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Exploratory data analysis

It is important to understand what you CAN DO before you learn
to measure how WELL you seem to have DONE it

Exploratory data analysis is detective work

John W. Tukey

EXPLORATORY DATA
ANALYSIS

Tukey (1977)
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Quantiles in exploratory data analysis

04
02~

Median IQR = inter-quartile range =
quartiIeS' 25% 75% = upper quartile - lower quartile
hinges: data point

= 25%- 1.5 *IQR <75%+ 1.5 *IQR

Quantiles highlight central and extreme data points
E.g., boxplot for univariate data

Relies on a total ordering

However, multivariate data do not have a canonical ordering
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Tukey's depth

Idea: Measures the “depth”, or the centrality of a point relative to a
distribution (Tukey, 1975)

m Lid. sample Xi,..., X, ~ X € R™
m Tukey's depth of x w.r.t. the sample is

n

. 1
DTukey(X; Pn) = I Iﬂil ; ZI{<X, — X, V> > 0}
=
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Halfspace probability n! Z 1{(z — Xj,v) > 0} =033
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Halfspace probability n! Z 1{(z — Xj,v) >0} =0.13
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Tukey's depth, cont.

Measures the centrality/representativeness
Tukey's depth of x € R™ w.r.t. the population is

Drykey(x; Px) = |\\iﬂi1 P((X —x,v) > 0)
Equals the least probability of any halfspace containing x
A.k.a halfspace depth
For univariate data, Drykey(X; Px) = min{Fx(x),1 — Fx(x)}
Nonparametric
Differs from densities, which measure the local probability mass
Deepest point 6 = arg max,cgm Drukey(X; Px) is called a depth
median
More generally, Tukey's depth defines a central-outward ranking and
quantiles for multivariate data
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Usage of Tukey's depth: Bagplot (Rousseeuw et al., 1999)

Chevrolet Caprice V8|

*
MustangV8  Ford Victoria V8

Camara V8.
¥

m A bagplot is a bivariate generalization of a boxplot
m From the center outward:

m The depth median

m the bag (50% of data)

m the fence (separates inliers and outliers)
m outliers
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More usage of depth

m Classification (Li et al., 2012)

m Two- or multi-sample inference (Liu and Singh, 1993; Chenouri and
Small, 2012)

20
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Multivariate quantile literature

m Only to name a few popular depth functions...

m Mahalanobis depth (Mahalanobis, 1936)

Oja depth (Oja, 1983)

Simplicial depth (Liu, 1990)

Projection depth (Donoho and Gasko, 1992)
Spatial depth (Chaudhuri, 1996; Serfling, 2002)
Zonoid depth (Koshevoy and Mosler, 1997)

LP depth (Zuo and Serfling, 2000)

m Transportation approach (Chernozhukov et al., 2017; del Barrio
et al., 2020)

m Copula approach (Cousin and Di Bernardino, 2013)
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Why does Tukey's depth stand out

Tukey's depth Dyykey(-; Px) enjoys nice properties (Donoho and Gasko,
1992; Zuo and Serfling, 2000; Kong and Zuo, 2010):

m Affine invariance
Maximality at the symmetric center

Center-outward monotonicity

m
[
m Vanishing at infinity
= Robustness

m (Semi-)continuity

m Convexity and compactness of the upper level sets
m Characterizes a certain class of distributions

The first four properties are formulated as desirable for any depth
functions (Zuo and Serfling, 2000).

Unfortunately, the computation is very slow for dimension > 4.
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Metric Halfspace Depth
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Metric Halfspace Depth

B (M, d): a metric space
m X: a random element taking values on M

m (Metric) halfspace Hyy, = {y € M | d(y,x1) < d(y,x)}, said to
be anchored at (x1,x) € M x M

m Metric halfspace depth w.r.t. the probability measure Px:
D(x) = D(x; Px) =inf Px(Hyx,)
=inf P(d(X,x1) < d(X,x2)).
The infimums are taken over all halfspaces H,,x, containing x, i.e.,
those with d(x1,x) < d(x2, x)
m Vetric halfspace depth w.r.t. the sample Xi,..., X, is

Dn(x) = D(x; P,) :==inf P,(H)

:inf%il{d(xi,xl) < d(Xi, %)}

i=1
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Metric Halfspace Depth

D(x) = infM P(d(X,x) < d(X,x))
X1,X2€
d(x1,x)<d(x2,x)

If M =R™, we will recover the Tukey's depth

In general, the geometry & halfspaces in M is captured by the
distance metric d

D(x) measures how central/representative x is w.r.t. the distribution

Data are ranked according to their depth values

Quantiles can be defined from the rank

Xiongtao Dai Tukey's Depth For Object Data



Metric Halfspace Depth: Interpretation

D(x) = inf P(d(X,x1) < d(X,x2))
x1,%0EM
d(x1,x)<d(x2,x)
In the context of social choice,

m Each point in M is an ideology

m Voters prefer proposals close in ideology

m x, X: Voters

® xq, xo: Proposals

m Halfspace probability P(d(X,x1) < d(X, x2)): proportion of votes

won by x; against xp

m Depth D(x): the minimal popularity attached to a proposal that
may appeal to x
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Example: Sphere

Let M be the unit sphere S™ = {x € R™" | xTx = 1} with the great arc
distance d(x, y) = arccos(x"y).
m Each metric halfspace Hy,x, = {y € M | d(y,x1) < d(y,x)} is a
closed hemisphere

Sphere

m The metric halfspace depth recovers the angular Tukey's depth
(Small, 1987; Liu and Singh, 1992)
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Example: Sphere

0.1

0.05

m Depth is monotone from center outward
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Example: Symmetric Positive Definite Matrices

Let M = SPD(k) be the manifold of k x k symmetric positive definite
(SPD) matrices.

= Distance: d(P, Q) = ||logm(P~1/2QP~%/2)| ., where logm is a
matrix logarithm

m Affine invariance: d(APAT, AQAT) = d(P, Q)
m A halfspace in SPD(2) parametrized as (% ):
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Example: Symmetric Positive Definite Matrices

m Center-outward
m Reasonable, given large values in the diagonal x, z entries
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Example: Trees

Let M = T* be the space of rooted phylogenetic trees with k leaves.
Consider T3 as an example:
[~

B CA

/
—-/_Aeb
[hn

I 1

Each element on T2 is a phylogenetic tree of three species
In each tree,
m Interior node: Speciation event
m Edge length: Divergence in time or base pairs
Focus on only the interior edge
The space T? is represented by a 3-spider
m Branch: Tree topography
m Location on branch: Length of the interior edge
u In general, T is a cubical complex
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Example: Trees

The metric on T* is endowed from the Euclidean distance (Billera et al.,
2001).

A few halfspaces in T3:

RN
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Example: Trees

Metric halfspace depth:

Tree space with 3 leaves 0.5

m Deepest tree occurs around the “center”

m Trees with uncommon topologies have small depth
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Related depth literature

m Specialized spaces:

unit sphere (Small, 1987; Liu and Singh, 1992)

positive definite matrices (Fletcher et al., 2011; Chau et al., 2019)
networks (Fraiman et al., 2017)

data on a graph (Small, 1997)

infinite-dimensional functional data (Fraiman and Muniz, 2001;
Lépez-Pintado and Romo, 2009)

m Riemannian manifold: Fraiman et al. (2019)

m General setting: Carrizosa (1996), but only a sketch
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Theoretical Properties
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Intuitive depth properties

Depth properties need to be redefined on a non-Euclidean metric space:

Depth properties in R™ Adaptation to M

Affine invariance Invariance to halfspace-preserving
transformations

Vanishing at infinity Vanishing at infinite distance from
an arbitrary point

Maximality at the Define halfspace symmetrical

symmetrical center distributions

Center-outward Monotonicity along geodesics from

monotonicity the center
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Geodesic space and Riemannian manifold

m Let v:/ — M be a map where | is a closed interval. It is said to be
a geodesic if there exists a constant A such that

d(y(t),v(t") = At —t/| forall t,t' €/

A geodesic joining x,y € M is the shortest path between x,y

M is a geodesic space if any two points can be joined by a geodesic

m A Riemannian manifold is a smooth submanifold embedded in an
ambient Euclidean space

= Riemannian manifolds are special cases of geodesic spaces
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Geodesic space and Riemannian manifold

Practically, one can define a metric structure for any data analysis

.Euclidean Space
Sphere
e

Symmetric Positive Definite|Matrices
@
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Intuitive depth properties

(Transformation invariance) If f is a halfspace invariant
transformation at x € M, then D(x; Px) = D(f(x); P(x))-

(Vanishing at infinity) Let o € M be an arbitrary point. Then
SUPy.g(o,x)>L D(x) = 0 as L — oo.

(Maximality at the symmetrical center) If there exists a unique point
0 s.t. P(X € H) > 1/2 for any halfspace H containing 6, then 6 is
the unique deepest point.

(Center-outward monotonicity) Suppose that M is a geodesic space.
Let € M be a deepest point, x € M, and v : [0,1] = M a
geodesic joining 0 to x. If any halfspace Hy,x, of M that has a
nonempty intersect with v([0, 1]) contains at least one of x and 6,
then D(x) < D(v(t)) holds for t € [0, 1].

m The geometric condition for the monotonicity is satisfied by the
spheres, Euclidean spaces, and hyperbolic spaces
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Depth function and depth region

Define depth regions D := {x € M | D(x) > a}, for & > 0
Suppose that M is a complete and locally compact geodesic space.
D(-) is upper semi-continuous.

D% is nested, i.e. D** C D*? for a; > «p, and D% is compact for
a > 0.
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Convergence properties

Let H be the collection of halfspaces in M.

If the Vapnik—Chervonenkis (VC) dimension of H is finite, then as
n— oo,

sup |Dn(x) — D(x)] = O(n"Y/?) as.
XxEM

m S™ and T3 have finite VC dimension

Let 8 = arg max,c »( D(x) and 8, = arg max, ¢ o4 Da(x).

Proposition 2

Under regularity conditions, as n — oo,

d(0,,0) >0 a.s.
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Robustness of the depth median

The breakdown point (Donoho and Gasko, 1992) of a statistic
m is a measure of robustness

m is the least proportion of adversarial contamination in the dataset so
as to bring the statistic to infinity.

X: Dataset of n points; )): contamination set
For the depth median 8, the breakdown is defined as

* . n€
€ = min
n-+ n.

Larger breakdown = more robust

sup  sup  d(Xi,p)=o0 .
|¥|=ne PEO(XUY)
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Robustness of the depth median

On any metric space M, it holds that

* D"(en)
€ —?
— 1+ Dy(0,)

where 0, is a depth median w.r.t. sample X.

m D,(6,) — D(9)

m For a halfspace symmetric distribution, breakdown ¢* > 1/3
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Computation
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Computation of metric halfspace depth

m Computing a single Tukey's depth value exactly takes O(n™~! log n)
(Dyckerhoff and Mozharovskyi, 2016)

m Optimization on non-Euclidean spaces is hard

m Need efficient approximation
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Approximate algorithm

Let X = {Xi,...,X,} be the observations, and A C M the anchor set.
m Approximate D,(x) by

n

- ) 1
Dn(x; A) = Xl#.ngeA - > Hd(Xi,x) < d(Xi,x)}
d(x,x1)<d(x,x2) i=1

m A can be set to X
m To improve approximation, enhance A with jiggled points

m Approximate the depth median using the deepest in-sample
observation

0 = arg max D,,(x)
xXeX
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Approximate algorithm

Algorithm 1: Metric Halfspace Depth Algorithm
Data: Depth evaluation points ), observations X', and anchor set A
Result: Depth values f),,(y;.A) forye)y
1 For x; # x» € A, obtain halfspace probabilities
Pxixo = n~t Z?:l I{Xl € HX1X2}
2 For y € ), obtain

Dn(y,.A) = min{pxlxz | d(y,X]_) S d(y7X2)7X1 7é Xo € A}

= Time complexity if A= X: O(nyn®+ n®), independent of the
dimension

m Depends only on the pairwise distances

Xiongtao Dai
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Theory for the approximation

Theorem 3

Under regularity conditions, if the infimum in D(x) = infyeq, P(H) is
achieved by a halfspace, then as n — oo,

‘5,,(X; X) — D(X)\ = 0,(an).

If the infimum of D(x) = infyeq, P(H) is not achieved by any halfspace,
then as n — oo,

‘5n(x;é\,’) . D(x)’ = 0,(1).

® a, measures how dense the random sample X is around the anchors
of the minimizing halfspace

m Op(an) = Op(n~*/™) on an m-dimensional Riemannian manifold
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Numerical Examples
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Simulation studies

Target: Estimate the center u of a symmetrical distribution on M

Our proposal: Deepest point fimup

Competitors:
m Fréchet mean fipm = argmin,. v >r, d(x, Xi)?, non-robust;
Fréchet (1948)
m Fréchet median figpp = arg min , >.1; d(x, X;), robust;
Chau et al. (2019)

Metric: d(fi, i)
Goal: Compare efficiency and robustness
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Results on SPD(k)

k=2 k=3 k=4

n=|MHD FM GDD|MHD FM GDD|MHD FM GDD
50 |.118 .102 .120 |.122 .102 .121 |.110 .102 .121
100 |.076 .070 .075 |.07r1 .070 .077 |.076 .070 .077
200 |.054 .052 .049 |.055 .051 .050 |.056 .051 .050
50 |.119 .143 .132 |.109 .147 .115 |.111 .144 .115
100 |.097 .122 .104 |.084 .119 .088 |.087 .133 .096
200 |.077 .110 .085 |.062 .108 .071 |.062 .109 .078
50 |.091 .104 .102 |.098 .104 .092 |.102 .103 .092
100 |.074 .075 .072 |.060 .076 .068 |.061 .075 .066
200 |.058 .057 .054 |.043 .055 .051 |.038 .054 .051
50 [.123 .143 .128 |.114 150 .111 |.115 .144 .119
100 |.096 .127 .107 |.086 .125 .092 |.082 .130 .092
200 |.067 .112 .087 |.057 .115 .072 |.058 .112 .076

No
contamination

Location
contamination

Scale
contamination

Loc & scale
contamination
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Results on SK and SO(k)

M =sk M = SO(k)

k=2 | k=3 | k=4 | k=2 | k=3 | k=4
n=[MHD FM |[MHD FM |[MHD FM |[MHD FM [MHD FM [MHD FM
50146 .124 | 147 .131|.142 131|113 .003 |.116 .107 |.127 .107
contam 100000 092 101 003 | 096 003 |.071 065 |.082 .076 |.092 .076
200|.066 .066 |.069 .067 |.072 .068 |.048 .048 |.084 .054 |.072 .054
_50|.146 .137 |.165 .164 |.146 .171 [.128 .111 |.142 .150 |.140 .149
Location 50|11 126 |.123 147 |.105 142 |.086 .084 |.119 .120 096 .123
200.093 .117 |.087 .120 |.092 .122 |.093 .097 |.118 .110 |.097 .111
50126 .132 127 .151|.125 .154 |.113 .093 |.114 .113[.106 .110
cale 100[.098 .096 092 .102 083 .107 |.071 065 |.085 .082 |.073 .082
200|.073 .067 |.072 .078 |.057 .080 |.048 .048 |.077 .062 |.062 .057
Loc & 50144 .153 161 .177|.136 .192|.128 .111|.138 .145|.137 .153
scale 100.105 .141|.120 .159 |.108 .159 084 .084 |.124 .132|.099 .127
contam 200|.091 .133 |.081 .130 |.087 .134 |.093 .097 [.111 .112|.095 .115
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Functional connectivity in Alzheimer’s disease patients

Data from Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Raw data point: fMRI scan

After preprocessing: Connectivity measure as a 10 x 10 covariance
matrix between 10 regions of interest

n = 181 subjects

Four groups:

cognitively normal (CN)

m early mild cognitive impaired (EMCI)
m late mild cognitive impaired (LMCI)
m Alzheimer's disease (AD)

m Goal: Detect group difference
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Functional connectivity in Alzheimer’s disease patients

Raw data:

p-values from pairwise depth-based

0025 0685 | 002_S_1261 W H I C h . d S I I
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R mid temporal
R mid frontal 2012 .
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002_S_4225 \ 019_S_4835 \ 0.001 ‘ E M Cl L M C I A D
R supramarginal { 0.000
CN | 0644 0339 0.021
R mid frontal .644 . .
RIS parietal lobule |
Post cingulate/precuneus {
b ton EMCI - 0.350 0.126
M prefrontal ]
L mid temporal | ]
Uit LMCI — - 0.074
L 1S parietal lobule .
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R R ey
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Phylogenetic trees

m Apicomplexan phylogeny (Kuo et al., 2008)

m Data: Phylogenetic trees for 7 species (and 1 outgroup), one tree for
each gene

m n = 268 genes
m Goal: Find a consensus tree, and detect outliers

m Some tree observations:
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Deepest tree under MHD

Tt

m The tree topology of the deepest tree coincides with the best known
topology

m No need to identify and remove outliers before analysis

m Monophyletic/siblings which makes sense:

m Pf & Pv: Malaria parasites
m Bb & Ta: Tick-borne parasites
m Et & Tg: Coccidian species
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Outlier trees

Tt Tt Tt Tt
b (] t Ta
a t Tg b
f b P P
v a Ta Pt
P ¢) b v
t f f t
Tg v Pv ]

m Trees with the least metric halfspace depth are potential outliers
m Exceptionally long branches: 1st & 2nd
m Wrong tree topography: 1st, 3rd, & 4th
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Metric halfspace depth
m measures the representativeness of data points on a metric space
m leads to intuitive center-outward ranks and quantiles

m shows successes in estimating the center and identifying outliers
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