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Introduction
Infectious diseases caused by microorganisms of the 

most varied natures and by viral entities cause millions of 
deaths every year [1]. Around the world, viral infections 
have impacted civilizations’ circumstances since the 
earliest times, including the current panorama of the 
SARS-CoV-2 pandemic known as coronavirus disease 
in 2019 (COVID-19). In this sense, in the last century, 
it is possible to mention some pandemics with global 
epidemiological repercussions. With a pandemic peak in 
1918, the so-called ‘Spanish flu’ caused by the Influenza 
A virus of the H1N1 subtype, infected more than 500 
million people and caused 50 to 100 million deaths 
worldwide [2]. According to the Centers for Disease 
Control and Prevention (CDC), the Asian flu pandemic, 
which began and peaked in the years 1957-1958, caused 
more than 1.1 million deaths worldwide [3]. Another 
highly relevant pandemic occurred in 1968, where the 
so-called ‘Hong Kong flu’ was caused by the Influenza 
A virus of the H3N2 subtype and caused more than 1 
million deaths across the globe [4]. It is estimated that 
the virus Influenza A H1N1pdm09, which caused the 
2009 pandemic, caused 151,700 to 575,400 deaths in 
the first 12 months of circulation of the viral entity [5]. 

Currently, the World Health Organization estimates that 
there are 290 to 650 thousand deaths per year caused by 
seasonal infections of Influenza virus subtypes [6]. The 
pandemic caused by COVID-19, with a pandemic peak 
in the current year of 2020, confirms several questions 
about the real perspective of the mortality rate of the 
disease, the possibilities of sequelae after the cure of the 
infection, among other vital issues in the areas of health 
and of society [7]. It is worth mentioning that several data 
demonstrate that the majority of infected people are not 
documented because they are asymptomatic or have mild 
symptoms, which facilitates the spread of COVID-19 [8]. 

Nanoscience appears with the proposal to find 
alternatives that reduce or prevent the spread of virions. 
The use of nanoparticles can inactivate the viral particle 
or decrease its resistance on abiotic surfaces and in the 
intracellular environment [9]. Besides, there is also the 
development of nanotechnologies capable of combating 
viral diseases. The use of nanosystems that target drugs, 
quantum dots, among other biomedical technologies, can 
attack the infections by directing them to the target site. 

There is also the use of viral substrates as vehicles or 
molecular additives. Starting their physical-chemical 
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and biological properties, the fight against tumors occurs 
with the activation of the immune system directed to 
that region of hyperplasia [10,11]. Therefore, in this 
article, we will address several possibilities for timely 
nanotechnological applications. It will be possible to 
highlight the potential of nanosciences in combating the 
viral entity.

Physico-Chemical Influence of Organic 
Materials on the Biosynthesis and 
Stabilization of Nanoparticles

In recent years, the development of ecologically correct 
scientific techniques has gradually grown to find new 
medicinal solutions that do not pose a risk to human 
and animal health, as well as the environment [12]. In 
this way, nanoparticle biosynthesis adapts to sustainable 
routes using organic materials as nanoparticles’ formers 
and stabilizers instead of harmful toxic components [13]. 
The biosynthesis of nanoparticles begins with a reduction 
process between the ions, followed by the growth and 
nucleation stage of the nanoparticles to establish a 
colloidal matrix with active principles. About this, the 
nanosystem may have antimicrobial, antioxidant, anti-
inflammatory properties, among others [14,15]. 

Besides, nanoparticle biosynthesis can be mediated by 
different organic materials available in nature, whether 
they are of plant or animal origin [16]. As an example of 
this, we can mention plants that have different specialized 
structures capable of secreting essential oils due to 
the accumulation of secondary metabolites. Beyond 
as inputs of animal origin, for example, propolis has 
substances that compose the group of polyphenols, such 
as phenolic and flavonoid compounds [17,18]. Therefore, 
these substances are directly related to the antioxidant 
potential of the nanosystem, since it is a fundamental 
characteristic for the determination of an efficient 
system that has a colloidal dispersion and stabilization 
of nanoparticles [19]. Therefore, this nanosystem, as well 
as others, has characteristics and properties that can be 
adjusted in detail for different functions and applications 
that provide efficient antiviral mechanisms of action.

Nanosystems and Antiviral Mechanisms

One of the most intriguing characteristics associated 
with viruses refers to the fact that they do not have their 
metabolism and independent reproduction. Thus, they 
are not considered as living beings, as they need host 
cells to ensure survival. They need the cellular machinery 
of the host cell to replicate its genetic material, whether 
DNA or RNA, and produce new viral particles, so they 
are mandatory intracellular parasites [20,21]. Scientists 
around the world are looking for solutions using existing 

drugs. Besides that, new drugs that are successful in vitro 
may not be efficient when administered to patients [22]. 
The significant advantage of nanotechnology is that the 
size of the nanoparticles. The permeation in targets that 
are anatomically inaccessible with common drugs is a 
different ability [23]. The ability to change its surface 
charge, through supramolecular interactions, allows 
for permeation through the cell membrane. It can be a 
possible alteration of its surface charge, which integrates 
the nanosystem efficiently [24,25]. Many antiviral 
activities were established for nanosystems. (Figure 1).

Nanomaterials have also been investigated to optimize 
the methods of drug administration already used. This 
new approach would make it possible to reduce toxicity. 
Also, it prevents the degradation of drugs by metabolism. 
It is possible to increase absorption and greater targeting 
of drugs to target cells and tissues [26].

Silver nanoparticles (AgNPs) have broad antiviral 
action for herpes simplex viruses (HSV), human 
immunodeficiency viruses (HIV), Hepatitis B virus 
(HBV), among others [27]. AgNPs still have the 
advantage of having efficient, eco-friendly synthesis 
routes. The antiviral properties of nanoparticles can 
involve interaction with nucleic acids or thiol groups 
of proteins [28]. Besides, other mechanisms have been 
reported. The interaction and fusion of HIV-1 to host cells 
were prevented by the binding of AgNPs (coated by PVP, 
BSA, and carbon) to the gp120 glycoproteins of the viral 
envelope. These proteins are essential for the admission 
of the virus into host cells, such as lymphocytes, by 
binding to CD4 receptors. It was also seen that AgNPs 
were able to inhibit infection regardless of tropism and is 
non-toxic concentrations to cells [29]. In another study, 
AgNPs coated with 30-50 nm PVP added to neutralizing 

Figure 1: Possible interactions of nanosystems with 
viral particles.
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antibodies increased their ability to prevent infection 
of cells by HIV-1. These interactions are dependent on 
the shape and size of the nanostructures. AgNP activity 
against the hepatitis B virus (HBV) has also been reported. 
The binding of AgNPs inhibited the replication of the 
virus to DNA. The synthesis of RNA and the formation of 
virions was prevented [30].

The gold nanoparticles (AuNPs) synthesized by the green 
route are not yet so evident [31]. AuNPs functionalized 
with sialic acids had the potential to inhibit infection 
by the Influenza A virus. The binding of the virus to the 
surface of host cells and subsequent infection depends on 
the recognition of the sialic acid present in these cells by 
the hemagglutinin protein present on the viral surface. It 
is believed that AuNPs functionalized with sialic acid were 
able to block the interaction of hemagglutinin with sugar. 
Thus, the virus cannot enter the cell [32]. It was observed 
that nanoparticles that are 10 nm bound more efficiently 
to the surface of the HIV-1 viral envelope. They would 
be associated with interaction with residues exposed in 
the existing gp120 glycoproteins [33]. AuNPs coated with 
glucose conjugated to the drugs abacavir and lamivudine 
be able to inhibit viral replication in cell assays [34].

Also, AuNPs were coated with mercaptobenzoic acid and 
conjugated to SDC-1721, a derivative of the antagonist 
TAK-779 for the CCR5 receptor. This receptor is essential 
for the entry of HIV-1 into T lymphocytes. The SDC-1721 
and AuNps alone did not show inhibitory effects for virus 
infection. However, when AuNPsare conjugated to SDC-
1721, the results showed similar effects to TAK-779. There 
is an efficient inhibition of the fusion and entry of HIV-
1 with T lymphocytes. With these results, it is seen that 
small, therapeutically inactive organic molecules can be 
converted into highly active drugs by conjugating them to 
metallic nanoparticles [35].

In the study with the functionalized gold nanoparticles, 
only those with 14 nm were able to block the Influenza 
A virus infection. The 2 nm AuNPs did not show 
significant results. With the change in the shape of the 
gold nanostructures, there are studies associated with 
vaccines based on gold nanorods that were tested for 
the respiratory syncytial virus (RSV) because there is the 
induction of production of T lymphocytes, which are cells 
of the immune system [36].

Copper nanoparticles (CuNPs), as well as AgNPs, have 
also shown broad activity against different organisms. 
Copper is cheaper and readily available than silver [37]. 
The antiviral potential was evaluated by copper iodide 
nanoparticles (CuINPs) against the strain of Influenza 
A virus that caused the 2009 epidemic. CuINPs were 
able to act on viral proteins such as hemagglutinin and 

neuraminidase, leading to degradation and inactivation 
of the virus through the formation of reactive oxygen 
species (ROS) [37]. CuINPs have also been studied 
against the feline Calicivirus (FCV). A non-enveloped 
virus that is highly resistant to organic solvents and 
surfactants, unlike enveloped ones. This virus was 
considered as a substitute for human norovirus that is 
associated with gastroenteritis [38]. The virus infection 
capacity was significantly reduced during the exposure of 
Crandell-Rees feline kidney cells (CRFK) to 1000 μg.ml-1 
CuINPs for 60 min, reaching a reduction of 7 orders of 
magnitude under these conditions. This effect was also 
hypothesized to be the result of the production of ROS 
and the sequential oxidation of capsid proteins [38]. 

It is urgent to establish options for human coronavirus 
(HCoV). However, anti-virus therapy is challenging, as 
coronaviruses mutate rapidly and have wide diversity. The 
first generation of nanostructures that demonstrated the 
inactivation of the virus was derived from hydrothermal 
carbonization of ethylenediamine/citric acid as carbon 
precursors and post-modified with boronic acid ligands, 
called carbon quantum dots (CQDs). These nanostructures 
showed concentration-dependent virus inactivation. 
CQDs derived from 4-aminophenyl boronic acid are 
the second generation of anti-HCoV nanomaterials. 
These nanostructures showed concentration-dependent 
virus inactivation. CQDs derived from 4-aminophenyl 
boronic acid are the second generation of anti-
HCoV nanomaterials. With an average size of 10 nm, 
have excellent dispersion in water. Have no toxicity 
associated with animals, so promise to be an advance 
associated with nanomedicine [39]. Characteristics of 
the nanostructures related to shape, size, and chemical 
surface are essential for the access of these nanometric 
structures to the attack target. The interactions with 
the biological environment and properties of the cell 
membrane, as a particular charge and affinity with water 
(hydrophilicity or hydrophobicity), can influence the 
cell absorption ways. This feature would allow drugs to 
efficiently access virus reservoirs. In the case of SiO2NPs 
nanoparticles, these nanostructures interact strongly 
with viral particles due to hydrophobic or hydrophilic 
properties. It can establish stronger interactions with a 
specific virus envelope with similar surface properties. 
The antiviral activity of SiO2NPs particles suggests a 
mechanism of antiviral action for anti-HIV therapy, based 
on surface interactions between silica, cells, and viruses 
[40]. For H1N1 influenza virus types A and B, one of the 
most widely used antiviral drugs are oseltamivir (OTV). 
When there is an association of this drug with selenium 
nanoparticles (SeNPs), the delivery of the drug, through 
the use of an association between OTV and SeNPs, is much 
more efficient to prevent H1N1 infection with low toxicity 
[41]. Bacterial viruses are called when the virus infects 
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the bacteria. The bacteriophage virus MS2 is an example 
that infects the bacteria Escherichia coli. Studies indicate 
that titanium dioxide (TiO2) nanoparticles modified with 
silver commenced inactivation to the MS2 virus about five 
times higher when compared to titanium nanoparticles 
without doping. The evolution of virus inactivation was 
favored by the increase in silver doping, due to the action 
already mentioned above [42].

Conclusion

The potential of nanomaterials has attracted several 
interests in approaches to viral infections since they can 
be designed to act directly against viruses or increase the 
capacity of drugs already used today. In this sense, further 
studies will be necessary to deepen the knowledge about 
antiviral mechanisms. Therefore, various tests must take 
place in vitro and in vivo to apply nanosystems associated 
with reducing the spread of viruses, in addition to 
expanding the advantages of using nanostructures in new 
therapies or vaccines capable of stopping the rapid action 
of these viral particles. From this, it is worth emphasizing 
the importance of knowledge about the immune system, 
since it interacts and responds to these nanomaterials 
to optimize better constructions and avoid toxic effects 
on the body. Therefore, through all the data cited in the 
text above, it can be observed that nanotechnology has 
been a promising science in the search for alternatives to 
conventional treatments against diseases caused by viral 
particles.
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