com could have given
back directly a proxy instance instead of a handle from "FindService" functionality. The
reason for that could be better understood, after reading how ara::com handles the
access to events (subsection 6.1.3). But what is sufficient to say at this point is, that a
proxy instance contains certain state. And because of this there are use cases, where
the application developer wants to use different instances of a proxy, all "connected" to

19 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

the same service instance. So if you just accept, that there are such cases, the deci-
sion for this indirection via handles becomes clear: ara::com can not know, whether
you — in the role as application developer — want always the same proxy instance
(explicitly sharing state) or always a new instance each time you trigger some "Find-
Service" functionality, which returns a proxy for exactly the same service instance. So
by providing this indirection/decoupling the decision is in the hands of the ara::com
user.

6.1.2 Finding Services

The Proxy class provides class (static) methods to find service instances, which are
compatible with the Proxy class.

Since the availability of service instances is dynamic by nature, as they have a life
cycle, ara::com provides two different ways to do a ‘FindService’ for convenience:

• StartFindService is a class method, which starts a continuous ‘FindService’
activity in the background, which notifies the caller via a given callback anytime
the availability of instances of the service changes.

• FindService is a one-off call, which returns available instances at the point in
time of the call.

Both of those methods have the instance parameter in common, which allows to ei-
ther search for an explicit instance of the service or any instance (which is the default
parameter value). The synchronous one-off variant FindService returns a container
of handles (see subsection 6.1.1) for the matching service instances, which might also
be empty, if no matching service instance is currently available. Opposed to that, the
StartFindService returns a FindServiceHandle, which can be used to stop
the ongoing background activity of monitoring service instance availability via call to
StopFindService. The first (and specific for this variant) parameter to StartFind-
Service is a user provided handler function with the following signature:

1 using FindServiceHandler = std::function<void(ServiceHandleContainer<T>)>;

Any time the binding detects, that the availability of service instances matching the
given instance criteria in the call to StartFindService has changed, it will call the
user provided handler with an updated list of handles of the now available service
instances. Note, that it is explicitly allowed, that the ara::com user/developer does
call StopFindService within the user provided handler. The handler needs not to be
re-entrant. This means, that the binding implementer has to care for serializing calls to
the user provided handler function.

20 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

6.1.2.1 Auto Update Proxy instance

Regardless whether you use the one-off FindService or the StartFindService
variant, in both cases you get a handle identifying the — possibly remote — service
instance, from which you then create your proxy instance. But what happens if the
service instance goes down and later comes up again e.g. due to some life cycle
state changes? Can the existing proxy instance at the service consumer side still be
re-used later, when the service instance gets available again? The good news is:
The ara::com design team decided to require this re-use possibility from the binding
implementation as it eases the typical task of implementing service consumers:

In the service based communication universe it is expected, that during the life time of
the entire system (e.g. vehicle) service provider and consumer instances are starting
up and going down again due to their own life cycle concepts frequently. To deal
with that, there is the service discovery infrastructure, where the life cycle of ser-
vice providers and consumers is monitored in terms of service offerings and service
(re)subscriptions! If a service consumer application has instantiated a service proxy in-
stance from a handle returned from some of the Find Service variants, the following
sequence might possibly occur:

Service Instance

ara::com App

Proxy

up
callMethod : success

Service Instance

ara::com App

Proxy

Service Instance

ara::com App

Proxy
callMethod : failed

Service Instance

ara::com App

Proxy

up
callMethod : success

down

down

Service Instance

ara::com App

Proxy

up

Auto Update Proxy Instance

T0

T1

T2

T3

T4

Figure 6.3: Auto Updating of Proxy Instance

Explanation of figure 6.3:

• T0: The service consumer may successfully call a service method of that
proxy and GetSubscriptionState() on subscribed events will return kSub-
scribed.

• T1: The service instance goes down, correctly notified via service discovery.

21 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

• T2: A call of a service method on that proxy will lead to an exception, since the
targeted service instance of the call does not exist anymore. Correspondingly
GetSubscriptionState() on any subscribed event will return kSubscrip-
tionPending (see also 6.1.3.2) at this point even if the event has been suc-
cessfully subscribed (kSubscribed) before.

• T3: The service instance comes up again, notified via service discovery infras-
tructure. The communication Communication Management at the proxy side
will be notified and will silently update the proxy object instance with a possibly
changed transport layer addressing information. This is illustrated in the figure
with transport layer part of the proxy, which changed the color from blue to rose.
The Binding implementer hint part below discusses this topic more detailed.

• T4: Consequently service method calls on that proxy instance will succeed again
and GetSubscriptionState() on events which the service consumer had
subscribed before, will return kSubscribed again.

This convenience behavior of a proxy instance saves the implementer of a service
consumer from either:

• checking for Runtime exceptions of service method calls and/or polling via Get-
SubscriptionState() on events, which indicates that service instance has
gone down

• re-triggering a one-off FindService to get a new handle.

or:

• registering a FindServiceHandler, which gets called in case service instance
gets down or up with a new handle.

and then to recreate a proxy instance from the new handle (and redo needed event
subscribe calls).

Note, in case you have registered a FindServiceHandler, then the binding im-
plementation must assure, that it does the ‘auto updating’ of existing proxy instances
before it calls the registered FindServiceHandler! The reason for this is: It shall
be supported, that the application developer can interact successfully with an exist-
ing proxy instance within the FindServiceHandler, when the handle of the proxy
instance is given in the call, signaling, that the service instance is up again. This ex-
pectation is shown in the following code snippet:

1 /** reference to radar instance, we work with, initialized during startup

*/
2 RadarServiceProxy *myRadarProxy;
3

4 void radarServiceAvailabilityHandler(ServiceHandleContainer<
RadarServiceProxy::HandleType> curHandles) {

5 for(RadarServiceProxy::HandleType handle : curHandles) {
6 if (handle.GetInstanceId() == myRadarProxy->GetHandle().GetInstanceId

()) {
7 /**

22 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

8 * This call on the proxy instance shall NOT lead to an exception,
regarding

9 * service instance not reachable, since proxy instance should be
already

10 * auto updated at this point in time.
11 */
12 ara::com::Future<Calibrate::Output> out = myRadarProxy->Calibrate(

"test");
13 // ... do something with out.
14 }
15 }
16 }

Figure 6.4: Access to proxy instance within FindService handler

23 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Binding implementer hint

For the binding implementer it is important to understand, that this ‘auto updat-
ing’ of existing proxy instances shall also work, when the low level transport level
addressing of the service instance has changed after it went down and up again!
Whether this might happen at all, fully depends on the transport layer binding imple-
mentation! For instance, if we have a SOME/IP network binding in place between
the proxy instance and the service instance implementation, after a service instance
restart, the port number under which the service instance can be reached, might
indeed have changed. Nevertheless the ‘auto updating’ of the proxy instance shall
seamlessly work! If you recall the discussion (see subsection 6.1.1 and section 7.3),
where we gave some hints, what a binding implementer could/would embed into
the proxy handle instance, then the question might come up, how it interferes with
the ‘auto updating’ in place? At the point in time the handle is generated by the
binding/discovery implementation AP product, most likely the initial transport layer
addressing information of the service instance will be encoded into the handle, so that
the proxy instance created from it, is able to contact the service instance.
Note, that this could be also a performance optimization for setups, where the transport
layer addressing information of the service instance remains constant throughout life
cycles! In this case you could do a service lookup once in the life time and store
the returned handle somewhere persistently. Anytime the service consumer starts up
again — instead of triggering one of the Find Service variants — it could directly
re-use the persisted handle to create the proxy instance. The optimization lies in the
fact, that no — eventually costly — discovery needs to be done first.
In case the proxy instance gets ‘auto updated’ behind the scenes as required by
ara::com, when the service instance gets re-offered, it might be the case — as we
did lay out above — that the transport layer addressing information has changed. This
would obviously mean, that the proxy instance after an update uses a different transport
layer addressing information than was contained in the handle from which the instance
has been formerly constructed! On the other hand this also means, that the user is
allowed to create a proxy instance from an outdated handle (outdated in the sense,
that the transport layer addressing information is now invalid). Here two different cases
have to be distinguished:

• at the time of construction of the proxy instance with this outdated handle, the
binding implementation is NOT aware of the new transport layer address. This
would have the effect, that directly AFTER the construction of the proxy with out-
dated addressing information, calls to the service instance may fail with excep-
tions. But at the time the service instance gets (re)offered and the new transport
layer addressing information of the instance is visible/known to the binding imple-
mentation of the AP product it shall apply the ‘auto update’ to the proxy instance
(updating with new transport layer address).

• at the time of construction of the proxy instance with this outdated handle, the
binding implementation is already aware of the new transport layer address and
uses this one instead.

The ‘auto update’ mechanism even has to work, if the service instance is changing
transport layer mechanism completely.

24 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

6.1.3 Events

For each event the remote service provides, the proxy class contains a member of a
event specific wrapper class. In our example the member has the name BrakeEvent
and is of type events::BrakeEvent. As you see all the event classes needed for
the proxy class are generated inside a specific namespace events, which is contained
inside the proxy namespace. The member in the proxy is used to access events/event
data, which are sent by the service instance our proxy is connected to. Let’s have a
look at the generated event class for our example:

1 class BrakeEvent {
2 /**
3 * \brief Shortcut for the events data type.
4 */
5 using SampleType = RadarObjects;
6

7 /**
8 * \brief The application expects the Communication Management to

subscribe the event.
9 *

10 * The Communication Management shall try to subscribe and resubscribe
until \see

11 * Unsubscribe() is called explicitly.
12 * The error handling shall be kept within the Communication Management.
13 *
14 * The function return immediately. If the user wants to get notified,

when subscription has succeeded, he needs
15 * to register a handler via \see SetSubscriptionStateChangeHandler().

This handler gets then called after
16 * subscription was successful.
17 *
18 * \param policy Defines the update policy for the application local

cache.
19 * \param cacheSize Defines the size of the application local cache.
20 *
21 */
22 void Subscribe(ara::com::EventCacheUpdatePolicy policy, size_t cacheSize)

;
23

24 /**
25 * \brief query current subscription state.
26 *
27 * \return current state of the subscription.
28 */
29 ara::com::SubscriptionState GetSubscriptionState() const;
30

31 /**
32 * \brief Unsubscribe from the service.
33 */
34 void Unsubscribe();
35

36 /**
37 * Setting a receive handler signals the Communication Management

implementation to use event style mode.

25 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

38 * I.e. the registered handler gets called asynchronously by the
Communication Management as soon as new event data

39 * arrives for that event. If user wants to have strict polling behaviour
, where you decide when to check for

40 * new data via Update() he should NOT register a handler.
41 * Handler may be overwritten anytime during runtime.
42 *
43 * Provided Handler needs not to be re-entrant since the Communication

Management implementation has to serialize calls
44 * to the handler: Handler gets called once by the MW, when new events

arrived since the last call to Update().
45 * When application calls Update() again in the context of the receive

handler, MW must - in case new events arrived
46 * in the meantime - defer next call to receive handler until after the

previous call to receive handler has been
47 * completed.
48 *
49 **/
50 void SetReceiveHandler(ara::com::EventReceiveHandler handler);
51

52 /**
53 * Remove handler set by SetReceiveHandler()
54 **/
55 void UnsetReceiveHandler();
56

57 /**
58 * Setting a subscription state change handler, which shall get called by

the Communication Management
59 * implementation as soon as the subscription state of this event has

changed.
60 * Communication Management implementation will serialize calls to the

registered handler. If multiple
61 * changes of the subscription state take place during the runtime of a

previous call to a handler, the
62 * Communication Management aggregates all changes to one call with the

last/effective state.
63 * Handler may be overwritten during runtime.
64 *
65 **/
66 void
67 SetSubscriptionStateChangeHandler(ara::com::

SubscriptionStateChangeHandler
68 handler);
69

70 /**
71 * Remove handler set by SetSubscriptionStateChangeHandler()
72 **/
73 void UnsetSubscriptionStateChangeHandler();
74

75 /**
76 * \brief Fetch data from the Communication Management buffers and apply

filter before
77 * writing the samples into the cache.
78 *
79 * \param filter
80 * \parblock

26 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

81 * FilterFunction for the samples.
82 *
83 * This filter will be applied to the deserialized data within the

context of
84 * the update this function should return true if the sample shall be

added to
85 * the cache.
86 * \parblockend
87 *
88 * \return True if new values received and those values are NOT ALL

filtered out,
89 * else false.
90 *
91 * \note If Update is called and the service is not subscribed the method

will
92 * raise an \see NotSubscribedException.
93 */
94 bool Update(ara::com::FilterFunction<SampleType> filter = {});
95 /**
96 * \brief Get the container of the samples in the cache that was updated

by the last call
97 * of \see update.
98 *
99 * The container and referenced data is expected to be stable until

update is
100 * called again.
101 *
102 * \return Container of SamplePtr
103 */
104 const ara::com::SampleContainer<ara::com::SamplePtr<const SampleType>> &

GetCachedSamples() const;
105 /**
106 * \brief Explicitly clean the application local cache.
107 *
108 * This should free the references to the data samples which are owned by

the
109 * Communication Management.
110 * This method only has an effect if policy in the call to \see Subscribe

has been
111 * set to kNewestN!
112 */
113 void Cleanup();
114 };

Figure 6.5: BrakeEvent Class

The data-type of the event data in our example event is RadarObjects (see Fig-
ure 6.1). The first you encounter is the using-directive which assigns the generic name
SampleType to the concrete type, which is then used throughout the interface.

27 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

6.1.3.1 Event Subscription and Cache Semantics

The mere fact, that there exists a member of the event wrapper class inside the proxy
instance does not mean, that the user gets instant access to events raised/sent out
by service instance. First you have to ‘subscribe’ for the event, in order to tell the
Communication Management, that you are now interested in receiving events. For that
purpose the event wrapper class of ara::com provides the method

1 /**
2 * \brief The application expects the Communication Management to

subscribe the event.
3 *
4 *
5 *
6 * \param policy Defines the update policy for the application local

cache.
7 * \param cacheSize Defines the size of the application local cache.
8 *
9 */

10 void Subscribe(ara::com::EventCacheUpdatePolicy policy, size_t cacheSize)
;

This method expects two parameters, policy and cacheSize. Let’s start with the
explanation of the concept with the latter one first: With calling the method, you not
only tell the Communication Management, that you now are interested in receiving
event updates, but you are at the same time setting up a local cache for those events
bound to the event wrapper instance with the given cacheSize. The idea is simple
(and also related to the AUTOSAR CP concept of queued S/R communication) and
possible uses are:

• stability

• interpolation/averaging between a number of events

• rate adoption

Stability is realized with this concept by having an explicit method (see below) to update
event data inside the cache. So this local cache decouples the event-wrapper instance
from the Communication Management buffers into which the service instance may
send its event updates! Updates of the cache status/content is only done explicitly
by the user by calling Update. This stability assurance shields the application from
situations, where during the processing/computing on event data, suddenly the values
change, which would lead to inconsistencies.

The support for (arbitrary) sizes of this local cache stems from various use cases. The
most prominent ones we had in mind here, are:

• Application, which needs a certain history of events, e.g. for building an average
of the last N values and using it in its computation.

28 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

• Application, which is scheduled in a — compared to event emitter — much lower
frequency. At the point in time it gets active, it processes all events, arrived in the
meantime.

Now let’s look at the first parameter policy. With this parameter you control how the
cache is updated if you call the Update method (see below). Currently we support two
policies:

• EventCacheUpdatePolicy.kLastN: With this policy new available events are
put in the cache by each call of Update. If they do not fit in the cache, older
entries (oldest first) are displaced. With this policy the following applies: If the
cache has been filled with a certain amount of events, the amount can only remain
constant (if no new event has arrived) or get bigger with upcoming Update calls
(if new events have been arrived).

• EventCacheUpdatePolicy.kNewestN: With this policy in each update the
cache gets cleared and then filled with the newest arrived events. Even if NO
event has arrived since the last call to Update, the cache gets cleared/emptied.

Let us go through an example to clarify the different policy behavior: The cache size
has been set to 3 and the cache contains (E1, E2, E3) after the last call of Update.
Now a new event E4 arrives. After the next call of Update, the cache contains (E2,
E3, E4) in case of EventCacheUpdatePolicy.kLastN and just (E4) in case of
EventCacheUpdatePolicy.kNewestN.
Both policies will behave identical if the number of new arrived events is equal or greater
than the cache size.

6.1.3.2 Monitoring Event Subscription

The call to the Subscribe method is asynchronous by nature. This means that at the
point in time Subscribe returns, it is just the indication, that the Communication Man-
agement has accepted the order to care for subscription. The subscription process
itself may (most likely, but depends on the underlying IPC implementation) involve the
event provider side. Contacting the possibly remote service for setting up the subscrip-
tion might take some time. So the binding implementation of the subscribe is allowed
to return immediately after accepting the subscribe, even if for instance the remote
service instance has not yet acknowledged the subscription (in case the underlying
IPC would support mechanism like acknowledgment at all). If the user — after having
called Subscribe — wants to get feedback about the success of the subscription, he
might call:

1 /**
2 * \brief query current subscription state.
3 *
4 * \return current state of the subscription.
5 */
6 ara::com::SubscriptionState GetSubscriptionState() const;

29 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

In the case the underlying IPC implementation uses some mechanism like a subscrip-
tion acknowledge from the service side, then an immediate call to GetSubscrip-
tionState after Subscribe may return kSubscriptionPending, if the acknowl-
edge has not yet arrived. Otherwise — in case the underlying IPC implementation gets
instant feedback, which is very likely for local communication — the call might also
already return kSubscribed.

If the user needs to monitor the subscription state, he has two possibilities:

• Polling via GetSubscriptionState

• Registering a handler, which gets called, when the subscription state changes

The first possibility by using GetSubscriptionState we have already described
above. The second possibility relies on using the following method on the event wrap-
per instance:

1 /**
2 * Setting a subscription state change handler, which shall get called by

the Communication Management implementation as soon
3 * as the subscription state of this event has changed.
4 * Handler may be overwritten during runtime.
5 *
6 **/
7 void
8 SetSubscriptionStateChangeHandler(ara::com::

SubscriptionStateChangeHandler
9 handler);

Here the user may register a handler function, which has to fulfill the following signa-
ture:

1 enum class SubscriptionState { kSubscribed, kNotSubscribed,
kSubscriptionPending };

2 using SubscriptionStateChangeHandler = std::function<void(SubscriptionState
)>;

Anytime the subscription state changes, the Communication Management implemen-
tation calls the registered handler. A typical usage pattern for an application devel-
oper, who wants to get notified about latest subscription state, would be to register
a handler before the first call to Subscribe. After having accepted the ‘subscribe
order’ the Communication Management implementation will call the handler first with
argument SubscriptionState.kSubscriptionPending and later — as it gets
acknowledgment from the service side — it will call the handler with argument Sub-
scriptionState.kSubscribed.

Again the note: If the underlying implementation does not support a subscribe ac-
knowledgment from the service side, the implementation could also skip the first call
to the handler with argument SubscriptionState.kSubscriptionPending and
directly call it with argument SubscriptionState.kSubscribed. Calls to the reg-
istered ‘subscription state change’ handler are done fully asynchronous. That means,

30 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

they can even happen, while the call to Subscribe has not yet returned. The user
has to be aware of this!

Once the user has registered such a ‘subscription state change’ handler for a cer-
tain event, he may receive multiple calls to this handler. Not only initially, when
the state changes from SubscriptionState.kNotSubscribed to Subscrip-
tionState.kSubscribed (eventually via an intermediate step Subscription-
State.kSubscriptionPending), but also anytime later as the service providing
this event may have a certain life-cycle (maybe bound to certain vehicle modes). The
service might therefore toggle between availability and (temporarily) unavailability or
it might even unexpectedly crash and restart. Those changes of the availability of
the service instance providing the event may be visible to the proxy side Communica-
tion Management implementation. The Communication Management therefore will fire
the registered ‘subscription state change’ handler, whenever it detects such changes,
which have influence on the event subscription state. Additionally (and maybe even
more important) — the Communication Management implementation takes care of re-
newing/updating event subscriptions done by the user, whenever needed.

This mechanism is closely coupled with the ‘Auto Update Proxy instance’ mechanism
already described above (6.1.2.1): Since the Communication Management implemen-
tation monitors the availability of the service instances its proxies are connected to
anyways, it does not only ‘auto-update’ its proxies if needed, but also ‘silently’ re-
subscribes any event subscription already done by the user, after it has updated a
proxy instance. This can be roughly seen as a very useful comfort feature — without
this ‘re-subscribe after update’, the ‘auto-update’ alone seemed to be a halfhearted
approach.

With registration of a ‘subscription state change’ handler, the user has now another
possibility to monitor the current availability of a service! Beside the possibility to reg-
ister a FindServiceHandler as described in 6.1.2, the user, who has registered
a ‘subscription state change’ handler, can monitor the service availability indirectly by
calls to his handler. In case the service instance, the proxy is connected to, goes down,
the Communication Management calls the handler with argument Subscription-
State.kSubscriptionPending. As soon as the ‘re-subscribe after update’ was
successful, the Communication Management calls the handler with argument Sub-
scriptionState.kSubscribed.

An ara::com compliant Communication Management implementation has to serialize
calls to the user registered handler. I.e.: If a new subscription state change happens,
while the user provided handler from a previous call of a state change is still running,
the Communication Management implementation has to postpone the next call until
the previous has returned. Several subscription state changes, which happen during
the runtime of a user registered state change handler, shall be aggregated to one call
to the user registered handler with the effective/last state.

31 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Binding implementer hint

Depending on the used IPC or transport layer technology the lifetime/availability
of the service as a whole (represented by the proxy instance) and the availability
of its subparts (e.g. events, fields methods) may be distinguishable or not. With
SOME/IP f.i., there is the contract, that the service availability as a whole is notified
and the expectation/contract is, that then automatically all subparts are available as
well. Here in ara::com we do not require this tight coupling! So generally it would be
supported/allowed, that a service instance could be found (see subsection 6.1.2) and
methods could be called on it (via the proxy), but the ‘subscription state’ switches to
SubscriptionState.kNotSubscribed, because the service has withdrawn just
the event, which the user has subscribed to.
The mechanism of registering the ‘subscription state change’ handler with the expec-
tation to steadily monitor state changes in the background is similar or related to the
mechanism of Proxy::FindService (see subsection 6.1.2), where the user can
also register a handler to monitor availability changes of service instances. So from im-
plementation view point — depending on the used transport layer technology — those
mechanisms may depend on each other or may be tightly coupled implementation-
wise.

6.1.3.3 Event-Driven vs Polling-Based access

As already stated in the previous chapter, there is an explicit interaction needed with
ara::com API by calling Update to fill the local event wrapper specific cache:

1 /**
2 * \brief Fetch data from the Communication Management buffers and apply

filter before
3 * writing the samples into the cache.
4 *
5 * \param filter
6 * \parblock
7 * FilterFunction for the samples.
8 *
9 * This filter will be applied to the deserialized data within the

context of
10 * the update this function should return true if the sample shall be

added to
11 * the cache.
12 * \parblockend
13 *
14 * \return True if new values received and those values are NOT ALL

filtered out,
15 * else false.
16 *
17 * \note If Update is called and the service is not subscribed the method

will
18 * raise an \see NotSubscribedException.
19 */
20 bool Update(ara::com::FilterFunction<SampleType> filter = {});

32 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Just some notes to the method signature: The method takes an optional parameter of
a user defined filter function. The filter function has a simple signature — default type
mapping of ara::com realizes FilterFunction with std::function wrapper:

1 using FilterFunction = std::function<bool(const S& sample)>;

So in essence, the user provided filter function gets an event (sample) and has to return
true after checking, if he wants the sample to be put into the local cache. During
Update(), the Communication Management calls the filter function for each event,
which has arrived since the last call to Update(). The user provided filter function
may or may NOT be called in the same context/thread as the Update() call and it
should be reentrant.

Binding implementer hint

There are some (optimization) variants, which might be used/considered by the
binding implementer: If a lot of newly arrived events exist, which have to be transferred
to local cache, binding implementation might decide to spawn multiple threads to
check samples with user filter calls in parallel. This might be straightforward as
implementation might use thread pools inside receiver process anyway. In case the
job of checking 50 new events could be split between two different worker threads
and this would speed up things, it is allowed to do. The other most trivial (and
expected) optimization is, that no events shall be checked via calls to user provided
filter, if the binding implementation will later decide due to configured combination of
EventCacheUpdatePolicy and cacheSize, that it will rule it out anyway. So the
user defined filter check shall be the last step before putting event into local cache.

Update returns true in case new events have been placed into the local cache by
the call, false otherwise. Note: In case we have the event wrapper configured to
EventCacheUpdatePolicy.kNewestN and the cache does contain some entries
and then Update() is called, which deletes the cache and does in this case NOT add
any new events, as none have been received in the meantime, the return would be
false! I.e. the cache content has been changed (deletion) but nothing new has been
added — so the returned flag really does not indicate cache-changes but only new
additions to the cache!

After you have filled your event specific local cache with event-data via Update you
typically want access those events. This is done with the following API:

1 /**
2 * \brief Get the container of the samples in the cache that was updated

by the last call
3 * of \see update.
4 *
5 * The container and referenced data is expected to be stable until

update is
6 * called again.
7 *
8 * \return Container of SamplePtr
9 */

33 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

10 const ara::com::SampleContainer<ara::com::SamplePtr<const SampleType>> &
GetCachedSamples() const;

You can call this method as many times as you want — as long as you do not call
Update() in between, the returned collection will always be the same/stable, even if
the service side has send out several new events.

As already promised, we fully support event-driven and polling approaches to access
new data. For the polling approach no other APIs are needed than those, which we
have discussed up to this point. The typical use case is, that you have an application,
which is cyclically triggered to do some processing and provide its output to certain
deadlines. This is the typical pattern of a regulator/control algorithm — the cyclic acti-
vation might additionally be driven by a real-time timer, which assures a minimal jitter.
In such a setup you call Update() in each activation cycle and then use those updated
cache data as input for the current processing iteration. Here it is fully sufficient to get
the latest data to process at the time the processing algorithm is scheduled. It would
be counterproductive, if the Communication Management would notify your application
anytime new data is available: This would just mean unnecessary context switches to
your application process, since at the time you get the notification you do not want to
process that new data as it is not time for it.

However, there are other use cases as well. If your application does not have such a
cyclical, deadline driven approach, but shall simply react in case certain events occur,
then setting up cyclical alarms and poll for new events via calls to Update() is a bit
off and vastly inefficient. In this case you explicitly want the Communication Manage-
ment to notify you application thereby issuing asynchronous context switches to your
application process. We do support this flavor with the following API mechanism:

1 void SetReceiveHandler(ara::com::EventReceiveHandler handler);

This API allows you to register a user defined callback, which the Communication Man-
agement has to call in case new event data is available since the last call to Update().
The registered function needs NOT to be re-entrant as the Communication Manage-
ment has to serialize calls to the registered callback. It is explicitly allowed to call
Update() from within the registered callback!

34 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Binding implementer hint

In case the binding implementation calls the registered user function and during
the execution of this function new events arrive, but application has not yet again
called Update() from within the running user function, no new callback has to be
fired! But the newly arrived data must be visible to the next call to Update() by
the application. If during the execution of this function the user calls Update() and
during or after this Update() still inside the registered receive handler new event data
arrive, the Communication Management implementation has to delay the next call to
the receive handler until the running call ends. So the intuitive binding implementation
would be to set a flag, when new event data arrives and the user defined receive
handler is currently running. When the user receive handler ends, the Communication
Management implementation just checks, whether the flag is set and in case just
issues the next call to receive handler.

Note, that the user can alter the behavior between event-driven and polling style any-
time as he also has the possibility to withdraw the user specific ‘receive handler’ with
the UnsetReceiveHandler() method provided by the event wrapper.

6.1.3.4 Buffering Strategies

Binding implementer hint

At this point it surely makes sense to talk about reasonable buffering strategies
for binding implementations. So this entire subsection is mainly of interest for an AP
product vendor/binding implementer.

The following figure sketches a simple deployment, where we have a service providing
an event, for which two different local adaptive SWCs have subscribed through their
respective ara::com proxies/event wrappers. As you can see in the picture both
proxies have a local event cache. This is the cache, which gets filled via Update().
What this picture also depicts is, that the service implementation sends its event data to
a Communication Management buffer, which is apparently outside the process space
of the service implementation — the picture here assumes, that this buffer is owned
by kernel or it is realized as a shared memory between communicating proxies and
skeleton or owned by a separate binding implementation specific ‘demon’ process.

35 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

ara::com App Proxy

Local Event
Cache

ECU with AP product

ara::com App Proxy

Local Event
Cache

ara::com App Skeleton

Middleware
controlled

Event Buffers

Proxy

Proxy

Skeleton

Kernel Space?
Shared Mem?

IPC Demon Space?

Event.Send()

Event.Update()

Event.Update()

Figure 6.6: Event Buffering Approaches

The background of those assumptions made in the figure is the following: Adap-
tive applications are realized as processes with separated/protected memory/address
spaces. Event Data sent out by the service implementation (via the skeleton) can not
be buffered inside the service/skeleton process private address space: If that would be
the case, event data access by the proxies would typically lead to context switches to
the service application process. Something, which we want to have total control over
on service side via the MethodCallProcessingMode (see subsection 6.2.3) and
should therefore not be triggered by the communication behavior of arbitrary service
consumers. Now let’s have a rough look at the three different places, where the buffer,
which is target for the ‘send event’ might be located:

• Kernel Space: Data is sent to a memory region not mapped directly to an appli-
cation process. This is typically the case, when binding implementation uses IPC
primitives like pipes or sockets, where data written to such a primitive ends up in
kernel buffer space.

• Shared Memory: Data is sent to a memory region, which is also directly readable
from receivers/proxies. Writing/reading between different parties is synchronized
specifically (lightweight with mem barriers or with explicit mutexes).

• IPC-Demon Space: Data is sent to an explicit non-application process, which acts
as a kind of demon for the IPC/binding implementation. Note, that technically this
approach might be built on an IPC primitive like communication via kernel space
or shared memory to get the data from service process to demon process.

Each of those approaches might have different pros and cons regarding flexibility/size
of buffer space, efficiency in terms of access speed/overhead and protection against
malicious access/writing of buffers. Therefore consideration of different constraints in

36 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

an AP product and its use might lead to different solutions. What shall be emphasized
here in this example, is, that the AP product vendor is explicitly encouraged to use a
reference based approach to access event data: The ara::com API of event wrapper
intentionally models the access (GetCachedSamples()) to return a pointer to event
data and not the value! In those rather typical scenarios of 1:N event communication,
this would allow to have inside the ‘Local Event Cache’ not the event data values itself
but pointers/references to the data contained in a central Communication Management
buffer. Updating the local cache via Update() could then be implemented not as a
value copy but as reference updates. To be honest: This is obviously a coarse grained
picture of optimization possibilities regarding buffer usage! As hinted here (section 7.1)
data transfered to application processes must typically be de-serialized latest before
first application access. Since de-serialization has to be specific to the alignment of the
consuming application the central sharing of an already de-serialized representation
might be tricky. But at least you get the point, that the API design for event data access
on the proxy/service consumer side gives room to apply event data sharing among
consumers.

6.1.4 Methods

For each method the remote service provides, the proxy class contains a member of a
method specific wrapper class. In our example, we have two methods and the corre-
sponding members have the name Calibrate (of type methods::Calibrate) and
Adjust (of type methods::Adjust). Just like the event classes the needed method
classes of the proxy class are generated inside a specific namespace methods,
which is contained inside the proxy namespace. The method member in the proxy is
used to call a method provided by the possibly remote service instance our proxy is
connected to. Let’s have a look at the generated method class for our example — we
pick out the Adjust method here:

1 class Adjust {
2 public:
3

4 /**
5 * For all output and non-void return parameters
6 * an enclosing struct is generated, which contains
7 * non-void return value and/or out parameters.
8 */
9 struct Output {

10 bool success;
11 Position effective_position;
12 };
13 /**
14 * \brief Operation will call the method.
15 *
16 * Using the operator the call will be made by the Communication

Management and a
17 * future returned, which allows the caller to get access to the method

result.

37 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

18 *
19 * \param[in] target_position See service description.
20 *
21 * \return A future with out-params success(bool) and effective_position(

Position).
22 */
23 ara::com::Future<Output> operator()(const Position &target_position);
24 };

Figure 6.7: Adjust Method Class

So the method wrapper class is not that complex. It just consists of two parts: An in-
ner structure definition, which aggregates all OUT-/INOUT-parameters of the method,
and a bracket operator, which is used to call the service method. The operator con-
tains all of the service methods IN-/INOUT-parameters as IN-parameters. That means
INOUT-parameters in the abstract service method description are split in a pair of IN
and OUT parameters in the ara::com API. The return value of a call to a service
method is an ara::com::Future, where the template parameter is of the type of the
inner struct, which aggregates all OUT-parameters of the method. More about this
ara::com::Future in the following subsection.

6.1.4.1 Event-Driven vs Polling access to method results

Similar to the access to event data described in the previous section (subsection 6.1.3),
we provide API support for a event-driven and polling-based approach also for ac-
cessing the results of a service method call. The magic of differentiation between
both approaches lies in the returned ara::com::Future: It is basically an extended
version of the C++11/C++14 std::future with some extensions borrowed from the
C++ proposal N3857 (see [5]). Like in the event data access, event-driven here means,
that the caller of the method (the application with the proxy instance) gets notified by
the Communication Management implementation as soon as the method call result
has arrived. For a Communication Management implementation of ara::com this
means, it has to setup some kind of waiting mechanism (WaitEvent) behind the scene,
which gets woken up as soon as the method result becomes available, to notify the
ara::com user. So how do the different usage patterns of the ara::com::Future
work then? Let’s have a deeper look at our ara::com::Future and the interfaces it
provides:

1 enum class FutureStatus {
2 ready,
3 timeout
4 };
5

6 template<typename T>
7 class Future {
8 Future();
9 ~Future();

38 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

10

11 /** not copyable */
12 Future(const Future&) = delete;
13 Future& operator=(const Future&) = delete;
14

15 /** movable */
16 Future(Future&&) noexcept;
17 Future& operator=(Future&&) noexcept;
18

19 /**
20 * Following methods are taken from std::future and shall behave

identically ...
21 */
22 T get();
23 bool valid() const;
24 void wait() const;
25 template< class Rep, class Period >
26 FutureStatus wait_for(const std::chrono::duration<Rep,Period>&

timeout_duration) const;
27 template <class Clock, class Duration>
28 FutureStatus wait_until(const std::chrono::time_point<Clock,Duration>&

abs_time) const;
29

30 /**
31 * those methods are borrowed from C++ proposal N3857 and have same

semantics...
32 */
33

34 /**
35 * Gives the ability to register a function, which gets called in case
36 * the future has a valid result (or exception).
37 *
38 * The function func will get *this future as parameter.
39 *
40 * When func is called, get() will not block.
41 *
42 * func may be called in the context of this call or in the context of
43 * Promise::set_value or set_exception or somewhere else.
44 */
45 template <typename F>
46 auto then(F&& func) -> Future<decltype(func(*this))>;
47

48

49 /** True when the result (or exception) is ready. */
50 bool is_ready() const;
51

52 };

Figure 6.8: Future

The standard result-access functions of the future is get(), which is blocking as per
definition of std::future::get. If you as the application developer want to call a
service method in a synchronous fashion you simply use the ara::com::Future

39 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

like this:

1

2 using namespace ara::com;
3

4 int main() {
5 // some code to acquire handle
6 // ...
7 RadarServiceProxy service(handle);
8 Future<Calibrate::Output> callFuture = service.Calibrate(myConfigString

);
9

10 /* now we do a blocking get(), which will return in case the result (
valid or exception) is received.

11 if Calibrate could throw an exception and the service has set one,
it would be thrown by get() */

12 Calibrate::Output callOutput = callFuture.get();
13

14 // process callOutput ...
15 return 0;
16 }

Figure 6.9: Synchronous method call sample

In a nutshell: A synchronous call (from the viewpoint of the application developer)
to a service method, simply consists of the ()-operator call-syntax with a subsequent
blocking get() call on the returned future.

There are other ways for the user to get a notification from the Communication Man-
agement implementation as soon as the method result is available beside resuming
execution from a blocking call to get():

• The variants of ‘wait’ , which the ara::com::Future has taken over from
std::future. They basically provide the functionality of a blocking wait for
the fulfillment of the future.

• Registering a callback method via then(). This is one of the extensions to the
std::future according to proposal N3857.

The plain parameterless wait() variant has the same blocking semantics like get()
— i.e. blocks till the future has a valid result (value or exception). The variants
of ‘wait’, where you either give a duration (wait_for()) or a target point in time
(wait_until()) will return either if the future has a valid result or in case the time-
out/deadline restriction has been met — therefore they both return FutureStatus to
allow distinction between those cases.

The last possibility to get notification of the result of the future (valid or exception) is
by registering a callback method via then(). This is one of the extensions to the
std::future according to proposal N3857, which is shown in the following example:

40 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

1

2 using namespace ara::com;
3

4 void myCalibrateOKHandler(Calibrate::Output out) {
5 // ... do something
6 }
7

8 void myCalibrateErrorHandler() {
9 // ... do something

10 }
11

12 int main() {
13 // some code to acquire handle
14 // ...
15 RadarServiceProxy service(handle);
16 Future<Calibrate::Output> callFuture = service.Calibrate(myConfigString

);
17

18 /* now we register a lambda, which calls our OK or Error handler,
depending on the

19 outcome of the Calibrate service method call. */
20 callFuture.then([] (Future<Calibrate::Output> f) {
21 try{
22 // get() is NOT blocking here as per definition!
23 myCalibrateOKHandler(f.get());
24 } catch (...) {
25 myCalibrateErrorHandler();
26 });
27

28 // go on doing something in parallel ...
29 return 0;
30 }

Figure 6.10: Future::then() usage sample

As you can see, all the possibilities to get access to the future’s method result we
have discussed (and partly showed in examples) up to now — blocking ‘get’, all ‘wait’
variants and ‘then’ — are event-driven. I.e. the event of the arrival of the method
result (or an error) leads to either resuming of a blocked user thread or call to an user
provided function!

41 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Binding implementer hint

In case get() or one of the variants of wait() or then() is called on a fu-
ture, there is always the contract with the user of the future, that he gets notified
as soon as the method result (valid result or exception) is available (see above).
This is our definition of event-driven here. In all of those cases it means, that the
binding implementer has to setup a mechanism, which assures that the users callback
registered via Future::then is called or the blocking wait()/get() call is resumed
immediately after the service method result is available or an error during call is
detected, respectively. The notion of ‘immediately’ is obviously a bit fuzzy! The general
approach, the ara::com design team had in mind, can be best explained with a
simple example:
Let’s say the underlying transport mechanism used is based on Unix domain sockets
(or a comparable fd based I/O). At the point in time the method result is ready, the
skeleton side implementation of the service method would write it into a corresponding
socket file descriptor. On the receiving side of the domain socket the proxy instance
would have a corresponding descriptor and waiting on it via select or poll. I.e.
writing to the socket on the service side would ‘immediately’ wake up the proxy side
Communication Management code waiting in a select/poll call. As you see ‘immedi-
ately’ depends on machine load and latency the used low level mechanism provides.
On the other hand we would not/could not rule out a low level implementation, which
favors a polling based mechanism! So instead of propagating OS signals from service
instance to proxy instance, which leads to resuming thread execution, the proxy imple-
mentation could also cyclically check for data. If the polling frequency is high enough,
this could lead to a rather low and therefore acceptable latency from the pov of the
user calling the service method! Such an approach might not make much sense if
the underlying transport mechanism is something like file descriptor based read/write
I/O, where you then issue reads per descriptor. But in the realms of shared mem-
ory based implementation or async I/O support which allows submitting multiple I/O
operations per syscall this might be a valid use case! If you have have an adaptive
application with extreme communication load, such a polling based solution on Com-
munication Management implementation level even to fulfill event-driven application
behavior might make sense, if your platform/chosen transport mechanism provides ef-
fective bulk operations, which you can apply with just some acceptable latency costs.

There are of course cases, where the ara::com users does not want his appli-
cation (process) getting activated by some asynchronous method-call return event
at all! Think for a typical RT (real time) application, which must be in total con-
trol of its execution. We discussed this RT/polling use case already in the context
of event data access already (subsubsection 6.1.3.3). For method calls the same
approach applies! So we did foresee the following usage pattern with regards to
ara::com::Future: After you have called the service method via the ()-operator,
you just use ara::com::Future::is_ready() to poll, whether the method call
has been finished. This call is defined to be non-blocking. Sure, it might involve some
syscall/context-switch (for instance to look into some kernel buffers), which is not for
free, but it does not block! After ara::com::Future::is_ready() has returned
true, it is guaranteed that the next call to ara::com::Future::get() will NOT

42 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

block, but immediately return either the valid value or throw an exception in case of
error.

6.1.4.2 Canceling Method Result

There may be cases, where you already have called a service method via the ()-
operator, which returned you an ara::com::Future, but you are not interested in
the result anymore. It could even be the case, that you already have registered a call-
back via ara::com::Future::then() for it. Instead of just let things go and ‘ignore’
the callback, you should tell the Communication Management explicitly. This might free
resources and avoid unnecessary processing load on the binding implementation level.
Telling that you are not interested in the method call result anymore is simply done by
letting the ara::com::Future go out of scope, so that its destructor gets called. Call
of the dtor of the ara::com::Future is a signal to the binding implementation, that
any registered callback for this future shall not be called anymore, reserved/allocated
memory for the method call result might be freed and event waiting mechanisms for
the method result shall be stopped.

Binding implementer hint

If the user signals, that he is not interested in the service method call result
anymore by triggering the dtor of the ara::com::Future, it obviously makes
sense to skip the work to be done for that method call entirely. At the extreme this
would mean to propagate the cancellation of the method call up to the service side,
which implements the service method. We do intentionally NOT require this, as it
might have great influence on the application level implementation side! If we would
require/foresee, that an application level service method could be aborted anytime, we
would be in the realms of high level application protocols (something like transactional
systems) and would put a lot of burden to the service side application developer.
This is totally out of scope! But a binding implementer is free to propagate the
cancellation up to the service side skeleton, so that the returned method call result
from the application level method implementation might directly be discarded on the
service/skeleton side! Of course such an efficient implementation would need a proper
control channel/protocol to propagate the cancellation from the proxy to the skeleton.

SOME/IP protocol f.i. does not provide such a mechanism protocol-wise , therefore
the method result can not be discarded already on the skeleton side, in case SOME/IP
transport is used. Whether this does really hurt is questionable anyways. The
cancellation notification would impose additional network traffic, which would only pay
measurably if the saved transmission from skeleton to proxy would have been much
more resource intensive.

To trigger the call to the dtor you could obviously let the future go out of scope. De-
pending on the application architecture this might not be feasible, as you already might
have assigned the returned ara::com::Future to some variable with greater scope.
To solve this, the ara::com::Future is default-constructible. Therefore you simply

43 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

overwrite the returned ara::com::Future in the variable with a default constructed
instance as is shown in the example below:

1

2 using namespace ara::com;
3

4 Future<Calibrate::Output> calibrateFuture;
5

6 int main() {
7 // some code to acquire handle
8 // ...
9 RadarServiceProxy service(handle);

10 calibrateFuture = service.Calibrate(myConfigString);
11

12 /*
13 Some state changes happened, which render the
14 calibrate method result superfluous ...
15 We force deletion by resetting our variable to a
16 new default constructed Future. */
17

18 calibrateFuture = Future<Calibrate::Output>();
19

20 // go on doing something ...
21 return 0;
22 }

Figure 6.11: Example of discarding a future

6.1.5 Fields

Conceptually a field has — unlike an event — a certain value at any time. That results
in the following additions compared to an event:

• if a subscribtion to a field has been done, “immediately” initial values are sent
back to the subscriber in an event-like notification pattern.

• the current field value can be queried via a call to a Get() method or could be
updated via a Set() method.

Note, that all the features a field provides are optionally: In the configuration (IDL) of
your field, you decide, whether it has “on-change-notification”, Get() or Set(). In our
example field (see below), we have all three mechanisms configured.

For each field the remote service provides, the proxy class contains a member of a
field specific wrapper class. In our example the member has the name UpdateRate
(of type fields::UpdateRate). Just like the event and method classes the needed
field classes of the proxy class are generated inside a specific namespace fields,
which is contained inside the proxy namespace. The explanation of fields has been
intentionally put after the explanation of events and methods, since the field concept
is roughly an aggregation of an event with correlated get()/set() methods. Therefore

44 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

technically we also implement the ara:com field representation as a combination of
ara:com event and method. Consequently the field member in the proxy is used to

• call Get() or Set() methods of the field with exactly the same mechanism as
regular methods

• access field update notifications in the form of events/event data, which are sent
by the service instance our proxy is connected to with exactly the same mecha-
nism as regular events

Let’s have a look at the generated field class for our example UpdateRate field here:

1 class UpdateRate {
2 /**
3 * \brief Shortcut for the events data type.
4 */
5 using FieldType = uint32_t;
6

7 /**
8 * \brief See Events for details, as a field contains the possibility

for notifications
9 * the details of the interfaces described there.

10 *
11 */
12 void Subscribe(ara::com::EventCacheUpdatePolicy policy, size_t cacheSize)

;
13 ara::com::SubscriptionState GetSubscriptionState() const;
14 void Unsubscribe();
15 void SetReceiveHandler(ara::com::EventReceiveHandler handler);
16 void UnsetReceiveHandler();
17 void SetSubscriptionStateChangeHandler(ara::com::

SubscriptionStateChangeHandler handler);
18 void UnsetSubscriptionStateChangeHandler();
19 bool Update(ara::com::FilterFunction<FieldType> filter = {});
20 const ara::com::SampleContainer<ara::com::SamplePtr<const FieldType>> &

GetCachedSamples() const;
21 void Cleanup();
22 /**
23 * The getter allows to request the actual value of the service provider.
24 *
25 * For a description of the future, see the method.
26 * It should behave like a Method.
27 */
28 ara::com::Future<FieldType> Get();
29 /**
30 * The getter allows to request the setting of a new value.
31 * It is up to the Service Provider ro accept the request or modify it.
32 * The new value shall be sent back to the requester as response.
33 *
34 * For a description of the future, see the method.
35 * It should behave like a Method.
36 */
37 ara::com::Future<FieldType> Set(const FieldType& value);
38 };

45 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

Figure 6.12: UpdateRate Field Class

There is nothing more to be described here. For documentation of the mechanisms of
event-like part of the field have a look at subsection 6.1.3 and for documentation of the
method-like part of the field have a look at subsection 6.1.4.

46 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

6.2 Skeleton Class

The Skeleton class is generated from the service interface description of the AUTOSAR
meta model. ara::com does standardize the interface of the generated Skeleton
class. The toolchain of an AP product vendor will generate a Skeleton implementation
class exactly implementing this interface. The generated Skeleton class is an abstract
class. It cannot be instantiated directly, because it does not contain implementations
of the service methods, which the service shall provide. Therefore the service imple-
menter has to subclass the skeleton and provide the service method implementation
within the subclass.

Note: Equal to the Proxy class the interfaces the Skeleton class has to provide are
defined by ara::com, a generic (product independent) generator could generate an
abstract class or a mock class against which the application developer could implement
his service provider application. This perfectly suits the platform vendor independent
development of Adaptive AUTOSAR SWCs.

ara::com expects skeleton related artifacts inside a namespace "skeleton". This
namespace is typically included in a namespace hierarchy deduced from the service
definition and its context.

1 class RadarServiceSkeleton {
2 public:
3

4 /**
5 * Ctor taking instance identifier as parameter and having default

request processing mode kEvent.
6 */
7 RadarServiceSkeleton(ara::com::InstanceIdentifier instance,
8 ara::com::MethodCallProcessingMode mode = ara::com::

MethodCallProcessingMode::kEvent);
9

10 /**
11 * The Communication Management implementer should care in his dtor
12 * implementation, that the functionality of StopOfferService()
13 * is internally triggered in case this service instance has
14 * been offered before. This is a convenient cleanup functionality.
15 **/
16 ~RadarServiceSkeleton();
17

18 /**
19 * Offer the service instance.
20 * method is idempotent - could be called repeatedly.
21 **/
22 void OfferService();
23

24 /**
25 * Stop Offering the service instance.
26 * method is idempotent - could be called repeatedly.
27 *
28 * if service instance gets destroyed - it is expected that the

Communication Management implementation
29 * calls StopOfferService() internally.

47 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

30 **/
31 void StopOfferService();
32

33 /**
34 * For all output and non-void return parameters
35 * an enclosing struct is generated, which contains
36 * non-void return value and/or out parameters.
37 */
38 struct CalibrateOutput {
39 bool result;
40 };
41 /**
42 * For all output and non-void return parameters
43 * an enclosing struct is generated, which contains
44 * non-void return value and/or out parameters.
45 */
46 struct AdjustOutput {
47 bool success;
48 Position effective_position;
49 };
50

51 /**
52 * This fetches the next call from the Communication Management and

executes it.
53 * Only available in polling mode. In event mode it shall throw an

exception.
54 */
55 ara::com::Future<bool> ProcessNextMethodCall();
56 /**
57 * \brief Public member for the BrakeEvent
58 */
59 events::BrakeEvent BrakeEvent;
60

61 /**
62 * \brief Public member for the UpdateRate
63 */
64 fields::UpdateRate UpdateRate;
65

66 // All methods are pure virtual and have to be implemented
67 virtual ara::com::Future<CalibrateOutput> Calibrate(
68 std::string configuration) = 0;
69 // All methods are pure virtual and have to be implemented
70 virtual ara::com::Future<AdjustOutput> Adjust(
71 const Position& position) = 0;
72 };

Figure 6.13: RadarService Skeleton

48 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

6.2.1 Instantiation

As you see in the example code of the RadarServiceSkeleton above, the skeleton
class from which the service implementer has to subclass his service implementa-
tion provides a ctor with a parameter of type ara::com::InstanceIdentifier.
Since you could deploy many different instances of the same type (and therefore same
skeleton class) this is straightforward, that you have to give an instance identifier upon
creation. This identifier has to be unique — creating two instances in a way that they
would exist at the same time with the same instance identifier will raise an exception.
If a new instance shall be created with the same identifier, the existing instance needs
to be destroyed before.

The second parameter of the ctor of type ara::com::MethodCallProcessingMode
has a default value and is explained in detail in subsection 6.2.3.

Note: Directly after creation of an instance of the subclass implementing the skeleton,
this instance will not be visible to potential consumers and therefore no method will be
called on it. This is only possible after the service instance has been made visible with
the OfferService API (see below).

6.2.2 Offering Service instance

The skeleton provides the method OfferService(). After you — as application
developer for the service provider side — have instantiated your custom service imple-
mentation class and initialized/set up your instance to a state, where it is now able to
serve requests (method calls) and provide events to subscribing consumers, you will
call this OfferService() method on your instance. From this point in time, where
you call it, method calls might be dispatched to your service instance — even if the call
to OfferService() has not yet returned.

If you decide at a certain point (maybe due to some state changes), that you do not
want to provide the service anymore, you call StopOfferService() on your in-
stance. The contract here is: After StopOfferService() has returned no further
method calls will be dispatched to your service instance.

For sanity reasons ara::com has the requirement for the AP vendors implementation
of the skeleton dtor, that it internally does a StopOfferService() too, if the
instance is currently offered. So — ‘stop offer’ needs only be called on an instance
which lives on and during its lifetime it switches between states, where it is visible and
provides its service, and states, where it does not provide the service.

1 using namespace ara::com;
2

3 // our implementation of RadarService - subclass of RadarServiceSkeleton
4 class RadarServiceImpl;
5

6 int main(int argc, char** argv) {
7 // read instanceId from commandline

49 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

8 std::string instanceIdStr(argv[1]);
9 RadarServiceImpl myRadarService(InstanceIdentifier(instanceIdStr));

10

11 // do some service specific initialization here
12 myRadarService.init();
13

14 // now service instance is ready -> make it visible/available
15 myRadarService.OfferService();
16

17 // go into some wait state in main thread - waiting for AppExecMgr
18 // signals or the like
19

20 return 0;
21 }

Figure 6.14: RadarService Init and Offer sample

6.2.3 Polling and event-driven processing modes

Now let’s come to the point, where we deliver on the promise to support event-driven
and polling behavior also on the service providing side. From the viewpoint of the ser-
vice providing instance — here our skeleton/skeleton subclass instance — requests
(service method or field getter/setter calls) from service consumers may come in at
arbitrary points in time. In a purely event-driven setup, this would mean, that the Com-
munication Management generates corresponding call events and transforms those
events to concrete method calls to the service methods provided by the service imple-
mentation. The consequences of this setup are clear:

• general reaction to a service method call might be fast, since the latency is only
restricted by general machine load and intrinsic IPC mechanism latency.

• rate of context switches to the OS process containing the service instance might
be high and non-deterministic, decreasing overall throughput.

As you see — there are pros and cons for a event-driven processing mode at the ser-
vice provider side. However, we do support such a processing mode with ara::com.
The other bookend we do support, is a pure polling style approach. Here the appli-
cation developer on the service provider side explicitly calls an ara::com provided
API to process explicitly one call event. With this approach we again support the typi-
cal RT-application developer. His application gets typically activated due to a low jitter
cyclical alarm. When his application is active, it checks event queues in a non-blocking
manner and decides explicitly how many of those accumulated (since last activation
time) events it is willing to process. Again: Context switches/activations of the applica-
tion process are only accepted by specific (RT) timers. Asynchronous communication
events shall not lead to an application process activation.

50 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

So how does ara::com allow the application developer to differentiate between those
processing modes? The behavior of a skeleton instance is controlled by the second
parameter of its ctor, which is of type ara::com::MethodCallProcessingMode.

1 /**
2 * Request processing modes for the service implementation side
3 * (skeleton).
4 *
5 * \note Should be provided by platform vendor exactly like this.
6 */
7 enum class MethodCallProcessingMode { kPoll, kEvent, kEventSingleThread };

That means the processing mode is set for the entire service instance (i.e. all its
provided methods are affected) and is fix for the whole lifetime of the skeleton instance.
The default value in the ctor is set to kEvent, which is explained below.

6.2.3.1 Polling Mode

If you set it to kPoll, the Communication Management implementation will not call
any of the provided service methods asynchronously! If you want to process the next
(assume that there is a queue behind the scenes, where incoming service method calls
are stored) pending service-call, you have to call the following method on your service
instance:

1 /**
2 * This fetches the next call from the Communication Management and

executes it.
3 * Only available in polling mode. In event mode it shall throw an

exception.
4 */
5 ara::com::Future<bool> ProcessNextMethodCall();

We are using the mechanism of ara::com::Future again to return a result, which
will be fulfilled in the future. What purpose does this returned ara::com::Future
serve? It allows you to get notified, when the ‘next request’ has been processed. That
might be helpful to ‘chain service method calls one after the other. A simple use case
for a typical RT application could be:

• RT application gets scheduled.

• it calls ProcessNextMethodCall and registers a callback with
ara::com::Future::then()

• the callback is invoked after the service method called by the midleware corre-
sponding to the outstanding request has finished.

• in the callback the RT application decides, if there is enough time left for serving
a subsequent service method. If so, it calls another ProcessNextMethodCall.

Sure - this simple example assumes, that the RT application knows worst case run-
time of its service methods (and its overall time slice), but this is not that unlikely! The

51 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

bool value of the returned ara::com::Future is set to true by the Communication
Management in case there really was an outstanding request in the queue, which has
been dispatched, otherwise it is set to false. This is a somewhat comfortable indi-
cator to the application developer, not to call repeatedly ProcessNextMethodCall
although the request queue is empty. So calling ProcessNextMethodCall directly
after a previous call returned an ara::com::Future with the result set to false
might most likely do nothing (except that incidentally in this minimal time frame a new
request came in).

Note that the binding implementation is free to decide, whether it dispatches the
method call event to your service method implementation within the thread context
in which you called ProcessNextMethodCall, or whether it does spawn a separate
thread for this method call.

Binding implementer hint

The explanation up to this point regarding the request processing mode MethodCall-
ProcessingMode.kPoll will have a huge impact on the binding implementation!
The fundamental idea of this mode to rule out context switches to a process containing
a service implementation caused by Communication Management events (incoming
service method calls) has some consequences for AP products based on typical
operating systems: There are constraints for the location of the queue, which has to
collect the service method call requests until they are consumed by the polling service
implementation. The queue must be realized either outside of the address space of
the service provider application or it must be located in a shared memory like location,
so that the sending part is able to write directly into the queue. Typical solutions of
placing the queue outside of the service provider address space would be

• Kernel space. If the binding implementation would use socket or pipe mecha-
nisms, the kernel buffers being the target of the write-call would resemble the
queue. Adapting/configuring maximal sizes of those buffers might in typical OS
mean recompiling the kernel.

• User address space of a different binding/Communication Management demon-
application. Buffer space allocation for queues allocated within user space could
typically be done more dynamic/flexible.

In comparison to a shared memory solution the access from the polling service provider
to those queue location might come with higher costs/latency.

6.2.3.2 Event-Driven Mode

If you set the processing mode to kEvent or kEventSingleThread, the Communi-
cation Management implementation will dispatch events asynchronously to the service
method implementations at the time the service call from the service consumer comes
in. Opposed to the kPoll mode, here the service consumer implicitly controls/trig-
gers service provider process activations with their method calls! What is then the
difference between kEvent and kEventSingleThread? kEvent means, that the
Communication Management implementation may call the service method implemen-

52 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

tations concurrently. That means for our example: If — at the same point in time — one
call to method Calibrate and two calls to method Adjust arrive from different ser-
vice consumers, the Communication Management implementation is allowed to take
three threads from its internal thread-pool and do those three calls for the two service
methods concurrently.

On the contrary the mode kEventSingleThread assures, that on the service in-
stance only one service method at a time will be called by the Communication Man-
agement implementation. That means, Communication Management implementation
has to queue incoming service method call events for the same service instance and
dispatch them one after the other.

Why did we provide those two variants? From a functional viewpoint only kEvent
would have been enough! A service implementation, where certain service methods
could not run concurrently, because of shared data/consistency needs, could simply
do its synchronization (e.g. via std::mutex) on its own! The reason is ‘efficiency’.
If you have a service instance implementation, which has extensive synchronization
needs, i.e. would synchronize almost all service method calls anyways, it would be a
total waste of resources, if the Communication Management would ‘spend’ N threads
from its thread-pool resources, which directly after get a hard sync, sending N-1 of it to
sleep.

For service implementations which lie in between — i.e. some methods can be called
concurrently without any sync needs, some methods need at least partially synchro-
nization — the service implementer has to decide, whether he uses kEvent and does
synchronization on top on his own (possibly optimizing latency, responsiveness of his
service instance) or whether he uses kEventSingleThread, which frees him from
synchronizing on his own (possibly optimizing ECU overall throughput).

6.2.4 Methods

Service methods on the skeleton side are abstract methods, which have to be overwrit-
ten by the service implementation sub-classing the skeleton. Let’s have a look at the
Adjust method of our service example:

1 /**
2 * For all output and non-void return parameters
3 * an enclosing struct is generated, which contains
4 * non-void return value and/or out parameters.
5 */
6 struct AdjustOutput {
7 bool success;
8 Position effective_position;
9 };

10

11 virtual ara::com::Future<AdjustOutput> Adjust(
12 const Position& position) = 0;

53 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

The IN-parameters from the abstract definition of the service method are directly
mapped to method parameters of the skeletons abstract method signature. In this
case it’s the position argument from type Position, which is — as it is a non-primitive
type — modeled as a ‘const ref’1. The interesting part of the method signature is the
return type. The implementation of the service method has to return our extensively
discussed ara::com::Future. The idea is simple: We do not want to force the ser-
vice method implementer to signal the finalization of the service method with the simple
return of this ‘entry point’ method! Maybe the service implementer decides to dispatch
the real processing of the service call to a central worker-thread pool! This would then
be really ugly, when the ‘entry point’ methods return would signal the completion of the
service call to the Communication Management. Then — in our worker thread pool
scenario — we would have to block into some kind of wait point inside the service
method and wait for some notification from the worker thread, that he has finished and
only then we would return from the service method. In this scenario we would have
a blocked thread inside the service-method! From the viewpoint of efficient usage of
modern multi-core CPUs this is not acceptable.

The returned ara::com::Future contains a structure as template parameter, which
aggregates all the OUT-parameters of the service call.

The following two code examples show two variants of an implementation of Adjust.
In the first variant the service method is directly processed synchronously in the method
body, so that an ara::com::Future with an already set result is returned, while in
the second example, the work is dispatched to an asynchronous worker, so that the
returned ara::com::Future may not have a set result at return.

1 using namespace ara::com;
2

3 // our implementation of RadarService
4 class RadarServiceImpl : public RadarServiceSkeleton {
5

6 public:
7 Future<AdjustOutput> Adjust(const Position& position)
8 {
9 Promise<AdjustOutput> promise;

10 // calling synchronous internal adjust function, which delivers
results

11 struct AdjustOutput out = doAdjustInternal(position, &out.
effective_position);

12 promise.set_value(out);
13 //we return a future from an already set promise...
14 return promise.get_future();
15 }
16

17 private:
18 AdjustOutput doAdjustInternal(const Position& position) {
19 // ... implementation
20 }
21

1The referenced object is provided by the Communication Management implementation until the
service method call has set its promise (valid result or error). If the service implementer needs the
referenced object beyond that, he has to make a copy.

54 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

22 }

Figure 6.15: Returning Future with already set result

As you see in the example above: Inside the body of the service method an internal
method is called, which does the work synchronously. I.e. after the return of ‘doAd-
justInternal’ in out the attributes, which resemble the service methods out-params are
set. Then this out value is set at the Promise and then the Future created from
the Promise is returned. This has the effect that the caller, who gets this Future as
return, can immediately call Future::get(), which would not block, but immediately
return the AdjustOutput.

Now let’s have a look at the asynchronous worker thread variant:

1 using namespace ara::com;
2

3 // our implementation of RadarService
4 class RadarServiceImpl : public RadarServiceSkeleton {
5

6 public:
7 Future<AdjustOutput> Adjust(const Position& position)
8 {
9 Promise<AdjustOutput> promise;

10 auto future = promise.get_future();
11

12 // asynchronous call to internal adjust function in a new Thread
13 std::thread t(
14 [this] (const Position& pos, Promise prom) { prom.set_value(

doAdjustInternal(pos));},
15 std::cref(position), std::move(promise));
16

17 //we return a future, which might be set or not at this point...
18 return future;
19 }
20

21 private:
22 AdjustOutput doAdjustInternal(const Position& position) {
23 // ... implementation
24 }
25 }

Figure 6.16: Returning Future with possibly unset result

In this example, ‘doAdjustInternal’ is called within a different asynchronous thread. In
this case we wrapped the call to ‘doAdjustInternal’ inside a small lambda, which does
the job of setting the value to the Promise.

55 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

6.2.5 Events

On the skeleton side the service implementation is in charge of notifying about occur-
rence of an event. As shown in Figure 6.13 the skeleton provides a member of an event
wrapper class per each provided event. The event wrapper class on the skeleton/event
provider side looks obviously different than on the proxy/event consumer side. On the
service provider/skeleton side the service specific event wrapper classes are defined
within the namespace event directly beneath the namespace skeleton. Let’s have
a deeper look at the event wrapper in case of our example event BrakeEvent:

1 class BrakeEvent {
2 public:
3

4 /**
5 * \brief Shortcut for the events data type.
6 */
7 using SampleType = RadarObjects;
8

9 void Send(const SampleType &data);
10

11

12 ara::com::SampleAllocateePtr<SampleType> Allocate();
13 /**
14 * After sending data you loose ownership and can’t access
15 * the data through the SampleAllocateePtr anymore.
16 * Implementation of SampleAllocateePtr will be with the
17 * semantics of std::unique_ptr (see types.h)
18 **/
19 void Send(ara::com::SampleAllocateePtr<SampleType> data);
20

21 };

Figure 6.17: BrakeEvent Class

The using directive — analogue to the Proxy side — just introduces the common name
SampleType for the concrete data type of the event. We provide two different variants
of a ‘Send’ method, which is used to send out new event data. The first one takes a
reference to a SampleType.

This variant is straight forward: The event data has been allocated somewhere by the
service application developer and is given via reference to the binding implementation
of Send(). After the call to send returns, the data might be removed/altered on the
caller side. The binding implementation will make a copy in the call.

The second variant of ‘Send’ also has a parameter named ‘data’, but this is now of
a different type ara::com::SampleAllocateePtr<SampleType>. According to
our general approach to only provide abstract interfaces and eventually provide a pro-
posed mapping to existing C++ types (see section 5.3) this pointer type, we intro-
duced here, shall behave like a std::unique_ptr<T>. That roughly means: Only
one party can hold the pointer - if the owner wants to give it away, he has to explic-

56 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

itly do it via std::move. So what does this mean here? Why do we want to have
std::unique_ptr<T> semantics here?

To understand the concept, we have to look at the third method within the event wrapper
class first:

1 ara::com::SampleAllocateePtr<SampleType> Allocate();

The event wrapper class provides us here with a method to allocate
memory for one sample of event data. It returns a smart pointer
ara::com::SampleAllocateePtr<SampleType>, which points to the allo-
cated memory, where we then can write an event data sample to. And this returned
smart pointer we can then give into an upcoming call to the second version of ‘Send’.
So — the obvious question would be — why should I let the binding implementation
do the memory allocation for event data, which I want to notify/send to potential
consumers? The answer simply is: Possibility for optimization of data copies.

The following ‘over-simplified’ example makes things clearer: Let’s say the event, which
we talk about here (of type RadarObjects), could be quite big, i.e. it contains a vec-
tor, which can grow very large (say hundreds of kilobytes). In the first variant of ‘Send’,
you would allocate the memory for this event on your own on the heap of your own
application process. Then — during the call to the first variant of ‘Send’ — the bind-
ing implementation has to copy this event data from the (private) process heap to a
memory location, where it would be accessible for the consumer. If the event data to
copy is very large and the frequency of such event occurrences is high, the sheer run-
time of the data copying might hurt. The idea of the combination of Allocate() and
the second variant to send event data (Send(SampleAllocateePtr<SampleType>
data)) is to eventually avoid this copy! A smart binding implementation might imple-
ment the Allocate() in a way, that it allocates memory at a location, where writer
(service/event provider) and reader (service/event consumer) can both directly access
it!

Such locations, where two parties can both have direct access to, are typically
called ‘shared memory’. The access to such regions should — for the sake of data
consistency — be synchronized between readers and writers. This is the reason, that
the Allocate() method returns such a smart pointer with the aspects of single/solely
user of the data, which it points to: After the potential writer (service/event provider
side) has called Allocate(), he can access/write the data pointed to as long as he
hands it over to the second send variant, where he explicitly gives away ownership!
This is needed, because after the call, the readers will access the data and need a
consistent view of it.

1 using namespace ara::com;
2

3 // our implementation of RadarService - subclass of RadarServiceSkeleton
4 RadarServiceImpl myRadarService;
5

6 /**
7 * handler called at occurrence of a BrakeEvent

57 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

8 **/
9 void BrakeEventHandler() {

10

11 // let the binding allocate memory for event data...
12 SampleAllocateePtr<BrakeEvent::SampleType> curSamplePtr = myRadarService.

BrakeEvent.Allocate();
13 // fill the event data ...
14 curSamplePtr->active = true;
15 fillVector(curSamplePtr->objects);
16

17 // Now notify event to consumers ...
18 myRadarService.BrakeEvent.Send(std::move(curSamplePtr));
19

20 // Now any access to data via curSamplePtr would fail - we’ve given up
ownership!

21

22 }

Figure 6.18: Event Allocate/Send sample

Binding implementer hint

The idea behind the concept of providing a binding specific ‘Allocate’ function-
ality was greatly driven by the ‘zero-copy’ buzzword. Having a shared memory
based IPC transport mechanism the ‘zero-copy’ axiom might be easily fulfill-able at
first glance. The ara::com::SampleAllocateePtr<SampleType> mechanism
foresees/assumes a hard synchronization between readers/writers anyway, so the
challenge in implementation isn’t that big, if the platform provides shared memory
concepts anyway.
But in reality you have to be aware of serialization needs (section 7.1), which can
ruin any ‘zero-copy’ attempts, which we did also hint at explicitly in subsection 7.1.1.
The work-around would be to either rule out serialization needs between ara::com
communication partners in an deployment by prescribing compile settings in a way,
that exchanged data types are binary compatible or at least to implement some smart
checking logic to detect, between which ara::com communication partners in fact
serialization is not needed.

6.2.6 Fields

On the skeleton side the service implementation is in charge of

• updating and notifying about changes of the value of a field.

• serving incoming Get() calls.

• serving incoming Set() calls.

As shown in Figure 6.13 the skeleton provides a member of a field wrapper class per
each provided field. The field wrapper class on the skeleton/field provider side looks ob-

58 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

viously different than on the proxy/field consumer side. On the service provider/skele-
ton side the service specific field wrapper classes are defined within the namespace
fields directly beneath the namespace skeleton. Let’s have a deeper look at the
field wrapper in case of our example event UpdateRate:

1 class UpdateRate {
2 public:
3

4 using FieldType = uint32_t;
5

6 /**
7 * Update equals the send method of the event. This triggers the

transmission of the notify (if configured) to the
8 * subscribed clients.
9 *

10 * In case of a configured Getter, this has to be called at least once to
set the initial value.

11 */
12 void Update(const FieldType& data);
13 /**
14 * Registering a GetHandler is optional. If registered the function is

called whenever a get request is received.
15 *
16 * If no Getter is registered ara::com is responsible for responding to

the request using the last value set by update.
17 * This implicitly requires at least one call to update after

initialization of the Service, before the service is offered.
18 * This is up to the implementer of the service.
19 *
20 * The get handler shall return a future.
21 */
22 void RegisterGetHandler(std::function<ara::com::Future<FieldType>()>

getHandler);
23 /**
24 * Registering a SetHandler is mandatory, if the field supports it.
25 * The handler gets the data the sender requested to be set. It has to

validate the settings and perform
26 * an update of its internal data. The new value of the field should than

be set in the future.
27 *
28 *
29 * The returned value is sent to the requester and is sent via

notification to all subscribed entities.
30 */
31 void RegisterSetHandler(std::function<ara::com::Future<FieldType>(const

FieldType& data)> setHandler);
32 };

Figure 6.19: UpdateRate Class

The using directive — again as in the Event Class and on the Proxy side — just in-
troduces the common name FieldType for the concrete data type of the field. We
provide an Update method by which the service implementer can update the current

59 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

value of the field. It is very similar to the simple/first variant of the Send method of the
event class: The field data has been allocated somewhere by the service application
developer and is given via reference to the binding implementation of Update. After
the call to Update returns, the data might be removed/altered on the caller side. The
binding implementation will make a (typically serialized) copy in the call.

In case “on-change-notification” is configured for the field, notifications to subscribers
of this field will be triggered by the binding implementation in the course of the Update
call.

6.2.6.1 Registering Getters

The RegisterGetHandler method provides the possibility to register a method im-
plementation by the service implementer, which gets then called by the binding imple-
mentation on an incoming Get() call from any proxy instance. The RegisterGetH-
andler method in the generated skeleton does only exist in case availability of “field
getter” has been configured for the field in the IDL! Registration of such a “GetHandler”
is fully optional! Typically there is no need for a service implementer to provide such
a handler. The binding implementation always has access to the latest value, which
has been set via Update. So any incoming Get() call can be served by the Commu-
nication Management implementation standalone. A theoretical reason for a service
implementer to still provide a “GetHandler” could be: Calculating the new/current value
of a field is costly/time consuming. Therefore the service implementer/field provider
wants to defer this process until there is really need for that value (indicated by a get-
ter call). In this case he could calculate the new field value within its “GetHandler”
implementation and give it back via the known ara:com promise/future pattern. If
you look at the bigger picture, then such a setup with the discussed intention, where
the service implementer provides and registers a “GetHandler” will not really make
sense, if the field is configured with “on-change-notification”, too. In this case, new
subscribers will get potentially outdated field values on subscription, since updating
of the field value is deferred to the explicit call of a “GetHandler”. You also have to
keep in mind: In such a setup, with enabled “on-change-notification” together with a
registered “GetHandler” the Communication Management implementation will not au-
tomatically care for, that the value the developer returns from the “GetHandler” will be
synchronized with value, which subscribers get via “on-change-notification” event! If
the implementation of “GetHandler” does not internally call Update() with the same
value, which it will deliver back via ara:com promise, then the field value delivered via
“on-change-notification” event will differ from the value returned to the Get() call. I.e.
the Communication Management implementation will not automatically/internally call
Update() with the value the “GetHandler” returned.

Bottom line: Using RegisterGetHandler is rather an exotic use case and develop-
ers should be aware of the intrinsic effect. Additionally an user provided “GetHandler”,
which only returns the current value, which has already been updated by the service
implementation via Update(), is typically very inefficient! The Communication Man-
agement then has to call to user space and to additionally apply field serialization of

60 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

the returned value at any incoming Get() call. Both things could be totally “optimz-
ized away” if the developer does not register a “GetHandler” and leaves the handling
of Get() calls entirely to the Communication Management implementation.

6.2.6.2 Registering Setters

Opposed to the RegisterGetHandler the RegisterSetHandler API has
to be called by the service implementer in case it exists (i.e. field has
been configured with setter support). The reason, that we decided to make
the registration of a “GetHandler” mandatory is simple: We expect, that the
server implementation will always need to check the validity of a new/up-
dated field values set by any anonymous client. A look at the signature
of the “SetHandler” std::function<ara::com::Future<FieldType>(const
FieldType& data)> revelas, that the registered handler does get the new value
as input argument and is expected to return also a value. The semantic behind this
is: In case the “SetHandler” always has to return the effective (eventually replaced/-
corrected) value. This allows the service side implementer to validate/overrule the new
field value provided by a client. The effective field value returned by the “SetHandler”
is implicitly taken over by the Communication Management implementation as if the
service implementer had called Update() explicitly with the effective value on its own.
That means: An explicit Update() call within the “SetHandler” is superflous as the
Communication Management would update the field value with the returned value of
the “SetHandler” anyways.

6.2.6.3 Ensuring existence of “SetHandler”

The existence of a registered “SetHandler” is ensured by an ara:com compliant imple-
mentation by raising an unchecked excepetion: If a developer calls OfferService()
on a skeleton implementation and had not yet registered a “SetHandler” for any of its
fields, which have setter enabled, the Communication Management implementatión
shall throw an unchecked excepetion indicating this programming error.

6.2.6.4 Ensuring existence of valid Field values

Since the most basic guarantee of a field is, that it has a valid value at any time,
ara:com has to somehow ensure, that a service implementation providing a field has
to provide a value before the service (and therefore its field) becomes visible to po-
tential consumers, which — after subscription to the field — expect to get initial value
notification event (if field is configured with notification) or a valid value on a Get call (if
getter is enabled for the field). An ara:com Communication Management implemen-
tation needs therefore behave in the following way: If a developer calls OfferSer-
vice() on a skeleton implementation and had not yet called Update() on any field,
which

61 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

• has notification enabled

• or has getter enabled but not yet a “GetHandler” registered

the Communication Management implementation shall throw an unchecked excepetion
indicating this programming error.

62 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

6.3 Runtime

Note: A singleton called Runtime may be needed to collect cross-cutting functional-
ities. Currently there are no requirements for such functionalities, so this chapter is
empty. This might change until the 1st release.

63 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

7 Appendix

Binding implementer hint

This whole section is mainly intended for ara::com binding implementers re-
spectively AP product vendors. So instead of enclosing everything in a box, we state
it in a preceding comment. However, ara::com API users are of course welcomed
reading this section, too.

7.1 Serialization

Serialization (see [6]) is the process of transforming certain data structures into a
standardized format for exchange between a sender and a (possibly different) receiver.
You typically have this notion if you transfer data from one network node to another.
When putting data on the wire and reading it back, you have to follow exact, agreed-on
rules to be able to correctly interpret the data on the receiver side. For the network
communication use case the need for a defined approach to convert an in-process
data representation into a wire-format and back is very obvious: The boxes doing the
communication might be based on different micro-controllers with different endianness
and different data-word sizes (16-bit, 32-bit, 64-bit) and therefore employing totally
different alignments. In the AUTOSAR CP serialization typically plays no role
for platform internal/node internal communication! Here the internal in-memory data
representation can be directly copied from a sender to a receiver. This is possible,
because three assumptions are made in the typical CP product:

• Endianness is identical among all local SWCs.

• Alignment of certain data structures is homogeneous among all local SWCs.

• Data structures exchanged are contiguous in memory.

The first point is maybe a bit pathological as it is most common, that ‘internal’ com-
munication generally means communication on a single- or multi-core MCU or even
a multi-processor system, where endianness is identical everywhere. Only if we look
at a system/node composed of CPUs made of different micro-controller families this
assumption may be invalid, but then you are already in the discussion, whether this
communication is still ‘internal’ in the typical sense. The second assumption is valid/ac-
ceptable for CP as here a static image for the entire single address space system is
built from sources and/or object files, which demands that compiler settings among the
different parts of the image are somewhat aligned anyway. The third one is also as-
sured in CP. It is not allowed/possible to model non contiguous data-types, which get
used in inter-SWC communication.

For the AP things look indeed different. Here the loading of executables during runtime,
which have been built independently at different times and have been uploaded to an
AP ECU at different times, is definitely a supported use case. The chance, that com-

64 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

piler settings for different ara::com applications were different regarding alignment
decisions is consequently high. Therefore an AP product (more concrete its IPC bind-
ing implementation) has to use/support serialization of exchanged event/field/method
data. How serialization for AP internal IPC is done (i.e. to what generalized format) is
fully up to the AP vendor. Also regarding the 3rd point, the AP is less restrictive. So for
example the AP supports exchange of std::vector data-types, which are generally
NOT contiguous in-memory (depending on the allocation strategy). So even if the data
contained in the vector is compatible with the receiver layout wise, a deep copy (mean-
ing collecting contained elements and their references from various memory regions
— see [7]) must be done during transfer. Of course the product vendor could apply
optimization strategies to get rid of the serialization and de-serialization stages within
a communication path:

• Regarding alignment issues, the most simple one could be to allow the integrator
of the system to configure, that alignment for certain communication relations
can be considered compatible (because he has the needed knowledge about the
involved components).

• Another approach common to middleware technology is to verify, whether align-
ment settings on both sides are equal by exchanging a check-pattern as kind of
a init-sequence before first ara::com communication call.

• The problem regarding need for deep-copying because of non-contiguous mem-
ory allocation could be circumvented by providing vector implementations which
care for continuity.

7.1.1 Zero-Copy implications

One thing which typically is at the top of the list of performance optimizations in
IPC/middleware implementations is the avoidance of unnecessary copies between
sender and the receiver of data. So the buzzword ‘zero-copy’ is widely used to de-
scribe this pattern. When we talk about AP, where we have architectural expectations
like applications running in separate processes providing memory protection, the typi-
cal communication approach needs at least ONE copy of the data from source address
space to target address space. Highly optimizing middleware/IPC implementations
could even get rid of this single copy step by setting up shared memory regions be-
tween communicating ara::com components. If you look at Figure 6.18, you see, that
we directly encourage such implementation approaches in the API design. But the not
so good news is, that if the product vendor does NOT solve the serialization problem,
he barely gets benefit from the shared memory approach: If conversions (aka de/se-
rialization) have to be done between communication partners, copying must be done
anyhow — so tricky shared memory approaches to aim for ‘zero-copy’ do not pay.

65 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

7.2 Service Discovery Implementation Strategies

Binding implementer hint

This whole section is intended for ara::com binding implementers respectively
AP product vendors.

As laid out in the preceding chapters, ara::com expects the functionality of a ser-
vice discovery being implemented by the product vendor. As the service discovery
functionality is basically defined at the API level (see section 6.3) with the methods
for FindService, OfferService and StopOfferService, the protocol and im-
plementation details are partially open.

When an AP node (more concretely an AP SWC) offers a service over the network or
requires a service from another network node, then service discovery/service registry
obviously takes place over the wire. The protocol for service discovery over the wire
needs to be completely specified by the used communication protocol. For SOME/IP,
this is done in the SOME/IP Service Discovery Protocol Specification [8]. But if an
ara::com application wants to communicate with another ara::com application on
the same node within the AP of the same vendor there has to be a local variant of a ser-
vice discovery available. Here the only difference is, that the protocol implementation
for service discovery taking place locally is totally up to the AP product vendor.

7.2.1 Central vs Distributed approach

From an abstract perspective a AP product vendor could choose between two ap-
proaches: The first one is a centralist approach, where the vendor decides to have one
central entity (f.i. a demon process), which:

• maintains a registry of all service instances together with their location informa-
tion

• serves all FindService, OfferService and StopOfferService re-
quests from local ara::com applications, thereby either updating the registry
(OfferService, StopOfferService) or querying the registry (FindSer-
vice)

• serves all SOME/IP SD messages from the network either updating its registry
(SOME/IP Offer Service received) or querying the registry (SOME/IP Find
Service received)

• propagates local updates to its registry to the network by sending out SOME/IP
SD messages.

The following figure roughly sketches this approach.

66 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

ara::com App ara::com App ara::com App

ara::com App
Switch

Service
Provider or
Consumer
APP

Middleware
Impl.

Middleware
Impl.

Middleware
Impl.

Middleware
Impl. Service

Registry/
Discovery

Se
rv

ic
e

d
is

co
ve

ryService discovery

Service discovery

ECU with AP product from vendor V1

SOME/IP Service discovery

ECU with AP/CP product

ECU with AP/CP product

Service
Provider or
Consumer
APP

Service
Provider or
Consumer
APP

Service
Provider or
Consumer
APP

Service
Provider or
Consumer
APP

Figure 7.1: Centralized discovery approach

A slightly different — more distributed — approach would be, to distribute the service
registry information (availability and location information) among the ara::com appli-
cations within the node. So for the node local communication use case no prominent
discovery demon would be needed. That could be technically reached by having a
broadcast-like communication. That means any service offering and finding is prop-
agated to all local ara::com applications, so that each application has a local (in
process) view of the service registry. There might be a benefit with this approach as
local communication might be more flexible/stable as it is not dependent from a single
registry demon. However, for the service discovery communication to/from the network
a single responsible instance is needed anyhow. Here the distributed approach is not
feasible as SOME/IP SD requires a fixed/defined set of ports, which just can be pro-
vided (in typical operating systems / with typical network stacks) by a single application
process. At the end we also do have a singleton/central instance, with the slight dif-
ference, that it is responsible for taking the role as a service discovery protocol bridge
between node local discovery protocol and network SOME/IP SD protocol. On top of
that — since registry is duplicated/distributed among all ara::com applications within
the node — this bridge also holds a local registry.

67 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

ara::com App ara::com App ara::com App

ara::com App
Switch

Service
Provider or
Consumer
APP

Middleware
Impl. with SD

Middleware
Impl. with SD

Middleware
Impl. with SD

Middleware
Impl. with SD

Discovery
Bridge

Se
rv

ic
e

d
is

co
ve

ryService discovery

Service discovery

ECU with AP product from vendor V1

SOME/IP Service discovery

ECU with AP/CP product

ECU with AP/CP product

Service
Provider or
Consumer
APP

Service
Provider or
Consumer
APP

Service
Provider or
Consumer
APP

Service
Provider or
Consumer
APP

Figure 7.2: Distributed discovery approach

68 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

7.3 Multi-Binding implications

As shortly discussed in subsection 6.1.1 Multi-Binding describes the solution to
support setups, where the technical transport/connection between different instances
of a certain proxy class/skeleton class are different. There might be various technical
reasons for that:

• proxy class uses different transport/IPC to communicate with different skeleton
instances. Reason: Different service instances support different transport mech-
anisms because of deployment decisions.

• symmetrically it may also be the case, that different proxy instances for the same
skeleton instance uses different transport/IPC to communicate with this instance:
The skeleton instance supports multiple transport mechanisms to get contacted.

7.3.1 Simple Multi-Binding use case

The following figure depicts an obvious and/or rather simple case. In this example,
which only deals with node local (inside one AP product/ECU) communication between
service consumers (proxy) and service providers (skeleton), there are two instances of
the same proxy class on the service consumer side. You see in the picture, that the
service consumer application has triggered a ‘FindService’ first, which returned two
handles for two different service instances of the searched service type. The service
consumer application has instantiated a proxy instance for each of those handles. Now
in this example the instance 1 of the service is located inside the same adaptive ap-
plication (same process/address space) as the service consumer (proxy instance 1),
while the service instance 2 is located in a different adaptive application (different pro-
cess/address space).

69 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

ara::com App

ECU with AP product

Client
Implementation

Service
Proxy

Service
Skeleton

Service
Implementation

ara::com App

Service
Skeleton

Service
Implementation

Service
Registry/
Discovery

FindService(ServiceType, AnyInstance)
returns Handle1, Handle2

Instance1 Instance2

Figure 7.3: Simple Multi-Binding intra AP example

The line symbolizing the transport layer between proxies and skeletons are colored
differently in this picture: The instance of the proxy class for instance 1 has a red col-
ored transport layer (binding implementation), while the transport layer for instance 2
is colored blue. They are colored differently because the used technology will be dif-
ferent already on the level of the proxy implementation. At least if you expect that the
AP product vendor (in the role as IPC binding implementer) strives for a well perform-
ing product! The communication between proxy instance 1 and the service instance
1 (red) should in this case be optimized to a plain method call, since proxy instance
and skeleton instance 1 are contained in ONE process. The communication between
proxy instance 2 and the service instance 2 (blue) is a real IPC. So the actions taken
here are of much higher costs involving most likely a variety of syscalls/kernel context
switches to transfer calls/data from process of service consumer application to ser-
vice application (typically using basic technologies like pipes, sockets or shared mem
with some signaling on top for control). So from the service consumer side application
developer it is totally transparent: From the vendors ProxyClass::FindService
implementation he gets two opaque handles for the two service instances, from which
he creates two instances of the same proxy class. But ‘by magic’ both proxies be-
have totally different in the way, they contact their respective service instances. So
— somehow there must be some information contained inside this handle, from which
the proxy class instance knows which technical transport to choose. Although this
use case looks simple at the first look it isn’t on the second ... The question is: Who

70 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

writes When into the handle, that the proxy instance created from it shall use a direct
method/function call instead of a more complex IPC mechanism or vice versa? At
the point in time when instance 1 of the service does register itself via Skeleton-
Class::OfferService at the registry/service discovery, this can not be decided!
Since it depends on the service consumer which uses it later on. So most likely
the SkeletonClass::OfferService implementation of the AP vendor takes the
needed information from the argument (skeleton generated by the AP vendor) and no-
tifies via AP vendor specific IPC the registry/service discovery implementation of the
AP vendor. The many ‘AP vendor’ in the preceding sentence were intentional. Just
showing, that all those mechanisms going on here are not standardized and can there-
fore deliberately designed and optimized by the AP vendors. However, the basic steps
will remain. So what typically will be communicated from the service instance side to
the registry/discovery in the course of SkeletonClass::OfferService is the tech-
nical addressing information, how the instance could be reached via the AP products
local IPC implementation. Normally there will be only ONE IPC-mechanism used in-
side one AP product/AP node! If the product vendor already has implemented a highly
optimized/efficient local IPC implementation between adaptive applications, which will
then be generally used. So — in our example let’s say the underlying IPC-mechanism
is unix domain sockets — the skeleton instance 1 would get/create some file descriptor
to which its socket endpoint is connected and would communicate this descriptor to the
registry/service discovery during SkeletonClass::OfferService. Same goes for
the skeleton instance 2, just the descriptor is different. When later on the service con-
sumer application part does a ProxyClass::FindService, the registry will send
the addressing information for both service instances to the service consumer, where
they are visible as two opaque handles.

So in this example obviously the handles look exactly the same — with the small dif-
ference, that the contained filedescriptor values would be different as they reference
distinctive unix domain sockets. So in this case it somehow has to be detected inside
the proxy for instance 1, that there is the possibility to optimize for direct method/func-
tion calls. One possible trivial trick could be, that inside the addressing information,
which skeleton instance 1 gives to the registry/discovery, also the ID of the process
(pid) is contained; either explicitly or by including it into the socket descriptor filename.
So the service consumer side proxy instance 1 could simply check, whether the PID
inside the handle denotes the same process as itself and could then use the optimized
path. By the way: Detection of process local optimization potential is a triviality, which
almost every existing middleware implementation does today — so no further need to
stress this topic.

Now, if we step back, we have to realize, that our simple example here does NOT fully
reflect what Multi-Binding means. It does indeed describe the case, where two
instances of the same proxy class use different transport layers to contact the service
instance, but as the example shows, this is NOT reflected in the handles denoting the
different instances, but is simply an optimization! In our concrete example, the service
consumer using the proxy instance 1 to communicate with the service instance 1 could
have used also the Unix domain socket transport like the proxy instance 2 without
any functional losings — only from a non-functional performance viewpoint it would

71 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

be obviously bad. Nonetheless this simple scenario was worth being mentioned here
as it is a real-world scenario, which is very likely to happen in many deployments and
therefore must be well supported!

7.3.2 Local/Network Multi-Binding use case

After we have seen a special variant of Multi-Binding in the preceding section,
we now look at a variant, which can also be considered as being a real-world case.
Let’s suppose, we have have a setup quite similar to the one of the preceding chapter.
The only difference is now, that the instance 2 of the service is located on a different
ECU attached to the same Ethernet network as our ECU with the AP product, where
the service consumer (with its proxies for instance 1 and 2) resides. As the standard
protocol on Ethernet for AP is SOME/IP, it is expected, that the communication between
both ECUs is based on SOME/IP. For our concrete example this means, that proxy
1 talks to service 1 via unix domain sockets (which might be optimized for process
local communication to direct method calls, if the AP vendor/IPC implementer did his
homework), while the proxy 2 talks to service 2 via network sockets in a SOME/IP
compliant message format.

Before someone cries out, that this is not true for the typical SOME/IP deployment,
because there adaptive SWCs will not directly open network socket connections to
remote nodes: We will cover this in more detail here (subsection 7.3.3), but for now
suppose, that this is a realistic scenario. (For other network protocols it might indeed
be realistic)

ara::com App

ECU with AP product

Client
Implementation

Service
Proxy

Service
Skeleton

Service
Implementation

Service Provider APP

Service
Skeleton

Service
Implementation

Service
Registry/
Discovery

FindService(ServiceType, AnyInstance)
returns Handle1, Handle2

Instance1 Instance2

Switch

SOME/IP

Figure 7.4: Multi-Binding local and network example

72 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

So in this scenario the registry/service discovery demon on our AP ECU has seen
a service offer of instance 2 and this offer contained the addressing information on IP
network endpoint basis. Regarding the service offer of the instance 1 nothing changed:
This offer is still connected with some Unix domain socket name, which is essentially
a filename. In this example the two handles for instance 1 and 2 returned from Prox-
yClass::FindService internally look very different: Handle of instance 1 contains
the information, that it is a Unix domain socket and a name, while handle 2 contains
the information, that it is a network socket and an IP address and port number. So —
in contrast to our first example (subsection 7.3.1) here we do really have a full blown
Multi-Binding, where our proxy class ctor instantiates/creates two completely dif-
ferent transport mechanisms from handle 1 and handle 2! How this dynamic decision,
which transport mechanism to use, made during call of the ctor, is technically solved is
— again — up to the middleware implementer: The generated proxy class implemen-
tation could already contain any supported mechanism and the information contained
in the handle is just used to switch between different behavior or the needed trans-
port functionality aka binding could be loaded during runtime after a certain need is
detected from the given handle via shared library mechanisms.

7.3.3 Typical SOME/IP Multi-Binding use case

In the previous section we briefly mentioned, that in a typical deployment scenario
with SOME/IP as network protocol, it is highly unlikely that an adaptive SWC (i.e. the
language and network binding which runs in its context) opens socket connections
itself to communicate with a remote service. Why is it unlikely? Because SOME/IP was
explicitly designed to use as few ports as possible. The reason for that requirement
comes from low power/low resources embedded ECUs: Managing a huge amount of
IP sockets in parallel means huge costs in terms of memory (and runtime) resources.
So somehow our AUTOSAR CP siblings which will be main communication partner in
an inside vehicle network demand this approach, which is uncommon, compared to
non-automotive IT usage pattern for ports.

Typically this requirement leads to an architecture, where the entire SOME/IP traffic
of an ECU / network endpoint is routed through one IP port! That means SOME/IP
messages originating from/dispatched to many different local applications (service
providers or service consumers) are (de)multiplexed to/from one socket connection.
In Classic AUTOSAR (CP) this is a straight forward concept, since there is already
a shared communication stack through which the entire communication flows. The
multiplexing of different upper layer PDUs through one socket is core functionality inte-
grated in CPs SoAd basic software module. For a typical POSIX compatible OS with
POSIX socket API, multiplexing SOME/IP communication of many applications to/from
one port means the introduction of a separate/central (demon) process, which man-
ages the corresponding port. The task of this process is to bridge between SOME/IP
network communication and local communication and vice versa.

73 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

ara::com App

ECU with AP product

Client
Implementation

Service
Proxy

Service
Skeleton

Service
Implementation

ara::com App

Service
Skeleton

Service
Implementation

Service
Registry/
Discovery

Instance1 Instance2

Switch

SOME/IP

SOME/IP
Bridge

Figure 7.5: SOME/IP Bridge

In the above figure you see, that the service proxy within our ara::com enabled appli-
cation communicates through (green line) a SOME/IP Bridge with the remote service
instance 2. Two points which may pop out in this figure:

• we intentionally colored the part of the communication route from app to bridge
(green) differently than the part from the bridge to the service instance 2 (blue).

• we intentionally drew a box around the function block service discovery and
SOME/IP bridge.

The reason for coloring first part of the route differently from the second one is simple:
Both parts use a different transport mechanism. While the first one (green) between the
proxy and the bridge uses a fully vendor specific implementation, the second one (blue)
has to comply with the SOME/IP specification. ‘Fully vendor specific’ here means,
that the vendor not only decides which technology he uses (pipes, sockets, shared
mem, ...), but also which serialization format (see section 7.1) he employs on that
path. Here we obviously dive into the realm of optimizations: In an optimized AP
product, the vendor would not apply a different (proprietary) serialization format for
the path denoted with the green line. Otherwise it would lead to an inefficient runtime
behavior. First the proxy within the service consumer app would employ a proprietary
serialization of the data before transferring it to the bridge node and then the bridge
would have to de-serialize and re-serialize it to SOME/IP serialization format! So even
if the AP product vendor has a much more efficient/refined serialization approach for
local communication, using it here does not pay, since then the bridge is not able to
simply copy the data through between external and external side. The result is, that for
our example scenario we eventually do have a Multi-Binding setup. So even if the
technical transport (pipes, unix domain sockets, shared mem, ...) for communication to

74 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

Explanation of ara::com API
AUTOSAR AP Release 17-03

other local ara::com applications and to the bridge node is the same, the serialization
part of the binding differs.

Regarding the second noticeable point in the figure: We drew a box around the ser-
vice discovery and SOME/IP bridge functionality since in product implementations it
is very likely, that it is integrated into one component/running within one (demon) pro-
cess. Both functionalities are highly related: The discovery/registry part also consists
of parts local to the ECU (receiving local registrations/offers and serving local Find-
Service requests) and network related functions (SOME/IP service discovery based
offers/finds) , where the registry has to arbitrate. This arbitration in its core is also a
bridging functionality.

75 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 846: AUTOSAR_EXP_ARAComAPI

	1 Preface
	2 Introduction
	3 Acronyms and Abbreviations
	4 API Design Visions and Guidelines
	5 High Level API Structure
	5.1 Proxy/Skeleton Architecture
	5.2 Runtime Interface
	5.3 Datatype Abstractions

	6 API Elements
	6.1 Proxy Class
	6.1.1 Constructor and Handle Concept
	6.1.2 Finding Services
	6.1.2.1 Auto Update Proxy instance

	6.1.3 Events
	6.1.3.1 Event Subscription and Cache Semantics
	6.1.3.2 Monitoring Event Subscription
	6.1.3.3 Event-Driven vs Polling-Based access
	6.1.3.4 Buffering Strategies

	6.1.4 Methods
	6.1.4.1 Event-Driven vs Polling access to method results
	6.1.4.2 Canceling Method Result

	6.1.5 Fields

	6.2 Skeleton Class
	6.2.1 Instantiation
	6.2.2 Offering Service instance
	6.2.3 Polling and event-driven processing modes
	6.2.3.1 Polling Mode
	6.2.3.2 Event-Driven Mode

	6.2.4 Methods
	6.2.5 Events
	6.2.6 Fields
	6.2.6.1 Registering Getters
	6.2.6.2 Registering Setters
	6.2.6.3 Ensuring existence of ``SetHandler''
	6.2.6.4 Ensuring existence of valid Field values

	6.3 Runtime

	7 Appendix
	7.1 Serialization
	7.1.1 Zero-Copy implications

	7.2 Service Discovery Implementation Strategies
	7.2.1 Central vs Distributed approach

	7.3 Multi-Binding implications
	7.3.1 Simple Multi-Binding use case
	7.3.2 Local/Network Multi-Binding use case
	7.3.3 Typical SOME/IP Multi-Binding use case

