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ABSTRACT
This paper introduces Explicit Semantic Ranking (ESR), a
new ranking technique that leverages knowledge graph em-
bedding. Analysis of the query log from our academic search
engine, SemanticScholar.org, reveals that a major error
source is its inability to understand the meaning of research
concepts in queries. To addresses this challenge, ESR repre-
sents queries and documents in the entity space and ranks
them based on their semantic connections from their knowl-
edge graph embedding. Experiments demonstrate ESR’s
ability in improving Semantic Scholar’s online production
system, especially on hard queries where word-based ranking
fails.
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1. INTRODUCTION
The Semantic Scholar (S2) launched in late 2015, with

the goal of helping researchers find papers without digging
through irrelevant information. The project has been a suc-
cess, with over 3 million visits in the past year. Its current
production ranking system is based on the word-based model
in ElasticSearch that matches query terms with various parts
of a paper, combined with document features such as cita-
tion count and publication time in a learning to rank archi-
tecture [15]. In user studies conducted at Allen Institute,
this ranking model provides at least comparable accuracy
with other academic search engines.

Analysis of S2’s query logs found that a large fraction of
the online traffic is ad-hoc queries about computer science
concepts or research topics. The information needs behind
such queries sometimes are hard for term-frequency based
ranking models to fulfill. For example, a user entering the
query ‘dynamic programming segmentation’ has a complex
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semantic intent, roughly described as ‘show me NLP pa-
pers that use dynamic programming algorithms to solve the
word segmentation problem’. Our error analysis using user
clicks found that word-based ranking models sometimes fail
to capture the semantic meaning behind such queries. This
constitutes a major error source in S2’s ranking.

This paper introduces Explicit Semantic Ranking (ESR),
a new ranking technique to connect query and documents
using semantic information from a knowledge graph. We
first build an academic knowledge graph using S2’s corpus
and Freebase. The knowledge graph includes concept en-
tities, their descriptions, context correlations, relationships
with authors and venues, and embeddings trained from the
graph structure. We apply this knowledge graph and em-
beddings to our ranking task. Queries and documents are
represented by entities in the knowledge graph, providing
‘smart phrasing’ for ranking. Semantic relatedness between
query and document entities is computed in the embedding
space, which provides a soft matching between related enti-
ties. ESR uses a two-stage pooling to generalize these entity-
based matches to query-document ranking features and uses
a learning to rank model to combine them.

The explicit semantics from the knowledge graph has the
ability to improve ranking in multiple ways. The entities
and surface names help the ranking model recognize which
part of a query is an informative unit, and whether different
phrases have the same meaning, providing a powerful exact
match signal. Embeddings of entities from the knowledge
graph can also be leveraged to provide a soft match signal,
allowing ranking of documents that are semantically related
but do not match the exact query terms. Our experiments
on S2’s ranking benchmark dataset demonstrate the effec-
tiveness of this explicit semantics. ESR improves the already-
reliable S2’s online production system by more than 10%.
The gains are robust, with bigger gains and smaller errors,
and also favoring top ranking positions. Further analysis
confirms that both exact match and soft match in the en-
tity space provide effective and novel ranking signals. These
signals are successfully utilized by ESR’s ranking framework,
and greatly improve the queries that S2’s word-based rank-
ing system finds hard to deal with.

In the rest of this paper, Section 2 discusses related work;
Section 3 analyzes S2’s search traffic; Section 4 discusses our
Explicit Semantic Ranking system; Sections 5 and 6 describe
experimental methodology and evaluation; conclusions and
future work are in Section 7.



2. RELATED WORK
Prior research in academic search is more focused on the

analysis of the academic graph than on ad-hoc ranking. Mi-
crosoft uses its Microsoft Academic Graph to build academic
dialog and recommendation systems [20]. Other research on
academic graphs includes the extraction and disambiguation
of authors, integration of different publication resources [21],
and expert finding [2, 7, 29]. The academic graph can also be
used to model the importance of papers [23] and to extract
new entities [1].

Soft match is a widely studied topic in information re-
trieval, mostly in word-based search systems. Translation
models treat ranking as translations between query terms
and document terms using a translation matrix [3]. Topic
modeling techniques have been used to first map query and
document into a latent space, and then matching them in
it [24]. Word embedding and deep learning techniques have
been studied recently. One possibility is to first build query
and document representations using their words’ embed-
dings heuristically, and then match them in the embedding
space [22]. The DSSM model directly trains a representation
model using deep neural networks, which learns distributed
representations for the query and document, and matches
them using the learned representations [13]. A more re-
cent method, DRMM, models the query-document relevance
with a neural network built upon the word-level translation
matrix [11]. The translation matrix is calculated with pre-
trained word embeddings. The word-level translation scores
are summarized by bin-pooling (histograms) and then used
by the ranking neural network.

The recent development of knowledge graphs has moti-
vated many new techniques in utilizing knowledge bases for
text-centric information retrieval [9]. An intuitive way is to
use the textual attributes of related entities to enrich the
query representation. For example, Wikipedia articles have
been used as a better corpus for pseudo relevance feedback to
generate better expansion terms [28]. Freebase entities that
are retrieved by the query [6] or frequently appear in top
retrieved documents’ annotations [10] are usually related to
the query’s information needs; better expansion terms can
be found in these related entities’ descriptions [26]. The re-
lated entities’ textual attributes have also been used by en-
tity query feature expansion (EQFE) to extract richer learn-
ing to rank features. Each textual attribute provides unique
textual similarity features with the document [8].

Another way to utilize knowledge graphs in search is to
use the entities as a source of additional connections from
query to documents. Latent Entity Space (LES) uses query
entities and closely related document entities as the latent
space between query and documents, and the latent enti-
ties’ descriptions are used to connect query and documents
in an unsupervised model [16]. LES performs well with high-
quality query annotations [17]. EsdRank uses entities from
entity linking and entity search to build additional connec-
tions between query and documents [25]. The connections
are expressed by textual features between the query, entities
and candidate documents. A latent space learning to rank
model jointly learns the connections from query to entities
and the ranking of documents.

A more recent trend is to build entity-based text represen-
tations and improve word-based ranking with entity-based
retrieval models. Entity-based language model uses the sur-
face forms and entity names of document annotations to

build an entity-oriented language model [12]. It success-
fully improves the retrieval accuracy when combined with
typical word-based retrieval. A similar idea is used in the
bag-of-entities model, in which the query and documents
are represented by their entity annotations [27]. Boolean
and frequency-based models in the entity space can im-
prove the ranking accuracy of word-based retrieval. ESR

further explores the entity-based representation’s potential
with knowledge graph embeddings and soft matches, and
uses the knowledge graph in a new domain: academic search.

3. QUERY LOG ANALYSIS
S2’s current ranking system is built on top of Elastic-

Search’s vector space model. It computes a ranking score
based on the tf.idf of the query terms and bi-grams on pa-
pers’ title, abstract, body text and citation context. Static
ranking features are also included, for example, the number
of citations, recent citations, and the time of publication. To
handle the request for an author or for a particular paper
by title, a few additional features match explicitly against
authors and boost exact title matches. The ranking system
was trained using learning to rank on a training set created
at Allen Institute. Before and after release, several rounds
of user studies were conducted by researchers at Allen Insti-
tute (mostly Ph.D.’s in Computer Science) and by a third
party company. The results agree that on computer science
queries S2 performs at least on par with other academic
search engines on the market.

The increasing online traffic in S2 makes it possible to
study the information needs in academic search, which is
important for guiding the development of ranking models.
For example, if users are mostly searching for paper titles,
the ranking would be straightforward exact-matches; if users
are mostly searching for author names, the ranking would be
mainly about name disambiguation, aggregation, and recog-
nition.

We manually labeled the intents of S2’s 400 most frequent
queries in the first six months of 2016. A query was labeled
based on its search results and clicks. The result shows that
the information needs on the head traffic can be categorized
into the following categories:
• Concept: Searching for a research concept, e.g. ‘deep

reinforcement learning’;
• Author: Searching for a specific author;
• Exploration: Exploring a research topic, e.g. ‘forensics

and machine learning’;
• Title: Searching for a paper using its title;
• Venue: Searching for a specific conference; and
• Other: Unclear or not research related.

Figure 1a shows the distribution of these intents. More
than half of S2’s head traffic is research concept related:
searching for an academic concept (39%) and exploring re-
search topics (15%). About one-third is searching an author
(36%). Very little of the head queries are paper titles; most
of such queries are in the long tail of the online traffic.

The large fraction of concept related queries shows that
much of academic search is an ad-hoc search problem. The
queries are usually short, on average about 2-3 terms, and
their information needs are not as clear as the author, venue,
or paper title queries. They are very typical ad-hoc search
queries, in a specific domain – computer science.

To understand where S2 is making mistakes, we studied
the error sources of the failure queries in the query log.
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Figure 1: Query log analysis in S2’s search traffic in the first
six months of 2016. Query intents are manually labeled on
the 400 most frequent queries. Error sources are manually
labeled on the 200 worst performing queries.

These failure queries were picked based on the average click
depth in the query log: The lower the click, the worse S2

might be performing. Among the queries with more than
10 clicks, we manually labeled the top 200 worst performing
ones. The distribution of error types is shown in Figure 1b.
The two major causes of failure are author name not recog-
nized (22%) and concept not understood (20%).
S2’s strategy for author queries is to show the author’s

page. When the author name is not recognized, S2 uses its
normal ranking based on papers’ textual similarity with the
author name, which often results in unrelated papers.

A concept not understood error occurs when S2 returns
papers that do not correctly match the semantic meanings
of concept queries. Since this is the biggest error source in
S2’s ad-hoc ranking part, we further analyzed what makes
these queries difficult.

The first part of the difficulty is noise in the exact-match
signal. Due to language variety, the query term may not
appear frequently enough in the relevant documents (vo-
cabulary mismatch), for example, ‘softmax categorization’
versus ‘softmax classification’. The segmentation of query
concepts is also a problem. For example, the whole query
‘natural language interface’ should be considered as a whole
because it is one informative unit, but the ranking model
matches all words and n-grams of the query, and the result
is dominated by the popular phrase ‘natural language’.

The second part is more subtle as it is about the meaning
of the query concept. There can be multiple aspects of the
query concept, and a paper that mentions it the most fre-
quently may not be about the most important aspect. For
example, ‘ontology construction’ is about how to construct
ontologies in general, but may not be about how a specific
ontology is constructed; ‘dynamic programming segmenta-
tion’ is about word segmentation in which dynamic program-
ming is essential, but is not about image segmentation.

To conclude, our analysis finds that there is a gap between
query-documents’ textual similarity and their semantic re-
latedness. Ranking systems that rely solely on term-level
statistics have few principled ways to resolve this discrep-
ancy. Our desire to handle this gap led to the development
of ESR.

4. EXPLICIT SEMANTIC RANKING
This section first describes the knowledge graph we con-

structed, and then introduces our Explicit Semantic Rank-
ing (ESR) method that models the relatedness of query and
documents using the semantics from the knowledge graph.

4.1 Knowledge Graph
The prerequisite of semantic ranking systems is a knowl-

edge graph that stores semantic information. Usually, an
entity linking system that links natural language text with
entities in the knowledge graph is also necessary [8, 16, 25].
In this work, we build a standard knowledge graph G with
concept entities (E) and edges (predicates P and tails T ) by
harvesting S2’s corpus and Freebase, and use a popularity
based entity linking system to link query and documents.

Concept Entities in our knowledge graph can be col-
lected from two different sources: corpus-extracted (Corpus)
and Freebase. Corpus entities are keyphrases automati-
cally extracted from S2’s corpus. Keyphrases extraction
is a widely studied task that aims to find representative
keyphrases for a document, for example, to approximate
the manually assigned keywords of a paper. This work uses
the keyphrases extracted by S2’s production system, which
extracts noun phrases from a paper’s title, abstract, intro-
duction, conclusion and citation contexts, and selects the
top ranked ones in a keyphrase ranking model with typical
features such as frequency and location [4].

The second source of entities is Freebase. Despite being
a general domain knowledge base, our manual examination
found that Freebase has rather good coverage on the com-
puter science concept entities in S2’s head queries.

Entity Linking: We use CMNS which links surface forms
(entity mentions) in a query or document to their most fre-
quently linked entities in Google’s FACC1 annotation [10,
12, 27]. Although CMNS does not provide entity disambigua-
tion, it has been shown to be effective for query entity link-
ing [12], and the language in computer science papers is less
ambiguous than in a more general domain.

Edges in our knowledge graph include two parts: Predi-
cates P and tails T . From Freebase and the CMNS annotated
S2 corpus, the following four types of edges are harvested:
• Author edges link an entity to an author if the author

has a paper which mentioned the entity in the title;
• Context edges link an entity to another entity if the

two co-occur in a window of 20 words more than 5
times in the corpus;
• Desc edges link an entity to words in its Freebase de-

scription (if one exists); and
• Venue edges link an entity to a venue if the entity ap-

pears in the title of a paper published in the venue.
The knowledge graph G contains two types of entities:

Corpus-extracted (Corpus) and Freebase, and four types of
edges: Author, Context, Desc and Venue.

Embeddings of our entities are trained based on their
neighbors in the knowledge graph. The graph structure
around an entity conveys the semantics of this entity. In-
tuitively, entities with similar neighbors are usually related.
We use entity embeddings to model such semantics.
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Figure 2: The Framework of Explicit Semantic Ranking (ESR).

We train a separate embedding model for each of {Author,
Context, Desc, Venue} edges using the skip-gram model [18]:

l =
∑

e∈E,t∈T

w(e, t)
(
σ(V (e)TU(t))− Et̂∼Tσ(−V (e)TU(t̂))

)
.

The loss function l is optimized using a typical gradient
method. V and U are the entity embedding matrices learned
for entities and tails of this edge type. Each of their rows
(V (e) or U(t)) is the embedding of an entity e or a tail t,
respectively. σ is the Sigmoid function. T is the collec-
tion of all tails for this edge type. Et̂∼T () samples negative
instances based on the tails’ frequency (negative sampling).
w(e, t) is the frequency of entity e and tail t being connected,
for example, how many times an entity is used by an author.

4.2 Ranking Model
Given a query q, and a set of candidate documents D =
{d1, ..., dn}, the goal of ESR is to find a ranking function
f(q, d|G), that better ranks D using the explicit semantics
stored in the knowledge graph G. The explicit semantics
include entities (E = {e1, ..., e|E|}) and edges (predicates
P and tails T ). The rest of this section describes the ESR

framework, which is also shown in Figure 2.

Entity Based Representations.
ESR represents query and documents by their bag-of-

entities constructed using their entity annotations linked by
CMNS [19, 27]. Each query or document is represented by a

vector ( ~Eq or ~Ed). Each dimension in the vector corresponds
to an entity e in the query or document’s annotation, and
the weight is the frequency of the entity being annotated to
it.

Match Query and Documents in the Entity Space.
Instead of being restricted to classic retrieval models [19,

27], ESR matches query and documents’ entity representa-
tions using the knowledge graph embedding.
ESR first calculates a query-document entity translation

matrix. Each element in the matrix is the connection
strength between a query entity ei and a document entity
ej , calculated by their embeddings’ cosine similarity:

s(ei, ej) = cos(V (ei), V (ej)). (1)

A score of 1 in the entity matrix refers to an exact match
in the entity space. It incorporates the semantics from en-
tities and their surface forms: The entities in the text are
recognized, different surface forms of an entity are aligned,
and the exact match is done at the entity level. We call this

effect ‘smart phrasing’. Scores less than 1 identify related
entities as a function of the knowledge graph structure and
provide soft match signals.

Then ESR performs two pooling steps to generalize the
exact matches and soft matches in the entity translation
matrix to query-document ranking evidence.

The first step is a max-pooling along the query dimension:

~S(d) = max
ei∈~Eq

s(ei, ~Ed). (2)

~Eq and ~Ed are the bag-of-entities of q and d. ~S(d) is a

| ~Ed| dimensional vector. Its jth dimension is the maximum
similarity of the document entity ej to any query entities.

The second step is a bin-pooling (histogram) to count the
matches at different strengths [11]:

Bk(q, d) = log
∑
j

I(stk ≤ ~Sj(d) < edk). (3)

[stk, edk) is the range for the kth bin. Bk is the number of
document entities whose scores fall into this bin.

The max-pooling matches each document entity to its
closest query entity using embeddings, which is the exact-
match if one exists. Its score describes how closely related
a document entity is to the query. The bin-pooling counts
the number of document entities with different connection
strengths to the query. The bin with range [1, 1] counts the
exact matches, and the other bins generate soft match sig-
nals [11]. The two pooling steps together summarize the
entity matches to query-document ranking evidence.

Ranking with Semantic Evidence.
The bin scores B are used as features for standard learning

to rank models in ESR:

f(q, d|G) = w0fS2(q, d) +WTB(q, d) (4)

where fS2(q, d) is the score from S2’s production system,
w0 and W are the parameters to learn, and f(q, d|G) is the
final ranking score. Based on which edge type the entity
embedding is trained, there are four variants of ESR: ESR-
Author, ESR-Context, ESR-Desc, and ESR-Venue.

With entity-based representations, the exact matches
(smart phrasing) allow ESR to consider multiple words as
a single unit in a principled way, and the knowledge graph
embeddings allow ESR to describe semantic relatedness via
soft matches. The exact match and soft match signals are
utilized by ESR’s unified framework of embedding, pooling,
and ranking.



5. EXPERIMENTAL METHODOLOGY
This section describes the ranking benchmark dataset of

S2 and the experimental settings.

5.1 Ranking Benchmark
The queries of the benchmark are sampled from S2’s query

log in the first six months of 2016. There are in total 100
queries, 20 uniformly sampled from the head traffic (100
most frequent queries), 30 from the median (queries that ap-
pear more than 10 times), and 50 hard queries from the 200
worst performing queries based on the average click depth.
Author and venue queries are manually ignored as they are
more about name recognition instead of ranking.

The candidate documents were generated by pooling from
several variations of S2’s ranking system. First, we labeled
several of the top ranked results from S2. Then several vari-
ations of S2’s ranking systems, with same features, but dif-
ferent learning to rank models, are trained and tested on
these labels using cross-validation. The top 10 results from
these rankers obtained from cross-validation were added to
the document pool. They also could be labeled for another
iteration of training. The training-labeling process was re-
peated twice; after that, rankings had converged.

We also tried pooling with classic retrieval models such as
BM25 and the query likelihood model, but their candidate
documents were much worse than the production system.
Our goal was to improve an already-good system, so we
chose to use the higher quality pool produced by S2 variants.

We used the same five relevance categories used by the
TREC Web Track. Judging the relevance of research papers
to academic queries requires a good understanding of related
research topics. It is hard to find crowd-sourcing workers
with such research backgrounds. Thus we asked two re-
searchers in the Allen Institute to label the query-document
pairs. Label differences were resolved by discussion.

The distribution of relevance labels in our dataset is shown
in Table 1. The same statistics from the TREC Web Track
2009-2012 are also listed for reference. Our relevance judg-
ments share a similar distribution, although our data is
cleaner, for example, due to a lack of spam.

The benchmark dataset is available at http://boston.

lti.cs.cmu.edu/appendices/WWW2016/.

5.2 Experimental Settings
Data: Ranking performances are evaluated on the bench-

mark dataset discussed in Section 5.1. The entity linking
performance is evaluated on the same queries with manual
entity linking from the same annotators.

Baselines: The baseline is the Semantic Scholar (S2)
production system on July 1st 2016, as described in Sec-
tion 3. It is a strong baseline. An internal evaluation and a
third-party evaluation indicate that its accuracy is at least
as good as other academic search engines on the market. We
also include BM25-F and tf.idf-F for reference. The BM25
and vector space model are applied to the paper’s title, ab-
stract, and body fields. Their parameters (field weights)
are learned using the same learning to rank model as our
method in the same cross-validation setting.

Evaluation Metrics: Query entity linking is evaluated
by Precision and Recall at the query level (strict evalua-
tion [5]) and the average of query level and entity level (lean
evaluation [12]). Ranking is evaluated by NDCG@20, the
main evaluation metric in the TREC Web Track. As an

Table 1: Distribution of relevance labels in Semantic

Scholar’s benchmark dataset. S2 shows the number and
percentage of query-document pairs from the 100 testing
queries that are labeled to the corresponding relevance level.
TREC shows the statistics of the relevance labels from
TREC Web Track 2009-2012’s 200 queries.

Relevance Level S2 TREC
Off-Topic (0) 3080 65.24% 54660 77.45%
Related (1) 1060 22.45% 10778 15.27%
Relevant (2) 317 6.71% 3681 5.22%
Exactly-Right (3) 213 4.51% 598 0.85%
Navigational (4) 51 1.08% 858 1.22%

Table 2: Entity linking evaluation results. Entities are
linked by CMNS. Corpus shows the results when using au-
tomatically extracted keyphrases as the targets. Freebase

shows the results when using Freebase entities as the tar-
gets. Precison and Recall from lean evaluation and strict
evaluation are displayed.

Lean Evaluation Strict Evaluation
Prec Rec Prec Rec

Corpus 0.5817 0.5625 0.5400 0.5400
Freebase 0.6960 0.6958 0.6800 0.6800

online production system, S2 especially cares about top po-
sitions, so NDCG@{1, 5, 10} are also evaluated. Statistical
significances are tested by permutation test with p < 0.05.

ESR Methods: Based on which edge type is used to
obtain the entity embedding, there are four versions of ESR:
ESR-Author, ESR-Context, ESR-Desc, and ESR-Venue. Em-
beddings for ESR-Author and ESR-Venue are trained with
authors and venues with more than 1 publication. Descrip-
tion and context embeddings are trained with entities and
terms with the minimum frequency of 5.

Entity linking is done by CMNS with all linked entities kept
to ensure recall [12, 27]. Corpus entities do not have multiple
surface forms so CMNS reduces to exact match. Freebase en-
tities are linked using surface forms collected from Google’s
FACC1 annotation [10].

Entity connection scores are binned into five bins:
[1, 1], [0.75, 1), [0.5, 0.75), [0.25, 0.5), [0, 0.25) with the exact
match bin as the first bin [11]. We discard the negative
bins as negative cosine similarities between entities are not
informative: most of them are not related at all.

All other settings follow previous standards. The em-
bedding dimensionality is 300; The five bins and three
paper fields (title, abstract, and body) generate 15 fea-
tures, which are combined with S2’s original score using
linear RankSVM [14]. All models and baselines’ parame-
ters are trained and evaluated using a 10-fold cross valida-
tion with 80% train, 10% development and 10% test in each
fold. The hyper-parameter ‘c’ of RankSVM is selected from
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} using the
development part of each fold.

6. EVALUATION RESULTS
Five experiments investigated entity linking and docu-

ment ranking accuracy, as well as the effects of three system
components (entity based match, embedding, pooling).

http://boston.lti.cs.cmu.edu/appendices/WWW2016/
http://boston.lti.cs.cmu.edu/appendices/WWW2016/


Table 3: Overall accuracy of ESR compared to Semantic Scholar (S2). ESR-Author, ESR-Context, ESR-Desc and ESR-Venue

are ESR with entity embedding trained from corresponding edges. Relative performances compared with S2 are in percentages.
Win/Tie/Loss are the number of queries a method improves, does not change, or hurts, compared with S2. Best results in
each metric are marked Bold. Statistically significant improvements (P>0.05) over S2 are marked by †.

Method NDCG@1 NDCG@5 NDCG@10 NDCG@20 W/T/L
tf.idf-F 0.2020 −59.65% 0.2254 −54.93% 0.2741 −47.57% 0.3299 −39.91% 28/01/71
BM25-F 0.2512 −49.81% 0.2890 −42.20% 0.3150 −39.74% 0.3693 −32.75% 32/01/67
Semantic Scholar 0.5006 – 0.5000 – 0.5228 – 0.5491 – –/–/–

ESR-Author 0.5499† +9.85% 0.5501† +10.02% 0.5671† +8.47% 0.5935† +8.08% 60/10/30
ESR-Context 0.5519† +10.25% 0.5417† +8.35% 0.5636† +7.80% 0.5918† +7.77% 58/04/38
ESR-Desc 0.5304 +5.96% 0.5496† +9.92% 0.5536† +5.88% 0.5875† +6.99% 55/11/34
ESR-Venue 0.5638† +12.63% 0.5700† +13.99% 0.5795† +10.83% 0.6090† +10.91% 59/11/30
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Figure 3: ESR’s relative NDCG@20 compared with Semantic Scholar (S2) on individual queries. Each point corresponds to
a query. The value on the x-axis is S2’s NDCG@20 on each query. The y-axis shows ESR’s relative NDCG@20 (percentage)
compared with S2.

6.1 Entity Linking Performance
The entity linking accuracy of CMNS on our queries is

shown in Table 2. Corpus and Freebase refer to using
entities from extracted keyphrases in S2’s corpus or Free-
base. Precison and Recall are evaluated by lean evalua-
tion (query and entity averaged) and strict evaluation (query
only) metrics.

The results in Table 2 reveal a clear gap between the qual-
ity of automatically extracted entities and manually curated
entities. Linking performance is 10-25% better with Free-

base entities than Corpus entities on all evaluation metrics,
demonstrating the significant differences in the quality of
their entity sets. Further analysis finds that Freebase not
only provides a larger set of surface forms, but also a cleaner
and larger set of computer science concept entities. Indeed,
our manual examination found that only the most frequent
automatically extracted keyphrases (about ten thousand)
are reliable. After that, there is much noise. Those most
frequent keyphrases are almost all included in Freebase; lit-
tle additional information is provided by the Corpus entities.

The absolute Precision and Recall are higher than entity
linking with Freebase on the general domain (TREC Web
Track) queries [12, 27]. Our manual examination finds that
a possible reason is the lower ambiguity in academic queries
than in TREC Web Track queries. Also, since our queries
are from the head and middle of the online traffic, they are

mostly about popular topics. Freebase’s coverage on them
is no worse than on general domain queries. Due to its dom-
inating entity linking accuracy, the rest of our experiments
used only Freebase.

6.2 Ranking Performance
The four versions of ESR only differ in the edges they used

to obtain the entity embedding. Relative performances com-
paring with the production system Semantic Scholar (S2)
are shown in percentages. Win/Tie/Loss are the number of
queries outperformed, unchanged, and hurt by each method
compared with S2. Statistically significant improvements
over S2 are marked by †.

The production system S2 outperforms BM25-F by a large
margin. NDCG@1 is almost doubled. This result confirms
the quality of the current production system. Although half
of the queries were deliberately picked to be difficult, at all
depths S2 achieves absolute NDCG scores above 0.5.
ESR provides a further jump over the production system by

at least 5% on all evaluation metrics and with all edge types.
With Venue, the improvements are consistently higher than
10%. On the earlier positions which are more important
for user satisfaction, ESR’s performances are also stronger,
with about 2 − 3% more improvements on NDCG@1 and
NDCG@5 than on NDCG@20. The improvements are sta-
tistically significant, with the only exception of ESR-Desc on



NDCG@1. We think this behavior is due to the edge types
Author, Context, and Venue being domain specific, because
they are gathered from S2’s corpus, whereas Desc is bor-
rowed from Freebase and no specific attention is paid to the
computer science domain.
ESR is designed to improve the queries that are hard for

Semantic Scholar. To verify that ESR fulfills this require-
ment, we plot ESR’s performance on individual queries with
respect to S2’s in Figure 3. Each point in the figure corre-
sponds to a query. S2’s NDCG@20 is shown in the x-axis.
The relative performance of ESR compared with S2 is shown
in the y-axis.

In all four sub-figures, ESR’s main impact is on the hard
queries (the left side). On the queries where S2 already
performs well, ESR makes only small improvements: Most
queries on the right side stay the same or are only changed
a little bit. On the queries where S2’s word-based ranking
fails, for example, on those whose NDCG < 0.3, the seman-
tics from the knowledge graph improve many of them with
large margins. The improvements are also robust. More
than half of the queries are improved with big wins. Fewer
queries are hurt and the loss is usually small.

This experiment demonstrates ESR’s ability to improve
a very competitive online production system. ESR’s ad-
vantages also favor online search engines’ user satisfaction:
More improvements are at early ranking positions, the im-
provements are robust with fewer queries badly damaged,
and most importantly, ESR fixes the hard queries that the
production system finds difficult.

6.3 Effectiveness of Entity-Based Match
ESR matches query and documents on their entity repre-

sentations using the semantics from the knowledge graph.
The semantic contribution to ESR’s ranking can come from
two aspects: exact match with smart phrasing and soft
match with knowledge graph embedding. The third ex-
periment investigated the effectiveness of ESR’s entity-based
matching, both exact match and soft match.

Recall that ESR uses five bins to combine and weight
matches of different strengths. This experiment used the
same ranking model, but varies the bins used. We started
with only using the first exact match bin [1, 1]; then we
added in the second bin [0.75, 1), the third [0.5, 0.75), and
the fourth [0.25, 0.5), and evaluated effectiveness of exact
match and soft matches at varying strength. The results
with different numbers of bins are shown in Figure 4. For
brevity, only NDCG@20 is shown (the y-axis). The behav-
ior is similar for other depths. Results of Semantic Scholar

and ESR with all bins are also displayed for comparison.
Entities’ exact match information (the first bin) provides

about 6% gains over S2, with Context and Venue. The ex-
act match signals with ESR-Author and ESR-Desc are sparse,
because some entities do not have Author or Desc edges. In
that case, their rankings are reduced to S2, and their gains
are smaller. Our manual examination found that this gain
does come from the ‘smart phrasing’ effect: an entity’s men-
tion is treated as a whole unit and different phrases referring
to the same entity are aligned. For example, the rankings
of queries like ‘natural language interface’ and ‘robust prin-
ciple component analysis’ are greatly improved, while in S2

their textual similarity signals are mixed by their individual
terms and sub-phrases.
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Figure 4: ESR accuracy using different numbers of matching
bins. For each group, from left to right: Semantic Scholar,
the baseline; Exact match which only uses the first bin;
First 2 Bins, First 3 Bins, and First 4 Bins which re-
fer to only using the first k bins with the highest matching
scores; the last one All Bins is the original ESR.

The soft match information (later bins) contributes ap-
proximately another 5% of improvement. The soft-match
bins record how many document entities are related to the
query entities at certain strengths. Intuitively, the soft
match should contribute for all queries as knowing more
about the document entities should always help. But our
examination finds this information is more effective on some
queries, for example, ‘dynamic segmentation programming’,
‘ontology construction’ and ‘noun phrases’. The soft match
helps ESR find the papers whose meanings (e.g. research
area, topic, and task.) are semantically related to these
queries’ information needs, while S2’s word-based match
fails to do so.

This experiment helps us understand why the explicit se-
mantics in knowledge graphs is useful for ranking. By know-
ing which entity a phrase refers to and whether different
phrases are about the same thing, the exact match signal is
polished. By knowing the relatedness between query entities
and document entities through their embeddings, additional
soft match connections that describe query-document relat-
edness with semantics are incorporated.

6.4 Effectiveness of Embedding
ESR captures the semantic relatedness between entities by

using their distance in the embedding space. An advan-
tage of using embeddings compared with the raw knowledge
graph edges is their efficiency, which is tightly constrained
in online search engines. By embedding the neighbors of
an entity into a dense continuous vector, at run time, ESR
avoids dealing with the graph structure of the knowledge
graph, which is sparse, of varying length, and much more
expensive to deal with than fixed length dense vectors.

However, does ESR sacrifice effectiveness for efficiency?
The fourth experiment studied the influence of embeddings
on ESR’s effectiveness, by comparing it with the ranking per-
formance of using raw knowledge graph edges. In this ex-
periment, a discrete vector representation is formed for each
entity for each edge type. Each of the vector’s dimensions
is a neighbor of the entity. Its weight is the frequency of
them being connected together. The Raw variants of ESR
are then formed with the knowledge graph embedding re-
placed by this discrete entity representation and everything
else kept the same.



Table 4: Performance of different strategies that make use
of the knowledge graph in ranking. Raw directly calcu-
lates the entity similarities in the original discrete space.
Mean uses mean-pooling when generalizing the entity trans-
lation matrix to query-document ranking evidence. Max

uses max-pooling. Mean&Bin replaces the max-pooling in
ESR’s first stage with mean-pooling. Relative performances
(percentages), statistically significant differences (†), and
Win/Tie/Loss are compared with the ESR version that
uses the same edge type and embedding; for example, Raw-
Author versus ESR-Author.

Method NDCG@20 W/T/L
ESR-Author 0.5935 – –/–/–
ESR-Context 0.5918 – –/–/–
ESR-Desc 0.5875 – –/–/–
ESR-Venue 0.6090 – –/–/–
Raw-Author 0.5821 −1.91% 45/06/49
Raw-Context 0.5642† −4.66% 38/06/56
Raw-Desc 0.5788 −1.48% 46/05/49
Raw-Venue 0.5576† −8.43% 28/07/65

Mean-Author 0.5685† −4.22% 33/09/58
Mean-Context 0.5676† −4.08% 39/06/55
Mean-Desc 0.5660 −3.66% 45/12/43
Mean-Venue 0.5599† −8.07% 32/10/58
Max-Author 0.5842 −1.56% 38/10/52
Max-Context 0.5861 −0.95% 52/07/41
Max-Desc 0.5659† −3.67% 41/12/47
Max-Venue 0.5763† −5.38% 32/12/56
Mean&Bin-Author 0.5823 −1.89% 41/06/53
Mean&Bin-Context 0.5808 −1.85% 41/08/51
Mean&Bin-Desc 0.5694 −3.07% 38/14/48
Mean&Bin-Venue 0.5639† −7.41% 31/10/59

Table 4 shows the results of such ‘Raw’ methods. Different
versions of Raw use different edges (Author, Context, Desc

and Venue) to represent entities. The relative performance
and Win/Tie/Loss are compared with the corresponding
ESR version that uses exactly the same information but with
knowledge graph embedding. The result shows that ESR ac-
tually benefits from the knowledge graph embedding; Raw

methods almost always perform worse than the correspond-
ing ESR version. We believe that the advantage of knowledge
graph embedding is similar with word embedding [18]: the
embedding better captures the semantics by factoring the
raw sparse data into a smooth low-dimensional space.

6.5 Effectiveness of Pooling
ESR applies a two stage pooling on the entity translation

matrix to obtain query-document ranking evidence. The
first, max-pooling, is used to match each document entity to
its closest query entity. The second, bin-pooling, is used to
summarize the matching scores of each document entity into
match frequencies at different strengths. This experiment
evaluates the effectiveness of ESR’s pooling strategy.

We compare ESR’s two-stage pooling with several common
pooling strategies: mean-pooling that summarizes the trans-
lation matrix into one average score; max-pooling that only
keeps the highest score in the matrix; and mean&bin-pooling
which is the same as ESR’s max-pooling and bin-pooling, but
in the first step the document entities are assigned with their

average similarities to query entities. Except for the pooling
strategy, all other settings of ESR are kept.

The results of different pooling strategies are shown in
the second half of Table 4. Relative performances and
Win/Tie/Loss are compared with the corresponding ESR

version. The results demonstrate the effectiveness of ESR’s
two-stage pooling strategy: All other pooling strategies per-
form worse. Abstracting the entire entity translation matrix
into one mean or max score may lose too much informa-
tion. Mean&bin pooling also performs worse. Intuitively, we
would prefer document entities that match one of the query
entities very well, rather than entities that have mediocre
matches with multiple query entities. Also, the exact match
information is not preserved in the mean&bin-pooling when
there are multiple query entities.

This result shows that generalizing the entity level evi-
dence to the query-document level is not an easy task. One
must find the right level of abstraction to obtain a good re-
sult. There are other abstraction strategies that are more
complex and could be more powerful. For example, one can
imagine building an RNN or CNN upon the translation ma-
trix, but that would require more training labels. We believe
ESR’s two-stage pooling provides the right balance of model
complexity and abstraction granularity, given the size of our
training data.

7. CONCLUSIONS AND FUTURE WORK
Analysis of Semantic Scholar’s query logs revealed that

a large percentage of head queries involve research concepts,
and that a major source of error was the inability of even
a well-tuned bag-of-words system to rank them accurately.
To address this challenge, we developed Explicit Semantic

Ranking (ESR), a new technique that utilizes the explicit se-
mantics from a knowledge graph in academic search. In ESR,
queries and documents are represented in the entity space
using their annotations, and the ranking is defined by their
semantic relatedness described by their entities’ connections,
in an embedding, pooling, and ranking framework.

Experiments on a Semantic Scholar testbed demonstrate
that ESR improves the production system by 6% to 14%.
Additional analysis revealed the effectiveness of the explicit
semantics: the entities and their surface forms help recog-
nize the concepts in a query, and polish the exact match
signal; the knowledge graph structure helps build additional
connections between query and documents, and provides ef-
fective and novel soft match evidence. With the embedding,
pooling, and ranking framework that successfully utilizes
this semantics, ESR provides robust improvements, especially
on the queries that are hard for word-based ranking models.

Perhaps surprisingly, we found that using Freebase enti-
ties was more effective than keyphrases automatically ex-
tracted from S2’s corpus. Although Freebase is considered
general-purpose, it provides surprisingly good coverage of
the entities in our domain - computer science. The value
of this knowledge graph can be further improved by adding
domain specific semantics such as venues and authors. This
result is encouraging because good domain-specific knowl-
edge bases can be difficult to build from scratch. It shows
that entities from a general-domain knowledge base can be
a good start.

Different edge types in the knowledge graph convey rather
different semantics. In our experiments, there is less than
15% overlap between the close neighbors of an entity in dif-



ferent embedding spaces. The different variants of ESR also
perform rather differently on different queries. This work
mainly focuses on how to make use of each edge type indi-
vidually. An important future research direction is to study
how to better utilize knowledge graph semantics in a more
unified way, perhaps with the help of ranking labels.

This paper presents a new method of using knowledge
graphs to improve the ranking of academic search. Although
the details of this work are specific to Semantic Scholar,
the techniques and lessons learned are general and can be
applied to other full-text search engines.
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