
This paper is based on the M.Sc. dissertation named "Especificação de Funções de Transferência Unidimensionais e
Multidimensionais para Visualização Volumétrica Direta" by the first author.

Exploration of Volumetric Datasets through Interaction in Transfer Function
Space

Francisco de M. Pinto and Carla M. D. S. Freitas
Instituto de Informática – Universidade Federal do Rio Grande do Sul

fmpinto@inf.ufrgs.br, carla@inf.ufrgs.br

Abstract

Direct volume rendering techniques allow
visualization of volume data without extracting
intermediate geometry. The mapping from voxel
attributes to optical properties is performed by transfer
functions which, consequently, play a crucial role in
building informative images from the data. One-
dimensional transfer functions, which are based only
on a scalar value per voxel, often do not provide
proper visualizations. On the other hand, multi-
dimensional transfer functions can perform more
sophisticated data classification, based on vectorial
voxel signatures. The transfer function design is a non-
trivial and unintuitive task, especially in the multi-
dimensional case, and its controlled modification
allows the user to selectively enhance different
structures in the volume. In this paper we discuss the
interactive approach of a transfer function design
technique that allows the user to explore volumetric
datasets by interacting with a derived space as well as
with voxels in the volume space.

1. Introduction

In direct volume rendering (DVR), transfer
functions (TFs) are used for emphasizing regions of
interest inside the volumes. The most common type of
transfer function is the one-dimensional TF, which
assigns optical properties (usually color and opacity) to
voxels based only on their scalar value.
Notwithstanding, one-dimensional TFs have a very
limited classification power because they can not make
distinction between volume regions defined by scalar
values within the same range. On the other hand, multi-
dimensional transfer functions can perform better
classification because they can take into account not
only the scalar value of a voxel [8], but also other
attributes like gradient magnitude, directional second
derivative, curvature [7] and statistical measures [23].

Figure 1. The sheep heart dataset viewed with two TFs,
represented as circle in the color map. The circle
represents a Gaussian opacity function with peak –
maximum opacity – at the center. The color maps are
fixed, with red, green and blue representing scalar value,
gradient magnitude and directional second derivative,
respectively.

Designing an appropriate transfer function, even a
one-dimensional TF, is a difficult task and much
attention has been given to this issue in the literature
after Pfister et al.[15]. As the domain dimension
increases, the visualization of the transfer function
becomes more difficult, and so the interaction with it.
Controlled modifications of color and opacity transfer
functions allow enhancing parts of the datasets, thus
hiding features and revealing others that the user is
trying to isolate. This way, the representation of the

transfer functions and the ways the user can interact
with them play an important role in the exploration of
inner structures in volumetric datasets.

In this paper we present an interactive technique for
the design of multi-dimensional transfer functions.
With our approach the user can interact with a
simplified representation of the TFs obtaining different
informative visualizations in a very easy and fast way
(Figure 1). We discuss the resulting method compared
to a previous interface for specifying one-dimensional
transfer functions.

The paper is organized as follows. Next sections
present the closest related works, including a brief
review of our previous work. Section 3 describes our
approach in detail, while main implementation aspects
are discussed in Section 4. Section 5 discusses the
results obtained with our method, and finally, in
Section 6 we draw some conclusions and point out
future work.

2. Related work

2.1. One-Dimensional transfer function
specification

Traditional approaches for TF specification rely on
the user's effort in adjusting control points of a graphic
plot mapping voxel values to opacity level and/or color
tone. The control points are then interpolated in order
to build the TF. But, with no clues or prior knowledge
about the data, this is a “blind process”. Some data-
driven approaches provide to the user higher-level
information [2][14] that helps in obtaining insight
about the data distribution as well as supports the
manual TF design. Other methods build abstractions of
the TF specification process - the transfer functions can
be hidden from the user [24] or a simplified space can
be presented [6].

Kindlmann and Durkin [6] proposed a derived space
for specification of opacity transfer functions in which
the user specifies opacities for voxels as a function of
the distance between the voxel and the nearest
boundary. Informative histograms are built relating
voxel values with the first and second derivative values
associated to each voxel in the volume. From these
histograms, the mean first and second derivative values
associated to each voxel value are used to estimate the
distance to the nearest border. Since the boundaries
must be emphasized, voxel values with small estimated
distances should receive larger opacity values.
Prauchner et al. [18] used Kindlmann’s method to
classify the voxel values by the estimated distance to
the nearest border. A set of voxel values with the

smallest distances is elected and random subsets are
then built. The values of each subset are used as control
points for the TF specification. Each of these points
receives a random color and a random opacity value
different from zero. The transfer functions are obtained
by interpolating the control points. Consequently, each
subset of the “best'” voxel values derives a transfer
function to be presented in a gallery of thumbnails,
similar to the Design Galleries method [13]. This is the
first level of the two-level interaction interface
proposed by Prauchner et al. In the second level, the
user can visualize a selected thumbnail in better
resolution and refine its TF by adjusting the control
points manually. The thumbnails can be randomly re-
generated any time at interactive rates.

Following this two-level interaction interface
approach, we [16] also adopted the gallery to present
several thumbnails generated initially through a
boundary emphasis technique, following Kindlmann
and Durkin [6]. At this level, the user can generate new
thumbnails (TFs) by either reapplying the boundary
emphasis or selecting thumbnails as parents of a next
generation of TFs, which are generated using an
stochastic approach by He et al.[4]. The user can also
select a specific thumbnail, and go to the second-level
of interaction. At this level, looking at the rendered
volume in high resolution, the user can modify the TF
manually either by interacting with the TF graphic plot
(Figure 2) or by picking voxels – to be emphasized by
increasing the opacity for its scalar value – from a
cutting plane (Figure 3). This work was published in
SIBGRAPI 2006 and its extended version is to appear
in a Computer and Graphics special issue.

2.2. Multi-dimensional transfer function
specification

The design of multi-dimensional transfer functions
brings challenges regarding both the visualization of
the TF as well as the exploration of the TF domain.

It is possible to explicitly define a multi-dimensional
transfer function by interacting in its domain with
proper tools. Kniss et al. [8] proposed a volume
rendering environment containing a set of direct
manipulation widgets for volume inspection,
visualization of data distribution and design of three-
dimensional transfer functions, using dual domain
interaction.

However, the difficulty of exploring the transfer
function domain increases with its dimensionality;
therefore some approaches for transfer function design
provide interfaces based on interaction in a simplified
space. Region growing techniques were used by Huang

and Ma [5] to segment volume data from seed points
specified by the user; voxel signatures of the segmented
region were used to automatically design a transfer
function.

Tzeng and Ma [25] clusterized voxel's signatures by
similarity allowing the user to specify the desired
classification by successively splitting and merging the
clusters. The user sees the results by associating visual
properties to each material class. The same authors
[26] implemented multi-dimensional transfer functions
using neural networks and support vector machines.
They evaluate a classification function learned from
training sets selected through a slice painting interface.
The user paints the voxels of interest with a specific
color, and the undesired ones with a different color.
This way they implement a binary classification
scheme.

Sêreda et al. [20] used hierarchical clustering to
group voxels according to their LH signatures [21].
The user navigates through the hierarchy searching for
the branches corresponding to regions of interest.
Takanashi et al. [22] used independent component
analysis (ICA) of multi-dimensional voxel signatures in
order to represent them in a space where the
classification is performed by moving axis aligned
separation planes. Rezk-Salama et al. [19] created
models of transfer functions that are carefully adjusted
by specialists for several data sets of the same type in
order to reveal the desired structures. Then, they
applied PCA to represent the parameter set of each
model by a single variable with an associated semantic.
The models can be reused for new data sets by setting
only that variable.

In order to have a generic design technique, we can
consider designing a one-dimensional transfer function
as a case of designing a multi-dimensional TF where
the user selects only one variable to represent the voxel
signature. In [17], we reported a method for designing
nD-TFs, where voxel signatures are extracted from the
volumetric dataset to be visualized, 2D or spherical
self-organizing maps are built from the voxels
signatures, and a dimensional reduction step results in
voxels signatures being replaced by their coordinates in
map space. These processes are performed off-line and
perform non-linear dimensional reduction of voxel
signatures. The result can be thought as a non-discrete,
non-linear voxel classification scheme that group
voxels by similarity and map them to a two-
dimensional space: a square or a spherical surface.
During rendering the user can specify color and opacity
transfer functions by navigating on the map with a
cursor that is the peak of a Gaussian opacity function.
Next section presents this method in detail.

Figure 2: Manual design of one-dimensional opacity and
color transfer functions.

Figure 3. Top image: dataset1 rendered using the TF
shown at the left side. Bottom images: the voxel pointed
by the cursor has the value marked as a white square in
the TF plot. Opacity associated with this value can be
interactively increased by the user.

3. Design of multi-dimensional transfer
functions

Figure 4 shows the process of obtaining meaningful
transfer functions for nD signatures. Our work on this
subject [17] was published in EuroVis 2007.

1 Dataset “Laçador” kindly provided by LACEM-UFRGS.

3.1. Map building process

The map building process starts with a
preprocessing phase, when complex voxel's signatures
(like derivative values, statistical measures, etc.) are
extracted from the volume data and normalized. This
way, each voxel has an nD signature (a set of scalar
values represented as a vector) that can be used as a
training case for the self-organizing (Kohonen) map
building algorithm. It is important to mention that,
depending on the source of volume data, there are
many background voxels which do not carry useful
information (air around scanned objects in CT/MRI
volume data, for example), and would influence the
map due to their high occurrence. Upon user decision,
they can be partially removed from the input set of the
training process by a very simple region growing
technique using as seeds the voxels identified as
background in the most exterior regions of the volume.

The signatures of all non-background voxels are
employed as training cases presented in random order
to the self-organizing map, and two types of
neighborhood functions are applied. In a first stage we
define the overall aspect of the map by training it using
a Gaussian neighborhood function, and then, we
continue the map training with a modified
neighborhood function that depends not only on the
topological distance, but also on the distance between
the training case and the weight vector of the winner
cell (refer to [17], for further details). This modified
neighborhood function is designed in order to allow a
voxel with a signature far from the weight vector of the
corresponding winner cell (according to the distance
metric) to have more influence on the map. Without
this strategy, large homogeneous regions of the volume
would tend to dominate the map, while important
regions with fewer voxels would be badly represented
(signatures far from their respective winner cells).

We use as topological distance the Euclidean
distance between the integer 2D coordinates of two
cells in the map grid. For spherical maps, the
topological distance is the number of edges in the
shortest path connecting two cells.

At the end of this process, we have a Kohonen (or
spherical) map where each cell has an associated
weight vector that represents a class of voxels, being
the most similar weight vector for all elements in that
class.

3.2. Dimensional reduction

Dimensional reduction was motivated by the need of
providing a simplified space for the user to interact

with the multi-dimensional transfer functions. When
using Kohonen maps, two-dimensional map space
coordinates in the interval from zero to one can be
associated to cells according to their position in the 2D
grid. Dimensional reduction can be performed by
replacing each voxel signature by the coordinates of its
respective winner cell. However, this would cause
unnecessary discretization. To avoid this, we create
two multiquadric radial basis functions (multiquadric
RBFs), for x and y map space coordinates, based on the
weight vectors of all cells. For spherical maps we adopt
x, y and z position coordinates ranging from -1 to 1,
and use three RBFs to obtain the coordinates of voxel's
signatures. Thus, the RBFs supports the final step in
dimensional reduction of voxel signatures by
producing, through interpolation, the proper x and y
(and z) map coordinates for each nD voxel signature.

Figure 4. Distribution of processes between CPU and
GPU for obtaining opacity and color TFs from nD voxel
signatures.

Dimensional reduction normally implies loss and
distortion of information, but volumetric data usually
have properties that reduce this problem. The voxels
signatures are usually not uniformly distributed in their
domain (they form clusters, which are well represented
in the map), and elements of the voxel signatures are
often not completely independent [22]. Moreover,
voxel signatures that are not present in the training set
do not require space in the map.

3.3. Transfer functions specification

After the dimensional reduction step, the continuous
map space defined by the RBFs becomes the TF
domain. The user can interactively define the mapping
from map coordinates (which represent voxel's
signatures) to optical properties. We propose an

interface for specification of color and opacity transfer
functions that provides dual domain interaction [8] as
well as visualizations of the transfer function and of the
voxel signatures.

3.3.1. Interaction in TF-domain. The visualization of
voxel's signatures in our interface is obtained by
directly mapping up to three elements of the weight
vectors of the map cells (which actually are elements of
the voxel signature) to the three color channels. The
user decides which element of the nD signatures should
be mapped to each basic color. One element can be
associated to more than one color channel and a color
channel may have no elements mapped to it. This
interface feature illustrates the distribution of voxel's
signatures on the map and can be used to build color
TFs as described below. Figure 5 (a and b) shows the
distribution of voxel's signatures of the well known
engine data set. The same regions (clusters of
signatures) can be found in both maps.

The transfer function is represented as an RGBA
image and is displayed by blending it with a
checkerboard pattern. The blending function allows
TFs with small opacities to be clearly visualized.
Figure 5 displays TFs on a Kohonen map (c) and on a
spherical map (d) generated for visualizing the engine
data set. The volumetric rendering of the data set using
the TF in Figure 5c is shown in Figure 7a.

Transfer functions are composed by blending
several 2D Gaussian opacity TFs, each one having an
associated 2D color TF. We provide three types of
color transfer functions that can be associated to a
Gaussian opacity function: a constant color chosen
from a colorpicker; map coordinates directly mapped to
color channels; and elements of weight vectors of map
cells mapped to color channels (for each map
coordinate the weight vectors of the near cells are
interpolated and mapped to colors). At each step a new
Gaussian TF is specified and then blended with the
current TF, for opacity and color. The result becomes
the current transfer function and the composition
continues until the desired TF is reached. At start, the
current TF has zero opacity and RGB colors for all the
map space.

In our interface, by clicking or dragging the mouse
on the map representation, the user moves a circle
whose center is the peak of a Gaussian function and
whose radius is its standard deviation �. The Gaussian
TF is scaled by a constant k between zero and one
which is linearly mapped to the circle color, with blue
being zero and red, one. The parameters � and k can be
increased or decreased using the keyboard. In order to
fully explore the spherical maps, they can be rotated by

dragging the mouse using the right button. The
Gaussian opacity transfer function is defined in terms
of the distance to the center of the circle.

Figure 5. Maps of 3D voxel's signatures (a and b). Scalar
value is mapped to red, gradient magnitude to green and
second derivative in the gradient direction to blue.
Transfer functions displayed on a Kohonen map (c) and
on a spherical map (d).

The transfer function used for rendering is the
composition of the current TF and the Gaussian
function represented by the circle. This scheme
provides interactive previewing of the effect of the
composition while the user explores the map by
moving the circle on it. When the desired effect is
reached, the user can set the composition as the current
TF using the space bar, and other Gaussian function
can be further experimented.

Our interface (Figure 8) keeps track of all transfer
functions defined during a session, and provides a tree
representation of this evolution using static thumbnails
of the volume rendered with the corresponding TF.
This allows simple recovering of previous TFs by
clicking on the thumbnails.

3.3.2. Interaction in TF-domain. At any time the user
can rotate and translate the volume and place a clipping
plane to better explore inner structures. The volume
slice defined by the clipping plane is textured by
mapping to color channels the map coordinates of the
voxels sampled by the slice. This causes an interesting
coloring effect that helps in inspecting the volume. The
slice is blended with the rendered volume using an
opacity value controlled by the user, as shown in
Figure 6. When Kohonen maps are employed, the x
and y map space coordinates of the voxels are mapped

to red and green. When using a spherical map the x, y
and z map space coordinates are mapped to RGB
colors.

The user can also click on the clipping plane to set
the position of the Gaussian opacity function peak to
the map coordinates of the voxel pointed by the mouse
cursor, emphasizing that region. By moving the mouse
on the clipping plane, the user can see the position of
the pointed voxel depicted as a white cross in the map
graphical representation (Figure 1). This spatial domain
interaction mapped to TF domain helps in
understanding the relationship between both domains.

Figure 6. Visualizations of the tooth data set: a semi-
transparent slice blended with the tooth image rendered
using a transfer function specified in a 2D space built
from a Kohonen map (a); and a fully opaque slice of the
tooth colored according to voxel coordinates in a
spherical map (b). The noisy regions can be clearly seen.
The red arrow is the plane normal.

4. Implementation aspects

We implemented map training and dimensional
reduction as offline processes, but rendering and
transfer function specification demand interactive rates,
which are achieved through an intensive use of the
GPU (see Figure 4).

The map coordinates of the voxels are stored in a
3D RGB texture, which is sampled using view-aligned
slices as proxy geometry. When using a Kohonen map,
the transfer function is stored in a 2D RGBA texture
which is accessed by using the R and G components
(the x and y map coordinates) of the sampled 3D RGB
texture. The blue component is used to identify
background (zero) or non-background (one) voxels.
Background voxels must receive zero opacity during
rendering since they are not well represented in the
map. Nevertheless, due to hardware interpolation, the
blue component can assume values between zero and

one. With this in mind, the opacity is actually
modulated by a smoothed step function of the blue
component. When using a spherical map, the TF is
stored in the GPU memory as an RGBA cube map and
is accessed using the RGB values of the 3D texture,
taken as vectors (the value of each color channel is first
converted to the interval [-1, 1]. Background voxels
have null vectors and the opacity is modulated by a
smoothed step function of the L2-norm of the vectors.
The blending of TFs and the evaluation of Gaussian
opacity functions also run in GPU.

When sampling the three-dimensional texture for
rendering, interpolation must be performed. The
hardware can automatically interpolate the map
coordinates stored in the 3D texture and generally this
produces good results. However, in our approach, it is
more correct to interpolate color and opacity associated
to voxels (see [3] for better understanding). In our
implementation, we use the GPU to create another 3D
texture, with the same size, containing the RGBA
values that result from the evaluation of the transfer
function for each voxel, and this texture is sampled for
rendering. When the transfer function changes, this
texture must be recomputed, but this strategy is fast
enough for our purposes. We also calculate another 3D
RGB texture to store the gradient field of the opacity.
This is done in GPU by applying central differences on
each voxel. The opposite vector of the gradient of the
opacity is used as surface normal for shading. Since we
are using complex signatures for each voxel, this
scheme for normal evaluation is more accurate than to
sample a 3D texture containing the precomputed
normals of the scalar field. Additionally, the normals of
the opacity field do not have ambiguity in their
orientation (see [11]). In our implementation, we set
hardware interpolation of map coordinates and pre-
computed normals as default options, but the user can
select color and opacity interpolation and normals
computed on the fly as high-quality rendering options.

As for the RBF design, we solve the systems of
equations with the Lapack library [1]. GLUT and the
GLUI libraries are used for the interface, while the
rendering is based on OpenGL and Cg, with the
framebuffer objects extension of OpenGL used in
hardware accelerated computing (Figure 8 depicts the
whole interface).

5. Results and discussion

5.1. Visualization

We tested our method using well-known data sets
(see Figure 7), comprising scalar and multivariate

volume data. Similar results were obtained using
Kohonen and spherical maps. Most of the data sets
were successfully visualized using voxels signatures
based on the scalar value, gradient magnitude and
directional second derivative. For noisy scalar data,
however, we achieved better results using statistical
signatures like mean scalar value, standard deviation,
and cubic root of the third-order statistical moment,
taken from a small subvolume centered at the voxel
under focus.

(a) (b)

(c)

(d) (e)

(f)

Figure 7. Visualizations obtained using Kohonen maps:
(a) engine data set and (c) carp data set, both using scalar
and derivative values (gradient magnitude and directional
second derivative) as voxel signature; (b) foot data set,
using statistical signatures (mean scalar value, standard
deviation, cubic root of the third-order statistical
moment); and (f) carp data set, using the normalized z
coordinate of the voxels and same three statistical
signatures, (z axis is horizontally represented); and
Spherical maps: (d) hurricane data set at the 24th time
step, using wind speed, pressure and temperature as voxel
signature; and (e) sheep heart data set, using the same
statistical signatures as (b).

Due to the loss and distortion of information usually
caused by dimensional reduction, our method can not
provide accurate quantitative information about the
volume data during the transfer function specification.
However, our approach is well suitable for revealing
qualitative aspects like shape of structures and
dissimilarity between regions.

Figure 7 shows visualizations of test data sets
obtained using different sets of voxel attributes as
signatures. In all these renderings, we used the
automatic generated color transfer functions (see
Subsection 3.3.1). For the hurricane data set we used
only the colormap which assigns voxel attributes to
color channels, since the attributes carry a clear
physical meaning: temperature was mapped to red,
pressure to green and wind speed to blue. However, the
tooth data set (see Figure 6) was visualized using
manually chosen colormaps and statistical signatures,
achieving a very good separation of the pulp.

Since self-organizing maps group similar voxel
signatures, the automatic generated color transfer
functions produce very good results because they
assign different colors to different regions of the map,
which correspond to voxels with considerably different
attribute's values.

The importance of each voxel attribute is defined by
weights. We suggest associating smaller weights for
higher-order voxel attributes. The visualizations
presented in this paper were produced using weights of
1.3, 1.0 and 0.7 for the statistical variables formerly
mentioned, respectively, and the same weights for
scalar and first and second derivative values,
respectively. For the hurricane data set the weights
were 1.0 for wind speed and pressure, and 0.5 for
temperature.

Regarding the shading using normals computed on
the fly, results can be seen in Figure 7 (c, d and e). It is
worth to mention that for the multivariate data sets, like
the hurricane, we can not use meaningful pre-computed
normals.

5.2. Interaction

Figure 1 (a and b) shows 2 views of the well-known
sheep heart dataset obtained by simply moving the
peak of the Gaussian TF on the map space (see
Subsection 3.3.1) from the position in Figure 1(a) to
that on Figure 1(b). The difference in the color of the
circle also indicates a difference in the value of a
specific parameter (k) from one opacity function to the
other. Automatically generated color transfer functions
are usually a good choice, which turns the design

process less difficult. This is the case in the examples
shown here.

By moving the Gaussian opacity function on the
map space, the user quickly obtains an overview of the
main structures in the data volume. Users can tune
opacity levels and combine TFs with simple (keyboard)
input. Careful tuning of parameters of the Gaussian
functions and their combination allow building
meaningful visualizations.

In comparison to the previous design technique,
targeted at one-dimensional transfer functions, the
method described herein can be thought as including
boundary emphasis since the derived attributes are
often intended to capture the boundaries between
regions. Thus, the interactive tasks of enhancing
boundaries that a user had to accomplish with the
previous interface are automatically included in the
exploration of the map and setting of Gaussian
functions at specific positions on it.

The history tree, briefly described in Subsection
3.3.1, provides a powerful mechanism for exploring the
transfer function domain, allowing not only “undo” and
“redo” operations, but navigation in the whole history
of TF modifications. Both design interfaces have this
feature, which proved to be necessary due to the
interactivity of the TF design process, which can yield
to situations where the user “looses” a good transfer
function.

6. Conclusions

In this paper we presented a new approach for the
design of multi-dimensional transfer function that uses
self-organizing maps to perform dimensional reduction
of the voxel attributes. The strongest points of our
technique are simplicity and flexibility. Our approach
allows building multi-dimensional transfer functions
through the exploration of a simplified (reduced) space
where traditional interaction techniques can be
employed. A simple and effective interface for transfer
function design is provided, and the user can interact
with the system in both spatial and TF domains.

Self-organizing maps have the ability of
representing clusters of voxel's signatures in a compact
way, and this helps to understand the data distribution.
All relevant voxel's signatures are represented in the
map and every region of the map has voxels mapped to
it. Moreover, exploring two-dimensional maps is easier
and faster than navigating through a class hierarchy.
The proposed dimensional reduction scheme requires a
preprocessing step, but it has clear advantages in
relation to volume segmentation techniques because it
performs a non-discrete classification which can

represent uncertainty. In addition, with simple
interaction, the user can change the transfer function
defined in the map space, interactively obtaining new
visualizations in real-time.

As future work, regarding interaction with the TF,
we want to transport transfer functions designed in map
space to the actual multi-dimensional space using the
Gaussian multi-dimensional TFs proposed by Kniss et
al. [9]. Another promising future work is the semi-
automatic search for important structures in the map.
This search could be aided by an interface that would
provide additional information about the spatial
distribution of voxels.

Wherever Times is specified, Times Roman or
Times New Roman may be used. If neither is available
on your word processor, please use the font closest in
appearance to Times. Avoid using bit-mapped fonts if
possible. True-Type 1 fonts are preferred.

7. Acknowledgements

We acknowledge the financial support from CNPq,
the Brazilian Scientific Research Funding Agency.

8. References

[1] Anderson, E., Bai, Z., Bischof, C., Blackford, S.,
Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., Mckenney, A., Sorensen, D. LAPACK
Users’ Guide, third ed. 1999.
[2] Bajaj, C. L., Pascucci, V., Schikore, D. R., “The contour
spectrum”, Proceedings of the 8th conference on
Visualization ’97, Los Alamitos, CA, USA, 1997, pp. 167–
174.
[3] Hadwiger, M., Berger, C., Hauser, H., “High quality two-
level volume rendering of segmented data sets on consumer
graphics hardware”, Proceedings of IEEE Visualization,
2003, pp. 40–47.
[4] He, T., Hong, L., Kaufman, A., Pfister, H., “Generation
of transfer functions with stochastic search techniques”,
Proceedings of the 7th conference on Visualization ’96, Los
Alamitos, CA, USA, 1996, pp. 227–235.
[5] Huang, R., Ma, K.-L., “RGVis: Region growing based
techniques for volume visualization”, Proceedings of the
11th Pacific Conference on Computer Graphics and
Applications, 2003, pp. 355–363.
[6] Kindlmann, G. Durkin, J.W., “Semi-automatic generation
of transfer functions for direct volume rendering”,
Proceedings of the 1998 IEEE symposium on Volume
visualization, New York, NY, USA, 1998, pp. 79–86.
[7] Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.,
“Curvature-based transfer functions for direct volume
rendering: Methods and applications”, Proceedings of IEEE
Visualization, 2003, pp. 513–520.

[8] Kniss, J., Kindlamnn, G., Hansen, C., “Multidimensional
transfer functions for interactive volume rendering”, IEEE
Transactions on Visualization and Computer Graphics 8, 3,
2002, pp. 270–285.
[9] Kniss J., Premoze, S., Ikits, M., Lefohn, A., Hansen, C.,
Praun, E., “Gaussian transfer functions for multi-field
volume visualization”, Proceedings IEEE Visualization,
2003, pp. 497–504.
[10] Kniss, J. M., Uitert, R. V., Stephens, A., Li, G.- S.,
Tasdizen, T., Hansen, C., “Statistically quantitative volume
visualization”, Proceedings of IEEE Visualization, 2005, pp.
37–44.
[11] Lum, E. B., Ma, K.-L., “Lighting transfer functions
using gradient aligned sampling”, Proceedings of IEEE
Visualization, 2004, pp. 289–296.
[12] Ma, F., Wang, W., Tsang, W. W., Tang, Z., Xia, S.,
Tong, X., “Probabilistic segmentation of volume data for
visualization using SOM-PNN classifier”, Proceedings of
IEEE Symposium on Volume visualization, 1998), pp. 71–78.
[13] Marks, J., Andalman, B., Beardsley, P. A., Freeman, W.,
Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H.,
Ruml, W., Ryall, K., Seims, J., Shieber, S., “Design galleries:
a general approach to setting parameters for computer
graphics and animation”, Proceedings of SIGGRAPH ’97,
New York, NY, USA, 1997, pp. 389–40.
[14] Pekar, V., Wiemker, R., Hempel, D., “Fast detection of
meaningful isosurfaces for volume data visualization”,
Proceedings of the conference on Visualization ’01,
Washington, DC, USA, 2001, pp. 223–230.
 [15] Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G.,
Schroeder, W., Avila, L. S., Martin, K., Machiraju, R., Lee,
J, “The transfer function bake-off”, IEEE Computer
Graphics and Applications, 21, 3, 2001, pp. 16–22.
[16] Pinto, F.M., Freitas, C.M.D.S, “Two-level interaction
transfer function design combining boundary emphasis,
manual specification and evolutive generation”, Proceedings
of XIX SIBGRAPI - Brazilian Symposium on Computer
Graphics and Image Processing , IEEE Press, 2006.
[17] Pinto, F.M., Freitas, C.M.D.S, “Design of
multidimensional transfer functions using dimensional

reduction”, Proceedings of Eurographics/IEEE-TVCG
Symposium on Visualization, 2007.
[18] Prauchner, J.L., Freitas, C.M.D.S., Comba. J. L. D,
“Two-level interaction approach for transfer function
specification”, In Proceedings of XVIII SIBGRAPI -
Brazilian Symposium on Computer Graphics and Image
Processing, IEEE Press, 2005.
[19] Rezk-Salama, C., Keller, M., Kohlmann, P., “High-level
user interfaces for transfer function design with semantics”,
IEEE Transactions on Visualization and Computer Graphics,
12, 5, 2006, pp. 1021–1028.
[20] Šereda, P., Bartroli, A. V., Gerritsen, F. A, “Automating
transfer function design for volume rendering using
hierarchical clustering of material boundaries”, Proceedings
of IEEE/Eurographics Symposium on Visualization, 2006,
pp. 243–250.
[21] Šereda, P., Bartroli, A. V., Serlie, I. W. O., Gerritsen, F.
A, “Visualization of boundaries in volumetric data sets using
LH histograms”, IEEE Transactions on Visualization and
Computer Graphics, 12, 2, 2006, pp. 208–218.
[22] Takanashi, I., Lum, E. B., Ma, K.-L., Muraki, S,
“ISpace: Interactive volume data classification techniques
using independent component analysis”, Proceedings of the
10th Pacific Conference on Computer Graphics and
Applications, 2002), pp. 366–374.
[23] Tenginakai, S., Lee, J., Machiraju, R, “Salient isosurface
detection with model-independent statistical signatures”,
Proceedings of IEEE Visualization, 2001, pp. 231–238.
[24] Tzeng, F.-Y., Lum, E. B., Ma, K.-L, “A novel interface
for higher-dimensional classification of volume data”,
Proceedings of the 14th IEEE Visualization, Washington,
DC, USA, 2003, pp. 66-73.
[25] Tzeng, F.-Y., Ma, K.-L, “A cluster-space visual
interface for arbitrary dimensional classification of volume
data”, In Proceedings of the Symposium on Data
Visualization, 2004, pp. 17–24.
[26] Tzeng, F.-Y., Lum, E. B., Ma, K.-L, “An intelligent
system approach to higher-dimensional classification of
volume data”, IEEE Transactions on Visualization and
Computer Graphics, 11, 3, 2005, pp. 273–284.

Figure 8. Visualization tool interface showing the main visualization window, the color map with a Gaussian TF marked as a
circle and the history tree that maintains the TFs defined along the design process. At the right the controls for specifying the
mapping between voxel attributes to colors, in the color map; the map types, and other configuration parameters.

